xref: /llvm-project/clang/lib/AST/ByteCode/Compiler.cpp (revision acb7dfaa017dc11106bf97de4e8bf72d47ff54a8)
1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Compiler.h"
10 #include "ByteCodeEmitter.h"
11 #include "Context.h"
12 #include "FixedPoint.h"
13 #include "Floating.h"
14 #include "Function.h"
15 #include "InterpShared.h"
16 #include "PrimType.h"
17 #include "Program.h"
18 #include "clang/AST/Attr.h"
19 
20 using namespace clang;
21 using namespace clang::interp;
22 
23 using APSInt = llvm::APSInt;
24 
25 namespace clang {
26 namespace interp {
27 
28 /// Scope used to handle temporaries in toplevel variable declarations.
29 template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
30 public:
31   DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
32       : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
33         OldInitializingDecl(Ctx->InitializingDecl) {
34     Ctx->InitializingDecl = VD;
35     Ctx->InitStack.push_back(InitLink::Decl(VD));
36   }
37 
38   void addExtended(const Scope::Local &Local) override {
39     return this->addLocal(Local);
40   }
41 
42   ~DeclScope() {
43     this->Ctx->InitializingDecl = OldInitializingDecl;
44     this->Ctx->InitStack.pop_back();
45   }
46 
47 private:
48   Program::DeclScope Scope;
49   const ValueDecl *OldInitializingDecl;
50 };
51 
52 /// Scope used to handle initialization methods.
53 template <class Emitter> class OptionScope final {
54 public:
55   /// Root constructor, compiling or discarding primitives.
56   OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
57               bool NewInitializing)
58       : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
59         OldInitializing(Ctx->Initializing) {
60     Ctx->DiscardResult = NewDiscardResult;
61     Ctx->Initializing = NewInitializing;
62   }
63 
64   ~OptionScope() {
65     Ctx->DiscardResult = OldDiscardResult;
66     Ctx->Initializing = OldInitializing;
67   }
68 
69 private:
70   /// Parent context.
71   Compiler<Emitter> *Ctx;
72   /// Old discard flag to restore.
73   bool OldDiscardResult;
74   bool OldInitializing;
75 };
76 
77 template <class Emitter>
78 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
79   switch (Kind) {
80   case K_This:
81     return Ctx->emitThis(E);
82   case K_Field:
83     // We're assuming there's a base pointer on the stack already.
84     return Ctx->emitGetPtrFieldPop(Offset, E);
85   case K_Temp:
86     return Ctx->emitGetPtrLocal(Offset, E);
87   case K_Decl:
88     return Ctx->visitDeclRef(D, E);
89   case K_Elem:
90     if (!Ctx->emitConstUint32(Offset, E))
91       return false;
92     return Ctx->emitArrayElemPtrPopUint32(E);
93   default:
94     llvm_unreachable("Unhandled InitLink kind");
95   }
96   return true;
97 }
98 
99 /// Scope managing label targets.
100 template <class Emitter> class LabelScope {
101 public:
102   virtual ~LabelScope() {}
103 
104 protected:
105   LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
106   /// Compiler instance.
107   Compiler<Emitter> *Ctx;
108 };
109 
110 /// Sets the context for break/continue statements.
111 template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
112 public:
113   using LabelTy = typename Compiler<Emitter>::LabelTy;
114   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
115 
116   LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
117       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
118         OldContinueLabel(Ctx->ContinueLabel),
119         OldBreakVarScope(Ctx->BreakVarScope),
120         OldContinueVarScope(Ctx->ContinueVarScope) {
121     this->Ctx->BreakLabel = BreakLabel;
122     this->Ctx->ContinueLabel = ContinueLabel;
123     this->Ctx->BreakVarScope = this->Ctx->VarScope;
124     this->Ctx->ContinueVarScope = this->Ctx->VarScope;
125   }
126 
127   ~LoopScope() {
128     this->Ctx->BreakLabel = OldBreakLabel;
129     this->Ctx->ContinueLabel = OldContinueLabel;
130     this->Ctx->ContinueVarScope = OldContinueVarScope;
131     this->Ctx->BreakVarScope = OldBreakVarScope;
132   }
133 
134 private:
135   OptLabelTy OldBreakLabel;
136   OptLabelTy OldContinueLabel;
137   VariableScope<Emitter> *OldBreakVarScope;
138   VariableScope<Emitter> *OldContinueVarScope;
139 };
140 
141 // Sets the context for a switch scope, mapping labels.
142 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
143 public:
144   using LabelTy = typename Compiler<Emitter>::LabelTy;
145   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
146   using CaseMap = typename Compiler<Emitter>::CaseMap;
147 
148   SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
149               OptLabelTy DefaultLabel)
150       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
151         OldDefaultLabel(this->Ctx->DefaultLabel),
152         OldCaseLabels(std::move(this->Ctx->CaseLabels)),
153         OldLabelVarScope(Ctx->BreakVarScope) {
154     this->Ctx->BreakLabel = BreakLabel;
155     this->Ctx->DefaultLabel = DefaultLabel;
156     this->Ctx->CaseLabels = std::move(CaseLabels);
157     this->Ctx->BreakVarScope = this->Ctx->VarScope;
158   }
159 
160   ~SwitchScope() {
161     this->Ctx->BreakLabel = OldBreakLabel;
162     this->Ctx->DefaultLabel = OldDefaultLabel;
163     this->Ctx->CaseLabels = std::move(OldCaseLabels);
164     this->Ctx->BreakVarScope = OldLabelVarScope;
165   }
166 
167 private:
168   OptLabelTy OldBreakLabel;
169   OptLabelTy OldDefaultLabel;
170   CaseMap OldCaseLabels;
171   VariableScope<Emitter> *OldLabelVarScope;
172 };
173 
174 template <class Emitter> class StmtExprScope final {
175 public:
176   StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
177     Ctx->InStmtExpr = true;
178   }
179 
180   ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
181 
182 private:
183   Compiler<Emitter> *Ctx;
184   bool OldFlag;
185 };
186 
187 } // namespace interp
188 } // namespace clang
189 
190 template <class Emitter>
191 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
192   const Expr *SubExpr = CE->getSubExpr();
193   switch (CE->getCastKind()) {
194 
195   case CK_LValueToRValue: {
196     if (DiscardResult)
197       return this->discard(SubExpr);
198 
199     std::optional<PrimType> SubExprT = classify(SubExpr->getType());
200     // Prepare storage for the result.
201     if (!Initializing && !SubExprT) {
202       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
203       if (!LocalIndex)
204         return false;
205       if (!this->emitGetPtrLocal(*LocalIndex, CE))
206         return false;
207     }
208 
209     if (!this->visit(SubExpr))
210       return false;
211 
212     if (SubExprT)
213       return this->emitLoadPop(*SubExprT, CE);
214 
215     // If the subexpr type is not primitive, we need to perform a copy here.
216     // This happens for example in C when dereferencing a pointer of struct
217     // type.
218     return this->emitMemcpy(CE);
219   }
220 
221   case CK_DerivedToBaseMemberPointer: {
222     assert(classifyPrim(CE->getType()) == PT_MemberPtr);
223     assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
224     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
225     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
226 
227     unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
228                                                QualType(FromMP->getClass(), 0));
229 
230     if (!this->delegate(SubExpr))
231       return false;
232 
233     return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
234   }
235 
236   case CK_BaseToDerivedMemberPointer: {
237     assert(classifyPrim(CE) == PT_MemberPtr);
238     assert(classifyPrim(SubExpr) == PT_MemberPtr);
239     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
240     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
241 
242     unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
243                                                QualType(ToMP->getClass(), 0));
244 
245     if (!this->delegate(SubExpr))
246       return false;
247     return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
248   }
249 
250   case CK_UncheckedDerivedToBase:
251   case CK_DerivedToBase: {
252     if (!this->delegate(SubExpr))
253       return false;
254 
255     const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
256       if (const auto *PT = dyn_cast<PointerType>(Ty))
257         return PT->getPointeeType()->getAsCXXRecordDecl();
258       return Ty->getAsCXXRecordDecl();
259     };
260 
261     // FIXME: We can express a series of non-virtual casts as a single
262     // GetPtrBasePop op.
263     QualType CurType = SubExpr->getType();
264     for (const CXXBaseSpecifier *B : CE->path()) {
265       if (B->isVirtual()) {
266         if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
267           return false;
268         CurType = B->getType();
269       } else {
270         unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
271         if (!this->emitGetPtrBasePop(DerivedOffset, CE))
272           return false;
273         CurType = B->getType();
274       }
275     }
276 
277     return true;
278   }
279 
280   case CK_BaseToDerived: {
281     if (!this->delegate(SubExpr))
282       return false;
283 
284     unsigned DerivedOffset =
285         collectBaseOffset(SubExpr->getType(), CE->getType());
286 
287     return this->emitGetPtrDerivedPop(DerivedOffset, CE);
288   }
289 
290   case CK_FloatingCast: {
291     // HLSL uses CK_FloatingCast to cast between vectors.
292     if (!SubExpr->getType()->isFloatingType() ||
293         !CE->getType()->isFloatingType())
294       return false;
295     if (DiscardResult)
296       return this->discard(SubExpr);
297     if (!this->visit(SubExpr))
298       return false;
299     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
300     return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
301   }
302 
303   case CK_IntegralToFloating: {
304     if (DiscardResult)
305       return this->discard(SubExpr);
306     std::optional<PrimType> FromT = classify(SubExpr->getType());
307     if (!FromT)
308       return false;
309 
310     if (!this->visit(SubExpr))
311       return false;
312 
313     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
314     return this->emitCastIntegralFloating(*FromT, TargetSemantics,
315                                           getFPOptions(CE), CE);
316   }
317 
318   case CK_FloatingToBoolean:
319   case CK_FloatingToIntegral: {
320     if (DiscardResult)
321       return this->discard(SubExpr);
322 
323     std::optional<PrimType> ToT = classify(CE->getType());
324 
325     if (!ToT)
326       return false;
327 
328     if (!this->visit(SubExpr))
329       return false;
330 
331     if (ToT == PT_IntAP)
332       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
333                                               getFPOptions(CE), CE);
334     if (ToT == PT_IntAPS)
335       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
336                                                getFPOptions(CE), CE);
337 
338     return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE);
339   }
340 
341   case CK_NullToPointer:
342   case CK_NullToMemberPointer: {
343     if (!this->discard(SubExpr))
344       return false;
345     if (DiscardResult)
346       return true;
347 
348     const Descriptor *Desc = nullptr;
349     const QualType PointeeType = CE->getType()->getPointeeType();
350     if (!PointeeType.isNull()) {
351       if (std::optional<PrimType> T = classify(PointeeType))
352         Desc = P.createDescriptor(SubExpr, *T);
353       else
354         Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
355                                   std::nullopt, true, false,
356                                   /*IsMutable=*/false, nullptr);
357     }
358 
359     uint64_t Val = Ctx.getASTContext().getTargetNullPointerValue(CE->getType());
360     return this->emitNull(classifyPrim(CE->getType()), Val, Desc, CE);
361   }
362 
363   case CK_PointerToIntegral: {
364     if (DiscardResult)
365       return this->discard(SubExpr);
366 
367     if (!this->visit(SubExpr))
368       return false;
369 
370     // If SubExpr doesn't result in a pointer, make it one.
371     if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
372       assert(isPtrType(FromT));
373       if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
374         return false;
375     }
376 
377     PrimType T = classifyPrim(CE->getType());
378     if (T == PT_IntAP)
379       return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
380                                              CE);
381     if (T == PT_IntAPS)
382       return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
383                                               CE);
384     return this->emitCastPointerIntegral(T, CE);
385   }
386 
387   case CK_ArrayToPointerDecay: {
388     if (!this->visit(SubExpr))
389       return false;
390     if (!this->emitArrayDecay(CE))
391       return false;
392     if (DiscardResult)
393       return this->emitPopPtr(CE);
394     return true;
395   }
396 
397   case CK_IntegralToPointer: {
398     QualType IntType = SubExpr->getType();
399     assert(IntType->isIntegralOrEnumerationType());
400     if (!this->visit(SubExpr))
401       return false;
402     // FIXME: I think the discard is wrong since the int->ptr cast might cause a
403     // diagnostic.
404     PrimType T = classifyPrim(IntType);
405     if (DiscardResult)
406       return this->emitPop(T, CE);
407 
408     QualType PtrType = CE->getType();
409     const Descriptor *Desc;
410     if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
411       Desc = P.createDescriptor(SubExpr, *T);
412     else if (PtrType->getPointeeType()->isVoidType())
413       Desc = nullptr;
414     else
415       Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
416                                 Descriptor::InlineDescMD, true, false,
417                                 /*IsMutable=*/false, nullptr);
418 
419     if (!this->emitGetIntPtr(T, Desc, CE))
420       return false;
421 
422     PrimType DestPtrT = classifyPrim(PtrType);
423     if (DestPtrT == PT_Ptr)
424       return true;
425 
426     // In case we're converting the integer to a non-Pointer.
427     return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
428   }
429 
430   case CK_AtomicToNonAtomic:
431   case CK_ConstructorConversion:
432   case CK_FunctionToPointerDecay:
433   case CK_NonAtomicToAtomic:
434   case CK_NoOp:
435   case CK_UserDefinedConversion:
436   case CK_AddressSpaceConversion:
437   case CK_CPointerToObjCPointerCast:
438     return this->delegate(SubExpr);
439 
440   case CK_BitCast: {
441     // Reject bitcasts to atomic types.
442     if (CE->getType()->isAtomicType()) {
443       if (!this->discard(SubExpr))
444         return false;
445       return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
446     }
447 
448     if (DiscardResult)
449       return this->discard(SubExpr);
450 
451     QualType SubExprTy = SubExpr->getType();
452     std::optional<PrimType> FromT = classify(SubExprTy);
453     // Casts from integer/vector to vector.
454     if (CE->getType()->isVectorType())
455       return this->emitBuiltinBitCast(CE);
456 
457     std::optional<PrimType> ToT = classify(CE->getType());
458     if (!FromT || !ToT)
459       return false;
460 
461     assert(isPtrType(*FromT));
462     assert(isPtrType(*ToT));
463     if (FromT == ToT) {
464       if (CE->getType()->isVoidPointerType())
465         return this->delegate(SubExpr);
466 
467       if (!this->visit(SubExpr))
468         return false;
469       if (FromT == PT_Ptr)
470         return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
471       return true;
472     }
473 
474     if (!this->visit(SubExpr))
475       return false;
476     return this->emitDecayPtr(*FromT, *ToT, CE);
477   }
478 
479   case CK_LValueToRValueBitCast:
480     return this->emitBuiltinBitCast(CE);
481 
482   case CK_IntegralToBoolean:
483   case CK_FixedPointToBoolean:
484   case CK_BooleanToSignedIntegral:
485   case CK_IntegralCast: {
486     if (DiscardResult)
487       return this->discard(SubExpr);
488     std::optional<PrimType> FromT = classify(SubExpr->getType());
489     std::optional<PrimType> ToT = classify(CE->getType());
490 
491     if (!FromT || !ToT)
492       return false;
493 
494     if (!this->visit(SubExpr))
495       return false;
496 
497     // Possibly diagnose casts to enum types if the target type does not
498     // have a fixed size.
499     if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
500       if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
501           ET && !ET->getDecl()->isFixed()) {
502         if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
503           return false;
504       }
505     }
506 
507     auto maybeNegate = [&]() -> bool {
508       if (CE->getCastKind() == CK_BooleanToSignedIntegral)
509         return this->emitNeg(*ToT, CE);
510       return true;
511     };
512 
513     if (ToT == PT_IntAP)
514       return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
515              maybeNegate();
516     if (ToT == PT_IntAPS)
517       return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
518              maybeNegate();
519 
520     if (FromT == ToT)
521       return true;
522     if (!this->emitCast(*FromT, *ToT, CE))
523       return false;
524 
525     return maybeNegate();
526   }
527 
528   case CK_PointerToBoolean:
529   case CK_MemberPointerToBoolean: {
530     PrimType PtrT = classifyPrim(SubExpr->getType());
531 
532     if (!this->visit(SubExpr))
533       return false;
534     return this->emitIsNonNull(PtrT, CE);
535   }
536 
537   case CK_IntegralComplexToBoolean:
538   case CK_FloatingComplexToBoolean: {
539     if (DiscardResult)
540       return this->discard(SubExpr);
541     if (!this->visit(SubExpr))
542       return false;
543     return this->emitComplexBoolCast(SubExpr);
544   }
545 
546   case CK_IntegralComplexToReal:
547   case CK_FloatingComplexToReal:
548     return this->emitComplexReal(SubExpr);
549 
550   case CK_IntegralRealToComplex:
551   case CK_FloatingRealToComplex: {
552     // We're creating a complex value here, so we need to
553     // allocate storage for it.
554     if (!Initializing) {
555       unsigned LocalIndex = allocateTemporary(CE);
556       if (!this->emitGetPtrLocal(LocalIndex, CE))
557         return false;
558     }
559 
560     // Init the complex value to {SubExpr, 0}.
561     if (!this->visitArrayElemInit(0, SubExpr))
562       return false;
563     // Zero-init the second element.
564     PrimType T = classifyPrim(SubExpr->getType());
565     if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
566       return false;
567     return this->emitInitElem(T, 1, SubExpr);
568   }
569 
570   case CK_IntegralComplexCast:
571   case CK_FloatingComplexCast:
572   case CK_IntegralComplexToFloatingComplex:
573   case CK_FloatingComplexToIntegralComplex: {
574     assert(CE->getType()->isAnyComplexType());
575     assert(SubExpr->getType()->isAnyComplexType());
576     if (DiscardResult)
577       return this->discard(SubExpr);
578 
579     if (!Initializing) {
580       std::optional<unsigned> LocalIndex = allocateLocal(CE);
581       if (!LocalIndex)
582         return false;
583       if (!this->emitGetPtrLocal(*LocalIndex, CE))
584         return false;
585     }
586 
587     // Location for the SubExpr.
588     // Since SubExpr is of complex type, visiting it results in a pointer
589     // anyway, so we just create a temporary pointer variable.
590     unsigned SubExprOffset = allocateLocalPrimitive(
591         SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
592     if (!this->visit(SubExpr))
593       return false;
594     if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
595       return false;
596 
597     PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
598     QualType DestElemType =
599         CE->getType()->getAs<ComplexType>()->getElementType();
600     PrimType DestElemT = classifyPrim(DestElemType);
601     // Cast both elements individually.
602     for (unsigned I = 0; I != 2; ++I) {
603       if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
604         return false;
605       if (!this->emitArrayElemPop(SourceElemT, I, CE))
606         return false;
607 
608       // Do the cast.
609       if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
610         return false;
611 
612       // Save the value.
613       if (!this->emitInitElem(DestElemT, I, CE))
614         return false;
615     }
616     return true;
617   }
618 
619   case CK_VectorSplat: {
620     assert(!classify(CE->getType()));
621     assert(classify(SubExpr->getType()));
622     assert(CE->getType()->isVectorType());
623 
624     if (DiscardResult)
625       return this->discard(SubExpr);
626 
627     if (!Initializing) {
628       std::optional<unsigned> LocalIndex = allocateLocal(CE);
629       if (!LocalIndex)
630         return false;
631       if (!this->emitGetPtrLocal(*LocalIndex, CE))
632         return false;
633     }
634 
635     const auto *VT = CE->getType()->getAs<VectorType>();
636     PrimType ElemT = classifyPrim(SubExpr->getType());
637     unsigned ElemOffset = allocateLocalPrimitive(
638         SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
639 
640     // Prepare a local variable for the scalar value.
641     if (!this->visit(SubExpr))
642       return false;
643     if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
644       return false;
645 
646     if (!this->emitSetLocal(ElemT, ElemOffset, CE))
647       return false;
648 
649     for (unsigned I = 0; I != VT->getNumElements(); ++I) {
650       if (!this->emitGetLocal(ElemT, ElemOffset, CE))
651         return false;
652       if (!this->emitInitElem(ElemT, I, CE))
653         return false;
654     }
655 
656     return true;
657   }
658 
659   case CK_HLSLVectorTruncation: {
660     assert(SubExpr->getType()->isVectorType());
661     if (std::optional<PrimType> ResultT = classify(CE)) {
662       assert(!DiscardResult);
663       // Result must be either a float or integer. Take the first element.
664       if (!this->visit(SubExpr))
665         return false;
666       return this->emitArrayElemPop(*ResultT, 0, CE);
667     }
668     // Otherwise, this truncates from one vector type to another.
669     assert(CE->getType()->isVectorType());
670 
671     if (!Initializing) {
672       unsigned LocalIndex = allocateTemporary(CE);
673       if (!this->emitGetPtrLocal(LocalIndex, CE))
674         return false;
675     }
676     unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements();
677     assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize);
678     if (!this->visit(SubExpr))
679       return false;
680     return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0,
681                                ToSize, CE);
682   };
683 
684   case CK_IntegralToFixedPoint: {
685     if (!this->visit(SubExpr))
686       return false;
687 
688     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
689     uint32_t I;
690     std::memcpy(&I, &Sem, sizeof(Sem));
691     return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), I,
692                                             CE);
693   }
694   case CK_FloatingToFixedPoint: {
695     if (!this->visit(SubExpr))
696       return false;
697 
698     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
699     uint32_t I;
700     std::memcpy(&I, &Sem, sizeof(Sem));
701     return this->emitCastFloatingFixedPoint(I, CE);
702   }
703   case CK_FixedPointToFloating: {
704     if (!this->visit(SubExpr))
705       return false;
706     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
707     return this->emitCastFixedPointFloating(TargetSemantics, CE);
708   }
709   case CK_FixedPointToIntegral: {
710     if (!this->visit(SubExpr))
711       return false;
712     return this->emitCastFixedPointIntegral(classifyPrim(CE->getType()), CE);
713   }
714   case CK_FixedPointCast: {
715     if (!this->visit(SubExpr))
716       return false;
717     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
718     uint32_t I;
719     std::memcpy(&I, &Sem, sizeof(Sem));
720     return this->emitCastFixedPoint(I, CE);
721   }
722 
723   case CK_ToVoid:
724     return discard(SubExpr);
725 
726   default:
727     return this->emitInvalid(CE);
728   }
729   llvm_unreachable("Unhandled clang::CastKind enum");
730 }
731 
732 template <class Emitter>
733 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
734   if (DiscardResult)
735     return true;
736 
737   return this->emitConst(LE->getValue(), LE);
738 }
739 
740 template <class Emitter>
741 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
742   if (DiscardResult)
743     return true;
744 
745   return this->emitConstFloat(E->getValue(), E);
746 }
747 
748 template <class Emitter>
749 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
750   assert(E->getType()->isAnyComplexType());
751   if (DiscardResult)
752     return true;
753 
754   if (!Initializing) {
755     unsigned LocalIndex = allocateTemporary(E);
756     if (!this->emitGetPtrLocal(LocalIndex, E))
757       return false;
758   }
759 
760   const Expr *SubExpr = E->getSubExpr();
761   PrimType SubExprT = classifyPrim(SubExpr->getType());
762 
763   if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
764     return false;
765   if (!this->emitInitElem(SubExprT, 0, SubExpr))
766     return false;
767   return this->visitArrayElemInit(1, SubExpr);
768 }
769 
770 template <class Emitter>
771 bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) {
772   assert(E->getType()->isFixedPointType());
773   assert(classifyPrim(E) == PT_FixedPoint);
774 
775   if (DiscardResult)
776     return true;
777 
778   auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
779   APInt Value = E->getValue();
780   return this->emitConstFixedPoint(FixedPoint(Value, Sem), E);
781 }
782 
783 template <class Emitter>
784 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
785   return this->delegate(E->getSubExpr());
786 }
787 
788 template <class Emitter>
789 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
790   // Need short-circuiting for these.
791   if (BO->isLogicalOp() && !BO->getType()->isVectorType())
792     return this->VisitLogicalBinOp(BO);
793 
794   const Expr *LHS = BO->getLHS();
795   const Expr *RHS = BO->getRHS();
796 
797   // Handle comma operators. Just discard the LHS
798   // and delegate to RHS.
799   if (BO->isCommaOp()) {
800     if (!this->discard(LHS))
801       return false;
802     if (RHS->getType()->isVoidType())
803       return this->discard(RHS);
804 
805     return this->delegate(RHS);
806   }
807 
808   if (BO->getType()->isAnyComplexType())
809     return this->VisitComplexBinOp(BO);
810   if (BO->getType()->isVectorType())
811     return this->VisitVectorBinOp(BO);
812   if ((LHS->getType()->isAnyComplexType() ||
813        RHS->getType()->isAnyComplexType()) &&
814       BO->isComparisonOp())
815     return this->emitComplexComparison(LHS, RHS, BO);
816   if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType())
817     return this->VisitFixedPointBinOp(BO);
818 
819   if (BO->isPtrMemOp()) {
820     if (!this->visit(LHS))
821       return false;
822 
823     if (!this->visit(RHS))
824       return false;
825 
826     if (!this->emitToMemberPtr(BO))
827       return false;
828 
829     if (classifyPrim(BO) == PT_MemberPtr)
830       return true;
831 
832     if (!this->emitCastMemberPtrPtr(BO))
833       return false;
834     return DiscardResult ? this->emitPopPtr(BO) : true;
835   }
836 
837   // Typecheck the args.
838   std::optional<PrimType> LT = classify(LHS);
839   std::optional<PrimType> RT = classify(RHS);
840   std::optional<PrimType> T = classify(BO->getType());
841 
842   // Special case for C++'s three-way/spaceship operator <=>, which
843   // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
844   // have a PrimType).
845   if (!T && BO->getOpcode() == BO_Cmp) {
846     if (DiscardResult)
847       return true;
848     const ComparisonCategoryInfo *CmpInfo =
849         Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
850     assert(CmpInfo);
851 
852     // We need a temporary variable holding our return value.
853     if (!Initializing) {
854       std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
855       if (!this->emitGetPtrLocal(*ResultIndex, BO))
856         return false;
857     }
858 
859     if (!visit(LHS) || !visit(RHS))
860       return false;
861 
862     return this->emitCMP3(*LT, CmpInfo, BO);
863   }
864 
865   if (!LT || !RT || !T)
866     return false;
867 
868   // Pointer arithmetic special case.
869   if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
870     if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
871       return this->VisitPointerArithBinOp(BO);
872   }
873 
874   // Assignmentes require us to evalute the RHS first.
875   if (BO->getOpcode() == BO_Assign) {
876     if (!visit(RHS) || !visit(LHS))
877       return false;
878     if (!this->emitFlip(*LT, *RT, BO))
879       return false;
880   } else {
881     if (!visit(LHS) || !visit(RHS))
882       return false;
883   }
884 
885   // For languages such as C, cast the result of one
886   // of our comparision opcodes to T (which is usually int).
887   auto MaybeCastToBool = [this, T, BO](bool Result) {
888     if (!Result)
889       return false;
890     if (DiscardResult)
891       return this->emitPop(*T, BO);
892     if (T != PT_Bool)
893       return this->emitCast(PT_Bool, *T, BO);
894     return true;
895   };
896 
897   auto Discard = [this, T, BO](bool Result) {
898     if (!Result)
899       return false;
900     return DiscardResult ? this->emitPop(*T, BO) : true;
901   };
902 
903   switch (BO->getOpcode()) {
904   case BO_EQ:
905     return MaybeCastToBool(this->emitEQ(*LT, BO));
906   case BO_NE:
907     return MaybeCastToBool(this->emitNE(*LT, BO));
908   case BO_LT:
909     return MaybeCastToBool(this->emitLT(*LT, BO));
910   case BO_LE:
911     return MaybeCastToBool(this->emitLE(*LT, BO));
912   case BO_GT:
913     return MaybeCastToBool(this->emitGT(*LT, BO));
914   case BO_GE:
915     return MaybeCastToBool(this->emitGE(*LT, BO));
916   case BO_Sub:
917     if (BO->getType()->isFloatingType())
918       return Discard(this->emitSubf(getFPOptions(BO), BO));
919     return Discard(this->emitSub(*T, BO));
920   case BO_Add:
921     if (BO->getType()->isFloatingType())
922       return Discard(this->emitAddf(getFPOptions(BO), BO));
923     return Discard(this->emitAdd(*T, BO));
924   case BO_Mul:
925     if (BO->getType()->isFloatingType())
926       return Discard(this->emitMulf(getFPOptions(BO), BO));
927     return Discard(this->emitMul(*T, BO));
928   case BO_Rem:
929     return Discard(this->emitRem(*T, BO));
930   case BO_Div:
931     if (BO->getType()->isFloatingType())
932       return Discard(this->emitDivf(getFPOptions(BO), BO));
933     return Discard(this->emitDiv(*T, BO));
934   case BO_Assign:
935     if (DiscardResult)
936       return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
937                                      : this->emitStorePop(*T, BO);
938     if (LHS->refersToBitField()) {
939       if (!this->emitStoreBitField(*T, BO))
940         return false;
941     } else {
942       if (!this->emitStore(*T, BO))
943         return false;
944     }
945     // Assignments aren't necessarily lvalues in C.
946     // Load from them in that case.
947     if (!BO->isLValue())
948       return this->emitLoadPop(*T, BO);
949     return true;
950   case BO_And:
951     return Discard(this->emitBitAnd(*T, BO));
952   case BO_Or:
953     return Discard(this->emitBitOr(*T, BO));
954   case BO_Shl:
955     return Discard(this->emitShl(*LT, *RT, BO));
956   case BO_Shr:
957     return Discard(this->emitShr(*LT, *RT, BO));
958   case BO_Xor:
959     return Discard(this->emitBitXor(*T, BO));
960   case BO_LOr:
961   case BO_LAnd:
962     llvm_unreachable("Already handled earlier");
963   default:
964     return false;
965   }
966 
967   llvm_unreachable("Unhandled binary op");
968 }
969 
970 /// Perform addition/subtraction of a pointer and an integer or
971 /// subtraction of two pointers.
972 template <class Emitter>
973 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
974   BinaryOperatorKind Op = E->getOpcode();
975   const Expr *LHS = E->getLHS();
976   const Expr *RHS = E->getRHS();
977 
978   if ((Op != BO_Add && Op != BO_Sub) ||
979       (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
980     return false;
981 
982   std::optional<PrimType> LT = classify(LHS);
983   std::optional<PrimType> RT = classify(RHS);
984 
985   if (!LT || !RT)
986     return false;
987 
988   // Visit the given pointer expression and optionally convert to a PT_Ptr.
989   auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
990     if (!this->visit(E))
991       return false;
992     if (T != PT_Ptr)
993       return this->emitDecayPtr(T, PT_Ptr, E);
994     return true;
995   };
996 
997   if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
998     if (Op != BO_Sub)
999       return false;
1000 
1001     assert(E->getType()->isIntegerType());
1002     if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
1003       return false;
1004 
1005     PrimType IntT = classifyPrim(E->getType());
1006     if (!this->emitSubPtr(IntT, E))
1007       return false;
1008     return DiscardResult ? this->emitPop(IntT, E) : true;
1009   }
1010 
1011   PrimType OffsetType;
1012   if (LHS->getType()->isIntegerType()) {
1013     if (!visitAsPointer(RHS, *RT))
1014       return false;
1015     if (!this->visit(LHS))
1016       return false;
1017     OffsetType = *LT;
1018   } else if (RHS->getType()->isIntegerType()) {
1019     if (!visitAsPointer(LHS, *LT))
1020       return false;
1021     if (!this->visit(RHS))
1022       return false;
1023     OffsetType = *RT;
1024   } else {
1025     return false;
1026   }
1027 
1028   // Do the operation and optionally transform to
1029   // result pointer type.
1030   if (Op == BO_Add) {
1031     if (!this->emitAddOffset(OffsetType, E))
1032       return false;
1033 
1034     if (classifyPrim(E) != PT_Ptr)
1035       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
1036     return true;
1037   } else if (Op == BO_Sub) {
1038     if (!this->emitSubOffset(OffsetType, E))
1039       return false;
1040 
1041     if (classifyPrim(E) != PT_Ptr)
1042       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
1043     return true;
1044   }
1045 
1046   return false;
1047 }
1048 
1049 template <class Emitter>
1050 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
1051   assert(E->isLogicalOp());
1052   BinaryOperatorKind Op = E->getOpcode();
1053   const Expr *LHS = E->getLHS();
1054   const Expr *RHS = E->getRHS();
1055   std::optional<PrimType> T = classify(E->getType());
1056 
1057   if (Op == BO_LOr) {
1058     // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
1059     LabelTy LabelTrue = this->getLabel();
1060     LabelTy LabelEnd = this->getLabel();
1061 
1062     if (!this->visitBool(LHS))
1063       return false;
1064     if (!this->jumpTrue(LabelTrue))
1065       return false;
1066 
1067     if (!this->visitBool(RHS))
1068       return false;
1069     if (!this->jump(LabelEnd))
1070       return false;
1071 
1072     this->emitLabel(LabelTrue);
1073     this->emitConstBool(true, E);
1074     this->fallthrough(LabelEnd);
1075     this->emitLabel(LabelEnd);
1076 
1077   } else {
1078     assert(Op == BO_LAnd);
1079     // Logical AND.
1080     // Visit LHS. Only visit RHS if LHS was TRUE.
1081     LabelTy LabelFalse = this->getLabel();
1082     LabelTy LabelEnd = this->getLabel();
1083 
1084     if (!this->visitBool(LHS))
1085       return false;
1086     if (!this->jumpFalse(LabelFalse))
1087       return false;
1088 
1089     if (!this->visitBool(RHS))
1090       return false;
1091     if (!this->jump(LabelEnd))
1092       return false;
1093 
1094     this->emitLabel(LabelFalse);
1095     this->emitConstBool(false, E);
1096     this->fallthrough(LabelEnd);
1097     this->emitLabel(LabelEnd);
1098   }
1099 
1100   if (DiscardResult)
1101     return this->emitPopBool(E);
1102 
1103   // For C, cast back to integer type.
1104   assert(T);
1105   if (T != PT_Bool)
1106     return this->emitCast(PT_Bool, *T, E);
1107   return true;
1108 }
1109 
1110 template <class Emitter>
1111 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
1112   // Prepare storage for result.
1113   if (!Initializing) {
1114     unsigned LocalIndex = allocateTemporary(E);
1115     if (!this->emitGetPtrLocal(LocalIndex, E))
1116       return false;
1117   }
1118 
1119   // Both LHS and RHS might _not_ be of complex type, but one of them
1120   // needs to be.
1121   const Expr *LHS = E->getLHS();
1122   const Expr *RHS = E->getRHS();
1123 
1124   PrimType ResultElemT = this->classifyComplexElementType(E->getType());
1125   unsigned ResultOffset = ~0u;
1126   if (!DiscardResult)
1127     ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
1128 
1129   // Save result pointer in ResultOffset
1130   if (!this->DiscardResult) {
1131     if (!this->emitDupPtr(E))
1132       return false;
1133     if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
1134       return false;
1135   }
1136   QualType LHSType = LHS->getType();
1137   if (const auto *AT = LHSType->getAs<AtomicType>())
1138     LHSType = AT->getValueType();
1139   QualType RHSType = RHS->getType();
1140   if (const auto *AT = RHSType->getAs<AtomicType>())
1141     RHSType = AT->getValueType();
1142 
1143   bool LHSIsComplex = LHSType->isAnyComplexType();
1144   unsigned LHSOffset;
1145   bool RHSIsComplex = RHSType->isAnyComplexType();
1146 
1147   // For ComplexComplex Mul, we have special ops to make their implementation
1148   // easier.
1149   BinaryOperatorKind Op = E->getOpcode();
1150   if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
1151     assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
1152            classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
1153     PrimType ElemT =
1154         classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
1155     if (!this->visit(LHS))
1156       return false;
1157     if (!this->visit(RHS))
1158       return false;
1159     return this->emitMulc(ElemT, E);
1160   }
1161 
1162   if (Op == BO_Div && RHSIsComplex) {
1163     QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
1164     PrimType ElemT = classifyPrim(ElemQT);
1165     // If the LHS is not complex, we still need to do the full complex
1166     // division, so just stub create a complex value and stub it out with
1167     // the LHS and a zero.
1168 
1169     if (!LHSIsComplex) {
1170       // This is using the RHS type for the fake-complex LHS.
1171       LHSOffset = allocateTemporary(RHS);
1172 
1173       if (!this->emitGetPtrLocal(LHSOffset, E))
1174         return false;
1175 
1176       if (!this->visit(LHS))
1177         return false;
1178       // real is LHS
1179       if (!this->emitInitElem(ElemT, 0, E))
1180         return false;
1181       // imag is zero
1182       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1183         return false;
1184       if (!this->emitInitElem(ElemT, 1, E))
1185         return false;
1186     } else {
1187       if (!this->visit(LHS))
1188         return false;
1189     }
1190 
1191     if (!this->visit(RHS))
1192       return false;
1193     return this->emitDivc(ElemT, E);
1194   }
1195 
1196   // Evaluate LHS and save value to LHSOffset.
1197   if (LHSType->isAnyComplexType()) {
1198     LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1199     if (!this->visit(LHS))
1200       return false;
1201     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1202       return false;
1203   } else {
1204     PrimType LHST = classifyPrim(LHSType);
1205     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
1206     if (!this->visit(LHS))
1207       return false;
1208     if (!this->emitSetLocal(LHST, LHSOffset, E))
1209       return false;
1210   }
1211 
1212   // Same with RHS.
1213   unsigned RHSOffset;
1214   if (RHSType->isAnyComplexType()) {
1215     RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1216     if (!this->visit(RHS))
1217       return false;
1218     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1219       return false;
1220   } else {
1221     PrimType RHST = classifyPrim(RHSType);
1222     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
1223     if (!this->visit(RHS))
1224       return false;
1225     if (!this->emitSetLocal(RHST, RHSOffset, E))
1226       return false;
1227   }
1228 
1229   // For both LHS and RHS, either load the value from the complex pointer, or
1230   // directly from the local variable. For index 1 (i.e. the imaginary part),
1231   // just load 0 and do the operation anyway.
1232   auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
1233                                  unsigned ElemIndex, unsigned Offset,
1234                                  const Expr *E) -> bool {
1235     if (IsComplex) {
1236       if (!this->emitGetLocal(PT_Ptr, Offset, E))
1237         return false;
1238       return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
1239                                     ElemIndex, E);
1240     }
1241     if (ElemIndex == 0 || !LoadZero)
1242       return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
1243     return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
1244                                       E);
1245   };
1246 
1247   // Now we can get pointers to the LHS and RHS from the offsets above.
1248   for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
1249     // Result pointer for the store later.
1250     if (!this->DiscardResult) {
1251       if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
1252         return false;
1253     }
1254 
1255     // The actual operation.
1256     switch (Op) {
1257     case BO_Add:
1258       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1259         return false;
1260 
1261       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1262         return false;
1263       if (ResultElemT == PT_Float) {
1264         if (!this->emitAddf(getFPOptions(E), E))
1265           return false;
1266       } else {
1267         if (!this->emitAdd(ResultElemT, E))
1268           return false;
1269       }
1270       break;
1271     case BO_Sub:
1272       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1273         return false;
1274 
1275       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1276         return false;
1277       if (ResultElemT == PT_Float) {
1278         if (!this->emitSubf(getFPOptions(E), E))
1279           return false;
1280       } else {
1281         if (!this->emitSub(ResultElemT, E))
1282           return false;
1283       }
1284       break;
1285     case BO_Mul:
1286       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1287         return false;
1288 
1289       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1290         return false;
1291 
1292       if (ResultElemT == PT_Float) {
1293         if (!this->emitMulf(getFPOptions(E), E))
1294           return false;
1295       } else {
1296         if (!this->emitMul(ResultElemT, E))
1297           return false;
1298       }
1299       break;
1300     case BO_Div:
1301       assert(!RHSIsComplex);
1302       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1303         return false;
1304 
1305       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1306         return false;
1307 
1308       if (ResultElemT == PT_Float) {
1309         if (!this->emitDivf(getFPOptions(E), E))
1310           return false;
1311       } else {
1312         if (!this->emitDiv(ResultElemT, E))
1313           return false;
1314       }
1315       break;
1316 
1317     default:
1318       return false;
1319     }
1320 
1321     if (!this->DiscardResult) {
1322       // Initialize array element with the value we just computed.
1323       if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
1324         return false;
1325     } else {
1326       if (!this->emitPop(ResultElemT, E))
1327         return false;
1328     }
1329   }
1330   return true;
1331 }
1332 
1333 template <class Emitter>
1334 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) {
1335   assert(!E->isCommaOp() &&
1336          "Comma op should be handled in VisitBinaryOperator");
1337   assert(E->getType()->isVectorType());
1338   assert(E->getLHS()->getType()->isVectorType());
1339   assert(E->getRHS()->getType()->isVectorType());
1340 
1341   // Prepare storage for result.
1342   if (!Initializing && !E->isCompoundAssignmentOp()) {
1343     unsigned LocalIndex = allocateTemporary(E);
1344     if (!this->emitGetPtrLocal(LocalIndex, E))
1345       return false;
1346   }
1347 
1348   const Expr *LHS = E->getLHS();
1349   const Expr *RHS = E->getRHS();
1350   const auto *VecTy = E->getType()->getAs<VectorType>();
1351   auto Op = E->isCompoundAssignmentOp()
1352                 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode())
1353                 : E->getOpcode();
1354 
1355   PrimType ElemT = this->classifyVectorElementType(LHS->getType());
1356   PrimType RHSElemT = this->classifyVectorElementType(RHS->getType());
1357   PrimType ResultElemT = this->classifyVectorElementType(E->getType());
1358 
1359   // Evaluate LHS and save value to LHSOffset.
1360   unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1361   if (!this->visit(LHS))
1362     return false;
1363   if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1364     return false;
1365 
1366   // Evaluate RHS and save value to RHSOffset.
1367   unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1368   if (!this->visit(RHS))
1369     return false;
1370   if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1371     return false;
1372 
1373   if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E))
1374     return false;
1375 
1376   // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the
1377   // integer promotion.
1378   bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp());
1379   QualType PromotTy =
1380       Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy);
1381   PrimType PromotT = classifyPrim(PromotTy);
1382   PrimType OpT = NeedIntPromot ? PromotT : ElemT;
1383 
1384   auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) {
1385     if (!this->emitGetLocal(PT_Ptr, Offset, E))
1386       return false;
1387     if (!this->emitArrayElemPop(ElemT, Index, E))
1388       return false;
1389     if (E->isLogicalOp()) {
1390       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
1391         return false;
1392       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1393         return false;
1394     } else if (NeedIntPromot) {
1395       if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E))
1396         return false;
1397     }
1398     return true;
1399   };
1400 
1401 #define EMIT_ARITH_OP(OP)                                                      \
1402   {                                                                            \
1403     if (ElemT == PT_Float) {                                                   \
1404       if (!this->emit##OP##f(getFPOptions(E), E))                              \
1405         return false;                                                          \
1406     } else {                                                                   \
1407       if (!this->emit##OP(ElemT, E))                                           \
1408         return false;                                                          \
1409     }                                                                          \
1410     break;                                                                     \
1411   }
1412 
1413   for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
1414     if (!getElem(LHSOffset, ElemT, I))
1415       return false;
1416     if (!getElem(RHSOffset, RHSElemT, I))
1417       return false;
1418     switch (Op) {
1419     case BO_Add:
1420       EMIT_ARITH_OP(Add)
1421     case BO_Sub:
1422       EMIT_ARITH_OP(Sub)
1423     case BO_Mul:
1424       EMIT_ARITH_OP(Mul)
1425     case BO_Div:
1426       EMIT_ARITH_OP(Div)
1427     case BO_Rem:
1428       if (!this->emitRem(ElemT, E))
1429         return false;
1430       break;
1431     case BO_And:
1432       if (!this->emitBitAnd(OpT, E))
1433         return false;
1434       break;
1435     case BO_Or:
1436       if (!this->emitBitOr(OpT, E))
1437         return false;
1438       break;
1439     case BO_Xor:
1440       if (!this->emitBitXor(OpT, E))
1441         return false;
1442       break;
1443     case BO_Shl:
1444       if (!this->emitShl(OpT, RHSElemT, E))
1445         return false;
1446       break;
1447     case BO_Shr:
1448       if (!this->emitShr(OpT, RHSElemT, E))
1449         return false;
1450       break;
1451     case BO_EQ:
1452       if (!this->emitEQ(ElemT, E))
1453         return false;
1454       break;
1455     case BO_NE:
1456       if (!this->emitNE(ElemT, E))
1457         return false;
1458       break;
1459     case BO_LE:
1460       if (!this->emitLE(ElemT, E))
1461         return false;
1462       break;
1463     case BO_LT:
1464       if (!this->emitLT(ElemT, E))
1465         return false;
1466       break;
1467     case BO_GE:
1468       if (!this->emitGE(ElemT, E))
1469         return false;
1470       break;
1471     case BO_GT:
1472       if (!this->emitGT(ElemT, E))
1473         return false;
1474       break;
1475     case BO_LAnd:
1476       // a && b is equivalent to a!=0 & b!=0
1477       if (!this->emitBitAnd(ResultElemT, E))
1478         return false;
1479       break;
1480     case BO_LOr:
1481       // a || b is equivalent to a!=0 | b!=0
1482       if (!this->emitBitOr(ResultElemT, E))
1483         return false;
1484       break;
1485     default:
1486       return this->emitInvalid(E);
1487     }
1488 
1489     // The result of the comparison is a vector of the same width and number
1490     // of elements as the comparison operands with a signed integral element
1491     // type.
1492     //
1493     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
1494     if (E->isComparisonOp()) {
1495       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1496         return false;
1497       if (!this->emitNeg(ResultElemT, E))
1498         return false;
1499     }
1500 
1501     // If we performed an integer promotion, we need to cast the compute result
1502     // into result vector element type.
1503     if (NeedIntPromot &&
1504         !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E))
1505       return false;
1506 
1507     // Initialize array element with the value we just computed.
1508     if (!this->emitInitElem(ResultElemT, I, E))
1509       return false;
1510   }
1511 
1512   if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E))
1513     return false;
1514   return true;
1515 }
1516 
1517 template <class Emitter>
1518 bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) {
1519   const Expr *LHS = E->getLHS();
1520   const Expr *RHS = E->getRHS();
1521 
1522   assert(LHS->getType()->isFixedPointType() ||
1523          RHS->getType()->isFixedPointType());
1524 
1525   auto LHSSema = Ctx.getASTContext().getFixedPointSemantics(LHS->getType());
1526   auto RHSSema = Ctx.getASTContext().getFixedPointSemantics(RHS->getType());
1527 
1528   if (!this->visit(LHS))
1529     return false;
1530   if (!LHS->getType()->isFixedPointType()) {
1531     uint32_t I;
1532     std::memcpy(&I, &LHSSema, sizeof(llvm::FixedPointSemantics));
1533     if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()), I, E))
1534       return false;
1535   }
1536 
1537   if (!this->visit(RHS))
1538     return false;
1539   if (!RHS->getType()->isFixedPointType()) {
1540     uint32_t I;
1541     std::memcpy(&I, &RHSSema, sizeof(llvm::FixedPointSemantics));
1542     if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()), I, E))
1543       return false;
1544   }
1545 
1546   // Convert the result to the target semantics.
1547   auto ConvertResult = [&](bool R) -> bool {
1548     if (!R)
1549       return false;
1550     auto ResultSema = Ctx.getASTContext().getFixedPointSemantics(E->getType());
1551     auto CommonSema = LHSSema.getCommonSemantics(RHSSema);
1552     if (ResultSema != CommonSema) {
1553       uint32_t I;
1554       std::memcpy(&I, &ResultSema, sizeof(ResultSema));
1555       return this->emitCastFixedPoint(I, E);
1556     }
1557     return true;
1558   };
1559 
1560   auto MaybeCastToBool = [&](bool Result) {
1561     if (!Result)
1562       return false;
1563     PrimType T = classifyPrim(E);
1564     if (DiscardResult)
1565       return this->emitPop(T, E);
1566     if (T != PT_Bool)
1567       return this->emitCast(PT_Bool, T, E);
1568     return true;
1569   };
1570 
1571   switch (E->getOpcode()) {
1572   case BO_EQ:
1573     return MaybeCastToBool(this->emitEQFixedPoint(E));
1574   case BO_NE:
1575     return MaybeCastToBool(this->emitNEFixedPoint(E));
1576   case BO_LT:
1577     return MaybeCastToBool(this->emitLTFixedPoint(E));
1578   case BO_LE:
1579     return MaybeCastToBool(this->emitLEFixedPoint(E));
1580   case BO_GT:
1581     return MaybeCastToBool(this->emitGTFixedPoint(E));
1582   case BO_GE:
1583     return MaybeCastToBool(this->emitGEFixedPoint(E));
1584   case BO_Add:
1585     return ConvertResult(this->emitAddFixedPoint(E));
1586   case BO_Sub:
1587     return ConvertResult(this->emitSubFixedPoint(E));
1588   case BO_Mul:
1589     return ConvertResult(this->emitMulFixedPoint(E));
1590   case BO_Div:
1591     return ConvertResult(this->emitDivFixedPoint(E));
1592   case BO_Shl:
1593     return ConvertResult(this->emitShiftFixedPoint(/*Left=*/true, E));
1594   case BO_Shr:
1595     return ConvertResult(this->emitShiftFixedPoint(/*Left=*/false, E));
1596 
1597   default:
1598     return this->emitInvalid(E);
1599   }
1600 
1601   llvm_unreachable("unhandled binop opcode");
1602 }
1603 
1604 template <class Emitter>
1605 bool Compiler<Emitter>::VisitFixedPointUnaryOperator(const UnaryOperator *E) {
1606   const Expr *SubExpr = E->getSubExpr();
1607   assert(SubExpr->getType()->isFixedPointType());
1608 
1609   switch (E->getOpcode()) {
1610   case UO_Plus:
1611     return this->delegate(SubExpr);
1612   case UO_Minus:
1613     if (!this->visit(SubExpr))
1614       return false;
1615     return this->emitNegFixedPoint(E);
1616   default:
1617     return false;
1618   }
1619 
1620   llvm_unreachable("Unhandled unary opcode");
1621 }
1622 
1623 template <class Emitter>
1624 bool Compiler<Emitter>::VisitImplicitValueInitExpr(
1625     const ImplicitValueInitExpr *E) {
1626   QualType QT = E->getType();
1627 
1628   if (std::optional<PrimType> T = classify(QT))
1629     return this->visitZeroInitializer(*T, QT, E);
1630 
1631   if (QT->isRecordType()) {
1632     const RecordDecl *RD = QT->getAsRecordDecl();
1633     assert(RD);
1634     if (RD->isInvalidDecl())
1635       return false;
1636 
1637     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1638         CXXRD && CXXRD->getNumVBases() > 0) {
1639       // TODO: Diagnose.
1640       return false;
1641     }
1642 
1643     const Record *R = getRecord(QT);
1644     if (!R)
1645       return false;
1646 
1647     assert(Initializing);
1648     return this->visitZeroRecordInitializer(R, E);
1649   }
1650 
1651   if (QT->isIncompleteArrayType())
1652     return true;
1653 
1654   if (QT->isArrayType())
1655     return this->visitZeroArrayInitializer(QT, E);
1656 
1657   if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
1658     assert(Initializing);
1659     QualType ElemQT = ComplexTy->getElementType();
1660     PrimType ElemT = classifyPrim(ElemQT);
1661     for (unsigned I = 0; I < 2; ++I) {
1662       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1663         return false;
1664       if (!this->emitInitElem(ElemT, I, E))
1665         return false;
1666     }
1667     return true;
1668   }
1669 
1670   if (const auto *VecT = E->getType()->getAs<VectorType>()) {
1671     unsigned NumVecElements = VecT->getNumElements();
1672     QualType ElemQT = VecT->getElementType();
1673     PrimType ElemT = classifyPrim(ElemQT);
1674 
1675     for (unsigned I = 0; I < NumVecElements; ++I) {
1676       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1677         return false;
1678       if (!this->emitInitElem(ElemT, I, E))
1679         return false;
1680     }
1681     return true;
1682   }
1683 
1684   return false;
1685 }
1686 
1687 template <class Emitter>
1688 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1689   const Expr *LHS = E->getLHS();
1690   const Expr *RHS = E->getRHS();
1691   const Expr *Index = E->getIdx();
1692 
1693   if (DiscardResult)
1694     return this->discard(LHS) && this->discard(RHS);
1695 
1696   // C++17's rules require us to evaluate the LHS first, regardless of which
1697   // side is the base.
1698   bool Success = true;
1699   for (const Expr *SubExpr : {LHS, RHS}) {
1700     if (!this->visit(SubExpr))
1701       Success = false;
1702   }
1703 
1704   if (!Success)
1705     return false;
1706 
1707   PrimType IndexT = classifyPrim(Index->getType());
1708   // If the index is first, we need to change that.
1709   if (LHS == Index) {
1710     if (!this->emitFlip(PT_Ptr, IndexT, E))
1711       return false;
1712   }
1713 
1714   return this->emitArrayElemPtrPop(IndexT, E);
1715 }
1716 
1717 template <class Emitter>
1718 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
1719                                       const Expr *ArrayFiller, const Expr *E) {
1720   QualType QT = E->getType();
1721   if (const auto *AT = QT->getAs<AtomicType>())
1722     QT = AT->getValueType();
1723 
1724   if (QT->isVoidType()) {
1725     if (Inits.size() == 0)
1726       return true;
1727     return this->emitInvalid(E);
1728   }
1729 
1730   // Handle discarding first.
1731   if (DiscardResult) {
1732     for (const Expr *Init : Inits) {
1733       if (!this->discard(Init))
1734         return false;
1735     }
1736     return true;
1737   }
1738 
1739   // Primitive values.
1740   if (std::optional<PrimType> T = classify(QT)) {
1741     assert(!DiscardResult);
1742     if (Inits.size() == 0)
1743       return this->visitZeroInitializer(*T, QT, E);
1744     assert(Inits.size() == 1);
1745     return this->delegate(Inits[0]);
1746   }
1747 
1748   if (QT->isRecordType()) {
1749     const Record *R = getRecord(QT);
1750 
1751     if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
1752       return this->delegate(Inits[0]);
1753 
1754     auto initPrimitiveField = [=](const Record::Field *FieldToInit,
1755                                   const Expr *Init, PrimType T) -> bool {
1756       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1757       if (!this->visit(Init))
1758         return false;
1759 
1760       if (FieldToInit->isBitField())
1761         return this->emitInitBitField(T, FieldToInit, E);
1762       return this->emitInitField(T, FieldToInit->Offset, E);
1763     };
1764 
1765     auto initCompositeField = [=](const Record::Field *FieldToInit,
1766                                   const Expr *Init) -> bool {
1767       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1768       InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
1769       // Non-primitive case. Get a pointer to the field-to-initialize
1770       // on the stack and recurse into visitInitializer().
1771       if (!this->emitGetPtrField(FieldToInit->Offset, Init))
1772         return false;
1773       if (!this->visitInitializer(Init))
1774         return false;
1775       return this->emitPopPtr(E);
1776     };
1777 
1778     if (R->isUnion()) {
1779       if (Inits.size() == 0) {
1780         if (!this->visitZeroRecordInitializer(R, E))
1781           return false;
1782       } else {
1783         const Expr *Init = Inits[0];
1784         const FieldDecl *FToInit = nullptr;
1785         if (const auto *ILE = dyn_cast<InitListExpr>(E))
1786           FToInit = ILE->getInitializedFieldInUnion();
1787         else
1788           FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
1789 
1790         const Record::Field *FieldToInit = R->getField(FToInit);
1791         if (std::optional<PrimType> T = classify(Init)) {
1792           if (!initPrimitiveField(FieldToInit, Init, *T))
1793             return false;
1794         } else {
1795           if (!initCompositeField(FieldToInit, Init))
1796             return false;
1797         }
1798       }
1799       return this->emitFinishInit(E);
1800     }
1801 
1802     assert(!R->isUnion());
1803     unsigned InitIndex = 0;
1804     for (const Expr *Init : Inits) {
1805       // Skip unnamed bitfields.
1806       while (InitIndex < R->getNumFields() &&
1807              R->getField(InitIndex)->Decl->isUnnamedBitField())
1808         ++InitIndex;
1809 
1810       if (std::optional<PrimType> T = classify(Init)) {
1811         const Record::Field *FieldToInit = R->getField(InitIndex);
1812         if (!initPrimitiveField(FieldToInit, Init, *T))
1813           return false;
1814         ++InitIndex;
1815       } else {
1816         // Initializer for a direct base class.
1817         if (const Record::Base *B = R->getBase(Init->getType())) {
1818           if (!this->emitGetPtrBase(B->Offset, Init))
1819             return false;
1820 
1821           if (!this->visitInitializer(Init))
1822             return false;
1823 
1824           if (!this->emitFinishInitPop(E))
1825             return false;
1826           // Base initializers don't increase InitIndex, since they don't count
1827           // into the Record's fields.
1828         } else {
1829           const Record::Field *FieldToInit = R->getField(InitIndex);
1830           if (!initCompositeField(FieldToInit, Init))
1831             return false;
1832           ++InitIndex;
1833         }
1834       }
1835     }
1836     return this->emitFinishInit(E);
1837   }
1838 
1839   if (QT->isArrayType()) {
1840     if (Inits.size() == 1 && QT == Inits[0]->getType())
1841       return this->delegate(Inits[0]);
1842 
1843     unsigned ElementIndex = 0;
1844     for (const Expr *Init : Inits) {
1845       if (const auto *EmbedS =
1846               dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1847         PrimType TargetT = classifyPrim(Init->getType());
1848 
1849         auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
1850           PrimType InitT = classifyPrim(Init->getType());
1851           if (!this->visit(Init))
1852             return false;
1853           if (InitT != TargetT) {
1854             if (!this->emitCast(InitT, TargetT, E))
1855               return false;
1856           }
1857           return this->emitInitElem(TargetT, ElemIndex, Init);
1858         };
1859         if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
1860           return false;
1861       } else {
1862         if (!this->visitArrayElemInit(ElementIndex, Init))
1863           return false;
1864         ++ElementIndex;
1865       }
1866     }
1867 
1868     // Expand the filler expression.
1869     // FIXME: This should go away.
1870     if (ArrayFiller) {
1871       const ConstantArrayType *CAT =
1872           Ctx.getASTContext().getAsConstantArrayType(QT);
1873       uint64_t NumElems = CAT->getZExtSize();
1874 
1875       for (; ElementIndex != NumElems; ++ElementIndex) {
1876         if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
1877           return false;
1878       }
1879     }
1880 
1881     return this->emitFinishInit(E);
1882   }
1883 
1884   if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
1885     unsigned NumInits = Inits.size();
1886 
1887     if (NumInits == 1)
1888       return this->delegate(Inits[0]);
1889 
1890     QualType ElemQT = ComplexTy->getElementType();
1891     PrimType ElemT = classifyPrim(ElemQT);
1892     if (NumInits == 0) {
1893       // Zero-initialize both elements.
1894       for (unsigned I = 0; I < 2; ++I) {
1895         if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1896           return false;
1897         if (!this->emitInitElem(ElemT, I, E))
1898           return false;
1899       }
1900     } else if (NumInits == 2) {
1901       unsigned InitIndex = 0;
1902       for (const Expr *Init : Inits) {
1903         if (!this->visit(Init))
1904           return false;
1905 
1906         if (!this->emitInitElem(ElemT, InitIndex, E))
1907           return false;
1908         ++InitIndex;
1909       }
1910     }
1911     return true;
1912   }
1913 
1914   if (const auto *VecT = QT->getAs<VectorType>()) {
1915     unsigned NumVecElements = VecT->getNumElements();
1916     assert(NumVecElements >= Inits.size());
1917 
1918     QualType ElemQT = VecT->getElementType();
1919     PrimType ElemT = classifyPrim(ElemQT);
1920 
1921     // All initializer elements.
1922     unsigned InitIndex = 0;
1923     for (const Expr *Init : Inits) {
1924       if (!this->visit(Init))
1925         return false;
1926 
1927       // If the initializer is of vector type itself, we have to deconstruct
1928       // that and initialize all the target fields from the initializer fields.
1929       if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
1930         if (!this->emitCopyArray(ElemT, 0, InitIndex,
1931                                  InitVecT->getNumElements(), E))
1932           return false;
1933         InitIndex += InitVecT->getNumElements();
1934       } else {
1935         if (!this->emitInitElem(ElemT, InitIndex, E))
1936           return false;
1937         ++InitIndex;
1938       }
1939     }
1940 
1941     assert(InitIndex <= NumVecElements);
1942 
1943     // Fill the rest with zeroes.
1944     for (; InitIndex != NumVecElements; ++InitIndex) {
1945       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1946         return false;
1947       if (!this->emitInitElem(ElemT, InitIndex, E))
1948         return false;
1949     }
1950     return true;
1951   }
1952 
1953   return false;
1954 }
1955 
1956 /// Pointer to the array(not the element!) must be on the stack when calling
1957 /// this.
1958 template <class Emitter>
1959 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
1960                                            const Expr *Init) {
1961   if (std::optional<PrimType> T = classify(Init->getType())) {
1962     // Visit the primitive element like normal.
1963     if (!this->visit(Init))
1964       return false;
1965     return this->emitInitElem(*T, ElemIndex, Init);
1966   }
1967 
1968   InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
1969   // Advance the pointer currently on the stack to the given
1970   // dimension.
1971   if (!this->emitConstUint32(ElemIndex, Init))
1972     return false;
1973   if (!this->emitArrayElemPtrUint32(Init))
1974     return false;
1975   if (!this->visitInitializer(Init))
1976     return false;
1977   return this->emitFinishInitPop(Init);
1978 }
1979 
1980 template <class Emitter>
1981 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
1982   return this->visitInitList(E->inits(), E->getArrayFiller(), E);
1983 }
1984 
1985 template <class Emitter>
1986 bool Compiler<Emitter>::VisitCXXParenListInitExpr(
1987     const CXXParenListInitExpr *E) {
1988   return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
1989 }
1990 
1991 template <class Emitter>
1992 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
1993     const SubstNonTypeTemplateParmExpr *E) {
1994   return this->delegate(E->getReplacement());
1995 }
1996 
1997 template <class Emitter>
1998 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
1999   std::optional<PrimType> T = classify(E->getType());
2000   if (T && E->hasAPValueResult()) {
2001     // Try to emit the APValue directly, without visiting the subexpr.
2002     // This will only fail if we can't emit the APValue, so won't emit any
2003     // diagnostics or any double values.
2004     if (DiscardResult)
2005       return true;
2006 
2007     if (this->visitAPValue(E->getAPValueResult(), *T, E))
2008       return true;
2009   }
2010   return this->delegate(E->getSubExpr());
2011 }
2012 
2013 template <class Emitter>
2014 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
2015   auto It = E->begin();
2016   return this->visit(*It);
2017 }
2018 
2019 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
2020                              UnaryExprOrTypeTrait Kind) {
2021   bool AlignOfReturnsPreferred =
2022       ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
2023 
2024   // C++ [expr.alignof]p3:
2025   //     When alignof is applied to a reference type, the result is the
2026   //     alignment of the referenced type.
2027   if (const auto *Ref = T->getAs<ReferenceType>())
2028     T = Ref->getPointeeType();
2029 
2030   if (T.getQualifiers().hasUnaligned())
2031     return CharUnits::One();
2032 
2033   // __alignof is defined to return the preferred alignment.
2034   // Before 8, clang returned the preferred alignment for alignof and
2035   // _Alignof as well.
2036   if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
2037     return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
2038 
2039   return ASTCtx.getTypeAlignInChars(T);
2040 }
2041 
2042 template <class Emitter>
2043 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
2044     const UnaryExprOrTypeTraitExpr *E) {
2045   UnaryExprOrTypeTrait Kind = E->getKind();
2046   const ASTContext &ASTCtx = Ctx.getASTContext();
2047 
2048   if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
2049     QualType ArgType = E->getTypeOfArgument();
2050 
2051     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2052     //   the result is the size of the referenced type."
2053     if (const auto *Ref = ArgType->getAs<ReferenceType>())
2054       ArgType = Ref->getPointeeType();
2055 
2056     CharUnits Size;
2057     if (ArgType->isVoidType() || ArgType->isFunctionType())
2058       Size = CharUnits::One();
2059     else {
2060       if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
2061         return false;
2062 
2063       if (Kind == UETT_SizeOf)
2064         Size = ASTCtx.getTypeSizeInChars(ArgType);
2065       else
2066         Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
2067     }
2068 
2069     if (DiscardResult)
2070       return true;
2071 
2072     return this->emitConst(Size.getQuantity(), E);
2073   }
2074 
2075   if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
2076     CharUnits Size;
2077 
2078     if (E->isArgumentType()) {
2079       QualType ArgType = E->getTypeOfArgument();
2080 
2081       Size = AlignOfType(ArgType, ASTCtx, Kind);
2082     } else {
2083       // Argument is an expression, not a type.
2084       const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
2085 
2086       // The kinds of expressions that we have special-case logic here for
2087       // should be kept up to date with the special checks for those
2088       // expressions in Sema.
2089 
2090       // alignof decl is always accepted, even if it doesn't make sense: we
2091       // default to 1 in those cases.
2092       if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
2093         Size = ASTCtx.getDeclAlign(DRE->getDecl(),
2094                                    /*RefAsPointee*/ true);
2095       else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
2096         Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
2097                                    /*RefAsPointee*/ true);
2098       else
2099         Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
2100     }
2101 
2102     if (DiscardResult)
2103       return true;
2104 
2105     return this->emitConst(Size.getQuantity(), E);
2106   }
2107 
2108   if (Kind == UETT_VectorElements) {
2109     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
2110       return this->emitConst(VT->getNumElements(), E);
2111     assert(E->getTypeOfArgument()->isSizelessVectorType());
2112     return this->emitSizelessVectorElementSize(E);
2113   }
2114 
2115   if (Kind == UETT_VecStep) {
2116     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
2117       unsigned N = VT->getNumElements();
2118 
2119       // The vec_step built-in functions that take a 3-component
2120       // vector return 4. (OpenCL 1.1 spec 6.11.12)
2121       if (N == 3)
2122         N = 4;
2123 
2124       return this->emitConst(N, E);
2125     }
2126     return this->emitConst(1, E);
2127   }
2128 
2129   if (Kind == UETT_OpenMPRequiredSimdAlign) {
2130     assert(E->isArgumentType());
2131     unsigned Bits = ASTCtx.getOpenMPDefaultSimdAlign(E->getArgumentType());
2132 
2133     return this->emitConst(ASTCtx.toCharUnitsFromBits(Bits).getQuantity(), E);
2134   }
2135 
2136   return false;
2137 }
2138 
2139 template <class Emitter>
2140 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
2141   // 'Base.Member'
2142   const Expr *Base = E->getBase();
2143   const ValueDecl *Member = E->getMemberDecl();
2144 
2145   if (DiscardResult)
2146     return this->discard(Base);
2147 
2148   // MemberExprs are almost always lvalues, in which case we don't need to
2149   // do the load. But sometimes they aren't.
2150   const auto maybeLoadValue = [&]() -> bool {
2151     if (E->isGLValue())
2152       return true;
2153     if (std::optional<PrimType> T = classify(E))
2154       return this->emitLoadPop(*T, E);
2155     return false;
2156   };
2157 
2158   if (const auto *VD = dyn_cast<VarDecl>(Member)) {
2159     // I am almost confident in saying that a var decl must be static
2160     // and therefore registered as a global variable. But this will probably
2161     // turn out to be wrong some time in the future, as always.
2162     if (auto GlobalIndex = P.getGlobal(VD))
2163       return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
2164     return false;
2165   }
2166 
2167   if (!isa<FieldDecl>(Member)) {
2168     if (!this->discard(Base) && !this->emitSideEffect(E))
2169       return false;
2170 
2171     return this->visitDeclRef(Member, E);
2172   }
2173 
2174   if (Initializing) {
2175     if (!this->delegate(Base))
2176       return false;
2177   } else {
2178     if (!this->visit(Base))
2179       return false;
2180   }
2181 
2182   // Base above gives us a pointer on the stack.
2183   const auto *FD = cast<FieldDecl>(Member);
2184   const RecordDecl *RD = FD->getParent();
2185   const Record *R = getRecord(RD);
2186   if (!R)
2187     return false;
2188   const Record::Field *F = R->getField(FD);
2189   // Leave a pointer to the field on the stack.
2190   if (F->Decl->getType()->isReferenceType())
2191     return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
2192   return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
2193 }
2194 
2195 template <class Emitter>
2196 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
2197   // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
2198   // stand-alone, e.g. via EvaluateAsInt().
2199   if (!ArrayIndex)
2200     return false;
2201   return this->emitConst(*ArrayIndex, E);
2202 }
2203 
2204 template <class Emitter>
2205 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
2206   assert(Initializing);
2207   assert(!DiscardResult);
2208 
2209   // We visit the common opaque expression here once so we have its value
2210   // cached.
2211   if (!this->discard(E->getCommonExpr()))
2212     return false;
2213 
2214   // TODO: This compiles to quite a lot of bytecode if the array is larger.
2215   //   Investigate compiling this to a loop.
2216   const Expr *SubExpr = E->getSubExpr();
2217   size_t Size = E->getArraySize().getZExtValue();
2218 
2219   // So, every iteration, we execute an assignment here
2220   // where the LHS is on the stack (the target array)
2221   // and the RHS is our SubExpr.
2222   for (size_t I = 0; I != Size; ++I) {
2223     ArrayIndexScope<Emitter> IndexScope(this, I);
2224     BlockScope<Emitter> BS(this);
2225 
2226     if (!this->visitArrayElemInit(I, SubExpr))
2227       return false;
2228     if (!BS.destroyLocals())
2229       return false;
2230   }
2231   return true;
2232 }
2233 
2234 template <class Emitter>
2235 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2236   const Expr *SourceExpr = E->getSourceExpr();
2237   if (!SourceExpr)
2238     return false;
2239 
2240   if (Initializing)
2241     return this->visitInitializer(SourceExpr);
2242 
2243   PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
2244   if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
2245     return this->emitGetLocal(SubExprT, It->second, E);
2246 
2247   if (!this->visit(SourceExpr))
2248     return false;
2249 
2250   // At this point we either have the evaluated source expression or a pointer
2251   // to an object on the stack. We want to create a local variable that stores
2252   // this value.
2253   unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
2254   if (!this->emitSetLocal(SubExprT, LocalIndex, E))
2255     return false;
2256 
2257   // Here the local variable is created but the value is removed from the stack,
2258   // so we put it back if the caller needs it.
2259   if (!DiscardResult) {
2260     if (!this->emitGetLocal(SubExprT, LocalIndex, E))
2261       return false;
2262   }
2263 
2264   // This is cleaned up when the local variable is destroyed.
2265   OpaqueExprs.insert({E, LocalIndex});
2266 
2267   return true;
2268 }
2269 
2270 template <class Emitter>
2271 bool Compiler<Emitter>::VisitAbstractConditionalOperator(
2272     const AbstractConditionalOperator *E) {
2273   const Expr *Condition = E->getCond();
2274   const Expr *TrueExpr = E->getTrueExpr();
2275   const Expr *FalseExpr = E->getFalseExpr();
2276 
2277   LabelTy LabelEnd = this->getLabel();   // Label after the operator.
2278   LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
2279 
2280   if (!this->visitBool(Condition))
2281     return false;
2282 
2283   if (!this->jumpFalse(LabelFalse))
2284     return false;
2285 
2286   {
2287     LocalScope<Emitter> S(this);
2288     if (!this->delegate(TrueExpr))
2289       return false;
2290     if (!S.destroyLocals())
2291       return false;
2292   }
2293 
2294   if (!this->jump(LabelEnd))
2295     return false;
2296 
2297   this->emitLabel(LabelFalse);
2298 
2299   {
2300     LocalScope<Emitter> S(this);
2301     if (!this->delegate(FalseExpr))
2302       return false;
2303     if (!S.destroyLocals())
2304       return false;
2305   }
2306 
2307   this->fallthrough(LabelEnd);
2308   this->emitLabel(LabelEnd);
2309 
2310   return true;
2311 }
2312 
2313 template <class Emitter>
2314 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
2315   if (DiscardResult)
2316     return true;
2317 
2318   if (!Initializing) {
2319     unsigned StringIndex = P.createGlobalString(E);
2320     return this->emitGetPtrGlobal(StringIndex, E);
2321   }
2322 
2323   // We are initializing an array on the stack.
2324   const ConstantArrayType *CAT =
2325       Ctx.getASTContext().getAsConstantArrayType(E->getType());
2326   assert(CAT && "a string literal that's not a constant array?");
2327 
2328   // If the initializer string is too long, a diagnostic has already been
2329   // emitted. Read only the array length from the string literal.
2330   unsigned ArraySize = CAT->getZExtSize();
2331   unsigned N = std::min(ArraySize, E->getLength());
2332   size_t CharWidth = E->getCharByteWidth();
2333 
2334   for (unsigned I = 0; I != N; ++I) {
2335     uint32_t CodeUnit = E->getCodeUnit(I);
2336 
2337     if (CharWidth == 1) {
2338       this->emitConstSint8(CodeUnit, E);
2339       this->emitInitElemSint8(I, E);
2340     } else if (CharWidth == 2) {
2341       this->emitConstUint16(CodeUnit, E);
2342       this->emitInitElemUint16(I, E);
2343     } else if (CharWidth == 4) {
2344       this->emitConstUint32(CodeUnit, E);
2345       this->emitInitElemUint32(I, E);
2346     } else {
2347       llvm_unreachable("unsupported character width");
2348     }
2349   }
2350 
2351   // Fill up the rest of the char array with NUL bytes.
2352   for (unsigned I = N; I != ArraySize; ++I) {
2353     if (CharWidth == 1) {
2354       this->emitConstSint8(0, E);
2355       this->emitInitElemSint8(I, E);
2356     } else if (CharWidth == 2) {
2357       this->emitConstUint16(0, E);
2358       this->emitInitElemUint16(I, E);
2359     } else if (CharWidth == 4) {
2360       this->emitConstUint32(0, E);
2361       this->emitInitElemUint32(I, E);
2362     } else {
2363       llvm_unreachable("unsupported character width");
2364     }
2365   }
2366 
2367   return true;
2368 }
2369 
2370 template <class Emitter>
2371 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2372   if (DiscardResult)
2373     return true;
2374   return this->emitDummyPtr(E, E);
2375 }
2376 
2377 template <class Emitter>
2378 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2379   auto &A = Ctx.getASTContext();
2380   std::string Str;
2381   A.getObjCEncodingForType(E->getEncodedType(), Str);
2382   StringLiteral *SL =
2383       StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
2384                             /*Pascal=*/false, E->getType(), E->getAtLoc());
2385   return this->delegate(SL);
2386 }
2387 
2388 template <class Emitter>
2389 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
2390     const SYCLUniqueStableNameExpr *E) {
2391   if (DiscardResult)
2392     return true;
2393 
2394   assert(!Initializing);
2395 
2396   auto &A = Ctx.getASTContext();
2397   std::string ResultStr = E->ComputeName(A);
2398 
2399   QualType CharTy = A.CharTy.withConst();
2400   APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
2401   QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
2402                                             ArraySizeModifier::Normal, 0);
2403 
2404   StringLiteral *SL =
2405       StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
2406                             /*Pascal=*/false, ArrayTy, E->getLocation());
2407 
2408   unsigned StringIndex = P.createGlobalString(SL);
2409   return this->emitGetPtrGlobal(StringIndex, E);
2410 }
2411 
2412 template <class Emitter>
2413 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
2414   if (DiscardResult)
2415     return true;
2416   return this->emitConst(E->getValue(), E);
2417 }
2418 
2419 template <class Emitter>
2420 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
2421     const CompoundAssignOperator *E) {
2422 
2423   const Expr *LHS = E->getLHS();
2424   const Expr *RHS = E->getRHS();
2425   QualType LHSType = LHS->getType();
2426   QualType LHSComputationType = E->getComputationLHSType();
2427   QualType ResultType = E->getComputationResultType();
2428   std::optional<PrimType> LT = classify(LHSComputationType);
2429   std::optional<PrimType> RT = classify(ResultType);
2430 
2431   assert(ResultType->isFloatingType());
2432 
2433   if (!LT || !RT)
2434     return false;
2435 
2436   PrimType LHST = classifyPrim(LHSType);
2437 
2438   // C++17 onwards require that we evaluate the RHS first.
2439   // Compute RHS and save it in a temporary variable so we can
2440   // load it again later.
2441   if (!visit(RHS))
2442     return false;
2443 
2444   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2445   if (!this->emitSetLocal(*RT, TempOffset, E))
2446     return false;
2447 
2448   // First, visit LHS.
2449   if (!visit(LHS))
2450     return false;
2451   if (!this->emitLoad(LHST, E))
2452     return false;
2453 
2454   // If necessary, convert LHS to its computation type.
2455   if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
2456                           LHSComputationType, E))
2457     return false;
2458 
2459   // Now load RHS.
2460   if (!this->emitGetLocal(*RT, TempOffset, E))
2461     return false;
2462 
2463   switch (E->getOpcode()) {
2464   case BO_AddAssign:
2465     if (!this->emitAddf(getFPOptions(E), E))
2466       return false;
2467     break;
2468   case BO_SubAssign:
2469     if (!this->emitSubf(getFPOptions(E), E))
2470       return false;
2471     break;
2472   case BO_MulAssign:
2473     if (!this->emitMulf(getFPOptions(E), E))
2474       return false;
2475     break;
2476   case BO_DivAssign:
2477     if (!this->emitDivf(getFPOptions(E), E))
2478       return false;
2479     break;
2480   default:
2481     return false;
2482   }
2483 
2484   if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
2485     return false;
2486 
2487   if (DiscardResult)
2488     return this->emitStorePop(LHST, E);
2489   return this->emitStore(LHST, E);
2490 }
2491 
2492 template <class Emitter>
2493 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
2494     const CompoundAssignOperator *E) {
2495   BinaryOperatorKind Op = E->getOpcode();
2496   const Expr *LHS = E->getLHS();
2497   const Expr *RHS = E->getRHS();
2498   std::optional<PrimType> LT = classify(LHS->getType());
2499   std::optional<PrimType> RT = classify(RHS->getType());
2500 
2501   if (Op != BO_AddAssign && Op != BO_SubAssign)
2502     return false;
2503 
2504   if (!LT || !RT)
2505     return false;
2506 
2507   if (!visit(LHS))
2508     return false;
2509 
2510   if (!this->emitLoad(*LT, LHS))
2511     return false;
2512 
2513   if (!visit(RHS))
2514     return false;
2515 
2516   if (Op == BO_AddAssign) {
2517     if (!this->emitAddOffset(*RT, E))
2518       return false;
2519   } else {
2520     if (!this->emitSubOffset(*RT, E))
2521       return false;
2522   }
2523 
2524   if (DiscardResult)
2525     return this->emitStorePopPtr(E);
2526   return this->emitStorePtr(E);
2527 }
2528 
2529 template <class Emitter>
2530 bool Compiler<Emitter>::VisitCompoundAssignOperator(
2531     const CompoundAssignOperator *E) {
2532   if (E->getType()->isVectorType())
2533     return VisitVectorBinOp(E);
2534 
2535   const Expr *LHS = E->getLHS();
2536   const Expr *RHS = E->getRHS();
2537   std::optional<PrimType> LHSComputationT =
2538       classify(E->getComputationLHSType());
2539   std::optional<PrimType> LT = classify(LHS->getType());
2540   std::optional<PrimType> RT = classify(RHS->getType());
2541   std::optional<PrimType> ResultT = classify(E->getType());
2542 
2543   if (!Ctx.getLangOpts().CPlusPlus14)
2544     return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
2545 
2546   if (!LT || !RT || !ResultT || !LHSComputationT)
2547     return false;
2548 
2549   // Handle floating point operations separately here, since they
2550   // require special care.
2551 
2552   if (ResultT == PT_Float || RT == PT_Float)
2553     return VisitFloatCompoundAssignOperator(E);
2554 
2555   if (E->getType()->isPointerType())
2556     return VisitPointerCompoundAssignOperator(E);
2557 
2558   assert(!E->getType()->isPointerType() && "Handled above");
2559   assert(!E->getType()->isFloatingType() && "Handled above");
2560 
2561   // C++17 onwards require that we evaluate the RHS first.
2562   // Compute RHS and save it in a temporary variable so we can
2563   // load it again later.
2564   // FIXME: Compound assignments are unsequenced in C, so we might
2565   //   have to figure out how to reject them.
2566   if (!visit(RHS))
2567     return false;
2568 
2569   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2570 
2571   if (!this->emitSetLocal(*RT, TempOffset, E))
2572     return false;
2573 
2574   // Get LHS pointer, load its value and cast it to the
2575   // computation type if necessary.
2576   if (!visit(LHS))
2577     return false;
2578   if (!this->emitLoad(*LT, E))
2579     return false;
2580   if (LT != LHSComputationT) {
2581     if (!this->emitCast(*LT, *LHSComputationT, E))
2582       return false;
2583   }
2584 
2585   // Get the RHS value on the stack.
2586   if (!this->emitGetLocal(*RT, TempOffset, E))
2587     return false;
2588 
2589   // Perform operation.
2590   switch (E->getOpcode()) {
2591   case BO_AddAssign:
2592     if (!this->emitAdd(*LHSComputationT, E))
2593       return false;
2594     break;
2595   case BO_SubAssign:
2596     if (!this->emitSub(*LHSComputationT, E))
2597       return false;
2598     break;
2599   case BO_MulAssign:
2600     if (!this->emitMul(*LHSComputationT, E))
2601       return false;
2602     break;
2603   case BO_DivAssign:
2604     if (!this->emitDiv(*LHSComputationT, E))
2605       return false;
2606     break;
2607   case BO_RemAssign:
2608     if (!this->emitRem(*LHSComputationT, E))
2609       return false;
2610     break;
2611   case BO_ShlAssign:
2612     if (!this->emitShl(*LHSComputationT, *RT, E))
2613       return false;
2614     break;
2615   case BO_ShrAssign:
2616     if (!this->emitShr(*LHSComputationT, *RT, E))
2617       return false;
2618     break;
2619   case BO_AndAssign:
2620     if (!this->emitBitAnd(*LHSComputationT, E))
2621       return false;
2622     break;
2623   case BO_XorAssign:
2624     if (!this->emitBitXor(*LHSComputationT, E))
2625       return false;
2626     break;
2627   case BO_OrAssign:
2628     if (!this->emitBitOr(*LHSComputationT, E))
2629       return false;
2630     break;
2631   default:
2632     llvm_unreachable("Unimplemented compound assign operator");
2633   }
2634 
2635   // And now cast from LHSComputationT to ResultT.
2636   if (ResultT != LHSComputationT) {
2637     if (!this->emitCast(*LHSComputationT, *ResultT, E))
2638       return false;
2639   }
2640 
2641   // And store the result in LHS.
2642   if (DiscardResult) {
2643     if (LHS->refersToBitField())
2644       return this->emitStoreBitFieldPop(*ResultT, E);
2645     return this->emitStorePop(*ResultT, E);
2646   }
2647   if (LHS->refersToBitField())
2648     return this->emitStoreBitField(*ResultT, E);
2649   return this->emitStore(*ResultT, E);
2650 }
2651 
2652 template <class Emitter>
2653 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
2654   LocalScope<Emitter> ES(this);
2655   const Expr *SubExpr = E->getSubExpr();
2656 
2657   return this->delegate(SubExpr) && ES.destroyLocals(E);
2658 }
2659 
2660 template <class Emitter>
2661 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
2662     const MaterializeTemporaryExpr *E) {
2663   const Expr *SubExpr = E->getSubExpr();
2664 
2665   if (Initializing) {
2666     // We already have a value, just initialize that.
2667     return this->delegate(SubExpr);
2668   }
2669   // If we don't end up using the materialized temporary anyway, don't
2670   // bother creating it.
2671   if (DiscardResult)
2672     return this->discard(SubExpr);
2673 
2674   // When we're initializing a global variable *or* the storage duration of
2675   // the temporary is explicitly static, create a global variable.
2676   std::optional<PrimType> SubExprT = classify(SubExpr);
2677   bool IsStatic = E->getStorageDuration() == SD_Static;
2678   if (IsStatic) {
2679     std::optional<unsigned> GlobalIndex = P.createGlobal(E);
2680     if (!GlobalIndex)
2681       return false;
2682 
2683     const LifetimeExtendedTemporaryDecl *TempDecl =
2684         E->getLifetimeExtendedTemporaryDecl();
2685     if (IsStatic)
2686       assert(TempDecl);
2687 
2688     if (SubExprT) {
2689       if (!this->visit(SubExpr))
2690         return false;
2691       if (IsStatic) {
2692         if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
2693           return false;
2694       } else {
2695         if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
2696           return false;
2697       }
2698       return this->emitGetPtrGlobal(*GlobalIndex, E);
2699     }
2700 
2701     if (!this->checkLiteralType(SubExpr))
2702       return false;
2703     // Non-primitive values.
2704     if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2705       return false;
2706     if (!this->visitInitializer(SubExpr))
2707       return false;
2708     if (IsStatic)
2709       return this->emitInitGlobalTempComp(TempDecl, E);
2710     return true;
2711   }
2712 
2713   // For everyhing else, use local variables.
2714   if (SubExprT) {
2715     unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true,
2716                                                  /*IsExtended=*/true);
2717     if (!this->visit(SubExpr))
2718       return false;
2719     if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
2720       return false;
2721     return this->emitGetPtrLocal(LocalIndex, E);
2722   } else {
2723 
2724     if (!this->checkLiteralType(SubExpr))
2725       return false;
2726 
2727     const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2728     if (std::optional<unsigned> LocalIndex =
2729             allocateLocal(E, Inner->getType(), E->getExtendingDecl())) {
2730       InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
2731       if (!this->emitGetPtrLocal(*LocalIndex, E))
2732         return false;
2733       return this->visitInitializer(SubExpr) && this->emitFinishInit(E);
2734     }
2735   }
2736   return false;
2737 }
2738 
2739 template <class Emitter>
2740 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
2741     const CXXBindTemporaryExpr *E) {
2742   return this->delegate(E->getSubExpr());
2743 }
2744 
2745 template <class Emitter>
2746 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2747   const Expr *Init = E->getInitializer();
2748   if (DiscardResult)
2749     return this->discard(Init);
2750 
2751   if (Initializing) {
2752     // We already have a value, just initialize that.
2753     return this->visitInitializer(Init) && this->emitFinishInit(E);
2754   }
2755 
2756   std::optional<PrimType> T = classify(E->getType());
2757   if (E->isFileScope()) {
2758     // Avoid creating a variable if this is a primitive RValue anyway.
2759     if (T && !E->isLValue())
2760       return this->delegate(Init);
2761 
2762     if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
2763       if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2764         return false;
2765 
2766       if (T) {
2767         if (!this->visit(Init))
2768           return false;
2769         return this->emitInitGlobal(*T, *GlobalIndex, E);
2770       }
2771 
2772       return this->visitInitializer(Init) && this->emitFinishInit(E);
2773     }
2774 
2775     return false;
2776   }
2777 
2778   // Otherwise, use a local variable.
2779   if (T && !E->isLValue()) {
2780     // For primitive types, we just visit the initializer.
2781     return this->delegate(Init);
2782   } else {
2783     unsigned LocalIndex;
2784 
2785     if (T)
2786       LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
2787     else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
2788       LocalIndex = *MaybeIndex;
2789     else
2790       return false;
2791 
2792     if (!this->emitGetPtrLocal(LocalIndex, E))
2793       return false;
2794 
2795     if (T) {
2796       if (!this->visit(Init)) {
2797         return false;
2798       }
2799       return this->emitInit(*T, E);
2800     } else {
2801       if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
2802         return false;
2803     }
2804     return true;
2805   }
2806 
2807   return false;
2808 }
2809 
2810 template <class Emitter>
2811 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
2812   if (DiscardResult)
2813     return true;
2814   if (E->getType()->isBooleanType())
2815     return this->emitConstBool(E->getValue(), E);
2816   return this->emitConst(E->getValue(), E);
2817 }
2818 
2819 template <class Emitter>
2820 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
2821   if (DiscardResult)
2822     return true;
2823   return this->emitConst(E->getValue(), E);
2824 }
2825 
2826 template <class Emitter>
2827 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
2828   if (DiscardResult)
2829     return true;
2830 
2831   assert(Initializing);
2832   const Record *R = P.getOrCreateRecord(E->getLambdaClass());
2833 
2834   auto *CaptureInitIt = E->capture_init_begin();
2835   // Initialize all fields (which represent lambda captures) of the
2836   // record with their initializers.
2837   for (const Record::Field &F : R->fields()) {
2838     const Expr *Init = *CaptureInitIt;
2839     ++CaptureInitIt;
2840 
2841     if (!Init)
2842       continue;
2843 
2844     if (std::optional<PrimType> T = classify(Init)) {
2845       if (!this->visit(Init))
2846         return false;
2847 
2848       if (!this->emitInitField(*T, F.Offset, E))
2849         return false;
2850     } else {
2851       if (!this->emitGetPtrField(F.Offset, E))
2852         return false;
2853 
2854       if (!this->visitInitializer(Init))
2855         return false;
2856 
2857       if (!this->emitPopPtr(E))
2858         return false;
2859     }
2860   }
2861 
2862   return true;
2863 }
2864 
2865 template <class Emitter>
2866 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
2867   if (DiscardResult)
2868     return true;
2869 
2870   if (!Initializing) {
2871     unsigned StringIndex = P.createGlobalString(E->getFunctionName(), E);
2872     return this->emitGetPtrGlobal(StringIndex, E);
2873   }
2874 
2875   return this->delegate(E->getFunctionName());
2876 }
2877 
2878 template <class Emitter>
2879 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
2880   if (E->getSubExpr() && !this->discard(E->getSubExpr()))
2881     return false;
2882 
2883   return this->emitInvalid(E);
2884 }
2885 
2886 template <class Emitter>
2887 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
2888     const CXXReinterpretCastExpr *E) {
2889   const Expr *SubExpr = E->getSubExpr();
2890 
2891   std::optional<PrimType> FromT = classify(SubExpr);
2892   std::optional<PrimType> ToT = classify(E);
2893 
2894   if (!FromT || !ToT)
2895     return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E);
2896 
2897   if (FromT == PT_Ptr || ToT == PT_Ptr) {
2898     // Both types could be PT_Ptr because their expressions are glvalues.
2899     std::optional<PrimType> PointeeFromT;
2900     if (SubExpr->getType()->isPointerOrReferenceType())
2901       PointeeFromT = classify(SubExpr->getType()->getPointeeType());
2902     else
2903       PointeeFromT = classify(SubExpr->getType());
2904 
2905     std::optional<PrimType> PointeeToT;
2906     if (E->getType()->isPointerOrReferenceType())
2907       PointeeToT = classify(E->getType()->getPointeeType());
2908     else
2909       PointeeToT = classify(E->getType());
2910 
2911     bool Fatal = true;
2912     if (PointeeToT && PointeeFromT) {
2913       if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT))
2914         Fatal = false;
2915     }
2916 
2917     if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2918       return false;
2919 
2920     if (E->getCastKind() == CK_LValueBitCast)
2921       return this->delegate(SubExpr);
2922     return this->VisitCastExpr(E);
2923   }
2924 
2925   // Try to actually do the cast.
2926   bool Fatal = (ToT != FromT);
2927   if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2928     return false;
2929 
2930   return this->VisitCastExpr(E);
2931 }
2932 
2933 template <class Emitter>
2934 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
2935   assert(E->getType()->isBooleanType());
2936 
2937   if (DiscardResult)
2938     return true;
2939   return this->emitConstBool(E->getValue(), E);
2940 }
2941 
2942 template <class Emitter>
2943 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
2944   QualType T = E->getType();
2945   assert(!classify(T));
2946 
2947   if (T->isRecordType()) {
2948     const CXXConstructorDecl *Ctor = E->getConstructor();
2949 
2950     // Trivial copy/move constructor. Avoid copy.
2951     if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
2952         Ctor->isTrivial() &&
2953         E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
2954                                         T->getAsCXXRecordDecl()))
2955       return this->visitInitializer(E->getArg(0));
2956 
2957     // If we're discarding a construct expression, we still need
2958     // to allocate a variable and call the constructor and destructor.
2959     if (DiscardResult) {
2960       if (Ctor->isTrivial())
2961         return true;
2962       assert(!Initializing);
2963       std::optional<unsigned> LocalIndex = allocateLocal(E);
2964 
2965       if (!LocalIndex)
2966         return false;
2967 
2968       if (!this->emitGetPtrLocal(*LocalIndex, E))
2969         return false;
2970     }
2971 
2972     // Zero initialization.
2973     if (E->requiresZeroInitialization()) {
2974       const Record *R = getRecord(E->getType());
2975 
2976       if (!this->visitZeroRecordInitializer(R, E))
2977         return false;
2978 
2979       // If the constructor is trivial anyway, we're done.
2980       if (Ctor->isTrivial())
2981         return true;
2982     }
2983 
2984     const Function *Func = getFunction(Ctor);
2985 
2986     if (!Func)
2987       return false;
2988 
2989     assert(Func->hasThisPointer());
2990     assert(!Func->hasRVO());
2991 
2992     //  The This pointer is already on the stack because this is an initializer,
2993     //  but we need to dup() so the call() below has its own copy.
2994     if (!this->emitDupPtr(E))
2995       return false;
2996 
2997     // Constructor arguments.
2998     for (const auto *Arg : E->arguments()) {
2999       if (!this->visit(Arg))
3000         return false;
3001     }
3002 
3003     if (Func->isVariadic()) {
3004       uint32_t VarArgSize = 0;
3005       unsigned NumParams = Func->getNumWrittenParams();
3006       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
3007         VarArgSize +=
3008             align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
3009       }
3010       if (!this->emitCallVar(Func, VarArgSize, E))
3011         return false;
3012     } else {
3013       if (!this->emitCall(Func, 0, E)) {
3014         // When discarding, we don't need the result anyway, so clean up
3015         // the instance dup we did earlier in case surrounding code wants
3016         // to keep evaluating.
3017         if (DiscardResult)
3018           (void)this->emitPopPtr(E);
3019         return false;
3020       }
3021     }
3022 
3023     if (DiscardResult)
3024       return this->emitPopPtr(E);
3025     return this->emitFinishInit(E);
3026   }
3027 
3028   if (T->isArrayType()) {
3029     const ConstantArrayType *CAT =
3030         Ctx.getASTContext().getAsConstantArrayType(E->getType());
3031     if (!CAT)
3032       return false;
3033 
3034     size_t NumElems = CAT->getZExtSize();
3035     const Function *Func = getFunction(E->getConstructor());
3036     if (!Func || !Func->isConstexpr())
3037       return false;
3038 
3039     // FIXME(perf): We're calling the constructor once per array element here,
3040     //   in the old intepreter we had a special-case for trivial constructors.
3041     for (size_t I = 0; I != NumElems; ++I) {
3042       if (!this->emitConstUint64(I, E))
3043         return false;
3044       if (!this->emitArrayElemPtrUint64(E))
3045         return false;
3046 
3047       // Constructor arguments.
3048       for (const auto *Arg : E->arguments()) {
3049         if (!this->visit(Arg))
3050           return false;
3051       }
3052 
3053       if (!this->emitCall(Func, 0, E))
3054         return false;
3055     }
3056     return true;
3057   }
3058 
3059   return false;
3060 }
3061 
3062 template <class Emitter>
3063 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
3064   if (DiscardResult)
3065     return true;
3066 
3067   const APValue Val =
3068       E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
3069 
3070   // Things like __builtin_LINE().
3071   if (E->getType()->isIntegerType()) {
3072     assert(Val.isInt());
3073     const APSInt &I = Val.getInt();
3074     return this->emitConst(I, E);
3075   }
3076   // Otherwise, the APValue is an LValue, with only one element.
3077   // Theoretically, we don't need the APValue at all of course.
3078   assert(E->getType()->isPointerType());
3079   assert(Val.isLValue());
3080   const APValue::LValueBase &Base = Val.getLValueBase();
3081   if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
3082     return this->visit(LValueExpr);
3083 
3084   // Otherwise, we have a decl (which is the case for
3085   // __builtin_source_location).
3086   assert(Base.is<const ValueDecl *>());
3087   assert(Val.getLValuePath().size() == 0);
3088   const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
3089   assert(BaseDecl);
3090 
3091   auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
3092 
3093   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
3094   if (!GlobalIndex)
3095     return false;
3096 
3097   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3098     return false;
3099 
3100   const Record *R = getRecord(E->getType());
3101   const APValue &V = UGCD->getValue();
3102   for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
3103     const Record::Field *F = R->getField(I);
3104     const APValue &FieldValue = V.getStructField(I);
3105 
3106     PrimType FieldT = classifyPrim(F->Decl->getType());
3107 
3108     if (!this->visitAPValue(FieldValue, FieldT, E))
3109       return false;
3110     if (!this->emitInitField(FieldT, F->Offset, E))
3111       return false;
3112   }
3113 
3114   // Leave the pointer to the global on the stack.
3115   return true;
3116 }
3117 
3118 template <class Emitter>
3119 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
3120   unsigned N = E->getNumComponents();
3121   if (N == 0)
3122     return false;
3123 
3124   for (unsigned I = 0; I != N; ++I) {
3125     const OffsetOfNode &Node = E->getComponent(I);
3126     if (Node.getKind() == OffsetOfNode::Array) {
3127       const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
3128       PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
3129 
3130       if (DiscardResult) {
3131         if (!this->discard(ArrayIndexExpr))
3132           return false;
3133         continue;
3134       }
3135 
3136       if (!this->visit(ArrayIndexExpr))
3137         return false;
3138       // Cast to Sint64.
3139       if (IndexT != PT_Sint64) {
3140         if (!this->emitCast(IndexT, PT_Sint64, E))
3141           return false;
3142       }
3143     }
3144   }
3145 
3146   if (DiscardResult)
3147     return true;
3148 
3149   PrimType T = classifyPrim(E->getType());
3150   return this->emitOffsetOf(T, E, E);
3151 }
3152 
3153 template <class Emitter>
3154 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
3155     const CXXScalarValueInitExpr *E) {
3156   QualType Ty = E->getType();
3157 
3158   if (DiscardResult || Ty->isVoidType())
3159     return true;
3160 
3161   if (std::optional<PrimType> T = classify(Ty))
3162     return this->visitZeroInitializer(*T, Ty, E);
3163 
3164   if (const auto *CT = Ty->getAs<ComplexType>()) {
3165     if (!Initializing) {
3166       std::optional<unsigned> LocalIndex = allocateLocal(E);
3167       if (!LocalIndex)
3168         return false;
3169       if (!this->emitGetPtrLocal(*LocalIndex, E))
3170         return false;
3171     }
3172 
3173     // Initialize both fields to 0.
3174     QualType ElemQT = CT->getElementType();
3175     PrimType ElemT = classifyPrim(ElemQT);
3176 
3177     for (unsigned I = 0; I != 2; ++I) {
3178       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3179         return false;
3180       if (!this->emitInitElem(ElemT, I, E))
3181         return false;
3182     }
3183     return true;
3184   }
3185 
3186   if (const auto *VT = Ty->getAs<VectorType>()) {
3187     // FIXME: Code duplication with the _Complex case above.
3188     if (!Initializing) {
3189       std::optional<unsigned> LocalIndex = allocateLocal(E);
3190       if (!LocalIndex)
3191         return false;
3192       if (!this->emitGetPtrLocal(*LocalIndex, E))
3193         return false;
3194     }
3195 
3196     // Initialize all fields to 0.
3197     QualType ElemQT = VT->getElementType();
3198     PrimType ElemT = classifyPrim(ElemQT);
3199 
3200     for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
3201       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3202         return false;
3203       if (!this->emitInitElem(ElemT, I, E))
3204         return false;
3205     }
3206     return true;
3207   }
3208 
3209   return false;
3210 }
3211 
3212 template <class Emitter>
3213 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
3214   return this->emitConst(E->getPackLength(), E);
3215 }
3216 
3217 template <class Emitter>
3218 bool Compiler<Emitter>::VisitGenericSelectionExpr(
3219     const GenericSelectionExpr *E) {
3220   return this->delegate(E->getResultExpr());
3221 }
3222 
3223 template <class Emitter>
3224 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
3225   return this->delegate(E->getChosenSubExpr());
3226 }
3227 
3228 template <class Emitter>
3229 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
3230   if (DiscardResult)
3231     return true;
3232 
3233   return this->emitConst(E->getValue(), E);
3234 }
3235 
3236 template <class Emitter>
3237 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
3238     const CXXInheritedCtorInitExpr *E) {
3239   const CXXConstructorDecl *Ctor = E->getConstructor();
3240   assert(!Ctor->isTrivial() &&
3241          "Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
3242   const Function *F = this->getFunction(Ctor);
3243   assert(F);
3244   assert(!F->hasRVO());
3245   assert(F->hasThisPointer());
3246 
3247   if (!this->emitDupPtr(SourceInfo{}))
3248     return false;
3249 
3250   // Forward all arguments of the current function (which should be a
3251   // constructor itself) to the inherited ctor.
3252   // This is necessary because the calling code has pushed the pointer
3253   // of the correct base for  us already, but the arguments need
3254   // to come after.
3255   unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
3256   for (const ParmVarDecl *PD : Ctor->parameters()) {
3257     PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
3258 
3259     if (!this->emitGetParam(PT, Offset, E))
3260       return false;
3261     Offset += align(primSize(PT));
3262   }
3263 
3264   return this->emitCall(F, 0, E);
3265 }
3266 
3267 template <class Emitter>
3268 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
3269   assert(classifyPrim(E->getType()) == PT_Ptr);
3270   const Expr *Init = E->getInitializer();
3271   QualType ElementType = E->getAllocatedType();
3272   std::optional<PrimType> ElemT = classify(ElementType);
3273   unsigned PlacementArgs = E->getNumPlacementArgs();
3274   const FunctionDecl *OperatorNew = E->getOperatorNew();
3275   const Expr *PlacementDest = nullptr;
3276   bool IsNoThrow = false;
3277 
3278   if (PlacementArgs != 0) {
3279     // FIXME: There is no restriction on this, but it's not clear that any
3280     // other form makes any sense. We get here for cases such as:
3281     //
3282     //   new (std::align_val_t{N}) X(int)
3283     //
3284     // (which should presumably be valid only if N is a multiple of
3285     // alignof(int), and in any case can't be deallocated unless N is
3286     // alignof(X) and X has new-extended alignment).
3287     if (PlacementArgs == 1) {
3288       const Expr *Arg1 = E->getPlacementArg(0);
3289       if (Arg1->getType()->isNothrowT()) {
3290         if (!this->discard(Arg1))
3291           return false;
3292         IsNoThrow = true;
3293       } else {
3294         // Invalid unless we have C++26 or are in a std:: function.
3295         if (!this->emitInvalidNewDeleteExpr(E, E))
3296           return false;
3297 
3298         // If we have a placement-new destination, we'll later use that instead
3299         // of allocating.
3300         if (OperatorNew->isReservedGlobalPlacementOperator())
3301           PlacementDest = Arg1;
3302       }
3303     } else {
3304       // Always invalid.
3305       return this->emitInvalid(E);
3306     }
3307   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction())
3308     return this->emitInvalidNewDeleteExpr(E, E);
3309 
3310   const Descriptor *Desc;
3311   if (!PlacementDest) {
3312     if (ElemT) {
3313       if (E->isArray())
3314         Desc = nullptr; // We're not going to use it in this case.
3315       else
3316         Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
3317                                   /*IsConst=*/false, /*IsTemporary=*/false,
3318                                   /*IsMutable=*/false);
3319     } else {
3320       Desc = P.createDescriptor(
3321           E, ElementType.getTypePtr(),
3322           E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
3323           /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
3324     }
3325   }
3326 
3327   if (E->isArray()) {
3328     std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
3329     if (!ArraySizeExpr)
3330       return false;
3331 
3332     const Expr *Stripped = *ArraySizeExpr;
3333     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
3334          Stripped = ICE->getSubExpr())
3335       if (ICE->getCastKind() != CK_NoOp &&
3336           ICE->getCastKind() != CK_IntegralCast)
3337         break;
3338 
3339     PrimType SizeT = classifyPrim(Stripped->getType());
3340 
3341     if (PlacementDest) {
3342       if (!this->visit(PlacementDest))
3343         return false;
3344       if (!this->visit(Stripped))
3345         return false;
3346       if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E))
3347         return false;
3348     } else {
3349       if (!this->visit(Stripped))
3350         return false;
3351 
3352       if (ElemT) {
3353         // N primitive elements.
3354         if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
3355           return false;
3356       } else {
3357         // N Composite elements.
3358         if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
3359           return false;
3360       }
3361     }
3362 
3363     if (Init && !this->visitInitializer(Init))
3364       return false;
3365 
3366   } else {
3367     if (PlacementDest) {
3368       if (!this->visit(PlacementDest))
3369         return false;
3370       if (!this->emitCheckNewTypeMismatch(E, E))
3371         return false;
3372     } else {
3373       // Allocate just one element.
3374       if (!this->emitAlloc(Desc, E))
3375         return false;
3376     }
3377 
3378     if (Init) {
3379       if (ElemT) {
3380         if (!this->visit(Init))
3381           return false;
3382 
3383         if (!this->emitInit(*ElemT, E))
3384           return false;
3385       } else {
3386         // Composite.
3387         if (!this->visitInitializer(Init))
3388           return false;
3389       }
3390     }
3391   }
3392 
3393   if (DiscardResult)
3394     return this->emitPopPtr(E);
3395 
3396   return true;
3397 }
3398 
3399 template <class Emitter>
3400 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
3401   const Expr *Arg = E->getArgument();
3402 
3403   const FunctionDecl *OperatorDelete = E->getOperatorDelete();
3404 
3405   if (!OperatorDelete->isReplaceableGlobalAllocationFunction())
3406     return this->emitInvalidNewDeleteExpr(E, E);
3407 
3408   // Arg must be an lvalue.
3409   if (!this->visit(Arg))
3410     return false;
3411 
3412   return this->emitFree(E->isArrayForm(), E->isGlobalDelete(), E);
3413 }
3414 
3415 template <class Emitter>
3416 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
3417   if (DiscardResult)
3418     return true;
3419 
3420   const Function *Func = nullptr;
3421   if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E))
3422     Func = F;
3423 
3424   if (!Func)
3425     return false;
3426   return this->emitGetFnPtr(Func, E);
3427 }
3428 
3429 template <class Emitter>
3430 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
3431   assert(Ctx.getLangOpts().CPlusPlus);
3432   return this->emitConstBool(E->getValue(), E);
3433 }
3434 
3435 template <class Emitter>
3436 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
3437   if (DiscardResult)
3438     return true;
3439   assert(!Initializing);
3440 
3441   const MSGuidDecl *GuidDecl = E->getGuidDecl();
3442   const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
3443   assert(RD);
3444   // If the definiton of the result type is incomplete, just return a dummy.
3445   // If (and when) that is read from, we will fail, but not now.
3446   if (!RD->isCompleteDefinition())
3447     return this->emitDummyPtr(GuidDecl, E);
3448 
3449   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
3450   if (!GlobalIndex)
3451     return false;
3452   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3453     return false;
3454 
3455   assert(this->getRecord(E->getType()));
3456 
3457   const APValue &V = GuidDecl->getAsAPValue();
3458   if (V.getKind() == APValue::None)
3459     return true;
3460 
3461   assert(V.isStruct());
3462   assert(V.getStructNumBases() == 0);
3463   if (!this->visitAPValueInitializer(V, E))
3464     return false;
3465 
3466   return this->emitFinishInit(E);
3467 }
3468 
3469 template <class Emitter>
3470 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
3471   assert(classifyPrim(E->getType()) == PT_Bool);
3472   if (DiscardResult)
3473     return true;
3474   return this->emitConstBool(E->isSatisfied(), E);
3475 }
3476 
3477 template <class Emitter>
3478 bool Compiler<Emitter>::VisitConceptSpecializationExpr(
3479     const ConceptSpecializationExpr *E) {
3480   assert(classifyPrim(E->getType()) == PT_Bool);
3481   if (DiscardResult)
3482     return true;
3483   return this->emitConstBool(E->isSatisfied(), E);
3484 }
3485 
3486 template <class Emitter>
3487 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
3488     const CXXRewrittenBinaryOperator *E) {
3489   return this->delegate(E->getSemanticForm());
3490 }
3491 
3492 template <class Emitter>
3493 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
3494 
3495   for (const Expr *SemE : E->semantics()) {
3496     if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
3497       if (SemE == E->getResultExpr())
3498         return false;
3499 
3500       if (OVE->isUnique())
3501         continue;
3502 
3503       if (!this->discard(OVE))
3504         return false;
3505     } else if (SemE == E->getResultExpr()) {
3506       if (!this->delegate(SemE))
3507         return false;
3508     } else {
3509       if (!this->discard(SemE))
3510         return false;
3511     }
3512   }
3513   return true;
3514 }
3515 
3516 template <class Emitter>
3517 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
3518   return this->delegate(E->getSelectedExpr());
3519 }
3520 
3521 template <class Emitter>
3522 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
3523   return this->emitError(E);
3524 }
3525 
3526 template <class Emitter>
3527 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
3528   assert(E->getType()->isVoidPointerType());
3529 
3530   unsigned Offset = allocateLocalPrimitive(
3531       E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3532 
3533   return this->emitGetLocal(PT_Ptr, Offset, E);
3534 }
3535 
3536 template <class Emitter>
3537 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
3538   assert(Initializing);
3539   const auto *VT = E->getType()->castAs<VectorType>();
3540   QualType ElemType = VT->getElementType();
3541   PrimType ElemT = classifyPrim(ElemType);
3542   const Expr *Src = E->getSrcExpr();
3543   QualType SrcType = Src->getType();
3544   PrimType SrcElemT = classifyVectorElementType(SrcType);
3545 
3546   unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
3547   if (!this->visit(Src))
3548     return false;
3549   if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
3550     return false;
3551 
3552   for (unsigned I = 0; I != VT->getNumElements(); ++I) {
3553     if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
3554       return false;
3555     if (!this->emitArrayElemPop(SrcElemT, I, E))
3556       return false;
3557 
3558     // Cast to the desired result element type.
3559     if (SrcElemT != ElemT) {
3560       if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
3561         return false;
3562     } else if (ElemType->isFloatingType() && SrcType != ElemType) {
3563       const auto *TargetSemantics = &Ctx.getFloatSemantics(ElemType);
3564       if (!this->emitCastFP(TargetSemantics, getRoundingMode(E), E))
3565         return false;
3566     }
3567     if (!this->emitInitElem(ElemT, I, E))
3568       return false;
3569   }
3570 
3571   return true;
3572 }
3573 
3574 template <class Emitter>
3575 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
3576   assert(Initializing);
3577   assert(E->getNumSubExprs() > 2);
3578 
3579   const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
3580   const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
3581   PrimType ElemT = classifyPrim(VT->getElementType());
3582   unsigned NumInputElems = VT->getNumElements();
3583   unsigned NumOutputElems = E->getNumSubExprs() - 2;
3584   assert(NumOutputElems > 0);
3585 
3586   // Save both input vectors to a local variable.
3587   unsigned VectorOffsets[2];
3588   for (unsigned I = 0; I != 2; ++I) {
3589     VectorOffsets[I] = this->allocateLocalPrimitive(
3590         Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3591     if (!this->visit(Vecs[I]))
3592       return false;
3593     if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
3594       return false;
3595   }
3596   for (unsigned I = 0; I != NumOutputElems; ++I) {
3597     APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
3598     assert(ShuffleIndex >= -1);
3599     if (ShuffleIndex == -1)
3600       return this->emitInvalidShuffleVectorIndex(I, E);
3601 
3602     assert(ShuffleIndex < (NumInputElems * 2));
3603     if (!this->emitGetLocal(PT_Ptr,
3604                             VectorOffsets[ShuffleIndex >= NumInputElems], E))
3605       return false;
3606     unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
3607     if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
3608       return false;
3609 
3610     if (!this->emitInitElem(ElemT, I, E))
3611       return false;
3612   }
3613 
3614   return true;
3615 }
3616 
3617 template <class Emitter>
3618 bool Compiler<Emitter>::VisitExtVectorElementExpr(
3619     const ExtVectorElementExpr *E) {
3620   const Expr *Base = E->getBase();
3621   assert(
3622       Base->getType()->isVectorType() ||
3623       Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
3624 
3625   SmallVector<uint32_t, 4> Indices;
3626   E->getEncodedElementAccess(Indices);
3627 
3628   if (Indices.size() == 1) {
3629     if (!this->visit(Base))
3630       return false;
3631 
3632     if (E->isGLValue()) {
3633       if (!this->emitConstUint32(Indices[0], E))
3634         return false;
3635       return this->emitArrayElemPtrPop(PT_Uint32, E);
3636     }
3637     // Else, also load the value.
3638     return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
3639   }
3640 
3641   // Create a local variable for the base.
3642   unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
3643                                                /*IsExtended=*/false);
3644   if (!this->visit(Base))
3645     return false;
3646   if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
3647     return false;
3648 
3649   // Now the vector variable for the return value.
3650   if (!Initializing) {
3651     std::optional<unsigned> ResultIndex;
3652     ResultIndex = allocateLocal(E);
3653     if (!ResultIndex)
3654       return false;
3655     if (!this->emitGetPtrLocal(*ResultIndex, E))
3656       return false;
3657   }
3658 
3659   assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
3660 
3661   PrimType ElemT =
3662       classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
3663   uint32_t DstIndex = 0;
3664   for (uint32_t I : Indices) {
3665     if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
3666       return false;
3667     if (!this->emitArrayElemPop(ElemT, I, E))
3668       return false;
3669     if (!this->emitInitElem(ElemT, DstIndex, E))
3670       return false;
3671     ++DstIndex;
3672   }
3673 
3674   // Leave the result pointer on the stack.
3675   assert(!DiscardResult);
3676   return true;
3677 }
3678 
3679 template <class Emitter>
3680 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
3681   const Expr *SubExpr = E->getSubExpr();
3682   if (!E->isExpressibleAsConstantInitializer())
3683     return this->discard(SubExpr) && this->emitInvalid(E);
3684 
3685   if (DiscardResult)
3686     return true;
3687 
3688   assert(classifyPrim(E) == PT_Ptr);
3689   return this->emitDummyPtr(E, E);
3690 }
3691 
3692 template <class Emitter>
3693 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
3694     const CXXStdInitializerListExpr *E) {
3695   const Expr *SubExpr = E->getSubExpr();
3696   const ConstantArrayType *ArrayType =
3697       Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
3698   const Record *R = getRecord(E->getType());
3699   assert(Initializing);
3700   assert(SubExpr->isGLValue());
3701 
3702   if (!this->visit(SubExpr))
3703     return false;
3704   if (!this->emitConstUint8(0, E))
3705     return false;
3706   if (!this->emitArrayElemPtrPopUint8(E))
3707     return false;
3708   if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
3709     return false;
3710 
3711   PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
3712   if (isIntegralType(SecondFieldT)) {
3713     if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
3714                          SecondFieldT, E))
3715       return false;
3716     return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
3717   }
3718   assert(SecondFieldT == PT_Ptr);
3719 
3720   if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
3721     return false;
3722   if (!this->emitExpandPtr(E))
3723     return false;
3724   if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
3725     return false;
3726   if (!this->emitArrayElemPtrPop(PT_Uint64, E))
3727     return false;
3728   return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
3729 }
3730 
3731 template <class Emitter>
3732 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
3733   BlockScope<Emitter> BS(this);
3734   StmtExprScope<Emitter> SS(this);
3735 
3736   const CompoundStmt *CS = E->getSubStmt();
3737   const Stmt *Result = CS->getStmtExprResult();
3738   for (const Stmt *S : CS->body()) {
3739     if (S != Result) {
3740       if (!this->visitStmt(S))
3741         return false;
3742       continue;
3743     }
3744 
3745     assert(S == Result);
3746     if (const Expr *ResultExpr = dyn_cast<Expr>(S))
3747       return this->delegate(ResultExpr);
3748     return this->emitUnsupported(E);
3749   }
3750 
3751   return BS.destroyLocals();
3752 }
3753 
3754 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
3755   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
3756                              /*NewInitializing=*/false);
3757   return this->Visit(E);
3758 }
3759 
3760 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
3761   // We're basically doing:
3762   // OptionScope<Emitter> Scope(this, DicardResult, Initializing);
3763   // but that's unnecessary of course.
3764   return this->Visit(E);
3765 }
3766 
3767 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
3768   if (E->getType().isNull())
3769     return false;
3770 
3771   if (E->getType()->isVoidType())
3772     return this->discard(E);
3773 
3774   // Create local variable to hold the return value.
3775   if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
3776       !classify(E->getType())) {
3777     std::optional<unsigned> LocalIndex = allocateLocal(E);
3778     if (!LocalIndex)
3779       return false;
3780 
3781     if (!this->emitGetPtrLocal(*LocalIndex, E))
3782       return false;
3783     return this->visitInitializer(E);
3784   }
3785 
3786   //  Otherwise,we have a primitive return value, produce the value directly
3787   //  and push it on the stack.
3788   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3789                              /*NewInitializing=*/false);
3790   return this->Visit(E);
3791 }
3792 
3793 template <class Emitter>
3794 bool Compiler<Emitter>::visitInitializer(const Expr *E) {
3795   assert(!classify(E->getType()));
3796 
3797   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3798                              /*NewInitializing=*/true);
3799   return this->Visit(E);
3800 }
3801 
3802 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
3803   std::optional<PrimType> T = classify(E->getType());
3804   if (!T) {
3805     // Convert complex values to bool.
3806     if (E->getType()->isAnyComplexType()) {
3807       if (!this->visit(E))
3808         return false;
3809       return this->emitComplexBoolCast(E);
3810     }
3811     return false;
3812   }
3813 
3814   if (!this->visit(E))
3815     return false;
3816 
3817   if (T == PT_Bool)
3818     return true;
3819 
3820   // Convert pointers to bool.
3821   if (T == PT_Ptr || T == PT_FnPtr) {
3822     if (!this->emitNull(*T, 0, nullptr, E))
3823       return false;
3824     return this->emitNE(*T, E);
3825   }
3826 
3827   // Or Floats.
3828   if (T == PT_Float)
3829     return this->emitCastFloatingIntegralBool(getFPOptions(E), E);
3830 
3831   // Or anything else we can.
3832   return this->emitCast(*T, PT_Bool, E);
3833 }
3834 
3835 template <class Emitter>
3836 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
3837                                              const Expr *E) {
3838   switch (T) {
3839   case PT_Bool:
3840     return this->emitZeroBool(E);
3841   case PT_Sint8:
3842     return this->emitZeroSint8(E);
3843   case PT_Uint8:
3844     return this->emitZeroUint8(E);
3845   case PT_Sint16:
3846     return this->emitZeroSint16(E);
3847   case PT_Uint16:
3848     return this->emitZeroUint16(E);
3849   case PT_Sint32:
3850     return this->emitZeroSint32(E);
3851   case PT_Uint32:
3852     return this->emitZeroUint32(E);
3853   case PT_Sint64:
3854     return this->emitZeroSint64(E);
3855   case PT_Uint64:
3856     return this->emitZeroUint64(E);
3857   case PT_IntAP:
3858     return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
3859   case PT_IntAPS:
3860     return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
3861   case PT_Ptr:
3862     return this->emitNullPtr(Ctx.getASTContext().getTargetNullPointerValue(QT),
3863                              nullptr, E);
3864   case PT_FnPtr:
3865     return this->emitNullFnPtr(0, nullptr, E);
3866   case PT_MemberPtr:
3867     return this->emitNullMemberPtr(0, nullptr, E);
3868   case PT_Float:
3869     return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
3870   case PT_FixedPoint: {
3871     auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
3872     return this->emitConstFixedPoint(FixedPoint::zero(Sem), E);
3873   }
3874     llvm_unreachable("Implement");
3875   }
3876   llvm_unreachable("unknown primitive type");
3877 }
3878 
3879 template <class Emitter>
3880 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
3881                                                    const Expr *E) {
3882   assert(E);
3883   assert(R);
3884   // Fields
3885   for (const Record::Field &Field : R->fields()) {
3886     if (Field.Decl->isUnnamedBitField())
3887       continue;
3888 
3889     const Descriptor *D = Field.Desc;
3890     if (D->isPrimitive()) {
3891       QualType QT = D->getType();
3892       PrimType T = classifyPrim(D->getType());
3893       if (!this->visitZeroInitializer(T, QT, E))
3894         return false;
3895       if (!this->emitInitField(T, Field.Offset, E))
3896         return false;
3897       if (R->isUnion())
3898         break;
3899       continue;
3900     }
3901 
3902     if (!this->emitGetPtrField(Field.Offset, E))
3903       return false;
3904 
3905     if (D->isPrimitiveArray()) {
3906       QualType ET = D->getElemQualType();
3907       PrimType T = classifyPrim(ET);
3908       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3909         if (!this->visitZeroInitializer(T, ET, E))
3910           return false;
3911         if (!this->emitInitElem(T, I, E))
3912           return false;
3913       }
3914     } else if (D->isCompositeArray()) {
3915       // Can't be a vector or complex field.
3916       if (!this->visitZeroArrayInitializer(D->getType(), E))
3917         return false;
3918     } else if (D->isRecord()) {
3919       if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
3920         return false;
3921     } else {
3922       assert(false);
3923     }
3924 
3925     if (!this->emitFinishInitPop(E))
3926       return false;
3927 
3928     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3929     // object's first non-static named data member is zero-initialized
3930     if (R->isUnion())
3931       break;
3932   }
3933 
3934   for (const Record::Base &B : R->bases()) {
3935     if (!this->emitGetPtrBase(B.Offset, E))
3936       return false;
3937     if (!this->visitZeroRecordInitializer(B.R, E))
3938       return false;
3939     if (!this->emitFinishInitPop(E))
3940       return false;
3941   }
3942 
3943   // FIXME: Virtual bases.
3944 
3945   return true;
3946 }
3947 
3948 template <class Emitter>
3949 bool Compiler<Emitter>::visitZeroArrayInitializer(QualType T, const Expr *E) {
3950   assert(T->isArrayType() || T->isAnyComplexType() || T->isVectorType());
3951   const ArrayType *AT = T->getAsArrayTypeUnsafe();
3952   QualType ElemType = AT->getElementType();
3953   size_t NumElems = cast<ConstantArrayType>(AT)->getZExtSize();
3954 
3955   if (std::optional<PrimType> ElemT = classify(ElemType)) {
3956     for (size_t I = 0; I != NumElems; ++I) {
3957       if (!this->visitZeroInitializer(*ElemT, ElemType, E))
3958         return false;
3959       if (!this->emitInitElem(*ElemT, I, E))
3960         return false;
3961     }
3962     return true;
3963   } else if (ElemType->isRecordType()) {
3964     const Record *R = getRecord(ElemType);
3965 
3966     for (size_t I = 0; I != NumElems; ++I) {
3967       if (!this->emitConstUint32(I, E))
3968         return false;
3969       if (!this->emitArrayElemPtr(PT_Uint32, E))
3970         return false;
3971       if (!this->visitZeroRecordInitializer(R, E))
3972         return false;
3973       if (!this->emitPopPtr(E))
3974         return false;
3975     }
3976     return true;
3977   } else if (ElemType->isArrayType()) {
3978     for (size_t I = 0; I != NumElems; ++I) {
3979       if (!this->emitConstUint32(I, E))
3980         return false;
3981       if (!this->emitArrayElemPtr(PT_Uint32, E))
3982         return false;
3983       if (!this->visitZeroArrayInitializer(ElemType, E))
3984         return false;
3985       if (!this->emitPopPtr(E))
3986         return false;
3987     }
3988     return true;
3989   }
3990 
3991   return false;
3992 }
3993 
3994 template <class Emitter>
3995 template <typename T>
3996 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
3997   switch (Ty) {
3998   case PT_Sint8:
3999     return this->emitConstSint8(Value, E);
4000   case PT_Uint8:
4001     return this->emitConstUint8(Value, E);
4002   case PT_Sint16:
4003     return this->emitConstSint16(Value, E);
4004   case PT_Uint16:
4005     return this->emitConstUint16(Value, E);
4006   case PT_Sint32:
4007     return this->emitConstSint32(Value, E);
4008   case PT_Uint32:
4009     return this->emitConstUint32(Value, E);
4010   case PT_Sint64:
4011     return this->emitConstSint64(Value, E);
4012   case PT_Uint64:
4013     return this->emitConstUint64(Value, E);
4014   case PT_Bool:
4015     return this->emitConstBool(Value, E);
4016   case PT_Ptr:
4017   case PT_FnPtr:
4018   case PT_MemberPtr:
4019   case PT_Float:
4020   case PT_IntAP:
4021   case PT_IntAPS:
4022   case PT_FixedPoint:
4023     llvm_unreachable("Invalid integral type");
4024     break;
4025   }
4026   llvm_unreachable("unknown primitive type");
4027 }
4028 
4029 template <class Emitter>
4030 template <typename T>
4031 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
4032   return this->emitConst(Value, classifyPrim(E->getType()), E);
4033 }
4034 
4035 template <class Emitter>
4036 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
4037                                   const Expr *E) {
4038   if (Ty == PT_IntAPS)
4039     return this->emitConstIntAPS(Value, E);
4040   if (Ty == PT_IntAP)
4041     return this->emitConstIntAP(Value, E);
4042 
4043   if (Value.isSigned())
4044     return this->emitConst(Value.getSExtValue(), Ty, E);
4045   return this->emitConst(Value.getZExtValue(), Ty, E);
4046 }
4047 
4048 template <class Emitter>
4049 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
4050   return this->emitConst(Value, classifyPrim(E->getType()), E);
4051 }
4052 
4053 template <class Emitter>
4054 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
4055                                                    bool IsConst,
4056                                                    bool IsExtended) {
4057   // Make sure we don't accidentally register the same decl twice.
4058   if (const auto *VD =
4059           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
4060     assert(!P.getGlobal(VD));
4061     assert(!Locals.contains(VD));
4062     (void)VD;
4063   }
4064 
4065   // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
4066   //   (int){12} in C. Consider using Expr::isTemporaryObject() instead
4067   //   or isa<MaterializeTemporaryExpr>().
4068   Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
4069                                      isa<const Expr *>(Src));
4070   Scope::Local Local = this->createLocal(D);
4071   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
4072     Locals.insert({VD, Local});
4073   VarScope->add(Local, IsExtended);
4074   return Local.Offset;
4075 }
4076 
4077 template <class Emitter>
4078 std::optional<unsigned>
4079 Compiler<Emitter>::allocateLocal(DeclTy &&Src, QualType Ty,
4080                                  const ValueDecl *ExtendingDecl) {
4081   // Make sure we don't accidentally register the same decl twice.
4082   if ([[maybe_unused]] const auto *VD =
4083           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
4084     assert(!P.getGlobal(VD));
4085     assert(!Locals.contains(VD));
4086   }
4087 
4088   const ValueDecl *Key = nullptr;
4089   const Expr *Init = nullptr;
4090   bool IsTemporary = false;
4091   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
4092     Key = VD;
4093     Ty = VD->getType();
4094 
4095     if (const auto *VarD = dyn_cast<VarDecl>(VD))
4096       Init = VarD->getInit();
4097   }
4098   if (auto *E = Src.dyn_cast<const Expr *>()) {
4099     IsTemporary = true;
4100     if (Ty.isNull())
4101       Ty = E->getType();
4102   }
4103 
4104   Descriptor *D = P.createDescriptor(
4105       Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
4106       IsTemporary, /*IsMutable=*/false, Init);
4107   if (!D)
4108     return std::nullopt;
4109 
4110   Scope::Local Local = this->createLocal(D);
4111   if (Key)
4112     Locals.insert({Key, Local});
4113   if (ExtendingDecl)
4114     VarScope->addExtended(Local, ExtendingDecl);
4115   else
4116     VarScope->add(Local, false);
4117   return Local.Offset;
4118 }
4119 
4120 template <class Emitter>
4121 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) {
4122   QualType Ty = E->getType();
4123   assert(!Ty->isRecordType());
4124 
4125   Descriptor *D = P.createDescriptor(
4126       E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
4127       /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
4128   assert(D);
4129 
4130   Scope::Local Local = this->createLocal(D);
4131   VariableScope<Emitter> *S = VarScope;
4132   assert(S);
4133   // Attach to topmost scope.
4134   while (S->getParent())
4135     S = S->getParent();
4136   assert(S && !S->getParent());
4137   S->addLocal(Local);
4138   return Local.Offset;
4139 }
4140 
4141 template <class Emitter>
4142 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
4143   if (const PointerType *PT = dyn_cast<PointerType>(Ty))
4144     return PT->getPointeeType()->getAs<RecordType>();
4145   return Ty->getAs<RecordType>();
4146 }
4147 
4148 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
4149   if (const auto *RecordTy = getRecordTy(Ty))
4150     return getRecord(RecordTy->getDecl());
4151   return nullptr;
4152 }
4153 
4154 template <class Emitter>
4155 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
4156   return P.getOrCreateRecord(RD);
4157 }
4158 
4159 template <class Emitter>
4160 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
4161   return Ctx.getOrCreateFunction(FD);
4162 }
4163 
4164 template <class Emitter>
4165 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) {
4166   LocalScope<Emitter> RootScope(this);
4167 
4168   // If we won't destroy the toplevel scope, check for memory leaks first.
4169   if (!DestroyToplevelScope) {
4170     if (!this->emitCheckAllocations(E))
4171       return false;
4172   }
4173 
4174   auto maybeDestroyLocals = [&]() -> bool {
4175     if (DestroyToplevelScope)
4176       return RootScope.destroyLocals() && this->emitCheckAllocations(E);
4177     return this->emitCheckAllocations(E);
4178   };
4179 
4180   // Void expressions.
4181   if (E->getType()->isVoidType()) {
4182     if (!visit(E))
4183       return false;
4184     return this->emitRetVoid(E) && maybeDestroyLocals();
4185   }
4186 
4187   // Expressions with a primitive return type.
4188   if (std::optional<PrimType> T = classify(E)) {
4189     if (!visit(E))
4190       return false;
4191 
4192     return this->emitRet(*T, E) && maybeDestroyLocals();
4193   }
4194 
4195   // Expressions with a composite return type.
4196   // For us, that means everything we don't
4197   // have a PrimType for.
4198   if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
4199     if (!this->emitGetPtrLocal(*LocalOffset, E))
4200       return false;
4201 
4202     if (!visitInitializer(E))
4203       return false;
4204 
4205     if (!this->emitFinishInit(E))
4206       return false;
4207     // We are destroying the locals AFTER the Ret op.
4208     // The Ret op needs to copy the (alive) values, but the
4209     // destructors may still turn the entire expression invalid.
4210     return this->emitRetValue(E) && maybeDestroyLocals();
4211   }
4212 
4213   return maybeDestroyLocals() && this->emitCheckAllocations(E) && false;
4214 }
4215 
4216 template <class Emitter>
4217 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
4218 
4219   auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
4220 
4221   if (R.notCreated())
4222     return R;
4223 
4224   if (R)
4225     return true;
4226 
4227   if (!R && Context::shouldBeGloballyIndexed(VD)) {
4228     if (auto GlobalIndex = P.getGlobal(VD)) {
4229       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4230       GlobalInlineDescriptor &GD =
4231           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4232 
4233       GD.InitState = GlobalInitState::InitializerFailed;
4234       GlobalBlock->invokeDtor();
4235     }
4236   }
4237 
4238   return R;
4239 }
4240 
4241 /// Toplevel visitDeclAndReturn().
4242 /// We get here from evaluateAsInitializer().
4243 /// We need to evaluate the initializer and return its value.
4244 template <class Emitter>
4245 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
4246                                            bool ConstantContext) {
4247   std::optional<PrimType> VarT = classify(VD->getType());
4248 
4249   // We only create variables if we're evaluating in a constant context.
4250   // Otherwise, just evaluate the initializer and return it.
4251   if (!ConstantContext) {
4252     DeclScope<Emitter> LS(this, VD);
4253     if (!this->visit(VD->getAnyInitializer()))
4254       return false;
4255     return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals() &&
4256            this->emitCheckAllocations(VD);
4257   }
4258 
4259   LocalScope<Emitter> VDScope(this, VD);
4260   if (!this->visitVarDecl(VD, /*Toplevel=*/true))
4261     return false;
4262 
4263   if (Context::shouldBeGloballyIndexed(VD)) {
4264     auto GlobalIndex = P.getGlobal(VD);
4265     assert(GlobalIndex); // visitVarDecl() didn't return false.
4266     if (VarT) {
4267       if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
4268         return false;
4269     } else {
4270       if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
4271         return false;
4272     }
4273   } else {
4274     auto Local = Locals.find(VD);
4275     assert(Local != Locals.end()); // Same here.
4276     if (VarT) {
4277       if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
4278         return false;
4279     } else {
4280       if (!this->emitGetPtrLocal(Local->second.Offset, VD))
4281         return false;
4282     }
4283   }
4284 
4285   // Return the value.
4286   if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
4287     // If the Ret above failed and this is a global variable, mark it as
4288     // uninitialized, even everything else succeeded.
4289     if (Context::shouldBeGloballyIndexed(VD)) {
4290       auto GlobalIndex = P.getGlobal(VD);
4291       assert(GlobalIndex);
4292       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4293       GlobalInlineDescriptor &GD =
4294           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4295 
4296       GD.InitState = GlobalInitState::InitializerFailed;
4297       GlobalBlock->invokeDtor();
4298     }
4299     return false;
4300   }
4301 
4302   return VDScope.destroyLocals() && this->emitCheckAllocations(VD);
4303 }
4304 
4305 template <class Emitter>
4306 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
4307                                                  bool Toplevel) {
4308   // We don't know what to do with these, so just return false.
4309   if (VD->getType().isNull())
4310     return false;
4311 
4312   // This case is EvalEmitter-only. If we won't create any instructions for the
4313   // initializer anyway, don't bother creating the variable in the first place.
4314   if (!this->isActive())
4315     return VarCreationState::NotCreated();
4316 
4317   const Expr *Init = VD->getInit();
4318   std::optional<PrimType> VarT = classify(VD->getType());
4319 
4320   if (Init && Init->isValueDependent())
4321     return false;
4322 
4323   if (Context::shouldBeGloballyIndexed(VD)) {
4324     auto checkDecl = [&]() -> bool {
4325       bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
4326       return !NeedsOp || this->emitCheckDecl(VD, VD);
4327     };
4328 
4329     auto initGlobal = [&](unsigned GlobalIndex) -> bool {
4330       assert(Init);
4331 
4332       if (VarT) {
4333         if (!this->visit(Init))
4334           return checkDecl() && false;
4335 
4336         return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
4337       }
4338 
4339       if (!checkDecl())
4340         return false;
4341 
4342       if (!this->emitGetPtrGlobal(GlobalIndex, Init))
4343         return false;
4344 
4345       if (!visitInitializer(Init))
4346         return false;
4347 
4348       if (!this->emitFinishInit(Init))
4349         return false;
4350 
4351       return this->emitPopPtr(Init);
4352     };
4353 
4354     DeclScope<Emitter> LocalScope(this, VD);
4355 
4356     // We've already seen and initialized this global.
4357     if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
4358       if (P.getPtrGlobal(*GlobalIndex).isInitialized())
4359         return checkDecl();
4360 
4361       // The previous attempt at initialization might've been unsuccessful,
4362       // so let's try this one.
4363       return Init && checkDecl() && initGlobal(*GlobalIndex);
4364     }
4365 
4366     std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
4367 
4368     if (!GlobalIndex)
4369       return false;
4370 
4371     return !Init || (checkDecl() && initGlobal(*GlobalIndex));
4372   } else {
4373     InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
4374 
4375     if (VarT) {
4376       unsigned Offset = this->allocateLocalPrimitive(
4377           VD, *VarT, VD->getType().isConstQualified());
4378       if (Init) {
4379         // If this is a toplevel declaration, create a scope for the
4380         // initializer.
4381         if (Toplevel) {
4382           LocalScope<Emitter> Scope(this);
4383           if (!this->visit(Init))
4384             return false;
4385           return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
4386         } else {
4387           if (!this->visit(Init))
4388             return false;
4389           return this->emitSetLocal(*VarT, Offset, VD);
4390         }
4391       }
4392     } else {
4393       if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
4394         if (!Init)
4395           return true;
4396 
4397         if (!this->emitGetPtrLocal(*Offset, Init))
4398           return false;
4399 
4400         if (!visitInitializer(Init))
4401           return false;
4402 
4403         if (!this->emitFinishInit(Init))
4404           return false;
4405 
4406         return this->emitPopPtr(Init);
4407       }
4408       return false;
4409     }
4410     return true;
4411   }
4412 
4413   return false;
4414 }
4415 
4416 template <class Emitter>
4417 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
4418                                      const Expr *E) {
4419   assert(!DiscardResult);
4420   if (Val.isInt())
4421     return this->emitConst(Val.getInt(), ValType, E);
4422   else if (Val.isFloat())
4423     return this->emitConstFloat(Val.getFloat(), E);
4424 
4425   if (Val.isLValue()) {
4426     if (Val.isNullPointer())
4427       return this->emitNull(ValType, 0, nullptr, E);
4428     APValue::LValueBase Base = Val.getLValueBase();
4429     if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
4430       return this->visit(BaseExpr);
4431     else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
4432       return this->visitDeclRef(VD, E);
4433     }
4434   } else if (Val.isMemberPointer()) {
4435     if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
4436       return this->emitGetMemberPtr(MemberDecl, E);
4437     return this->emitNullMemberPtr(0, nullptr, E);
4438   }
4439 
4440   return false;
4441 }
4442 
4443 template <class Emitter>
4444 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
4445                                                 const Expr *E) {
4446 
4447   if (Val.isStruct()) {
4448     const Record *R = this->getRecord(E->getType());
4449     assert(R);
4450     for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
4451       const APValue &F = Val.getStructField(I);
4452       const Record::Field *RF = R->getField(I);
4453 
4454       if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
4455         PrimType T = classifyPrim(RF->Decl->getType());
4456         if (!this->visitAPValue(F, T, E))
4457           return false;
4458         if (!this->emitInitField(T, RF->Offset, E))
4459           return false;
4460       } else if (F.isArray()) {
4461         assert(RF->Desc->isPrimitiveArray());
4462         const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
4463         PrimType ElemT = classifyPrim(ArrType->getElementType());
4464         assert(ArrType);
4465 
4466         if (!this->emitGetPtrField(RF->Offset, E))
4467           return false;
4468 
4469         for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
4470           if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
4471             return false;
4472           if (!this->emitInitElem(ElemT, A, E))
4473             return false;
4474         }
4475 
4476         if (!this->emitPopPtr(E))
4477           return false;
4478       } else if (F.isStruct() || F.isUnion()) {
4479         if (!this->emitGetPtrField(RF->Offset, E))
4480           return false;
4481         if (!this->visitAPValueInitializer(F, E))
4482           return false;
4483         if (!this->emitPopPtr(E))
4484           return false;
4485       } else {
4486         assert(false && "I don't think this should be possible");
4487       }
4488     }
4489     return true;
4490   } else if (Val.isUnion()) {
4491     const FieldDecl *UnionField = Val.getUnionField();
4492     const Record *R = this->getRecord(UnionField->getParent());
4493     assert(R);
4494     const APValue &F = Val.getUnionValue();
4495     const Record::Field *RF = R->getField(UnionField);
4496     PrimType T = classifyPrim(RF->Decl->getType());
4497     if (!this->visitAPValue(F, T, E))
4498       return false;
4499     return this->emitInitField(T, RF->Offset, E);
4500   }
4501   // TODO: Other types.
4502 
4503   return false;
4504 }
4505 
4506 template <class Emitter>
4507 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E,
4508                                              unsigned BuiltinID) {
4509   const Function *Func = getFunction(E->getDirectCallee());
4510   if (!Func)
4511     return false;
4512 
4513   // For these, we're expected to ultimately return an APValue pointing
4514   // to the CallExpr. This is needed to get the correct codegen.
4515   if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
4516       BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString ||
4517       BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant ||
4518       BuiltinID == Builtin::BI__builtin_function_start) {
4519     if (DiscardResult)
4520       return true;
4521     return this->emitDummyPtr(E, E);
4522   }
4523 
4524   QualType ReturnType = E->getType();
4525   std::optional<PrimType> ReturnT = classify(E);
4526 
4527   // Non-primitive return type. Prepare storage.
4528   if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
4529     std::optional<unsigned> LocalIndex = allocateLocal(E);
4530     if (!LocalIndex)
4531       return false;
4532     if (!this->emitGetPtrLocal(*LocalIndex, E))
4533       return false;
4534   }
4535 
4536   if (!Func->isUnevaluatedBuiltin()) {
4537     // Put arguments on the stack.
4538     for (const auto *Arg : E->arguments()) {
4539       if (!this->visit(Arg))
4540         return false;
4541     }
4542   }
4543 
4544   if (!this->emitCallBI(Func, E, BuiltinID, E))
4545     return false;
4546 
4547   if (DiscardResult && !ReturnType->isVoidType()) {
4548     assert(ReturnT);
4549     return this->emitPop(*ReturnT, E);
4550   }
4551 
4552   return true;
4553 }
4554 
4555 template <class Emitter>
4556 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
4557   if (unsigned BuiltinID = E->getBuiltinCallee())
4558     return VisitBuiltinCallExpr(E, BuiltinID);
4559 
4560   const FunctionDecl *FuncDecl = E->getDirectCallee();
4561   // Calls to replaceable operator new/operator delete.
4562   if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) {
4563     if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New ||
4564         FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
4565       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new);
4566     } else {
4567       assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete);
4568       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete);
4569     }
4570   }
4571   // Explicit calls to trivial destructors
4572   if (const auto *DD = dyn_cast_if_present<CXXDestructorDecl>(FuncDecl);
4573       DD && DD->isTrivial())
4574     return true;
4575 
4576   QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
4577   std::optional<PrimType> T = classify(ReturnType);
4578   bool HasRVO = !ReturnType->isVoidType() && !T;
4579 
4580   if (HasRVO) {
4581     if (DiscardResult) {
4582       // If we need to discard the return value but the function returns its
4583       // value via an RVO pointer, we need to create one such pointer just
4584       // for this call.
4585       if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4586         if (!this->emitGetPtrLocal(*LocalIndex, E))
4587           return false;
4588       }
4589     } else {
4590       // We need the result. Prepare a pointer to return or
4591       // dup the current one.
4592       if (!Initializing) {
4593         if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4594           if (!this->emitGetPtrLocal(*LocalIndex, E))
4595             return false;
4596         }
4597       }
4598       if (!this->emitDupPtr(E))
4599         return false;
4600     }
4601   }
4602 
4603   SmallVector<const Expr *, 8> Args(
4604       llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
4605 
4606   bool IsAssignmentOperatorCall = false;
4607   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
4608       OCE && OCE->isAssignmentOp()) {
4609     // Just like with regular assignments, we need to special-case assignment
4610     // operators here and evaluate the RHS (the second arg) before the LHS (the
4611     // first arg. We fix this by using a Flip op later.
4612     assert(Args.size() == 2);
4613     IsAssignmentOperatorCall = true;
4614     std::reverse(Args.begin(), Args.end());
4615   }
4616   // Calling a static operator will still
4617   // pass the instance, but we don't need it.
4618   // Discard it here.
4619   if (isa<CXXOperatorCallExpr>(E)) {
4620     if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
4621         MD && MD->isStatic()) {
4622       if (!this->discard(E->getArg(0)))
4623         return false;
4624       // Drop first arg.
4625       Args.erase(Args.begin());
4626     }
4627   }
4628 
4629   std::optional<unsigned> CalleeOffset;
4630   // Add the (optional, implicit) This pointer.
4631   if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
4632     if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
4633       // If we end up creating a CallPtr op for this, we need the base of the
4634       // member pointer as the instance pointer, and later extract the function
4635       // decl as the function pointer.
4636       const Expr *Callee = E->getCallee();
4637       CalleeOffset =
4638           this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
4639       if (!this->visit(Callee))
4640         return false;
4641       if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
4642         return false;
4643       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4644         return false;
4645       if (!this->emitGetMemberPtrBase(E))
4646         return false;
4647     } else if (!this->visit(MC->getImplicitObjectArgument())) {
4648       return false;
4649     }
4650   } else if (!FuncDecl) {
4651     const Expr *Callee = E->getCallee();
4652     CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false);
4653     if (!this->visit(Callee))
4654       return false;
4655     if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E))
4656       return false;
4657   }
4658 
4659   llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
4660   // Put arguments on the stack.
4661   unsigned ArgIndex = 0;
4662   for (const auto *Arg : Args) {
4663     if (!this->visit(Arg))
4664       return false;
4665 
4666     // If we know the callee already, check the known parametrs for nullability.
4667     if (FuncDecl && NonNullArgs[ArgIndex]) {
4668       PrimType ArgT = classify(Arg).value_or(PT_Ptr);
4669       if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
4670         if (!this->emitCheckNonNullArg(ArgT, Arg))
4671           return false;
4672       }
4673     }
4674     ++ArgIndex;
4675   }
4676 
4677   // Undo the argument reversal we did earlier.
4678   if (IsAssignmentOperatorCall) {
4679     assert(Args.size() == 2);
4680     PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
4681     PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
4682     if (!this->emitFlip(Arg2T, Arg1T, E))
4683       return false;
4684   }
4685 
4686   if (FuncDecl) {
4687     const Function *Func = getFunction(FuncDecl);
4688     if (!Func)
4689       return false;
4690     assert(HasRVO == Func->hasRVO());
4691 
4692     bool HasQualifier = false;
4693     if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
4694       HasQualifier = ME->hasQualifier();
4695 
4696     bool IsVirtual = false;
4697     if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
4698       IsVirtual = MD->isVirtual();
4699 
4700     // In any case call the function. The return value will end up on the stack
4701     // and if the function has RVO, we already have the pointer on the stack to
4702     // write the result into.
4703     if (IsVirtual && !HasQualifier) {
4704       uint32_t VarArgSize = 0;
4705       unsigned NumParams =
4706           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4707       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4708         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4709 
4710       if (!this->emitCallVirt(Func, VarArgSize, E))
4711         return false;
4712     } else if (Func->isVariadic()) {
4713       uint32_t VarArgSize = 0;
4714       unsigned NumParams =
4715           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4716       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4717         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4718       if (!this->emitCallVar(Func, VarArgSize, E))
4719         return false;
4720     } else {
4721       if (!this->emitCall(Func, 0, E))
4722         return false;
4723     }
4724   } else {
4725     // Indirect call. Visit the callee, which will leave a FunctionPointer on
4726     // the stack. Cleanup of the returned value if necessary will be done after
4727     // the function call completed.
4728 
4729     // Sum the size of all args from the call expr.
4730     uint32_t ArgSize = 0;
4731     for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
4732       ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4733 
4734     // Get the callee, either from a member pointer or function pointer saved in
4735     // CalleeOffset.
4736     if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
4737       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4738         return false;
4739       if (!this->emitGetMemberPtrDecl(E))
4740         return false;
4741     } else {
4742       if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E))
4743         return false;
4744     }
4745     if (!this->emitCallPtr(ArgSize, E, E))
4746       return false;
4747   }
4748 
4749   // Cleanup for discarded return values.
4750   if (DiscardResult && !ReturnType->isVoidType() && T)
4751     return this->emitPop(*T, E);
4752 
4753   return true;
4754 }
4755 
4756 template <class Emitter>
4757 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4758   SourceLocScope<Emitter> SLS(this, E);
4759 
4760   return this->delegate(E->getExpr());
4761 }
4762 
4763 template <class Emitter>
4764 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
4765   SourceLocScope<Emitter> SLS(this, E);
4766 
4767   const Expr *SubExpr = E->getExpr();
4768   if (std::optional<PrimType> T = classify(E->getExpr()))
4769     return this->visit(SubExpr);
4770 
4771   assert(Initializing);
4772   return this->visitInitializer(SubExpr);
4773 }
4774 
4775 template <class Emitter>
4776 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4777   if (DiscardResult)
4778     return true;
4779 
4780   return this->emitConstBool(E->getValue(), E);
4781 }
4782 
4783 template <class Emitter>
4784 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
4785     const CXXNullPtrLiteralExpr *E) {
4786   if (DiscardResult)
4787     return true;
4788 
4789   uint64_t Val = Ctx.getASTContext().getTargetNullPointerValue(E->getType());
4790   return this->emitNullPtr(Val, nullptr, E);
4791 }
4792 
4793 template <class Emitter>
4794 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
4795   if (DiscardResult)
4796     return true;
4797 
4798   assert(E->getType()->isIntegerType());
4799 
4800   PrimType T = classifyPrim(E->getType());
4801   return this->emitZero(T, E);
4802 }
4803 
4804 template <class Emitter>
4805 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
4806   if (DiscardResult)
4807     return true;
4808 
4809   if (this->LambdaThisCapture.Offset > 0) {
4810     if (this->LambdaThisCapture.IsPtr)
4811       return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
4812     return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
4813   }
4814 
4815   // In some circumstances, the 'this' pointer does not actually refer to the
4816   // instance pointer of the current function frame, but e.g. to the declaration
4817   // currently being initialized. Here we emit the necessary instruction(s) for
4818   // this scenario.
4819   if (!InitStackActive || !E->isImplicit())
4820     return this->emitThis(E);
4821 
4822   if (InitStackActive && !InitStack.empty()) {
4823     unsigned StartIndex = 0;
4824     for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
4825       if (InitStack[StartIndex].Kind != InitLink::K_Field &&
4826           InitStack[StartIndex].Kind != InitLink::K_Elem)
4827         break;
4828     }
4829 
4830     for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) {
4831       if (!InitStack[I].template emit<Emitter>(this, E))
4832         return false;
4833     }
4834     return true;
4835   }
4836   return this->emitThis(E);
4837 }
4838 
4839 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
4840   switch (S->getStmtClass()) {
4841   case Stmt::CompoundStmtClass:
4842     return visitCompoundStmt(cast<CompoundStmt>(S));
4843   case Stmt::DeclStmtClass:
4844     return visitDeclStmt(cast<DeclStmt>(S));
4845   case Stmt::ReturnStmtClass:
4846     return visitReturnStmt(cast<ReturnStmt>(S));
4847   case Stmt::IfStmtClass:
4848     return visitIfStmt(cast<IfStmt>(S));
4849   case Stmt::WhileStmtClass:
4850     return visitWhileStmt(cast<WhileStmt>(S));
4851   case Stmt::DoStmtClass:
4852     return visitDoStmt(cast<DoStmt>(S));
4853   case Stmt::ForStmtClass:
4854     return visitForStmt(cast<ForStmt>(S));
4855   case Stmt::CXXForRangeStmtClass:
4856     return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
4857   case Stmt::BreakStmtClass:
4858     return visitBreakStmt(cast<BreakStmt>(S));
4859   case Stmt::ContinueStmtClass:
4860     return visitContinueStmt(cast<ContinueStmt>(S));
4861   case Stmt::SwitchStmtClass:
4862     return visitSwitchStmt(cast<SwitchStmt>(S));
4863   case Stmt::CaseStmtClass:
4864     return visitCaseStmt(cast<CaseStmt>(S));
4865   case Stmt::DefaultStmtClass:
4866     return visitDefaultStmt(cast<DefaultStmt>(S));
4867   case Stmt::AttributedStmtClass:
4868     return visitAttributedStmt(cast<AttributedStmt>(S));
4869   case Stmt::CXXTryStmtClass:
4870     return visitCXXTryStmt(cast<CXXTryStmt>(S));
4871   case Stmt::NullStmtClass:
4872     return true;
4873   // Always invalid statements.
4874   case Stmt::GCCAsmStmtClass:
4875   case Stmt::MSAsmStmtClass:
4876   case Stmt::GotoStmtClass:
4877     return this->emitInvalid(S);
4878   case Stmt::LabelStmtClass:
4879     return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
4880   default: {
4881     if (const auto *E = dyn_cast<Expr>(S))
4882       return this->discard(E);
4883     return false;
4884   }
4885   }
4886 }
4887 
4888 template <class Emitter>
4889 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
4890   BlockScope<Emitter> Scope(this);
4891   for (const auto *InnerStmt : S->body())
4892     if (!visitStmt(InnerStmt))
4893       return false;
4894   return Scope.destroyLocals();
4895 }
4896 
4897 template <class Emitter>
4898 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
4899   for (const auto *D : DS->decls()) {
4900     if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
4901             FunctionDecl>(D))
4902       continue;
4903 
4904     const auto *VD = dyn_cast<VarDecl>(D);
4905     if (!VD)
4906       return false;
4907     if (!this->visitVarDecl(VD))
4908       return false;
4909   }
4910 
4911   return true;
4912 }
4913 
4914 template <class Emitter>
4915 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
4916   if (this->InStmtExpr)
4917     return this->emitUnsupported(RS);
4918 
4919   if (const Expr *RE = RS->getRetValue()) {
4920     LocalScope<Emitter> RetScope(this);
4921     if (ReturnType) {
4922       // Primitive types are simply returned.
4923       if (!this->visit(RE))
4924         return false;
4925       this->emitCleanup();
4926       return this->emitRet(*ReturnType, RS);
4927     } else if (RE->getType()->isVoidType()) {
4928       if (!this->visit(RE))
4929         return false;
4930     } else {
4931       // RVO - construct the value in the return location.
4932       if (!this->emitRVOPtr(RE))
4933         return false;
4934       if (!this->visitInitializer(RE))
4935         return false;
4936       if (!this->emitPopPtr(RE))
4937         return false;
4938 
4939       this->emitCleanup();
4940       return this->emitRetVoid(RS);
4941     }
4942   }
4943 
4944   // Void return.
4945   this->emitCleanup();
4946   return this->emitRetVoid(RS);
4947 }
4948 
4949 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
4950   if (auto *CondInit = IS->getInit())
4951     if (!visitStmt(CondInit))
4952       return false;
4953 
4954   if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
4955     if (!visitDeclStmt(CondDecl))
4956       return false;
4957 
4958   // Compile condition.
4959   if (IS->isNonNegatedConsteval()) {
4960     if (!this->emitIsConstantContext(IS))
4961       return false;
4962   } else if (IS->isNegatedConsteval()) {
4963     if (!this->emitIsConstantContext(IS))
4964       return false;
4965     if (!this->emitInv(IS))
4966       return false;
4967   } else {
4968     if (!this->visitBool(IS->getCond()))
4969       return false;
4970   }
4971 
4972   if (const Stmt *Else = IS->getElse()) {
4973     LabelTy LabelElse = this->getLabel();
4974     LabelTy LabelEnd = this->getLabel();
4975     if (!this->jumpFalse(LabelElse))
4976       return false;
4977     {
4978       LocalScope<Emitter> ThenScope(this);
4979       if (!visitStmt(IS->getThen()))
4980         return false;
4981       if (!ThenScope.destroyLocals())
4982         return false;
4983     }
4984     if (!this->jump(LabelEnd))
4985       return false;
4986     this->emitLabel(LabelElse);
4987     {
4988       LocalScope<Emitter> ElseScope(this);
4989       if (!visitStmt(Else))
4990         return false;
4991       if (!ElseScope.destroyLocals())
4992         return false;
4993     }
4994     this->emitLabel(LabelEnd);
4995   } else {
4996     LabelTy LabelEnd = this->getLabel();
4997     if (!this->jumpFalse(LabelEnd))
4998       return false;
4999     {
5000       LocalScope<Emitter> ThenScope(this);
5001       if (!visitStmt(IS->getThen()))
5002         return false;
5003       if (!ThenScope.destroyLocals())
5004         return false;
5005     }
5006     this->emitLabel(LabelEnd);
5007   }
5008 
5009   return true;
5010 }
5011 
5012 template <class Emitter>
5013 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
5014   const Expr *Cond = S->getCond();
5015   const Stmt *Body = S->getBody();
5016 
5017   LabelTy CondLabel = this->getLabel(); // Label before the condition.
5018   LabelTy EndLabel = this->getLabel();  // Label after the loop.
5019   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
5020 
5021   this->fallthrough(CondLabel);
5022   this->emitLabel(CondLabel);
5023 
5024   {
5025     LocalScope<Emitter> CondScope(this);
5026     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
5027       if (!visitDeclStmt(CondDecl))
5028         return false;
5029 
5030     if (!this->visitBool(Cond))
5031       return false;
5032     if (!this->jumpFalse(EndLabel))
5033       return false;
5034 
5035     if (!this->visitStmt(Body))
5036       return false;
5037 
5038     if (!CondScope.destroyLocals())
5039       return false;
5040   }
5041   if (!this->jump(CondLabel))
5042     return false;
5043   this->fallthrough(EndLabel);
5044   this->emitLabel(EndLabel);
5045 
5046   return true;
5047 }
5048 
5049 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
5050   const Expr *Cond = S->getCond();
5051   const Stmt *Body = S->getBody();
5052 
5053   LabelTy StartLabel = this->getLabel();
5054   LabelTy EndLabel = this->getLabel();
5055   LabelTy CondLabel = this->getLabel();
5056   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
5057 
5058   this->fallthrough(StartLabel);
5059   this->emitLabel(StartLabel);
5060 
5061   {
5062     LocalScope<Emitter> CondScope(this);
5063     if (!this->visitStmt(Body))
5064       return false;
5065     this->fallthrough(CondLabel);
5066     this->emitLabel(CondLabel);
5067     if (!this->visitBool(Cond))
5068       return false;
5069 
5070     if (!CondScope.destroyLocals())
5071       return false;
5072   }
5073   if (!this->jumpTrue(StartLabel))
5074     return false;
5075 
5076   this->fallthrough(EndLabel);
5077   this->emitLabel(EndLabel);
5078   return true;
5079 }
5080 
5081 template <class Emitter>
5082 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
5083   // for (Init; Cond; Inc) { Body }
5084   const Stmt *Init = S->getInit();
5085   const Expr *Cond = S->getCond();
5086   const Expr *Inc = S->getInc();
5087   const Stmt *Body = S->getBody();
5088 
5089   LabelTy EndLabel = this->getLabel();
5090   LabelTy CondLabel = this->getLabel();
5091   LabelTy IncLabel = this->getLabel();
5092   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
5093 
5094   if (Init && !this->visitStmt(Init))
5095     return false;
5096 
5097   this->fallthrough(CondLabel);
5098   this->emitLabel(CondLabel);
5099 
5100   {
5101     LocalScope<Emitter> CondScope(this);
5102     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
5103       if (!visitDeclStmt(CondDecl))
5104         return false;
5105 
5106     if (Cond) {
5107       if (!this->visitBool(Cond))
5108         return false;
5109       if (!this->jumpFalse(EndLabel))
5110         return false;
5111     }
5112 
5113     if (Body && !this->visitStmt(Body))
5114       return false;
5115 
5116     this->fallthrough(IncLabel);
5117     this->emitLabel(IncLabel);
5118     if (Inc && !this->discard(Inc))
5119       return false;
5120 
5121     if (!CondScope.destroyLocals())
5122       return false;
5123   }
5124   if (!this->jump(CondLabel))
5125     return false;
5126 
5127   this->fallthrough(EndLabel);
5128   this->emitLabel(EndLabel);
5129   return true;
5130 }
5131 
5132 template <class Emitter>
5133 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
5134   const Stmt *Init = S->getInit();
5135   const Expr *Cond = S->getCond();
5136   const Expr *Inc = S->getInc();
5137   const Stmt *Body = S->getBody();
5138   const Stmt *BeginStmt = S->getBeginStmt();
5139   const Stmt *RangeStmt = S->getRangeStmt();
5140   const Stmt *EndStmt = S->getEndStmt();
5141   const VarDecl *LoopVar = S->getLoopVariable();
5142 
5143   LabelTy EndLabel = this->getLabel();
5144   LabelTy CondLabel = this->getLabel();
5145   LabelTy IncLabel = this->getLabel();
5146   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
5147 
5148   // Emit declarations needed in the loop.
5149   if (Init && !this->visitStmt(Init))
5150     return false;
5151   if (!this->visitStmt(RangeStmt))
5152     return false;
5153   if (!this->visitStmt(BeginStmt))
5154     return false;
5155   if (!this->visitStmt(EndStmt))
5156     return false;
5157 
5158   // Now the condition as well as the loop variable assignment.
5159   this->fallthrough(CondLabel);
5160   this->emitLabel(CondLabel);
5161   if (!this->visitBool(Cond))
5162     return false;
5163   if (!this->jumpFalse(EndLabel))
5164     return false;
5165 
5166   if (!this->visitVarDecl(LoopVar))
5167     return false;
5168 
5169   // Body.
5170   {
5171     if (!this->visitStmt(Body))
5172       return false;
5173 
5174     this->fallthrough(IncLabel);
5175     this->emitLabel(IncLabel);
5176     if (!this->discard(Inc))
5177       return false;
5178   }
5179 
5180   if (!this->jump(CondLabel))
5181     return false;
5182 
5183   this->fallthrough(EndLabel);
5184   this->emitLabel(EndLabel);
5185   return true;
5186 }
5187 
5188 template <class Emitter>
5189 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
5190   if (!BreakLabel)
5191     return false;
5192 
5193   for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope;
5194        C = C->getParent())
5195     C->emitDestruction();
5196   return this->jump(*BreakLabel);
5197 }
5198 
5199 template <class Emitter>
5200 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
5201   if (!ContinueLabel)
5202     return false;
5203 
5204   for (VariableScope<Emitter> *C = VarScope;
5205        C && C->getParent() != ContinueVarScope; C = C->getParent())
5206     C->emitDestruction();
5207   return this->jump(*ContinueLabel);
5208 }
5209 
5210 template <class Emitter>
5211 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
5212   const Expr *Cond = S->getCond();
5213   PrimType CondT = this->classifyPrim(Cond->getType());
5214   LocalScope<Emitter> LS(this);
5215 
5216   LabelTy EndLabel = this->getLabel();
5217   OptLabelTy DefaultLabel = std::nullopt;
5218   unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
5219 
5220   if (const auto *CondInit = S->getInit())
5221     if (!visitStmt(CondInit))
5222       return false;
5223 
5224   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
5225     if (!visitDeclStmt(CondDecl))
5226       return false;
5227 
5228   // Initialize condition variable.
5229   if (!this->visit(Cond))
5230     return false;
5231   if (!this->emitSetLocal(CondT, CondVar, S))
5232     return false;
5233 
5234   CaseMap CaseLabels;
5235   // Create labels and comparison ops for all case statements.
5236   for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
5237        SC = SC->getNextSwitchCase()) {
5238     if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
5239       // FIXME: Implement ranges.
5240       if (CS->caseStmtIsGNURange())
5241         return false;
5242       CaseLabels[SC] = this->getLabel();
5243 
5244       const Expr *Value = CS->getLHS();
5245       PrimType ValueT = this->classifyPrim(Value->getType());
5246 
5247       // Compare the case statement's value to the switch condition.
5248       if (!this->emitGetLocal(CondT, CondVar, CS))
5249         return false;
5250       if (!this->visit(Value))
5251         return false;
5252 
5253       // Compare and jump to the case label.
5254       if (!this->emitEQ(ValueT, S))
5255         return false;
5256       if (!this->jumpTrue(CaseLabels[CS]))
5257         return false;
5258     } else {
5259       assert(!DefaultLabel);
5260       DefaultLabel = this->getLabel();
5261     }
5262   }
5263 
5264   // If none of the conditions above were true, fall through to the default
5265   // statement or jump after the switch statement.
5266   if (DefaultLabel) {
5267     if (!this->jump(*DefaultLabel))
5268       return false;
5269   } else {
5270     if (!this->jump(EndLabel))
5271       return false;
5272   }
5273 
5274   SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
5275   if (!this->visitStmt(S->getBody()))
5276     return false;
5277   this->emitLabel(EndLabel);
5278 
5279   return LS.destroyLocals();
5280 }
5281 
5282 template <class Emitter>
5283 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
5284   this->emitLabel(CaseLabels[S]);
5285   return this->visitStmt(S->getSubStmt());
5286 }
5287 
5288 template <class Emitter>
5289 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
5290   this->emitLabel(*DefaultLabel);
5291   return this->visitStmt(S->getSubStmt());
5292 }
5293 
5294 template <class Emitter>
5295 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
5296   if (this->Ctx.getLangOpts().CXXAssumptions &&
5297       !this->Ctx.getLangOpts().MSVCCompat) {
5298     for (const Attr *A : S->getAttrs()) {
5299       auto *AA = dyn_cast<CXXAssumeAttr>(A);
5300       if (!AA)
5301         continue;
5302 
5303       assert(isa<NullStmt>(S->getSubStmt()));
5304 
5305       const Expr *Assumption = AA->getAssumption();
5306       if (Assumption->isValueDependent())
5307         return false;
5308 
5309       if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
5310         continue;
5311 
5312       // Evaluate assumption.
5313       if (!this->visitBool(Assumption))
5314         return false;
5315 
5316       if (!this->emitAssume(Assumption))
5317         return false;
5318     }
5319   }
5320 
5321   // Ignore other attributes.
5322   return this->visitStmt(S->getSubStmt());
5323 }
5324 
5325 template <class Emitter>
5326 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
5327   // Ignore all handlers.
5328   return this->visitStmt(S->getTryBlock());
5329 }
5330 
5331 template <class Emitter>
5332 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
5333   assert(MD->isLambdaStaticInvoker());
5334   assert(MD->hasBody());
5335   assert(cast<CompoundStmt>(MD->getBody())->body_empty());
5336 
5337   const CXXRecordDecl *ClosureClass = MD->getParent();
5338   const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
5339   assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
5340   const Function *Func = this->getFunction(LambdaCallOp);
5341   if (!Func)
5342     return false;
5343   assert(Func->hasThisPointer());
5344   assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
5345 
5346   if (Func->hasRVO()) {
5347     if (!this->emitRVOPtr(MD))
5348       return false;
5349   }
5350 
5351   // The lambda call operator needs an instance pointer, but we don't have
5352   // one here, and we don't need one either because the lambda cannot have
5353   // any captures, as verified above. Emit a null pointer. This is then
5354   // special-cased when interpreting to not emit any misleading diagnostics.
5355   if (!this->emitNullPtr(0, nullptr, MD))
5356     return false;
5357 
5358   // Forward all arguments from the static invoker to the lambda call operator.
5359   for (const ParmVarDecl *PVD : MD->parameters()) {
5360     auto It = this->Params.find(PVD);
5361     assert(It != this->Params.end());
5362 
5363     // We do the lvalue-to-rvalue conversion manually here, so no need
5364     // to care about references.
5365     PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
5366     if (!this->emitGetParam(ParamType, It->second.Offset, MD))
5367       return false;
5368   }
5369 
5370   if (!this->emitCall(Func, 0, LambdaCallOp))
5371     return false;
5372 
5373   this->emitCleanup();
5374   if (ReturnType)
5375     return this->emitRet(*ReturnType, MD);
5376 
5377   // Nothing to do, since we emitted the RVO pointer above.
5378   return this->emitRetVoid(MD);
5379 }
5380 
5381 template <class Emitter>
5382 bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
5383   if (Ctx.getLangOpts().CPlusPlus23)
5384     return true;
5385 
5386   if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
5387     return true;
5388 
5389   return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
5390 }
5391 
5392 template <class Emitter>
5393 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
5394   assert(!ReturnType);
5395 
5396   auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
5397                                   const Expr *InitExpr) -> bool {
5398     // We don't know what to do with these, so just return false.
5399     if (InitExpr->getType().isNull())
5400       return false;
5401 
5402     if (std::optional<PrimType> T = this->classify(InitExpr)) {
5403       if (!this->visit(InitExpr))
5404         return false;
5405 
5406       if (F->isBitField())
5407         return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
5408       return this->emitInitThisField(*T, FieldOffset, InitExpr);
5409     }
5410     // Non-primitive case. Get a pointer to the field-to-initialize
5411     // on the stack and call visitInitialzer() for it.
5412     InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
5413     if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
5414       return false;
5415 
5416     if (!this->visitInitializer(InitExpr))
5417       return false;
5418 
5419     return this->emitFinishInitPop(InitExpr);
5420   };
5421 
5422   const RecordDecl *RD = Ctor->getParent();
5423   const Record *R = this->getRecord(RD);
5424   if (!R)
5425     return false;
5426 
5427   if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
5428     // union copy and move ctors are special.
5429     assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
5430     if (!this->emitThis(Ctor))
5431       return false;
5432 
5433     auto PVD = Ctor->getParamDecl(0);
5434     ParamOffset PO = this->Params[PVD]; // Must exist.
5435 
5436     if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
5437       return false;
5438 
5439     return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
5440            this->emitRetVoid(Ctor);
5441   }
5442 
5443   InitLinkScope<Emitter> InitScope(this, InitLink::This());
5444   for (const auto *Init : Ctor->inits()) {
5445     // Scope needed for the initializers.
5446     BlockScope<Emitter> Scope(this);
5447 
5448     const Expr *InitExpr = Init->getInit();
5449     if (const FieldDecl *Member = Init->getMember()) {
5450       const Record::Field *F = R->getField(Member);
5451 
5452       if (!emitFieldInitializer(F, F->Offset, InitExpr))
5453         return false;
5454     } else if (const Type *Base = Init->getBaseClass()) {
5455       const auto *BaseDecl = Base->getAsCXXRecordDecl();
5456       assert(BaseDecl);
5457 
5458       if (Init->isBaseVirtual()) {
5459         assert(R->getVirtualBase(BaseDecl));
5460         if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
5461           return false;
5462 
5463       } else {
5464         // Base class initializer.
5465         // Get This Base and call initializer on it.
5466         const Record::Base *B = R->getBase(BaseDecl);
5467         assert(B);
5468         if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
5469           return false;
5470       }
5471 
5472       if (!this->visitInitializer(InitExpr))
5473         return false;
5474       if (!this->emitFinishInitPop(InitExpr))
5475         return false;
5476     } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
5477       assert(IFD->getChainingSize() >= 2);
5478 
5479       unsigned NestedFieldOffset = 0;
5480       const Record::Field *NestedField = nullptr;
5481       for (const NamedDecl *ND : IFD->chain()) {
5482         const auto *FD = cast<FieldDecl>(ND);
5483         const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
5484         assert(FieldRecord);
5485 
5486         NestedField = FieldRecord->getField(FD);
5487         assert(NestedField);
5488 
5489         NestedFieldOffset += NestedField->Offset;
5490       }
5491       assert(NestedField);
5492 
5493       if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
5494         return false;
5495     } else {
5496       assert(Init->isDelegatingInitializer());
5497       if (!this->emitThis(InitExpr))
5498         return false;
5499       if (!this->visitInitializer(Init->getInit()))
5500         return false;
5501       if (!this->emitPopPtr(InitExpr))
5502         return false;
5503     }
5504 
5505     if (!Scope.destroyLocals())
5506       return false;
5507   }
5508 
5509   if (const auto *Body = Ctor->getBody())
5510     if (!visitStmt(Body))
5511       return false;
5512 
5513   return this->emitRetVoid(SourceInfo{});
5514 }
5515 
5516 template <class Emitter>
5517 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
5518   const RecordDecl *RD = Dtor->getParent();
5519   const Record *R = this->getRecord(RD);
5520   if (!R)
5521     return false;
5522 
5523   if (!Dtor->isTrivial() && Dtor->getBody()) {
5524     if (!this->visitStmt(Dtor->getBody()))
5525       return false;
5526   }
5527 
5528   if (!this->emitThis(Dtor))
5529     return false;
5530 
5531   assert(R);
5532   if (!R->isUnion()) {
5533     // First, destroy all fields.
5534     for (const Record::Field &Field : llvm::reverse(R->fields())) {
5535       const Descriptor *D = Field.Desc;
5536       if (!D->isPrimitive() && !D->isPrimitiveArray()) {
5537         if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
5538           return false;
5539         if (!this->emitDestruction(D, SourceInfo{}))
5540           return false;
5541         if (!this->emitPopPtr(SourceInfo{}))
5542           return false;
5543       }
5544     }
5545   }
5546 
5547   for (const Record::Base &Base : llvm::reverse(R->bases())) {
5548     if (Base.R->isAnonymousUnion())
5549       continue;
5550 
5551     if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
5552       return false;
5553     if (!this->emitRecordDestruction(Base.R, {}))
5554       return false;
5555     if (!this->emitPopPtr(SourceInfo{}))
5556       return false;
5557   }
5558 
5559   // FIXME: Virtual bases.
5560   return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
5561 }
5562 
5563 template <class Emitter>
5564 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
5565   // Classify the return type.
5566   ReturnType = this->classify(F->getReturnType());
5567 
5568   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
5569     return this->compileConstructor(Ctor);
5570   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
5571     return this->compileDestructor(Dtor);
5572 
5573   // Emit custom code if this is a lambda static invoker.
5574   if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
5575       MD && MD->isLambdaStaticInvoker())
5576     return this->emitLambdaStaticInvokerBody(MD);
5577 
5578   // Regular functions.
5579   if (const auto *Body = F->getBody())
5580     if (!visitStmt(Body))
5581       return false;
5582 
5583   // Emit a guard return to protect against a code path missing one.
5584   if (F->getReturnType()->isVoidType())
5585     return this->emitRetVoid(SourceInfo{});
5586   return this->emitNoRet(SourceInfo{});
5587 }
5588 
5589 template <class Emitter>
5590 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
5591   const Expr *SubExpr = E->getSubExpr();
5592   if (SubExpr->getType()->isAnyComplexType())
5593     return this->VisitComplexUnaryOperator(E);
5594   if (SubExpr->getType()->isVectorType())
5595     return this->VisitVectorUnaryOperator(E);
5596   if (SubExpr->getType()->isFixedPointType())
5597     return this->VisitFixedPointUnaryOperator(E);
5598   std::optional<PrimType> T = classify(SubExpr->getType());
5599 
5600   switch (E->getOpcode()) {
5601   case UO_PostInc: { // x++
5602     if (!Ctx.getLangOpts().CPlusPlus14)
5603       return this->emitInvalid(E);
5604     if (!T)
5605       return this->emitError(E);
5606 
5607     if (!this->visit(SubExpr))
5608       return false;
5609 
5610     if (T == PT_Ptr || T == PT_FnPtr) {
5611       if (!this->emitIncPtr(E))
5612         return false;
5613 
5614       return DiscardResult ? this->emitPopPtr(E) : true;
5615     }
5616 
5617     if (T == PT_Float) {
5618       return DiscardResult ? this->emitIncfPop(getFPOptions(E), E)
5619                            : this->emitIncf(getFPOptions(E), E);
5620     }
5621 
5622     return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
5623   }
5624   case UO_PostDec: { // x--
5625     if (!Ctx.getLangOpts().CPlusPlus14)
5626       return this->emitInvalid(E);
5627     if (!T)
5628       return this->emitError(E);
5629 
5630     if (!this->visit(SubExpr))
5631       return false;
5632 
5633     if (T == PT_Ptr || T == PT_FnPtr) {
5634       if (!this->emitDecPtr(E))
5635         return false;
5636 
5637       return DiscardResult ? this->emitPopPtr(E) : true;
5638     }
5639 
5640     if (T == PT_Float) {
5641       return DiscardResult ? this->emitDecfPop(getFPOptions(E), E)
5642                            : this->emitDecf(getFPOptions(E), E);
5643     }
5644 
5645     return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
5646   }
5647   case UO_PreInc: { // ++x
5648     if (!Ctx.getLangOpts().CPlusPlus14)
5649       return this->emitInvalid(E);
5650     if (!T)
5651       return this->emitError(E);
5652 
5653     if (!this->visit(SubExpr))
5654       return false;
5655 
5656     if (T == PT_Ptr || T == PT_FnPtr) {
5657       if (!this->emitLoadPtr(E))
5658         return false;
5659       if (!this->emitConstUint8(1, E))
5660         return false;
5661       if (!this->emitAddOffsetUint8(E))
5662         return false;
5663       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5664     }
5665 
5666     // Post-inc and pre-inc are the same if the value is to be discarded.
5667     if (DiscardResult) {
5668       if (T == PT_Float)
5669         return this->emitIncfPop(getFPOptions(E), E);
5670       return this->emitIncPop(*T, E);
5671     }
5672 
5673     if (T == PT_Float) {
5674       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5675       if (!this->emitLoadFloat(E))
5676         return false;
5677       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5678         return false;
5679       if (!this->emitAddf(getFPOptions(E), E))
5680         return false;
5681       if (!this->emitStoreFloat(E))
5682         return false;
5683     } else {
5684       assert(isIntegralType(*T));
5685       if (!this->emitLoad(*T, E))
5686         return false;
5687       if (!this->emitConst(1, E))
5688         return false;
5689       if (!this->emitAdd(*T, E))
5690         return false;
5691       if (!this->emitStore(*T, E))
5692         return false;
5693     }
5694     return E->isGLValue() || this->emitLoadPop(*T, E);
5695   }
5696   case UO_PreDec: { // --x
5697     if (!Ctx.getLangOpts().CPlusPlus14)
5698       return this->emitInvalid(E);
5699     if (!T)
5700       return this->emitError(E);
5701 
5702     if (!this->visit(SubExpr))
5703       return false;
5704 
5705     if (T == PT_Ptr || T == PT_FnPtr) {
5706       if (!this->emitLoadPtr(E))
5707         return false;
5708       if (!this->emitConstUint8(1, E))
5709         return false;
5710       if (!this->emitSubOffsetUint8(E))
5711         return false;
5712       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5713     }
5714 
5715     // Post-dec and pre-dec are the same if the value is to be discarded.
5716     if (DiscardResult) {
5717       if (T == PT_Float)
5718         return this->emitDecfPop(getFPOptions(E), E);
5719       return this->emitDecPop(*T, E);
5720     }
5721 
5722     if (T == PT_Float) {
5723       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5724       if (!this->emitLoadFloat(E))
5725         return false;
5726       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5727         return false;
5728       if (!this->emitSubf(getFPOptions(E), E))
5729         return false;
5730       if (!this->emitStoreFloat(E))
5731         return false;
5732     } else {
5733       assert(isIntegralType(*T));
5734       if (!this->emitLoad(*T, E))
5735         return false;
5736       if (!this->emitConst(1, E))
5737         return false;
5738       if (!this->emitSub(*T, E))
5739         return false;
5740       if (!this->emitStore(*T, E))
5741         return false;
5742     }
5743     return E->isGLValue() || this->emitLoadPop(*T, E);
5744   }
5745   case UO_LNot: // !x
5746     if (!T)
5747       return this->emitError(E);
5748 
5749     if (DiscardResult)
5750       return this->discard(SubExpr);
5751 
5752     if (!this->visitBool(SubExpr))
5753       return false;
5754 
5755     if (!this->emitInv(E))
5756       return false;
5757 
5758     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5759       return this->emitCast(PT_Bool, ET, E);
5760     return true;
5761   case UO_Minus: // -x
5762     if (!T)
5763       return this->emitError(E);
5764 
5765     if (!this->visit(SubExpr))
5766       return false;
5767     return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
5768   case UO_Plus: // +x
5769     if (!T)
5770       return this->emitError(E);
5771 
5772     if (!this->visit(SubExpr)) // noop
5773       return false;
5774     return DiscardResult ? this->emitPop(*T, E) : true;
5775   case UO_AddrOf: // &x
5776     if (E->getType()->isMemberPointerType()) {
5777       // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5778       // member can be formed.
5779       return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
5780     }
5781     // We should already have a pointer when we get here.
5782     return this->delegate(SubExpr);
5783   case UO_Deref: // *x
5784     if (DiscardResult) {
5785       // assert(false);
5786       return this->discard(SubExpr);
5787     }
5788 
5789     if (!this->visit(SubExpr))
5790       return false;
5791     if (classifyPrim(SubExpr) == PT_Ptr)
5792       return this->emitNarrowPtr(E);
5793     return true;
5794 
5795   case UO_Not: // ~x
5796     if (!T)
5797       return this->emitError(E);
5798 
5799     if (!this->visit(SubExpr))
5800       return false;
5801     return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
5802   case UO_Real: // __real x
5803     assert(T);
5804     return this->delegate(SubExpr);
5805   case UO_Imag: { // __imag x
5806     assert(T);
5807     if (!this->discard(SubExpr))
5808       return false;
5809     return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
5810   }
5811   case UO_Extension:
5812     return this->delegate(SubExpr);
5813   case UO_Coawait:
5814     assert(false && "Unhandled opcode");
5815   }
5816 
5817   return false;
5818 }
5819 
5820 template <class Emitter>
5821 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
5822   const Expr *SubExpr = E->getSubExpr();
5823   assert(SubExpr->getType()->isAnyComplexType());
5824 
5825   if (DiscardResult)
5826     return this->discard(SubExpr);
5827 
5828   std::optional<PrimType> ResT = classify(E);
5829   auto prepareResult = [=]() -> bool {
5830     if (!ResT && !Initializing) {
5831       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5832       if (!LocalIndex)
5833         return false;
5834       return this->emitGetPtrLocal(*LocalIndex, E);
5835     }
5836 
5837     return true;
5838   };
5839 
5840   // The offset of the temporary, if we created one.
5841   unsigned SubExprOffset = ~0u;
5842   auto createTemp = [=, &SubExprOffset]() -> bool {
5843     SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5844     if (!this->visit(SubExpr))
5845       return false;
5846     return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
5847   };
5848 
5849   PrimType ElemT = classifyComplexElementType(SubExpr->getType());
5850   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5851     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5852       return false;
5853     return this->emitArrayElemPop(ElemT, Index, E);
5854   };
5855 
5856   switch (E->getOpcode()) {
5857   case UO_Minus:
5858     if (!prepareResult())
5859       return false;
5860     if (!createTemp())
5861       return false;
5862     for (unsigned I = 0; I != 2; ++I) {
5863       if (!getElem(SubExprOffset, I))
5864         return false;
5865       if (!this->emitNeg(ElemT, E))
5866         return false;
5867       if (!this->emitInitElem(ElemT, I, E))
5868         return false;
5869     }
5870     break;
5871 
5872   case UO_Plus:   // +x
5873   case UO_AddrOf: // &x
5874   case UO_Deref:  // *x
5875     return this->delegate(SubExpr);
5876 
5877   case UO_LNot:
5878     if (!this->visit(SubExpr))
5879       return false;
5880     if (!this->emitComplexBoolCast(SubExpr))
5881       return false;
5882     if (!this->emitInv(E))
5883       return false;
5884     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5885       return this->emitCast(PT_Bool, ET, E);
5886     return true;
5887 
5888   case UO_Real:
5889     return this->emitComplexReal(SubExpr);
5890 
5891   case UO_Imag:
5892     if (!this->visit(SubExpr))
5893       return false;
5894 
5895     if (SubExpr->isLValue()) {
5896       if (!this->emitConstUint8(1, E))
5897         return false;
5898       return this->emitArrayElemPtrPopUint8(E);
5899     }
5900 
5901     // Since our _Complex implementation does not map to a primitive type,
5902     // we sometimes have to do the lvalue-to-rvalue conversion here manually.
5903     return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
5904 
5905   case UO_Not: // ~x
5906     if (!this->visit(SubExpr))
5907       return false;
5908     // Negate the imaginary component.
5909     if (!this->emitArrayElem(ElemT, 1, E))
5910       return false;
5911     if (!this->emitNeg(ElemT, E))
5912       return false;
5913     if (!this->emitInitElem(ElemT, 1, E))
5914       return false;
5915     return DiscardResult ? this->emitPopPtr(E) : true;
5916 
5917   case UO_Extension:
5918     return this->delegate(SubExpr);
5919 
5920   default:
5921     return this->emitInvalid(E);
5922   }
5923 
5924   return true;
5925 }
5926 
5927 template <class Emitter>
5928 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) {
5929   const Expr *SubExpr = E->getSubExpr();
5930   assert(SubExpr->getType()->isVectorType());
5931 
5932   if (DiscardResult)
5933     return this->discard(SubExpr);
5934 
5935   auto UnaryOp = E->getOpcode();
5936   if (UnaryOp == UO_Extension)
5937     return this->delegate(SubExpr);
5938 
5939   if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot &&
5940       UnaryOp != UO_Not && UnaryOp != UO_AddrOf)
5941     return this->emitInvalid(E);
5942 
5943   // Nothing to do here.
5944   if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf)
5945     return this->delegate(SubExpr);
5946 
5947   if (!Initializing) {
5948     std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5949     if (!LocalIndex)
5950       return false;
5951     if (!this->emitGetPtrLocal(*LocalIndex, E))
5952       return false;
5953   }
5954 
5955   // The offset of the temporary, if we created one.
5956   unsigned SubExprOffset =
5957       this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5958   if (!this->visit(SubExpr))
5959     return false;
5960   if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E))
5961     return false;
5962 
5963   const auto *VecTy = SubExpr->getType()->getAs<VectorType>();
5964   PrimType ElemT = classifyVectorElementType(SubExpr->getType());
5965   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5966     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5967       return false;
5968     return this->emitArrayElemPop(ElemT, Index, E);
5969   };
5970 
5971   switch (UnaryOp) {
5972   case UO_Minus:
5973     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5974       if (!getElem(SubExprOffset, I))
5975         return false;
5976       if (!this->emitNeg(ElemT, E))
5977         return false;
5978       if (!this->emitInitElem(ElemT, I, E))
5979         return false;
5980     }
5981     break;
5982   case UO_LNot: { // !x
5983     // In C++, the logic operators !, &&, || are available for vectors. !v is
5984     // equivalent to v == 0.
5985     //
5986     // The result of the comparison is a vector of the same width and number of
5987     // elements as the comparison operands with a signed integral element type.
5988     //
5989     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
5990     QualType ResultVecTy = E->getType();
5991     PrimType ResultVecElemT =
5992         classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType());
5993     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5994       if (!getElem(SubExprOffset, I))
5995         return false;
5996       // operator ! on vectors returns -1 for 'truth', so negate it.
5997       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
5998         return false;
5999       if (!this->emitInv(E))
6000         return false;
6001       if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E))
6002         return false;
6003       if (!this->emitNeg(ElemT, E))
6004         return false;
6005       if (ElemT != ResultVecElemT &&
6006           !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E))
6007         return false;
6008       if (!this->emitInitElem(ResultVecElemT, I, E))
6009         return false;
6010     }
6011     break;
6012   }
6013   case UO_Not: // ~x
6014     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
6015       if (!getElem(SubExprOffset, I))
6016         return false;
6017       if (ElemT == PT_Bool) {
6018         if (!this->emitInv(E))
6019           return false;
6020       } else {
6021         if (!this->emitComp(ElemT, E))
6022           return false;
6023       }
6024       if (!this->emitInitElem(ElemT, I, E))
6025         return false;
6026     }
6027     break;
6028   default:
6029     llvm_unreachable("Unsupported unary operators should be handled up front");
6030   }
6031   return true;
6032 }
6033 
6034 template <class Emitter>
6035 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
6036   if (DiscardResult)
6037     return true;
6038 
6039   if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
6040     return this->emitConst(ECD->getInitVal(), E);
6041   } else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
6042     return this->visit(BD->getBinding());
6043   } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
6044     const Function *F = getFunction(FuncDecl);
6045     return F && this->emitGetFnPtr(F, E);
6046   } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
6047     if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
6048       if (!this->emitGetPtrGlobal(*Index, E))
6049         return false;
6050       if (std::optional<PrimType> T = classify(E->getType())) {
6051         if (!this->visitAPValue(TPOD->getValue(), *T, E))
6052           return false;
6053         return this->emitInitGlobal(*T, *Index, E);
6054       }
6055       return this->visitAPValueInitializer(TPOD->getValue(), E);
6056     }
6057     return false;
6058   }
6059 
6060   // References are implemented via pointers, so when we see a DeclRefExpr
6061   // pointing to a reference, we need to get its value directly (i.e. the
6062   // pointer to the actual value) instead of a pointer to the pointer to the
6063   // value.
6064   bool IsReference = D->getType()->isReferenceType();
6065 
6066   // Check for local/global variables and parameters.
6067   if (auto It = Locals.find(D); It != Locals.end()) {
6068     const unsigned Offset = It->second.Offset;
6069     if (IsReference)
6070       return this->emitGetLocal(PT_Ptr, Offset, E);
6071     return this->emitGetPtrLocal(Offset, E);
6072   } else if (auto GlobalIndex = P.getGlobal(D)) {
6073     if (IsReference) {
6074       if (!Ctx.getLangOpts().CPlusPlus11)
6075         return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
6076       return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
6077     }
6078 
6079     return this->emitGetPtrGlobal(*GlobalIndex, E);
6080   } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
6081     if (auto It = this->Params.find(PVD); It != this->Params.end()) {
6082       if (IsReference || !It->second.IsPtr)
6083         return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
6084 
6085       return this->emitGetPtrParam(It->second.Offset, E);
6086     }
6087 
6088     if (D->getType()->isReferenceType())
6089       return false; // FIXME: Do we need to emit InvalidDeclRef?
6090   }
6091 
6092   // In case we need to re-visit a declaration.
6093   auto revisit = [&](const VarDecl *VD) -> bool {
6094     auto VarState = this->visitDecl(VD);
6095 
6096     if (VarState.notCreated())
6097       return true;
6098     if (!VarState)
6099       return false;
6100     // Retry.
6101     return this->visitDeclRef(D, E);
6102   };
6103 
6104   // Handle lambda captures.
6105   if (auto It = this->LambdaCaptures.find(D);
6106       It != this->LambdaCaptures.end()) {
6107     auto [Offset, IsPtr] = It->second;
6108 
6109     if (IsPtr)
6110       return this->emitGetThisFieldPtr(Offset, E);
6111     return this->emitGetPtrThisField(Offset, E);
6112   } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
6113              DRE && DRE->refersToEnclosingVariableOrCapture()) {
6114     if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
6115       return revisit(VD);
6116   }
6117 
6118   if (D != InitializingDecl) {
6119     // Try to lazily visit (or emit dummy pointers for) declarations
6120     // we haven't seen yet.
6121     if (Ctx.getLangOpts().CPlusPlus) {
6122       if (const auto *VD = dyn_cast<VarDecl>(D)) {
6123         const auto typeShouldBeVisited = [&](QualType T) -> bool {
6124           if (T.isConstant(Ctx.getASTContext()))
6125             return true;
6126           return T->isReferenceType();
6127         };
6128 
6129         // DecompositionDecls are just proxies for us.
6130         if (isa<DecompositionDecl>(VD))
6131           return revisit(VD);
6132 
6133         if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) &&
6134             typeShouldBeVisited(VD->getType()))
6135           return revisit(VD);
6136 
6137         // FIXME: The evaluateValue() check here is a little ridiculous, since
6138         // it will ultimately call into Context::evaluateAsInitializer(). In
6139         // other words, we're evaluating the initializer, just to know if we can
6140         // evaluate the initializer.
6141         if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) &&
6142             VD->getInit() && !VD->getInit()->isValueDependent()) {
6143 
6144           if (VD->evaluateValue())
6145             return revisit(VD);
6146 
6147           if (!D->getType()->isReferenceType())
6148             return this->emitDummyPtr(D, E);
6149 
6150           return this->emitInvalidDeclRef(cast<DeclRefExpr>(E),
6151                                           /*InitializerFailed=*/true, E);
6152         }
6153       }
6154     } else {
6155       if (const auto *VD = dyn_cast<VarDecl>(D);
6156           VD && VD->getAnyInitializer() &&
6157           VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
6158         return revisit(VD);
6159     }
6160   }
6161 
6162   return this->emitDummyPtr(D, E);
6163 }
6164 
6165 template <class Emitter>
6166 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
6167   const auto *D = E->getDecl();
6168   return this->visitDeclRef(D, E);
6169 }
6170 
6171 template <class Emitter> void Compiler<Emitter>::emitCleanup() {
6172   for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
6173     C->emitDestruction();
6174 }
6175 
6176 template <class Emitter>
6177 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
6178                                               const QualType DerivedType) {
6179   const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
6180     if (const auto *R = Ty->getPointeeCXXRecordDecl())
6181       return R;
6182     return Ty->getAsCXXRecordDecl();
6183   };
6184   const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
6185   const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
6186 
6187   return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
6188 }
6189 
6190 /// Emit casts from a PrimType to another PrimType.
6191 template <class Emitter>
6192 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
6193                                      QualType ToQT, const Expr *E) {
6194 
6195   if (FromT == PT_Float) {
6196     // Floating to floating.
6197     if (ToT == PT_Float) {
6198       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6199       return this->emitCastFP(ToSem, getRoundingMode(E), E);
6200     }
6201 
6202     if (ToT == PT_IntAP)
6203       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT),
6204                                               getFPOptions(E), E);
6205     if (ToT == PT_IntAPS)
6206       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT),
6207                                                getFPOptions(E), E);
6208 
6209     // Float to integral.
6210     if (isIntegralType(ToT) || ToT == PT_Bool)
6211       return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E);
6212   }
6213 
6214   if (isIntegralType(FromT) || FromT == PT_Bool) {
6215     if (ToT == PT_IntAP)
6216       return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
6217     if (ToT == PT_IntAPS)
6218       return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
6219 
6220     // Integral to integral.
6221     if (isIntegralType(ToT) || ToT == PT_Bool)
6222       return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
6223 
6224     if (ToT == PT_Float) {
6225       // Integral to floating.
6226       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6227       return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E);
6228     }
6229   }
6230 
6231   return false;
6232 }
6233 
6234 /// Emits __real(SubExpr)
6235 template <class Emitter>
6236 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
6237   assert(SubExpr->getType()->isAnyComplexType());
6238 
6239   if (DiscardResult)
6240     return this->discard(SubExpr);
6241 
6242   if (!this->visit(SubExpr))
6243     return false;
6244   if (SubExpr->isLValue()) {
6245     if (!this->emitConstUint8(0, SubExpr))
6246       return false;
6247     return this->emitArrayElemPtrPopUint8(SubExpr);
6248   }
6249 
6250   // Rvalue, load the actual element.
6251   return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
6252                                 0, SubExpr);
6253 }
6254 
6255 template <class Emitter>
6256 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
6257   assert(!DiscardResult);
6258   PrimType ElemT = classifyComplexElementType(E->getType());
6259   // We emit the expression (__real(E) != 0 || __imag(E) != 0)
6260   // for us, that means (bool)E[0] || (bool)E[1]
6261   if (!this->emitArrayElem(ElemT, 0, E))
6262     return false;
6263   if (ElemT == PT_Float) {
6264     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6265       return false;
6266   } else {
6267     if (!this->emitCast(ElemT, PT_Bool, E))
6268       return false;
6269   }
6270 
6271   // We now have the bool value of E[0] on the stack.
6272   LabelTy LabelTrue = this->getLabel();
6273   if (!this->jumpTrue(LabelTrue))
6274     return false;
6275 
6276   if (!this->emitArrayElemPop(ElemT, 1, E))
6277     return false;
6278   if (ElemT == PT_Float) {
6279     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6280       return false;
6281   } else {
6282     if (!this->emitCast(ElemT, PT_Bool, E))
6283       return false;
6284   }
6285   // Leave the boolean value of E[1] on the stack.
6286   LabelTy EndLabel = this->getLabel();
6287   this->jump(EndLabel);
6288 
6289   this->emitLabel(LabelTrue);
6290   if (!this->emitPopPtr(E))
6291     return false;
6292   if (!this->emitConstBool(true, E))
6293     return false;
6294 
6295   this->fallthrough(EndLabel);
6296   this->emitLabel(EndLabel);
6297 
6298   return true;
6299 }
6300 
6301 template <class Emitter>
6302 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
6303                                               const BinaryOperator *E) {
6304   assert(E->isComparisonOp());
6305   assert(!Initializing);
6306   assert(!DiscardResult);
6307 
6308   PrimType ElemT;
6309   bool LHSIsComplex;
6310   unsigned LHSOffset;
6311   if (LHS->getType()->isAnyComplexType()) {
6312     LHSIsComplex = true;
6313     ElemT = classifyComplexElementType(LHS->getType());
6314     LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
6315                                        /*IsExtended=*/false);
6316     if (!this->visit(LHS))
6317       return false;
6318     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
6319       return false;
6320   } else {
6321     LHSIsComplex = false;
6322     PrimType LHST = classifyPrim(LHS->getType());
6323     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
6324     if (!this->visit(LHS))
6325       return false;
6326     if (!this->emitSetLocal(LHST, LHSOffset, E))
6327       return false;
6328   }
6329 
6330   bool RHSIsComplex;
6331   unsigned RHSOffset;
6332   if (RHS->getType()->isAnyComplexType()) {
6333     RHSIsComplex = true;
6334     ElemT = classifyComplexElementType(RHS->getType());
6335     RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
6336                                        /*IsExtended=*/false);
6337     if (!this->visit(RHS))
6338       return false;
6339     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
6340       return false;
6341   } else {
6342     RHSIsComplex = false;
6343     PrimType RHST = classifyPrim(RHS->getType());
6344     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
6345     if (!this->visit(RHS))
6346       return false;
6347     if (!this->emitSetLocal(RHST, RHSOffset, E))
6348       return false;
6349   }
6350 
6351   auto getElem = [&](unsigned LocalOffset, unsigned Index,
6352                      bool IsComplex) -> bool {
6353     if (IsComplex) {
6354       if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
6355         return false;
6356       return this->emitArrayElemPop(ElemT, Index, E);
6357     }
6358     return this->emitGetLocal(ElemT, LocalOffset, E);
6359   };
6360 
6361   for (unsigned I = 0; I != 2; ++I) {
6362     // Get both values.
6363     if (!getElem(LHSOffset, I, LHSIsComplex))
6364       return false;
6365     if (!getElem(RHSOffset, I, RHSIsComplex))
6366       return false;
6367     // And compare them.
6368     if (!this->emitEQ(ElemT, E))
6369       return false;
6370 
6371     if (!this->emitCastBoolUint8(E))
6372       return false;
6373   }
6374 
6375   // We now have two bool values on the stack. Compare those.
6376   if (!this->emitAddUint8(E))
6377     return false;
6378   if (!this->emitConstUint8(2, E))
6379     return false;
6380 
6381   if (E->getOpcode() == BO_EQ) {
6382     if (!this->emitEQUint8(E))
6383       return false;
6384   } else if (E->getOpcode() == BO_NE) {
6385     if (!this->emitNEUint8(E))
6386       return false;
6387   } else
6388     return false;
6389 
6390   // In C, this returns an int.
6391   if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
6392     return this->emitCast(PT_Bool, ResT, E);
6393   return true;
6394 }
6395 
6396 /// When calling this, we have a pointer of the local-to-destroy
6397 /// on the stack.
6398 /// Emit destruction of record types (or arrays of record types).
6399 template <class Emitter>
6400 bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) {
6401   assert(R);
6402   assert(!R->isAnonymousUnion());
6403   const CXXDestructorDecl *Dtor = R->getDestructor();
6404   if (!Dtor || Dtor->isTrivial())
6405     return true;
6406 
6407   assert(Dtor);
6408   const Function *DtorFunc = getFunction(Dtor);
6409   if (!DtorFunc)
6410     return false;
6411   assert(DtorFunc->hasThisPointer());
6412   assert(DtorFunc->getNumParams() == 1);
6413   if (!this->emitDupPtr(Loc))
6414     return false;
6415   return this->emitCall(DtorFunc, 0, Loc);
6416 }
6417 /// When calling this, we have a pointer of the local-to-destroy
6418 /// on the stack.
6419 /// Emit destruction of record types (or arrays of record types).
6420 template <class Emitter>
6421 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc,
6422                                         SourceInfo Loc) {
6423   assert(Desc);
6424   assert(!Desc->isPrimitive());
6425   assert(!Desc->isPrimitiveArray());
6426 
6427   // Arrays.
6428   if (Desc->isArray()) {
6429     const Descriptor *ElemDesc = Desc->ElemDesc;
6430     assert(ElemDesc);
6431 
6432     // Don't need to do anything for these.
6433     if (ElemDesc->isPrimitiveArray())
6434       return true;
6435 
6436     // If this is an array of record types, check if we need
6437     // to call the element destructors at all. If not, try
6438     // to save the work.
6439     if (const Record *ElemRecord = ElemDesc->ElemRecord) {
6440       if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
6441           !Dtor || Dtor->isTrivial())
6442         return true;
6443     }
6444 
6445     for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
6446       if (!this->emitConstUint64(I, Loc))
6447         return false;
6448       if (!this->emitArrayElemPtrUint64(Loc))
6449         return false;
6450       if (!this->emitDestruction(ElemDesc, Loc))
6451         return false;
6452       if (!this->emitPopPtr(Loc))
6453         return false;
6454     }
6455     return true;
6456   }
6457 
6458   assert(Desc->ElemRecord);
6459   if (Desc->ElemRecord->isAnonymousUnion())
6460     return true;
6461 
6462   return this->emitRecordDestruction(Desc->ElemRecord, Loc);
6463 }
6464 
6465 /// Create a dummy pointer for the given decl (or expr) and
6466 /// push a pointer to it on the stack.
6467 template <class Emitter>
6468 bool Compiler<Emitter>::emitDummyPtr(const DeclTy &D, const Expr *E) {
6469   assert(!DiscardResult && "Should've been checked before");
6470 
6471   unsigned DummyID = P.getOrCreateDummy(D);
6472 
6473   if (!this->emitGetPtrGlobal(DummyID, E))
6474     return false;
6475   if (E->getType()->isVoidType())
6476     return true;
6477 
6478   // Convert the dummy pointer to another pointer type if we have to.
6479   if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
6480     if (isPtrType(PT))
6481       return this->emitDecayPtr(PT_Ptr, PT, E);
6482     return false;
6483   }
6484   return true;
6485 }
6486 
6487 //  This function is constexpr if and only if To, From, and the types of
6488 //  all subobjects of To and From are types T such that...
6489 //  (3.1) - is_union_v<T> is false;
6490 //  (3.2) - is_pointer_v<T> is false;
6491 //  (3.3) - is_member_pointer_v<T> is false;
6492 //  (3.4) - is_volatile_v<T> is false; and
6493 //  (3.5) - T has no non-static data members of reference type
6494 template <class Emitter>
6495 bool Compiler<Emitter>::emitBuiltinBitCast(const CastExpr *E) {
6496   const Expr *SubExpr = E->getSubExpr();
6497   QualType FromType = SubExpr->getType();
6498   QualType ToType = E->getType();
6499   std::optional<PrimType> ToT = classify(ToType);
6500 
6501   assert(!ToType->isReferenceType());
6502 
6503   // Prepare storage for the result in case we discard.
6504   if (DiscardResult && !Initializing && !ToT) {
6505     std::optional<unsigned> LocalIndex = allocateLocal(E);
6506     if (!LocalIndex)
6507       return false;
6508     if (!this->emitGetPtrLocal(*LocalIndex, E))
6509       return false;
6510   }
6511 
6512   // Get a pointer to the value-to-cast on the stack.
6513   // For CK_LValueToRValueBitCast, this is always an lvalue and
6514   // we later assume it to be one (i.e. a PT_Ptr). However,
6515   // we call this function for other utility methods where
6516   // a bitcast might be useful, so convert it to a PT_Ptr in that case.
6517   if (SubExpr->isGLValue() || FromType->isVectorType()) {
6518     if (!this->visit(SubExpr))
6519       return false;
6520   } else if (std::optional<PrimType> FromT = classify(SubExpr)) {
6521     unsigned TempOffset = allocateLocalPrimitive(
6522         SubExpr, *FromT, /*IsConst=*/true, /*IsExtended=*/false);
6523     if (!this->visit(SubExpr))
6524       return false;
6525     if (!this->emitSetLocal(*FromT, TempOffset, E))
6526       return false;
6527     if (!this->emitGetPtrLocal(TempOffset, E))
6528       return false;
6529   } else {
6530     return false;
6531   }
6532 
6533   if (!ToT) {
6534     if (!this->emitBitCast(E))
6535       return false;
6536     return DiscardResult ? this->emitPopPtr(E) : true;
6537   }
6538   assert(ToT);
6539 
6540   const llvm::fltSemantics *TargetSemantics = nullptr;
6541   if (ToT == PT_Float)
6542     TargetSemantics = &Ctx.getFloatSemantics(ToType);
6543 
6544   // Conversion to a primitive type. FromType can be another
6545   // primitive type, or a record/array.
6546   bool ToTypeIsUChar = (ToType->isSpecificBuiltinType(BuiltinType::UChar) ||
6547                         ToType->isSpecificBuiltinType(BuiltinType::Char_U));
6548   uint32_t ResultBitWidth = std::max(Ctx.getBitWidth(ToType), 8u);
6549 
6550   if (!this->emitBitCastPrim(*ToT, ToTypeIsUChar || ToType->isStdByteType(),
6551                              ResultBitWidth, TargetSemantics, E))
6552     return false;
6553 
6554   if (DiscardResult)
6555     return this->emitPop(*ToT, E);
6556 
6557   return true;
6558 }
6559 
6560 namespace clang {
6561 namespace interp {
6562 
6563 template class Compiler<ByteCodeEmitter>;
6564 template class Compiler<EvalEmitter>;
6565 
6566 } // namespace interp
6567 } // namespace clang
6568