xref: /llvm-project/clang/lib/AST/ByteCode/Compiler.cpp (revision 95ce78b742b2965f3a4a42115a96a330d779a98d)
1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Compiler.h"
10 #include "ByteCodeEmitter.h"
11 #include "Context.h"
12 #include "FixedPoint.h"
13 #include "Floating.h"
14 #include "Function.h"
15 #include "InterpShared.h"
16 #include "PrimType.h"
17 #include "Program.h"
18 #include "clang/AST/Attr.h"
19 
20 using namespace clang;
21 using namespace clang::interp;
22 
23 using APSInt = llvm::APSInt;
24 
25 namespace clang {
26 namespace interp {
27 
28 /// Scope used to handle temporaries in toplevel variable declarations.
29 template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
30 public:
31   DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
32       : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
33         OldInitializingDecl(Ctx->InitializingDecl) {
34     Ctx->InitializingDecl = VD;
35     Ctx->InitStack.push_back(InitLink::Decl(VD));
36   }
37 
38   void addExtended(const Scope::Local &Local) override {
39     return this->addLocal(Local);
40   }
41 
42   ~DeclScope() {
43     this->Ctx->InitializingDecl = OldInitializingDecl;
44     this->Ctx->InitStack.pop_back();
45   }
46 
47 private:
48   Program::DeclScope Scope;
49   const ValueDecl *OldInitializingDecl;
50 };
51 
52 /// Scope used to handle initialization methods.
53 template <class Emitter> class OptionScope final {
54 public:
55   /// Root constructor, compiling or discarding primitives.
56   OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
57               bool NewInitializing)
58       : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
59         OldInitializing(Ctx->Initializing) {
60     Ctx->DiscardResult = NewDiscardResult;
61     Ctx->Initializing = NewInitializing;
62   }
63 
64   ~OptionScope() {
65     Ctx->DiscardResult = OldDiscardResult;
66     Ctx->Initializing = OldInitializing;
67   }
68 
69 private:
70   /// Parent context.
71   Compiler<Emitter> *Ctx;
72   /// Old discard flag to restore.
73   bool OldDiscardResult;
74   bool OldInitializing;
75 };
76 
77 template <class Emitter>
78 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
79   switch (Kind) {
80   case K_This:
81     return Ctx->emitThis(E);
82   case K_Field:
83     // We're assuming there's a base pointer on the stack already.
84     return Ctx->emitGetPtrFieldPop(Offset, E);
85   case K_Temp:
86     return Ctx->emitGetPtrLocal(Offset, E);
87   case K_Decl:
88     return Ctx->visitDeclRef(D, E);
89   case K_Elem:
90     if (!Ctx->emitConstUint32(Offset, E))
91       return false;
92     return Ctx->emitArrayElemPtrPopUint32(E);
93   default:
94     llvm_unreachable("Unhandled InitLink kind");
95   }
96   return true;
97 }
98 
99 /// Scope managing label targets.
100 template <class Emitter> class LabelScope {
101 public:
102   virtual ~LabelScope() {}
103 
104 protected:
105   LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
106   /// Compiler instance.
107   Compiler<Emitter> *Ctx;
108 };
109 
110 /// Sets the context for break/continue statements.
111 template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
112 public:
113   using LabelTy = typename Compiler<Emitter>::LabelTy;
114   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
115 
116   LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
117       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
118         OldContinueLabel(Ctx->ContinueLabel),
119         OldBreakVarScope(Ctx->BreakVarScope),
120         OldContinueVarScope(Ctx->ContinueVarScope) {
121     this->Ctx->BreakLabel = BreakLabel;
122     this->Ctx->ContinueLabel = ContinueLabel;
123     this->Ctx->BreakVarScope = this->Ctx->VarScope;
124     this->Ctx->ContinueVarScope = this->Ctx->VarScope;
125   }
126 
127   ~LoopScope() {
128     this->Ctx->BreakLabel = OldBreakLabel;
129     this->Ctx->ContinueLabel = OldContinueLabel;
130     this->Ctx->ContinueVarScope = OldContinueVarScope;
131     this->Ctx->BreakVarScope = OldBreakVarScope;
132   }
133 
134 private:
135   OptLabelTy OldBreakLabel;
136   OptLabelTy OldContinueLabel;
137   VariableScope<Emitter> *OldBreakVarScope;
138   VariableScope<Emitter> *OldContinueVarScope;
139 };
140 
141 // Sets the context for a switch scope, mapping labels.
142 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
143 public:
144   using LabelTy = typename Compiler<Emitter>::LabelTy;
145   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
146   using CaseMap = typename Compiler<Emitter>::CaseMap;
147 
148   SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
149               OptLabelTy DefaultLabel)
150       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
151         OldDefaultLabel(this->Ctx->DefaultLabel),
152         OldCaseLabels(std::move(this->Ctx->CaseLabels)),
153         OldLabelVarScope(Ctx->BreakVarScope) {
154     this->Ctx->BreakLabel = BreakLabel;
155     this->Ctx->DefaultLabel = DefaultLabel;
156     this->Ctx->CaseLabels = std::move(CaseLabels);
157     this->Ctx->BreakVarScope = this->Ctx->VarScope;
158   }
159 
160   ~SwitchScope() {
161     this->Ctx->BreakLabel = OldBreakLabel;
162     this->Ctx->DefaultLabel = OldDefaultLabel;
163     this->Ctx->CaseLabels = std::move(OldCaseLabels);
164     this->Ctx->BreakVarScope = OldLabelVarScope;
165   }
166 
167 private:
168   OptLabelTy OldBreakLabel;
169   OptLabelTy OldDefaultLabel;
170   CaseMap OldCaseLabels;
171   VariableScope<Emitter> *OldLabelVarScope;
172 };
173 
174 template <class Emitter> class StmtExprScope final {
175 public:
176   StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
177     Ctx->InStmtExpr = true;
178   }
179 
180   ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
181 
182 private:
183   Compiler<Emitter> *Ctx;
184   bool OldFlag;
185 };
186 
187 } // namespace interp
188 } // namespace clang
189 
190 template <class Emitter>
191 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
192   const Expr *SubExpr = CE->getSubExpr();
193   switch (CE->getCastKind()) {
194 
195   case CK_LValueToRValue: {
196     if (DiscardResult)
197       return this->discard(SubExpr);
198 
199     std::optional<PrimType> SubExprT = classify(SubExpr->getType());
200     // Prepare storage for the result.
201     if (!Initializing && !SubExprT) {
202       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
203       if (!LocalIndex)
204         return false;
205       if (!this->emitGetPtrLocal(*LocalIndex, CE))
206         return false;
207     }
208 
209     if (!this->visit(SubExpr))
210       return false;
211 
212     if (SubExprT)
213       return this->emitLoadPop(*SubExprT, CE);
214 
215     // If the subexpr type is not primitive, we need to perform a copy here.
216     // This happens for example in C when dereferencing a pointer of struct
217     // type.
218     return this->emitMemcpy(CE);
219   }
220 
221   case CK_DerivedToBaseMemberPointer: {
222     assert(classifyPrim(CE->getType()) == PT_MemberPtr);
223     assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
224     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
225     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
226 
227     unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
228                                                QualType(FromMP->getClass(), 0));
229 
230     if (!this->delegate(SubExpr))
231       return false;
232 
233     return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
234   }
235 
236   case CK_BaseToDerivedMemberPointer: {
237     assert(classifyPrim(CE) == PT_MemberPtr);
238     assert(classifyPrim(SubExpr) == PT_MemberPtr);
239     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
240     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
241 
242     unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
243                                                QualType(ToMP->getClass(), 0));
244 
245     if (!this->delegate(SubExpr))
246       return false;
247     return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
248   }
249 
250   case CK_UncheckedDerivedToBase:
251   case CK_DerivedToBase: {
252     if (!this->delegate(SubExpr))
253       return false;
254 
255     const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
256       if (const auto *PT = dyn_cast<PointerType>(Ty))
257         return PT->getPointeeType()->getAsCXXRecordDecl();
258       return Ty->getAsCXXRecordDecl();
259     };
260 
261     // FIXME: We can express a series of non-virtual casts as a single
262     // GetPtrBasePop op.
263     QualType CurType = SubExpr->getType();
264     for (const CXXBaseSpecifier *B : CE->path()) {
265       if (B->isVirtual()) {
266         if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
267           return false;
268         CurType = B->getType();
269       } else {
270         unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
271         if (!this->emitGetPtrBasePop(DerivedOffset, CE))
272           return false;
273         CurType = B->getType();
274       }
275     }
276 
277     return true;
278   }
279 
280   case CK_BaseToDerived: {
281     if (!this->delegate(SubExpr))
282       return false;
283 
284     unsigned DerivedOffset =
285         collectBaseOffset(SubExpr->getType(), CE->getType());
286 
287     return this->emitGetPtrDerivedPop(DerivedOffset, CE);
288   }
289 
290   case CK_FloatingCast: {
291     // HLSL uses CK_FloatingCast to cast between vectors.
292     if (!SubExpr->getType()->isFloatingType() ||
293         !CE->getType()->isFloatingType())
294       return false;
295     if (DiscardResult)
296       return this->discard(SubExpr);
297     if (!this->visit(SubExpr))
298       return false;
299     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
300     return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
301   }
302 
303   case CK_IntegralToFloating: {
304     if (DiscardResult)
305       return this->discard(SubExpr);
306     std::optional<PrimType> FromT = classify(SubExpr->getType());
307     if (!FromT)
308       return false;
309 
310     if (!this->visit(SubExpr))
311       return false;
312 
313     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
314     return this->emitCastIntegralFloating(*FromT, TargetSemantics,
315                                           getFPOptions(CE), CE);
316   }
317 
318   case CK_FloatingToBoolean:
319   case CK_FloatingToIntegral: {
320     if (DiscardResult)
321       return this->discard(SubExpr);
322 
323     std::optional<PrimType> ToT = classify(CE->getType());
324 
325     if (!ToT)
326       return false;
327 
328     if (!this->visit(SubExpr))
329       return false;
330 
331     if (ToT == PT_IntAP)
332       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
333                                               getFPOptions(CE), CE);
334     if (ToT == PT_IntAPS)
335       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
336                                                getFPOptions(CE), CE);
337 
338     return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE);
339   }
340 
341   case CK_NullToPointer:
342   case CK_NullToMemberPointer: {
343     if (!this->discard(SubExpr))
344       return false;
345     if (DiscardResult)
346       return true;
347 
348     const Descriptor *Desc = nullptr;
349     const QualType PointeeType = CE->getType()->getPointeeType();
350     if (!PointeeType.isNull()) {
351       if (std::optional<PrimType> T = classify(PointeeType))
352         Desc = P.createDescriptor(SubExpr, *T);
353       else
354         Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
355                                   std::nullopt, true, false,
356                                   /*IsMutable=*/false, nullptr);
357     }
358     return this->emitNull(classifyPrim(CE->getType()), Desc, CE);
359   }
360 
361   case CK_PointerToIntegral: {
362     if (DiscardResult)
363       return this->discard(SubExpr);
364 
365     if (!this->visit(SubExpr))
366       return false;
367 
368     // If SubExpr doesn't result in a pointer, make it one.
369     if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
370       assert(isPtrType(FromT));
371       if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
372         return false;
373     }
374 
375     PrimType T = classifyPrim(CE->getType());
376     if (T == PT_IntAP)
377       return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
378                                              CE);
379     if (T == PT_IntAPS)
380       return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
381                                               CE);
382     return this->emitCastPointerIntegral(T, CE);
383   }
384 
385   case CK_ArrayToPointerDecay: {
386     if (!this->visit(SubExpr))
387       return false;
388     if (!this->emitArrayDecay(CE))
389       return false;
390     if (DiscardResult)
391       return this->emitPopPtr(CE);
392     return true;
393   }
394 
395   case CK_IntegralToPointer: {
396     QualType IntType = SubExpr->getType();
397     assert(IntType->isIntegralOrEnumerationType());
398     if (!this->visit(SubExpr))
399       return false;
400     // FIXME: I think the discard is wrong since the int->ptr cast might cause a
401     // diagnostic.
402     PrimType T = classifyPrim(IntType);
403     if (DiscardResult)
404       return this->emitPop(T, CE);
405 
406     QualType PtrType = CE->getType();
407     const Descriptor *Desc;
408     if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
409       Desc = P.createDescriptor(SubExpr, *T);
410     else if (PtrType->getPointeeType()->isVoidType())
411       Desc = nullptr;
412     else
413       Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
414                                 Descriptor::InlineDescMD, true, false,
415                                 /*IsMutable=*/false, nullptr);
416 
417     if (!this->emitGetIntPtr(T, Desc, CE))
418       return false;
419 
420     PrimType DestPtrT = classifyPrim(PtrType);
421     if (DestPtrT == PT_Ptr)
422       return true;
423 
424     // In case we're converting the integer to a non-Pointer.
425     return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
426   }
427 
428   case CK_AtomicToNonAtomic:
429   case CK_ConstructorConversion:
430   case CK_FunctionToPointerDecay:
431   case CK_NonAtomicToAtomic:
432   case CK_NoOp:
433   case CK_UserDefinedConversion:
434   case CK_AddressSpaceConversion:
435   case CK_CPointerToObjCPointerCast:
436     return this->delegate(SubExpr);
437 
438   case CK_BitCast: {
439     // Reject bitcasts to atomic types.
440     if (CE->getType()->isAtomicType()) {
441       if (!this->discard(SubExpr))
442         return false;
443       return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
444     }
445 
446     if (DiscardResult)
447       return this->discard(SubExpr);
448 
449     QualType SubExprTy = SubExpr->getType();
450     std::optional<PrimType> FromT = classify(SubExprTy);
451     std::optional<PrimType> ToT = classify(CE->getType());
452     if (!FromT || !ToT)
453       return false;
454 
455     assert(isPtrType(*FromT));
456     assert(isPtrType(*ToT));
457     if (FromT == ToT) {
458       if (CE->getType()->isVoidPointerType())
459         return this->delegate(SubExpr);
460 
461       if (!this->visit(SubExpr))
462         return false;
463       if (FromT == PT_Ptr)
464         return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
465       return true;
466     }
467 
468     if (!this->visit(SubExpr))
469       return false;
470     return this->emitDecayPtr(*FromT, *ToT, CE);
471   }
472 
473   case CK_IntegralToBoolean:
474   case CK_FixedPointToBoolean:
475   case CK_BooleanToSignedIntegral:
476   case CK_IntegralCast: {
477     if (DiscardResult)
478       return this->discard(SubExpr);
479     std::optional<PrimType> FromT = classify(SubExpr->getType());
480     std::optional<PrimType> ToT = classify(CE->getType());
481 
482     if (!FromT || !ToT)
483       return false;
484 
485     if (!this->visit(SubExpr))
486       return false;
487 
488     // Possibly diagnose casts to enum types if the target type does not
489     // have a fixed size.
490     if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
491       if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
492           ET && !ET->getDecl()->isFixed()) {
493         if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
494           return false;
495       }
496     }
497 
498     auto maybeNegate = [&]() -> bool {
499       if (CE->getCastKind() == CK_BooleanToSignedIntegral)
500         return this->emitNeg(*ToT, CE);
501       return true;
502     };
503 
504     if (ToT == PT_IntAP)
505       return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
506              maybeNegate();
507     if (ToT == PT_IntAPS)
508       return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
509              maybeNegate();
510 
511     if (FromT == ToT)
512       return true;
513     if (!this->emitCast(*FromT, *ToT, CE))
514       return false;
515 
516     return maybeNegate();
517   }
518 
519   case CK_PointerToBoolean:
520   case CK_MemberPointerToBoolean: {
521     PrimType PtrT = classifyPrim(SubExpr->getType());
522 
523     if (!this->visit(SubExpr))
524       return false;
525     return this->emitIsNonNull(PtrT, CE);
526   }
527 
528   case CK_IntegralComplexToBoolean:
529   case CK_FloatingComplexToBoolean: {
530     if (DiscardResult)
531       return this->discard(SubExpr);
532     if (!this->visit(SubExpr))
533       return false;
534     return this->emitComplexBoolCast(SubExpr);
535   }
536 
537   case CK_IntegralComplexToReal:
538   case CK_FloatingComplexToReal:
539     return this->emitComplexReal(SubExpr);
540 
541   case CK_IntegralRealToComplex:
542   case CK_FloatingRealToComplex: {
543     // We're creating a complex value here, so we need to
544     // allocate storage for it.
545     if (!Initializing) {
546       unsigned LocalIndex = allocateTemporary(CE);
547       if (!this->emitGetPtrLocal(LocalIndex, CE))
548         return false;
549     }
550 
551     // Init the complex value to {SubExpr, 0}.
552     if (!this->visitArrayElemInit(0, SubExpr))
553       return false;
554     // Zero-init the second element.
555     PrimType T = classifyPrim(SubExpr->getType());
556     if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
557       return false;
558     return this->emitInitElem(T, 1, SubExpr);
559   }
560 
561   case CK_IntegralComplexCast:
562   case CK_FloatingComplexCast:
563   case CK_IntegralComplexToFloatingComplex:
564   case CK_FloatingComplexToIntegralComplex: {
565     assert(CE->getType()->isAnyComplexType());
566     assert(SubExpr->getType()->isAnyComplexType());
567     if (DiscardResult)
568       return this->discard(SubExpr);
569 
570     if (!Initializing) {
571       std::optional<unsigned> LocalIndex = allocateLocal(CE);
572       if (!LocalIndex)
573         return false;
574       if (!this->emitGetPtrLocal(*LocalIndex, CE))
575         return false;
576     }
577 
578     // Location for the SubExpr.
579     // Since SubExpr is of complex type, visiting it results in a pointer
580     // anyway, so we just create a temporary pointer variable.
581     unsigned SubExprOffset = allocateLocalPrimitive(
582         SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
583     if (!this->visit(SubExpr))
584       return false;
585     if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
586       return false;
587 
588     PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
589     QualType DestElemType =
590         CE->getType()->getAs<ComplexType>()->getElementType();
591     PrimType DestElemT = classifyPrim(DestElemType);
592     // Cast both elements individually.
593     for (unsigned I = 0; I != 2; ++I) {
594       if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
595         return false;
596       if (!this->emitArrayElemPop(SourceElemT, I, CE))
597         return false;
598 
599       // Do the cast.
600       if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
601         return false;
602 
603       // Save the value.
604       if (!this->emitInitElem(DestElemT, I, CE))
605         return false;
606     }
607     return true;
608   }
609 
610   case CK_VectorSplat: {
611     assert(!classify(CE->getType()));
612     assert(classify(SubExpr->getType()));
613     assert(CE->getType()->isVectorType());
614 
615     if (DiscardResult)
616       return this->discard(SubExpr);
617 
618     if (!Initializing) {
619       std::optional<unsigned> LocalIndex = allocateLocal(CE);
620       if (!LocalIndex)
621         return false;
622       if (!this->emitGetPtrLocal(*LocalIndex, CE))
623         return false;
624     }
625 
626     const auto *VT = CE->getType()->getAs<VectorType>();
627     PrimType ElemT = classifyPrim(SubExpr->getType());
628     unsigned ElemOffset = allocateLocalPrimitive(
629         SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
630 
631     // Prepare a local variable for the scalar value.
632     if (!this->visit(SubExpr))
633       return false;
634     if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
635       return false;
636 
637     if (!this->emitSetLocal(ElemT, ElemOffset, CE))
638       return false;
639 
640     for (unsigned I = 0; I != VT->getNumElements(); ++I) {
641       if (!this->emitGetLocal(ElemT, ElemOffset, CE))
642         return false;
643       if (!this->emitInitElem(ElemT, I, CE))
644         return false;
645     }
646 
647     return true;
648   }
649 
650   case CK_HLSLVectorTruncation: {
651     assert(SubExpr->getType()->isVectorType());
652     if (std::optional<PrimType> ResultT = classify(CE)) {
653       assert(!DiscardResult);
654       // Result must be either a float or integer. Take the first element.
655       if (!this->visit(SubExpr))
656         return false;
657       return this->emitArrayElemPop(*ResultT, 0, CE);
658     }
659     // Otherwise, this truncates from one vector type to another.
660     assert(CE->getType()->isVectorType());
661 
662     if (!Initializing) {
663       unsigned LocalIndex = allocateTemporary(CE);
664       if (!this->emitGetPtrLocal(LocalIndex, CE))
665         return false;
666     }
667     unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements();
668     assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize);
669     if (!this->visit(SubExpr))
670       return false;
671     return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0,
672                                ToSize, CE);
673   };
674 
675   case CK_IntegralToFixedPoint: {
676     if (!this->visit(SubExpr))
677       return false;
678 
679     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
680     uint32_t I;
681     std::memcpy(&I, &Sem, sizeof(Sem));
682     return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), I,
683                                             CE);
684   }
685   case CK_FloatingToFixedPoint: {
686     if (!this->visit(SubExpr))
687       return false;
688 
689     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
690     uint32_t I;
691     std::memcpy(&I, &Sem, sizeof(Sem));
692     return this->emitCastFloatingFixedPoint(I, CE);
693   }
694   case CK_FixedPointToFloating: {
695     if (!this->visit(SubExpr))
696       return false;
697     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
698     return this->emitCastFixedPointFloating(TargetSemantics, CE);
699   }
700   case CK_FixedPointToIntegral: {
701     if (!this->visit(SubExpr))
702       return false;
703     return this->emitCastFixedPointIntegral(classifyPrim(CE->getType()), CE);
704   }
705   case CK_FixedPointCast: {
706     if (!this->visit(SubExpr))
707       return false;
708     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
709     uint32_t I;
710     std::memcpy(&I, &Sem, sizeof(Sem));
711     return this->emitCastFixedPoint(I, CE);
712   }
713 
714   case CK_ToVoid:
715     return discard(SubExpr);
716 
717   default:
718     return this->emitInvalid(CE);
719   }
720   llvm_unreachable("Unhandled clang::CastKind enum");
721 }
722 
723 template <class Emitter>
724 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
725   if (DiscardResult)
726     return true;
727 
728   return this->emitConst(LE->getValue(), LE);
729 }
730 
731 template <class Emitter>
732 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
733   if (DiscardResult)
734     return true;
735 
736   return this->emitConstFloat(E->getValue(), E);
737 }
738 
739 template <class Emitter>
740 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
741   assert(E->getType()->isAnyComplexType());
742   if (DiscardResult)
743     return true;
744 
745   if (!Initializing) {
746     unsigned LocalIndex = allocateTemporary(E);
747     if (!this->emitGetPtrLocal(LocalIndex, E))
748       return false;
749   }
750 
751   const Expr *SubExpr = E->getSubExpr();
752   PrimType SubExprT = classifyPrim(SubExpr->getType());
753 
754   if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
755     return false;
756   if (!this->emitInitElem(SubExprT, 0, SubExpr))
757     return false;
758   return this->visitArrayElemInit(1, SubExpr);
759 }
760 
761 template <class Emitter>
762 bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) {
763   assert(E->getType()->isFixedPointType());
764   assert(classifyPrim(E) == PT_FixedPoint);
765 
766   auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
767   APInt Value = E->getValue();
768   return this->emitConstFixedPoint(FixedPoint(Value, Sem), E);
769 }
770 
771 template <class Emitter>
772 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
773   return this->delegate(E->getSubExpr());
774 }
775 
776 template <class Emitter>
777 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
778   // Need short-circuiting for these.
779   if (BO->isLogicalOp() && !BO->getType()->isVectorType())
780     return this->VisitLogicalBinOp(BO);
781 
782   const Expr *LHS = BO->getLHS();
783   const Expr *RHS = BO->getRHS();
784 
785   // Handle comma operators. Just discard the LHS
786   // and delegate to RHS.
787   if (BO->isCommaOp()) {
788     if (!this->discard(LHS))
789       return false;
790     if (RHS->getType()->isVoidType())
791       return this->discard(RHS);
792 
793     return this->delegate(RHS);
794   }
795 
796   if (BO->getType()->isAnyComplexType())
797     return this->VisitComplexBinOp(BO);
798   if (BO->getType()->isVectorType())
799     return this->VisitVectorBinOp(BO);
800   if ((LHS->getType()->isAnyComplexType() ||
801        RHS->getType()->isAnyComplexType()) &&
802       BO->isComparisonOp())
803     return this->emitComplexComparison(LHS, RHS, BO);
804   if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType())
805     return this->VisitFixedPointBinOp(BO);
806 
807   if (BO->isPtrMemOp()) {
808     if (!this->visit(LHS))
809       return false;
810 
811     if (!this->visit(RHS))
812       return false;
813 
814     if (!this->emitToMemberPtr(BO))
815       return false;
816 
817     if (classifyPrim(BO) == PT_MemberPtr)
818       return true;
819 
820     if (!this->emitCastMemberPtrPtr(BO))
821       return false;
822     return DiscardResult ? this->emitPopPtr(BO) : true;
823   }
824 
825   // Typecheck the args.
826   std::optional<PrimType> LT = classify(LHS);
827   std::optional<PrimType> RT = classify(RHS);
828   std::optional<PrimType> T = classify(BO->getType());
829 
830   // Special case for C++'s three-way/spaceship operator <=>, which
831   // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
832   // have a PrimType).
833   if (!T && BO->getOpcode() == BO_Cmp) {
834     if (DiscardResult)
835       return true;
836     const ComparisonCategoryInfo *CmpInfo =
837         Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
838     assert(CmpInfo);
839 
840     // We need a temporary variable holding our return value.
841     if (!Initializing) {
842       std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
843       if (!this->emitGetPtrLocal(*ResultIndex, BO))
844         return false;
845     }
846 
847     if (!visit(LHS) || !visit(RHS))
848       return false;
849 
850     return this->emitCMP3(*LT, CmpInfo, BO);
851   }
852 
853   if (!LT || !RT || !T)
854     return false;
855 
856   // Pointer arithmetic special case.
857   if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
858     if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
859       return this->VisitPointerArithBinOp(BO);
860   }
861 
862   // Assignmentes require us to evalute the RHS first.
863   if (BO->getOpcode() == BO_Assign) {
864     if (!visit(RHS) || !visit(LHS))
865       return false;
866     if (!this->emitFlip(*LT, *RT, BO))
867       return false;
868   } else {
869     if (!visit(LHS) || !visit(RHS))
870       return false;
871   }
872 
873   // For languages such as C, cast the result of one
874   // of our comparision opcodes to T (which is usually int).
875   auto MaybeCastToBool = [this, T, BO](bool Result) {
876     if (!Result)
877       return false;
878     if (DiscardResult)
879       return this->emitPop(*T, BO);
880     if (T != PT_Bool)
881       return this->emitCast(PT_Bool, *T, BO);
882     return true;
883   };
884 
885   auto Discard = [this, T, BO](bool Result) {
886     if (!Result)
887       return false;
888     return DiscardResult ? this->emitPop(*T, BO) : true;
889   };
890 
891   switch (BO->getOpcode()) {
892   case BO_EQ:
893     return MaybeCastToBool(this->emitEQ(*LT, BO));
894   case BO_NE:
895     return MaybeCastToBool(this->emitNE(*LT, BO));
896   case BO_LT:
897     return MaybeCastToBool(this->emitLT(*LT, BO));
898   case BO_LE:
899     return MaybeCastToBool(this->emitLE(*LT, BO));
900   case BO_GT:
901     return MaybeCastToBool(this->emitGT(*LT, BO));
902   case BO_GE:
903     return MaybeCastToBool(this->emitGE(*LT, BO));
904   case BO_Sub:
905     if (BO->getType()->isFloatingType())
906       return Discard(this->emitSubf(getFPOptions(BO), BO));
907     return Discard(this->emitSub(*T, BO));
908   case BO_Add:
909     if (BO->getType()->isFloatingType())
910       return Discard(this->emitAddf(getFPOptions(BO), BO));
911     return Discard(this->emitAdd(*T, BO));
912   case BO_Mul:
913     if (BO->getType()->isFloatingType())
914       return Discard(this->emitMulf(getFPOptions(BO), BO));
915     return Discard(this->emitMul(*T, BO));
916   case BO_Rem:
917     return Discard(this->emitRem(*T, BO));
918   case BO_Div:
919     if (BO->getType()->isFloatingType())
920       return Discard(this->emitDivf(getFPOptions(BO), BO));
921     return Discard(this->emitDiv(*T, BO));
922   case BO_Assign:
923     if (DiscardResult)
924       return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
925                                      : this->emitStorePop(*T, BO);
926     if (LHS->refersToBitField()) {
927       if (!this->emitStoreBitField(*T, BO))
928         return false;
929     } else {
930       if (!this->emitStore(*T, BO))
931         return false;
932     }
933     // Assignments aren't necessarily lvalues in C.
934     // Load from them in that case.
935     if (!BO->isLValue())
936       return this->emitLoadPop(*T, BO);
937     return true;
938   case BO_And:
939     return Discard(this->emitBitAnd(*T, BO));
940   case BO_Or:
941     return Discard(this->emitBitOr(*T, BO));
942   case BO_Shl:
943     return Discard(this->emitShl(*LT, *RT, BO));
944   case BO_Shr:
945     return Discard(this->emitShr(*LT, *RT, BO));
946   case BO_Xor:
947     return Discard(this->emitBitXor(*T, BO));
948   case BO_LOr:
949   case BO_LAnd:
950     llvm_unreachable("Already handled earlier");
951   default:
952     return false;
953   }
954 
955   llvm_unreachable("Unhandled binary op");
956 }
957 
958 /// Perform addition/subtraction of a pointer and an integer or
959 /// subtraction of two pointers.
960 template <class Emitter>
961 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
962   BinaryOperatorKind Op = E->getOpcode();
963   const Expr *LHS = E->getLHS();
964   const Expr *RHS = E->getRHS();
965 
966   if ((Op != BO_Add && Op != BO_Sub) ||
967       (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
968     return false;
969 
970   std::optional<PrimType> LT = classify(LHS);
971   std::optional<PrimType> RT = classify(RHS);
972 
973   if (!LT || !RT)
974     return false;
975 
976   // Visit the given pointer expression and optionally convert to a PT_Ptr.
977   auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
978     if (!this->visit(E))
979       return false;
980     if (T != PT_Ptr)
981       return this->emitDecayPtr(T, PT_Ptr, E);
982     return true;
983   };
984 
985   if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
986     if (Op != BO_Sub)
987       return false;
988 
989     assert(E->getType()->isIntegerType());
990     if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
991       return false;
992 
993     return this->emitSubPtr(classifyPrim(E->getType()), E);
994   }
995 
996   PrimType OffsetType;
997   if (LHS->getType()->isIntegerType()) {
998     if (!visitAsPointer(RHS, *RT))
999       return false;
1000     if (!this->visit(LHS))
1001       return false;
1002     OffsetType = *LT;
1003   } else if (RHS->getType()->isIntegerType()) {
1004     if (!visitAsPointer(LHS, *LT))
1005       return false;
1006     if (!this->visit(RHS))
1007       return false;
1008     OffsetType = *RT;
1009   } else {
1010     return false;
1011   }
1012 
1013   // Do the operation and optionally transform to
1014   // result pointer type.
1015   if (Op == BO_Add) {
1016     if (!this->emitAddOffset(OffsetType, E))
1017       return false;
1018 
1019     if (classifyPrim(E) != PT_Ptr)
1020       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
1021     return true;
1022   } else if (Op == BO_Sub) {
1023     if (!this->emitSubOffset(OffsetType, E))
1024       return false;
1025 
1026     if (classifyPrim(E) != PT_Ptr)
1027       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
1028     return true;
1029   }
1030 
1031   return false;
1032 }
1033 
1034 template <class Emitter>
1035 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
1036   assert(E->isLogicalOp());
1037   BinaryOperatorKind Op = E->getOpcode();
1038   const Expr *LHS = E->getLHS();
1039   const Expr *RHS = E->getRHS();
1040   std::optional<PrimType> T = classify(E->getType());
1041 
1042   if (Op == BO_LOr) {
1043     // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
1044     LabelTy LabelTrue = this->getLabel();
1045     LabelTy LabelEnd = this->getLabel();
1046 
1047     if (!this->visitBool(LHS))
1048       return false;
1049     if (!this->jumpTrue(LabelTrue))
1050       return false;
1051 
1052     if (!this->visitBool(RHS))
1053       return false;
1054     if (!this->jump(LabelEnd))
1055       return false;
1056 
1057     this->emitLabel(LabelTrue);
1058     this->emitConstBool(true, E);
1059     this->fallthrough(LabelEnd);
1060     this->emitLabel(LabelEnd);
1061 
1062   } else {
1063     assert(Op == BO_LAnd);
1064     // Logical AND.
1065     // Visit LHS. Only visit RHS if LHS was TRUE.
1066     LabelTy LabelFalse = this->getLabel();
1067     LabelTy LabelEnd = this->getLabel();
1068 
1069     if (!this->visitBool(LHS))
1070       return false;
1071     if (!this->jumpFalse(LabelFalse))
1072       return false;
1073 
1074     if (!this->visitBool(RHS))
1075       return false;
1076     if (!this->jump(LabelEnd))
1077       return false;
1078 
1079     this->emitLabel(LabelFalse);
1080     this->emitConstBool(false, E);
1081     this->fallthrough(LabelEnd);
1082     this->emitLabel(LabelEnd);
1083   }
1084 
1085   if (DiscardResult)
1086     return this->emitPopBool(E);
1087 
1088   // For C, cast back to integer type.
1089   assert(T);
1090   if (T != PT_Bool)
1091     return this->emitCast(PT_Bool, *T, E);
1092   return true;
1093 }
1094 
1095 template <class Emitter>
1096 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
1097   // Prepare storage for result.
1098   if (!Initializing) {
1099     unsigned LocalIndex = allocateTemporary(E);
1100     if (!this->emitGetPtrLocal(LocalIndex, E))
1101       return false;
1102   }
1103 
1104   // Both LHS and RHS might _not_ be of complex type, but one of them
1105   // needs to be.
1106   const Expr *LHS = E->getLHS();
1107   const Expr *RHS = E->getRHS();
1108 
1109   PrimType ResultElemT = this->classifyComplexElementType(E->getType());
1110   unsigned ResultOffset = ~0u;
1111   if (!DiscardResult)
1112     ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
1113 
1114   // Save result pointer in ResultOffset
1115   if (!this->DiscardResult) {
1116     if (!this->emitDupPtr(E))
1117       return false;
1118     if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
1119       return false;
1120   }
1121   QualType LHSType = LHS->getType();
1122   if (const auto *AT = LHSType->getAs<AtomicType>())
1123     LHSType = AT->getValueType();
1124   QualType RHSType = RHS->getType();
1125   if (const auto *AT = RHSType->getAs<AtomicType>())
1126     RHSType = AT->getValueType();
1127 
1128   bool LHSIsComplex = LHSType->isAnyComplexType();
1129   unsigned LHSOffset;
1130   bool RHSIsComplex = RHSType->isAnyComplexType();
1131 
1132   // For ComplexComplex Mul, we have special ops to make their implementation
1133   // easier.
1134   BinaryOperatorKind Op = E->getOpcode();
1135   if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
1136     assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
1137            classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
1138     PrimType ElemT =
1139         classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
1140     if (!this->visit(LHS))
1141       return false;
1142     if (!this->visit(RHS))
1143       return false;
1144     return this->emitMulc(ElemT, E);
1145   }
1146 
1147   if (Op == BO_Div && RHSIsComplex) {
1148     QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
1149     PrimType ElemT = classifyPrim(ElemQT);
1150     // If the LHS is not complex, we still need to do the full complex
1151     // division, so just stub create a complex value and stub it out with
1152     // the LHS and a zero.
1153 
1154     if (!LHSIsComplex) {
1155       // This is using the RHS type for the fake-complex LHS.
1156       LHSOffset = allocateTemporary(RHS);
1157 
1158       if (!this->emitGetPtrLocal(LHSOffset, E))
1159         return false;
1160 
1161       if (!this->visit(LHS))
1162         return false;
1163       // real is LHS
1164       if (!this->emitInitElem(ElemT, 0, E))
1165         return false;
1166       // imag is zero
1167       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1168         return false;
1169       if (!this->emitInitElem(ElemT, 1, E))
1170         return false;
1171     } else {
1172       if (!this->visit(LHS))
1173         return false;
1174     }
1175 
1176     if (!this->visit(RHS))
1177       return false;
1178     return this->emitDivc(ElemT, E);
1179   }
1180 
1181   // Evaluate LHS and save value to LHSOffset.
1182   if (LHSType->isAnyComplexType()) {
1183     LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1184     if (!this->visit(LHS))
1185       return false;
1186     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1187       return false;
1188   } else {
1189     PrimType LHST = classifyPrim(LHSType);
1190     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
1191     if (!this->visit(LHS))
1192       return false;
1193     if (!this->emitSetLocal(LHST, LHSOffset, E))
1194       return false;
1195   }
1196 
1197   // Same with RHS.
1198   unsigned RHSOffset;
1199   if (RHSType->isAnyComplexType()) {
1200     RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1201     if (!this->visit(RHS))
1202       return false;
1203     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1204       return false;
1205   } else {
1206     PrimType RHST = classifyPrim(RHSType);
1207     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
1208     if (!this->visit(RHS))
1209       return false;
1210     if (!this->emitSetLocal(RHST, RHSOffset, E))
1211       return false;
1212   }
1213 
1214   // For both LHS and RHS, either load the value from the complex pointer, or
1215   // directly from the local variable. For index 1 (i.e. the imaginary part),
1216   // just load 0 and do the operation anyway.
1217   auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
1218                                  unsigned ElemIndex, unsigned Offset,
1219                                  const Expr *E) -> bool {
1220     if (IsComplex) {
1221       if (!this->emitGetLocal(PT_Ptr, Offset, E))
1222         return false;
1223       return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
1224                                     ElemIndex, E);
1225     }
1226     if (ElemIndex == 0 || !LoadZero)
1227       return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
1228     return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
1229                                       E);
1230   };
1231 
1232   // Now we can get pointers to the LHS and RHS from the offsets above.
1233   for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
1234     // Result pointer for the store later.
1235     if (!this->DiscardResult) {
1236       if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
1237         return false;
1238     }
1239 
1240     // The actual operation.
1241     switch (Op) {
1242     case BO_Add:
1243       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1244         return false;
1245 
1246       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1247         return false;
1248       if (ResultElemT == PT_Float) {
1249         if (!this->emitAddf(getFPOptions(E), E))
1250           return false;
1251       } else {
1252         if (!this->emitAdd(ResultElemT, E))
1253           return false;
1254       }
1255       break;
1256     case BO_Sub:
1257       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1258         return false;
1259 
1260       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1261         return false;
1262       if (ResultElemT == PT_Float) {
1263         if (!this->emitSubf(getFPOptions(E), E))
1264           return false;
1265       } else {
1266         if (!this->emitSub(ResultElemT, E))
1267           return false;
1268       }
1269       break;
1270     case BO_Mul:
1271       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1272         return false;
1273 
1274       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1275         return false;
1276 
1277       if (ResultElemT == PT_Float) {
1278         if (!this->emitMulf(getFPOptions(E), E))
1279           return false;
1280       } else {
1281         if (!this->emitMul(ResultElemT, E))
1282           return false;
1283       }
1284       break;
1285     case BO_Div:
1286       assert(!RHSIsComplex);
1287       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1288         return false;
1289 
1290       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1291         return false;
1292 
1293       if (ResultElemT == PT_Float) {
1294         if (!this->emitDivf(getFPOptions(E), E))
1295           return false;
1296       } else {
1297         if (!this->emitDiv(ResultElemT, E))
1298           return false;
1299       }
1300       break;
1301 
1302     default:
1303       return false;
1304     }
1305 
1306     if (!this->DiscardResult) {
1307       // Initialize array element with the value we just computed.
1308       if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
1309         return false;
1310     } else {
1311       if (!this->emitPop(ResultElemT, E))
1312         return false;
1313     }
1314   }
1315   return true;
1316 }
1317 
1318 template <class Emitter>
1319 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) {
1320   assert(!E->isCommaOp() &&
1321          "Comma op should be handled in VisitBinaryOperator");
1322   assert(E->getType()->isVectorType());
1323   assert(E->getLHS()->getType()->isVectorType());
1324   assert(E->getRHS()->getType()->isVectorType());
1325 
1326   // Prepare storage for result.
1327   if (!Initializing && !E->isCompoundAssignmentOp()) {
1328     unsigned LocalIndex = allocateTemporary(E);
1329     if (!this->emitGetPtrLocal(LocalIndex, E))
1330       return false;
1331   }
1332 
1333   const Expr *LHS = E->getLHS();
1334   const Expr *RHS = E->getRHS();
1335   const auto *VecTy = E->getType()->getAs<VectorType>();
1336   auto Op = E->isCompoundAssignmentOp()
1337                 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode())
1338                 : E->getOpcode();
1339 
1340   PrimType ElemT = this->classifyVectorElementType(LHS->getType());
1341   PrimType RHSElemT = this->classifyVectorElementType(RHS->getType());
1342   PrimType ResultElemT = this->classifyVectorElementType(E->getType());
1343 
1344   // Evaluate LHS and save value to LHSOffset.
1345   unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1346   if (!this->visit(LHS))
1347     return false;
1348   if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1349     return false;
1350 
1351   // Evaluate RHS and save value to RHSOffset.
1352   unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1353   if (!this->visit(RHS))
1354     return false;
1355   if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1356     return false;
1357 
1358   if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E))
1359     return false;
1360 
1361   // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the
1362   // integer promotion.
1363   bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp());
1364   QualType PromotTy =
1365       Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy);
1366   PrimType PromotT = classifyPrim(PromotTy);
1367   PrimType OpT = NeedIntPromot ? PromotT : ElemT;
1368 
1369   auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) {
1370     if (!this->emitGetLocal(PT_Ptr, Offset, E))
1371       return false;
1372     if (!this->emitArrayElemPop(ElemT, Index, E))
1373       return false;
1374     if (E->isLogicalOp()) {
1375       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
1376         return false;
1377       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1378         return false;
1379     } else if (NeedIntPromot) {
1380       if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E))
1381         return false;
1382     }
1383     return true;
1384   };
1385 
1386 #define EMIT_ARITH_OP(OP)                                                      \
1387   {                                                                            \
1388     if (ElemT == PT_Float) {                                                   \
1389       if (!this->emit##OP##f(getFPOptions(E), E))                              \
1390         return false;                                                          \
1391     } else {                                                                   \
1392       if (!this->emit##OP(ElemT, E))                                           \
1393         return false;                                                          \
1394     }                                                                          \
1395     break;                                                                     \
1396   }
1397 
1398   for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
1399     if (!getElem(LHSOffset, ElemT, I))
1400       return false;
1401     if (!getElem(RHSOffset, RHSElemT, I))
1402       return false;
1403     switch (Op) {
1404     case BO_Add:
1405       EMIT_ARITH_OP(Add)
1406     case BO_Sub:
1407       EMIT_ARITH_OP(Sub)
1408     case BO_Mul:
1409       EMIT_ARITH_OP(Mul)
1410     case BO_Div:
1411       EMIT_ARITH_OP(Div)
1412     case BO_Rem:
1413       if (!this->emitRem(ElemT, E))
1414         return false;
1415       break;
1416     case BO_And:
1417       if (!this->emitBitAnd(OpT, E))
1418         return false;
1419       break;
1420     case BO_Or:
1421       if (!this->emitBitOr(OpT, E))
1422         return false;
1423       break;
1424     case BO_Xor:
1425       if (!this->emitBitXor(OpT, E))
1426         return false;
1427       break;
1428     case BO_Shl:
1429       if (!this->emitShl(OpT, RHSElemT, E))
1430         return false;
1431       break;
1432     case BO_Shr:
1433       if (!this->emitShr(OpT, RHSElemT, E))
1434         return false;
1435       break;
1436     case BO_EQ:
1437       if (!this->emitEQ(ElemT, E))
1438         return false;
1439       break;
1440     case BO_NE:
1441       if (!this->emitNE(ElemT, E))
1442         return false;
1443       break;
1444     case BO_LE:
1445       if (!this->emitLE(ElemT, E))
1446         return false;
1447       break;
1448     case BO_LT:
1449       if (!this->emitLT(ElemT, E))
1450         return false;
1451       break;
1452     case BO_GE:
1453       if (!this->emitGE(ElemT, E))
1454         return false;
1455       break;
1456     case BO_GT:
1457       if (!this->emitGT(ElemT, E))
1458         return false;
1459       break;
1460     case BO_LAnd:
1461       // a && b is equivalent to a!=0 & b!=0
1462       if (!this->emitBitAnd(ResultElemT, E))
1463         return false;
1464       break;
1465     case BO_LOr:
1466       // a || b is equivalent to a!=0 | b!=0
1467       if (!this->emitBitOr(ResultElemT, E))
1468         return false;
1469       break;
1470     default:
1471       return this->emitInvalid(E);
1472     }
1473 
1474     // The result of the comparison is a vector of the same width and number
1475     // of elements as the comparison operands with a signed integral element
1476     // type.
1477     //
1478     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
1479     if (E->isComparisonOp()) {
1480       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1481         return false;
1482       if (!this->emitNeg(ResultElemT, E))
1483         return false;
1484     }
1485 
1486     // If we performed an integer promotion, we need to cast the compute result
1487     // into result vector element type.
1488     if (NeedIntPromot &&
1489         !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E))
1490       return false;
1491 
1492     // Initialize array element with the value we just computed.
1493     if (!this->emitInitElem(ResultElemT, I, E))
1494       return false;
1495   }
1496 
1497   if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E))
1498     return false;
1499   return true;
1500 }
1501 
1502 template <class Emitter>
1503 bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) {
1504   const Expr *LHS = E->getLHS();
1505   const Expr *RHS = E->getRHS();
1506 
1507   assert(LHS->getType()->isFixedPointType() ||
1508          RHS->getType()->isFixedPointType());
1509 
1510   auto LHSSema = Ctx.getASTContext().getFixedPointSemantics(LHS->getType());
1511   auto RHSSema = Ctx.getASTContext().getFixedPointSemantics(RHS->getType());
1512 
1513   if (!this->visit(LHS))
1514     return false;
1515   if (!LHS->getType()->isFixedPointType()) {
1516     uint32_t I;
1517     std::memcpy(&I, &LHSSema, sizeof(llvm::FixedPointSemantics));
1518     if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()), I, E))
1519       return false;
1520   }
1521 
1522   if (!this->visit(RHS))
1523     return false;
1524   if (!RHS->getType()->isFixedPointType()) {
1525     uint32_t I;
1526     std::memcpy(&I, &RHSSema, sizeof(llvm::FixedPointSemantics));
1527     if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()), I, E))
1528       return false;
1529   }
1530 
1531   // Convert the result to the target semantics.
1532   auto ConvertResult = [&](bool R) -> bool {
1533     if (!R)
1534       return false;
1535     auto ResultSema = Ctx.getASTContext().getFixedPointSemantics(E->getType());
1536     auto CommonSema = LHSSema.getCommonSemantics(RHSSema);
1537     if (ResultSema != CommonSema) {
1538       uint32_t I;
1539       std::memcpy(&I, &ResultSema, sizeof(ResultSema));
1540       return this->emitCastFixedPoint(I, E);
1541     }
1542     return true;
1543   };
1544 
1545   switch (E->getOpcode()) {
1546   case BO_EQ:
1547     return this->emitEQFixedPoint(E);
1548   case BO_NE:
1549     return this->emitNEFixedPoint(E);
1550 #if 0
1551   case BO_LT:
1552     return this->emitLTFixedPoint(E);
1553   case BO_LE:
1554     return this->emitLEFixedPoint(E);
1555   case BO_GT:
1556     return this->emitGTFixedPoint(E);
1557   case BO_GE:
1558     return this->emitGEFixedPoint(E);
1559 #endif
1560   case BO_Add:
1561     return ConvertResult(this->emitAddFixedPoint(E));
1562 
1563   default:
1564     return this->emitInvalid(E);
1565   }
1566 
1567   llvm_unreachable("unhandled binop opcode");
1568 }
1569 
1570 template <class Emitter>
1571 bool Compiler<Emitter>::VisitFixedPointUnaryOperator(const UnaryOperator *E) {
1572   const Expr *SubExpr = E->getSubExpr();
1573   assert(SubExpr->getType()->isFixedPointType());
1574 
1575   switch (E->getOpcode()) {
1576   case UO_Plus:
1577     return this->delegate(SubExpr);
1578   case UO_Minus:
1579     if (!this->visit(SubExpr))
1580       return false;
1581     return this->emitNegFixedPoint(E);
1582   default:
1583     return false;
1584   }
1585 
1586   llvm_unreachable("Unhandled unary opcode");
1587 }
1588 
1589 template <class Emitter>
1590 bool Compiler<Emitter>::VisitImplicitValueInitExpr(
1591     const ImplicitValueInitExpr *E) {
1592   QualType QT = E->getType();
1593 
1594   if (std::optional<PrimType> T = classify(QT))
1595     return this->visitZeroInitializer(*T, QT, E);
1596 
1597   if (QT->isRecordType()) {
1598     const RecordDecl *RD = QT->getAsRecordDecl();
1599     assert(RD);
1600     if (RD->isInvalidDecl())
1601       return false;
1602 
1603     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1604         CXXRD && CXXRD->getNumVBases() > 0) {
1605       // TODO: Diagnose.
1606       return false;
1607     }
1608 
1609     const Record *R = getRecord(QT);
1610     if (!R)
1611       return false;
1612 
1613     assert(Initializing);
1614     return this->visitZeroRecordInitializer(R, E);
1615   }
1616 
1617   if (QT->isIncompleteArrayType())
1618     return true;
1619 
1620   if (QT->isArrayType()) {
1621     const ArrayType *AT = QT->getAsArrayTypeUnsafe();
1622     assert(AT);
1623     const auto *CAT = cast<ConstantArrayType>(AT);
1624     size_t NumElems = CAT->getZExtSize();
1625     PrimType ElemT = classifyPrim(CAT->getElementType());
1626 
1627     for (size_t I = 0; I != NumElems; ++I) {
1628       if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E))
1629         return false;
1630       if (!this->emitInitElem(ElemT, I, E))
1631         return false;
1632     }
1633 
1634     return true;
1635   }
1636 
1637   if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
1638     assert(Initializing);
1639     QualType ElemQT = ComplexTy->getElementType();
1640     PrimType ElemT = classifyPrim(ElemQT);
1641     for (unsigned I = 0; I < 2; ++I) {
1642       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1643         return false;
1644       if (!this->emitInitElem(ElemT, I, E))
1645         return false;
1646     }
1647     return true;
1648   }
1649 
1650   if (const auto *VecT = E->getType()->getAs<VectorType>()) {
1651     unsigned NumVecElements = VecT->getNumElements();
1652     QualType ElemQT = VecT->getElementType();
1653     PrimType ElemT = classifyPrim(ElemQT);
1654 
1655     for (unsigned I = 0; I < NumVecElements; ++I) {
1656       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1657         return false;
1658       if (!this->emitInitElem(ElemT, I, E))
1659         return false;
1660     }
1661     return true;
1662   }
1663 
1664   return false;
1665 }
1666 
1667 template <class Emitter>
1668 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1669   const Expr *LHS = E->getLHS();
1670   const Expr *RHS = E->getRHS();
1671   const Expr *Index = E->getIdx();
1672 
1673   if (DiscardResult)
1674     return this->discard(LHS) && this->discard(RHS);
1675 
1676   // C++17's rules require us to evaluate the LHS first, regardless of which
1677   // side is the base.
1678   bool Success = true;
1679   for (const Expr *SubExpr : {LHS, RHS}) {
1680     if (!this->visit(SubExpr))
1681       Success = false;
1682   }
1683 
1684   if (!Success)
1685     return false;
1686 
1687   PrimType IndexT = classifyPrim(Index->getType());
1688   // If the index is first, we need to change that.
1689   if (LHS == Index) {
1690     if (!this->emitFlip(PT_Ptr, IndexT, E))
1691       return false;
1692   }
1693 
1694   return this->emitArrayElemPtrPop(IndexT, E);
1695 }
1696 
1697 template <class Emitter>
1698 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
1699                                       const Expr *ArrayFiller, const Expr *E) {
1700   QualType QT = E->getType();
1701   if (const auto *AT = QT->getAs<AtomicType>())
1702     QT = AT->getValueType();
1703 
1704   if (QT->isVoidType()) {
1705     if (Inits.size() == 0)
1706       return true;
1707     return this->emitInvalid(E);
1708   }
1709 
1710   // Handle discarding first.
1711   if (DiscardResult) {
1712     for (const Expr *Init : Inits) {
1713       if (!this->discard(Init))
1714         return false;
1715     }
1716     return true;
1717   }
1718 
1719   // Primitive values.
1720   if (std::optional<PrimType> T = classify(QT)) {
1721     assert(!DiscardResult);
1722     if (Inits.size() == 0)
1723       return this->visitZeroInitializer(*T, QT, E);
1724     assert(Inits.size() == 1);
1725     return this->delegate(Inits[0]);
1726   }
1727 
1728   if (QT->isRecordType()) {
1729     const Record *R = getRecord(QT);
1730 
1731     if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
1732       return this->delegate(Inits[0]);
1733 
1734     auto initPrimitiveField = [=](const Record::Field *FieldToInit,
1735                                   const Expr *Init, PrimType T) -> bool {
1736       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1737       if (!this->visit(Init))
1738         return false;
1739 
1740       if (FieldToInit->isBitField())
1741         return this->emitInitBitField(T, FieldToInit, E);
1742       return this->emitInitField(T, FieldToInit->Offset, E);
1743     };
1744 
1745     auto initCompositeField = [=](const Record::Field *FieldToInit,
1746                                   const Expr *Init) -> bool {
1747       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1748       InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
1749       // Non-primitive case. Get a pointer to the field-to-initialize
1750       // on the stack and recurse into visitInitializer().
1751       if (!this->emitGetPtrField(FieldToInit->Offset, Init))
1752         return false;
1753       if (!this->visitInitializer(Init))
1754         return false;
1755       return this->emitPopPtr(E);
1756     };
1757 
1758     if (R->isUnion()) {
1759       if (Inits.size() == 0) {
1760         if (!this->visitZeroRecordInitializer(R, E))
1761           return false;
1762       } else {
1763         const Expr *Init = Inits[0];
1764         const FieldDecl *FToInit = nullptr;
1765         if (const auto *ILE = dyn_cast<InitListExpr>(E))
1766           FToInit = ILE->getInitializedFieldInUnion();
1767         else
1768           FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
1769 
1770         const Record::Field *FieldToInit = R->getField(FToInit);
1771         if (std::optional<PrimType> T = classify(Init)) {
1772           if (!initPrimitiveField(FieldToInit, Init, *T))
1773             return false;
1774         } else {
1775           if (!initCompositeField(FieldToInit, Init))
1776             return false;
1777         }
1778       }
1779       return this->emitFinishInit(E);
1780     }
1781 
1782     assert(!R->isUnion());
1783     unsigned InitIndex = 0;
1784     for (const Expr *Init : Inits) {
1785       // Skip unnamed bitfields.
1786       while (InitIndex < R->getNumFields() &&
1787              R->getField(InitIndex)->Decl->isUnnamedBitField())
1788         ++InitIndex;
1789 
1790       if (std::optional<PrimType> T = classify(Init)) {
1791         const Record::Field *FieldToInit = R->getField(InitIndex);
1792         if (!initPrimitiveField(FieldToInit, Init, *T))
1793           return false;
1794         ++InitIndex;
1795       } else {
1796         // Initializer for a direct base class.
1797         if (const Record::Base *B = R->getBase(Init->getType())) {
1798           if (!this->emitGetPtrBase(B->Offset, Init))
1799             return false;
1800 
1801           if (!this->visitInitializer(Init))
1802             return false;
1803 
1804           if (!this->emitFinishInitPop(E))
1805             return false;
1806           // Base initializers don't increase InitIndex, since they don't count
1807           // into the Record's fields.
1808         } else {
1809           const Record::Field *FieldToInit = R->getField(InitIndex);
1810           if (!initCompositeField(FieldToInit, Init))
1811             return false;
1812           ++InitIndex;
1813         }
1814       }
1815     }
1816     return this->emitFinishInit(E);
1817   }
1818 
1819   if (QT->isArrayType()) {
1820     if (Inits.size() == 1 && QT == Inits[0]->getType())
1821       return this->delegate(Inits[0]);
1822 
1823     unsigned ElementIndex = 0;
1824     for (const Expr *Init : Inits) {
1825       if (const auto *EmbedS =
1826               dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1827         PrimType TargetT = classifyPrim(Init->getType());
1828 
1829         auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
1830           PrimType InitT = classifyPrim(Init->getType());
1831           if (!this->visit(Init))
1832             return false;
1833           if (InitT != TargetT) {
1834             if (!this->emitCast(InitT, TargetT, E))
1835               return false;
1836           }
1837           return this->emitInitElem(TargetT, ElemIndex, Init);
1838         };
1839         if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
1840           return false;
1841       } else {
1842         if (!this->visitArrayElemInit(ElementIndex, Init))
1843           return false;
1844         ++ElementIndex;
1845       }
1846     }
1847 
1848     // Expand the filler expression.
1849     // FIXME: This should go away.
1850     if (ArrayFiller) {
1851       const ConstantArrayType *CAT =
1852           Ctx.getASTContext().getAsConstantArrayType(QT);
1853       uint64_t NumElems = CAT->getZExtSize();
1854 
1855       for (; ElementIndex != NumElems; ++ElementIndex) {
1856         if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
1857           return false;
1858       }
1859     }
1860 
1861     return this->emitFinishInit(E);
1862   }
1863 
1864   if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
1865     unsigned NumInits = Inits.size();
1866 
1867     if (NumInits == 1)
1868       return this->delegate(Inits[0]);
1869 
1870     QualType ElemQT = ComplexTy->getElementType();
1871     PrimType ElemT = classifyPrim(ElemQT);
1872     if (NumInits == 0) {
1873       // Zero-initialize both elements.
1874       for (unsigned I = 0; I < 2; ++I) {
1875         if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1876           return false;
1877         if (!this->emitInitElem(ElemT, I, E))
1878           return false;
1879       }
1880     } else if (NumInits == 2) {
1881       unsigned InitIndex = 0;
1882       for (const Expr *Init : Inits) {
1883         if (!this->visit(Init))
1884           return false;
1885 
1886         if (!this->emitInitElem(ElemT, InitIndex, E))
1887           return false;
1888         ++InitIndex;
1889       }
1890     }
1891     return true;
1892   }
1893 
1894   if (const auto *VecT = QT->getAs<VectorType>()) {
1895     unsigned NumVecElements = VecT->getNumElements();
1896     assert(NumVecElements >= Inits.size());
1897 
1898     QualType ElemQT = VecT->getElementType();
1899     PrimType ElemT = classifyPrim(ElemQT);
1900 
1901     // All initializer elements.
1902     unsigned InitIndex = 0;
1903     for (const Expr *Init : Inits) {
1904       if (!this->visit(Init))
1905         return false;
1906 
1907       // If the initializer is of vector type itself, we have to deconstruct
1908       // that and initialize all the target fields from the initializer fields.
1909       if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
1910         if (!this->emitCopyArray(ElemT, 0, InitIndex,
1911                                  InitVecT->getNumElements(), E))
1912           return false;
1913         InitIndex += InitVecT->getNumElements();
1914       } else {
1915         if (!this->emitInitElem(ElemT, InitIndex, E))
1916           return false;
1917         ++InitIndex;
1918       }
1919     }
1920 
1921     assert(InitIndex <= NumVecElements);
1922 
1923     // Fill the rest with zeroes.
1924     for (; InitIndex != NumVecElements; ++InitIndex) {
1925       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1926         return false;
1927       if (!this->emitInitElem(ElemT, InitIndex, E))
1928         return false;
1929     }
1930     return true;
1931   }
1932 
1933   return false;
1934 }
1935 
1936 /// Pointer to the array(not the element!) must be on the stack when calling
1937 /// this.
1938 template <class Emitter>
1939 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
1940                                            const Expr *Init) {
1941   if (std::optional<PrimType> T = classify(Init->getType())) {
1942     // Visit the primitive element like normal.
1943     if (!this->visit(Init))
1944       return false;
1945     return this->emitInitElem(*T, ElemIndex, Init);
1946   }
1947 
1948   InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
1949   // Advance the pointer currently on the stack to the given
1950   // dimension.
1951   if (!this->emitConstUint32(ElemIndex, Init))
1952     return false;
1953   if (!this->emitArrayElemPtrUint32(Init))
1954     return false;
1955   if (!this->visitInitializer(Init))
1956     return false;
1957   return this->emitFinishInitPop(Init);
1958 }
1959 
1960 template <class Emitter>
1961 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
1962   return this->visitInitList(E->inits(), E->getArrayFiller(), E);
1963 }
1964 
1965 template <class Emitter>
1966 bool Compiler<Emitter>::VisitCXXParenListInitExpr(
1967     const CXXParenListInitExpr *E) {
1968   return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
1969 }
1970 
1971 template <class Emitter>
1972 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
1973     const SubstNonTypeTemplateParmExpr *E) {
1974   return this->delegate(E->getReplacement());
1975 }
1976 
1977 template <class Emitter>
1978 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
1979   std::optional<PrimType> T = classify(E->getType());
1980   if (T && E->hasAPValueResult()) {
1981     // Try to emit the APValue directly, without visiting the subexpr.
1982     // This will only fail if we can't emit the APValue, so won't emit any
1983     // diagnostics or any double values.
1984     if (DiscardResult)
1985       return true;
1986 
1987     if (this->visitAPValue(E->getAPValueResult(), *T, E))
1988       return true;
1989   }
1990   return this->delegate(E->getSubExpr());
1991 }
1992 
1993 template <class Emitter>
1994 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
1995   auto It = E->begin();
1996   return this->visit(*It);
1997 }
1998 
1999 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
2000                              UnaryExprOrTypeTrait Kind) {
2001   bool AlignOfReturnsPreferred =
2002       ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
2003 
2004   // C++ [expr.alignof]p3:
2005   //     When alignof is applied to a reference type, the result is the
2006   //     alignment of the referenced type.
2007   if (const auto *Ref = T->getAs<ReferenceType>())
2008     T = Ref->getPointeeType();
2009 
2010   if (T.getQualifiers().hasUnaligned())
2011     return CharUnits::One();
2012 
2013   // __alignof is defined to return the preferred alignment.
2014   // Before 8, clang returned the preferred alignment for alignof and
2015   // _Alignof as well.
2016   if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
2017     return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
2018 
2019   return ASTCtx.getTypeAlignInChars(T);
2020 }
2021 
2022 template <class Emitter>
2023 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
2024     const UnaryExprOrTypeTraitExpr *E) {
2025   UnaryExprOrTypeTrait Kind = E->getKind();
2026   const ASTContext &ASTCtx = Ctx.getASTContext();
2027 
2028   if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
2029     QualType ArgType = E->getTypeOfArgument();
2030 
2031     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2032     //   the result is the size of the referenced type."
2033     if (const auto *Ref = ArgType->getAs<ReferenceType>())
2034       ArgType = Ref->getPointeeType();
2035 
2036     CharUnits Size;
2037     if (ArgType->isVoidType() || ArgType->isFunctionType())
2038       Size = CharUnits::One();
2039     else {
2040       if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
2041         return false;
2042 
2043       if (Kind == UETT_SizeOf)
2044         Size = ASTCtx.getTypeSizeInChars(ArgType);
2045       else
2046         Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
2047     }
2048 
2049     if (DiscardResult)
2050       return true;
2051 
2052     return this->emitConst(Size.getQuantity(), E);
2053   }
2054 
2055   if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
2056     CharUnits Size;
2057 
2058     if (E->isArgumentType()) {
2059       QualType ArgType = E->getTypeOfArgument();
2060 
2061       Size = AlignOfType(ArgType, ASTCtx, Kind);
2062     } else {
2063       // Argument is an expression, not a type.
2064       const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
2065 
2066       // The kinds of expressions that we have special-case logic here for
2067       // should be kept up to date with the special checks for those
2068       // expressions in Sema.
2069 
2070       // alignof decl is always accepted, even if it doesn't make sense: we
2071       // default to 1 in those cases.
2072       if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
2073         Size = ASTCtx.getDeclAlign(DRE->getDecl(),
2074                                    /*RefAsPointee*/ true);
2075       else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
2076         Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
2077                                    /*RefAsPointee*/ true);
2078       else
2079         Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
2080     }
2081 
2082     if (DiscardResult)
2083       return true;
2084 
2085     return this->emitConst(Size.getQuantity(), E);
2086   }
2087 
2088   if (Kind == UETT_VectorElements) {
2089     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
2090       return this->emitConst(VT->getNumElements(), E);
2091     assert(E->getTypeOfArgument()->isSizelessVectorType());
2092     return this->emitSizelessVectorElementSize(E);
2093   }
2094 
2095   if (Kind == UETT_VecStep) {
2096     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
2097       unsigned N = VT->getNumElements();
2098 
2099       // The vec_step built-in functions that take a 3-component
2100       // vector return 4. (OpenCL 1.1 spec 6.11.12)
2101       if (N == 3)
2102         N = 4;
2103 
2104       return this->emitConst(N, E);
2105     }
2106     return this->emitConst(1, E);
2107   }
2108 
2109   return false;
2110 }
2111 
2112 template <class Emitter>
2113 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
2114   // 'Base.Member'
2115   const Expr *Base = E->getBase();
2116   const ValueDecl *Member = E->getMemberDecl();
2117 
2118   if (DiscardResult)
2119     return this->discard(Base);
2120 
2121   // MemberExprs are almost always lvalues, in which case we don't need to
2122   // do the load. But sometimes they aren't.
2123   const auto maybeLoadValue = [&]() -> bool {
2124     if (E->isGLValue())
2125       return true;
2126     if (std::optional<PrimType> T = classify(E))
2127       return this->emitLoadPop(*T, E);
2128     return false;
2129   };
2130 
2131   if (const auto *VD = dyn_cast<VarDecl>(Member)) {
2132     // I am almost confident in saying that a var decl must be static
2133     // and therefore registered as a global variable. But this will probably
2134     // turn out to be wrong some time in the future, as always.
2135     if (auto GlobalIndex = P.getGlobal(VD))
2136       return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
2137     return false;
2138   }
2139 
2140   if (!isa<FieldDecl>(Member)) {
2141     if (!this->discard(Base) && !this->emitSideEffect(E))
2142       return false;
2143 
2144     return this->visitDeclRef(Member, E);
2145   }
2146 
2147   if (Initializing) {
2148     if (!this->delegate(Base))
2149       return false;
2150   } else {
2151     if (!this->visit(Base))
2152       return false;
2153   }
2154 
2155   // Base above gives us a pointer on the stack.
2156   const auto *FD = cast<FieldDecl>(Member);
2157   const RecordDecl *RD = FD->getParent();
2158   const Record *R = getRecord(RD);
2159   if (!R)
2160     return false;
2161   const Record::Field *F = R->getField(FD);
2162   // Leave a pointer to the field on the stack.
2163   if (F->Decl->getType()->isReferenceType())
2164     return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
2165   return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
2166 }
2167 
2168 template <class Emitter>
2169 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
2170   // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
2171   // stand-alone, e.g. via EvaluateAsInt().
2172   if (!ArrayIndex)
2173     return false;
2174   return this->emitConst(*ArrayIndex, E);
2175 }
2176 
2177 template <class Emitter>
2178 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
2179   assert(Initializing);
2180   assert(!DiscardResult);
2181 
2182   // We visit the common opaque expression here once so we have its value
2183   // cached.
2184   if (!this->discard(E->getCommonExpr()))
2185     return false;
2186 
2187   // TODO: This compiles to quite a lot of bytecode if the array is larger.
2188   //   Investigate compiling this to a loop.
2189   const Expr *SubExpr = E->getSubExpr();
2190   size_t Size = E->getArraySize().getZExtValue();
2191 
2192   // So, every iteration, we execute an assignment here
2193   // where the LHS is on the stack (the target array)
2194   // and the RHS is our SubExpr.
2195   for (size_t I = 0; I != Size; ++I) {
2196     ArrayIndexScope<Emitter> IndexScope(this, I);
2197     BlockScope<Emitter> BS(this);
2198 
2199     if (!this->visitArrayElemInit(I, SubExpr))
2200       return false;
2201     if (!BS.destroyLocals())
2202       return false;
2203   }
2204   return true;
2205 }
2206 
2207 template <class Emitter>
2208 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2209   const Expr *SourceExpr = E->getSourceExpr();
2210   if (!SourceExpr)
2211     return false;
2212 
2213   if (Initializing)
2214     return this->visitInitializer(SourceExpr);
2215 
2216   PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
2217   if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
2218     return this->emitGetLocal(SubExprT, It->second, E);
2219 
2220   if (!this->visit(SourceExpr))
2221     return false;
2222 
2223   // At this point we either have the evaluated source expression or a pointer
2224   // to an object on the stack. We want to create a local variable that stores
2225   // this value.
2226   unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
2227   if (!this->emitSetLocal(SubExprT, LocalIndex, E))
2228     return false;
2229 
2230   // Here the local variable is created but the value is removed from the stack,
2231   // so we put it back if the caller needs it.
2232   if (!DiscardResult) {
2233     if (!this->emitGetLocal(SubExprT, LocalIndex, E))
2234       return false;
2235   }
2236 
2237   // This is cleaned up when the local variable is destroyed.
2238   OpaqueExprs.insert({E, LocalIndex});
2239 
2240   return true;
2241 }
2242 
2243 template <class Emitter>
2244 bool Compiler<Emitter>::VisitAbstractConditionalOperator(
2245     const AbstractConditionalOperator *E) {
2246   const Expr *Condition = E->getCond();
2247   const Expr *TrueExpr = E->getTrueExpr();
2248   const Expr *FalseExpr = E->getFalseExpr();
2249 
2250   LabelTy LabelEnd = this->getLabel();   // Label after the operator.
2251   LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
2252 
2253   if (!this->visitBool(Condition))
2254     return false;
2255 
2256   if (!this->jumpFalse(LabelFalse))
2257     return false;
2258 
2259   {
2260     LocalScope<Emitter> S(this);
2261     if (!this->delegate(TrueExpr))
2262       return false;
2263     if (!S.destroyLocals())
2264       return false;
2265   }
2266 
2267   if (!this->jump(LabelEnd))
2268     return false;
2269 
2270   this->emitLabel(LabelFalse);
2271 
2272   {
2273     LocalScope<Emitter> S(this);
2274     if (!this->delegate(FalseExpr))
2275       return false;
2276     if (!S.destroyLocals())
2277       return false;
2278   }
2279 
2280   this->fallthrough(LabelEnd);
2281   this->emitLabel(LabelEnd);
2282 
2283   return true;
2284 }
2285 
2286 template <class Emitter>
2287 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
2288   if (DiscardResult)
2289     return true;
2290 
2291   if (!Initializing) {
2292     unsigned StringIndex = P.createGlobalString(E);
2293     return this->emitGetPtrGlobal(StringIndex, E);
2294   }
2295 
2296   // We are initializing an array on the stack.
2297   const ConstantArrayType *CAT =
2298       Ctx.getASTContext().getAsConstantArrayType(E->getType());
2299   assert(CAT && "a string literal that's not a constant array?");
2300 
2301   // If the initializer string is too long, a diagnostic has already been
2302   // emitted. Read only the array length from the string literal.
2303   unsigned ArraySize = CAT->getZExtSize();
2304   unsigned N = std::min(ArraySize, E->getLength());
2305   size_t CharWidth = E->getCharByteWidth();
2306 
2307   for (unsigned I = 0; I != N; ++I) {
2308     uint32_t CodeUnit = E->getCodeUnit(I);
2309 
2310     if (CharWidth == 1) {
2311       this->emitConstSint8(CodeUnit, E);
2312       this->emitInitElemSint8(I, E);
2313     } else if (CharWidth == 2) {
2314       this->emitConstUint16(CodeUnit, E);
2315       this->emitInitElemUint16(I, E);
2316     } else if (CharWidth == 4) {
2317       this->emitConstUint32(CodeUnit, E);
2318       this->emitInitElemUint32(I, E);
2319     } else {
2320       llvm_unreachable("unsupported character width");
2321     }
2322   }
2323 
2324   // Fill up the rest of the char array with NUL bytes.
2325   for (unsigned I = N; I != ArraySize; ++I) {
2326     if (CharWidth == 1) {
2327       this->emitConstSint8(0, E);
2328       this->emitInitElemSint8(I, E);
2329     } else if (CharWidth == 2) {
2330       this->emitConstUint16(0, E);
2331       this->emitInitElemUint16(I, E);
2332     } else if (CharWidth == 4) {
2333       this->emitConstUint32(0, E);
2334       this->emitInitElemUint32(I, E);
2335     } else {
2336       llvm_unreachable("unsupported character width");
2337     }
2338   }
2339 
2340   return true;
2341 }
2342 
2343 template <class Emitter>
2344 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2345   if (std::optional<unsigned> I = P.getOrCreateDummy(E))
2346     return this->emitGetPtrGlobal(*I, E);
2347   return false;
2348 }
2349 
2350 template <class Emitter>
2351 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2352   auto &A = Ctx.getASTContext();
2353   std::string Str;
2354   A.getObjCEncodingForType(E->getEncodedType(), Str);
2355   StringLiteral *SL =
2356       StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
2357                             /*Pascal=*/false, E->getType(), E->getAtLoc());
2358   return this->delegate(SL);
2359 }
2360 
2361 template <class Emitter>
2362 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
2363     const SYCLUniqueStableNameExpr *E) {
2364   if (DiscardResult)
2365     return true;
2366 
2367   assert(!Initializing);
2368 
2369   auto &A = Ctx.getASTContext();
2370   std::string ResultStr = E->ComputeName(A);
2371 
2372   QualType CharTy = A.CharTy.withConst();
2373   APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
2374   QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
2375                                             ArraySizeModifier::Normal, 0);
2376 
2377   StringLiteral *SL =
2378       StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
2379                             /*Pascal=*/false, ArrayTy, E->getLocation());
2380 
2381   unsigned StringIndex = P.createGlobalString(SL);
2382   return this->emitGetPtrGlobal(StringIndex, E);
2383 }
2384 
2385 template <class Emitter>
2386 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
2387   if (DiscardResult)
2388     return true;
2389   return this->emitConst(E->getValue(), E);
2390 }
2391 
2392 template <class Emitter>
2393 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
2394     const CompoundAssignOperator *E) {
2395 
2396   const Expr *LHS = E->getLHS();
2397   const Expr *RHS = E->getRHS();
2398   QualType LHSType = LHS->getType();
2399   QualType LHSComputationType = E->getComputationLHSType();
2400   QualType ResultType = E->getComputationResultType();
2401   std::optional<PrimType> LT = classify(LHSComputationType);
2402   std::optional<PrimType> RT = classify(ResultType);
2403 
2404   assert(ResultType->isFloatingType());
2405 
2406   if (!LT || !RT)
2407     return false;
2408 
2409   PrimType LHST = classifyPrim(LHSType);
2410 
2411   // C++17 onwards require that we evaluate the RHS first.
2412   // Compute RHS and save it in a temporary variable so we can
2413   // load it again later.
2414   if (!visit(RHS))
2415     return false;
2416 
2417   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2418   if (!this->emitSetLocal(*RT, TempOffset, E))
2419     return false;
2420 
2421   // First, visit LHS.
2422   if (!visit(LHS))
2423     return false;
2424   if (!this->emitLoad(LHST, E))
2425     return false;
2426 
2427   // If necessary, convert LHS to its computation type.
2428   if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
2429                           LHSComputationType, E))
2430     return false;
2431 
2432   // Now load RHS.
2433   if (!this->emitGetLocal(*RT, TempOffset, E))
2434     return false;
2435 
2436   switch (E->getOpcode()) {
2437   case BO_AddAssign:
2438     if (!this->emitAddf(getFPOptions(E), E))
2439       return false;
2440     break;
2441   case BO_SubAssign:
2442     if (!this->emitSubf(getFPOptions(E), E))
2443       return false;
2444     break;
2445   case BO_MulAssign:
2446     if (!this->emitMulf(getFPOptions(E), E))
2447       return false;
2448     break;
2449   case BO_DivAssign:
2450     if (!this->emitDivf(getFPOptions(E), E))
2451       return false;
2452     break;
2453   default:
2454     return false;
2455   }
2456 
2457   if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
2458     return false;
2459 
2460   if (DiscardResult)
2461     return this->emitStorePop(LHST, E);
2462   return this->emitStore(LHST, E);
2463 }
2464 
2465 template <class Emitter>
2466 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
2467     const CompoundAssignOperator *E) {
2468   BinaryOperatorKind Op = E->getOpcode();
2469   const Expr *LHS = E->getLHS();
2470   const Expr *RHS = E->getRHS();
2471   std::optional<PrimType> LT = classify(LHS->getType());
2472   std::optional<PrimType> RT = classify(RHS->getType());
2473 
2474   if (Op != BO_AddAssign && Op != BO_SubAssign)
2475     return false;
2476 
2477   if (!LT || !RT)
2478     return false;
2479 
2480   if (!visit(LHS))
2481     return false;
2482 
2483   if (!this->emitLoad(*LT, LHS))
2484     return false;
2485 
2486   if (!visit(RHS))
2487     return false;
2488 
2489   if (Op == BO_AddAssign) {
2490     if (!this->emitAddOffset(*RT, E))
2491       return false;
2492   } else {
2493     if (!this->emitSubOffset(*RT, E))
2494       return false;
2495   }
2496 
2497   if (DiscardResult)
2498     return this->emitStorePopPtr(E);
2499   return this->emitStorePtr(E);
2500 }
2501 
2502 template <class Emitter>
2503 bool Compiler<Emitter>::VisitCompoundAssignOperator(
2504     const CompoundAssignOperator *E) {
2505   if (E->getType()->isVectorType())
2506     return VisitVectorBinOp(E);
2507 
2508   const Expr *LHS = E->getLHS();
2509   const Expr *RHS = E->getRHS();
2510   std::optional<PrimType> LHSComputationT =
2511       classify(E->getComputationLHSType());
2512   std::optional<PrimType> LT = classify(LHS->getType());
2513   std::optional<PrimType> RT = classify(RHS->getType());
2514   std::optional<PrimType> ResultT = classify(E->getType());
2515 
2516   if (!Ctx.getLangOpts().CPlusPlus14)
2517     return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
2518 
2519   if (!LT || !RT || !ResultT || !LHSComputationT)
2520     return false;
2521 
2522   // Handle floating point operations separately here, since they
2523   // require special care.
2524 
2525   if (ResultT == PT_Float || RT == PT_Float)
2526     return VisitFloatCompoundAssignOperator(E);
2527 
2528   if (E->getType()->isPointerType())
2529     return VisitPointerCompoundAssignOperator(E);
2530 
2531   assert(!E->getType()->isPointerType() && "Handled above");
2532   assert(!E->getType()->isFloatingType() && "Handled above");
2533 
2534   // C++17 onwards require that we evaluate the RHS first.
2535   // Compute RHS and save it in a temporary variable so we can
2536   // load it again later.
2537   // FIXME: Compound assignments are unsequenced in C, so we might
2538   //   have to figure out how to reject them.
2539   if (!visit(RHS))
2540     return false;
2541 
2542   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2543 
2544   if (!this->emitSetLocal(*RT, TempOffset, E))
2545     return false;
2546 
2547   // Get LHS pointer, load its value and cast it to the
2548   // computation type if necessary.
2549   if (!visit(LHS))
2550     return false;
2551   if (!this->emitLoad(*LT, E))
2552     return false;
2553   if (LT != LHSComputationT) {
2554     if (!this->emitCast(*LT, *LHSComputationT, E))
2555       return false;
2556   }
2557 
2558   // Get the RHS value on the stack.
2559   if (!this->emitGetLocal(*RT, TempOffset, E))
2560     return false;
2561 
2562   // Perform operation.
2563   switch (E->getOpcode()) {
2564   case BO_AddAssign:
2565     if (!this->emitAdd(*LHSComputationT, E))
2566       return false;
2567     break;
2568   case BO_SubAssign:
2569     if (!this->emitSub(*LHSComputationT, E))
2570       return false;
2571     break;
2572   case BO_MulAssign:
2573     if (!this->emitMul(*LHSComputationT, E))
2574       return false;
2575     break;
2576   case BO_DivAssign:
2577     if (!this->emitDiv(*LHSComputationT, E))
2578       return false;
2579     break;
2580   case BO_RemAssign:
2581     if (!this->emitRem(*LHSComputationT, E))
2582       return false;
2583     break;
2584   case BO_ShlAssign:
2585     if (!this->emitShl(*LHSComputationT, *RT, E))
2586       return false;
2587     break;
2588   case BO_ShrAssign:
2589     if (!this->emitShr(*LHSComputationT, *RT, E))
2590       return false;
2591     break;
2592   case BO_AndAssign:
2593     if (!this->emitBitAnd(*LHSComputationT, E))
2594       return false;
2595     break;
2596   case BO_XorAssign:
2597     if (!this->emitBitXor(*LHSComputationT, E))
2598       return false;
2599     break;
2600   case BO_OrAssign:
2601     if (!this->emitBitOr(*LHSComputationT, E))
2602       return false;
2603     break;
2604   default:
2605     llvm_unreachable("Unimplemented compound assign operator");
2606   }
2607 
2608   // And now cast from LHSComputationT to ResultT.
2609   if (ResultT != LHSComputationT) {
2610     if (!this->emitCast(*LHSComputationT, *ResultT, E))
2611       return false;
2612   }
2613 
2614   // And store the result in LHS.
2615   if (DiscardResult) {
2616     if (LHS->refersToBitField())
2617       return this->emitStoreBitFieldPop(*ResultT, E);
2618     return this->emitStorePop(*ResultT, E);
2619   }
2620   if (LHS->refersToBitField())
2621     return this->emitStoreBitField(*ResultT, E);
2622   return this->emitStore(*ResultT, E);
2623 }
2624 
2625 template <class Emitter>
2626 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
2627   LocalScope<Emitter> ES(this);
2628   const Expr *SubExpr = E->getSubExpr();
2629 
2630   return this->delegate(SubExpr) && ES.destroyLocals(E);
2631 }
2632 
2633 template <class Emitter>
2634 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
2635     const MaterializeTemporaryExpr *E) {
2636   const Expr *SubExpr = E->getSubExpr();
2637 
2638   if (Initializing) {
2639     // We already have a value, just initialize that.
2640     return this->delegate(SubExpr);
2641   }
2642   // If we don't end up using the materialized temporary anyway, don't
2643   // bother creating it.
2644   if (DiscardResult)
2645     return this->discard(SubExpr);
2646 
2647   // When we're initializing a global variable *or* the storage duration of
2648   // the temporary is explicitly static, create a global variable.
2649   std::optional<PrimType> SubExprT = classify(SubExpr);
2650   bool IsStatic = E->getStorageDuration() == SD_Static;
2651   if (IsStatic) {
2652     std::optional<unsigned> GlobalIndex = P.createGlobal(E);
2653     if (!GlobalIndex)
2654       return false;
2655 
2656     const LifetimeExtendedTemporaryDecl *TempDecl =
2657         E->getLifetimeExtendedTemporaryDecl();
2658     if (IsStatic)
2659       assert(TempDecl);
2660 
2661     if (SubExprT) {
2662       if (!this->visit(SubExpr))
2663         return false;
2664       if (IsStatic) {
2665         if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
2666           return false;
2667       } else {
2668         if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
2669           return false;
2670       }
2671       return this->emitGetPtrGlobal(*GlobalIndex, E);
2672     }
2673 
2674     if (!this->checkLiteralType(SubExpr))
2675       return false;
2676     // Non-primitive values.
2677     if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2678       return false;
2679     if (!this->visitInitializer(SubExpr))
2680       return false;
2681     if (IsStatic)
2682       return this->emitInitGlobalTempComp(TempDecl, E);
2683     return true;
2684   }
2685 
2686   // For everyhing else, use local variables.
2687   if (SubExprT) {
2688     unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true,
2689                                                  /*IsExtended=*/true);
2690     if (!this->visit(SubExpr))
2691       return false;
2692     if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
2693       return false;
2694     return this->emitGetPtrLocal(LocalIndex, E);
2695   } else {
2696 
2697     if (!this->checkLiteralType(SubExpr))
2698       return false;
2699 
2700     const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2701     if (std::optional<unsigned> LocalIndex =
2702             allocateLocal(Inner, E->getExtendingDecl())) {
2703       InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
2704       if (!this->emitGetPtrLocal(*LocalIndex, E))
2705         return false;
2706       return this->visitInitializer(SubExpr);
2707     }
2708   }
2709   return false;
2710 }
2711 
2712 template <class Emitter>
2713 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
2714     const CXXBindTemporaryExpr *E) {
2715   return this->delegate(E->getSubExpr());
2716 }
2717 
2718 template <class Emitter>
2719 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2720   const Expr *Init = E->getInitializer();
2721   if (DiscardResult)
2722     return this->discard(Init);
2723 
2724   if (Initializing) {
2725     // We already have a value, just initialize that.
2726     return this->visitInitializer(Init) && this->emitFinishInit(E);
2727   }
2728 
2729   std::optional<PrimType> T = classify(E->getType());
2730   if (E->isFileScope()) {
2731     // Avoid creating a variable if this is a primitive RValue anyway.
2732     if (T && !E->isLValue())
2733       return this->delegate(Init);
2734 
2735     if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
2736       if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2737         return false;
2738 
2739       if (T) {
2740         if (!this->visit(Init))
2741           return false;
2742         return this->emitInitGlobal(*T, *GlobalIndex, E);
2743       }
2744 
2745       return this->visitInitializer(Init) && this->emitFinishInit(E);
2746     }
2747 
2748     return false;
2749   }
2750 
2751   // Otherwise, use a local variable.
2752   if (T && !E->isLValue()) {
2753     // For primitive types, we just visit the initializer.
2754     return this->delegate(Init);
2755   } else {
2756     unsigned LocalIndex;
2757 
2758     if (T)
2759       LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
2760     else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
2761       LocalIndex = *MaybeIndex;
2762     else
2763       return false;
2764 
2765     if (!this->emitGetPtrLocal(LocalIndex, E))
2766       return false;
2767 
2768     if (T) {
2769       if (!this->visit(Init)) {
2770         return false;
2771       }
2772       return this->emitInit(*T, E);
2773     } else {
2774       if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
2775         return false;
2776     }
2777     return true;
2778   }
2779 
2780   return false;
2781 }
2782 
2783 template <class Emitter>
2784 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
2785   if (DiscardResult)
2786     return true;
2787   if (E->getType()->isBooleanType())
2788     return this->emitConstBool(E->getValue(), E);
2789   return this->emitConst(E->getValue(), E);
2790 }
2791 
2792 template <class Emitter>
2793 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
2794   if (DiscardResult)
2795     return true;
2796   return this->emitConst(E->getValue(), E);
2797 }
2798 
2799 template <class Emitter>
2800 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
2801   if (DiscardResult)
2802     return true;
2803 
2804   assert(Initializing);
2805   const Record *R = P.getOrCreateRecord(E->getLambdaClass());
2806 
2807   auto *CaptureInitIt = E->capture_init_begin();
2808   // Initialize all fields (which represent lambda captures) of the
2809   // record with their initializers.
2810   for (const Record::Field &F : R->fields()) {
2811     const Expr *Init = *CaptureInitIt;
2812     ++CaptureInitIt;
2813 
2814     if (!Init)
2815       continue;
2816 
2817     if (std::optional<PrimType> T = classify(Init)) {
2818       if (!this->visit(Init))
2819         return false;
2820 
2821       if (!this->emitInitField(*T, F.Offset, E))
2822         return false;
2823     } else {
2824       if (!this->emitGetPtrField(F.Offset, E))
2825         return false;
2826 
2827       if (!this->visitInitializer(Init))
2828         return false;
2829 
2830       if (!this->emitPopPtr(E))
2831         return false;
2832     }
2833   }
2834 
2835   return true;
2836 }
2837 
2838 template <class Emitter>
2839 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
2840   if (DiscardResult)
2841     return true;
2842 
2843   return this->delegate(E->getFunctionName());
2844 }
2845 
2846 template <class Emitter>
2847 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
2848   if (E->getSubExpr() && !this->discard(E->getSubExpr()))
2849     return false;
2850 
2851   return this->emitInvalid(E);
2852 }
2853 
2854 template <class Emitter>
2855 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
2856     const CXXReinterpretCastExpr *E) {
2857   const Expr *SubExpr = E->getSubExpr();
2858 
2859   std::optional<PrimType> FromT = classify(SubExpr);
2860   std::optional<PrimType> ToT = classify(E);
2861 
2862   if (!FromT || !ToT)
2863     return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E);
2864 
2865   if (FromT == PT_Ptr || ToT == PT_Ptr) {
2866     // Both types could be PT_Ptr because their expressions are glvalues.
2867     std::optional<PrimType> PointeeFromT;
2868     if (SubExpr->getType()->isPointerOrReferenceType())
2869       PointeeFromT = classify(SubExpr->getType()->getPointeeType());
2870     else
2871       PointeeFromT = classify(SubExpr->getType());
2872 
2873     std::optional<PrimType> PointeeToT;
2874     if (E->getType()->isPointerOrReferenceType())
2875       PointeeToT = classify(E->getType()->getPointeeType());
2876     else
2877       PointeeToT = classify(E->getType());
2878 
2879     bool Fatal = true;
2880     if (PointeeToT && PointeeFromT) {
2881       if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT))
2882         Fatal = false;
2883     }
2884 
2885     if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2886       return false;
2887 
2888     if (E->getCastKind() == CK_LValueBitCast)
2889       return this->delegate(SubExpr);
2890     return this->VisitCastExpr(E);
2891   }
2892 
2893   // Try to actually do the cast.
2894   bool Fatal = (ToT != FromT);
2895   if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2896     return false;
2897 
2898   return this->VisitCastExpr(E);
2899 }
2900 
2901 template <class Emitter>
2902 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
2903   assert(E->getType()->isBooleanType());
2904 
2905   if (DiscardResult)
2906     return true;
2907   return this->emitConstBool(E->getValue(), E);
2908 }
2909 
2910 template <class Emitter>
2911 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
2912   QualType T = E->getType();
2913   assert(!classify(T));
2914 
2915   if (T->isRecordType()) {
2916     const CXXConstructorDecl *Ctor = E->getConstructor();
2917 
2918     // Trivial copy/move constructor. Avoid copy.
2919     if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
2920         Ctor->isTrivial() &&
2921         E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
2922                                         T->getAsCXXRecordDecl()))
2923       return this->visitInitializer(E->getArg(0));
2924 
2925     // If we're discarding a construct expression, we still need
2926     // to allocate a variable and call the constructor and destructor.
2927     if (DiscardResult) {
2928       if (Ctor->isTrivial())
2929         return true;
2930       assert(!Initializing);
2931       std::optional<unsigned> LocalIndex = allocateLocal(E);
2932 
2933       if (!LocalIndex)
2934         return false;
2935 
2936       if (!this->emitGetPtrLocal(*LocalIndex, E))
2937         return false;
2938     }
2939 
2940     // Zero initialization.
2941     if (E->requiresZeroInitialization()) {
2942       const Record *R = getRecord(E->getType());
2943 
2944       if (!this->visitZeroRecordInitializer(R, E))
2945         return false;
2946 
2947       // If the constructor is trivial anyway, we're done.
2948       if (Ctor->isTrivial())
2949         return true;
2950     }
2951 
2952     const Function *Func = getFunction(Ctor);
2953 
2954     if (!Func)
2955       return false;
2956 
2957     assert(Func->hasThisPointer());
2958     assert(!Func->hasRVO());
2959 
2960     //  The This pointer is already on the stack because this is an initializer,
2961     //  but we need to dup() so the call() below has its own copy.
2962     if (!this->emitDupPtr(E))
2963       return false;
2964 
2965     // Constructor arguments.
2966     for (const auto *Arg : E->arguments()) {
2967       if (!this->visit(Arg))
2968         return false;
2969     }
2970 
2971     if (Func->isVariadic()) {
2972       uint32_t VarArgSize = 0;
2973       unsigned NumParams = Func->getNumWrittenParams();
2974       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
2975         VarArgSize +=
2976             align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
2977       }
2978       if (!this->emitCallVar(Func, VarArgSize, E))
2979         return false;
2980     } else {
2981       if (!this->emitCall(Func, 0, E)) {
2982         // When discarding, we don't need the result anyway, so clean up
2983         // the instance dup we did earlier in case surrounding code wants
2984         // to keep evaluating.
2985         if (DiscardResult)
2986           (void)this->emitPopPtr(E);
2987         return false;
2988       }
2989     }
2990 
2991     if (DiscardResult)
2992       return this->emitPopPtr(E);
2993     return this->emitFinishInit(E);
2994   }
2995 
2996   if (T->isArrayType()) {
2997     const ConstantArrayType *CAT =
2998         Ctx.getASTContext().getAsConstantArrayType(E->getType());
2999     if (!CAT)
3000       return false;
3001 
3002     size_t NumElems = CAT->getZExtSize();
3003     const Function *Func = getFunction(E->getConstructor());
3004     if (!Func || !Func->isConstexpr())
3005       return false;
3006 
3007     // FIXME(perf): We're calling the constructor once per array element here,
3008     //   in the old intepreter we had a special-case for trivial constructors.
3009     for (size_t I = 0; I != NumElems; ++I) {
3010       if (!this->emitConstUint64(I, E))
3011         return false;
3012       if (!this->emitArrayElemPtrUint64(E))
3013         return false;
3014 
3015       // Constructor arguments.
3016       for (const auto *Arg : E->arguments()) {
3017         if (!this->visit(Arg))
3018           return false;
3019       }
3020 
3021       if (!this->emitCall(Func, 0, E))
3022         return false;
3023     }
3024     return true;
3025   }
3026 
3027   return false;
3028 }
3029 
3030 template <class Emitter>
3031 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
3032   if (DiscardResult)
3033     return true;
3034 
3035   const APValue Val =
3036       E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
3037 
3038   // Things like __builtin_LINE().
3039   if (E->getType()->isIntegerType()) {
3040     assert(Val.isInt());
3041     const APSInt &I = Val.getInt();
3042     return this->emitConst(I, E);
3043   }
3044   // Otherwise, the APValue is an LValue, with only one element.
3045   // Theoretically, we don't need the APValue at all of course.
3046   assert(E->getType()->isPointerType());
3047   assert(Val.isLValue());
3048   const APValue::LValueBase &Base = Val.getLValueBase();
3049   if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
3050     return this->visit(LValueExpr);
3051 
3052   // Otherwise, we have a decl (which is the case for
3053   // __builtin_source_location).
3054   assert(Base.is<const ValueDecl *>());
3055   assert(Val.getLValuePath().size() == 0);
3056   const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
3057   assert(BaseDecl);
3058 
3059   auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
3060 
3061   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
3062   if (!GlobalIndex)
3063     return false;
3064 
3065   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3066     return false;
3067 
3068   const Record *R = getRecord(E->getType());
3069   const APValue &V = UGCD->getValue();
3070   for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
3071     const Record::Field *F = R->getField(I);
3072     const APValue &FieldValue = V.getStructField(I);
3073 
3074     PrimType FieldT = classifyPrim(F->Decl->getType());
3075 
3076     if (!this->visitAPValue(FieldValue, FieldT, E))
3077       return false;
3078     if (!this->emitInitField(FieldT, F->Offset, E))
3079       return false;
3080   }
3081 
3082   // Leave the pointer to the global on the stack.
3083   return true;
3084 }
3085 
3086 template <class Emitter>
3087 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
3088   unsigned N = E->getNumComponents();
3089   if (N == 0)
3090     return false;
3091 
3092   for (unsigned I = 0; I != N; ++I) {
3093     const OffsetOfNode &Node = E->getComponent(I);
3094     if (Node.getKind() == OffsetOfNode::Array) {
3095       const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
3096       PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
3097 
3098       if (DiscardResult) {
3099         if (!this->discard(ArrayIndexExpr))
3100           return false;
3101         continue;
3102       }
3103 
3104       if (!this->visit(ArrayIndexExpr))
3105         return false;
3106       // Cast to Sint64.
3107       if (IndexT != PT_Sint64) {
3108         if (!this->emitCast(IndexT, PT_Sint64, E))
3109           return false;
3110       }
3111     }
3112   }
3113 
3114   if (DiscardResult)
3115     return true;
3116 
3117   PrimType T = classifyPrim(E->getType());
3118   return this->emitOffsetOf(T, E, E);
3119 }
3120 
3121 template <class Emitter>
3122 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
3123     const CXXScalarValueInitExpr *E) {
3124   QualType Ty = E->getType();
3125 
3126   if (DiscardResult || Ty->isVoidType())
3127     return true;
3128 
3129   if (std::optional<PrimType> T = classify(Ty))
3130     return this->visitZeroInitializer(*T, Ty, E);
3131 
3132   if (const auto *CT = Ty->getAs<ComplexType>()) {
3133     if (!Initializing) {
3134       std::optional<unsigned> LocalIndex = allocateLocal(E);
3135       if (!LocalIndex)
3136         return false;
3137       if (!this->emitGetPtrLocal(*LocalIndex, E))
3138         return false;
3139     }
3140 
3141     // Initialize both fields to 0.
3142     QualType ElemQT = CT->getElementType();
3143     PrimType ElemT = classifyPrim(ElemQT);
3144 
3145     for (unsigned I = 0; I != 2; ++I) {
3146       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3147         return false;
3148       if (!this->emitInitElem(ElemT, I, E))
3149         return false;
3150     }
3151     return true;
3152   }
3153 
3154   if (const auto *VT = Ty->getAs<VectorType>()) {
3155     // FIXME: Code duplication with the _Complex case above.
3156     if (!Initializing) {
3157       std::optional<unsigned> LocalIndex = allocateLocal(E);
3158       if (!LocalIndex)
3159         return false;
3160       if (!this->emitGetPtrLocal(*LocalIndex, E))
3161         return false;
3162     }
3163 
3164     // Initialize all fields to 0.
3165     QualType ElemQT = VT->getElementType();
3166     PrimType ElemT = classifyPrim(ElemQT);
3167 
3168     for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
3169       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3170         return false;
3171       if (!this->emitInitElem(ElemT, I, E))
3172         return false;
3173     }
3174     return true;
3175   }
3176 
3177   return false;
3178 }
3179 
3180 template <class Emitter>
3181 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
3182   return this->emitConst(E->getPackLength(), E);
3183 }
3184 
3185 template <class Emitter>
3186 bool Compiler<Emitter>::VisitGenericSelectionExpr(
3187     const GenericSelectionExpr *E) {
3188   return this->delegate(E->getResultExpr());
3189 }
3190 
3191 template <class Emitter>
3192 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
3193   return this->delegate(E->getChosenSubExpr());
3194 }
3195 
3196 template <class Emitter>
3197 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
3198   if (DiscardResult)
3199     return true;
3200 
3201   return this->emitConst(E->getValue(), E);
3202 }
3203 
3204 template <class Emitter>
3205 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
3206     const CXXInheritedCtorInitExpr *E) {
3207   const CXXConstructorDecl *Ctor = E->getConstructor();
3208   assert(!Ctor->isTrivial() &&
3209          "Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
3210   const Function *F = this->getFunction(Ctor);
3211   assert(F);
3212   assert(!F->hasRVO());
3213   assert(F->hasThisPointer());
3214 
3215   if (!this->emitDupPtr(SourceInfo{}))
3216     return false;
3217 
3218   // Forward all arguments of the current function (which should be a
3219   // constructor itself) to the inherited ctor.
3220   // This is necessary because the calling code has pushed the pointer
3221   // of the correct base for  us already, but the arguments need
3222   // to come after.
3223   unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
3224   for (const ParmVarDecl *PD : Ctor->parameters()) {
3225     PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
3226 
3227     if (!this->emitGetParam(PT, Offset, E))
3228       return false;
3229     Offset += align(primSize(PT));
3230   }
3231 
3232   return this->emitCall(F, 0, E);
3233 }
3234 
3235 template <class Emitter>
3236 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
3237   assert(classifyPrim(E->getType()) == PT_Ptr);
3238   const Expr *Init = E->getInitializer();
3239   QualType ElementType = E->getAllocatedType();
3240   std::optional<PrimType> ElemT = classify(ElementType);
3241   unsigned PlacementArgs = E->getNumPlacementArgs();
3242   const FunctionDecl *OperatorNew = E->getOperatorNew();
3243   const Expr *PlacementDest = nullptr;
3244   bool IsNoThrow = false;
3245 
3246   if (PlacementArgs != 0) {
3247     // FIXME: There is no restriction on this, but it's not clear that any
3248     // other form makes any sense. We get here for cases such as:
3249     //
3250     //   new (std::align_val_t{N}) X(int)
3251     //
3252     // (which should presumably be valid only if N is a multiple of
3253     // alignof(int), and in any case can't be deallocated unless N is
3254     // alignof(X) and X has new-extended alignment).
3255     if (PlacementArgs == 1) {
3256       const Expr *Arg1 = E->getPlacementArg(0);
3257       if (Arg1->getType()->isNothrowT()) {
3258         if (!this->discard(Arg1))
3259           return false;
3260         IsNoThrow = true;
3261       } else {
3262         // Invalid unless we have C++26 or are in a std:: function.
3263         if (!this->emitInvalidNewDeleteExpr(E, E))
3264           return false;
3265 
3266         // If we have a placement-new destination, we'll later use that instead
3267         // of allocating.
3268         if (OperatorNew->isReservedGlobalPlacementOperator())
3269           PlacementDest = Arg1;
3270       }
3271     } else {
3272       // Always invalid.
3273       return this->emitInvalid(E);
3274     }
3275   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction())
3276     return this->emitInvalidNewDeleteExpr(E, E);
3277 
3278   const Descriptor *Desc;
3279   if (!PlacementDest) {
3280     if (ElemT) {
3281       if (E->isArray())
3282         Desc = nullptr; // We're not going to use it in this case.
3283       else
3284         Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
3285                                   /*IsConst=*/false, /*IsTemporary=*/false,
3286                                   /*IsMutable=*/false);
3287     } else {
3288       Desc = P.createDescriptor(
3289           E, ElementType.getTypePtr(),
3290           E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
3291           /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
3292     }
3293   }
3294 
3295   if (E->isArray()) {
3296     std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
3297     if (!ArraySizeExpr)
3298       return false;
3299 
3300     const Expr *Stripped = *ArraySizeExpr;
3301     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
3302          Stripped = ICE->getSubExpr())
3303       if (ICE->getCastKind() != CK_NoOp &&
3304           ICE->getCastKind() != CK_IntegralCast)
3305         break;
3306 
3307     PrimType SizeT = classifyPrim(Stripped->getType());
3308 
3309     if (PlacementDest) {
3310       if (!this->visit(PlacementDest))
3311         return false;
3312       if (!this->visit(Stripped))
3313         return false;
3314       if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E))
3315         return false;
3316     } else {
3317       if (!this->visit(Stripped))
3318         return false;
3319 
3320       if (ElemT) {
3321         // N primitive elements.
3322         if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
3323           return false;
3324       } else {
3325         // N Composite elements.
3326         if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
3327           return false;
3328       }
3329     }
3330 
3331     if (Init && !this->visitInitializer(Init))
3332       return false;
3333 
3334   } else {
3335     if (PlacementDest) {
3336       if (!this->visit(PlacementDest))
3337         return false;
3338       if (!this->emitCheckNewTypeMismatch(E, E))
3339         return false;
3340     } else {
3341       // Allocate just one element.
3342       if (!this->emitAlloc(Desc, E))
3343         return false;
3344     }
3345 
3346     if (Init) {
3347       if (ElemT) {
3348         if (!this->visit(Init))
3349           return false;
3350 
3351         if (!this->emitInit(*ElemT, E))
3352           return false;
3353       } else {
3354         // Composite.
3355         if (!this->visitInitializer(Init))
3356           return false;
3357       }
3358     }
3359   }
3360 
3361   if (DiscardResult)
3362     return this->emitPopPtr(E);
3363 
3364   return true;
3365 }
3366 
3367 template <class Emitter>
3368 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
3369   const Expr *Arg = E->getArgument();
3370 
3371   const FunctionDecl *OperatorDelete = E->getOperatorDelete();
3372 
3373   if (!OperatorDelete->isReplaceableGlobalAllocationFunction())
3374     return this->emitInvalidNewDeleteExpr(E, E);
3375 
3376   // Arg must be an lvalue.
3377   if (!this->visit(Arg))
3378     return false;
3379 
3380   return this->emitFree(E->isArrayForm(), E);
3381 }
3382 
3383 template <class Emitter>
3384 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
3385   const Function *Func = nullptr;
3386   if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E))
3387     Func = F;
3388 
3389   if (!Func)
3390     return false;
3391   return this->emitGetFnPtr(Func, E);
3392 }
3393 
3394 template <class Emitter>
3395 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
3396   assert(Ctx.getLangOpts().CPlusPlus);
3397   return this->emitConstBool(E->getValue(), E);
3398 }
3399 
3400 template <class Emitter>
3401 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
3402   if (DiscardResult)
3403     return true;
3404   assert(!Initializing);
3405 
3406   const MSGuidDecl *GuidDecl = E->getGuidDecl();
3407   const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
3408   assert(RD);
3409   // If the definiton of the result type is incomplete, just return a dummy.
3410   // If (and when) that is read from, we will fail, but not now.
3411   if (!RD->isCompleteDefinition()) {
3412     if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl))
3413       return this->emitGetPtrGlobal(*I, E);
3414     return false;
3415   }
3416 
3417   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
3418   if (!GlobalIndex)
3419     return false;
3420   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3421     return false;
3422 
3423   assert(this->getRecord(E->getType()));
3424 
3425   const APValue &V = GuidDecl->getAsAPValue();
3426   if (V.getKind() == APValue::None)
3427     return true;
3428 
3429   assert(V.isStruct());
3430   assert(V.getStructNumBases() == 0);
3431   if (!this->visitAPValueInitializer(V, E))
3432     return false;
3433 
3434   return this->emitFinishInit(E);
3435 }
3436 
3437 template <class Emitter>
3438 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
3439   assert(classifyPrim(E->getType()) == PT_Bool);
3440   if (DiscardResult)
3441     return true;
3442   return this->emitConstBool(E->isSatisfied(), E);
3443 }
3444 
3445 template <class Emitter>
3446 bool Compiler<Emitter>::VisitConceptSpecializationExpr(
3447     const ConceptSpecializationExpr *E) {
3448   assert(classifyPrim(E->getType()) == PT_Bool);
3449   if (DiscardResult)
3450     return true;
3451   return this->emitConstBool(E->isSatisfied(), E);
3452 }
3453 
3454 template <class Emitter>
3455 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
3456     const CXXRewrittenBinaryOperator *E) {
3457   return this->delegate(E->getSemanticForm());
3458 }
3459 
3460 template <class Emitter>
3461 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
3462 
3463   for (const Expr *SemE : E->semantics()) {
3464     if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
3465       if (SemE == E->getResultExpr())
3466         return false;
3467 
3468       if (OVE->isUnique())
3469         continue;
3470 
3471       if (!this->discard(OVE))
3472         return false;
3473     } else if (SemE == E->getResultExpr()) {
3474       if (!this->delegate(SemE))
3475         return false;
3476     } else {
3477       if (!this->discard(SemE))
3478         return false;
3479     }
3480   }
3481   return true;
3482 }
3483 
3484 template <class Emitter>
3485 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
3486   return this->delegate(E->getSelectedExpr());
3487 }
3488 
3489 template <class Emitter>
3490 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
3491   return this->emitError(E);
3492 }
3493 
3494 template <class Emitter>
3495 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
3496   assert(E->getType()->isVoidPointerType());
3497 
3498   unsigned Offset = allocateLocalPrimitive(
3499       E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3500 
3501   return this->emitGetLocal(PT_Ptr, Offset, E);
3502 }
3503 
3504 template <class Emitter>
3505 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
3506   assert(Initializing);
3507   const auto *VT = E->getType()->castAs<VectorType>();
3508   QualType ElemType = VT->getElementType();
3509   PrimType ElemT = classifyPrim(ElemType);
3510   const Expr *Src = E->getSrcExpr();
3511   PrimType SrcElemT =
3512       classifyPrim(Src->getType()->castAs<VectorType>()->getElementType());
3513 
3514   unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
3515   if (!this->visit(Src))
3516     return false;
3517   if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
3518     return false;
3519 
3520   for (unsigned I = 0; I != VT->getNumElements(); ++I) {
3521     if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
3522       return false;
3523     if (!this->emitArrayElemPop(SrcElemT, I, E))
3524       return false;
3525     if (SrcElemT != ElemT) {
3526       if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
3527         return false;
3528     }
3529     if (!this->emitInitElem(ElemT, I, E))
3530       return false;
3531   }
3532 
3533   return true;
3534 }
3535 
3536 template <class Emitter>
3537 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
3538   assert(Initializing);
3539   assert(E->getNumSubExprs() > 2);
3540 
3541   const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
3542   const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
3543   PrimType ElemT = classifyPrim(VT->getElementType());
3544   unsigned NumInputElems = VT->getNumElements();
3545   unsigned NumOutputElems = E->getNumSubExprs() - 2;
3546   assert(NumOutputElems > 0);
3547 
3548   // Save both input vectors to a local variable.
3549   unsigned VectorOffsets[2];
3550   for (unsigned I = 0; I != 2; ++I) {
3551     VectorOffsets[I] = this->allocateLocalPrimitive(
3552         Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3553     if (!this->visit(Vecs[I]))
3554       return false;
3555     if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
3556       return false;
3557   }
3558   for (unsigned I = 0; I != NumOutputElems; ++I) {
3559     APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
3560     if (ShuffleIndex == -1)
3561       return this->emitInvalid(E); // FIXME: Better diagnostic.
3562 
3563     assert(ShuffleIndex < (NumInputElems * 2));
3564     if (!this->emitGetLocal(PT_Ptr,
3565                             VectorOffsets[ShuffleIndex >= NumInputElems], E))
3566       return false;
3567     unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
3568     if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
3569       return false;
3570 
3571     if (!this->emitInitElem(ElemT, I, E))
3572       return false;
3573   }
3574 
3575   return true;
3576 }
3577 
3578 template <class Emitter>
3579 bool Compiler<Emitter>::VisitExtVectorElementExpr(
3580     const ExtVectorElementExpr *E) {
3581   const Expr *Base = E->getBase();
3582   assert(
3583       Base->getType()->isVectorType() ||
3584       Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
3585 
3586   SmallVector<uint32_t, 4> Indices;
3587   E->getEncodedElementAccess(Indices);
3588 
3589   if (Indices.size() == 1) {
3590     if (!this->visit(Base))
3591       return false;
3592 
3593     if (E->isGLValue()) {
3594       if (!this->emitConstUint32(Indices[0], E))
3595         return false;
3596       return this->emitArrayElemPtrPop(PT_Uint32, E);
3597     }
3598     // Else, also load the value.
3599     return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
3600   }
3601 
3602   // Create a local variable for the base.
3603   unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
3604                                                /*IsExtended=*/false);
3605   if (!this->visit(Base))
3606     return false;
3607   if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
3608     return false;
3609 
3610   // Now the vector variable for the return value.
3611   if (!Initializing) {
3612     std::optional<unsigned> ResultIndex;
3613     ResultIndex = allocateLocal(E);
3614     if (!ResultIndex)
3615       return false;
3616     if (!this->emitGetPtrLocal(*ResultIndex, E))
3617       return false;
3618   }
3619 
3620   assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
3621 
3622   PrimType ElemT =
3623       classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
3624   uint32_t DstIndex = 0;
3625   for (uint32_t I : Indices) {
3626     if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
3627       return false;
3628     if (!this->emitArrayElemPop(ElemT, I, E))
3629       return false;
3630     if (!this->emitInitElem(ElemT, DstIndex, E))
3631       return false;
3632     ++DstIndex;
3633   }
3634 
3635   // Leave the result pointer on the stack.
3636   assert(!DiscardResult);
3637   return true;
3638 }
3639 
3640 template <class Emitter>
3641 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
3642   const Expr *SubExpr = E->getSubExpr();
3643   if (!E->isExpressibleAsConstantInitializer())
3644     return this->discard(SubExpr) && this->emitInvalid(E);
3645 
3646   assert(classifyPrim(E) == PT_Ptr);
3647   if (std::optional<unsigned> I = P.getOrCreateDummy(E))
3648     return this->emitGetPtrGlobal(*I, E);
3649 
3650   return false;
3651 }
3652 
3653 template <class Emitter>
3654 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
3655     const CXXStdInitializerListExpr *E) {
3656   const Expr *SubExpr = E->getSubExpr();
3657   const ConstantArrayType *ArrayType =
3658       Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
3659   const Record *R = getRecord(E->getType());
3660   assert(Initializing);
3661   assert(SubExpr->isGLValue());
3662 
3663   if (!this->visit(SubExpr))
3664     return false;
3665   if (!this->emitConstUint8(0, E))
3666     return false;
3667   if (!this->emitArrayElemPtrPopUint8(E))
3668     return false;
3669   if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
3670     return false;
3671 
3672   PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
3673   if (isIntegralType(SecondFieldT)) {
3674     if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
3675                          SecondFieldT, E))
3676       return false;
3677     return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
3678   }
3679   assert(SecondFieldT == PT_Ptr);
3680 
3681   if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
3682     return false;
3683   if (!this->emitExpandPtr(E))
3684     return false;
3685   if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
3686     return false;
3687   if (!this->emitArrayElemPtrPop(PT_Uint64, E))
3688     return false;
3689   return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
3690 }
3691 
3692 template <class Emitter>
3693 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
3694   BlockScope<Emitter> BS(this);
3695   StmtExprScope<Emitter> SS(this);
3696 
3697   const CompoundStmt *CS = E->getSubStmt();
3698   const Stmt *Result = CS->getStmtExprResult();
3699   for (const Stmt *S : CS->body()) {
3700     if (S != Result) {
3701       if (!this->visitStmt(S))
3702         return false;
3703       continue;
3704     }
3705 
3706     assert(S == Result);
3707     if (const Expr *ResultExpr = dyn_cast<Expr>(S))
3708       return this->delegate(ResultExpr);
3709     return this->emitUnsupported(E);
3710   }
3711 
3712   return BS.destroyLocals();
3713 }
3714 
3715 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
3716   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
3717                              /*NewInitializing=*/false);
3718   return this->Visit(E);
3719 }
3720 
3721 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
3722   // We're basically doing:
3723   // OptionScope<Emitter> Scope(this, DicardResult, Initializing);
3724   // but that's unnecessary of course.
3725   return this->Visit(E);
3726 }
3727 
3728 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
3729   if (E->getType().isNull())
3730     return false;
3731 
3732   if (E->getType()->isVoidType())
3733     return this->discard(E);
3734 
3735   // Create local variable to hold the return value.
3736   if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
3737       !classify(E->getType())) {
3738     std::optional<unsigned> LocalIndex = allocateLocal(E);
3739     if (!LocalIndex)
3740       return false;
3741 
3742     if (!this->emitGetPtrLocal(*LocalIndex, E))
3743       return false;
3744     return this->visitInitializer(E);
3745   }
3746 
3747   //  Otherwise,we have a primitive return value, produce the value directly
3748   //  and push it on the stack.
3749   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3750                              /*NewInitializing=*/false);
3751   return this->Visit(E);
3752 }
3753 
3754 template <class Emitter>
3755 bool Compiler<Emitter>::visitInitializer(const Expr *E) {
3756   assert(!classify(E->getType()));
3757 
3758   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3759                              /*NewInitializing=*/true);
3760   return this->Visit(E);
3761 }
3762 
3763 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
3764   std::optional<PrimType> T = classify(E->getType());
3765   if (!T) {
3766     // Convert complex values to bool.
3767     if (E->getType()->isAnyComplexType()) {
3768       if (!this->visit(E))
3769         return false;
3770       return this->emitComplexBoolCast(E);
3771     }
3772     return false;
3773   }
3774 
3775   if (!this->visit(E))
3776     return false;
3777 
3778   if (T == PT_Bool)
3779     return true;
3780 
3781   // Convert pointers to bool.
3782   if (T == PT_Ptr || T == PT_FnPtr) {
3783     if (!this->emitNull(*T, nullptr, E))
3784       return false;
3785     return this->emitNE(*T, E);
3786   }
3787 
3788   // Or Floats.
3789   if (T == PT_Float)
3790     return this->emitCastFloatingIntegralBool(getFPOptions(E), E);
3791 
3792   // Or anything else we can.
3793   return this->emitCast(*T, PT_Bool, E);
3794 }
3795 
3796 template <class Emitter>
3797 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
3798                                              const Expr *E) {
3799   switch (T) {
3800   case PT_Bool:
3801     return this->emitZeroBool(E);
3802   case PT_Sint8:
3803     return this->emitZeroSint8(E);
3804   case PT_Uint8:
3805     return this->emitZeroUint8(E);
3806   case PT_Sint16:
3807     return this->emitZeroSint16(E);
3808   case PT_Uint16:
3809     return this->emitZeroUint16(E);
3810   case PT_Sint32:
3811     return this->emitZeroSint32(E);
3812   case PT_Uint32:
3813     return this->emitZeroUint32(E);
3814   case PT_Sint64:
3815     return this->emitZeroSint64(E);
3816   case PT_Uint64:
3817     return this->emitZeroUint64(E);
3818   case PT_IntAP:
3819     return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
3820   case PT_IntAPS:
3821     return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
3822   case PT_Ptr:
3823     return this->emitNullPtr(nullptr, E);
3824   case PT_FnPtr:
3825     return this->emitNullFnPtr(nullptr, E);
3826   case PT_MemberPtr:
3827     return this->emitNullMemberPtr(nullptr, E);
3828   case PT_Float:
3829     return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
3830   case PT_FixedPoint: {
3831     auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
3832     return this->emitConstFixedPoint(FixedPoint::zero(Sem), E);
3833   }
3834     llvm_unreachable("Implement");
3835   }
3836   llvm_unreachable("unknown primitive type");
3837 }
3838 
3839 template <class Emitter>
3840 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
3841                                                    const Expr *E) {
3842   assert(E);
3843   assert(R);
3844   // Fields
3845   for (const Record::Field &Field : R->fields()) {
3846     if (Field.Decl->isUnnamedBitField())
3847       continue;
3848 
3849     const Descriptor *D = Field.Desc;
3850     if (D->isPrimitive()) {
3851       QualType QT = D->getType();
3852       PrimType T = classifyPrim(D->getType());
3853       if (!this->visitZeroInitializer(T, QT, E))
3854         return false;
3855       if (!this->emitInitField(T, Field.Offset, E))
3856         return false;
3857       if (R->isUnion())
3858         break;
3859       continue;
3860     }
3861 
3862     if (!this->emitGetPtrField(Field.Offset, E))
3863       return false;
3864 
3865     if (D->isPrimitiveArray()) {
3866       QualType ET = D->getElemQualType();
3867       PrimType T = classifyPrim(ET);
3868       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3869         if (!this->visitZeroInitializer(T, ET, E))
3870           return false;
3871         if (!this->emitInitElem(T, I, E))
3872           return false;
3873       }
3874     } else if (D->isCompositeArray()) {
3875       const Record *ElemRecord = D->ElemDesc->ElemRecord;
3876       assert(D->ElemDesc->ElemRecord);
3877       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3878         if (!this->emitConstUint32(I, E))
3879           return false;
3880         if (!this->emitArrayElemPtr(PT_Uint32, E))
3881           return false;
3882         if (!this->visitZeroRecordInitializer(ElemRecord, E))
3883           return false;
3884         if (!this->emitPopPtr(E))
3885           return false;
3886       }
3887     } else if (D->isRecord()) {
3888       if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
3889         return false;
3890     } else {
3891       assert(false);
3892     }
3893 
3894     if (!this->emitFinishInitPop(E))
3895       return false;
3896 
3897     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3898     // object's first non-static named data member is zero-initialized
3899     if (R->isUnion())
3900       break;
3901   }
3902 
3903   for (const Record::Base &B : R->bases()) {
3904     if (!this->emitGetPtrBase(B.Offset, E))
3905       return false;
3906     if (!this->visitZeroRecordInitializer(B.R, E))
3907       return false;
3908     if (!this->emitFinishInitPop(E))
3909       return false;
3910   }
3911 
3912   // FIXME: Virtual bases.
3913 
3914   return true;
3915 }
3916 
3917 template <class Emitter>
3918 template <typename T>
3919 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
3920   switch (Ty) {
3921   case PT_Sint8:
3922     return this->emitConstSint8(Value, E);
3923   case PT_Uint8:
3924     return this->emitConstUint8(Value, E);
3925   case PT_Sint16:
3926     return this->emitConstSint16(Value, E);
3927   case PT_Uint16:
3928     return this->emitConstUint16(Value, E);
3929   case PT_Sint32:
3930     return this->emitConstSint32(Value, E);
3931   case PT_Uint32:
3932     return this->emitConstUint32(Value, E);
3933   case PT_Sint64:
3934     return this->emitConstSint64(Value, E);
3935   case PT_Uint64:
3936     return this->emitConstUint64(Value, E);
3937   case PT_Bool:
3938     return this->emitConstBool(Value, E);
3939   case PT_Ptr:
3940   case PT_FnPtr:
3941   case PT_MemberPtr:
3942   case PT_Float:
3943   case PT_IntAP:
3944   case PT_IntAPS:
3945   case PT_FixedPoint:
3946     llvm_unreachable("Invalid integral type");
3947     break;
3948   }
3949   llvm_unreachable("unknown primitive type");
3950 }
3951 
3952 template <class Emitter>
3953 template <typename T>
3954 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
3955   return this->emitConst(Value, classifyPrim(E->getType()), E);
3956 }
3957 
3958 template <class Emitter>
3959 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
3960                                   const Expr *E) {
3961   if (Ty == PT_IntAPS)
3962     return this->emitConstIntAPS(Value, E);
3963   if (Ty == PT_IntAP)
3964     return this->emitConstIntAP(Value, E);
3965 
3966   if (Value.isSigned())
3967     return this->emitConst(Value.getSExtValue(), Ty, E);
3968   return this->emitConst(Value.getZExtValue(), Ty, E);
3969 }
3970 
3971 template <class Emitter>
3972 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
3973   return this->emitConst(Value, classifyPrim(E->getType()), E);
3974 }
3975 
3976 template <class Emitter>
3977 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
3978                                                    bool IsConst,
3979                                                    bool IsExtended) {
3980   // Make sure we don't accidentally register the same decl twice.
3981   if (const auto *VD =
3982           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3983     assert(!P.getGlobal(VD));
3984     assert(!Locals.contains(VD));
3985     (void)VD;
3986   }
3987 
3988   // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
3989   //   (int){12} in C. Consider using Expr::isTemporaryObject() instead
3990   //   or isa<MaterializeTemporaryExpr>().
3991   Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
3992                                      Src.is<const Expr *>());
3993   Scope::Local Local = this->createLocal(D);
3994   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
3995     Locals.insert({VD, Local});
3996   VarScope->add(Local, IsExtended);
3997   return Local.Offset;
3998 }
3999 
4000 template <class Emitter>
4001 std::optional<unsigned>
4002 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) {
4003   // Make sure we don't accidentally register the same decl twice.
4004   if ([[maybe_unused]] const auto *VD =
4005           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
4006     assert(!P.getGlobal(VD));
4007     assert(!Locals.contains(VD));
4008   }
4009 
4010   QualType Ty;
4011   const ValueDecl *Key = nullptr;
4012   const Expr *Init = nullptr;
4013   bool IsTemporary = false;
4014   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
4015     Key = VD;
4016     Ty = VD->getType();
4017 
4018     if (const auto *VarD = dyn_cast<VarDecl>(VD))
4019       Init = VarD->getInit();
4020   }
4021   if (auto *E = Src.dyn_cast<const Expr *>()) {
4022     IsTemporary = true;
4023     Ty = E->getType();
4024   }
4025 
4026   Descriptor *D = P.createDescriptor(
4027       Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
4028       IsTemporary, /*IsMutable=*/false, Init);
4029   if (!D)
4030     return std::nullopt;
4031 
4032   Scope::Local Local = this->createLocal(D);
4033   if (Key)
4034     Locals.insert({Key, Local});
4035   if (ExtendingDecl)
4036     VarScope->addExtended(Local, ExtendingDecl);
4037   else
4038     VarScope->add(Local, false);
4039   return Local.Offset;
4040 }
4041 
4042 template <class Emitter>
4043 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) {
4044   QualType Ty = E->getType();
4045   assert(!Ty->isRecordType());
4046 
4047   Descriptor *D = P.createDescriptor(
4048       E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
4049       /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
4050   assert(D);
4051 
4052   Scope::Local Local = this->createLocal(D);
4053   VariableScope<Emitter> *S = VarScope;
4054   assert(S);
4055   // Attach to topmost scope.
4056   while (S->getParent())
4057     S = S->getParent();
4058   assert(S && !S->getParent());
4059   S->addLocal(Local);
4060   return Local.Offset;
4061 }
4062 
4063 template <class Emitter>
4064 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
4065   if (const PointerType *PT = dyn_cast<PointerType>(Ty))
4066     return PT->getPointeeType()->getAs<RecordType>();
4067   return Ty->getAs<RecordType>();
4068 }
4069 
4070 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
4071   if (const auto *RecordTy = getRecordTy(Ty))
4072     return getRecord(RecordTy->getDecl());
4073   return nullptr;
4074 }
4075 
4076 template <class Emitter>
4077 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
4078   return P.getOrCreateRecord(RD);
4079 }
4080 
4081 template <class Emitter>
4082 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
4083   return Ctx.getOrCreateFunction(FD);
4084 }
4085 
4086 template <class Emitter>
4087 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) {
4088   LocalScope<Emitter> RootScope(this);
4089 
4090   auto maybeDestroyLocals = [&]() -> bool {
4091     if (DestroyToplevelScope)
4092       return RootScope.destroyLocals();
4093     return true;
4094   };
4095 
4096   // Void expressions.
4097   if (E->getType()->isVoidType()) {
4098     if (!visit(E))
4099       return false;
4100     return this->emitRetVoid(E) && maybeDestroyLocals();
4101   }
4102 
4103   // Expressions with a primitive return type.
4104   if (std::optional<PrimType> T = classify(E)) {
4105     if (!visit(E))
4106       return false;
4107 
4108     return this->emitRet(*T, E) && maybeDestroyLocals();
4109   }
4110 
4111   // Expressions with a composite return type.
4112   // For us, that means everything we don't
4113   // have a PrimType for.
4114   if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
4115     if (!this->emitGetPtrLocal(*LocalOffset, E))
4116       return false;
4117 
4118     if (!visitInitializer(E))
4119       return false;
4120 
4121     if (!this->emitFinishInit(E))
4122       return false;
4123     // We are destroying the locals AFTER the Ret op.
4124     // The Ret op needs to copy the (alive) values, but the
4125     // destructors may still turn the entire expression invalid.
4126     return this->emitRetValue(E) && maybeDestroyLocals();
4127   }
4128 
4129   (void)maybeDestroyLocals();
4130   return false;
4131 }
4132 
4133 template <class Emitter>
4134 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
4135 
4136   auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
4137 
4138   if (R.notCreated())
4139     return R;
4140 
4141   if (R)
4142     return true;
4143 
4144   if (!R && Context::shouldBeGloballyIndexed(VD)) {
4145     if (auto GlobalIndex = P.getGlobal(VD)) {
4146       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4147       GlobalInlineDescriptor &GD =
4148           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4149 
4150       GD.InitState = GlobalInitState::InitializerFailed;
4151       GlobalBlock->invokeDtor();
4152     }
4153   }
4154 
4155   return R;
4156 }
4157 
4158 /// Toplevel visitDeclAndReturn().
4159 /// We get here from evaluateAsInitializer().
4160 /// We need to evaluate the initializer and return its value.
4161 template <class Emitter>
4162 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
4163                                            bool ConstantContext) {
4164   std::optional<PrimType> VarT = classify(VD->getType());
4165 
4166   // We only create variables if we're evaluating in a constant context.
4167   // Otherwise, just evaluate the initializer and return it.
4168   if (!ConstantContext) {
4169     DeclScope<Emitter> LS(this, VD);
4170     if (!this->visit(VD->getAnyInitializer()))
4171       return false;
4172     return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals();
4173   }
4174 
4175   LocalScope<Emitter> VDScope(this, VD);
4176   if (!this->visitVarDecl(VD, /*Toplevel=*/true))
4177     return false;
4178 
4179   if (Context::shouldBeGloballyIndexed(VD)) {
4180     auto GlobalIndex = P.getGlobal(VD);
4181     assert(GlobalIndex); // visitVarDecl() didn't return false.
4182     if (VarT) {
4183       if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
4184         return false;
4185     } else {
4186       if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
4187         return false;
4188     }
4189   } else {
4190     auto Local = Locals.find(VD);
4191     assert(Local != Locals.end()); // Same here.
4192     if (VarT) {
4193       if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
4194         return false;
4195     } else {
4196       if (!this->emitGetPtrLocal(Local->second.Offset, VD))
4197         return false;
4198     }
4199   }
4200 
4201   // Return the value.
4202   if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
4203     // If the Ret above failed and this is a global variable, mark it as
4204     // uninitialized, even everything else succeeded.
4205     if (Context::shouldBeGloballyIndexed(VD)) {
4206       auto GlobalIndex = P.getGlobal(VD);
4207       assert(GlobalIndex);
4208       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4209       GlobalInlineDescriptor &GD =
4210           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4211 
4212       GD.InitState = GlobalInitState::InitializerFailed;
4213       GlobalBlock->invokeDtor();
4214     }
4215     return false;
4216   }
4217 
4218   return VDScope.destroyLocals();
4219 }
4220 
4221 template <class Emitter>
4222 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
4223                                                  bool Toplevel) {
4224   // We don't know what to do with these, so just return false.
4225   if (VD->getType().isNull())
4226     return false;
4227 
4228   // This case is EvalEmitter-only. If we won't create any instructions for the
4229   // initializer anyway, don't bother creating the variable in the first place.
4230   if (!this->isActive())
4231     return VarCreationState::NotCreated();
4232 
4233   const Expr *Init = VD->getInit();
4234   std::optional<PrimType> VarT = classify(VD->getType());
4235 
4236   if (Init && Init->isValueDependent())
4237     return false;
4238 
4239   if (Context::shouldBeGloballyIndexed(VD)) {
4240     auto checkDecl = [&]() -> bool {
4241       bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
4242       return !NeedsOp || this->emitCheckDecl(VD, VD);
4243     };
4244 
4245     auto initGlobal = [&](unsigned GlobalIndex) -> bool {
4246       assert(Init);
4247 
4248       if (VarT) {
4249         if (!this->visit(Init))
4250           return checkDecl() && false;
4251 
4252         return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
4253       }
4254 
4255       if (!checkDecl())
4256         return false;
4257 
4258       if (!this->emitGetPtrGlobal(GlobalIndex, Init))
4259         return false;
4260 
4261       if (!visitInitializer(Init))
4262         return false;
4263 
4264       if (!this->emitFinishInit(Init))
4265         return false;
4266 
4267       return this->emitPopPtr(Init);
4268     };
4269 
4270     DeclScope<Emitter> LocalScope(this, VD);
4271 
4272     // We've already seen and initialized this global.
4273     if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
4274       if (P.getPtrGlobal(*GlobalIndex).isInitialized())
4275         return checkDecl();
4276 
4277       // The previous attempt at initialization might've been unsuccessful,
4278       // so let's try this one.
4279       return Init && checkDecl() && initGlobal(*GlobalIndex);
4280     }
4281 
4282     std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
4283 
4284     if (!GlobalIndex)
4285       return false;
4286 
4287     return !Init || (checkDecl() && initGlobal(*GlobalIndex));
4288   } else {
4289     InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
4290 
4291     if (VarT) {
4292       unsigned Offset = this->allocateLocalPrimitive(
4293           VD, *VarT, VD->getType().isConstQualified());
4294       if (Init) {
4295         // If this is a toplevel declaration, create a scope for the
4296         // initializer.
4297         if (Toplevel) {
4298           LocalScope<Emitter> Scope(this);
4299           if (!this->visit(Init))
4300             return false;
4301           return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
4302         } else {
4303           if (!this->visit(Init))
4304             return false;
4305           return this->emitSetLocal(*VarT, Offset, VD);
4306         }
4307       }
4308     } else {
4309       if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
4310         if (!Init)
4311           return true;
4312 
4313         if (!this->emitGetPtrLocal(*Offset, Init))
4314           return false;
4315 
4316         if (!visitInitializer(Init))
4317           return false;
4318 
4319         if (!this->emitFinishInit(Init))
4320           return false;
4321 
4322         return this->emitPopPtr(Init);
4323       }
4324       return false;
4325     }
4326     return true;
4327   }
4328 
4329   return false;
4330 }
4331 
4332 template <class Emitter>
4333 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
4334                                      const Expr *E) {
4335   assert(!DiscardResult);
4336   if (Val.isInt())
4337     return this->emitConst(Val.getInt(), ValType, E);
4338   else if (Val.isFloat())
4339     return this->emitConstFloat(Val.getFloat(), E);
4340 
4341   if (Val.isLValue()) {
4342     if (Val.isNullPointer())
4343       return this->emitNull(ValType, nullptr, E);
4344     APValue::LValueBase Base = Val.getLValueBase();
4345     if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
4346       return this->visit(BaseExpr);
4347     else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
4348       return this->visitDeclRef(VD, E);
4349     }
4350   } else if (Val.isMemberPointer()) {
4351     if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
4352       return this->emitGetMemberPtr(MemberDecl, E);
4353     return this->emitNullMemberPtr(nullptr, E);
4354   }
4355 
4356   return false;
4357 }
4358 
4359 template <class Emitter>
4360 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
4361                                                 const Expr *E) {
4362 
4363   if (Val.isStruct()) {
4364     const Record *R = this->getRecord(E->getType());
4365     assert(R);
4366     for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
4367       const APValue &F = Val.getStructField(I);
4368       const Record::Field *RF = R->getField(I);
4369 
4370       if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
4371         PrimType T = classifyPrim(RF->Decl->getType());
4372         if (!this->visitAPValue(F, T, E))
4373           return false;
4374         if (!this->emitInitField(T, RF->Offset, E))
4375           return false;
4376       } else if (F.isArray()) {
4377         assert(RF->Desc->isPrimitiveArray());
4378         const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
4379         PrimType ElemT = classifyPrim(ArrType->getElementType());
4380         assert(ArrType);
4381 
4382         if (!this->emitGetPtrField(RF->Offset, E))
4383           return false;
4384 
4385         for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
4386           if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
4387             return false;
4388           if (!this->emitInitElem(ElemT, A, E))
4389             return false;
4390         }
4391 
4392         if (!this->emitPopPtr(E))
4393           return false;
4394       } else if (F.isStruct() || F.isUnion()) {
4395         if (!this->emitGetPtrField(RF->Offset, E))
4396           return false;
4397         if (!this->visitAPValueInitializer(F, E))
4398           return false;
4399         if (!this->emitPopPtr(E))
4400           return false;
4401       } else {
4402         assert(false && "I don't think this should be possible");
4403       }
4404     }
4405     return true;
4406   } else if (Val.isUnion()) {
4407     const FieldDecl *UnionField = Val.getUnionField();
4408     const Record *R = this->getRecord(UnionField->getParent());
4409     assert(R);
4410     const APValue &F = Val.getUnionValue();
4411     const Record::Field *RF = R->getField(UnionField);
4412     PrimType T = classifyPrim(RF->Decl->getType());
4413     if (!this->visitAPValue(F, T, E))
4414       return false;
4415     return this->emitInitField(T, RF->Offset, E);
4416   }
4417   // TODO: Other types.
4418 
4419   return false;
4420 }
4421 
4422 template <class Emitter>
4423 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E,
4424                                              unsigned BuiltinID) {
4425   const Function *Func = getFunction(E->getDirectCallee());
4426   if (!Func)
4427     return false;
4428 
4429   // For these, we're expected to ultimately return an APValue pointing
4430   // to the CallExpr. This is needed to get the correct codegen.
4431   if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
4432       BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString ||
4433       BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant ||
4434       BuiltinID == Builtin::BI__builtin_function_start) {
4435     if (std::optional<unsigned> GlobalOffset = P.getOrCreateDummy(E)) {
4436       if (!this->emitGetPtrGlobal(*GlobalOffset, E))
4437         return false;
4438 
4439       if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT))
4440         return this->emitDecayPtr(PT_Ptr, PT, E);
4441       return true;
4442     }
4443     return false;
4444   }
4445 
4446   QualType ReturnType = E->getType();
4447   std::optional<PrimType> ReturnT = classify(E);
4448 
4449   // Non-primitive return type. Prepare storage.
4450   if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
4451     std::optional<unsigned> LocalIndex = allocateLocal(E);
4452     if (!LocalIndex)
4453       return false;
4454     if (!this->emitGetPtrLocal(*LocalIndex, E))
4455       return false;
4456   }
4457 
4458   if (!Func->isUnevaluatedBuiltin()) {
4459     // Put arguments on the stack.
4460     for (const auto *Arg : E->arguments()) {
4461       if (!this->visit(Arg))
4462         return false;
4463     }
4464   }
4465 
4466   if (!this->emitCallBI(Func, E, BuiltinID, E))
4467     return false;
4468 
4469   if (DiscardResult && !ReturnType->isVoidType()) {
4470     assert(ReturnT);
4471     return this->emitPop(*ReturnT, E);
4472   }
4473 
4474   return true;
4475 }
4476 
4477 template <class Emitter>
4478 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
4479   if (unsigned BuiltinID = E->getBuiltinCallee())
4480     return VisitBuiltinCallExpr(E, BuiltinID);
4481 
4482   const FunctionDecl *FuncDecl = E->getDirectCallee();
4483   // Calls to replaceable operator new/operator delete.
4484   if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) {
4485     if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New ||
4486         FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
4487       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new);
4488     } else {
4489       assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete);
4490       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete);
4491     }
4492   }
4493 
4494   QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
4495   std::optional<PrimType> T = classify(ReturnType);
4496   bool HasRVO = !ReturnType->isVoidType() && !T;
4497 
4498   if (HasRVO) {
4499     if (DiscardResult) {
4500       // If we need to discard the return value but the function returns its
4501       // value via an RVO pointer, we need to create one such pointer just
4502       // for this call.
4503       if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4504         if (!this->emitGetPtrLocal(*LocalIndex, E))
4505           return false;
4506       }
4507     } else {
4508       // We need the result. Prepare a pointer to return or
4509       // dup the current one.
4510       if (!Initializing) {
4511         if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4512           if (!this->emitGetPtrLocal(*LocalIndex, E))
4513             return false;
4514         }
4515       }
4516       if (!this->emitDupPtr(E))
4517         return false;
4518     }
4519   }
4520 
4521   SmallVector<const Expr *, 8> Args(
4522       llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
4523 
4524   bool IsAssignmentOperatorCall = false;
4525   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
4526       OCE && OCE->isAssignmentOp()) {
4527     // Just like with regular assignments, we need to special-case assignment
4528     // operators here and evaluate the RHS (the second arg) before the LHS (the
4529     // first arg. We fix this by using a Flip op later.
4530     assert(Args.size() == 2);
4531     IsAssignmentOperatorCall = true;
4532     std::reverse(Args.begin(), Args.end());
4533   }
4534   // Calling a static operator will still
4535   // pass the instance, but we don't need it.
4536   // Discard it here.
4537   if (isa<CXXOperatorCallExpr>(E)) {
4538     if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
4539         MD && MD->isStatic()) {
4540       if (!this->discard(E->getArg(0)))
4541         return false;
4542       // Drop first arg.
4543       Args.erase(Args.begin());
4544     }
4545   }
4546 
4547   std::optional<unsigned> CalleeOffset;
4548   // Add the (optional, implicit) This pointer.
4549   if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
4550     if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
4551       // If we end up creating a CallPtr op for this, we need the base of the
4552       // member pointer as the instance pointer, and later extract the function
4553       // decl as the function pointer.
4554       const Expr *Callee = E->getCallee();
4555       CalleeOffset =
4556           this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
4557       if (!this->visit(Callee))
4558         return false;
4559       if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
4560         return false;
4561       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4562         return false;
4563       if (!this->emitGetMemberPtrBase(E))
4564         return false;
4565     } else if (!this->visit(MC->getImplicitObjectArgument())) {
4566       return false;
4567     }
4568   } else if (!FuncDecl) {
4569     const Expr *Callee = E->getCallee();
4570     CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false);
4571     if (!this->visit(Callee))
4572       return false;
4573     if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E))
4574       return false;
4575   }
4576 
4577   llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
4578   // Put arguments on the stack.
4579   unsigned ArgIndex = 0;
4580   for (const auto *Arg : Args) {
4581     if (!this->visit(Arg))
4582       return false;
4583 
4584     // If we know the callee already, check the known parametrs for nullability.
4585     if (FuncDecl && NonNullArgs[ArgIndex]) {
4586       PrimType ArgT = classify(Arg).value_or(PT_Ptr);
4587       if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
4588         if (!this->emitCheckNonNullArg(ArgT, Arg))
4589           return false;
4590       }
4591     }
4592     ++ArgIndex;
4593   }
4594 
4595   // Undo the argument reversal we did earlier.
4596   if (IsAssignmentOperatorCall) {
4597     assert(Args.size() == 2);
4598     PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
4599     PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
4600     if (!this->emitFlip(Arg2T, Arg1T, E))
4601       return false;
4602   }
4603 
4604   if (FuncDecl) {
4605     const Function *Func = getFunction(FuncDecl);
4606     if (!Func)
4607       return false;
4608     assert(HasRVO == Func->hasRVO());
4609 
4610     bool HasQualifier = false;
4611     if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
4612       HasQualifier = ME->hasQualifier();
4613 
4614     bool IsVirtual = false;
4615     if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
4616       IsVirtual = MD->isVirtual();
4617 
4618     // In any case call the function. The return value will end up on the stack
4619     // and if the function has RVO, we already have the pointer on the stack to
4620     // write the result into.
4621     if (IsVirtual && !HasQualifier) {
4622       uint32_t VarArgSize = 0;
4623       unsigned NumParams =
4624           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4625       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4626         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4627 
4628       if (!this->emitCallVirt(Func, VarArgSize, E))
4629         return false;
4630     } else if (Func->isVariadic()) {
4631       uint32_t VarArgSize = 0;
4632       unsigned NumParams =
4633           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4634       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4635         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4636       if (!this->emitCallVar(Func, VarArgSize, E))
4637         return false;
4638     } else {
4639       if (!this->emitCall(Func, 0, E))
4640         return false;
4641     }
4642   } else {
4643     // Indirect call. Visit the callee, which will leave a FunctionPointer on
4644     // the stack. Cleanup of the returned value if necessary will be done after
4645     // the function call completed.
4646 
4647     // Sum the size of all args from the call expr.
4648     uint32_t ArgSize = 0;
4649     for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
4650       ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4651 
4652     // Get the callee, either from a member pointer or function pointer saved in
4653     // CalleeOffset.
4654     if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
4655       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4656         return false;
4657       if (!this->emitGetMemberPtrDecl(E))
4658         return false;
4659     } else {
4660       if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E))
4661         return false;
4662     }
4663     if (!this->emitCallPtr(ArgSize, E, E))
4664       return false;
4665   }
4666 
4667   // Cleanup for discarded return values.
4668   if (DiscardResult && !ReturnType->isVoidType() && T)
4669     return this->emitPop(*T, E);
4670 
4671   return true;
4672 }
4673 
4674 template <class Emitter>
4675 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4676   SourceLocScope<Emitter> SLS(this, E);
4677 
4678   return this->delegate(E->getExpr());
4679 }
4680 
4681 template <class Emitter>
4682 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
4683   SourceLocScope<Emitter> SLS(this, E);
4684 
4685   const Expr *SubExpr = E->getExpr();
4686   if (std::optional<PrimType> T = classify(E->getExpr()))
4687     return this->visit(SubExpr);
4688 
4689   assert(Initializing);
4690   return this->visitInitializer(SubExpr);
4691 }
4692 
4693 template <class Emitter>
4694 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4695   if (DiscardResult)
4696     return true;
4697 
4698   return this->emitConstBool(E->getValue(), E);
4699 }
4700 
4701 template <class Emitter>
4702 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
4703     const CXXNullPtrLiteralExpr *E) {
4704   if (DiscardResult)
4705     return true;
4706 
4707   return this->emitNullPtr(nullptr, E);
4708 }
4709 
4710 template <class Emitter>
4711 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
4712   if (DiscardResult)
4713     return true;
4714 
4715   assert(E->getType()->isIntegerType());
4716 
4717   PrimType T = classifyPrim(E->getType());
4718   return this->emitZero(T, E);
4719 }
4720 
4721 template <class Emitter>
4722 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
4723   if (DiscardResult)
4724     return true;
4725 
4726   if (this->LambdaThisCapture.Offset > 0) {
4727     if (this->LambdaThisCapture.IsPtr)
4728       return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
4729     return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
4730   }
4731 
4732   // In some circumstances, the 'this' pointer does not actually refer to the
4733   // instance pointer of the current function frame, but e.g. to the declaration
4734   // currently being initialized. Here we emit the necessary instruction(s) for
4735   // this scenario.
4736   if (!InitStackActive || !E->isImplicit())
4737     return this->emitThis(E);
4738 
4739   if (InitStackActive && !InitStack.empty()) {
4740     unsigned StartIndex = 0;
4741     for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
4742       if (InitStack[StartIndex].Kind != InitLink::K_Field &&
4743           InitStack[StartIndex].Kind != InitLink::K_Elem)
4744         break;
4745     }
4746 
4747     for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) {
4748       if (!InitStack[I].template emit<Emitter>(this, E))
4749         return false;
4750     }
4751     return true;
4752   }
4753   return this->emitThis(E);
4754 }
4755 
4756 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
4757   switch (S->getStmtClass()) {
4758   case Stmt::CompoundStmtClass:
4759     return visitCompoundStmt(cast<CompoundStmt>(S));
4760   case Stmt::DeclStmtClass:
4761     return visitDeclStmt(cast<DeclStmt>(S));
4762   case Stmt::ReturnStmtClass:
4763     return visitReturnStmt(cast<ReturnStmt>(S));
4764   case Stmt::IfStmtClass:
4765     return visitIfStmt(cast<IfStmt>(S));
4766   case Stmt::WhileStmtClass:
4767     return visitWhileStmt(cast<WhileStmt>(S));
4768   case Stmt::DoStmtClass:
4769     return visitDoStmt(cast<DoStmt>(S));
4770   case Stmt::ForStmtClass:
4771     return visitForStmt(cast<ForStmt>(S));
4772   case Stmt::CXXForRangeStmtClass:
4773     return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
4774   case Stmt::BreakStmtClass:
4775     return visitBreakStmt(cast<BreakStmt>(S));
4776   case Stmt::ContinueStmtClass:
4777     return visitContinueStmt(cast<ContinueStmt>(S));
4778   case Stmt::SwitchStmtClass:
4779     return visitSwitchStmt(cast<SwitchStmt>(S));
4780   case Stmt::CaseStmtClass:
4781     return visitCaseStmt(cast<CaseStmt>(S));
4782   case Stmt::DefaultStmtClass:
4783     return visitDefaultStmt(cast<DefaultStmt>(S));
4784   case Stmt::AttributedStmtClass:
4785     return visitAttributedStmt(cast<AttributedStmt>(S));
4786   case Stmt::CXXTryStmtClass:
4787     return visitCXXTryStmt(cast<CXXTryStmt>(S));
4788   case Stmt::NullStmtClass:
4789     return true;
4790   // Always invalid statements.
4791   case Stmt::GCCAsmStmtClass:
4792   case Stmt::MSAsmStmtClass:
4793   case Stmt::GotoStmtClass:
4794     return this->emitInvalid(S);
4795   case Stmt::LabelStmtClass:
4796     return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
4797   default: {
4798     if (const auto *E = dyn_cast<Expr>(S))
4799       return this->discard(E);
4800     return false;
4801   }
4802   }
4803 }
4804 
4805 template <class Emitter>
4806 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
4807   BlockScope<Emitter> Scope(this);
4808   for (const auto *InnerStmt : S->body())
4809     if (!visitStmt(InnerStmt))
4810       return false;
4811   return Scope.destroyLocals();
4812 }
4813 
4814 template <class Emitter>
4815 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
4816   for (const auto *D : DS->decls()) {
4817     if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
4818             FunctionDecl>(D))
4819       continue;
4820 
4821     const auto *VD = dyn_cast<VarDecl>(D);
4822     if (!VD)
4823       return false;
4824     if (!this->visitVarDecl(VD))
4825       return false;
4826   }
4827 
4828   return true;
4829 }
4830 
4831 template <class Emitter>
4832 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
4833   if (this->InStmtExpr)
4834     return this->emitUnsupported(RS);
4835 
4836   if (const Expr *RE = RS->getRetValue()) {
4837     LocalScope<Emitter> RetScope(this);
4838     if (ReturnType) {
4839       // Primitive types are simply returned.
4840       if (!this->visit(RE))
4841         return false;
4842       this->emitCleanup();
4843       return this->emitRet(*ReturnType, RS);
4844     } else if (RE->getType()->isVoidType()) {
4845       if (!this->visit(RE))
4846         return false;
4847     } else {
4848       // RVO - construct the value in the return location.
4849       if (!this->emitRVOPtr(RE))
4850         return false;
4851       if (!this->visitInitializer(RE))
4852         return false;
4853       if (!this->emitPopPtr(RE))
4854         return false;
4855 
4856       this->emitCleanup();
4857       return this->emitRetVoid(RS);
4858     }
4859   }
4860 
4861   // Void return.
4862   this->emitCleanup();
4863   return this->emitRetVoid(RS);
4864 }
4865 
4866 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
4867   if (auto *CondInit = IS->getInit())
4868     if (!visitStmt(CondInit))
4869       return false;
4870 
4871   if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
4872     if (!visitDeclStmt(CondDecl))
4873       return false;
4874 
4875   // Compile condition.
4876   if (IS->isNonNegatedConsteval()) {
4877     if (!this->emitIsConstantContext(IS))
4878       return false;
4879   } else if (IS->isNegatedConsteval()) {
4880     if (!this->emitIsConstantContext(IS))
4881       return false;
4882     if (!this->emitInv(IS))
4883       return false;
4884   } else {
4885     if (!this->visitBool(IS->getCond()))
4886       return false;
4887   }
4888 
4889   if (const Stmt *Else = IS->getElse()) {
4890     LabelTy LabelElse = this->getLabel();
4891     LabelTy LabelEnd = this->getLabel();
4892     if (!this->jumpFalse(LabelElse))
4893       return false;
4894     if (!visitStmt(IS->getThen()))
4895       return false;
4896     if (!this->jump(LabelEnd))
4897       return false;
4898     this->emitLabel(LabelElse);
4899     if (!visitStmt(Else))
4900       return false;
4901     this->emitLabel(LabelEnd);
4902   } else {
4903     LabelTy LabelEnd = this->getLabel();
4904     if (!this->jumpFalse(LabelEnd))
4905       return false;
4906     if (!visitStmt(IS->getThen()))
4907       return false;
4908     this->emitLabel(LabelEnd);
4909   }
4910 
4911   return true;
4912 }
4913 
4914 template <class Emitter>
4915 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
4916   const Expr *Cond = S->getCond();
4917   const Stmt *Body = S->getBody();
4918 
4919   LabelTy CondLabel = this->getLabel(); // Label before the condition.
4920   LabelTy EndLabel = this->getLabel();  // Label after the loop.
4921   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4922 
4923   this->fallthrough(CondLabel);
4924   this->emitLabel(CondLabel);
4925 
4926   {
4927     LocalScope<Emitter> CondScope(this);
4928     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4929       if (!visitDeclStmt(CondDecl))
4930         return false;
4931 
4932     if (!this->visitBool(Cond))
4933       return false;
4934     if (!this->jumpFalse(EndLabel))
4935       return false;
4936 
4937     if (!this->visitStmt(Body))
4938       return false;
4939 
4940     if (!CondScope.destroyLocals())
4941       return false;
4942   }
4943   if (!this->jump(CondLabel))
4944     return false;
4945   this->fallthrough(EndLabel);
4946   this->emitLabel(EndLabel);
4947 
4948   return true;
4949 }
4950 
4951 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
4952   const Expr *Cond = S->getCond();
4953   const Stmt *Body = S->getBody();
4954 
4955   LabelTy StartLabel = this->getLabel();
4956   LabelTy EndLabel = this->getLabel();
4957   LabelTy CondLabel = this->getLabel();
4958   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4959 
4960   this->fallthrough(StartLabel);
4961   this->emitLabel(StartLabel);
4962 
4963   {
4964     LocalScope<Emitter> CondScope(this);
4965     if (!this->visitStmt(Body))
4966       return false;
4967     this->fallthrough(CondLabel);
4968     this->emitLabel(CondLabel);
4969     if (!this->visitBool(Cond))
4970       return false;
4971 
4972     if (!CondScope.destroyLocals())
4973       return false;
4974   }
4975   if (!this->jumpTrue(StartLabel))
4976     return false;
4977 
4978   this->fallthrough(EndLabel);
4979   this->emitLabel(EndLabel);
4980   return true;
4981 }
4982 
4983 template <class Emitter>
4984 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
4985   // for (Init; Cond; Inc) { Body }
4986   const Stmt *Init = S->getInit();
4987   const Expr *Cond = S->getCond();
4988   const Expr *Inc = S->getInc();
4989   const Stmt *Body = S->getBody();
4990 
4991   LabelTy EndLabel = this->getLabel();
4992   LabelTy CondLabel = this->getLabel();
4993   LabelTy IncLabel = this->getLabel();
4994   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4995 
4996   if (Init && !this->visitStmt(Init))
4997     return false;
4998 
4999   this->fallthrough(CondLabel);
5000   this->emitLabel(CondLabel);
5001 
5002   {
5003     LocalScope<Emitter> CondScope(this);
5004     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
5005       if (!visitDeclStmt(CondDecl))
5006         return false;
5007 
5008     if (Cond) {
5009       if (!this->visitBool(Cond))
5010         return false;
5011       if (!this->jumpFalse(EndLabel))
5012         return false;
5013     }
5014 
5015     if (Body && !this->visitStmt(Body))
5016       return false;
5017 
5018     this->fallthrough(IncLabel);
5019     this->emitLabel(IncLabel);
5020     if (Inc && !this->discard(Inc))
5021       return false;
5022 
5023     if (!CondScope.destroyLocals())
5024       return false;
5025   }
5026   if (!this->jump(CondLabel))
5027     return false;
5028 
5029   this->fallthrough(EndLabel);
5030   this->emitLabel(EndLabel);
5031   return true;
5032 }
5033 
5034 template <class Emitter>
5035 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
5036   const Stmt *Init = S->getInit();
5037   const Expr *Cond = S->getCond();
5038   const Expr *Inc = S->getInc();
5039   const Stmt *Body = S->getBody();
5040   const Stmt *BeginStmt = S->getBeginStmt();
5041   const Stmt *RangeStmt = S->getRangeStmt();
5042   const Stmt *EndStmt = S->getEndStmt();
5043   const VarDecl *LoopVar = S->getLoopVariable();
5044 
5045   LabelTy EndLabel = this->getLabel();
5046   LabelTy CondLabel = this->getLabel();
5047   LabelTy IncLabel = this->getLabel();
5048   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
5049 
5050   // Emit declarations needed in the loop.
5051   if (Init && !this->visitStmt(Init))
5052     return false;
5053   if (!this->visitStmt(RangeStmt))
5054     return false;
5055   if (!this->visitStmt(BeginStmt))
5056     return false;
5057   if (!this->visitStmt(EndStmt))
5058     return false;
5059 
5060   // Now the condition as well as the loop variable assignment.
5061   this->fallthrough(CondLabel);
5062   this->emitLabel(CondLabel);
5063   if (!this->visitBool(Cond))
5064     return false;
5065   if (!this->jumpFalse(EndLabel))
5066     return false;
5067 
5068   if (!this->visitVarDecl(LoopVar))
5069     return false;
5070 
5071   // Body.
5072   {
5073     if (!this->visitStmt(Body))
5074       return false;
5075 
5076     this->fallthrough(IncLabel);
5077     this->emitLabel(IncLabel);
5078     if (!this->discard(Inc))
5079       return false;
5080   }
5081 
5082   if (!this->jump(CondLabel))
5083     return false;
5084 
5085   this->fallthrough(EndLabel);
5086   this->emitLabel(EndLabel);
5087   return true;
5088 }
5089 
5090 template <class Emitter>
5091 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
5092   if (!BreakLabel)
5093     return false;
5094 
5095   for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope;
5096        C = C->getParent())
5097     C->emitDestruction();
5098   return this->jump(*BreakLabel);
5099 }
5100 
5101 template <class Emitter>
5102 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
5103   if (!ContinueLabel)
5104     return false;
5105 
5106   for (VariableScope<Emitter> *C = VarScope;
5107        C && C->getParent() != ContinueVarScope; C = C->getParent())
5108     C->emitDestruction();
5109   return this->jump(*ContinueLabel);
5110 }
5111 
5112 template <class Emitter>
5113 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
5114   const Expr *Cond = S->getCond();
5115   PrimType CondT = this->classifyPrim(Cond->getType());
5116   LocalScope<Emitter> LS(this);
5117 
5118   LabelTy EndLabel = this->getLabel();
5119   OptLabelTy DefaultLabel = std::nullopt;
5120   unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
5121 
5122   if (const auto *CondInit = S->getInit())
5123     if (!visitStmt(CondInit))
5124       return false;
5125 
5126   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
5127     if (!visitDeclStmt(CondDecl))
5128       return false;
5129 
5130   // Initialize condition variable.
5131   if (!this->visit(Cond))
5132     return false;
5133   if (!this->emitSetLocal(CondT, CondVar, S))
5134     return false;
5135 
5136   CaseMap CaseLabels;
5137   // Create labels and comparison ops for all case statements.
5138   for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
5139        SC = SC->getNextSwitchCase()) {
5140     if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
5141       // FIXME: Implement ranges.
5142       if (CS->caseStmtIsGNURange())
5143         return false;
5144       CaseLabels[SC] = this->getLabel();
5145 
5146       const Expr *Value = CS->getLHS();
5147       PrimType ValueT = this->classifyPrim(Value->getType());
5148 
5149       // Compare the case statement's value to the switch condition.
5150       if (!this->emitGetLocal(CondT, CondVar, CS))
5151         return false;
5152       if (!this->visit(Value))
5153         return false;
5154 
5155       // Compare and jump to the case label.
5156       if (!this->emitEQ(ValueT, S))
5157         return false;
5158       if (!this->jumpTrue(CaseLabels[CS]))
5159         return false;
5160     } else {
5161       assert(!DefaultLabel);
5162       DefaultLabel = this->getLabel();
5163     }
5164   }
5165 
5166   // If none of the conditions above were true, fall through to the default
5167   // statement or jump after the switch statement.
5168   if (DefaultLabel) {
5169     if (!this->jump(*DefaultLabel))
5170       return false;
5171   } else {
5172     if (!this->jump(EndLabel))
5173       return false;
5174   }
5175 
5176   SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
5177   if (!this->visitStmt(S->getBody()))
5178     return false;
5179   this->emitLabel(EndLabel);
5180 
5181   return LS.destroyLocals();
5182 }
5183 
5184 template <class Emitter>
5185 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
5186   this->emitLabel(CaseLabels[S]);
5187   return this->visitStmt(S->getSubStmt());
5188 }
5189 
5190 template <class Emitter>
5191 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
5192   this->emitLabel(*DefaultLabel);
5193   return this->visitStmt(S->getSubStmt());
5194 }
5195 
5196 template <class Emitter>
5197 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
5198   if (this->Ctx.getLangOpts().CXXAssumptions &&
5199       !this->Ctx.getLangOpts().MSVCCompat) {
5200     for (const Attr *A : S->getAttrs()) {
5201       auto *AA = dyn_cast<CXXAssumeAttr>(A);
5202       if (!AA)
5203         continue;
5204 
5205       assert(isa<NullStmt>(S->getSubStmt()));
5206 
5207       const Expr *Assumption = AA->getAssumption();
5208       if (Assumption->isValueDependent())
5209         return false;
5210 
5211       if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
5212         continue;
5213 
5214       // Evaluate assumption.
5215       if (!this->visitBool(Assumption))
5216         return false;
5217 
5218       if (!this->emitAssume(Assumption))
5219         return false;
5220     }
5221   }
5222 
5223   // Ignore other attributes.
5224   return this->visitStmt(S->getSubStmt());
5225 }
5226 
5227 template <class Emitter>
5228 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
5229   // Ignore all handlers.
5230   return this->visitStmt(S->getTryBlock());
5231 }
5232 
5233 template <class Emitter>
5234 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
5235   assert(MD->isLambdaStaticInvoker());
5236   assert(MD->hasBody());
5237   assert(cast<CompoundStmt>(MD->getBody())->body_empty());
5238 
5239   const CXXRecordDecl *ClosureClass = MD->getParent();
5240   const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
5241   assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
5242   const Function *Func = this->getFunction(LambdaCallOp);
5243   if (!Func)
5244     return false;
5245   assert(Func->hasThisPointer());
5246   assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
5247 
5248   if (Func->hasRVO()) {
5249     if (!this->emitRVOPtr(MD))
5250       return false;
5251   }
5252 
5253   // The lambda call operator needs an instance pointer, but we don't have
5254   // one here, and we don't need one either because the lambda cannot have
5255   // any captures, as verified above. Emit a null pointer. This is then
5256   // special-cased when interpreting to not emit any misleading diagnostics.
5257   if (!this->emitNullPtr(nullptr, MD))
5258     return false;
5259 
5260   // Forward all arguments from the static invoker to the lambda call operator.
5261   for (const ParmVarDecl *PVD : MD->parameters()) {
5262     auto It = this->Params.find(PVD);
5263     assert(It != this->Params.end());
5264 
5265     // We do the lvalue-to-rvalue conversion manually here, so no need
5266     // to care about references.
5267     PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
5268     if (!this->emitGetParam(ParamType, It->second.Offset, MD))
5269       return false;
5270   }
5271 
5272   if (!this->emitCall(Func, 0, LambdaCallOp))
5273     return false;
5274 
5275   this->emitCleanup();
5276   if (ReturnType)
5277     return this->emitRet(*ReturnType, MD);
5278 
5279   // Nothing to do, since we emitted the RVO pointer above.
5280   return this->emitRetVoid(MD);
5281 }
5282 
5283 template <class Emitter>
5284 bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
5285   if (Ctx.getLangOpts().CPlusPlus23)
5286     return true;
5287 
5288   if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
5289     return true;
5290 
5291   return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
5292 }
5293 
5294 template <class Emitter>
5295 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
5296   assert(!ReturnType);
5297 
5298   auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
5299                                   const Expr *InitExpr) -> bool {
5300     // We don't know what to do with these, so just return false.
5301     if (InitExpr->getType().isNull())
5302       return false;
5303 
5304     if (std::optional<PrimType> T = this->classify(InitExpr)) {
5305       if (!this->visit(InitExpr))
5306         return false;
5307 
5308       if (F->isBitField())
5309         return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
5310       return this->emitInitThisField(*T, FieldOffset, InitExpr);
5311     }
5312     // Non-primitive case. Get a pointer to the field-to-initialize
5313     // on the stack and call visitInitialzer() for it.
5314     InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
5315     if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
5316       return false;
5317 
5318     if (!this->visitInitializer(InitExpr))
5319       return false;
5320 
5321     return this->emitFinishInitPop(InitExpr);
5322   };
5323 
5324   const RecordDecl *RD = Ctor->getParent();
5325   const Record *R = this->getRecord(RD);
5326   if (!R)
5327     return false;
5328 
5329   if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
5330     // union copy and move ctors are special.
5331     assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
5332     if (!this->emitThis(Ctor))
5333       return false;
5334 
5335     auto PVD = Ctor->getParamDecl(0);
5336     ParamOffset PO = this->Params[PVD]; // Must exist.
5337 
5338     if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
5339       return false;
5340 
5341     return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
5342            this->emitRetVoid(Ctor);
5343   }
5344 
5345   InitLinkScope<Emitter> InitScope(this, InitLink::This());
5346   for (const auto *Init : Ctor->inits()) {
5347     // Scope needed for the initializers.
5348     BlockScope<Emitter> Scope(this);
5349 
5350     const Expr *InitExpr = Init->getInit();
5351     if (const FieldDecl *Member = Init->getMember()) {
5352       const Record::Field *F = R->getField(Member);
5353 
5354       if (!emitFieldInitializer(F, F->Offset, InitExpr))
5355         return false;
5356     } else if (const Type *Base = Init->getBaseClass()) {
5357       const auto *BaseDecl = Base->getAsCXXRecordDecl();
5358       assert(BaseDecl);
5359 
5360       if (Init->isBaseVirtual()) {
5361         assert(R->getVirtualBase(BaseDecl));
5362         if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
5363           return false;
5364 
5365       } else {
5366         // Base class initializer.
5367         // Get This Base and call initializer on it.
5368         const Record::Base *B = R->getBase(BaseDecl);
5369         assert(B);
5370         if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
5371           return false;
5372       }
5373 
5374       if (!this->visitInitializer(InitExpr))
5375         return false;
5376       if (!this->emitFinishInitPop(InitExpr))
5377         return false;
5378     } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
5379       assert(IFD->getChainingSize() >= 2);
5380 
5381       unsigned NestedFieldOffset = 0;
5382       const Record::Field *NestedField = nullptr;
5383       for (const NamedDecl *ND : IFD->chain()) {
5384         const auto *FD = cast<FieldDecl>(ND);
5385         const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
5386         assert(FieldRecord);
5387 
5388         NestedField = FieldRecord->getField(FD);
5389         assert(NestedField);
5390 
5391         NestedFieldOffset += NestedField->Offset;
5392       }
5393       assert(NestedField);
5394 
5395       if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
5396         return false;
5397     } else {
5398       assert(Init->isDelegatingInitializer());
5399       if (!this->emitThis(InitExpr))
5400         return false;
5401       if (!this->visitInitializer(Init->getInit()))
5402         return false;
5403       if (!this->emitPopPtr(InitExpr))
5404         return false;
5405     }
5406 
5407     if (!Scope.destroyLocals())
5408       return false;
5409   }
5410 
5411   if (const auto *Body = Ctor->getBody())
5412     if (!visitStmt(Body))
5413       return false;
5414 
5415   return this->emitRetVoid(SourceInfo{});
5416 }
5417 
5418 template <class Emitter>
5419 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
5420   const RecordDecl *RD = Dtor->getParent();
5421   const Record *R = this->getRecord(RD);
5422   if (!R)
5423     return false;
5424 
5425   if (!Dtor->isTrivial() && Dtor->getBody()) {
5426     if (!this->visitStmt(Dtor->getBody()))
5427       return false;
5428   }
5429 
5430   if (!this->emitThis(Dtor))
5431     return false;
5432 
5433   assert(R);
5434   if (!R->isUnion()) {
5435     // First, destroy all fields.
5436     for (const Record::Field &Field : llvm::reverse(R->fields())) {
5437       const Descriptor *D = Field.Desc;
5438       if (!D->isPrimitive() && !D->isPrimitiveArray()) {
5439         if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
5440           return false;
5441         if (!this->emitDestruction(D, SourceInfo{}))
5442           return false;
5443         if (!this->emitPopPtr(SourceInfo{}))
5444           return false;
5445       }
5446     }
5447   }
5448 
5449   for (const Record::Base &Base : llvm::reverse(R->bases())) {
5450     if (Base.R->isAnonymousUnion())
5451       continue;
5452 
5453     if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
5454       return false;
5455     if (!this->emitRecordDestruction(Base.R, {}))
5456       return false;
5457     if (!this->emitPopPtr(SourceInfo{}))
5458       return false;
5459   }
5460 
5461   // FIXME: Virtual bases.
5462   return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
5463 }
5464 
5465 template <class Emitter>
5466 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
5467   // Classify the return type.
5468   ReturnType = this->classify(F->getReturnType());
5469 
5470   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
5471     return this->compileConstructor(Ctor);
5472   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
5473     return this->compileDestructor(Dtor);
5474 
5475   // Emit custom code if this is a lambda static invoker.
5476   if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
5477       MD && MD->isLambdaStaticInvoker())
5478     return this->emitLambdaStaticInvokerBody(MD);
5479 
5480   // Regular functions.
5481   if (const auto *Body = F->getBody())
5482     if (!visitStmt(Body))
5483       return false;
5484 
5485   // Emit a guard return to protect against a code path missing one.
5486   if (F->getReturnType()->isVoidType())
5487     return this->emitRetVoid(SourceInfo{});
5488   return this->emitNoRet(SourceInfo{});
5489 }
5490 
5491 template <class Emitter>
5492 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
5493   const Expr *SubExpr = E->getSubExpr();
5494   if (SubExpr->getType()->isAnyComplexType())
5495     return this->VisitComplexUnaryOperator(E);
5496   if (SubExpr->getType()->isVectorType())
5497     return this->VisitVectorUnaryOperator(E);
5498   if (SubExpr->getType()->isFixedPointType())
5499     return this->VisitFixedPointUnaryOperator(E);
5500   std::optional<PrimType> T = classify(SubExpr->getType());
5501 
5502   switch (E->getOpcode()) {
5503   case UO_PostInc: { // x++
5504     if (!Ctx.getLangOpts().CPlusPlus14)
5505       return this->emitInvalid(E);
5506     if (!T)
5507       return this->emitError(E);
5508 
5509     if (!this->visit(SubExpr))
5510       return false;
5511 
5512     if (T == PT_Ptr || T == PT_FnPtr) {
5513       if (!this->emitIncPtr(E))
5514         return false;
5515 
5516       return DiscardResult ? this->emitPopPtr(E) : true;
5517     }
5518 
5519     if (T == PT_Float) {
5520       return DiscardResult ? this->emitIncfPop(getFPOptions(E), E)
5521                            : this->emitIncf(getFPOptions(E), E);
5522     }
5523 
5524     return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
5525   }
5526   case UO_PostDec: { // x--
5527     if (!Ctx.getLangOpts().CPlusPlus14)
5528       return this->emitInvalid(E);
5529     if (!T)
5530       return this->emitError(E);
5531 
5532     if (!this->visit(SubExpr))
5533       return false;
5534 
5535     if (T == PT_Ptr || T == PT_FnPtr) {
5536       if (!this->emitDecPtr(E))
5537         return false;
5538 
5539       return DiscardResult ? this->emitPopPtr(E) : true;
5540     }
5541 
5542     if (T == PT_Float) {
5543       return DiscardResult ? this->emitDecfPop(getFPOptions(E), E)
5544                            : this->emitDecf(getFPOptions(E), E);
5545     }
5546 
5547     return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
5548   }
5549   case UO_PreInc: { // ++x
5550     if (!Ctx.getLangOpts().CPlusPlus14)
5551       return this->emitInvalid(E);
5552     if (!T)
5553       return this->emitError(E);
5554 
5555     if (!this->visit(SubExpr))
5556       return false;
5557 
5558     if (T == PT_Ptr || T == PT_FnPtr) {
5559       if (!this->emitLoadPtr(E))
5560         return false;
5561       if (!this->emitConstUint8(1, E))
5562         return false;
5563       if (!this->emitAddOffsetUint8(E))
5564         return false;
5565       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5566     }
5567 
5568     // Post-inc and pre-inc are the same if the value is to be discarded.
5569     if (DiscardResult) {
5570       if (T == PT_Float)
5571         return this->emitIncfPop(getFPOptions(E), E);
5572       return this->emitIncPop(*T, E);
5573     }
5574 
5575     if (T == PT_Float) {
5576       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5577       if (!this->emitLoadFloat(E))
5578         return false;
5579       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5580         return false;
5581       if (!this->emitAddf(getFPOptions(E), E))
5582         return false;
5583       if (!this->emitStoreFloat(E))
5584         return false;
5585     } else {
5586       assert(isIntegralType(*T));
5587       if (!this->emitLoad(*T, E))
5588         return false;
5589       if (!this->emitConst(1, E))
5590         return false;
5591       if (!this->emitAdd(*T, E))
5592         return false;
5593       if (!this->emitStore(*T, E))
5594         return false;
5595     }
5596     return E->isGLValue() || this->emitLoadPop(*T, E);
5597   }
5598   case UO_PreDec: { // --x
5599     if (!Ctx.getLangOpts().CPlusPlus14)
5600       return this->emitInvalid(E);
5601     if (!T)
5602       return this->emitError(E);
5603 
5604     if (!this->visit(SubExpr))
5605       return false;
5606 
5607     if (T == PT_Ptr || T == PT_FnPtr) {
5608       if (!this->emitLoadPtr(E))
5609         return false;
5610       if (!this->emitConstUint8(1, E))
5611         return false;
5612       if (!this->emitSubOffsetUint8(E))
5613         return false;
5614       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5615     }
5616 
5617     // Post-dec and pre-dec are the same if the value is to be discarded.
5618     if (DiscardResult) {
5619       if (T == PT_Float)
5620         return this->emitDecfPop(getFPOptions(E), E);
5621       return this->emitDecPop(*T, E);
5622     }
5623 
5624     if (T == PT_Float) {
5625       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5626       if (!this->emitLoadFloat(E))
5627         return false;
5628       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5629         return false;
5630       if (!this->emitSubf(getFPOptions(E), E))
5631         return false;
5632       if (!this->emitStoreFloat(E))
5633         return false;
5634     } else {
5635       assert(isIntegralType(*T));
5636       if (!this->emitLoad(*T, E))
5637         return false;
5638       if (!this->emitConst(1, E))
5639         return false;
5640       if (!this->emitSub(*T, E))
5641         return false;
5642       if (!this->emitStore(*T, E))
5643         return false;
5644     }
5645     return E->isGLValue() || this->emitLoadPop(*T, E);
5646   }
5647   case UO_LNot: // !x
5648     if (!T)
5649       return this->emitError(E);
5650 
5651     if (DiscardResult)
5652       return this->discard(SubExpr);
5653 
5654     if (!this->visitBool(SubExpr))
5655       return false;
5656 
5657     if (!this->emitInv(E))
5658       return false;
5659 
5660     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5661       return this->emitCast(PT_Bool, ET, E);
5662     return true;
5663   case UO_Minus: // -x
5664     if (!T)
5665       return this->emitError(E);
5666 
5667     if (!this->visit(SubExpr))
5668       return false;
5669     return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
5670   case UO_Plus: // +x
5671     if (!T)
5672       return this->emitError(E);
5673 
5674     if (!this->visit(SubExpr)) // noop
5675       return false;
5676     return DiscardResult ? this->emitPop(*T, E) : true;
5677   case UO_AddrOf: // &x
5678     if (E->getType()->isMemberPointerType()) {
5679       // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5680       // member can be formed.
5681       return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
5682     }
5683     // We should already have a pointer when we get here.
5684     return this->delegate(SubExpr);
5685   case UO_Deref: // *x
5686     if (DiscardResult)
5687       return this->discard(SubExpr);
5688     return this->visit(SubExpr);
5689   case UO_Not: // ~x
5690     if (!T)
5691       return this->emitError(E);
5692 
5693     if (!this->visit(SubExpr))
5694       return false;
5695     return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
5696   case UO_Real: // __real x
5697     assert(T);
5698     return this->delegate(SubExpr);
5699   case UO_Imag: { // __imag x
5700     assert(T);
5701     if (!this->discard(SubExpr))
5702       return false;
5703     return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
5704   }
5705   case UO_Extension:
5706     return this->delegate(SubExpr);
5707   case UO_Coawait:
5708     assert(false && "Unhandled opcode");
5709   }
5710 
5711   return false;
5712 }
5713 
5714 template <class Emitter>
5715 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
5716   const Expr *SubExpr = E->getSubExpr();
5717   assert(SubExpr->getType()->isAnyComplexType());
5718 
5719   if (DiscardResult)
5720     return this->discard(SubExpr);
5721 
5722   std::optional<PrimType> ResT = classify(E);
5723   auto prepareResult = [=]() -> bool {
5724     if (!ResT && !Initializing) {
5725       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5726       if (!LocalIndex)
5727         return false;
5728       return this->emitGetPtrLocal(*LocalIndex, E);
5729     }
5730 
5731     return true;
5732   };
5733 
5734   // The offset of the temporary, if we created one.
5735   unsigned SubExprOffset = ~0u;
5736   auto createTemp = [=, &SubExprOffset]() -> bool {
5737     SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5738     if (!this->visit(SubExpr))
5739       return false;
5740     return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
5741   };
5742 
5743   PrimType ElemT = classifyComplexElementType(SubExpr->getType());
5744   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5745     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5746       return false;
5747     return this->emitArrayElemPop(ElemT, Index, E);
5748   };
5749 
5750   switch (E->getOpcode()) {
5751   case UO_Minus:
5752     if (!prepareResult())
5753       return false;
5754     if (!createTemp())
5755       return false;
5756     for (unsigned I = 0; I != 2; ++I) {
5757       if (!getElem(SubExprOffset, I))
5758         return false;
5759       if (!this->emitNeg(ElemT, E))
5760         return false;
5761       if (!this->emitInitElem(ElemT, I, E))
5762         return false;
5763     }
5764     break;
5765 
5766   case UO_Plus:   // +x
5767   case UO_AddrOf: // &x
5768   case UO_Deref:  // *x
5769     return this->delegate(SubExpr);
5770 
5771   case UO_LNot:
5772     if (!this->visit(SubExpr))
5773       return false;
5774     if (!this->emitComplexBoolCast(SubExpr))
5775       return false;
5776     if (!this->emitInv(E))
5777       return false;
5778     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5779       return this->emitCast(PT_Bool, ET, E);
5780     return true;
5781 
5782   case UO_Real:
5783     return this->emitComplexReal(SubExpr);
5784 
5785   case UO_Imag:
5786     if (!this->visit(SubExpr))
5787       return false;
5788 
5789     if (SubExpr->isLValue()) {
5790       if (!this->emitConstUint8(1, E))
5791         return false;
5792       return this->emitArrayElemPtrPopUint8(E);
5793     }
5794 
5795     // Since our _Complex implementation does not map to a primitive type,
5796     // we sometimes have to do the lvalue-to-rvalue conversion here manually.
5797     return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
5798 
5799   case UO_Not: // ~x
5800     if (!this->visit(SubExpr))
5801       return false;
5802     // Negate the imaginary component.
5803     if (!this->emitArrayElem(ElemT, 1, E))
5804       return false;
5805     if (!this->emitNeg(ElemT, E))
5806       return false;
5807     if (!this->emitInitElem(ElemT, 1, E))
5808       return false;
5809     return DiscardResult ? this->emitPopPtr(E) : true;
5810 
5811   case UO_Extension:
5812     return this->delegate(SubExpr);
5813 
5814   default:
5815     return this->emitInvalid(E);
5816   }
5817 
5818   return true;
5819 }
5820 
5821 template <class Emitter>
5822 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) {
5823   const Expr *SubExpr = E->getSubExpr();
5824   assert(SubExpr->getType()->isVectorType());
5825 
5826   if (DiscardResult)
5827     return this->discard(SubExpr);
5828 
5829   auto UnaryOp = E->getOpcode();
5830   if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot &&
5831       UnaryOp != UO_Not && UnaryOp != UO_AddrOf)
5832     return this->emitInvalid(E);
5833 
5834   // Nothing to do here.
5835   if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf)
5836     return this->delegate(SubExpr);
5837 
5838   if (!Initializing) {
5839     std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5840     if (!LocalIndex)
5841       return false;
5842     if (!this->emitGetPtrLocal(*LocalIndex, E))
5843       return false;
5844   }
5845 
5846   // The offset of the temporary, if we created one.
5847   unsigned SubExprOffset =
5848       this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5849   if (!this->visit(SubExpr))
5850     return false;
5851   if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E))
5852     return false;
5853 
5854   const auto *VecTy = SubExpr->getType()->getAs<VectorType>();
5855   PrimType ElemT = classifyVectorElementType(SubExpr->getType());
5856   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5857     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5858       return false;
5859     return this->emitArrayElemPop(ElemT, Index, E);
5860   };
5861 
5862   switch (UnaryOp) {
5863   case UO_Minus:
5864     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5865       if (!getElem(SubExprOffset, I))
5866         return false;
5867       if (!this->emitNeg(ElemT, E))
5868         return false;
5869       if (!this->emitInitElem(ElemT, I, E))
5870         return false;
5871     }
5872     break;
5873   case UO_LNot: { // !x
5874     // In C++, the logic operators !, &&, || are available for vectors. !v is
5875     // equivalent to v == 0.
5876     //
5877     // The result of the comparison is a vector of the same width and number of
5878     // elements as the comparison operands with a signed integral element type.
5879     //
5880     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
5881     QualType ResultVecTy = E->getType();
5882     PrimType ResultVecElemT =
5883         classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType());
5884     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5885       if (!getElem(SubExprOffset, I))
5886         return false;
5887       // operator ! on vectors returns -1 for 'truth', so negate it.
5888       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
5889         return false;
5890       if (!this->emitInv(E))
5891         return false;
5892       if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E))
5893         return false;
5894       if (!this->emitNeg(ElemT, E))
5895         return false;
5896       if (ElemT != ResultVecElemT &&
5897           !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E))
5898         return false;
5899       if (!this->emitInitElem(ResultVecElemT, I, E))
5900         return false;
5901     }
5902     break;
5903   }
5904   case UO_Not: // ~x
5905     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5906       if (!getElem(SubExprOffset, I))
5907         return false;
5908       if (ElemT == PT_Bool) {
5909         if (!this->emitInv(E))
5910           return false;
5911       } else {
5912         if (!this->emitComp(ElemT, E))
5913           return false;
5914       }
5915       if (!this->emitInitElem(ElemT, I, E))
5916         return false;
5917     }
5918     break;
5919   default:
5920     llvm_unreachable("Unsupported unary operators should be handled up front");
5921   }
5922   return true;
5923 }
5924 
5925 template <class Emitter>
5926 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
5927   if (DiscardResult)
5928     return true;
5929 
5930   if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
5931     return this->emitConst(ECD->getInitVal(), E);
5932   } else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
5933     return this->visit(BD->getBinding());
5934   } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
5935     const Function *F = getFunction(FuncDecl);
5936     return F && this->emitGetFnPtr(F, E);
5937   } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
5938     if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
5939       if (!this->emitGetPtrGlobal(*Index, E))
5940         return false;
5941       if (std::optional<PrimType> T = classify(E->getType())) {
5942         if (!this->visitAPValue(TPOD->getValue(), *T, E))
5943           return false;
5944         return this->emitInitGlobal(*T, *Index, E);
5945       }
5946       return this->visitAPValueInitializer(TPOD->getValue(), E);
5947     }
5948     return false;
5949   }
5950 
5951   // References are implemented via pointers, so when we see a DeclRefExpr
5952   // pointing to a reference, we need to get its value directly (i.e. the
5953   // pointer to the actual value) instead of a pointer to the pointer to the
5954   // value.
5955   bool IsReference = D->getType()->isReferenceType();
5956 
5957   // Check for local/global variables and parameters.
5958   if (auto It = Locals.find(D); It != Locals.end()) {
5959     const unsigned Offset = It->second.Offset;
5960     if (IsReference)
5961       return this->emitGetLocal(PT_Ptr, Offset, E);
5962     return this->emitGetPtrLocal(Offset, E);
5963   } else if (auto GlobalIndex = P.getGlobal(D)) {
5964     if (IsReference) {
5965       if (!Ctx.getLangOpts().CPlusPlus11)
5966         return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
5967       return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
5968     }
5969 
5970     return this->emitGetPtrGlobal(*GlobalIndex, E);
5971   } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
5972     if (auto It = this->Params.find(PVD); It != this->Params.end()) {
5973       if (IsReference || !It->second.IsPtr)
5974         return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
5975 
5976       return this->emitGetPtrParam(It->second.Offset, E);
5977     }
5978   }
5979 
5980   // In case we need to re-visit a declaration.
5981   auto revisit = [&](const VarDecl *VD) -> bool {
5982     auto VarState = this->visitDecl(VD);
5983 
5984     if (VarState.notCreated())
5985       return true;
5986     if (!VarState)
5987       return false;
5988     // Retry.
5989     return this->visitDeclRef(D, E);
5990   };
5991 
5992   // Handle lambda captures.
5993   if (auto It = this->LambdaCaptures.find(D);
5994       It != this->LambdaCaptures.end()) {
5995     auto [Offset, IsPtr] = It->second;
5996 
5997     if (IsPtr)
5998       return this->emitGetThisFieldPtr(Offset, E);
5999     return this->emitGetPtrThisField(Offset, E);
6000   } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
6001              DRE && DRE->refersToEnclosingVariableOrCapture()) {
6002     if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
6003       return revisit(VD);
6004   }
6005 
6006   if (D != InitializingDecl) {
6007     // Try to lazily visit (or emit dummy pointers for) declarations
6008     // we haven't seen yet.
6009     if (Ctx.getLangOpts().CPlusPlus) {
6010       if (const auto *VD = dyn_cast<VarDecl>(D)) {
6011         const auto typeShouldBeVisited = [&](QualType T) -> bool {
6012           if (T.isConstant(Ctx.getASTContext()))
6013             return true;
6014           if (const auto *RT = T->getAs<ReferenceType>())
6015             return RT->getPointeeType().isConstQualified();
6016           return false;
6017         };
6018 
6019         // DecompositionDecls are just proxies for us.
6020         if (isa<DecompositionDecl>(VD))
6021           return revisit(VD);
6022 
6023         if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) &&
6024             typeShouldBeVisited(VD->getType()))
6025           return revisit(VD);
6026 
6027         // FIXME: The evaluateValue() check here is a little ridiculous, since
6028         // it will ultimately call into Context::evaluateAsInitializer(). In
6029         // other words, we're evaluating the initializer, just to know if we can
6030         // evaluate the initializer.
6031         if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) &&
6032             VD->getInit() && !VD->getInit()->isValueDependent() &&
6033             VD->evaluateValue())
6034           return revisit(VD);
6035       }
6036     } else {
6037       if (const auto *VD = dyn_cast<VarDecl>(D);
6038           VD && VD->getAnyInitializer() &&
6039           VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
6040         return revisit(VD);
6041     }
6042   }
6043 
6044   if (std::optional<unsigned> I = P.getOrCreateDummy(D)) {
6045     if (!this->emitGetPtrGlobal(*I, E))
6046       return false;
6047     if (E->getType()->isVoidType())
6048       return true;
6049     // Convert the dummy pointer to another pointer type if we have to.
6050     if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
6051       if (isPtrType(PT))
6052         return this->emitDecayPtr(PT_Ptr, PT, E);
6053       return false;
6054     }
6055     return true;
6056   }
6057 
6058   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
6059     return this->emitInvalidDeclRef(DRE, E);
6060   return false;
6061 }
6062 
6063 template <class Emitter>
6064 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
6065   const auto *D = E->getDecl();
6066   return this->visitDeclRef(D, E);
6067 }
6068 
6069 template <class Emitter> void Compiler<Emitter>::emitCleanup() {
6070   for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
6071     C->emitDestruction();
6072 }
6073 
6074 template <class Emitter>
6075 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
6076                                               const QualType DerivedType) {
6077   const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
6078     if (const auto *R = Ty->getPointeeCXXRecordDecl())
6079       return R;
6080     return Ty->getAsCXXRecordDecl();
6081   };
6082   const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
6083   const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
6084 
6085   return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
6086 }
6087 
6088 /// Emit casts from a PrimType to another PrimType.
6089 template <class Emitter>
6090 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
6091                                      QualType ToQT, const Expr *E) {
6092 
6093   if (FromT == PT_Float) {
6094     // Floating to floating.
6095     if (ToT == PT_Float) {
6096       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6097       return this->emitCastFP(ToSem, getRoundingMode(E), E);
6098     }
6099 
6100     if (ToT == PT_IntAP)
6101       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT),
6102                                               getFPOptions(E), E);
6103     if (ToT == PT_IntAPS)
6104       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT),
6105                                                getFPOptions(E), E);
6106 
6107     // Float to integral.
6108     if (isIntegralType(ToT) || ToT == PT_Bool)
6109       return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E);
6110   }
6111 
6112   if (isIntegralType(FromT) || FromT == PT_Bool) {
6113     if (ToT == PT_IntAP)
6114       return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
6115     if (ToT == PT_IntAPS)
6116       return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
6117 
6118     // Integral to integral.
6119     if (isIntegralType(ToT) || ToT == PT_Bool)
6120       return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
6121 
6122     if (ToT == PT_Float) {
6123       // Integral to floating.
6124       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6125       return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E);
6126     }
6127   }
6128 
6129   return false;
6130 }
6131 
6132 /// Emits __real(SubExpr)
6133 template <class Emitter>
6134 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
6135   assert(SubExpr->getType()->isAnyComplexType());
6136 
6137   if (DiscardResult)
6138     return this->discard(SubExpr);
6139 
6140   if (!this->visit(SubExpr))
6141     return false;
6142   if (SubExpr->isLValue()) {
6143     if (!this->emitConstUint8(0, SubExpr))
6144       return false;
6145     return this->emitArrayElemPtrPopUint8(SubExpr);
6146   }
6147 
6148   // Rvalue, load the actual element.
6149   return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
6150                                 0, SubExpr);
6151 }
6152 
6153 template <class Emitter>
6154 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
6155   assert(!DiscardResult);
6156   PrimType ElemT = classifyComplexElementType(E->getType());
6157   // We emit the expression (__real(E) != 0 || __imag(E) != 0)
6158   // for us, that means (bool)E[0] || (bool)E[1]
6159   if (!this->emitArrayElem(ElemT, 0, E))
6160     return false;
6161   if (ElemT == PT_Float) {
6162     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6163       return false;
6164   } else {
6165     if (!this->emitCast(ElemT, PT_Bool, E))
6166       return false;
6167   }
6168 
6169   // We now have the bool value of E[0] on the stack.
6170   LabelTy LabelTrue = this->getLabel();
6171   if (!this->jumpTrue(LabelTrue))
6172     return false;
6173 
6174   if (!this->emitArrayElemPop(ElemT, 1, E))
6175     return false;
6176   if (ElemT == PT_Float) {
6177     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6178       return false;
6179   } else {
6180     if (!this->emitCast(ElemT, PT_Bool, E))
6181       return false;
6182   }
6183   // Leave the boolean value of E[1] on the stack.
6184   LabelTy EndLabel = this->getLabel();
6185   this->jump(EndLabel);
6186 
6187   this->emitLabel(LabelTrue);
6188   if (!this->emitPopPtr(E))
6189     return false;
6190   if (!this->emitConstBool(true, E))
6191     return false;
6192 
6193   this->fallthrough(EndLabel);
6194   this->emitLabel(EndLabel);
6195 
6196   return true;
6197 }
6198 
6199 template <class Emitter>
6200 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
6201                                               const BinaryOperator *E) {
6202   assert(E->isComparisonOp());
6203   assert(!Initializing);
6204   assert(!DiscardResult);
6205 
6206   PrimType ElemT;
6207   bool LHSIsComplex;
6208   unsigned LHSOffset;
6209   if (LHS->getType()->isAnyComplexType()) {
6210     LHSIsComplex = true;
6211     ElemT = classifyComplexElementType(LHS->getType());
6212     LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
6213                                        /*IsExtended=*/false);
6214     if (!this->visit(LHS))
6215       return false;
6216     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
6217       return false;
6218   } else {
6219     LHSIsComplex = false;
6220     PrimType LHST = classifyPrim(LHS->getType());
6221     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
6222     if (!this->visit(LHS))
6223       return false;
6224     if (!this->emitSetLocal(LHST, LHSOffset, E))
6225       return false;
6226   }
6227 
6228   bool RHSIsComplex;
6229   unsigned RHSOffset;
6230   if (RHS->getType()->isAnyComplexType()) {
6231     RHSIsComplex = true;
6232     ElemT = classifyComplexElementType(RHS->getType());
6233     RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
6234                                        /*IsExtended=*/false);
6235     if (!this->visit(RHS))
6236       return false;
6237     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
6238       return false;
6239   } else {
6240     RHSIsComplex = false;
6241     PrimType RHST = classifyPrim(RHS->getType());
6242     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
6243     if (!this->visit(RHS))
6244       return false;
6245     if (!this->emitSetLocal(RHST, RHSOffset, E))
6246       return false;
6247   }
6248 
6249   auto getElem = [&](unsigned LocalOffset, unsigned Index,
6250                      bool IsComplex) -> bool {
6251     if (IsComplex) {
6252       if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
6253         return false;
6254       return this->emitArrayElemPop(ElemT, Index, E);
6255     }
6256     return this->emitGetLocal(ElemT, LocalOffset, E);
6257   };
6258 
6259   for (unsigned I = 0; I != 2; ++I) {
6260     // Get both values.
6261     if (!getElem(LHSOffset, I, LHSIsComplex))
6262       return false;
6263     if (!getElem(RHSOffset, I, RHSIsComplex))
6264       return false;
6265     // And compare them.
6266     if (!this->emitEQ(ElemT, E))
6267       return false;
6268 
6269     if (!this->emitCastBoolUint8(E))
6270       return false;
6271   }
6272 
6273   // We now have two bool values on the stack. Compare those.
6274   if (!this->emitAddUint8(E))
6275     return false;
6276   if (!this->emitConstUint8(2, E))
6277     return false;
6278 
6279   if (E->getOpcode() == BO_EQ) {
6280     if (!this->emitEQUint8(E))
6281       return false;
6282   } else if (E->getOpcode() == BO_NE) {
6283     if (!this->emitNEUint8(E))
6284       return false;
6285   } else
6286     return false;
6287 
6288   // In C, this returns an int.
6289   if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
6290     return this->emitCast(PT_Bool, ResT, E);
6291   return true;
6292 }
6293 
6294 /// When calling this, we have a pointer of the local-to-destroy
6295 /// on the stack.
6296 /// Emit destruction of record types (or arrays of record types).
6297 template <class Emitter>
6298 bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) {
6299   assert(R);
6300   assert(!R->isAnonymousUnion());
6301   const CXXDestructorDecl *Dtor = R->getDestructor();
6302   if (!Dtor || Dtor->isTrivial())
6303     return true;
6304 
6305   assert(Dtor);
6306   const Function *DtorFunc = getFunction(Dtor);
6307   if (!DtorFunc)
6308     return false;
6309   assert(DtorFunc->hasThisPointer());
6310   assert(DtorFunc->getNumParams() == 1);
6311   if (!this->emitDupPtr(Loc))
6312     return false;
6313   return this->emitCall(DtorFunc, 0, Loc);
6314 }
6315 /// When calling this, we have a pointer of the local-to-destroy
6316 /// on the stack.
6317 /// Emit destruction of record types (or arrays of record types).
6318 template <class Emitter>
6319 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc,
6320                                         SourceInfo Loc) {
6321   assert(Desc);
6322   assert(!Desc->isPrimitive());
6323   assert(!Desc->isPrimitiveArray());
6324 
6325   // Arrays.
6326   if (Desc->isArray()) {
6327     const Descriptor *ElemDesc = Desc->ElemDesc;
6328     assert(ElemDesc);
6329 
6330     // Don't need to do anything for these.
6331     if (ElemDesc->isPrimitiveArray())
6332       return true;
6333 
6334     // If this is an array of record types, check if we need
6335     // to call the element destructors at all. If not, try
6336     // to save the work.
6337     if (const Record *ElemRecord = ElemDesc->ElemRecord) {
6338       if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
6339           !Dtor || Dtor->isTrivial())
6340         return true;
6341     }
6342 
6343     for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
6344       if (!this->emitConstUint64(I, Loc))
6345         return false;
6346       if (!this->emitArrayElemPtrUint64(Loc))
6347         return false;
6348       if (!this->emitDestruction(ElemDesc, Loc))
6349         return false;
6350       if (!this->emitPopPtr(Loc))
6351         return false;
6352     }
6353     return true;
6354   }
6355 
6356   assert(Desc->ElemRecord);
6357   if (Desc->ElemRecord->isAnonymousUnion())
6358     return true;
6359 
6360   return this->emitRecordDestruction(Desc->ElemRecord, Loc);
6361 }
6362 
6363 namespace clang {
6364 namespace interp {
6365 
6366 template class Compiler<ByteCodeEmitter>;
6367 template class Compiler<EvalEmitter>;
6368 
6369 } // namespace interp
6370 } // namespace clang
6371