xref: /llvm-project/clang/lib/AST/ByteCode/Compiler.cpp (revision 82ce8296b8024f1fb549c4b2dfcf736f809e19b7)
1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Compiler.h"
10 #include "ByteCodeEmitter.h"
11 #include "Context.h"
12 #include "Floating.h"
13 #include "Function.h"
14 #include "InterpShared.h"
15 #include "PrimType.h"
16 #include "Program.h"
17 #include "clang/AST/Attr.h"
18 
19 using namespace clang;
20 using namespace clang::interp;
21 
22 using APSInt = llvm::APSInt;
23 
24 namespace clang {
25 namespace interp {
26 
27 /// Scope used to handle temporaries in toplevel variable declarations.
28 template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
29 public:
30   DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
31       : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
32         OldInitializingDecl(Ctx->InitializingDecl) {
33     Ctx->InitializingDecl = VD;
34     Ctx->InitStack.push_back(InitLink::Decl(VD));
35   }
36 
37   void addExtended(const Scope::Local &Local) override {
38     return this->addLocal(Local);
39   }
40 
41   ~DeclScope() {
42     this->Ctx->InitializingDecl = OldInitializingDecl;
43     this->Ctx->InitStack.pop_back();
44   }
45 
46 private:
47   Program::DeclScope Scope;
48   const ValueDecl *OldInitializingDecl;
49 };
50 
51 /// Scope used to handle initialization methods.
52 template <class Emitter> class OptionScope final {
53 public:
54   /// Root constructor, compiling or discarding primitives.
55   OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
56               bool NewInitializing)
57       : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
58         OldInitializing(Ctx->Initializing) {
59     Ctx->DiscardResult = NewDiscardResult;
60     Ctx->Initializing = NewInitializing;
61   }
62 
63   ~OptionScope() {
64     Ctx->DiscardResult = OldDiscardResult;
65     Ctx->Initializing = OldInitializing;
66   }
67 
68 private:
69   /// Parent context.
70   Compiler<Emitter> *Ctx;
71   /// Old discard flag to restore.
72   bool OldDiscardResult;
73   bool OldInitializing;
74 };
75 
76 template <class Emitter>
77 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
78   switch (Kind) {
79   case K_This:
80     return Ctx->emitThis(E);
81   case K_Field:
82     // We're assuming there's a base pointer on the stack already.
83     return Ctx->emitGetPtrFieldPop(Offset, E);
84   case K_Temp:
85     return Ctx->emitGetPtrLocal(Offset, E);
86   case K_Decl:
87     return Ctx->visitDeclRef(D, E);
88   case K_Elem:
89     if (!Ctx->emitConstUint32(Offset, E))
90       return false;
91     return Ctx->emitArrayElemPtrPopUint32(E);
92   default:
93     llvm_unreachable("Unhandled InitLink kind");
94   }
95   return true;
96 }
97 
98 /// Scope managing label targets.
99 template <class Emitter> class LabelScope {
100 public:
101   virtual ~LabelScope() {}
102 
103 protected:
104   LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
105   /// Compiler instance.
106   Compiler<Emitter> *Ctx;
107 };
108 
109 /// Sets the context for break/continue statements.
110 template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
111 public:
112   using LabelTy = typename Compiler<Emitter>::LabelTy;
113   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
114 
115   LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
116       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
117         OldContinueLabel(Ctx->ContinueLabel),
118         OldBreakVarScope(Ctx->BreakVarScope),
119         OldContinueVarScope(Ctx->ContinueVarScope) {
120     this->Ctx->BreakLabel = BreakLabel;
121     this->Ctx->ContinueLabel = ContinueLabel;
122     this->Ctx->BreakVarScope = this->Ctx->VarScope;
123     this->Ctx->ContinueVarScope = this->Ctx->VarScope;
124   }
125 
126   ~LoopScope() {
127     this->Ctx->BreakLabel = OldBreakLabel;
128     this->Ctx->ContinueLabel = OldContinueLabel;
129     this->Ctx->ContinueVarScope = OldContinueVarScope;
130     this->Ctx->BreakVarScope = OldBreakVarScope;
131   }
132 
133 private:
134   OptLabelTy OldBreakLabel;
135   OptLabelTy OldContinueLabel;
136   VariableScope<Emitter> *OldBreakVarScope;
137   VariableScope<Emitter> *OldContinueVarScope;
138 };
139 
140 // Sets the context for a switch scope, mapping labels.
141 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
142 public:
143   using LabelTy = typename Compiler<Emitter>::LabelTy;
144   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
145   using CaseMap = typename Compiler<Emitter>::CaseMap;
146 
147   SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
148               OptLabelTy DefaultLabel)
149       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
150         OldDefaultLabel(this->Ctx->DefaultLabel),
151         OldCaseLabels(std::move(this->Ctx->CaseLabels)),
152         OldLabelVarScope(Ctx->BreakVarScope) {
153     this->Ctx->BreakLabel = BreakLabel;
154     this->Ctx->DefaultLabel = DefaultLabel;
155     this->Ctx->CaseLabels = std::move(CaseLabels);
156     this->Ctx->BreakVarScope = this->Ctx->VarScope;
157   }
158 
159   ~SwitchScope() {
160     this->Ctx->BreakLabel = OldBreakLabel;
161     this->Ctx->DefaultLabel = OldDefaultLabel;
162     this->Ctx->CaseLabels = std::move(OldCaseLabels);
163     this->Ctx->BreakVarScope = OldLabelVarScope;
164   }
165 
166 private:
167   OptLabelTy OldBreakLabel;
168   OptLabelTy OldDefaultLabel;
169   CaseMap OldCaseLabels;
170   VariableScope<Emitter> *OldLabelVarScope;
171 };
172 
173 template <class Emitter> class StmtExprScope final {
174 public:
175   StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
176     Ctx->InStmtExpr = true;
177   }
178 
179   ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
180 
181 private:
182   Compiler<Emitter> *Ctx;
183   bool OldFlag;
184 };
185 
186 } // namespace interp
187 } // namespace clang
188 
189 template <class Emitter>
190 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
191   const Expr *SubExpr = CE->getSubExpr();
192   switch (CE->getCastKind()) {
193 
194   case CK_LValueToRValue: {
195     if (DiscardResult)
196       return this->discard(SubExpr);
197 
198     std::optional<PrimType> SubExprT = classify(SubExpr->getType());
199     // Prepare storage for the result.
200     if (!Initializing && !SubExprT) {
201       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
202       if (!LocalIndex)
203         return false;
204       if (!this->emitGetPtrLocal(*LocalIndex, CE))
205         return false;
206     }
207 
208     if (!this->visit(SubExpr))
209       return false;
210 
211     if (SubExprT)
212       return this->emitLoadPop(*SubExprT, CE);
213 
214     // If the subexpr type is not primitive, we need to perform a copy here.
215     // This happens for example in C when dereferencing a pointer of struct
216     // type.
217     return this->emitMemcpy(CE);
218   }
219 
220   case CK_DerivedToBaseMemberPointer: {
221     assert(classifyPrim(CE->getType()) == PT_MemberPtr);
222     assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
223     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
224     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
225 
226     unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
227                                                QualType(FromMP->getClass(), 0));
228 
229     if (!this->delegate(SubExpr))
230       return false;
231 
232     return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
233   }
234 
235   case CK_BaseToDerivedMemberPointer: {
236     assert(classifyPrim(CE) == PT_MemberPtr);
237     assert(classifyPrim(SubExpr) == PT_MemberPtr);
238     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
239     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
240 
241     unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
242                                                QualType(ToMP->getClass(), 0));
243 
244     if (!this->delegate(SubExpr))
245       return false;
246     return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
247   }
248 
249   case CK_UncheckedDerivedToBase:
250   case CK_DerivedToBase: {
251     if (!this->delegate(SubExpr))
252       return false;
253 
254     const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
255       if (const auto *PT = dyn_cast<PointerType>(Ty))
256         return PT->getPointeeType()->getAsCXXRecordDecl();
257       return Ty->getAsCXXRecordDecl();
258     };
259 
260     // FIXME: We can express a series of non-virtual casts as a single
261     // GetPtrBasePop op.
262     QualType CurType = SubExpr->getType();
263     for (const CXXBaseSpecifier *B : CE->path()) {
264       if (B->isVirtual()) {
265         if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
266           return false;
267         CurType = B->getType();
268       } else {
269         unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
270         if (!this->emitGetPtrBasePop(DerivedOffset, CE))
271           return false;
272         CurType = B->getType();
273       }
274     }
275 
276     return true;
277   }
278 
279   case CK_BaseToDerived: {
280     if (!this->delegate(SubExpr))
281       return false;
282 
283     unsigned DerivedOffset =
284         collectBaseOffset(SubExpr->getType(), CE->getType());
285 
286     return this->emitGetPtrDerivedPop(DerivedOffset, CE);
287   }
288 
289   case CK_FloatingCast: {
290     // HLSL uses CK_FloatingCast to cast between vectors.
291     if (!SubExpr->getType()->isFloatingType() ||
292         !CE->getType()->isFloatingType())
293       return false;
294     if (DiscardResult)
295       return this->discard(SubExpr);
296     if (!this->visit(SubExpr))
297       return false;
298     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
299     return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
300   }
301 
302   case CK_IntegralToFloating: {
303     if (DiscardResult)
304       return this->discard(SubExpr);
305     std::optional<PrimType> FromT = classify(SubExpr->getType());
306     if (!FromT)
307       return false;
308 
309     if (!this->visit(SubExpr))
310       return false;
311 
312     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
313     return this->emitCastIntegralFloating(*FromT, TargetSemantics,
314                                           getFPOptions(CE), CE);
315   }
316 
317   case CK_FloatingToBoolean:
318   case CK_FloatingToIntegral: {
319     if (DiscardResult)
320       return this->discard(SubExpr);
321 
322     std::optional<PrimType> ToT = classify(CE->getType());
323 
324     if (!ToT)
325       return false;
326 
327     if (!this->visit(SubExpr))
328       return false;
329 
330     if (ToT == PT_IntAP)
331       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
332                                               getFPOptions(CE), CE);
333     if (ToT == PT_IntAPS)
334       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
335                                                getFPOptions(CE), CE);
336 
337     return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE);
338   }
339 
340   case CK_NullToPointer:
341   case CK_NullToMemberPointer: {
342     if (!this->discard(SubExpr))
343       return false;
344     if (DiscardResult)
345       return true;
346 
347     const Descriptor *Desc = nullptr;
348     const QualType PointeeType = CE->getType()->getPointeeType();
349     if (!PointeeType.isNull()) {
350       if (std::optional<PrimType> T = classify(PointeeType))
351         Desc = P.createDescriptor(SubExpr, *T);
352       else
353         Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
354                                   std::nullopt, true, false,
355                                   /*IsMutable=*/false, nullptr);
356     }
357     return this->emitNull(classifyPrim(CE->getType()), Desc, CE);
358   }
359 
360   case CK_PointerToIntegral: {
361     if (DiscardResult)
362       return this->discard(SubExpr);
363 
364     if (!this->visit(SubExpr))
365       return false;
366 
367     // If SubExpr doesn't result in a pointer, make it one.
368     if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
369       assert(isPtrType(FromT));
370       if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
371         return false;
372     }
373 
374     PrimType T = classifyPrim(CE->getType());
375     if (T == PT_IntAP)
376       return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
377                                              CE);
378     if (T == PT_IntAPS)
379       return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
380                                               CE);
381     return this->emitCastPointerIntegral(T, CE);
382   }
383 
384   case CK_ArrayToPointerDecay: {
385     if (!this->visit(SubExpr))
386       return false;
387     if (!this->emitArrayDecay(CE))
388       return false;
389     if (DiscardResult)
390       return this->emitPopPtr(CE);
391     return true;
392   }
393 
394   case CK_IntegralToPointer: {
395     QualType IntType = SubExpr->getType();
396     assert(IntType->isIntegralOrEnumerationType());
397     if (!this->visit(SubExpr))
398       return false;
399     // FIXME: I think the discard is wrong since the int->ptr cast might cause a
400     // diagnostic.
401     PrimType T = classifyPrim(IntType);
402     if (DiscardResult)
403       return this->emitPop(T, CE);
404 
405     QualType PtrType = CE->getType();
406     const Descriptor *Desc;
407     if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
408       Desc = P.createDescriptor(SubExpr, *T);
409     else if (PtrType->getPointeeType()->isVoidType())
410       Desc = nullptr;
411     else
412       Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
413                                 Descriptor::InlineDescMD, true, false,
414                                 /*IsMutable=*/false, nullptr);
415 
416     if (!this->emitGetIntPtr(T, Desc, CE))
417       return false;
418 
419     PrimType DestPtrT = classifyPrim(PtrType);
420     if (DestPtrT == PT_Ptr)
421       return true;
422 
423     // In case we're converting the integer to a non-Pointer.
424     return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
425   }
426 
427   case CK_AtomicToNonAtomic:
428   case CK_ConstructorConversion:
429   case CK_FunctionToPointerDecay:
430   case CK_NonAtomicToAtomic:
431   case CK_NoOp:
432   case CK_UserDefinedConversion:
433   case CK_AddressSpaceConversion:
434   case CK_CPointerToObjCPointerCast:
435     return this->delegate(SubExpr);
436 
437   case CK_BitCast: {
438     // Reject bitcasts to atomic types.
439     if (CE->getType()->isAtomicType()) {
440       if (!this->discard(SubExpr))
441         return false;
442       return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
443     }
444 
445     if (DiscardResult)
446       return this->discard(SubExpr);
447 
448     QualType SubExprTy = SubExpr->getType();
449     std::optional<PrimType> FromT = classify(SubExprTy);
450     std::optional<PrimType> ToT = classify(CE->getType());
451     if (!FromT || !ToT)
452       return false;
453 
454     assert(isPtrType(*FromT));
455     assert(isPtrType(*ToT));
456     if (FromT == ToT) {
457       if (CE->getType()->isVoidPointerType())
458         return this->delegate(SubExpr);
459 
460       if (!this->visit(SubExpr))
461         return false;
462       if (FromT == PT_Ptr)
463         return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
464       return true;
465     }
466 
467     if (!this->visit(SubExpr))
468       return false;
469     return this->emitDecayPtr(*FromT, *ToT, CE);
470   }
471 
472   case CK_IntegralToBoolean:
473   case CK_BooleanToSignedIntegral:
474   case CK_IntegralCast: {
475     if (DiscardResult)
476       return this->discard(SubExpr);
477     std::optional<PrimType> FromT = classify(SubExpr->getType());
478     std::optional<PrimType> ToT = classify(CE->getType());
479 
480     if (!FromT || !ToT)
481       return false;
482 
483     if (!this->visit(SubExpr))
484       return false;
485 
486     // Possibly diagnose casts to enum types if the target type does not
487     // have a fixed size.
488     if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
489       if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
490           ET && !ET->getDecl()->isFixed()) {
491         if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
492           return false;
493       }
494     }
495 
496     auto maybeNegate = [&]() -> bool {
497       if (CE->getCastKind() == CK_BooleanToSignedIntegral)
498         return this->emitNeg(*ToT, CE);
499       return true;
500     };
501 
502     if (ToT == PT_IntAP)
503       return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
504              maybeNegate();
505     if (ToT == PT_IntAPS)
506       return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
507              maybeNegate();
508 
509     if (FromT == ToT)
510       return true;
511     if (!this->emitCast(*FromT, *ToT, CE))
512       return false;
513 
514     return maybeNegate();
515   }
516 
517   case CK_PointerToBoolean:
518   case CK_MemberPointerToBoolean: {
519     PrimType PtrT = classifyPrim(SubExpr->getType());
520 
521     if (!this->visit(SubExpr))
522       return false;
523     return this->emitIsNonNull(PtrT, CE);
524   }
525 
526   case CK_IntegralComplexToBoolean:
527   case CK_FloatingComplexToBoolean: {
528     if (DiscardResult)
529       return this->discard(SubExpr);
530     if (!this->visit(SubExpr))
531       return false;
532     return this->emitComplexBoolCast(SubExpr);
533   }
534 
535   case CK_IntegralComplexToReal:
536   case CK_FloatingComplexToReal:
537     return this->emitComplexReal(SubExpr);
538 
539   case CK_IntegralRealToComplex:
540   case CK_FloatingRealToComplex: {
541     // We're creating a complex value here, so we need to
542     // allocate storage for it.
543     if (!Initializing) {
544       unsigned LocalIndex = allocateTemporary(CE);
545       if (!this->emitGetPtrLocal(LocalIndex, CE))
546         return false;
547     }
548 
549     // Init the complex value to {SubExpr, 0}.
550     if (!this->visitArrayElemInit(0, SubExpr))
551       return false;
552     // Zero-init the second element.
553     PrimType T = classifyPrim(SubExpr->getType());
554     if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
555       return false;
556     return this->emitInitElem(T, 1, SubExpr);
557   }
558 
559   case CK_IntegralComplexCast:
560   case CK_FloatingComplexCast:
561   case CK_IntegralComplexToFloatingComplex:
562   case CK_FloatingComplexToIntegralComplex: {
563     assert(CE->getType()->isAnyComplexType());
564     assert(SubExpr->getType()->isAnyComplexType());
565     if (DiscardResult)
566       return this->discard(SubExpr);
567 
568     if (!Initializing) {
569       std::optional<unsigned> LocalIndex = allocateLocal(CE);
570       if (!LocalIndex)
571         return false;
572       if (!this->emitGetPtrLocal(*LocalIndex, CE))
573         return false;
574     }
575 
576     // Location for the SubExpr.
577     // Since SubExpr is of complex type, visiting it results in a pointer
578     // anyway, so we just create a temporary pointer variable.
579     unsigned SubExprOffset = allocateLocalPrimitive(
580         SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
581     if (!this->visit(SubExpr))
582       return false;
583     if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
584       return false;
585 
586     PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
587     QualType DestElemType =
588         CE->getType()->getAs<ComplexType>()->getElementType();
589     PrimType DestElemT = classifyPrim(DestElemType);
590     // Cast both elements individually.
591     for (unsigned I = 0; I != 2; ++I) {
592       if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
593         return false;
594       if (!this->emitArrayElemPop(SourceElemT, I, CE))
595         return false;
596 
597       // Do the cast.
598       if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
599         return false;
600 
601       // Save the value.
602       if (!this->emitInitElem(DestElemT, I, CE))
603         return false;
604     }
605     return true;
606   }
607 
608   case CK_VectorSplat: {
609     assert(!classify(CE->getType()));
610     assert(classify(SubExpr->getType()));
611     assert(CE->getType()->isVectorType());
612 
613     if (DiscardResult)
614       return this->discard(SubExpr);
615 
616     if (!Initializing) {
617       std::optional<unsigned> LocalIndex = allocateLocal(CE);
618       if (!LocalIndex)
619         return false;
620       if (!this->emitGetPtrLocal(*LocalIndex, CE))
621         return false;
622     }
623 
624     const auto *VT = CE->getType()->getAs<VectorType>();
625     PrimType ElemT = classifyPrim(SubExpr->getType());
626     unsigned ElemOffset = allocateLocalPrimitive(
627         SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
628 
629     // Prepare a local variable for the scalar value.
630     if (!this->visit(SubExpr))
631       return false;
632     if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
633       return false;
634 
635     if (!this->emitSetLocal(ElemT, ElemOffset, CE))
636       return false;
637 
638     for (unsigned I = 0; I != VT->getNumElements(); ++I) {
639       if (!this->emitGetLocal(ElemT, ElemOffset, CE))
640         return false;
641       if (!this->emitInitElem(ElemT, I, CE))
642         return false;
643     }
644 
645     return true;
646   }
647 
648   case CK_HLSLVectorTruncation: {
649     assert(SubExpr->getType()->isVectorType());
650     if (std::optional<PrimType> ResultT = classify(CE)) {
651       assert(!DiscardResult);
652       // Result must be either a float or integer. Take the first element.
653       if (!this->visit(SubExpr))
654         return false;
655       return this->emitArrayElemPop(*ResultT, 0, CE);
656     }
657     // Otherwise, this truncates from one vector type to another.
658     assert(CE->getType()->isVectorType());
659 
660     if (!Initializing) {
661       unsigned LocalIndex = allocateTemporary(CE);
662       if (!this->emitGetPtrLocal(LocalIndex, CE))
663         return false;
664     }
665     unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements();
666     assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize);
667     if (!this->visit(SubExpr))
668       return false;
669     return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0,
670                                ToSize, CE);
671   };
672 
673   case CK_ToVoid:
674     return discard(SubExpr);
675 
676   default:
677     return this->emitInvalid(CE);
678   }
679   llvm_unreachable("Unhandled clang::CastKind enum");
680 }
681 
682 template <class Emitter>
683 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
684   if (DiscardResult)
685     return true;
686 
687   return this->emitConst(LE->getValue(), LE);
688 }
689 
690 template <class Emitter>
691 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
692   if (DiscardResult)
693     return true;
694 
695   return this->emitConstFloat(E->getValue(), E);
696 }
697 
698 template <class Emitter>
699 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
700   assert(E->getType()->isAnyComplexType());
701   if (DiscardResult)
702     return true;
703 
704   if (!Initializing) {
705     unsigned LocalIndex = allocateTemporary(E);
706     if (!this->emitGetPtrLocal(LocalIndex, E))
707       return false;
708   }
709 
710   const Expr *SubExpr = E->getSubExpr();
711   PrimType SubExprT = classifyPrim(SubExpr->getType());
712 
713   if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
714     return false;
715   if (!this->emitInitElem(SubExprT, 0, SubExpr))
716     return false;
717   return this->visitArrayElemInit(1, SubExpr);
718 }
719 
720 template <class Emitter>
721 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
722   return this->delegate(E->getSubExpr());
723 }
724 
725 template <class Emitter>
726 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
727   // Need short-circuiting for these.
728   if (BO->isLogicalOp() && !BO->getType()->isVectorType())
729     return this->VisitLogicalBinOp(BO);
730 
731   const Expr *LHS = BO->getLHS();
732   const Expr *RHS = BO->getRHS();
733 
734   // Handle comma operators. Just discard the LHS
735   // and delegate to RHS.
736   if (BO->isCommaOp()) {
737     if (!this->discard(LHS))
738       return false;
739     if (RHS->getType()->isVoidType())
740       return this->discard(RHS);
741 
742     return this->delegate(RHS);
743   }
744 
745   if (BO->getType()->isAnyComplexType())
746     return this->VisitComplexBinOp(BO);
747   if (BO->getType()->isVectorType())
748     return this->VisitVectorBinOp(BO);
749   if ((LHS->getType()->isAnyComplexType() ||
750        RHS->getType()->isAnyComplexType()) &&
751       BO->isComparisonOp())
752     return this->emitComplexComparison(LHS, RHS, BO);
753 
754   if (BO->isPtrMemOp()) {
755     if (!this->visit(LHS))
756       return false;
757 
758     if (!this->visit(RHS))
759       return false;
760 
761     if (!this->emitToMemberPtr(BO))
762       return false;
763 
764     if (classifyPrim(BO) == PT_MemberPtr)
765       return true;
766 
767     if (!this->emitCastMemberPtrPtr(BO))
768       return false;
769     return DiscardResult ? this->emitPopPtr(BO) : true;
770   }
771 
772   // Typecheck the args.
773   std::optional<PrimType> LT = classify(LHS);
774   std::optional<PrimType> RT = classify(RHS);
775   std::optional<PrimType> T = classify(BO->getType());
776 
777   // Special case for C++'s three-way/spaceship operator <=>, which
778   // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
779   // have a PrimType).
780   if (!T && BO->getOpcode() == BO_Cmp) {
781     if (DiscardResult)
782       return true;
783     const ComparisonCategoryInfo *CmpInfo =
784         Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
785     assert(CmpInfo);
786 
787     // We need a temporary variable holding our return value.
788     if (!Initializing) {
789       std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
790       if (!this->emitGetPtrLocal(*ResultIndex, BO))
791         return false;
792     }
793 
794     if (!visit(LHS) || !visit(RHS))
795       return false;
796 
797     return this->emitCMP3(*LT, CmpInfo, BO);
798   }
799 
800   if (!LT || !RT || !T)
801     return false;
802 
803   // Pointer arithmetic special case.
804   if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
805     if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
806       return this->VisitPointerArithBinOp(BO);
807   }
808 
809   // Assignmentes require us to evalute the RHS first.
810   if (BO->getOpcode() == BO_Assign) {
811     if (!visit(RHS) || !visit(LHS))
812       return false;
813     if (!this->emitFlip(*LT, *RT, BO))
814       return false;
815   } else {
816     if (!visit(LHS) || !visit(RHS))
817       return false;
818   }
819 
820   // For languages such as C, cast the result of one
821   // of our comparision opcodes to T (which is usually int).
822   auto MaybeCastToBool = [this, T, BO](bool Result) {
823     if (!Result)
824       return false;
825     if (DiscardResult)
826       return this->emitPop(*T, BO);
827     if (T != PT_Bool)
828       return this->emitCast(PT_Bool, *T, BO);
829     return true;
830   };
831 
832   auto Discard = [this, T, BO](bool Result) {
833     if (!Result)
834       return false;
835     return DiscardResult ? this->emitPop(*T, BO) : true;
836   };
837 
838   switch (BO->getOpcode()) {
839   case BO_EQ:
840     return MaybeCastToBool(this->emitEQ(*LT, BO));
841   case BO_NE:
842     return MaybeCastToBool(this->emitNE(*LT, BO));
843   case BO_LT:
844     return MaybeCastToBool(this->emitLT(*LT, BO));
845   case BO_LE:
846     return MaybeCastToBool(this->emitLE(*LT, BO));
847   case BO_GT:
848     return MaybeCastToBool(this->emitGT(*LT, BO));
849   case BO_GE:
850     return MaybeCastToBool(this->emitGE(*LT, BO));
851   case BO_Sub:
852     if (BO->getType()->isFloatingType())
853       return Discard(this->emitSubf(getFPOptions(BO), BO));
854     return Discard(this->emitSub(*T, BO));
855   case BO_Add:
856     if (BO->getType()->isFloatingType())
857       return Discard(this->emitAddf(getFPOptions(BO), BO));
858     return Discard(this->emitAdd(*T, BO));
859   case BO_Mul:
860     if (BO->getType()->isFloatingType())
861       return Discard(this->emitMulf(getFPOptions(BO), BO));
862     return Discard(this->emitMul(*T, BO));
863   case BO_Rem:
864     return Discard(this->emitRem(*T, BO));
865   case BO_Div:
866     if (BO->getType()->isFloatingType())
867       return Discard(this->emitDivf(getFPOptions(BO), BO));
868     return Discard(this->emitDiv(*T, BO));
869   case BO_Assign:
870     if (DiscardResult)
871       return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
872                                      : this->emitStorePop(*T, BO);
873     if (LHS->refersToBitField()) {
874       if (!this->emitStoreBitField(*T, BO))
875         return false;
876     } else {
877       if (!this->emitStore(*T, BO))
878         return false;
879     }
880     // Assignments aren't necessarily lvalues in C.
881     // Load from them in that case.
882     if (!BO->isLValue())
883       return this->emitLoadPop(*T, BO);
884     return true;
885   case BO_And:
886     return Discard(this->emitBitAnd(*T, BO));
887   case BO_Or:
888     return Discard(this->emitBitOr(*T, BO));
889   case BO_Shl:
890     return Discard(this->emitShl(*LT, *RT, BO));
891   case BO_Shr:
892     return Discard(this->emitShr(*LT, *RT, BO));
893   case BO_Xor:
894     return Discard(this->emitBitXor(*T, BO));
895   case BO_LOr:
896   case BO_LAnd:
897     llvm_unreachable("Already handled earlier");
898   default:
899     return false;
900   }
901 
902   llvm_unreachable("Unhandled binary op");
903 }
904 
905 /// Perform addition/subtraction of a pointer and an integer or
906 /// subtraction of two pointers.
907 template <class Emitter>
908 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
909   BinaryOperatorKind Op = E->getOpcode();
910   const Expr *LHS = E->getLHS();
911   const Expr *RHS = E->getRHS();
912 
913   if ((Op != BO_Add && Op != BO_Sub) ||
914       (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
915     return false;
916 
917   std::optional<PrimType> LT = classify(LHS);
918   std::optional<PrimType> RT = classify(RHS);
919 
920   if (!LT || !RT)
921     return false;
922 
923   // Visit the given pointer expression and optionally convert to a PT_Ptr.
924   auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
925     if (!this->visit(E))
926       return false;
927     if (T != PT_Ptr)
928       return this->emitDecayPtr(T, PT_Ptr, E);
929     return true;
930   };
931 
932   if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
933     if (Op != BO_Sub)
934       return false;
935 
936     assert(E->getType()->isIntegerType());
937     if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
938       return false;
939 
940     return this->emitSubPtr(classifyPrim(E->getType()), E);
941   }
942 
943   PrimType OffsetType;
944   if (LHS->getType()->isIntegerType()) {
945     if (!visitAsPointer(RHS, *RT))
946       return false;
947     if (!this->visit(LHS))
948       return false;
949     OffsetType = *LT;
950   } else if (RHS->getType()->isIntegerType()) {
951     if (!visitAsPointer(LHS, *LT))
952       return false;
953     if (!this->visit(RHS))
954       return false;
955     OffsetType = *RT;
956   } else {
957     return false;
958   }
959 
960   // Do the operation and optionally transform to
961   // result pointer type.
962   if (Op == BO_Add) {
963     if (!this->emitAddOffset(OffsetType, E))
964       return false;
965 
966     if (classifyPrim(E) != PT_Ptr)
967       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
968     return true;
969   } else if (Op == BO_Sub) {
970     if (!this->emitSubOffset(OffsetType, E))
971       return false;
972 
973     if (classifyPrim(E) != PT_Ptr)
974       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
975     return true;
976   }
977 
978   return false;
979 }
980 
981 template <class Emitter>
982 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
983   assert(E->isLogicalOp());
984   BinaryOperatorKind Op = E->getOpcode();
985   const Expr *LHS = E->getLHS();
986   const Expr *RHS = E->getRHS();
987   std::optional<PrimType> T = classify(E->getType());
988 
989   if (Op == BO_LOr) {
990     // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
991     LabelTy LabelTrue = this->getLabel();
992     LabelTy LabelEnd = this->getLabel();
993 
994     if (!this->visitBool(LHS))
995       return false;
996     if (!this->jumpTrue(LabelTrue))
997       return false;
998 
999     if (!this->visitBool(RHS))
1000       return false;
1001     if (!this->jump(LabelEnd))
1002       return false;
1003 
1004     this->emitLabel(LabelTrue);
1005     this->emitConstBool(true, E);
1006     this->fallthrough(LabelEnd);
1007     this->emitLabel(LabelEnd);
1008 
1009   } else {
1010     assert(Op == BO_LAnd);
1011     // Logical AND.
1012     // Visit LHS. Only visit RHS if LHS was TRUE.
1013     LabelTy LabelFalse = this->getLabel();
1014     LabelTy LabelEnd = this->getLabel();
1015 
1016     if (!this->visitBool(LHS))
1017       return false;
1018     if (!this->jumpFalse(LabelFalse))
1019       return false;
1020 
1021     if (!this->visitBool(RHS))
1022       return false;
1023     if (!this->jump(LabelEnd))
1024       return false;
1025 
1026     this->emitLabel(LabelFalse);
1027     this->emitConstBool(false, E);
1028     this->fallthrough(LabelEnd);
1029     this->emitLabel(LabelEnd);
1030   }
1031 
1032   if (DiscardResult)
1033     return this->emitPopBool(E);
1034 
1035   // For C, cast back to integer type.
1036   assert(T);
1037   if (T != PT_Bool)
1038     return this->emitCast(PT_Bool, *T, E);
1039   return true;
1040 }
1041 
1042 template <class Emitter>
1043 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
1044   // Prepare storage for result.
1045   if (!Initializing) {
1046     unsigned LocalIndex = allocateTemporary(E);
1047     if (!this->emitGetPtrLocal(LocalIndex, E))
1048       return false;
1049   }
1050 
1051   // Both LHS and RHS might _not_ be of complex type, but one of them
1052   // needs to be.
1053   const Expr *LHS = E->getLHS();
1054   const Expr *RHS = E->getRHS();
1055 
1056   PrimType ResultElemT = this->classifyComplexElementType(E->getType());
1057   unsigned ResultOffset = ~0u;
1058   if (!DiscardResult)
1059     ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
1060 
1061   // Save result pointer in ResultOffset
1062   if (!this->DiscardResult) {
1063     if (!this->emitDupPtr(E))
1064       return false;
1065     if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
1066       return false;
1067   }
1068   QualType LHSType = LHS->getType();
1069   if (const auto *AT = LHSType->getAs<AtomicType>())
1070     LHSType = AT->getValueType();
1071   QualType RHSType = RHS->getType();
1072   if (const auto *AT = RHSType->getAs<AtomicType>())
1073     RHSType = AT->getValueType();
1074 
1075   bool LHSIsComplex = LHSType->isAnyComplexType();
1076   unsigned LHSOffset;
1077   bool RHSIsComplex = RHSType->isAnyComplexType();
1078 
1079   // For ComplexComplex Mul, we have special ops to make their implementation
1080   // easier.
1081   BinaryOperatorKind Op = E->getOpcode();
1082   if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
1083     assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
1084            classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
1085     PrimType ElemT =
1086         classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
1087     if (!this->visit(LHS))
1088       return false;
1089     if (!this->visit(RHS))
1090       return false;
1091     return this->emitMulc(ElemT, E);
1092   }
1093 
1094   if (Op == BO_Div && RHSIsComplex) {
1095     QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
1096     PrimType ElemT = classifyPrim(ElemQT);
1097     // If the LHS is not complex, we still need to do the full complex
1098     // division, so just stub create a complex value and stub it out with
1099     // the LHS and a zero.
1100 
1101     if (!LHSIsComplex) {
1102       // This is using the RHS type for the fake-complex LHS.
1103       LHSOffset = allocateTemporary(RHS);
1104 
1105       if (!this->emitGetPtrLocal(LHSOffset, E))
1106         return false;
1107 
1108       if (!this->visit(LHS))
1109         return false;
1110       // real is LHS
1111       if (!this->emitInitElem(ElemT, 0, E))
1112         return false;
1113       // imag is zero
1114       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1115         return false;
1116       if (!this->emitInitElem(ElemT, 1, E))
1117         return false;
1118     } else {
1119       if (!this->visit(LHS))
1120         return false;
1121     }
1122 
1123     if (!this->visit(RHS))
1124       return false;
1125     return this->emitDivc(ElemT, E);
1126   }
1127 
1128   // Evaluate LHS and save value to LHSOffset.
1129   if (LHSType->isAnyComplexType()) {
1130     LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1131     if (!this->visit(LHS))
1132       return false;
1133     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1134       return false;
1135   } else {
1136     PrimType LHST = classifyPrim(LHSType);
1137     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
1138     if (!this->visit(LHS))
1139       return false;
1140     if (!this->emitSetLocal(LHST, LHSOffset, E))
1141       return false;
1142   }
1143 
1144   // Same with RHS.
1145   unsigned RHSOffset;
1146   if (RHSType->isAnyComplexType()) {
1147     RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1148     if (!this->visit(RHS))
1149       return false;
1150     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1151       return false;
1152   } else {
1153     PrimType RHST = classifyPrim(RHSType);
1154     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
1155     if (!this->visit(RHS))
1156       return false;
1157     if (!this->emitSetLocal(RHST, RHSOffset, E))
1158       return false;
1159   }
1160 
1161   // For both LHS and RHS, either load the value from the complex pointer, or
1162   // directly from the local variable. For index 1 (i.e. the imaginary part),
1163   // just load 0 and do the operation anyway.
1164   auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
1165                                  unsigned ElemIndex, unsigned Offset,
1166                                  const Expr *E) -> bool {
1167     if (IsComplex) {
1168       if (!this->emitGetLocal(PT_Ptr, Offset, E))
1169         return false;
1170       return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
1171                                     ElemIndex, E);
1172     }
1173     if (ElemIndex == 0 || !LoadZero)
1174       return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
1175     return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
1176                                       E);
1177   };
1178 
1179   // Now we can get pointers to the LHS and RHS from the offsets above.
1180   for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
1181     // Result pointer for the store later.
1182     if (!this->DiscardResult) {
1183       if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
1184         return false;
1185     }
1186 
1187     // The actual operation.
1188     switch (Op) {
1189     case BO_Add:
1190       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1191         return false;
1192 
1193       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1194         return false;
1195       if (ResultElemT == PT_Float) {
1196         if (!this->emitAddf(getFPOptions(E), E))
1197           return false;
1198       } else {
1199         if (!this->emitAdd(ResultElemT, E))
1200           return false;
1201       }
1202       break;
1203     case BO_Sub:
1204       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1205         return false;
1206 
1207       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1208         return false;
1209       if (ResultElemT == PT_Float) {
1210         if (!this->emitSubf(getFPOptions(E), E))
1211           return false;
1212       } else {
1213         if (!this->emitSub(ResultElemT, E))
1214           return false;
1215       }
1216       break;
1217     case BO_Mul:
1218       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1219         return false;
1220 
1221       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1222         return false;
1223 
1224       if (ResultElemT == PT_Float) {
1225         if (!this->emitMulf(getFPOptions(E), E))
1226           return false;
1227       } else {
1228         if (!this->emitMul(ResultElemT, E))
1229           return false;
1230       }
1231       break;
1232     case BO_Div:
1233       assert(!RHSIsComplex);
1234       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1235         return false;
1236 
1237       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1238         return false;
1239 
1240       if (ResultElemT == PT_Float) {
1241         if (!this->emitDivf(getFPOptions(E), E))
1242           return false;
1243       } else {
1244         if (!this->emitDiv(ResultElemT, E))
1245           return false;
1246       }
1247       break;
1248 
1249     default:
1250       return false;
1251     }
1252 
1253     if (!this->DiscardResult) {
1254       // Initialize array element with the value we just computed.
1255       if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
1256         return false;
1257     } else {
1258       if (!this->emitPop(ResultElemT, E))
1259         return false;
1260     }
1261   }
1262   return true;
1263 }
1264 
1265 template <class Emitter>
1266 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) {
1267   assert(!E->isCommaOp() &&
1268          "Comma op should be handled in VisitBinaryOperator");
1269   assert(E->getType()->isVectorType());
1270   assert(E->getLHS()->getType()->isVectorType());
1271   assert(E->getRHS()->getType()->isVectorType());
1272 
1273   // Prepare storage for result.
1274   if (!Initializing && !E->isCompoundAssignmentOp()) {
1275     unsigned LocalIndex = allocateTemporary(E);
1276     if (!this->emitGetPtrLocal(LocalIndex, E))
1277       return false;
1278   }
1279 
1280   const Expr *LHS = E->getLHS();
1281   const Expr *RHS = E->getRHS();
1282   const auto *VecTy = E->getType()->getAs<VectorType>();
1283   auto Op = E->isCompoundAssignmentOp()
1284                 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode())
1285                 : E->getOpcode();
1286 
1287   PrimType ElemT = this->classifyVectorElementType(LHS->getType());
1288   PrimType RHSElemT = this->classifyVectorElementType(RHS->getType());
1289   PrimType ResultElemT = this->classifyVectorElementType(E->getType());
1290 
1291   // Evaluate LHS and save value to LHSOffset.
1292   unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1293   if (!this->visit(LHS))
1294     return false;
1295   if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1296     return false;
1297 
1298   // Evaluate RHS and save value to RHSOffset.
1299   unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1300   if (!this->visit(RHS))
1301     return false;
1302   if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1303     return false;
1304 
1305   if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E))
1306     return false;
1307 
1308   // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the
1309   // integer promotion.
1310   bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp());
1311   QualType PromotTy =
1312       Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy);
1313   PrimType PromotT = classifyPrim(PromotTy);
1314   PrimType OpT = NeedIntPromot ? PromotT : ElemT;
1315 
1316   auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) {
1317     if (!this->emitGetLocal(PT_Ptr, Offset, E))
1318       return false;
1319     if (!this->emitArrayElemPop(ElemT, Index, E))
1320       return false;
1321     if (E->isLogicalOp()) {
1322       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
1323         return false;
1324       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1325         return false;
1326     } else if (NeedIntPromot) {
1327       if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E))
1328         return false;
1329     }
1330     return true;
1331   };
1332 
1333 #define EMIT_ARITH_OP(OP)                                                      \
1334   {                                                                            \
1335     if (ElemT == PT_Float) {                                                   \
1336       if (!this->emit##OP##f(getFPOptions(E), E))                              \
1337         return false;                                                          \
1338     } else {                                                                   \
1339       if (!this->emit##OP(ElemT, E))                                           \
1340         return false;                                                          \
1341     }                                                                          \
1342     break;                                                                     \
1343   }
1344 
1345   for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
1346     if (!getElem(LHSOffset, ElemT, I))
1347       return false;
1348     if (!getElem(RHSOffset, RHSElemT, I))
1349       return false;
1350     switch (Op) {
1351     case BO_Add:
1352       EMIT_ARITH_OP(Add)
1353     case BO_Sub:
1354       EMIT_ARITH_OP(Sub)
1355     case BO_Mul:
1356       EMIT_ARITH_OP(Mul)
1357     case BO_Div:
1358       EMIT_ARITH_OP(Div)
1359     case BO_Rem:
1360       if (!this->emitRem(ElemT, E))
1361         return false;
1362       break;
1363     case BO_And:
1364       if (!this->emitBitAnd(OpT, E))
1365         return false;
1366       break;
1367     case BO_Or:
1368       if (!this->emitBitOr(OpT, E))
1369         return false;
1370       break;
1371     case BO_Xor:
1372       if (!this->emitBitXor(OpT, E))
1373         return false;
1374       break;
1375     case BO_Shl:
1376       if (!this->emitShl(OpT, RHSElemT, E))
1377         return false;
1378       break;
1379     case BO_Shr:
1380       if (!this->emitShr(OpT, RHSElemT, E))
1381         return false;
1382       break;
1383     case BO_EQ:
1384       if (!this->emitEQ(ElemT, E))
1385         return false;
1386       break;
1387     case BO_NE:
1388       if (!this->emitNE(ElemT, E))
1389         return false;
1390       break;
1391     case BO_LE:
1392       if (!this->emitLE(ElemT, E))
1393         return false;
1394       break;
1395     case BO_LT:
1396       if (!this->emitLT(ElemT, E))
1397         return false;
1398       break;
1399     case BO_GE:
1400       if (!this->emitGE(ElemT, E))
1401         return false;
1402       break;
1403     case BO_GT:
1404       if (!this->emitGT(ElemT, E))
1405         return false;
1406       break;
1407     case BO_LAnd:
1408       // a && b is equivalent to a!=0 & b!=0
1409       if (!this->emitBitAnd(ResultElemT, E))
1410         return false;
1411       break;
1412     case BO_LOr:
1413       // a || b is equivalent to a!=0 | b!=0
1414       if (!this->emitBitOr(ResultElemT, E))
1415         return false;
1416       break;
1417     default:
1418       return this->emitInvalid(E);
1419     }
1420 
1421     // The result of the comparison is a vector of the same width and number
1422     // of elements as the comparison operands with a signed integral element
1423     // type.
1424     //
1425     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
1426     if (E->isComparisonOp()) {
1427       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1428         return false;
1429       if (!this->emitNeg(ResultElemT, E))
1430         return false;
1431     }
1432 
1433     // If we performed an integer promotion, we need to cast the compute result
1434     // into result vector element type.
1435     if (NeedIntPromot &&
1436         !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E))
1437       return false;
1438 
1439     // Initialize array element with the value we just computed.
1440     if (!this->emitInitElem(ResultElemT, I, E))
1441       return false;
1442   }
1443 
1444   if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E))
1445     return false;
1446   return true;
1447 }
1448 
1449 template <class Emitter>
1450 bool Compiler<Emitter>::VisitImplicitValueInitExpr(
1451     const ImplicitValueInitExpr *E) {
1452   QualType QT = E->getType();
1453 
1454   if (std::optional<PrimType> T = classify(QT))
1455     return this->visitZeroInitializer(*T, QT, E);
1456 
1457   if (QT->isRecordType()) {
1458     const RecordDecl *RD = QT->getAsRecordDecl();
1459     assert(RD);
1460     if (RD->isInvalidDecl())
1461       return false;
1462 
1463     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1464         CXXRD && CXXRD->getNumVBases() > 0) {
1465       // TODO: Diagnose.
1466       return false;
1467     }
1468 
1469     const Record *R = getRecord(QT);
1470     if (!R)
1471       return false;
1472 
1473     assert(Initializing);
1474     return this->visitZeroRecordInitializer(R, E);
1475   }
1476 
1477   if (QT->isIncompleteArrayType())
1478     return true;
1479 
1480   if (QT->isArrayType()) {
1481     const ArrayType *AT = QT->getAsArrayTypeUnsafe();
1482     assert(AT);
1483     const auto *CAT = cast<ConstantArrayType>(AT);
1484     size_t NumElems = CAT->getZExtSize();
1485     PrimType ElemT = classifyPrim(CAT->getElementType());
1486 
1487     for (size_t I = 0; I != NumElems; ++I) {
1488       if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E))
1489         return false;
1490       if (!this->emitInitElem(ElemT, I, E))
1491         return false;
1492     }
1493 
1494     return true;
1495   }
1496 
1497   if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
1498     assert(Initializing);
1499     QualType ElemQT = ComplexTy->getElementType();
1500     PrimType ElemT = classifyPrim(ElemQT);
1501     for (unsigned I = 0; I < 2; ++I) {
1502       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1503         return false;
1504       if (!this->emitInitElem(ElemT, I, E))
1505         return false;
1506     }
1507     return true;
1508   }
1509 
1510   if (const auto *VecT = E->getType()->getAs<VectorType>()) {
1511     unsigned NumVecElements = VecT->getNumElements();
1512     QualType ElemQT = VecT->getElementType();
1513     PrimType ElemT = classifyPrim(ElemQT);
1514 
1515     for (unsigned I = 0; I < NumVecElements; ++I) {
1516       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1517         return false;
1518       if (!this->emitInitElem(ElemT, I, E))
1519         return false;
1520     }
1521     return true;
1522   }
1523 
1524   return false;
1525 }
1526 
1527 template <class Emitter>
1528 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1529   const Expr *LHS = E->getLHS();
1530   const Expr *RHS = E->getRHS();
1531   const Expr *Index = E->getIdx();
1532 
1533   if (DiscardResult)
1534     return this->discard(LHS) && this->discard(RHS);
1535 
1536   // C++17's rules require us to evaluate the LHS first, regardless of which
1537   // side is the base.
1538   bool Success = true;
1539   for (const Expr *SubExpr : {LHS, RHS}) {
1540     if (!this->visit(SubExpr))
1541       Success = false;
1542   }
1543 
1544   if (!Success)
1545     return false;
1546 
1547   PrimType IndexT = classifyPrim(Index->getType());
1548   // If the index is first, we need to change that.
1549   if (LHS == Index) {
1550     if (!this->emitFlip(PT_Ptr, IndexT, E))
1551       return false;
1552   }
1553 
1554   return this->emitArrayElemPtrPop(IndexT, E);
1555 }
1556 
1557 template <class Emitter>
1558 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
1559                                       const Expr *ArrayFiller, const Expr *E) {
1560   QualType QT = E->getType();
1561   if (const auto *AT = QT->getAs<AtomicType>())
1562     QT = AT->getValueType();
1563 
1564   if (QT->isVoidType()) {
1565     if (Inits.size() == 0)
1566       return true;
1567     return this->emitInvalid(E);
1568   }
1569 
1570   // Handle discarding first.
1571   if (DiscardResult) {
1572     for (const Expr *Init : Inits) {
1573       if (!this->discard(Init))
1574         return false;
1575     }
1576     return true;
1577   }
1578 
1579   // Primitive values.
1580   if (std::optional<PrimType> T = classify(QT)) {
1581     assert(!DiscardResult);
1582     if (Inits.size() == 0)
1583       return this->visitZeroInitializer(*T, QT, E);
1584     assert(Inits.size() == 1);
1585     return this->delegate(Inits[0]);
1586   }
1587 
1588   if (QT->isRecordType()) {
1589     const Record *R = getRecord(QT);
1590 
1591     if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
1592       return this->delegate(Inits[0]);
1593 
1594     auto initPrimitiveField = [=](const Record::Field *FieldToInit,
1595                                   const Expr *Init, PrimType T) -> bool {
1596       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1597       if (!this->visit(Init))
1598         return false;
1599 
1600       if (FieldToInit->isBitField())
1601         return this->emitInitBitField(T, FieldToInit, E);
1602       return this->emitInitField(T, FieldToInit->Offset, E);
1603     };
1604 
1605     auto initCompositeField = [=](const Record::Field *FieldToInit,
1606                                   const Expr *Init) -> bool {
1607       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1608       InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
1609       // Non-primitive case. Get a pointer to the field-to-initialize
1610       // on the stack and recurse into visitInitializer().
1611       if (!this->emitGetPtrField(FieldToInit->Offset, Init))
1612         return false;
1613       if (!this->visitInitializer(Init))
1614         return false;
1615       return this->emitPopPtr(E);
1616     };
1617 
1618     if (R->isUnion()) {
1619       if (Inits.size() == 0) {
1620         if (!this->visitZeroRecordInitializer(R, E))
1621           return false;
1622       } else {
1623         const Expr *Init = Inits[0];
1624         const FieldDecl *FToInit = nullptr;
1625         if (const auto *ILE = dyn_cast<InitListExpr>(E))
1626           FToInit = ILE->getInitializedFieldInUnion();
1627         else
1628           FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
1629 
1630         const Record::Field *FieldToInit = R->getField(FToInit);
1631         if (std::optional<PrimType> T = classify(Init)) {
1632           if (!initPrimitiveField(FieldToInit, Init, *T))
1633             return false;
1634         } else {
1635           if (!initCompositeField(FieldToInit, Init))
1636             return false;
1637         }
1638       }
1639       return this->emitFinishInit(E);
1640     }
1641 
1642     assert(!R->isUnion());
1643     unsigned InitIndex = 0;
1644     for (const Expr *Init : Inits) {
1645       // Skip unnamed bitfields.
1646       while (InitIndex < R->getNumFields() &&
1647              R->getField(InitIndex)->Decl->isUnnamedBitField())
1648         ++InitIndex;
1649 
1650       if (std::optional<PrimType> T = classify(Init)) {
1651         const Record::Field *FieldToInit = R->getField(InitIndex);
1652         if (!initPrimitiveField(FieldToInit, Init, *T))
1653           return false;
1654         ++InitIndex;
1655       } else {
1656         // Initializer for a direct base class.
1657         if (const Record::Base *B = R->getBase(Init->getType())) {
1658           if (!this->emitGetPtrBase(B->Offset, Init))
1659             return false;
1660 
1661           if (!this->visitInitializer(Init))
1662             return false;
1663 
1664           if (!this->emitFinishInitPop(E))
1665             return false;
1666           // Base initializers don't increase InitIndex, since they don't count
1667           // into the Record's fields.
1668         } else {
1669           const Record::Field *FieldToInit = R->getField(InitIndex);
1670           if (!initCompositeField(FieldToInit, Init))
1671             return false;
1672           ++InitIndex;
1673         }
1674       }
1675     }
1676     return this->emitFinishInit(E);
1677   }
1678 
1679   if (QT->isArrayType()) {
1680     if (Inits.size() == 1 && QT == Inits[0]->getType())
1681       return this->delegate(Inits[0]);
1682 
1683     unsigned ElementIndex = 0;
1684     for (const Expr *Init : Inits) {
1685       if (const auto *EmbedS =
1686               dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1687         PrimType TargetT = classifyPrim(Init->getType());
1688 
1689         auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
1690           PrimType InitT = classifyPrim(Init->getType());
1691           if (!this->visit(Init))
1692             return false;
1693           if (InitT != TargetT) {
1694             if (!this->emitCast(InitT, TargetT, E))
1695               return false;
1696           }
1697           return this->emitInitElem(TargetT, ElemIndex, Init);
1698         };
1699         if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
1700           return false;
1701       } else {
1702         if (!this->visitArrayElemInit(ElementIndex, Init))
1703           return false;
1704         ++ElementIndex;
1705       }
1706     }
1707 
1708     // Expand the filler expression.
1709     // FIXME: This should go away.
1710     if (ArrayFiller) {
1711       const ConstantArrayType *CAT =
1712           Ctx.getASTContext().getAsConstantArrayType(QT);
1713       uint64_t NumElems = CAT->getZExtSize();
1714 
1715       for (; ElementIndex != NumElems; ++ElementIndex) {
1716         if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
1717           return false;
1718       }
1719     }
1720 
1721     return this->emitFinishInit(E);
1722   }
1723 
1724   if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
1725     unsigned NumInits = Inits.size();
1726 
1727     if (NumInits == 1)
1728       return this->delegate(Inits[0]);
1729 
1730     QualType ElemQT = ComplexTy->getElementType();
1731     PrimType ElemT = classifyPrim(ElemQT);
1732     if (NumInits == 0) {
1733       // Zero-initialize both elements.
1734       for (unsigned I = 0; I < 2; ++I) {
1735         if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1736           return false;
1737         if (!this->emitInitElem(ElemT, I, E))
1738           return false;
1739       }
1740     } else if (NumInits == 2) {
1741       unsigned InitIndex = 0;
1742       for (const Expr *Init : Inits) {
1743         if (!this->visit(Init))
1744           return false;
1745 
1746         if (!this->emitInitElem(ElemT, InitIndex, E))
1747           return false;
1748         ++InitIndex;
1749       }
1750     }
1751     return true;
1752   }
1753 
1754   if (const auto *VecT = QT->getAs<VectorType>()) {
1755     unsigned NumVecElements = VecT->getNumElements();
1756     assert(NumVecElements >= Inits.size());
1757 
1758     QualType ElemQT = VecT->getElementType();
1759     PrimType ElemT = classifyPrim(ElemQT);
1760 
1761     // All initializer elements.
1762     unsigned InitIndex = 0;
1763     for (const Expr *Init : Inits) {
1764       if (!this->visit(Init))
1765         return false;
1766 
1767       // If the initializer is of vector type itself, we have to deconstruct
1768       // that and initialize all the target fields from the initializer fields.
1769       if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
1770         if (!this->emitCopyArray(ElemT, 0, InitIndex,
1771                                  InitVecT->getNumElements(), E))
1772           return false;
1773         InitIndex += InitVecT->getNumElements();
1774       } else {
1775         if (!this->emitInitElem(ElemT, InitIndex, E))
1776           return false;
1777         ++InitIndex;
1778       }
1779     }
1780 
1781     assert(InitIndex <= NumVecElements);
1782 
1783     // Fill the rest with zeroes.
1784     for (; InitIndex != NumVecElements; ++InitIndex) {
1785       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1786         return false;
1787       if (!this->emitInitElem(ElemT, InitIndex, E))
1788         return false;
1789     }
1790     return true;
1791   }
1792 
1793   return false;
1794 }
1795 
1796 /// Pointer to the array(not the element!) must be on the stack when calling
1797 /// this.
1798 template <class Emitter>
1799 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
1800                                            const Expr *Init) {
1801   if (std::optional<PrimType> T = classify(Init->getType())) {
1802     // Visit the primitive element like normal.
1803     if (!this->visit(Init))
1804       return false;
1805     return this->emitInitElem(*T, ElemIndex, Init);
1806   }
1807 
1808   InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
1809   // Advance the pointer currently on the stack to the given
1810   // dimension.
1811   if (!this->emitConstUint32(ElemIndex, Init))
1812     return false;
1813   if (!this->emitArrayElemPtrUint32(Init))
1814     return false;
1815   if (!this->visitInitializer(Init))
1816     return false;
1817   return this->emitFinishInitPop(Init);
1818 }
1819 
1820 template <class Emitter>
1821 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
1822   return this->visitInitList(E->inits(), E->getArrayFiller(), E);
1823 }
1824 
1825 template <class Emitter>
1826 bool Compiler<Emitter>::VisitCXXParenListInitExpr(
1827     const CXXParenListInitExpr *E) {
1828   return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
1829 }
1830 
1831 template <class Emitter>
1832 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
1833     const SubstNonTypeTemplateParmExpr *E) {
1834   return this->delegate(E->getReplacement());
1835 }
1836 
1837 template <class Emitter>
1838 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
1839   std::optional<PrimType> T = classify(E->getType());
1840   if (T && E->hasAPValueResult()) {
1841     // Try to emit the APValue directly, without visiting the subexpr.
1842     // This will only fail if we can't emit the APValue, so won't emit any
1843     // diagnostics or any double values.
1844     if (DiscardResult)
1845       return true;
1846 
1847     if (this->visitAPValue(E->getAPValueResult(), *T, E))
1848       return true;
1849   }
1850   return this->delegate(E->getSubExpr());
1851 }
1852 
1853 template <class Emitter>
1854 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
1855   auto It = E->begin();
1856   return this->visit(*It);
1857 }
1858 
1859 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
1860                              UnaryExprOrTypeTrait Kind) {
1861   bool AlignOfReturnsPreferred =
1862       ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
1863 
1864   // C++ [expr.alignof]p3:
1865   //     When alignof is applied to a reference type, the result is the
1866   //     alignment of the referenced type.
1867   if (const auto *Ref = T->getAs<ReferenceType>())
1868     T = Ref->getPointeeType();
1869 
1870   if (T.getQualifiers().hasUnaligned())
1871     return CharUnits::One();
1872 
1873   // __alignof is defined to return the preferred alignment.
1874   // Before 8, clang returned the preferred alignment for alignof and
1875   // _Alignof as well.
1876   if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
1877     return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
1878 
1879   return ASTCtx.getTypeAlignInChars(T);
1880 }
1881 
1882 template <class Emitter>
1883 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
1884     const UnaryExprOrTypeTraitExpr *E) {
1885   UnaryExprOrTypeTrait Kind = E->getKind();
1886   const ASTContext &ASTCtx = Ctx.getASTContext();
1887 
1888   if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
1889     QualType ArgType = E->getTypeOfArgument();
1890 
1891     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1892     //   the result is the size of the referenced type."
1893     if (const auto *Ref = ArgType->getAs<ReferenceType>())
1894       ArgType = Ref->getPointeeType();
1895 
1896     CharUnits Size;
1897     if (ArgType->isVoidType() || ArgType->isFunctionType())
1898       Size = CharUnits::One();
1899     else {
1900       if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
1901         return false;
1902 
1903       if (Kind == UETT_SizeOf)
1904         Size = ASTCtx.getTypeSizeInChars(ArgType);
1905       else
1906         Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
1907     }
1908 
1909     if (DiscardResult)
1910       return true;
1911 
1912     return this->emitConst(Size.getQuantity(), E);
1913   }
1914 
1915   if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
1916     CharUnits Size;
1917 
1918     if (E->isArgumentType()) {
1919       QualType ArgType = E->getTypeOfArgument();
1920 
1921       Size = AlignOfType(ArgType, ASTCtx, Kind);
1922     } else {
1923       // Argument is an expression, not a type.
1924       const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
1925 
1926       // The kinds of expressions that we have special-case logic here for
1927       // should be kept up to date with the special checks for those
1928       // expressions in Sema.
1929 
1930       // alignof decl is always accepted, even if it doesn't make sense: we
1931       // default to 1 in those cases.
1932       if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
1933         Size = ASTCtx.getDeclAlign(DRE->getDecl(),
1934                                    /*RefAsPointee*/ true);
1935       else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
1936         Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
1937                                    /*RefAsPointee*/ true);
1938       else
1939         Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
1940     }
1941 
1942     if (DiscardResult)
1943       return true;
1944 
1945     return this->emitConst(Size.getQuantity(), E);
1946   }
1947 
1948   if (Kind == UETT_VectorElements) {
1949     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
1950       return this->emitConst(VT->getNumElements(), E);
1951     assert(E->getTypeOfArgument()->isSizelessVectorType());
1952     return this->emitSizelessVectorElementSize(E);
1953   }
1954 
1955   if (Kind == UETT_VecStep) {
1956     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
1957       unsigned N = VT->getNumElements();
1958 
1959       // The vec_step built-in functions that take a 3-component
1960       // vector return 4. (OpenCL 1.1 spec 6.11.12)
1961       if (N == 3)
1962         N = 4;
1963 
1964       return this->emitConst(N, E);
1965     }
1966     return this->emitConst(1, E);
1967   }
1968 
1969   return false;
1970 }
1971 
1972 template <class Emitter>
1973 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
1974   // 'Base.Member'
1975   const Expr *Base = E->getBase();
1976   const ValueDecl *Member = E->getMemberDecl();
1977 
1978   if (DiscardResult)
1979     return this->discard(Base);
1980 
1981   // MemberExprs are almost always lvalues, in which case we don't need to
1982   // do the load. But sometimes they aren't.
1983   const auto maybeLoadValue = [&]() -> bool {
1984     if (E->isGLValue())
1985       return true;
1986     if (std::optional<PrimType> T = classify(E))
1987       return this->emitLoadPop(*T, E);
1988     return false;
1989   };
1990 
1991   if (const auto *VD = dyn_cast<VarDecl>(Member)) {
1992     // I am almost confident in saying that a var decl must be static
1993     // and therefore registered as a global variable. But this will probably
1994     // turn out to be wrong some time in the future, as always.
1995     if (auto GlobalIndex = P.getGlobal(VD))
1996       return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
1997     return false;
1998   }
1999 
2000   if (!isa<FieldDecl>(Member)) {
2001     if (!this->discard(Base) && !this->emitSideEffect(E))
2002       return false;
2003 
2004     return this->visitDeclRef(Member, E);
2005   }
2006 
2007   if (Initializing) {
2008     if (!this->delegate(Base))
2009       return false;
2010   } else {
2011     if (!this->visit(Base))
2012       return false;
2013   }
2014 
2015   // Base above gives us a pointer on the stack.
2016   const auto *FD = cast<FieldDecl>(Member);
2017   const RecordDecl *RD = FD->getParent();
2018   const Record *R = getRecord(RD);
2019   if (!R)
2020     return false;
2021   const Record::Field *F = R->getField(FD);
2022   // Leave a pointer to the field on the stack.
2023   if (F->Decl->getType()->isReferenceType())
2024     return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
2025   return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
2026 }
2027 
2028 template <class Emitter>
2029 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
2030   // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
2031   // stand-alone, e.g. via EvaluateAsInt().
2032   if (!ArrayIndex)
2033     return false;
2034   return this->emitConst(*ArrayIndex, E);
2035 }
2036 
2037 template <class Emitter>
2038 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
2039   assert(Initializing);
2040   assert(!DiscardResult);
2041 
2042   // We visit the common opaque expression here once so we have its value
2043   // cached.
2044   if (!this->discard(E->getCommonExpr()))
2045     return false;
2046 
2047   // TODO: This compiles to quite a lot of bytecode if the array is larger.
2048   //   Investigate compiling this to a loop.
2049   const Expr *SubExpr = E->getSubExpr();
2050   size_t Size = E->getArraySize().getZExtValue();
2051 
2052   // So, every iteration, we execute an assignment here
2053   // where the LHS is on the stack (the target array)
2054   // and the RHS is our SubExpr.
2055   for (size_t I = 0; I != Size; ++I) {
2056     ArrayIndexScope<Emitter> IndexScope(this, I);
2057     BlockScope<Emitter> BS(this);
2058 
2059     if (!this->visitArrayElemInit(I, SubExpr))
2060       return false;
2061     if (!BS.destroyLocals())
2062       return false;
2063   }
2064   return true;
2065 }
2066 
2067 template <class Emitter>
2068 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2069   const Expr *SourceExpr = E->getSourceExpr();
2070   if (!SourceExpr)
2071     return false;
2072 
2073   if (Initializing)
2074     return this->visitInitializer(SourceExpr);
2075 
2076   PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
2077   if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
2078     return this->emitGetLocal(SubExprT, It->second, E);
2079 
2080   if (!this->visit(SourceExpr))
2081     return false;
2082 
2083   // At this point we either have the evaluated source expression or a pointer
2084   // to an object on the stack. We want to create a local variable that stores
2085   // this value.
2086   unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
2087   if (!this->emitSetLocal(SubExprT, LocalIndex, E))
2088     return false;
2089 
2090   // Here the local variable is created but the value is removed from the stack,
2091   // so we put it back if the caller needs it.
2092   if (!DiscardResult) {
2093     if (!this->emitGetLocal(SubExprT, LocalIndex, E))
2094       return false;
2095   }
2096 
2097   // This is cleaned up when the local variable is destroyed.
2098   OpaqueExprs.insert({E, LocalIndex});
2099 
2100   return true;
2101 }
2102 
2103 template <class Emitter>
2104 bool Compiler<Emitter>::VisitAbstractConditionalOperator(
2105     const AbstractConditionalOperator *E) {
2106   const Expr *Condition = E->getCond();
2107   const Expr *TrueExpr = E->getTrueExpr();
2108   const Expr *FalseExpr = E->getFalseExpr();
2109 
2110   LabelTy LabelEnd = this->getLabel();   // Label after the operator.
2111   LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
2112 
2113   if (!this->visitBool(Condition))
2114     return false;
2115 
2116   if (!this->jumpFalse(LabelFalse))
2117     return false;
2118 
2119   {
2120     LocalScope<Emitter> S(this);
2121     if (!this->delegate(TrueExpr))
2122       return false;
2123     if (!S.destroyLocals())
2124       return false;
2125   }
2126 
2127   if (!this->jump(LabelEnd))
2128     return false;
2129 
2130   this->emitLabel(LabelFalse);
2131 
2132   {
2133     LocalScope<Emitter> S(this);
2134     if (!this->delegate(FalseExpr))
2135       return false;
2136     if (!S.destroyLocals())
2137       return false;
2138   }
2139 
2140   this->fallthrough(LabelEnd);
2141   this->emitLabel(LabelEnd);
2142 
2143   return true;
2144 }
2145 
2146 template <class Emitter>
2147 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
2148   if (DiscardResult)
2149     return true;
2150 
2151   if (!Initializing) {
2152     unsigned StringIndex = P.createGlobalString(E);
2153     return this->emitGetPtrGlobal(StringIndex, E);
2154   }
2155 
2156   // We are initializing an array on the stack.
2157   const ConstantArrayType *CAT =
2158       Ctx.getASTContext().getAsConstantArrayType(E->getType());
2159   assert(CAT && "a string literal that's not a constant array?");
2160 
2161   // If the initializer string is too long, a diagnostic has already been
2162   // emitted. Read only the array length from the string literal.
2163   unsigned ArraySize = CAT->getZExtSize();
2164   unsigned N = std::min(ArraySize, E->getLength());
2165   size_t CharWidth = E->getCharByteWidth();
2166 
2167   for (unsigned I = 0; I != N; ++I) {
2168     uint32_t CodeUnit = E->getCodeUnit(I);
2169 
2170     if (CharWidth == 1) {
2171       this->emitConstSint8(CodeUnit, E);
2172       this->emitInitElemSint8(I, E);
2173     } else if (CharWidth == 2) {
2174       this->emitConstUint16(CodeUnit, E);
2175       this->emitInitElemUint16(I, E);
2176     } else if (CharWidth == 4) {
2177       this->emitConstUint32(CodeUnit, E);
2178       this->emitInitElemUint32(I, E);
2179     } else {
2180       llvm_unreachable("unsupported character width");
2181     }
2182   }
2183 
2184   // Fill up the rest of the char array with NUL bytes.
2185   for (unsigned I = N; I != ArraySize; ++I) {
2186     if (CharWidth == 1) {
2187       this->emitConstSint8(0, E);
2188       this->emitInitElemSint8(I, E);
2189     } else if (CharWidth == 2) {
2190       this->emitConstUint16(0, E);
2191       this->emitInitElemUint16(I, E);
2192     } else if (CharWidth == 4) {
2193       this->emitConstUint32(0, E);
2194       this->emitInitElemUint32(I, E);
2195     } else {
2196       llvm_unreachable("unsupported character width");
2197     }
2198   }
2199 
2200   return true;
2201 }
2202 
2203 template <class Emitter>
2204 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2205   if (std::optional<unsigned> I = P.getOrCreateDummy(E))
2206     return this->emitGetPtrGlobal(*I, E);
2207   return false;
2208 }
2209 
2210 template <class Emitter>
2211 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2212   auto &A = Ctx.getASTContext();
2213   std::string Str;
2214   A.getObjCEncodingForType(E->getEncodedType(), Str);
2215   StringLiteral *SL =
2216       StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
2217                             /*Pascal=*/false, E->getType(), E->getAtLoc());
2218   return this->delegate(SL);
2219 }
2220 
2221 template <class Emitter>
2222 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
2223     const SYCLUniqueStableNameExpr *E) {
2224   if (DiscardResult)
2225     return true;
2226 
2227   assert(!Initializing);
2228 
2229   auto &A = Ctx.getASTContext();
2230   std::string ResultStr = E->ComputeName(A);
2231 
2232   QualType CharTy = A.CharTy.withConst();
2233   APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
2234   QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
2235                                             ArraySizeModifier::Normal, 0);
2236 
2237   StringLiteral *SL =
2238       StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
2239                             /*Pascal=*/false, ArrayTy, E->getLocation());
2240 
2241   unsigned StringIndex = P.createGlobalString(SL);
2242   return this->emitGetPtrGlobal(StringIndex, E);
2243 }
2244 
2245 template <class Emitter>
2246 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
2247   if (DiscardResult)
2248     return true;
2249   return this->emitConst(E->getValue(), E);
2250 }
2251 
2252 template <class Emitter>
2253 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
2254     const CompoundAssignOperator *E) {
2255 
2256   const Expr *LHS = E->getLHS();
2257   const Expr *RHS = E->getRHS();
2258   QualType LHSType = LHS->getType();
2259   QualType LHSComputationType = E->getComputationLHSType();
2260   QualType ResultType = E->getComputationResultType();
2261   std::optional<PrimType> LT = classify(LHSComputationType);
2262   std::optional<PrimType> RT = classify(ResultType);
2263 
2264   assert(ResultType->isFloatingType());
2265 
2266   if (!LT || !RT)
2267     return false;
2268 
2269   PrimType LHST = classifyPrim(LHSType);
2270 
2271   // C++17 onwards require that we evaluate the RHS first.
2272   // Compute RHS and save it in a temporary variable so we can
2273   // load it again later.
2274   if (!visit(RHS))
2275     return false;
2276 
2277   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2278   if (!this->emitSetLocal(*RT, TempOffset, E))
2279     return false;
2280 
2281   // First, visit LHS.
2282   if (!visit(LHS))
2283     return false;
2284   if (!this->emitLoad(LHST, E))
2285     return false;
2286 
2287   // If necessary, convert LHS to its computation type.
2288   if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
2289                           LHSComputationType, E))
2290     return false;
2291 
2292   // Now load RHS.
2293   if (!this->emitGetLocal(*RT, TempOffset, E))
2294     return false;
2295 
2296   switch (E->getOpcode()) {
2297   case BO_AddAssign:
2298     if (!this->emitAddf(getFPOptions(E), E))
2299       return false;
2300     break;
2301   case BO_SubAssign:
2302     if (!this->emitSubf(getFPOptions(E), E))
2303       return false;
2304     break;
2305   case BO_MulAssign:
2306     if (!this->emitMulf(getFPOptions(E), E))
2307       return false;
2308     break;
2309   case BO_DivAssign:
2310     if (!this->emitDivf(getFPOptions(E), E))
2311       return false;
2312     break;
2313   default:
2314     return false;
2315   }
2316 
2317   if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
2318     return false;
2319 
2320   if (DiscardResult)
2321     return this->emitStorePop(LHST, E);
2322   return this->emitStore(LHST, E);
2323 }
2324 
2325 template <class Emitter>
2326 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
2327     const CompoundAssignOperator *E) {
2328   BinaryOperatorKind Op = E->getOpcode();
2329   const Expr *LHS = E->getLHS();
2330   const Expr *RHS = E->getRHS();
2331   std::optional<PrimType> LT = classify(LHS->getType());
2332   std::optional<PrimType> RT = classify(RHS->getType());
2333 
2334   if (Op != BO_AddAssign && Op != BO_SubAssign)
2335     return false;
2336 
2337   if (!LT || !RT)
2338     return false;
2339 
2340   if (!visit(LHS))
2341     return false;
2342 
2343   if (!this->emitLoad(*LT, LHS))
2344     return false;
2345 
2346   if (!visit(RHS))
2347     return false;
2348 
2349   if (Op == BO_AddAssign) {
2350     if (!this->emitAddOffset(*RT, E))
2351       return false;
2352   } else {
2353     if (!this->emitSubOffset(*RT, E))
2354       return false;
2355   }
2356 
2357   if (DiscardResult)
2358     return this->emitStorePopPtr(E);
2359   return this->emitStorePtr(E);
2360 }
2361 
2362 template <class Emitter>
2363 bool Compiler<Emitter>::VisitCompoundAssignOperator(
2364     const CompoundAssignOperator *E) {
2365   if (E->getType()->isVectorType())
2366     return VisitVectorBinOp(E);
2367 
2368   const Expr *LHS = E->getLHS();
2369   const Expr *RHS = E->getRHS();
2370   std::optional<PrimType> LHSComputationT =
2371       classify(E->getComputationLHSType());
2372   std::optional<PrimType> LT = classify(LHS->getType());
2373   std::optional<PrimType> RT = classify(RHS->getType());
2374   std::optional<PrimType> ResultT = classify(E->getType());
2375 
2376   if (!Ctx.getLangOpts().CPlusPlus14)
2377     return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
2378 
2379   if (!LT || !RT || !ResultT || !LHSComputationT)
2380     return false;
2381 
2382   // Handle floating point operations separately here, since they
2383   // require special care.
2384 
2385   if (ResultT == PT_Float || RT == PT_Float)
2386     return VisitFloatCompoundAssignOperator(E);
2387 
2388   if (E->getType()->isPointerType())
2389     return VisitPointerCompoundAssignOperator(E);
2390 
2391   assert(!E->getType()->isPointerType() && "Handled above");
2392   assert(!E->getType()->isFloatingType() && "Handled above");
2393 
2394   // C++17 onwards require that we evaluate the RHS first.
2395   // Compute RHS and save it in a temporary variable so we can
2396   // load it again later.
2397   // FIXME: Compound assignments are unsequenced in C, so we might
2398   //   have to figure out how to reject them.
2399   if (!visit(RHS))
2400     return false;
2401 
2402   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2403 
2404   if (!this->emitSetLocal(*RT, TempOffset, E))
2405     return false;
2406 
2407   // Get LHS pointer, load its value and cast it to the
2408   // computation type if necessary.
2409   if (!visit(LHS))
2410     return false;
2411   if (!this->emitLoad(*LT, E))
2412     return false;
2413   if (LT != LHSComputationT) {
2414     if (!this->emitCast(*LT, *LHSComputationT, E))
2415       return false;
2416   }
2417 
2418   // Get the RHS value on the stack.
2419   if (!this->emitGetLocal(*RT, TempOffset, E))
2420     return false;
2421 
2422   // Perform operation.
2423   switch (E->getOpcode()) {
2424   case BO_AddAssign:
2425     if (!this->emitAdd(*LHSComputationT, E))
2426       return false;
2427     break;
2428   case BO_SubAssign:
2429     if (!this->emitSub(*LHSComputationT, E))
2430       return false;
2431     break;
2432   case BO_MulAssign:
2433     if (!this->emitMul(*LHSComputationT, E))
2434       return false;
2435     break;
2436   case BO_DivAssign:
2437     if (!this->emitDiv(*LHSComputationT, E))
2438       return false;
2439     break;
2440   case BO_RemAssign:
2441     if (!this->emitRem(*LHSComputationT, E))
2442       return false;
2443     break;
2444   case BO_ShlAssign:
2445     if (!this->emitShl(*LHSComputationT, *RT, E))
2446       return false;
2447     break;
2448   case BO_ShrAssign:
2449     if (!this->emitShr(*LHSComputationT, *RT, E))
2450       return false;
2451     break;
2452   case BO_AndAssign:
2453     if (!this->emitBitAnd(*LHSComputationT, E))
2454       return false;
2455     break;
2456   case BO_XorAssign:
2457     if (!this->emitBitXor(*LHSComputationT, E))
2458       return false;
2459     break;
2460   case BO_OrAssign:
2461     if (!this->emitBitOr(*LHSComputationT, E))
2462       return false;
2463     break;
2464   default:
2465     llvm_unreachable("Unimplemented compound assign operator");
2466   }
2467 
2468   // And now cast from LHSComputationT to ResultT.
2469   if (ResultT != LHSComputationT) {
2470     if (!this->emitCast(*LHSComputationT, *ResultT, E))
2471       return false;
2472   }
2473 
2474   // And store the result in LHS.
2475   if (DiscardResult) {
2476     if (LHS->refersToBitField())
2477       return this->emitStoreBitFieldPop(*ResultT, E);
2478     return this->emitStorePop(*ResultT, E);
2479   }
2480   if (LHS->refersToBitField())
2481     return this->emitStoreBitField(*ResultT, E);
2482   return this->emitStore(*ResultT, E);
2483 }
2484 
2485 template <class Emitter>
2486 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
2487   LocalScope<Emitter> ES(this);
2488   const Expr *SubExpr = E->getSubExpr();
2489 
2490   return this->delegate(SubExpr) && ES.destroyLocals(E);
2491 }
2492 
2493 template <class Emitter>
2494 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
2495     const MaterializeTemporaryExpr *E) {
2496   const Expr *SubExpr = E->getSubExpr();
2497 
2498   if (Initializing) {
2499     // We already have a value, just initialize that.
2500     return this->delegate(SubExpr);
2501   }
2502   // If we don't end up using the materialized temporary anyway, don't
2503   // bother creating it.
2504   if (DiscardResult)
2505     return this->discard(SubExpr);
2506 
2507   // When we're initializing a global variable *or* the storage duration of
2508   // the temporary is explicitly static, create a global variable.
2509   std::optional<PrimType> SubExprT = classify(SubExpr);
2510   bool IsStatic = E->getStorageDuration() == SD_Static;
2511   if (IsStatic) {
2512     std::optional<unsigned> GlobalIndex = P.createGlobal(E);
2513     if (!GlobalIndex)
2514       return false;
2515 
2516     const LifetimeExtendedTemporaryDecl *TempDecl =
2517         E->getLifetimeExtendedTemporaryDecl();
2518     if (IsStatic)
2519       assert(TempDecl);
2520 
2521     if (SubExprT) {
2522       if (!this->visit(SubExpr))
2523         return false;
2524       if (IsStatic) {
2525         if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
2526           return false;
2527       } else {
2528         if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
2529           return false;
2530       }
2531       return this->emitGetPtrGlobal(*GlobalIndex, E);
2532     }
2533 
2534     if (!this->checkLiteralType(SubExpr))
2535       return false;
2536     // Non-primitive values.
2537     if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2538       return false;
2539     if (!this->visitInitializer(SubExpr))
2540       return false;
2541     if (IsStatic)
2542       return this->emitInitGlobalTempComp(TempDecl, E);
2543     return true;
2544   }
2545 
2546   // For everyhing else, use local variables.
2547   if (SubExprT) {
2548     unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true,
2549                                                  /*IsExtended=*/true);
2550     if (!this->visit(SubExpr))
2551       return false;
2552     if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
2553       return false;
2554     return this->emitGetPtrLocal(LocalIndex, E);
2555   } else {
2556 
2557     if (!this->checkLiteralType(SubExpr))
2558       return false;
2559 
2560     const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2561     if (std::optional<unsigned> LocalIndex =
2562             allocateLocal(Inner, E->getExtendingDecl())) {
2563       InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
2564       if (!this->emitGetPtrLocal(*LocalIndex, E))
2565         return false;
2566       return this->visitInitializer(SubExpr);
2567     }
2568   }
2569   return false;
2570 }
2571 
2572 template <class Emitter>
2573 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
2574     const CXXBindTemporaryExpr *E) {
2575   return this->delegate(E->getSubExpr());
2576 }
2577 
2578 template <class Emitter>
2579 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2580   const Expr *Init = E->getInitializer();
2581   if (DiscardResult)
2582     return this->discard(Init);
2583 
2584   if (Initializing) {
2585     // We already have a value, just initialize that.
2586     return this->visitInitializer(Init) && this->emitFinishInit(E);
2587   }
2588 
2589   std::optional<PrimType> T = classify(E->getType());
2590   if (E->isFileScope()) {
2591     // Avoid creating a variable if this is a primitive RValue anyway.
2592     if (T && !E->isLValue())
2593       return this->delegate(Init);
2594 
2595     if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
2596       if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2597         return false;
2598 
2599       if (T) {
2600         if (!this->visit(Init))
2601           return false;
2602         return this->emitInitGlobal(*T, *GlobalIndex, E);
2603       }
2604 
2605       return this->visitInitializer(Init) && this->emitFinishInit(E);
2606     }
2607 
2608     return false;
2609   }
2610 
2611   // Otherwise, use a local variable.
2612   if (T && !E->isLValue()) {
2613     // For primitive types, we just visit the initializer.
2614     return this->delegate(Init);
2615   } else {
2616     unsigned LocalIndex;
2617 
2618     if (T)
2619       LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
2620     else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
2621       LocalIndex = *MaybeIndex;
2622     else
2623       return false;
2624 
2625     if (!this->emitGetPtrLocal(LocalIndex, E))
2626       return false;
2627 
2628     if (T) {
2629       if (!this->visit(Init)) {
2630         return false;
2631       }
2632       return this->emitInit(*T, E);
2633     } else {
2634       if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
2635         return false;
2636     }
2637     return true;
2638   }
2639 
2640   return false;
2641 }
2642 
2643 template <class Emitter>
2644 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
2645   if (DiscardResult)
2646     return true;
2647   if (E->getType()->isBooleanType())
2648     return this->emitConstBool(E->getValue(), E);
2649   return this->emitConst(E->getValue(), E);
2650 }
2651 
2652 template <class Emitter>
2653 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
2654   if (DiscardResult)
2655     return true;
2656   return this->emitConst(E->getValue(), E);
2657 }
2658 
2659 template <class Emitter>
2660 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
2661   if (DiscardResult)
2662     return true;
2663 
2664   assert(Initializing);
2665   const Record *R = P.getOrCreateRecord(E->getLambdaClass());
2666 
2667   auto *CaptureInitIt = E->capture_init_begin();
2668   // Initialize all fields (which represent lambda captures) of the
2669   // record with their initializers.
2670   for (const Record::Field &F : R->fields()) {
2671     const Expr *Init = *CaptureInitIt;
2672     ++CaptureInitIt;
2673 
2674     if (!Init)
2675       continue;
2676 
2677     if (std::optional<PrimType> T = classify(Init)) {
2678       if (!this->visit(Init))
2679         return false;
2680 
2681       if (!this->emitInitField(*T, F.Offset, E))
2682         return false;
2683     } else {
2684       if (!this->emitGetPtrField(F.Offset, E))
2685         return false;
2686 
2687       if (!this->visitInitializer(Init))
2688         return false;
2689 
2690       if (!this->emitPopPtr(E))
2691         return false;
2692     }
2693   }
2694 
2695   return true;
2696 }
2697 
2698 template <class Emitter>
2699 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
2700   if (DiscardResult)
2701     return true;
2702 
2703   return this->delegate(E->getFunctionName());
2704 }
2705 
2706 template <class Emitter>
2707 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
2708   if (E->getSubExpr() && !this->discard(E->getSubExpr()))
2709     return false;
2710 
2711   return this->emitInvalid(E);
2712 }
2713 
2714 template <class Emitter>
2715 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
2716     const CXXReinterpretCastExpr *E) {
2717   const Expr *SubExpr = E->getSubExpr();
2718 
2719   std::optional<PrimType> FromT = classify(SubExpr);
2720   std::optional<PrimType> ToT = classify(E);
2721 
2722   if (!FromT || !ToT)
2723     return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E);
2724 
2725   if (FromT == PT_Ptr || ToT == PT_Ptr) {
2726     // Both types could be PT_Ptr because their expressions are glvalues.
2727     std::optional<PrimType> PointeeFromT;
2728     if (SubExpr->getType()->isPointerOrReferenceType())
2729       PointeeFromT = classify(SubExpr->getType()->getPointeeType());
2730     else
2731       PointeeFromT = classify(SubExpr->getType());
2732 
2733     std::optional<PrimType> PointeeToT;
2734     if (E->getType()->isPointerOrReferenceType())
2735       PointeeToT = classify(E->getType()->getPointeeType());
2736     else
2737       PointeeToT = classify(E->getType());
2738 
2739     bool Fatal = true;
2740     if (PointeeToT && PointeeFromT) {
2741       if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT))
2742         Fatal = false;
2743     }
2744 
2745     if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2746       return false;
2747 
2748     if (E->getCastKind() == CK_LValueBitCast)
2749       return this->delegate(SubExpr);
2750     return this->VisitCastExpr(E);
2751   }
2752 
2753   // Try to actually do the cast.
2754   bool Fatal = (ToT != FromT);
2755   if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2756     return false;
2757 
2758   return this->VisitCastExpr(E);
2759 }
2760 
2761 template <class Emitter>
2762 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
2763   assert(E->getType()->isBooleanType());
2764 
2765   if (DiscardResult)
2766     return true;
2767   return this->emitConstBool(E->getValue(), E);
2768 }
2769 
2770 template <class Emitter>
2771 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
2772   QualType T = E->getType();
2773   assert(!classify(T));
2774 
2775   if (T->isRecordType()) {
2776     const CXXConstructorDecl *Ctor = E->getConstructor();
2777 
2778     // Trivial copy/move constructor. Avoid copy.
2779     if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
2780         Ctor->isTrivial() &&
2781         E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
2782                                         T->getAsCXXRecordDecl()))
2783       return this->visitInitializer(E->getArg(0));
2784 
2785     // If we're discarding a construct expression, we still need
2786     // to allocate a variable and call the constructor and destructor.
2787     if (DiscardResult) {
2788       if (Ctor->isTrivial())
2789         return true;
2790       assert(!Initializing);
2791       std::optional<unsigned> LocalIndex = allocateLocal(E);
2792 
2793       if (!LocalIndex)
2794         return false;
2795 
2796       if (!this->emitGetPtrLocal(*LocalIndex, E))
2797         return false;
2798     }
2799 
2800     // Zero initialization.
2801     if (E->requiresZeroInitialization()) {
2802       const Record *R = getRecord(E->getType());
2803 
2804       if (!this->visitZeroRecordInitializer(R, E))
2805         return false;
2806 
2807       // If the constructor is trivial anyway, we're done.
2808       if (Ctor->isTrivial())
2809         return true;
2810     }
2811 
2812     const Function *Func = getFunction(Ctor);
2813 
2814     if (!Func)
2815       return false;
2816 
2817     assert(Func->hasThisPointer());
2818     assert(!Func->hasRVO());
2819 
2820     //  The This pointer is already on the stack because this is an initializer,
2821     //  but we need to dup() so the call() below has its own copy.
2822     if (!this->emitDupPtr(E))
2823       return false;
2824 
2825     // Constructor arguments.
2826     for (const auto *Arg : E->arguments()) {
2827       if (!this->visit(Arg))
2828         return false;
2829     }
2830 
2831     if (Func->isVariadic()) {
2832       uint32_t VarArgSize = 0;
2833       unsigned NumParams = Func->getNumWrittenParams();
2834       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
2835         VarArgSize +=
2836             align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
2837       }
2838       if (!this->emitCallVar(Func, VarArgSize, E))
2839         return false;
2840     } else {
2841       if (!this->emitCall(Func, 0, E)) {
2842         // When discarding, we don't need the result anyway, so clean up
2843         // the instance dup we did earlier in case surrounding code wants
2844         // to keep evaluating.
2845         if (DiscardResult)
2846           (void)this->emitPopPtr(E);
2847         return false;
2848       }
2849     }
2850 
2851     if (DiscardResult)
2852       return this->emitPopPtr(E);
2853     return this->emitFinishInit(E);
2854   }
2855 
2856   if (T->isArrayType()) {
2857     const ConstantArrayType *CAT =
2858         Ctx.getASTContext().getAsConstantArrayType(E->getType());
2859     if (!CAT)
2860       return false;
2861 
2862     size_t NumElems = CAT->getZExtSize();
2863     const Function *Func = getFunction(E->getConstructor());
2864     if (!Func || !Func->isConstexpr())
2865       return false;
2866 
2867     // FIXME(perf): We're calling the constructor once per array element here,
2868     //   in the old intepreter we had a special-case for trivial constructors.
2869     for (size_t I = 0; I != NumElems; ++I) {
2870       if (!this->emitConstUint64(I, E))
2871         return false;
2872       if (!this->emitArrayElemPtrUint64(E))
2873         return false;
2874 
2875       // Constructor arguments.
2876       for (const auto *Arg : E->arguments()) {
2877         if (!this->visit(Arg))
2878           return false;
2879       }
2880 
2881       if (!this->emitCall(Func, 0, E))
2882         return false;
2883     }
2884     return true;
2885   }
2886 
2887   return false;
2888 }
2889 
2890 template <class Emitter>
2891 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
2892   if (DiscardResult)
2893     return true;
2894 
2895   const APValue Val =
2896       E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
2897 
2898   // Things like __builtin_LINE().
2899   if (E->getType()->isIntegerType()) {
2900     assert(Val.isInt());
2901     const APSInt &I = Val.getInt();
2902     return this->emitConst(I, E);
2903   }
2904   // Otherwise, the APValue is an LValue, with only one element.
2905   // Theoretically, we don't need the APValue at all of course.
2906   assert(E->getType()->isPointerType());
2907   assert(Val.isLValue());
2908   const APValue::LValueBase &Base = Val.getLValueBase();
2909   if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
2910     return this->visit(LValueExpr);
2911 
2912   // Otherwise, we have a decl (which is the case for
2913   // __builtin_source_location).
2914   assert(Base.is<const ValueDecl *>());
2915   assert(Val.getLValuePath().size() == 0);
2916   const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
2917   assert(BaseDecl);
2918 
2919   auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
2920 
2921   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
2922   if (!GlobalIndex)
2923     return false;
2924 
2925   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2926     return false;
2927 
2928   const Record *R = getRecord(E->getType());
2929   const APValue &V = UGCD->getValue();
2930   for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
2931     const Record::Field *F = R->getField(I);
2932     const APValue &FieldValue = V.getStructField(I);
2933 
2934     PrimType FieldT = classifyPrim(F->Decl->getType());
2935 
2936     if (!this->visitAPValue(FieldValue, FieldT, E))
2937       return false;
2938     if (!this->emitInitField(FieldT, F->Offset, E))
2939       return false;
2940   }
2941 
2942   // Leave the pointer to the global on the stack.
2943   return true;
2944 }
2945 
2946 template <class Emitter>
2947 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
2948   unsigned N = E->getNumComponents();
2949   if (N == 0)
2950     return false;
2951 
2952   for (unsigned I = 0; I != N; ++I) {
2953     const OffsetOfNode &Node = E->getComponent(I);
2954     if (Node.getKind() == OffsetOfNode::Array) {
2955       const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
2956       PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
2957 
2958       if (DiscardResult) {
2959         if (!this->discard(ArrayIndexExpr))
2960           return false;
2961         continue;
2962       }
2963 
2964       if (!this->visit(ArrayIndexExpr))
2965         return false;
2966       // Cast to Sint64.
2967       if (IndexT != PT_Sint64) {
2968         if (!this->emitCast(IndexT, PT_Sint64, E))
2969           return false;
2970       }
2971     }
2972   }
2973 
2974   if (DiscardResult)
2975     return true;
2976 
2977   PrimType T = classifyPrim(E->getType());
2978   return this->emitOffsetOf(T, E, E);
2979 }
2980 
2981 template <class Emitter>
2982 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
2983     const CXXScalarValueInitExpr *E) {
2984   QualType Ty = E->getType();
2985 
2986   if (DiscardResult || Ty->isVoidType())
2987     return true;
2988 
2989   if (std::optional<PrimType> T = classify(Ty))
2990     return this->visitZeroInitializer(*T, Ty, E);
2991 
2992   if (const auto *CT = Ty->getAs<ComplexType>()) {
2993     if (!Initializing) {
2994       std::optional<unsigned> LocalIndex = allocateLocal(E);
2995       if (!LocalIndex)
2996         return false;
2997       if (!this->emitGetPtrLocal(*LocalIndex, E))
2998         return false;
2999     }
3000 
3001     // Initialize both fields to 0.
3002     QualType ElemQT = CT->getElementType();
3003     PrimType ElemT = classifyPrim(ElemQT);
3004 
3005     for (unsigned I = 0; I != 2; ++I) {
3006       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3007         return false;
3008       if (!this->emitInitElem(ElemT, I, E))
3009         return false;
3010     }
3011     return true;
3012   }
3013 
3014   if (const auto *VT = Ty->getAs<VectorType>()) {
3015     // FIXME: Code duplication with the _Complex case above.
3016     if (!Initializing) {
3017       std::optional<unsigned> LocalIndex = allocateLocal(E);
3018       if (!LocalIndex)
3019         return false;
3020       if (!this->emitGetPtrLocal(*LocalIndex, E))
3021         return false;
3022     }
3023 
3024     // Initialize all fields to 0.
3025     QualType ElemQT = VT->getElementType();
3026     PrimType ElemT = classifyPrim(ElemQT);
3027 
3028     for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
3029       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3030         return false;
3031       if (!this->emitInitElem(ElemT, I, E))
3032         return false;
3033     }
3034     return true;
3035   }
3036 
3037   return false;
3038 }
3039 
3040 template <class Emitter>
3041 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
3042   return this->emitConst(E->getPackLength(), E);
3043 }
3044 
3045 template <class Emitter>
3046 bool Compiler<Emitter>::VisitGenericSelectionExpr(
3047     const GenericSelectionExpr *E) {
3048   return this->delegate(E->getResultExpr());
3049 }
3050 
3051 template <class Emitter>
3052 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
3053   return this->delegate(E->getChosenSubExpr());
3054 }
3055 
3056 template <class Emitter>
3057 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
3058   if (DiscardResult)
3059     return true;
3060 
3061   return this->emitConst(E->getValue(), E);
3062 }
3063 
3064 template <class Emitter>
3065 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
3066     const CXXInheritedCtorInitExpr *E) {
3067   const CXXConstructorDecl *Ctor = E->getConstructor();
3068   assert(!Ctor->isTrivial() &&
3069          "Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
3070   const Function *F = this->getFunction(Ctor);
3071   assert(F);
3072   assert(!F->hasRVO());
3073   assert(F->hasThisPointer());
3074 
3075   if (!this->emitDupPtr(SourceInfo{}))
3076     return false;
3077 
3078   // Forward all arguments of the current function (which should be a
3079   // constructor itself) to the inherited ctor.
3080   // This is necessary because the calling code has pushed the pointer
3081   // of the correct base for  us already, but the arguments need
3082   // to come after.
3083   unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
3084   for (const ParmVarDecl *PD : Ctor->parameters()) {
3085     PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
3086 
3087     if (!this->emitGetParam(PT, Offset, E))
3088       return false;
3089     Offset += align(primSize(PT));
3090   }
3091 
3092   return this->emitCall(F, 0, E);
3093 }
3094 
3095 template <class Emitter>
3096 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
3097   assert(classifyPrim(E->getType()) == PT_Ptr);
3098   const Expr *Init = E->getInitializer();
3099   QualType ElementType = E->getAllocatedType();
3100   std::optional<PrimType> ElemT = classify(ElementType);
3101   unsigned PlacementArgs = E->getNumPlacementArgs();
3102   const FunctionDecl *OperatorNew = E->getOperatorNew();
3103   const Expr *PlacementDest = nullptr;
3104   bool IsNoThrow = false;
3105 
3106   if (PlacementArgs != 0) {
3107     // FIXME: There is no restriction on this, but it's not clear that any
3108     // other form makes any sense. We get here for cases such as:
3109     //
3110     //   new (std::align_val_t{N}) X(int)
3111     //
3112     // (which should presumably be valid only if N is a multiple of
3113     // alignof(int), and in any case can't be deallocated unless N is
3114     // alignof(X) and X has new-extended alignment).
3115     if (PlacementArgs == 1) {
3116       const Expr *Arg1 = E->getPlacementArg(0);
3117       if (Arg1->getType()->isNothrowT()) {
3118         if (!this->discard(Arg1))
3119           return false;
3120         IsNoThrow = true;
3121       } else {
3122         // Invalid unless we have C++26 or are in a std:: function.
3123         if (!this->emitInvalidNewDeleteExpr(E, E))
3124           return false;
3125 
3126         // If we have a placement-new destination, we'll later use that instead
3127         // of allocating.
3128         if (OperatorNew->isReservedGlobalPlacementOperator())
3129           PlacementDest = Arg1;
3130       }
3131     } else {
3132       // Always invalid.
3133       return this->emitInvalid(E);
3134     }
3135   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction())
3136     return this->emitInvalidNewDeleteExpr(E, E);
3137 
3138   const Descriptor *Desc;
3139   if (!PlacementDest) {
3140     if (ElemT) {
3141       if (E->isArray())
3142         Desc = nullptr; // We're not going to use it in this case.
3143       else
3144         Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
3145                                   /*IsConst=*/false, /*IsTemporary=*/false,
3146                                   /*IsMutable=*/false);
3147     } else {
3148       Desc = P.createDescriptor(
3149           E, ElementType.getTypePtr(),
3150           E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
3151           /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
3152     }
3153   }
3154 
3155   if (E->isArray()) {
3156     std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
3157     if (!ArraySizeExpr)
3158       return false;
3159 
3160     const Expr *Stripped = *ArraySizeExpr;
3161     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
3162          Stripped = ICE->getSubExpr())
3163       if (ICE->getCastKind() != CK_NoOp &&
3164           ICE->getCastKind() != CK_IntegralCast)
3165         break;
3166 
3167     PrimType SizeT = classifyPrim(Stripped->getType());
3168 
3169     if (PlacementDest) {
3170       if (!this->visit(PlacementDest))
3171         return false;
3172       if (!this->visit(Stripped))
3173         return false;
3174       if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E))
3175         return false;
3176     } else {
3177       if (!this->visit(Stripped))
3178         return false;
3179 
3180       if (ElemT) {
3181         // N primitive elements.
3182         if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
3183           return false;
3184       } else {
3185         // N Composite elements.
3186         if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
3187           return false;
3188       }
3189     }
3190 
3191     if (Init && !this->visitInitializer(Init))
3192       return false;
3193 
3194   } else {
3195     if (PlacementDest) {
3196       if (!this->visit(PlacementDest))
3197         return false;
3198       if (!this->emitCheckNewTypeMismatch(E, E))
3199         return false;
3200     } else {
3201       // Allocate just one element.
3202       if (!this->emitAlloc(Desc, E))
3203         return false;
3204     }
3205 
3206     if (Init) {
3207       if (ElemT) {
3208         if (!this->visit(Init))
3209           return false;
3210 
3211         if (!this->emitInit(*ElemT, E))
3212           return false;
3213       } else {
3214         // Composite.
3215         if (!this->visitInitializer(Init))
3216           return false;
3217       }
3218     }
3219   }
3220 
3221   if (DiscardResult)
3222     return this->emitPopPtr(E);
3223 
3224   return true;
3225 }
3226 
3227 template <class Emitter>
3228 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
3229   const Expr *Arg = E->getArgument();
3230 
3231   const FunctionDecl *OperatorDelete = E->getOperatorDelete();
3232 
3233   if (!OperatorDelete->isReplaceableGlobalAllocationFunction())
3234     return this->emitInvalidNewDeleteExpr(E, E);
3235 
3236   // Arg must be an lvalue.
3237   if (!this->visit(Arg))
3238     return false;
3239 
3240   return this->emitFree(E->isArrayForm(), E);
3241 }
3242 
3243 template <class Emitter>
3244 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
3245   const Function *Func = nullptr;
3246   if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E))
3247     Func = F;
3248 
3249   if (!Func)
3250     return false;
3251   return this->emitGetFnPtr(Func, E);
3252 }
3253 
3254 template <class Emitter>
3255 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
3256   assert(Ctx.getLangOpts().CPlusPlus);
3257   return this->emitConstBool(E->getValue(), E);
3258 }
3259 
3260 template <class Emitter>
3261 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
3262   if (DiscardResult)
3263     return true;
3264   assert(!Initializing);
3265 
3266   const MSGuidDecl *GuidDecl = E->getGuidDecl();
3267   const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
3268   assert(RD);
3269   // If the definiton of the result type is incomplete, just return a dummy.
3270   // If (and when) that is read from, we will fail, but not now.
3271   if (!RD->isCompleteDefinition()) {
3272     if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl))
3273       return this->emitGetPtrGlobal(*I, E);
3274     return false;
3275   }
3276 
3277   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
3278   if (!GlobalIndex)
3279     return false;
3280   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3281     return false;
3282 
3283   assert(this->getRecord(E->getType()));
3284 
3285   const APValue &V = GuidDecl->getAsAPValue();
3286   if (V.getKind() == APValue::None)
3287     return true;
3288 
3289   assert(V.isStruct());
3290   assert(V.getStructNumBases() == 0);
3291   if (!this->visitAPValueInitializer(V, E))
3292     return false;
3293 
3294   return this->emitFinishInit(E);
3295 }
3296 
3297 template <class Emitter>
3298 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
3299   assert(classifyPrim(E->getType()) == PT_Bool);
3300   if (DiscardResult)
3301     return true;
3302   return this->emitConstBool(E->isSatisfied(), E);
3303 }
3304 
3305 template <class Emitter>
3306 bool Compiler<Emitter>::VisitConceptSpecializationExpr(
3307     const ConceptSpecializationExpr *E) {
3308   assert(classifyPrim(E->getType()) == PT_Bool);
3309   if (DiscardResult)
3310     return true;
3311   return this->emitConstBool(E->isSatisfied(), E);
3312 }
3313 
3314 template <class Emitter>
3315 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
3316     const CXXRewrittenBinaryOperator *E) {
3317   return this->delegate(E->getSemanticForm());
3318 }
3319 
3320 template <class Emitter>
3321 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
3322 
3323   for (const Expr *SemE : E->semantics()) {
3324     if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
3325       if (SemE == E->getResultExpr())
3326         return false;
3327 
3328       if (OVE->isUnique())
3329         continue;
3330 
3331       if (!this->discard(OVE))
3332         return false;
3333     } else if (SemE == E->getResultExpr()) {
3334       if (!this->delegate(SemE))
3335         return false;
3336     } else {
3337       if (!this->discard(SemE))
3338         return false;
3339     }
3340   }
3341   return true;
3342 }
3343 
3344 template <class Emitter>
3345 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
3346   return this->delegate(E->getSelectedExpr());
3347 }
3348 
3349 template <class Emitter>
3350 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
3351   return this->emitError(E);
3352 }
3353 
3354 template <class Emitter>
3355 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
3356   assert(E->getType()->isVoidPointerType());
3357 
3358   unsigned Offset = allocateLocalPrimitive(
3359       E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3360 
3361   return this->emitGetLocal(PT_Ptr, Offset, E);
3362 }
3363 
3364 template <class Emitter>
3365 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
3366   assert(Initializing);
3367   const auto *VT = E->getType()->castAs<VectorType>();
3368   QualType ElemType = VT->getElementType();
3369   PrimType ElemT = classifyPrim(ElemType);
3370   const Expr *Src = E->getSrcExpr();
3371   PrimType SrcElemT =
3372       classifyPrim(Src->getType()->castAs<VectorType>()->getElementType());
3373 
3374   unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
3375   if (!this->visit(Src))
3376     return false;
3377   if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
3378     return false;
3379 
3380   for (unsigned I = 0; I != VT->getNumElements(); ++I) {
3381     if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
3382       return false;
3383     if (!this->emitArrayElemPop(SrcElemT, I, E))
3384       return false;
3385     if (SrcElemT != ElemT) {
3386       if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
3387         return false;
3388     }
3389     if (!this->emitInitElem(ElemT, I, E))
3390       return false;
3391   }
3392 
3393   return true;
3394 }
3395 
3396 template <class Emitter>
3397 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
3398   assert(Initializing);
3399   assert(E->getNumSubExprs() > 2);
3400 
3401   const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
3402   const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
3403   PrimType ElemT = classifyPrim(VT->getElementType());
3404   unsigned NumInputElems = VT->getNumElements();
3405   unsigned NumOutputElems = E->getNumSubExprs() - 2;
3406   assert(NumOutputElems > 0);
3407 
3408   // Save both input vectors to a local variable.
3409   unsigned VectorOffsets[2];
3410   for (unsigned I = 0; I != 2; ++I) {
3411     VectorOffsets[I] = this->allocateLocalPrimitive(
3412         Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3413     if (!this->visit(Vecs[I]))
3414       return false;
3415     if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
3416       return false;
3417   }
3418   for (unsigned I = 0; I != NumOutputElems; ++I) {
3419     APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
3420     if (ShuffleIndex == -1)
3421       return this->emitInvalid(E); // FIXME: Better diagnostic.
3422 
3423     assert(ShuffleIndex < (NumInputElems * 2));
3424     if (!this->emitGetLocal(PT_Ptr,
3425                             VectorOffsets[ShuffleIndex >= NumInputElems], E))
3426       return false;
3427     unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
3428     if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
3429       return false;
3430 
3431     if (!this->emitInitElem(ElemT, I, E))
3432       return false;
3433   }
3434 
3435   return true;
3436 }
3437 
3438 template <class Emitter>
3439 bool Compiler<Emitter>::VisitExtVectorElementExpr(
3440     const ExtVectorElementExpr *E) {
3441   const Expr *Base = E->getBase();
3442   assert(
3443       Base->getType()->isVectorType() ||
3444       Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
3445 
3446   SmallVector<uint32_t, 4> Indices;
3447   E->getEncodedElementAccess(Indices);
3448 
3449   if (Indices.size() == 1) {
3450     if (!this->visit(Base))
3451       return false;
3452 
3453     if (E->isGLValue()) {
3454       if (!this->emitConstUint32(Indices[0], E))
3455         return false;
3456       return this->emitArrayElemPtrPop(PT_Uint32, E);
3457     }
3458     // Else, also load the value.
3459     return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
3460   }
3461 
3462   // Create a local variable for the base.
3463   unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
3464                                                /*IsExtended=*/false);
3465   if (!this->visit(Base))
3466     return false;
3467   if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
3468     return false;
3469 
3470   // Now the vector variable for the return value.
3471   if (!Initializing) {
3472     std::optional<unsigned> ResultIndex;
3473     ResultIndex = allocateLocal(E);
3474     if (!ResultIndex)
3475       return false;
3476     if (!this->emitGetPtrLocal(*ResultIndex, E))
3477       return false;
3478   }
3479 
3480   assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
3481 
3482   PrimType ElemT =
3483       classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
3484   uint32_t DstIndex = 0;
3485   for (uint32_t I : Indices) {
3486     if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
3487       return false;
3488     if (!this->emitArrayElemPop(ElemT, I, E))
3489       return false;
3490     if (!this->emitInitElem(ElemT, DstIndex, E))
3491       return false;
3492     ++DstIndex;
3493   }
3494 
3495   // Leave the result pointer on the stack.
3496   assert(!DiscardResult);
3497   return true;
3498 }
3499 
3500 template <class Emitter>
3501 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
3502   const Expr *SubExpr = E->getSubExpr();
3503   if (!E->isExpressibleAsConstantInitializer())
3504     return this->discard(SubExpr) && this->emitInvalid(E);
3505 
3506   assert(classifyPrim(E) == PT_Ptr);
3507   if (std::optional<unsigned> I = P.getOrCreateDummy(E))
3508     return this->emitGetPtrGlobal(*I, E);
3509 
3510   return false;
3511 }
3512 
3513 template <class Emitter>
3514 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
3515     const CXXStdInitializerListExpr *E) {
3516   const Expr *SubExpr = E->getSubExpr();
3517   const ConstantArrayType *ArrayType =
3518       Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
3519   const Record *R = getRecord(E->getType());
3520   assert(Initializing);
3521   assert(SubExpr->isGLValue());
3522 
3523   if (!this->visit(SubExpr))
3524     return false;
3525   if (!this->emitConstUint8(0, E))
3526     return false;
3527   if (!this->emitArrayElemPtrPopUint8(E))
3528     return false;
3529   if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
3530     return false;
3531 
3532   PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
3533   if (isIntegralType(SecondFieldT)) {
3534     if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
3535                          SecondFieldT, E))
3536       return false;
3537     return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
3538   }
3539   assert(SecondFieldT == PT_Ptr);
3540 
3541   if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
3542     return false;
3543   if (!this->emitExpandPtr(E))
3544     return false;
3545   if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
3546     return false;
3547   if (!this->emitArrayElemPtrPop(PT_Uint64, E))
3548     return false;
3549   return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
3550 }
3551 
3552 template <class Emitter>
3553 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
3554   BlockScope<Emitter> BS(this);
3555   StmtExprScope<Emitter> SS(this);
3556 
3557   const CompoundStmt *CS = E->getSubStmt();
3558   const Stmt *Result = CS->getStmtExprResult();
3559   for (const Stmt *S : CS->body()) {
3560     if (S != Result) {
3561       if (!this->visitStmt(S))
3562         return false;
3563       continue;
3564     }
3565 
3566     assert(S == Result);
3567     if (const Expr *ResultExpr = dyn_cast<Expr>(S))
3568       return this->delegate(ResultExpr);
3569     return this->emitUnsupported(E);
3570   }
3571 
3572   return BS.destroyLocals();
3573 }
3574 
3575 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
3576   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
3577                              /*NewInitializing=*/false);
3578   return this->Visit(E);
3579 }
3580 
3581 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
3582   // We're basically doing:
3583   // OptionScope<Emitter> Scope(this, DicardResult, Initializing);
3584   // but that's unnecessary of course.
3585   return this->Visit(E);
3586 }
3587 
3588 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
3589   if (E->getType().isNull())
3590     return false;
3591 
3592   if (E->getType()->isVoidType())
3593     return this->discard(E);
3594 
3595   // Create local variable to hold the return value.
3596   if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
3597       !classify(E->getType())) {
3598     std::optional<unsigned> LocalIndex = allocateLocal(E);
3599     if (!LocalIndex)
3600       return false;
3601 
3602     if (!this->emitGetPtrLocal(*LocalIndex, E))
3603       return false;
3604     return this->visitInitializer(E);
3605   }
3606 
3607   //  Otherwise,we have a primitive return value, produce the value directly
3608   //  and push it on the stack.
3609   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3610                              /*NewInitializing=*/false);
3611   return this->Visit(E);
3612 }
3613 
3614 template <class Emitter>
3615 bool Compiler<Emitter>::visitInitializer(const Expr *E) {
3616   assert(!classify(E->getType()));
3617 
3618   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3619                              /*NewInitializing=*/true);
3620   return this->Visit(E);
3621 }
3622 
3623 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
3624   std::optional<PrimType> T = classify(E->getType());
3625   if (!T) {
3626     // Convert complex values to bool.
3627     if (E->getType()->isAnyComplexType()) {
3628       if (!this->visit(E))
3629         return false;
3630       return this->emitComplexBoolCast(E);
3631     }
3632     return false;
3633   }
3634 
3635   if (!this->visit(E))
3636     return false;
3637 
3638   if (T == PT_Bool)
3639     return true;
3640 
3641   // Convert pointers to bool.
3642   if (T == PT_Ptr || T == PT_FnPtr) {
3643     if (!this->emitNull(*T, nullptr, E))
3644       return false;
3645     return this->emitNE(*T, E);
3646   }
3647 
3648   // Or Floats.
3649   if (T == PT_Float)
3650     return this->emitCastFloatingIntegralBool(getFPOptions(E), E);
3651 
3652   // Or anything else we can.
3653   return this->emitCast(*T, PT_Bool, E);
3654 }
3655 
3656 template <class Emitter>
3657 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
3658                                              const Expr *E) {
3659   switch (T) {
3660   case PT_Bool:
3661     return this->emitZeroBool(E);
3662   case PT_Sint8:
3663     return this->emitZeroSint8(E);
3664   case PT_Uint8:
3665     return this->emitZeroUint8(E);
3666   case PT_Sint16:
3667     return this->emitZeroSint16(E);
3668   case PT_Uint16:
3669     return this->emitZeroUint16(E);
3670   case PT_Sint32:
3671     return this->emitZeroSint32(E);
3672   case PT_Uint32:
3673     return this->emitZeroUint32(E);
3674   case PT_Sint64:
3675     return this->emitZeroSint64(E);
3676   case PT_Uint64:
3677     return this->emitZeroUint64(E);
3678   case PT_IntAP:
3679     return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
3680   case PT_IntAPS:
3681     return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
3682   case PT_Ptr:
3683     return this->emitNullPtr(nullptr, E);
3684   case PT_FnPtr:
3685     return this->emitNullFnPtr(nullptr, E);
3686   case PT_MemberPtr:
3687     return this->emitNullMemberPtr(nullptr, E);
3688   case PT_Float: {
3689     return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
3690   }
3691   }
3692   llvm_unreachable("unknown primitive type");
3693 }
3694 
3695 template <class Emitter>
3696 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
3697                                                    const Expr *E) {
3698   assert(E);
3699   assert(R);
3700   // Fields
3701   for (const Record::Field &Field : R->fields()) {
3702     if (Field.Decl->isUnnamedBitField())
3703       continue;
3704 
3705     const Descriptor *D = Field.Desc;
3706     if (D->isPrimitive()) {
3707       QualType QT = D->getType();
3708       PrimType T = classifyPrim(D->getType());
3709       if (!this->visitZeroInitializer(T, QT, E))
3710         return false;
3711       if (!this->emitInitField(T, Field.Offset, E))
3712         return false;
3713       if (R->isUnion())
3714         break;
3715       continue;
3716     }
3717 
3718     if (!this->emitGetPtrField(Field.Offset, E))
3719       return false;
3720 
3721     if (D->isPrimitiveArray()) {
3722       QualType ET = D->getElemQualType();
3723       PrimType T = classifyPrim(ET);
3724       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3725         if (!this->visitZeroInitializer(T, ET, E))
3726           return false;
3727         if (!this->emitInitElem(T, I, E))
3728           return false;
3729       }
3730     } else if (D->isCompositeArray()) {
3731       const Record *ElemRecord = D->ElemDesc->ElemRecord;
3732       assert(D->ElemDesc->ElemRecord);
3733       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3734         if (!this->emitConstUint32(I, E))
3735           return false;
3736         if (!this->emitArrayElemPtr(PT_Uint32, E))
3737           return false;
3738         if (!this->visitZeroRecordInitializer(ElemRecord, E))
3739           return false;
3740         if (!this->emitPopPtr(E))
3741           return false;
3742       }
3743     } else if (D->isRecord()) {
3744       if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
3745         return false;
3746     } else {
3747       assert(false);
3748     }
3749 
3750     if (!this->emitFinishInitPop(E))
3751       return false;
3752 
3753     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3754     // object's first non-static named data member is zero-initialized
3755     if (R->isUnion())
3756       break;
3757   }
3758 
3759   for (const Record::Base &B : R->bases()) {
3760     if (!this->emitGetPtrBase(B.Offset, E))
3761       return false;
3762     if (!this->visitZeroRecordInitializer(B.R, E))
3763       return false;
3764     if (!this->emitFinishInitPop(E))
3765       return false;
3766   }
3767 
3768   // FIXME: Virtual bases.
3769 
3770   return true;
3771 }
3772 
3773 template <class Emitter>
3774 template <typename T>
3775 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
3776   switch (Ty) {
3777   case PT_Sint8:
3778     return this->emitConstSint8(Value, E);
3779   case PT_Uint8:
3780     return this->emitConstUint8(Value, E);
3781   case PT_Sint16:
3782     return this->emitConstSint16(Value, E);
3783   case PT_Uint16:
3784     return this->emitConstUint16(Value, E);
3785   case PT_Sint32:
3786     return this->emitConstSint32(Value, E);
3787   case PT_Uint32:
3788     return this->emitConstUint32(Value, E);
3789   case PT_Sint64:
3790     return this->emitConstSint64(Value, E);
3791   case PT_Uint64:
3792     return this->emitConstUint64(Value, E);
3793   case PT_Bool:
3794     return this->emitConstBool(Value, E);
3795   case PT_Ptr:
3796   case PT_FnPtr:
3797   case PT_MemberPtr:
3798   case PT_Float:
3799   case PT_IntAP:
3800   case PT_IntAPS:
3801     llvm_unreachable("Invalid integral type");
3802     break;
3803   }
3804   llvm_unreachable("unknown primitive type");
3805 }
3806 
3807 template <class Emitter>
3808 template <typename T>
3809 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
3810   return this->emitConst(Value, classifyPrim(E->getType()), E);
3811 }
3812 
3813 template <class Emitter>
3814 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
3815                                   const Expr *E) {
3816   if (Ty == PT_IntAPS)
3817     return this->emitConstIntAPS(Value, E);
3818   if (Ty == PT_IntAP)
3819     return this->emitConstIntAP(Value, E);
3820 
3821   if (Value.isSigned())
3822     return this->emitConst(Value.getSExtValue(), Ty, E);
3823   return this->emitConst(Value.getZExtValue(), Ty, E);
3824 }
3825 
3826 template <class Emitter>
3827 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
3828   return this->emitConst(Value, classifyPrim(E->getType()), E);
3829 }
3830 
3831 template <class Emitter>
3832 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
3833                                                    bool IsConst,
3834                                                    bool IsExtended) {
3835   // Make sure we don't accidentally register the same decl twice.
3836   if (const auto *VD =
3837           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3838     assert(!P.getGlobal(VD));
3839     assert(!Locals.contains(VD));
3840     (void)VD;
3841   }
3842 
3843   // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
3844   //   (int){12} in C. Consider using Expr::isTemporaryObject() instead
3845   //   or isa<MaterializeTemporaryExpr>().
3846   Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
3847                                      Src.is<const Expr *>());
3848   Scope::Local Local = this->createLocal(D);
3849   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
3850     Locals.insert({VD, Local});
3851   VarScope->add(Local, IsExtended);
3852   return Local.Offset;
3853 }
3854 
3855 template <class Emitter>
3856 std::optional<unsigned>
3857 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) {
3858   // Make sure we don't accidentally register the same decl twice.
3859   if ([[maybe_unused]] const auto *VD =
3860           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3861     assert(!P.getGlobal(VD));
3862     assert(!Locals.contains(VD));
3863   }
3864 
3865   QualType Ty;
3866   const ValueDecl *Key = nullptr;
3867   const Expr *Init = nullptr;
3868   bool IsTemporary = false;
3869   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3870     Key = VD;
3871     Ty = VD->getType();
3872 
3873     if (const auto *VarD = dyn_cast<VarDecl>(VD))
3874       Init = VarD->getInit();
3875   }
3876   if (auto *E = Src.dyn_cast<const Expr *>()) {
3877     IsTemporary = true;
3878     Ty = E->getType();
3879   }
3880 
3881   Descriptor *D = P.createDescriptor(
3882       Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
3883       IsTemporary, /*IsMutable=*/false, Init);
3884   if (!D)
3885     return std::nullopt;
3886 
3887   Scope::Local Local = this->createLocal(D);
3888   if (Key)
3889     Locals.insert({Key, Local});
3890   if (ExtendingDecl)
3891     VarScope->addExtended(Local, ExtendingDecl);
3892   else
3893     VarScope->add(Local, false);
3894   return Local.Offset;
3895 }
3896 
3897 template <class Emitter>
3898 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) {
3899   QualType Ty = E->getType();
3900   assert(!Ty->isRecordType());
3901 
3902   Descriptor *D = P.createDescriptor(
3903       E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
3904       /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
3905   assert(D);
3906 
3907   Scope::Local Local = this->createLocal(D);
3908   VariableScope<Emitter> *S = VarScope;
3909   assert(S);
3910   // Attach to topmost scope.
3911   while (S->getParent())
3912     S = S->getParent();
3913   assert(S && !S->getParent());
3914   S->addLocal(Local);
3915   return Local.Offset;
3916 }
3917 
3918 template <class Emitter>
3919 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
3920   if (const PointerType *PT = dyn_cast<PointerType>(Ty))
3921     return PT->getPointeeType()->getAs<RecordType>();
3922   return Ty->getAs<RecordType>();
3923 }
3924 
3925 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
3926   if (const auto *RecordTy = getRecordTy(Ty))
3927     return getRecord(RecordTy->getDecl());
3928   return nullptr;
3929 }
3930 
3931 template <class Emitter>
3932 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
3933   return P.getOrCreateRecord(RD);
3934 }
3935 
3936 template <class Emitter>
3937 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
3938   return Ctx.getOrCreateFunction(FD);
3939 }
3940 
3941 template <class Emitter>
3942 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) {
3943   LocalScope<Emitter> RootScope(this);
3944 
3945   auto maybeDestroyLocals = [&]() -> bool {
3946     if (DestroyToplevelScope)
3947       return RootScope.destroyLocals();
3948     return true;
3949   };
3950 
3951   // Void expressions.
3952   if (E->getType()->isVoidType()) {
3953     if (!visit(E))
3954       return false;
3955     return this->emitRetVoid(E) && maybeDestroyLocals();
3956   }
3957 
3958   // Expressions with a primitive return type.
3959   if (std::optional<PrimType> T = classify(E)) {
3960     if (!visit(E))
3961       return false;
3962 
3963     return this->emitRet(*T, E) && maybeDestroyLocals();
3964   }
3965 
3966   // Expressions with a composite return type.
3967   // For us, that means everything we don't
3968   // have a PrimType for.
3969   if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
3970     if (!this->emitGetPtrLocal(*LocalOffset, E))
3971       return false;
3972 
3973     if (!visitInitializer(E))
3974       return false;
3975 
3976     if (!this->emitFinishInit(E))
3977       return false;
3978     // We are destroying the locals AFTER the Ret op.
3979     // The Ret op needs to copy the (alive) values, but the
3980     // destructors may still turn the entire expression invalid.
3981     return this->emitRetValue(E) && maybeDestroyLocals();
3982   }
3983 
3984   (void)maybeDestroyLocals();
3985   return false;
3986 }
3987 
3988 template <class Emitter>
3989 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
3990 
3991   auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
3992 
3993   if (R.notCreated())
3994     return R;
3995 
3996   if (R)
3997     return true;
3998 
3999   if (!R && Context::shouldBeGloballyIndexed(VD)) {
4000     if (auto GlobalIndex = P.getGlobal(VD)) {
4001       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4002       GlobalInlineDescriptor &GD =
4003           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4004 
4005       GD.InitState = GlobalInitState::InitializerFailed;
4006       GlobalBlock->invokeDtor();
4007     }
4008   }
4009 
4010   return R;
4011 }
4012 
4013 /// Toplevel visitDeclAndReturn().
4014 /// We get here from evaluateAsInitializer().
4015 /// We need to evaluate the initializer and return its value.
4016 template <class Emitter>
4017 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
4018                                            bool ConstantContext) {
4019   std::optional<PrimType> VarT = classify(VD->getType());
4020 
4021   // We only create variables if we're evaluating in a constant context.
4022   // Otherwise, just evaluate the initializer and return it.
4023   if (!ConstantContext) {
4024     DeclScope<Emitter> LS(this, VD);
4025     if (!this->visit(VD->getAnyInitializer()))
4026       return false;
4027     return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals();
4028   }
4029 
4030   LocalScope<Emitter> VDScope(this, VD);
4031   if (!this->visitVarDecl(VD, /*Toplevel=*/true))
4032     return false;
4033 
4034   if (Context::shouldBeGloballyIndexed(VD)) {
4035     auto GlobalIndex = P.getGlobal(VD);
4036     assert(GlobalIndex); // visitVarDecl() didn't return false.
4037     if (VarT) {
4038       if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
4039         return false;
4040     } else {
4041       if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
4042         return false;
4043     }
4044   } else {
4045     auto Local = Locals.find(VD);
4046     assert(Local != Locals.end()); // Same here.
4047     if (VarT) {
4048       if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
4049         return false;
4050     } else {
4051       if (!this->emitGetPtrLocal(Local->second.Offset, VD))
4052         return false;
4053     }
4054   }
4055 
4056   // Return the value.
4057   if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
4058     // If the Ret above failed and this is a global variable, mark it as
4059     // uninitialized, even everything else succeeded.
4060     if (Context::shouldBeGloballyIndexed(VD)) {
4061       auto GlobalIndex = P.getGlobal(VD);
4062       assert(GlobalIndex);
4063       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4064       GlobalInlineDescriptor &GD =
4065           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4066 
4067       GD.InitState = GlobalInitState::InitializerFailed;
4068       GlobalBlock->invokeDtor();
4069     }
4070     return false;
4071   }
4072 
4073   return VDScope.destroyLocals();
4074 }
4075 
4076 template <class Emitter>
4077 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
4078                                                  bool Toplevel) {
4079   // We don't know what to do with these, so just return false.
4080   if (VD->getType().isNull())
4081     return false;
4082 
4083   // This case is EvalEmitter-only. If we won't create any instructions for the
4084   // initializer anyway, don't bother creating the variable in the first place.
4085   if (!this->isActive())
4086     return VarCreationState::NotCreated();
4087 
4088   const Expr *Init = VD->getInit();
4089   std::optional<PrimType> VarT = classify(VD->getType());
4090 
4091   if (Init && Init->isValueDependent())
4092     return false;
4093 
4094   if (Context::shouldBeGloballyIndexed(VD)) {
4095     auto checkDecl = [&]() -> bool {
4096       bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
4097       return !NeedsOp || this->emitCheckDecl(VD, VD);
4098     };
4099 
4100     auto initGlobal = [&](unsigned GlobalIndex) -> bool {
4101       assert(Init);
4102 
4103       if (VarT) {
4104         if (!this->visit(Init))
4105           return checkDecl() && false;
4106 
4107         return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
4108       }
4109 
4110       if (!checkDecl())
4111         return false;
4112 
4113       if (!this->emitGetPtrGlobal(GlobalIndex, Init))
4114         return false;
4115 
4116       if (!visitInitializer(Init))
4117         return false;
4118 
4119       if (!this->emitFinishInit(Init))
4120         return false;
4121 
4122       return this->emitPopPtr(Init);
4123     };
4124 
4125     DeclScope<Emitter> LocalScope(this, VD);
4126 
4127     // We've already seen and initialized this global.
4128     if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
4129       if (P.getPtrGlobal(*GlobalIndex).isInitialized())
4130         return checkDecl();
4131 
4132       // The previous attempt at initialization might've been unsuccessful,
4133       // so let's try this one.
4134       return Init && checkDecl() && initGlobal(*GlobalIndex);
4135     }
4136 
4137     std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
4138 
4139     if (!GlobalIndex)
4140       return false;
4141 
4142     return !Init || (checkDecl() && initGlobal(*GlobalIndex));
4143   } else {
4144     InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
4145 
4146     if (VarT) {
4147       unsigned Offset = this->allocateLocalPrimitive(
4148           VD, *VarT, VD->getType().isConstQualified());
4149       if (Init) {
4150         // If this is a toplevel declaration, create a scope for the
4151         // initializer.
4152         if (Toplevel) {
4153           LocalScope<Emitter> Scope(this);
4154           if (!this->visit(Init))
4155             return false;
4156           return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
4157         } else {
4158           if (!this->visit(Init))
4159             return false;
4160           return this->emitSetLocal(*VarT, Offset, VD);
4161         }
4162       }
4163     } else {
4164       if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
4165         if (!Init)
4166           return true;
4167 
4168         if (!this->emitGetPtrLocal(*Offset, Init))
4169           return false;
4170 
4171         if (!visitInitializer(Init))
4172           return false;
4173 
4174         if (!this->emitFinishInit(Init))
4175           return false;
4176 
4177         return this->emitPopPtr(Init);
4178       }
4179       return false;
4180     }
4181     return true;
4182   }
4183 
4184   return false;
4185 }
4186 
4187 template <class Emitter>
4188 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
4189                                      const Expr *E) {
4190   assert(!DiscardResult);
4191   if (Val.isInt())
4192     return this->emitConst(Val.getInt(), ValType, E);
4193   else if (Val.isFloat())
4194     return this->emitConstFloat(Val.getFloat(), E);
4195 
4196   if (Val.isLValue()) {
4197     if (Val.isNullPointer())
4198       return this->emitNull(ValType, nullptr, E);
4199     APValue::LValueBase Base = Val.getLValueBase();
4200     if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
4201       return this->visit(BaseExpr);
4202     else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
4203       return this->visitDeclRef(VD, E);
4204     }
4205   } else if (Val.isMemberPointer()) {
4206     if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
4207       return this->emitGetMemberPtr(MemberDecl, E);
4208     return this->emitNullMemberPtr(nullptr, E);
4209   }
4210 
4211   return false;
4212 }
4213 
4214 template <class Emitter>
4215 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
4216                                                 const Expr *E) {
4217 
4218   if (Val.isStruct()) {
4219     const Record *R = this->getRecord(E->getType());
4220     assert(R);
4221     for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
4222       const APValue &F = Val.getStructField(I);
4223       const Record::Field *RF = R->getField(I);
4224 
4225       if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
4226         PrimType T = classifyPrim(RF->Decl->getType());
4227         if (!this->visitAPValue(F, T, E))
4228           return false;
4229         if (!this->emitInitField(T, RF->Offset, E))
4230           return false;
4231       } else if (F.isArray()) {
4232         assert(RF->Desc->isPrimitiveArray());
4233         const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
4234         PrimType ElemT = classifyPrim(ArrType->getElementType());
4235         assert(ArrType);
4236 
4237         if (!this->emitGetPtrField(RF->Offset, E))
4238           return false;
4239 
4240         for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
4241           if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
4242             return false;
4243           if (!this->emitInitElem(ElemT, A, E))
4244             return false;
4245         }
4246 
4247         if (!this->emitPopPtr(E))
4248           return false;
4249       } else if (F.isStruct() || F.isUnion()) {
4250         if (!this->emitGetPtrField(RF->Offset, E))
4251           return false;
4252         if (!this->visitAPValueInitializer(F, E))
4253           return false;
4254         if (!this->emitPopPtr(E))
4255           return false;
4256       } else {
4257         assert(false && "I don't think this should be possible");
4258       }
4259     }
4260     return true;
4261   } else if (Val.isUnion()) {
4262     const FieldDecl *UnionField = Val.getUnionField();
4263     const Record *R = this->getRecord(UnionField->getParent());
4264     assert(R);
4265     const APValue &F = Val.getUnionValue();
4266     const Record::Field *RF = R->getField(UnionField);
4267     PrimType T = classifyPrim(RF->Decl->getType());
4268     if (!this->visitAPValue(F, T, E))
4269       return false;
4270     return this->emitInitField(T, RF->Offset, E);
4271   }
4272   // TODO: Other types.
4273 
4274   return false;
4275 }
4276 
4277 template <class Emitter>
4278 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E,
4279                                              unsigned BuiltinID) {
4280   const Function *Func = getFunction(E->getDirectCallee());
4281   if (!Func)
4282     return false;
4283 
4284   // For these, we're expected to ultimately return an APValue pointing
4285   // to the CallExpr. This is needed to get the correct codegen.
4286   if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
4287       BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString ||
4288       BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant ||
4289       BuiltinID == Builtin::BI__builtin_function_start) {
4290     if (std::optional<unsigned> GlobalOffset = P.getOrCreateDummy(E)) {
4291       if (!this->emitGetPtrGlobal(*GlobalOffset, E))
4292         return false;
4293 
4294       if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT))
4295         return this->emitDecayPtr(PT_Ptr, PT, E);
4296       return true;
4297     }
4298     return false;
4299   }
4300 
4301   QualType ReturnType = E->getType();
4302   std::optional<PrimType> ReturnT = classify(E);
4303 
4304   // Non-primitive return type. Prepare storage.
4305   if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
4306     std::optional<unsigned> LocalIndex = allocateLocal(E);
4307     if (!LocalIndex)
4308       return false;
4309     if (!this->emitGetPtrLocal(*LocalIndex, E))
4310       return false;
4311   }
4312 
4313   if (!Func->isUnevaluatedBuiltin()) {
4314     // Put arguments on the stack.
4315     for (const auto *Arg : E->arguments()) {
4316       if (!this->visit(Arg))
4317         return false;
4318     }
4319   }
4320 
4321   if (!this->emitCallBI(Func, E, BuiltinID, E))
4322     return false;
4323 
4324   if (DiscardResult && !ReturnType->isVoidType()) {
4325     assert(ReturnT);
4326     return this->emitPop(*ReturnT, E);
4327   }
4328 
4329   return true;
4330 }
4331 
4332 template <class Emitter>
4333 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
4334   if (unsigned BuiltinID = E->getBuiltinCallee())
4335     return VisitBuiltinCallExpr(E, BuiltinID);
4336 
4337   const FunctionDecl *FuncDecl = E->getDirectCallee();
4338   // Calls to replaceable operator new/operator delete.
4339   if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) {
4340     if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New ||
4341         FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
4342       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new);
4343     } else {
4344       assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete);
4345       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete);
4346     }
4347   }
4348 
4349   QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
4350   std::optional<PrimType> T = classify(ReturnType);
4351   bool HasRVO = !ReturnType->isVoidType() && !T;
4352 
4353   if (HasRVO) {
4354     if (DiscardResult) {
4355       // If we need to discard the return value but the function returns its
4356       // value via an RVO pointer, we need to create one such pointer just
4357       // for this call.
4358       if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4359         if (!this->emitGetPtrLocal(*LocalIndex, E))
4360           return false;
4361       }
4362     } else {
4363       // We need the result. Prepare a pointer to return or
4364       // dup the current one.
4365       if (!Initializing) {
4366         if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4367           if (!this->emitGetPtrLocal(*LocalIndex, E))
4368             return false;
4369         }
4370       }
4371       if (!this->emitDupPtr(E))
4372         return false;
4373     }
4374   }
4375 
4376   SmallVector<const Expr *, 8> Args(
4377       llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
4378 
4379   bool IsAssignmentOperatorCall = false;
4380   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
4381       OCE && OCE->isAssignmentOp()) {
4382     // Just like with regular assignments, we need to special-case assignment
4383     // operators here and evaluate the RHS (the second arg) before the LHS (the
4384     // first arg. We fix this by using a Flip op later.
4385     assert(Args.size() == 2);
4386     IsAssignmentOperatorCall = true;
4387     std::reverse(Args.begin(), Args.end());
4388   }
4389   // Calling a static operator will still
4390   // pass the instance, but we don't need it.
4391   // Discard it here.
4392   if (isa<CXXOperatorCallExpr>(E)) {
4393     if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
4394         MD && MD->isStatic()) {
4395       if (!this->discard(E->getArg(0)))
4396         return false;
4397       // Drop first arg.
4398       Args.erase(Args.begin());
4399     }
4400   }
4401 
4402   std::optional<unsigned> CalleeOffset;
4403   // Add the (optional, implicit) This pointer.
4404   if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
4405     if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
4406       // If we end up creating a CallPtr op for this, we need the base of the
4407       // member pointer as the instance pointer, and later extract the function
4408       // decl as the function pointer.
4409       const Expr *Callee = E->getCallee();
4410       CalleeOffset =
4411           this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
4412       if (!this->visit(Callee))
4413         return false;
4414       if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
4415         return false;
4416       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4417         return false;
4418       if (!this->emitGetMemberPtrBase(E))
4419         return false;
4420     } else if (!this->visit(MC->getImplicitObjectArgument())) {
4421       return false;
4422     }
4423   } else if (!FuncDecl) {
4424     const Expr *Callee = E->getCallee();
4425     CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false);
4426     if (!this->visit(Callee))
4427       return false;
4428     if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E))
4429       return false;
4430   }
4431 
4432   llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
4433   // Put arguments on the stack.
4434   unsigned ArgIndex = 0;
4435   for (const auto *Arg : Args) {
4436     if (!this->visit(Arg))
4437       return false;
4438 
4439     // If we know the callee already, check the known parametrs for nullability.
4440     if (FuncDecl && NonNullArgs[ArgIndex]) {
4441       PrimType ArgT = classify(Arg).value_or(PT_Ptr);
4442       if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
4443         if (!this->emitCheckNonNullArg(ArgT, Arg))
4444           return false;
4445       }
4446     }
4447     ++ArgIndex;
4448   }
4449 
4450   // Undo the argument reversal we did earlier.
4451   if (IsAssignmentOperatorCall) {
4452     assert(Args.size() == 2);
4453     PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
4454     PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
4455     if (!this->emitFlip(Arg2T, Arg1T, E))
4456       return false;
4457   }
4458 
4459   if (FuncDecl) {
4460     const Function *Func = getFunction(FuncDecl);
4461     if (!Func)
4462       return false;
4463     assert(HasRVO == Func->hasRVO());
4464 
4465     bool HasQualifier = false;
4466     if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
4467       HasQualifier = ME->hasQualifier();
4468 
4469     bool IsVirtual = false;
4470     if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
4471       IsVirtual = MD->isVirtual();
4472 
4473     // In any case call the function. The return value will end up on the stack
4474     // and if the function has RVO, we already have the pointer on the stack to
4475     // write the result into.
4476     if (IsVirtual && !HasQualifier) {
4477       uint32_t VarArgSize = 0;
4478       unsigned NumParams =
4479           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4480       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4481         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4482 
4483       if (!this->emitCallVirt(Func, VarArgSize, E))
4484         return false;
4485     } else if (Func->isVariadic()) {
4486       uint32_t VarArgSize = 0;
4487       unsigned NumParams =
4488           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4489       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4490         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4491       if (!this->emitCallVar(Func, VarArgSize, E))
4492         return false;
4493     } else {
4494       if (!this->emitCall(Func, 0, E))
4495         return false;
4496     }
4497   } else {
4498     // Indirect call. Visit the callee, which will leave a FunctionPointer on
4499     // the stack. Cleanup of the returned value if necessary will be done after
4500     // the function call completed.
4501 
4502     // Sum the size of all args from the call expr.
4503     uint32_t ArgSize = 0;
4504     for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
4505       ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4506 
4507     // Get the callee, either from a member pointer or function pointer saved in
4508     // CalleeOffset.
4509     if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
4510       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4511         return false;
4512       if (!this->emitGetMemberPtrDecl(E))
4513         return false;
4514     } else {
4515       if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E))
4516         return false;
4517     }
4518     if (!this->emitCallPtr(ArgSize, E, E))
4519       return false;
4520   }
4521 
4522   // Cleanup for discarded return values.
4523   if (DiscardResult && !ReturnType->isVoidType() && T)
4524     return this->emitPop(*T, E);
4525 
4526   return true;
4527 }
4528 
4529 template <class Emitter>
4530 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4531   SourceLocScope<Emitter> SLS(this, E);
4532 
4533   return this->delegate(E->getExpr());
4534 }
4535 
4536 template <class Emitter>
4537 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
4538   SourceLocScope<Emitter> SLS(this, E);
4539 
4540   const Expr *SubExpr = E->getExpr();
4541   if (std::optional<PrimType> T = classify(E->getExpr()))
4542     return this->visit(SubExpr);
4543 
4544   assert(Initializing);
4545   return this->visitInitializer(SubExpr);
4546 }
4547 
4548 template <class Emitter>
4549 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4550   if (DiscardResult)
4551     return true;
4552 
4553   return this->emitConstBool(E->getValue(), E);
4554 }
4555 
4556 template <class Emitter>
4557 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
4558     const CXXNullPtrLiteralExpr *E) {
4559   if (DiscardResult)
4560     return true;
4561 
4562   return this->emitNullPtr(nullptr, E);
4563 }
4564 
4565 template <class Emitter>
4566 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
4567   if (DiscardResult)
4568     return true;
4569 
4570   assert(E->getType()->isIntegerType());
4571 
4572   PrimType T = classifyPrim(E->getType());
4573   return this->emitZero(T, E);
4574 }
4575 
4576 template <class Emitter>
4577 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
4578   if (DiscardResult)
4579     return true;
4580 
4581   if (this->LambdaThisCapture.Offset > 0) {
4582     if (this->LambdaThisCapture.IsPtr)
4583       return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
4584     return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
4585   }
4586 
4587   // In some circumstances, the 'this' pointer does not actually refer to the
4588   // instance pointer of the current function frame, but e.g. to the declaration
4589   // currently being initialized. Here we emit the necessary instruction(s) for
4590   // this scenario.
4591   if (!InitStackActive || !E->isImplicit())
4592     return this->emitThis(E);
4593 
4594   if (InitStackActive && !InitStack.empty()) {
4595     unsigned StartIndex = 0;
4596     for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
4597       if (InitStack[StartIndex].Kind != InitLink::K_Field &&
4598           InitStack[StartIndex].Kind != InitLink::K_Elem)
4599         break;
4600     }
4601 
4602     for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) {
4603       if (!InitStack[I].template emit<Emitter>(this, E))
4604         return false;
4605     }
4606     return true;
4607   }
4608   return this->emitThis(E);
4609 }
4610 
4611 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
4612   switch (S->getStmtClass()) {
4613   case Stmt::CompoundStmtClass:
4614     return visitCompoundStmt(cast<CompoundStmt>(S));
4615   case Stmt::DeclStmtClass:
4616     return visitDeclStmt(cast<DeclStmt>(S));
4617   case Stmt::ReturnStmtClass:
4618     return visitReturnStmt(cast<ReturnStmt>(S));
4619   case Stmt::IfStmtClass:
4620     return visitIfStmt(cast<IfStmt>(S));
4621   case Stmt::WhileStmtClass:
4622     return visitWhileStmt(cast<WhileStmt>(S));
4623   case Stmt::DoStmtClass:
4624     return visitDoStmt(cast<DoStmt>(S));
4625   case Stmt::ForStmtClass:
4626     return visitForStmt(cast<ForStmt>(S));
4627   case Stmt::CXXForRangeStmtClass:
4628     return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
4629   case Stmt::BreakStmtClass:
4630     return visitBreakStmt(cast<BreakStmt>(S));
4631   case Stmt::ContinueStmtClass:
4632     return visitContinueStmt(cast<ContinueStmt>(S));
4633   case Stmt::SwitchStmtClass:
4634     return visitSwitchStmt(cast<SwitchStmt>(S));
4635   case Stmt::CaseStmtClass:
4636     return visitCaseStmt(cast<CaseStmt>(S));
4637   case Stmt::DefaultStmtClass:
4638     return visitDefaultStmt(cast<DefaultStmt>(S));
4639   case Stmt::AttributedStmtClass:
4640     return visitAttributedStmt(cast<AttributedStmt>(S));
4641   case Stmt::CXXTryStmtClass:
4642     return visitCXXTryStmt(cast<CXXTryStmt>(S));
4643   case Stmt::NullStmtClass:
4644     return true;
4645   // Always invalid statements.
4646   case Stmt::GCCAsmStmtClass:
4647   case Stmt::MSAsmStmtClass:
4648   case Stmt::GotoStmtClass:
4649     return this->emitInvalid(S);
4650   case Stmt::LabelStmtClass:
4651     return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
4652   default: {
4653     if (const auto *E = dyn_cast<Expr>(S))
4654       return this->discard(E);
4655     return false;
4656   }
4657   }
4658 }
4659 
4660 template <class Emitter>
4661 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
4662   BlockScope<Emitter> Scope(this);
4663   for (const auto *InnerStmt : S->body())
4664     if (!visitStmt(InnerStmt))
4665       return false;
4666   return Scope.destroyLocals();
4667 }
4668 
4669 template <class Emitter>
4670 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
4671   for (const auto *D : DS->decls()) {
4672     if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
4673             FunctionDecl>(D))
4674       continue;
4675 
4676     const auto *VD = dyn_cast<VarDecl>(D);
4677     if (!VD)
4678       return false;
4679     if (!this->visitVarDecl(VD))
4680       return false;
4681   }
4682 
4683   return true;
4684 }
4685 
4686 template <class Emitter>
4687 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
4688   if (this->InStmtExpr)
4689     return this->emitUnsupported(RS);
4690 
4691   if (const Expr *RE = RS->getRetValue()) {
4692     LocalScope<Emitter> RetScope(this);
4693     if (ReturnType) {
4694       // Primitive types are simply returned.
4695       if (!this->visit(RE))
4696         return false;
4697       this->emitCleanup();
4698       return this->emitRet(*ReturnType, RS);
4699     } else if (RE->getType()->isVoidType()) {
4700       if (!this->visit(RE))
4701         return false;
4702     } else {
4703       // RVO - construct the value in the return location.
4704       if (!this->emitRVOPtr(RE))
4705         return false;
4706       if (!this->visitInitializer(RE))
4707         return false;
4708       if (!this->emitPopPtr(RE))
4709         return false;
4710 
4711       this->emitCleanup();
4712       return this->emitRetVoid(RS);
4713     }
4714   }
4715 
4716   // Void return.
4717   this->emitCleanup();
4718   return this->emitRetVoid(RS);
4719 }
4720 
4721 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
4722   if (auto *CondInit = IS->getInit())
4723     if (!visitStmt(CondInit))
4724       return false;
4725 
4726   if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
4727     if (!visitDeclStmt(CondDecl))
4728       return false;
4729 
4730   // Compile condition.
4731   if (IS->isNonNegatedConsteval()) {
4732     if (!this->emitIsConstantContext(IS))
4733       return false;
4734   } else if (IS->isNegatedConsteval()) {
4735     if (!this->emitIsConstantContext(IS))
4736       return false;
4737     if (!this->emitInv(IS))
4738       return false;
4739   } else {
4740     if (!this->visitBool(IS->getCond()))
4741       return false;
4742   }
4743 
4744   if (const Stmt *Else = IS->getElse()) {
4745     LabelTy LabelElse = this->getLabel();
4746     LabelTy LabelEnd = this->getLabel();
4747     if (!this->jumpFalse(LabelElse))
4748       return false;
4749     if (!visitStmt(IS->getThen()))
4750       return false;
4751     if (!this->jump(LabelEnd))
4752       return false;
4753     this->emitLabel(LabelElse);
4754     if (!visitStmt(Else))
4755       return false;
4756     this->emitLabel(LabelEnd);
4757   } else {
4758     LabelTy LabelEnd = this->getLabel();
4759     if (!this->jumpFalse(LabelEnd))
4760       return false;
4761     if (!visitStmt(IS->getThen()))
4762       return false;
4763     this->emitLabel(LabelEnd);
4764   }
4765 
4766   return true;
4767 }
4768 
4769 template <class Emitter>
4770 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
4771   const Expr *Cond = S->getCond();
4772   const Stmt *Body = S->getBody();
4773 
4774   LabelTy CondLabel = this->getLabel(); // Label before the condition.
4775   LabelTy EndLabel = this->getLabel();  // Label after the loop.
4776   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4777 
4778   this->fallthrough(CondLabel);
4779   this->emitLabel(CondLabel);
4780 
4781   {
4782     LocalScope<Emitter> CondScope(this);
4783     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4784       if (!visitDeclStmt(CondDecl))
4785         return false;
4786 
4787     if (!this->visitBool(Cond))
4788       return false;
4789     if (!this->jumpFalse(EndLabel))
4790       return false;
4791 
4792     if (!this->visitStmt(Body))
4793       return false;
4794 
4795     if (!CondScope.destroyLocals())
4796       return false;
4797   }
4798   if (!this->jump(CondLabel))
4799     return false;
4800   this->fallthrough(EndLabel);
4801   this->emitLabel(EndLabel);
4802 
4803   return true;
4804 }
4805 
4806 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
4807   const Expr *Cond = S->getCond();
4808   const Stmt *Body = S->getBody();
4809 
4810   LabelTy StartLabel = this->getLabel();
4811   LabelTy EndLabel = this->getLabel();
4812   LabelTy CondLabel = this->getLabel();
4813   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4814 
4815   this->fallthrough(StartLabel);
4816   this->emitLabel(StartLabel);
4817 
4818   {
4819     LocalScope<Emitter> CondScope(this);
4820     if (!this->visitStmt(Body))
4821       return false;
4822     this->fallthrough(CondLabel);
4823     this->emitLabel(CondLabel);
4824     if (!this->visitBool(Cond))
4825       return false;
4826 
4827     if (!CondScope.destroyLocals())
4828       return false;
4829   }
4830   if (!this->jumpTrue(StartLabel))
4831     return false;
4832 
4833   this->fallthrough(EndLabel);
4834   this->emitLabel(EndLabel);
4835   return true;
4836 }
4837 
4838 template <class Emitter>
4839 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
4840   // for (Init; Cond; Inc) { Body }
4841   const Stmt *Init = S->getInit();
4842   const Expr *Cond = S->getCond();
4843   const Expr *Inc = S->getInc();
4844   const Stmt *Body = S->getBody();
4845 
4846   LabelTy EndLabel = this->getLabel();
4847   LabelTy CondLabel = this->getLabel();
4848   LabelTy IncLabel = this->getLabel();
4849   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4850 
4851   if (Init && !this->visitStmt(Init))
4852     return false;
4853 
4854   this->fallthrough(CondLabel);
4855   this->emitLabel(CondLabel);
4856 
4857   {
4858     LocalScope<Emitter> CondScope(this);
4859     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4860       if (!visitDeclStmt(CondDecl))
4861         return false;
4862 
4863     if (Cond) {
4864       if (!this->visitBool(Cond))
4865         return false;
4866       if (!this->jumpFalse(EndLabel))
4867         return false;
4868     }
4869 
4870     if (Body && !this->visitStmt(Body))
4871       return false;
4872 
4873     this->fallthrough(IncLabel);
4874     this->emitLabel(IncLabel);
4875     if (Inc && !this->discard(Inc))
4876       return false;
4877 
4878     if (!CondScope.destroyLocals())
4879       return false;
4880   }
4881   if (!this->jump(CondLabel))
4882     return false;
4883 
4884   this->fallthrough(EndLabel);
4885   this->emitLabel(EndLabel);
4886   return true;
4887 }
4888 
4889 template <class Emitter>
4890 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
4891   const Stmt *Init = S->getInit();
4892   const Expr *Cond = S->getCond();
4893   const Expr *Inc = S->getInc();
4894   const Stmt *Body = S->getBody();
4895   const Stmt *BeginStmt = S->getBeginStmt();
4896   const Stmt *RangeStmt = S->getRangeStmt();
4897   const Stmt *EndStmt = S->getEndStmt();
4898   const VarDecl *LoopVar = S->getLoopVariable();
4899 
4900   LabelTy EndLabel = this->getLabel();
4901   LabelTy CondLabel = this->getLabel();
4902   LabelTy IncLabel = this->getLabel();
4903   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4904 
4905   // Emit declarations needed in the loop.
4906   if (Init && !this->visitStmt(Init))
4907     return false;
4908   if (!this->visitStmt(RangeStmt))
4909     return false;
4910   if (!this->visitStmt(BeginStmt))
4911     return false;
4912   if (!this->visitStmt(EndStmt))
4913     return false;
4914 
4915   // Now the condition as well as the loop variable assignment.
4916   this->fallthrough(CondLabel);
4917   this->emitLabel(CondLabel);
4918   if (!this->visitBool(Cond))
4919     return false;
4920   if (!this->jumpFalse(EndLabel))
4921     return false;
4922 
4923   if (!this->visitVarDecl(LoopVar))
4924     return false;
4925 
4926   // Body.
4927   {
4928     if (!this->visitStmt(Body))
4929       return false;
4930 
4931     this->fallthrough(IncLabel);
4932     this->emitLabel(IncLabel);
4933     if (!this->discard(Inc))
4934       return false;
4935   }
4936 
4937   if (!this->jump(CondLabel))
4938     return false;
4939 
4940   this->fallthrough(EndLabel);
4941   this->emitLabel(EndLabel);
4942   return true;
4943 }
4944 
4945 template <class Emitter>
4946 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
4947   if (!BreakLabel)
4948     return false;
4949 
4950   for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope;
4951        C = C->getParent())
4952     C->emitDestruction();
4953   return this->jump(*BreakLabel);
4954 }
4955 
4956 template <class Emitter>
4957 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
4958   if (!ContinueLabel)
4959     return false;
4960 
4961   for (VariableScope<Emitter> *C = VarScope;
4962        C && C->getParent() != ContinueVarScope; C = C->getParent())
4963     C->emitDestruction();
4964   return this->jump(*ContinueLabel);
4965 }
4966 
4967 template <class Emitter>
4968 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
4969   const Expr *Cond = S->getCond();
4970   PrimType CondT = this->classifyPrim(Cond->getType());
4971   LocalScope<Emitter> LS(this);
4972 
4973   LabelTy EndLabel = this->getLabel();
4974   OptLabelTy DefaultLabel = std::nullopt;
4975   unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
4976 
4977   if (const auto *CondInit = S->getInit())
4978     if (!visitStmt(CondInit))
4979       return false;
4980 
4981   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4982     if (!visitDeclStmt(CondDecl))
4983       return false;
4984 
4985   // Initialize condition variable.
4986   if (!this->visit(Cond))
4987     return false;
4988   if (!this->emitSetLocal(CondT, CondVar, S))
4989     return false;
4990 
4991   CaseMap CaseLabels;
4992   // Create labels and comparison ops for all case statements.
4993   for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
4994        SC = SC->getNextSwitchCase()) {
4995     if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
4996       // FIXME: Implement ranges.
4997       if (CS->caseStmtIsGNURange())
4998         return false;
4999       CaseLabels[SC] = this->getLabel();
5000 
5001       const Expr *Value = CS->getLHS();
5002       PrimType ValueT = this->classifyPrim(Value->getType());
5003 
5004       // Compare the case statement's value to the switch condition.
5005       if (!this->emitGetLocal(CondT, CondVar, CS))
5006         return false;
5007       if (!this->visit(Value))
5008         return false;
5009 
5010       // Compare and jump to the case label.
5011       if (!this->emitEQ(ValueT, S))
5012         return false;
5013       if (!this->jumpTrue(CaseLabels[CS]))
5014         return false;
5015     } else {
5016       assert(!DefaultLabel);
5017       DefaultLabel = this->getLabel();
5018     }
5019   }
5020 
5021   // If none of the conditions above were true, fall through to the default
5022   // statement or jump after the switch statement.
5023   if (DefaultLabel) {
5024     if (!this->jump(*DefaultLabel))
5025       return false;
5026   } else {
5027     if (!this->jump(EndLabel))
5028       return false;
5029   }
5030 
5031   SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
5032   if (!this->visitStmt(S->getBody()))
5033     return false;
5034   this->emitLabel(EndLabel);
5035 
5036   return LS.destroyLocals();
5037 }
5038 
5039 template <class Emitter>
5040 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
5041   this->emitLabel(CaseLabels[S]);
5042   return this->visitStmt(S->getSubStmt());
5043 }
5044 
5045 template <class Emitter>
5046 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
5047   this->emitLabel(*DefaultLabel);
5048   return this->visitStmt(S->getSubStmt());
5049 }
5050 
5051 template <class Emitter>
5052 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
5053   if (this->Ctx.getLangOpts().CXXAssumptions &&
5054       !this->Ctx.getLangOpts().MSVCCompat) {
5055     for (const Attr *A : S->getAttrs()) {
5056       auto *AA = dyn_cast<CXXAssumeAttr>(A);
5057       if (!AA)
5058         continue;
5059 
5060       assert(isa<NullStmt>(S->getSubStmt()));
5061 
5062       const Expr *Assumption = AA->getAssumption();
5063       if (Assumption->isValueDependent())
5064         return false;
5065 
5066       if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
5067         continue;
5068 
5069       // Evaluate assumption.
5070       if (!this->visitBool(Assumption))
5071         return false;
5072 
5073       if (!this->emitAssume(Assumption))
5074         return false;
5075     }
5076   }
5077 
5078   // Ignore other attributes.
5079   return this->visitStmt(S->getSubStmt());
5080 }
5081 
5082 template <class Emitter>
5083 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
5084   // Ignore all handlers.
5085   return this->visitStmt(S->getTryBlock());
5086 }
5087 
5088 template <class Emitter>
5089 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
5090   assert(MD->isLambdaStaticInvoker());
5091   assert(MD->hasBody());
5092   assert(cast<CompoundStmt>(MD->getBody())->body_empty());
5093 
5094   const CXXRecordDecl *ClosureClass = MD->getParent();
5095   const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
5096   assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
5097   const Function *Func = this->getFunction(LambdaCallOp);
5098   if (!Func)
5099     return false;
5100   assert(Func->hasThisPointer());
5101   assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
5102 
5103   if (Func->hasRVO()) {
5104     if (!this->emitRVOPtr(MD))
5105       return false;
5106   }
5107 
5108   // The lambda call operator needs an instance pointer, but we don't have
5109   // one here, and we don't need one either because the lambda cannot have
5110   // any captures, as verified above. Emit a null pointer. This is then
5111   // special-cased when interpreting to not emit any misleading diagnostics.
5112   if (!this->emitNullPtr(nullptr, MD))
5113     return false;
5114 
5115   // Forward all arguments from the static invoker to the lambda call operator.
5116   for (const ParmVarDecl *PVD : MD->parameters()) {
5117     auto It = this->Params.find(PVD);
5118     assert(It != this->Params.end());
5119 
5120     // We do the lvalue-to-rvalue conversion manually here, so no need
5121     // to care about references.
5122     PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
5123     if (!this->emitGetParam(ParamType, It->second.Offset, MD))
5124       return false;
5125   }
5126 
5127   if (!this->emitCall(Func, 0, LambdaCallOp))
5128     return false;
5129 
5130   this->emitCleanup();
5131   if (ReturnType)
5132     return this->emitRet(*ReturnType, MD);
5133 
5134   // Nothing to do, since we emitted the RVO pointer above.
5135   return this->emitRetVoid(MD);
5136 }
5137 
5138 template <class Emitter>
5139 bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
5140   if (Ctx.getLangOpts().CPlusPlus23)
5141     return true;
5142 
5143   if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
5144     return true;
5145 
5146   return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
5147 }
5148 
5149 template <class Emitter>
5150 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
5151   assert(!ReturnType);
5152 
5153   auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
5154                                   const Expr *InitExpr) -> bool {
5155     // We don't know what to do with these, so just return false.
5156     if (InitExpr->getType().isNull())
5157       return false;
5158 
5159     if (std::optional<PrimType> T = this->classify(InitExpr)) {
5160       if (!this->visit(InitExpr))
5161         return false;
5162 
5163       if (F->isBitField())
5164         return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
5165       return this->emitInitThisField(*T, FieldOffset, InitExpr);
5166     }
5167     // Non-primitive case. Get a pointer to the field-to-initialize
5168     // on the stack and call visitInitialzer() for it.
5169     InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
5170     if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
5171       return false;
5172 
5173     if (!this->visitInitializer(InitExpr))
5174       return false;
5175 
5176     return this->emitFinishInitPop(InitExpr);
5177   };
5178 
5179   const RecordDecl *RD = Ctor->getParent();
5180   const Record *R = this->getRecord(RD);
5181   if (!R)
5182     return false;
5183 
5184   if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
5185     // union copy and move ctors are special.
5186     assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
5187     if (!this->emitThis(Ctor))
5188       return false;
5189 
5190     auto PVD = Ctor->getParamDecl(0);
5191     ParamOffset PO = this->Params[PVD]; // Must exist.
5192 
5193     if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
5194       return false;
5195 
5196     return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
5197            this->emitRetVoid(Ctor);
5198   }
5199 
5200   InitLinkScope<Emitter> InitScope(this, InitLink::This());
5201   for (const auto *Init : Ctor->inits()) {
5202     // Scope needed for the initializers.
5203     BlockScope<Emitter> Scope(this);
5204 
5205     const Expr *InitExpr = Init->getInit();
5206     if (const FieldDecl *Member = Init->getMember()) {
5207       const Record::Field *F = R->getField(Member);
5208 
5209       if (!emitFieldInitializer(F, F->Offset, InitExpr))
5210         return false;
5211     } else if (const Type *Base = Init->getBaseClass()) {
5212       const auto *BaseDecl = Base->getAsCXXRecordDecl();
5213       assert(BaseDecl);
5214 
5215       if (Init->isBaseVirtual()) {
5216         assert(R->getVirtualBase(BaseDecl));
5217         if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
5218           return false;
5219 
5220       } else {
5221         // Base class initializer.
5222         // Get This Base and call initializer on it.
5223         const Record::Base *B = R->getBase(BaseDecl);
5224         assert(B);
5225         if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
5226           return false;
5227       }
5228 
5229       if (!this->visitInitializer(InitExpr))
5230         return false;
5231       if (!this->emitFinishInitPop(InitExpr))
5232         return false;
5233     } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
5234       assert(IFD->getChainingSize() >= 2);
5235 
5236       unsigned NestedFieldOffset = 0;
5237       const Record::Field *NestedField = nullptr;
5238       for (const NamedDecl *ND : IFD->chain()) {
5239         const auto *FD = cast<FieldDecl>(ND);
5240         const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
5241         assert(FieldRecord);
5242 
5243         NestedField = FieldRecord->getField(FD);
5244         assert(NestedField);
5245 
5246         NestedFieldOffset += NestedField->Offset;
5247       }
5248       assert(NestedField);
5249 
5250       if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
5251         return false;
5252     } else {
5253       assert(Init->isDelegatingInitializer());
5254       if (!this->emitThis(InitExpr))
5255         return false;
5256       if (!this->visitInitializer(Init->getInit()))
5257         return false;
5258       if (!this->emitPopPtr(InitExpr))
5259         return false;
5260     }
5261 
5262     if (!Scope.destroyLocals())
5263       return false;
5264   }
5265 
5266   if (const auto *Body = Ctor->getBody())
5267     if (!visitStmt(Body))
5268       return false;
5269 
5270   return this->emitRetVoid(SourceInfo{});
5271 }
5272 
5273 template <class Emitter>
5274 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
5275   const RecordDecl *RD = Dtor->getParent();
5276   const Record *R = this->getRecord(RD);
5277   if (!R)
5278     return false;
5279 
5280   if (!Dtor->isTrivial() && Dtor->getBody()) {
5281     if (!this->visitStmt(Dtor->getBody()))
5282       return false;
5283   }
5284 
5285   if (!this->emitThis(Dtor))
5286     return false;
5287 
5288   assert(R);
5289   if (!R->isUnion()) {
5290     // First, destroy all fields.
5291     for (const Record::Field &Field : llvm::reverse(R->fields())) {
5292       const Descriptor *D = Field.Desc;
5293       if (!D->isPrimitive() && !D->isPrimitiveArray()) {
5294         if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
5295           return false;
5296         if (!this->emitDestruction(D))
5297           return false;
5298         if (!this->emitPopPtr(SourceInfo{}))
5299           return false;
5300       }
5301     }
5302   }
5303 
5304   for (const Record::Base &Base : llvm::reverse(R->bases())) {
5305     if (Base.R->isAnonymousUnion())
5306       continue;
5307 
5308     if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
5309       return false;
5310     if (!this->emitRecordDestruction(Base.R))
5311       return false;
5312     if (!this->emitPopPtr(SourceInfo{}))
5313       return false;
5314   }
5315 
5316   // FIXME: Virtual bases.
5317   return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
5318 }
5319 
5320 template <class Emitter>
5321 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
5322   // Classify the return type.
5323   ReturnType = this->classify(F->getReturnType());
5324 
5325   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
5326     return this->compileConstructor(Ctor);
5327   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
5328     return this->compileDestructor(Dtor);
5329 
5330   // Emit custom code if this is a lambda static invoker.
5331   if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
5332       MD && MD->isLambdaStaticInvoker())
5333     return this->emitLambdaStaticInvokerBody(MD);
5334 
5335   // Regular functions.
5336   if (const auto *Body = F->getBody())
5337     if (!visitStmt(Body))
5338       return false;
5339 
5340   // Emit a guard return to protect against a code path missing one.
5341   if (F->getReturnType()->isVoidType())
5342     return this->emitRetVoid(SourceInfo{});
5343   return this->emitNoRet(SourceInfo{});
5344 }
5345 
5346 template <class Emitter>
5347 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
5348   const Expr *SubExpr = E->getSubExpr();
5349   if (SubExpr->getType()->isAnyComplexType())
5350     return this->VisitComplexUnaryOperator(E);
5351   if (SubExpr->getType()->isVectorType())
5352     return this->VisitVectorUnaryOperator(E);
5353   std::optional<PrimType> T = classify(SubExpr->getType());
5354 
5355   switch (E->getOpcode()) {
5356   case UO_PostInc: { // x++
5357     if (!Ctx.getLangOpts().CPlusPlus14)
5358       return this->emitInvalid(E);
5359     if (!T)
5360       return this->emitError(E);
5361 
5362     if (!this->visit(SubExpr))
5363       return false;
5364 
5365     if (T == PT_Ptr || T == PT_FnPtr) {
5366       if (!this->emitIncPtr(E))
5367         return false;
5368 
5369       return DiscardResult ? this->emitPopPtr(E) : true;
5370     }
5371 
5372     if (T == PT_Float) {
5373       return DiscardResult ? this->emitIncfPop(getFPOptions(E), E)
5374                            : this->emitIncf(getFPOptions(E), E);
5375     }
5376 
5377     return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
5378   }
5379   case UO_PostDec: { // x--
5380     if (!Ctx.getLangOpts().CPlusPlus14)
5381       return this->emitInvalid(E);
5382     if (!T)
5383       return this->emitError(E);
5384 
5385     if (!this->visit(SubExpr))
5386       return false;
5387 
5388     if (T == PT_Ptr || T == PT_FnPtr) {
5389       if (!this->emitDecPtr(E))
5390         return false;
5391 
5392       return DiscardResult ? this->emitPopPtr(E) : true;
5393     }
5394 
5395     if (T == PT_Float) {
5396       return DiscardResult ? this->emitDecfPop(getFPOptions(E), E)
5397                            : this->emitDecf(getFPOptions(E), E);
5398     }
5399 
5400     return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
5401   }
5402   case UO_PreInc: { // ++x
5403     if (!Ctx.getLangOpts().CPlusPlus14)
5404       return this->emitInvalid(E);
5405     if (!T)
5406       return this->emitError(E);
5407 
5408     if (!this->visit(SubExpr))
5409       return false;
5410 
5411     if (T == PT_Ptr || T == PT_FnPtr) {
5412       if (!this->emitLoadPtr(E))
5413         return false;
5414       if (!this->emitConstUint8(1, E))
5415         return false;
5416       if (!this->emitAddOffsetUint8(E))
5417         return false;
5418       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5419     }
5420 
5421     // Post-inc and pre-inc are the same if the value is to be discarded.
5422     if (DiscardResult) {
5423       if (T == PT_Float)
5424         return this->emitIncfPop(getFPOptions(E), E);
5425       return this->emitIncPop(*T, E);
5426     }
5427 
5428     if (T == PT_Float) {
5429       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5430       if (!this->emitLoadFloat(E))
5431         return false;
5432       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5433         return false;
5434       if (!this->emitAddf(getFPOptions(E), E))
5435         return false;
5436       if (!this->emitStoreFloat(E))
5437         return false;
5438     } else {
5439       assert(isIntegralType(*T));
5440       if (!this->emitLoad(*T, E))
5441         return false;
5442       if (!this->emitConst(1, E))
5443         return false;
5444       if (!this->emitAdd(*T, E))
5445         return false;
5446       if (!this->emitStore(*T, E))
5447         return false;
5448     }
5449     return E->isGLValue() || this->emitLoadPop(*T, E);
5450   }
5451   case UO_PreDec: { // --x
5452     if (!Ctx.getLangOpts().CPlusPlus14)
5453       return this->emitInvalid(E);
5454     if (!T)
5455       return this->emitError(E);
5456 
5457     if (!this->visit(SubExpr))
5458       return false;
5459 
5460     if (T == PT_Ptr || T == PT_FnPtr) {
5461       if (!this->emitLoadPtr(E))
5462         return false;
5463       if (!this->emitConstUint8(1, E))
5464         return false;
5465       if (!this->emitSubOffsetUint8(E))
5466         return false;
5467       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5468     }
5469 
5470     // Post-dec and pre-dec are the same if the value is to be discarded.
5471     if (DiscardResult) {
5472       if (T == PT_Float)
5473         return this->emitDecfPop(getFPOptions(E), E);
5474       return this->emitDecPop(*T, E);
5475     }
5476 
5477     if (T == PT_Float) {
5478       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5479       if (!this->emitLoadFloat(E))
5480         return false;
5481       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5482         return false;
5483       if (!this->emitSubf(getFPOptions(E), E))
5484         return false;
5485       if (!this->emitStoreFloat(E))
5486         return false;
5487     } else {
5488       assert(isIntegralType(*T));
5489       if (!this->emitLoad(*T, E))
5490         return false;
5491       if (!this->emitConst(1, E))
5492         return false;
5493       if (!this->emitSub(*T, E))
5494         return false;
5495       if (!this->emitStore(*T, E))
5496         return false;
5497     }
5498     return E->isGLValue() || this->emitLoadPop(*T, E);
5499   }
5500   case UO_LNot: // !x
5501     if (!T)
5502       return this->emitError(E);
5503 
5504     if (DiscardResult)
5505       return this->discard(SubExpr);
5506 
5507     if (!this->visitBool(SubExpr))
5508       return false;
5509 
5510     if (!this->emitInv(E))
5511       return false;
5512 
5513     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5514       return this->emitCast(PT_Bool, ET, E);
5515     return true;
5516   case UO_Minus: // -x
5517     if (!T)
5518       return this->emitError(E);
5519 
5520     if (!this->visit(SubExpr))
5521       return false;
5522     return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
5523   case UO_Plus: // +x
5524     if (!T)
5525       return this->emitError(E);
5526 
5527     if (!this->visit(SubExpr)) // noop
5528       return false;
5529     return DiscardResult ? this->emitPop(*T, E) : true;
5530   case UO_AddrOf: // &x
5531     if (E->getType()->isMemberPointerType()) {
5532       // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5533       // member can be formed.
5534       return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
5535     }
5536     // We should already have a pointer when we get here.
5537     return this->delegate(SubExpr);
5538   case UO_Deref: // *x
5539     if (DiscardResult)
5540       return this->discard(SubExpr);
5541     return this->visit(SubExpr);
5542   case UO_Not: // ~x
5543     if (!T)
5544       return this->emitError(E);
5545 
5546     if (!this->visit(SubExpr))
5547       return false;
5548     return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
5549   case UO_Real: // __real x
5550     assert(T);
5551     return this->delegate(SubExpr);
5552   case UO_Imag: { // __imag x
5553     assert(T);
5554     if (!this->discard(SubExpr))
5555       return false;
5556     return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
5557   }
5558   case UO_Extension:
5559     return this->delegate(SubExpr);
5560   case UO_Coawait:
5561     assert(false && "Unhandled opcode");
5562   }
5563 
5564   return false;
5565 }
5566 
5567 template <class Emitter>
5568 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
5569   const Expr *SubExpr = E->getSubExpr();
5570   assert(SubExpr->getType()->isAnyComplexType());
5571 
5572   if (DiscardResult)
5573     return this->discard(SubExpr);
5574 
5575   std::optional<PrimType> ResT = classify(E);
5576   auto prepareResult = [=]() -> bool {
5577     if (!ResT && !Initializing) {
5578       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5579       if (!LocalIndex)
5580         return false;
5581       return this->emitGetPtrLocal(*LocalIndex, E);
5582     }
5583 
5584     return true;
5585   };
5586 
5587   // The offset of the temporary, if we created one.
5588   unsigned SubExprOffset = ~0u;
5589   auto createTemp = [=, &SubExprOffset]() -> bool {
5590     SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5591     if (!this->visit(SubExpr))
5592       return false;
5593     return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
5594   };
5595 
5596   PrimType ElemT = classifyComplexElementType(SubExpr->getType());
5597   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5598     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5599       return false;
5600     return this->emitArrayElemPop(ElemT, Index, E);
5601   };
5602 
5603   switch (E->getOpcode()) {
5604   case UO_Minus:
5605     if (!prepareResult())
5606       return false;
5607     if (!createTemp())
5608       return false;
5609     for (unsigned I = 0; I != 2; ++I) {
5610       if (!getElem(SubExprOffset, I))
5611         return false;
5612       if (!this->emitNeg(ElemT, E))
5613         return false;
5614       if (!this->emitInitElem(ElemT, I, E))
5615         return false;
5616     }
5617     break;
5618 
5619   case UO_Plus:   // +x
5620   case UO_AddrOf: // &x
5621   case UO_Deref:  // *x
5622     return this->delegate(SubExpr);
5623 
5624   case UO_LNot:
5625     if (!this->visit(SubExpr))
5626       return false;
5627     if (!this->emitComplexBoolCast(SubExpr))
5628       return false;
5629     if (!this->emitInv(E))
5630       return false;
5631     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5632       return this->emitCast(PT_Bool, ET, E);
5633     return true;
5634 
5635   case UO_Real:
5636     return this->emitComplexReal(SubExpr);
5637 
5638   case UO_Imag:
5639     if (!this->visit(SubExpr))
5640       return false;
5641 
5642     if (SubExpr->isLValue()) {
5643       if (!this->emitConstUint8(1, E))
5644         return false;
5645       return this->emitArrayElemPtrPopUint8(E);
5646     }
5647 
5648     // Since our _Complex implementation does not map to a primitive type,
5649     // we sometimes have to do the lvalue-to-rvalue conversion here manually.
5650     return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
5651 
5652   case UO_Not: // ~x
5653     if (!this->visit(SubExpr))
5654       return false;
5655     // Negate the imaginary component.
5656     if (!this->emitArrayElem(ElemT, 1, E))
5657       return false;
5658     if (!this->emitNeg(ElemT, E))
5659       return false;
5660     if (!this->emitInitElem(ElemT, 1, E))
5661       return false;
5662     return DiscardResult ? this->emitPopPtr(E) : true;
5663 
5664   case UO_Extension:
5665     return this->delegate(SubExpr);
5666 
5667   default:
5668     return this->emitInvalid(E);
5669   }
5670 
5671   return true;
5672 }
5673 
5674 template <class Emitter>
5675 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) {
5676   const Expr *SubExpr = E->getSubExpr();
5677   assert(SubExpr->getType()->isVectorType());
5678 
5679   if (DiscardResult)
5680     return this->discard(SubExpr);
5681 
5682   auto UnaryOp = E->getOpcode();
5683   if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot &&
5684       UnaryOp != UO_Not && UnaryOp != UO_AddrOf)
5685     return this->emitInvalid(E);
5686 
5687   // Nothing to do here.
5688   if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf)
5689     return this->delegate(SubExpr);
5690 
5691   if (!Initializing) {
5692     std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5693     if (!LocalIndex)
5694       return false;
5695     if (!this->emitGetPtrLocal(*LocalIndex, E))
5696       return false;
5697   }
5698 
5699   // The offset of the temporary, if we created one.
5700   unsigned SubExprOffset =
5701       this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5702   if (!this->visit(SubExpr))
5703     return false;
5704   if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E))
5705     return false;
5706 
5707   const auto *VecTy = SubExpr->getType()->getAs<VectorType>();
5708   PrimType ElemT = classifyVectorElementType(SubExpr->getType());
5709   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5710     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5711       return false;
5712     return this->emitArrayElemPop(ElemT, Index, E);
5713   };
5714 
5715   switch (UnaryOp) {
5716   case UO_Minus:
5717     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5718       if (!getElem(SubExprOffset, I))
5719         return false;
5720       if (!this->emitNeg(ElemT, E))
5721         return false;
5722       if (!this->emitInitElem(ElemT, I, E))
5723         return false;
5724     }
5725     break;
5726   case UO_LNot: { // !x
5727     // In C++, the logic operators !, &&, || are available for vectors. !v is
5728     // equivalent to v == 0.
5729     //
5730     // The result of the comparison is a vector of the same width and number of
5731     // elements as the comparison operands with a signed integral element type.
5732     //
5733     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
5734     QualType ResultVecTy = E->getType();
5735     PrimType ResultVecElemT =
5736         classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType());
5737     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5738       if (!getElem(SubExprOffset, I))
5739         return false;
5740       // operator ! on vectors returns -1 for 'truth', so negate it.
5741       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
5742         return false;
5743       if (!this->emitInv(E))
5744         return false;
5745       if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E))
5746         return false;
5747       if (!this->emitNeg(ElemT, E))
5748         return false;
5749       if (ElemT != ResultVecElemT &&
5750           !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E))
5751         return false;
5752       if (!this->emitInitElem(ResultVecElemT, I, E))
5753         return false;
5754     }
5755     break;
5756   }
5757   case UO_Not: // ~x
5758     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5759       if (!getElem(SubExprOffset, I))
5760         return false;
5761       if (ElemT == PT_Bool) {
5762         if (!this->emitInv(E))
5763           return false;
5764       } else {
5765         if (!this->emitComp(ElemT, E))
5766           return false;
5767       }
5768       if (!this->emitInitElem(ElemT, I, E))
5769         return false;
5770     }
5771     break;
5772   default:
5773     llvm_unreachable("Unsupported unary operators should be handled up front");
5774   }
5775   return true;
5776 }
5777 
5778 template <class Emitter>
5779 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
5780   if (DiscardResult)
5781     return true;
5782 
5783   if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
5784     return this->emitConst(ECD->getInitVal(), E);
5785   } else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
5786     return this->visit(BD->getBinding());
5787   } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
5788     const Function *F = getFunction(FuncDecl);
5789     return F && this->emitGetFnPtr(F, E);
5790   } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
5791     if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
5792       if (!this->emitGetPtrGlobal(*Index, E))
5793         return false;
5794       if (std::optional<PrimType> T = classify(E->getType())) {
5795         if (!this->visitAPValue(TPOD->getValue(), *T, E))
5796           return false;
5797         return this->emitInitGlobal(*T, *Index, E);
5798       }
5799       return this->visitAPValueInitializer(TPOD->getValue(), E);
5800     }
5801     return false;
5802   }
5803 
5804   // References are implemented via pointers, so when we see a DeclRefExpr
5805   // pointing to a reference, we need to get its value directly (i.e. the
5806   // pointer to the actual value) instead of a pointer to the pointer to the
5807   // value.
5808   bool IsReference = D->getType()->isReferenceType();
5809 
5810   // Check for local/global variables and parameters.
5811   if (auto It = Locals.find(D); It != Locals.end()) {
5812     const unsigned Offset = It->second.Offset;
5813     if (IsReference)
5814       return this->emitGetLocal(PT_Ptr, Offset, E);
5815     return this->emitGetPtrLocal(Offset, E);
5816   } else if (auto GlobalIndex = P.getGlobal(D)) {
5817     if (IsReference) {
5818       if (!Ctx.getLangOpts().CPlusPlus11)
5819         return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
5820       return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
5821     }
5822 
5823     return this->emitGetPtrGlobal(*GlobalIndex, E);
5824   } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
5825     if (auto It = this->Params.find(PVD); It != this->Params.end()) {
5826       if (IsReference || !It->second.IsPtr)
5827         return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
5828 
5829       return this->emitGetPtrParam(It->second.Offset, E);
5830     }
5831   }
5832 
5833   // In case we need to re-visit a declaration.
5834   auto revisit = [&](const VarDecl *VD) -> bool {
5835     auto VarState = this->visitDecl(VD);
5836 
5837     if (VarState.notCreated())
5838       return true;
5839     if (!VarState)
5840       return false;
5841     // Retry.
5842     return this->visitDeclRef(D, E);
5843   };
5844 
5845   // Handle lambda captures.
5846   if (auto It = this->LambdaCaptures.find(D);
5847       It != this->LambdaCaptures.end()) {
5848     auto [Offset, IsPtr] = It->second;
5849 
5850     if (IsPtr)
5851       return this->emitGetThisFieldPtr(Offset, E);
5852     return this->emitGetPtrThisField(Offset, E);
5853   } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
5854              DRE && DRE->refersToEnclosingVariableOrCapture()) {
5855     if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
5856       return revisit(VD);
5857   }
5858 
5859   if (D != InitializingDecl) {
5860     // Try to lazily visit (or emit dummy pointers for) declarations
5861     // we haven't seen yet.
5862     if (Ctx.getLangOpts().CPlusPlus) {
5863       if (const auto *VD = dyn_cast<VarDecl>(D)) {
5864         const auto typeShouldBeVisited = [&](QualType T) -> bool {
5865           if (T.isConstant(Ctx.getASTContext()))
5866             return true;
5867           if (const auto *RT = T->getAs<ReferenceType>())
5868             return RT->getPointeeType().isConstQualified();
5869           return false;
5870         };
5871 
5872         // DecompositionDecls are just proxies for us.
5873         if (isa<DecompositionDecl>(VD))
5874           return revisit(VD);
5875 
5876         if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) &&
5877             typeShouldBeVisited(VD->getType()))
5878           return revisit(VD);
5879 
5880         // FIXME: The evaluateValue() check here is a little ridiculous, since
5881         // it will ultimately call into Context::evaluateAsInitializer(). In
5882         // other words, we're evaluating the initializer, just to know if we can
5883         // evaluate the initializer.
5884         if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) &&
5885             VD->getInit() && !VD->getInit()->isValueDependent() &&
5886             VD->evaluateValue())
5887           return revisit(VD);
5888       }
5889     } else {
5890       if (const auto *VD = dyn_cast<VarDecl>(D);
5891           VD && VD->getAnyInitializer() &&
5892           VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
5893         return revisit(VD);
5894     }
5895   }
5896 
5897   if (std::optional<unsigned> I = P.getOrCreateDummy(D)) {
5898     if (!this->emitGetPtrGlobal(*I, E))
5899       return false;
5900     if (E->getType()->isVoidType())
5901       return true;
5902     // Convert the dummy pointer to another pointer type if we have to.
5903     if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
5904       if (isPtrType(PT))
5905         return this->emitDecayPtr(PT_Ptr, PT, E);
5906       return false;
5907     }
5908     return true;
5909   }
5910 
5911   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
5912     return this->emitInvalidDeclRef(DRE, E);
5913   return false;
5914 }
5915 
5916 template <class Emitter>
5917 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
5918   const auto *D = E->getDecl();
5919   return this->visitDeclRef(D, E);
5920 }
5921 
5922 template <class Emitter> void Compiler<Emitter>::emitCleanup() {
5923   for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
5924     C->emitDestruction();
5925 }
5926 
5927 template <class Emitter>
5928 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
5929                                               const QualType DerivedType) {
5930   const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
5931     if (const auto *R = Ty->getPointeeCXXRecordDecl())
5932       return R;
5933     return Ty->getAsCXXRecordDecl();
5934   };
5935   const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
5936   const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
5937 
5938   return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
5939 }
5940 
5941 /// Emit casts from a PrimType to another PrimType.
5942 template <class Emitter>
5943 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
5944                                      QualType ToQT, const Expr *E) {
5945 
5946   if (FromT == PT_Float) {
5947     // Floating to floating.
5948     if (ToT == PT_Float) {
5949       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
5950       return this->emitCastFP(ToSem, getRoundingMode(E), E);
5951     }
5952 
5953     if (ToT == PT_IntAP)
5954       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT),
5955                                               getFPOptions(E), E);
5956     if (ToT == PT_IntAPS)
5957       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT),
5958                                                getFPOptions(E), E);
5959 
5960     // Float to integral.
5961     if (isIntegralType(ToT) || ToT == PT_Bool)
5962       return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E);
5963   }
5964 
5965   if (isIntegralType(FromT) || FromT == PT_Bool) {
5966     if (ToT == PT_IntAP)
5967       return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
5968     if (ToT == PT_IntAPS)
5969       return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
5970 
5971     // Integral to integral.
5972     if (isIntegralType(ToT) || ToT == PT_Bool)
5973       return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
5974 
5975     if (ToT == PT_Float) {
5976       // Integral to floating.
5977       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
5978       return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E);
5979     }
5980   }
5981 
5982   return false;
5983 }
5984 
5985 /// Emits __real(SubExpr)
5986 template <class Emitter>
5987 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
5988   assert(SubExpr->getType()->isAnyComplexType());
5989 
5990   if (DiscardResult)
5991     return this->discard(SubExpr);
5992 
5993   if (!this->visit(SubExpr))
5994     return false;
5995   if (SubExpr->isLValue()) {
5996     if (!this->emitConstUint8(0, SubExpr))
5997       return false;
5998     return this->emitArrayElemPtrPopUint8(SubExpr);
5999   }
6000 
6001   // Rvalue, load the actual element.
6002   return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
6003                                 0, SubExpr);
6004 }
6005 
6006 template <class Emitter>
6007 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
6008   assert(!DiscardResult);
6009   PrimType ElemT = classifyComplexElementType(E->getType());
6010   // We emit the expression (__real(E) != 0 || __imag(E) != 0)
6011   // for us, that means (bool)E[0] || (bool)E[1]
6012   if (!this->emitArrayElem(ElemT, 0, E))
6013     return false;
6014   if (ElemT == PT_Float) {
6015     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6016       return false;
6017   } else {
6018     if (!this->emitCast(ElemT, PT_Bool, E))
6019       return false;
6020   }
6021 
6022   // We now have the bool value of E[0] on the stack.
6023   LabelTy LabelTrue = this->getLabel();
6024   if (!this->jumpTrue(LabelTrue))
6025     return false;
6026 
6027   if (!this->emitArrayElemPop(ElemT, 1, E))
6028     return false;
6029   if (ElemT == PT_Float) {
6030     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6031       return false;
6032   } else {
6033     if (!this->emitCast(ElemT, PT_Bool, E))
6034       return false;
6035   }
6036   // Leave the boolean value of E[1] on the stack.
6037   LabelTy EndLabel = this->getLabel();
6038   this->jump(EndLabel);
6039 
6040   this->emitLabel(LabelTrue);
6041   if (!this->emitPopPtr(E))
6042     return false;
6043   if (!this->emitConstBool(true, E))
6044     return false;
6045 
6046   this->fallthrough(EndLabel);
6047   this->emitLabel(EndLabel);
6048 
6049   return true;
6050 }
6051 
6052 template <class Emitter>
6053 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
6054                                               const BinaryOperator *E) {
6055   assert(E->isComparisonOp());
6056   assert(!Initializing);
6057   assert(!DiscardResult);
6058 
6059   PrimType ElemT;
6060   bool LHSIsComplex;
6061   unsigned LHSOffset;
6062   if (LHS->getType()->isAnyComplexType()) {
6063     LHSIsComplex = true;
6064     ElemT = classifyComplexElementType(LHS->getType());
6065     LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
6066                                        /*IsExtended=*/false);
6067     if (!this->visit(LHS))
6068       return false;
6069     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
6070       return false;
6071   } else {
6072     LHSIsComplex = false;
6073     PrimType LHST = classifyPrim(LHS->getType());
6074     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
6075     if (!this->visit(LHS))
6076       return false;
6077     if (!this->emitSetLocal(LHST, LHSOffset, E))
6078       return false;
6079   }
6080 
6081   bool RHSIsComplex;
6082   unsigned RHSOffset;
6083   if (RHS->getType()->isAnyComplexType()) {
6084     RHSIsComplex = true;
6085     ElemT = classifyComplexElementType(RHS->getType());
6086     RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
6087                                        /*IsExtended=*/false);
6088     if (!this->visit(RHS))
6089       return false;
6090     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
6091       return false;
6092   } else {
6093     RHSIsComplex = false;
6094     PrimType RHST = classifyPrim(RHS->getType());
6095     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
6096     if (!this->visit(RHS))
6097       return false;
6098     if (!this->emitSetLocal(RHST, RHSOffset, E))
6099       return false;
6100   }
6101 
6102   auto getElem = [&](unsigned LocalOffset, unsigned Index,
6103                      bool IsComplex) -> bool {
6104     if (IsComplex) {
6105       if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
6106         return false;
6107       return this->emitArrayElemPop(ElemT, Index, E);
6108     }
6109     return this->emitGetLocal(ElemT, LocalOffset, E);
6110   };
6111 
6112   for (unsigned I = 0; I != 2; ++I) {
6113     // Get both values.
6114     if (!getElem(LHSOffset, I, LHSIsComplex))
6115       return false;
6116     if (!getElem(RHSOffset, I, RHSIsComplex))
6117       return false;
6118     // And compare them.
6119     if (!this->emitEQ(ElemT, E))
6120       return false;
6121 
6122     if (!this->emitCastBoolUint8(E))
6123       return false;
6124   }
6125 
6126   // We now have two bool values on the stack. Compare those.
6127   if (!this->emitAddUint8(E))
6128     return false;
6129   if (!this->emitConstUint8(2, E))
6130     return false;
6131 
6132   if (E->getOpcode() == BO_EQ) {
6133     if (!this->emitEQUint8(E))
6134       return false;
6135   } else if (E->getOpcode() == BO_NE) {
6136     if (!this->emitNEUint8(E))
6137       return false;
6138   } else
6139     return false;
6140 
6141   // In C, this returns an int.
6142   if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
6143     return this->emitCast(PT_Bool, ResT, E);
6144   return true;
6145 }
6146 
6147 /// When calling this, we have a pointer of the local-to-destroy
6148 /// on the stack.
6149 /// Emit destruction of record types (or arrays of record types).
6150 template <class Emitter>
6151 bool Compiler<Emitter>::emitRecordDestruction(const Record *R) {
6152   assert(R);
6153   assert(!R->isAnonymousUnion());
6154   const CXXDestructorDecl *Dtor = R->getDestructor();
6155   if (!Dtor || Dtor->isTrivial())
6156     return true;
6157 
6158   assert(Dtor);
6159   const Function *DtorFunc = getFunction(Dtor);
6160   if (!DtorFunc)
6161     return false;
6162   assert(DtorFunc->hasThisPointer());
6163   assert(DtorFunc->getNumParams() == 1);
6164   if (!this->emitDupPtr(SourceInfo{}))
6165     return false;
6166   return this->emitCall(DtorFunc, 0, SourceInfo{});
6167 }
6168 /// When calling this, we have a pointer of the local-to-destroy
6169 /// on the stack.
6170 /// Emit destruction of record types (or arrays of record types).
6171 template <class Emitter>
6172 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc) {
6173   assert(Desc);
6174   assert(!Desc->isPrimitive());
6175   assert(!Desc->isPrimitiveArray());
6176 
6177   // Arrays.
6178   if (Desc->isArray()) {
6179     const Descriptor *ElemDesc = Desc->ElemDesc;
6180     assert(ElemDesc);
6181 
6182     // Don't need to do anything for these.
6183     if (ElemDesc->isPrimitiveArray())
6184       return true;
6185 
6186     // If this is an array of record types, check if we need
6187     // to call the element destructors at all. If not, try
6188     // to save the work.
6189     if (const Record *ElemRecord = ElemDesc->ElemRecord) {
6190       if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
6191           !Dtor || Dtor->isTrivial())
6192         return true;
6193     }
6194 
6195     for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
6196       if (!this->emitConstUint64(I, SourceInfo{}))
6197         return false;
6198       if (!this->emitArrayElemPtrUint64(SourceInfo{}))
6199         return false;
6200       if (!this->emitDestruction(ElemDesc))
6201         return false;
6202       if (!this->emitPopPtr(SourceInfo{}))
6203         return false;
6204     }
6205     return true;
6206   }
6207 
6208   assert(Desc->ElemRecord);
6209   if (Desc->ElemRecord->isAnonymousUnion())
6210     return true;
6211 
6212   return this->emitRecordDestruction(Desc->ElemRecord);
6213 }
6214 
6215 namespace clang {
6216 namespace interp {
6217 
6218 template class Compiler<ByteCodeEmitter>;
6219 template class Compiler<EvalEmitter>;
6220 
6221 } // namespace interp
6222 } // namespace clang
6223