xref: /llvm-project/clang/lib/AST/ByteCode/Compiler.cpp (revision 7b4b85b75d22a792b2ef80e6af4f0faf18da0a43)
1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Compiler.h"
10 #include "ByteCodeEmitter.h"
11 #include "Context.h"
12 #include "Floating.h"
13 #include "Function.h"
14 #include "InterpShared.h"
15 #include "PrimType.h"
16 #include "Program.h"
17 #include "clang/AST/Attr.h"
18 
19 using namespace clang;
20 using namespace clang::interp;
21 
22 using APSInt = llvm::APSInt;
23 
24 namespace clang {
25 namespace interp {
26 
27 /// Scope used to handle temporaries in toplevel variable declarations.
28 template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
29 public:
30   DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
31       : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
32         OldInitializingDecl(Ctx->InitializingDecl) {
33     Ctx->InitializingDecl = VD;
34     Ctx->InitStack.push_back(InitLink::Decl(VD));
35   }
36 
37   void addExtended(const Scope::Local &Local) override {
38     return this->addLocal(Local);
39   }
40 
41   ~DeclScope() {
42     this->Ctx->InitializingDecl = OldInitializingDecl;
43     this->Ctx->InitStack.pop_back();
44   }
45 
46 private:
47   Program::DeclScope Scope;
48   const ValueDecl *OldInitializingDecl;
49 };
50 
51 /// Scope used to handle initialization methods.
52 template <class Emitter> class OptionScope final {
53 public:
54   /// Root constructor, compiling or discarding primitives.
55   OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
56               bool NewInitializing)
57       : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
58         OldInitializing(Ctx->Initializing) {
59     Ctx->DiscardResult = NewDiscardResult;
60     Ctx->Initializing = NewInitializing;
61   }
62 
63   ~OptionScope() {
64     Ctx->DiscardResult = OldDiscardResult;
65     Ctx->Initializing = OldInitializing;
66   }
67 
68 private:
69   /// Parent context.
70   Compiler<Emitter> *Ctx;
71   /// Old discard flag to restore.
72   bool OldDiscardResult;
73   bool OldInitializing;
74 };
75 
76 template <class Emitter>
77 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
78   switch (Kind) {
79   case K_This:
80     return Ctx->emitThis(E);
81   case K_Field:
82     // We're assuming there's a base pointer on the stack already.
83     return Ctx->emitGetPtrFieldPop(Offset, E);
84   case K_Temp:
85     return Ctx->emitGetPtrLocal(Offset, E);
86   case K_Decl:
87     return Ctx->visitDeclRef(D, E);
88   case K_Elem:
89     if (!Ctx->emitConstUint32(Offset, E))
90       return false;
91     return Ctx->emitArrayElemPtrPopUint32(E);
92   default:
93     llvm_unreachable("Unhandled InitLink kind");
94   }
95   return true;
96 }
97 
98 /// Scope managing label targets.
99 template <class Emitter> class LabelScope {
100 public:
101   virtual ~LabelScope() {}
102 
103 protected:
104   LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
105   /// Compiler instance.
106   Compiler<Emitter> *Ctx;
107 };
108 
109 /// Sets the context for break/continue statements.
110 template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
111 public:
112   using LabelTy = typename Compiler<Emitter>::LabelTy;
113   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
114 
115   LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
116       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
117         OldContinueLabel(Ctx->ContinueLabel) {
118     this->Ctx->BreakLabel = BreakLabel;
119     this->Ctx->ContinueLabel = ContinueLabel;
120   }
121 
122   ~LoopScope() {
123     this->Ctx->BreakLabel = OldBreakLabel;
124     this->Ctx->ContinueLabel = OldContinueLabel;
125   }
126 
127 private:
128   OptLabelTy OldBreakLabel;
129   OptLabelTy OldContinueLabel;
130 };
131 
132 // Sets the context for a switch scope, mapping labels.
133 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
134 public:
135   using LabelTy = typename Compiler<Emitter>::LabelTy;
136   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
137   using CaseMap = typename Compiler<Emitter>::CaseMap;
138 
139   SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
140               OptLabelTy DefaultLabel)
141       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
142         OldDefaultLabel(this->Ctx->DefaultLabel),
143         OldCaseLabels(std::move(this->Ctx->CaseLabels)) {
144     this->Ctx->BreakLabel = BreakLabel;
145     this->Ctx->DefaultLabel = DefaultLabel;
146     this->Ctx->CaseLabels = std::move(CaseLabels);
147   }
148 
149   ~SwitchScope() {
150     this->Ctx->BreakLabel = OldBreakLabel;
151     this->Ctx->DefaultLabel = OldDefaultLabel;
152     this->Ctx->CaseLabels = std::move(OldCaseLabels);
153   }
154 
155 private:
156   OptLabelTy OldBreakLabel;
157   OptLabelTy OldDefaultLabel;
158   CaseMap OldCaseLabels;
159 };
160 
161 template <class Emitter> class StmtExprScope final {
162 public:
163   StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
164     Ctx->InStmtExpr = true;
165   }
166 
167   ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
168 
169 private:
170   Compiler<Emitter> *Ctx;
171   bool OldFlag;
172 };
173 
174 } // namespace interp
175 } // namespace clang
176 
177 template <class Emitter>
178 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
179   const Expr *SubExpr = CE->getSubExpr();
180   switch (CE->getCastKind()) {
181 
182   case CK_LValueToRValue: {
183     if (DiscardResult)
184       return this->discard(SubExpr);
185 
186     std::optional<PrimType> SubExprT = classify(SubExpr->getType());
187     // Prepare storage for the result.
188     if (!Initializing && !SubExprT) {
189       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
190       if (!LocalIndex)
191         return false;
192       if (!this->emitGetPtrLocal(*LocalIndex, CE))
193         return false;
194     }
195 
196     if (!this->visit(SubExpr))
197       return false;
198 
199     if (SubExprT)
200       return this->emitLoadPop(*SubExprT, CE);
201 
202     // If the subexpr type is not primitive, we need to perform a copy here.
203     // This happens for example in C when dereferencing a pointer of struct
204     // type.
205     return this->emitMemcpy(CE);
206   }
207 
208   case CK_DerivedToBaseMemberPointer: {
209     assert(classifyPrim(CE->getType()) == PT_MemberPtr);
210     assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
211     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
212     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
213 
214     unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
215                                                QualType(FromMP->getClass(), 0));
216 
217     if (!this->delegate(SubExpr))
218       return false;
219 
220     return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
221   }
222 
223   case CK_BaseToDerivedMemberPointer: {
224     assert(classifyPrim(CE) == PT_MemberPtr);
225     assert(classifyPrim(SubExpr) == PT_MemberPtr);
226     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
227     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
228 
229     unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
230                                                QualType(ToMP->getClass(), 0));
231 
232     if (!this->delegate(SubExpr))
233       return false;
234     return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
235   }
236 
237   case CK_UncheckedDerivedToBase:
238   case CK_DerivedToBase: {
239     if (!this->delegate(SubExpr))
240       return false;
241 
242     const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
243       if (const auto *PT = dyn_cast<PointerType>(Ty))
244         return PT->getPointeeType()->getAsCXXRecordDecl();
245       return Ty->getAsCXXRecordDecl();
246     };
247 
248     // FIXME: We can express a series of non-virtual casts as a single
249     // GetPtrBasePop op.
250     QualType CurType = SubExpr->getType();
251     for (const CXXBaseSpecifier *B : CE->path()) {
252       if (B->isVirtual()) {
253         if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
254           return false;
255         CurType = B->getType();
256       } else {
257         unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
258         if (!this->emitGetPtrBasePop(DerivedOffset, CE))
259           return false;
260         CurType = B->getType();
261       }
262     }
263 
264     return true;
265   }
266 
267   case CK_BaseToDerived: {
268     if (!this->delegate(SubExpr))
269       return false;
270 
271     unsigned DerivedOffset =
272         collectBaseOffset(SubExpr->getType(), CE->getType());
273 
274     return this->emitGetPtrDerivedPop(DerivedOffset, CE);
275   }
276 
277   case CK_FloatingCast: {
278     // HLSL uses CK_FloatingCast to cast between vectors.
279     if (!SubExpr->getType()->isFloatingType() ||
280         !CE->getType()->isFloatingType())
281       return false;
282     if (DiscardResult)
283       return this->discard(SubExpr);
284     if (!this->visit(SubExpr))
285       return false;
286     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
287     return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
288   }
289 
290   case CK_IntegralToFloating: {
291     if (DiscardResult)
292       return this->discard(SubExpr);
293     std::optional<PrimType> FromT = classify(SubExpr->getType());
294     if (!FromT)
295       return false;
296 
297     if (!this->visit(SubExpr))
298       return false;
299 
300     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
301     llvm::RoundingMode RM = getRoundingMode(CE);
302     return this->emitCastIntegralFloating(*FromT, TargetSemantics, RM, CE);
303   }
304 
305   case CK_FloatingToBoolean:
306   case CK_FloatingToIntegral: {
307     if (DiscardResult)
308       return this->discard(SubExpr);
309 
310     std::optional<PrimType> ToT = classify(CE->getType());
311 
312     if (!ToT)
313       return false;
314 
315     if (!this->visit(SubExpr))
316       return false;
317 
318     if (ToT == PT_IntAP)
319       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
320                                               CE);
321     if (ToT == PT_IntAPS)
322       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
323                                                CE);
324 
325     return this->emitCastFloatingIntegral(*ToT, CE);
326   }
327 
328   case CK_NullToPointer:
329   case CK_NullToMemberPointer: {
330     if (!this->discard(SubExpr))
331       return false;
332     if (DiscardResult)
333       return true;
334 
335     const Descriptor *Desc = nullptr;
336     const QualType PointeeType = CE->getType()->getPointeeType();
337     if (!PointeeType.isNull()) {
338       if (std::optional<PrimType> T = classify(PointeeType))
339         Desc = P.createDescriptor(SubExpr, *T);
340       else
341         Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
342                                   std::nullopt, true, false,
343                                   /*IsMutable=*/false, nullptr);
344     }
345     return this->emitNull(classifyPrim(CE->getType()), Desc, CE);
346   }
347 
348   case CK_PointerToIntegral: {
349     if (DiscardResult)
350       return this->discard(SubExpr);
351 
352     if (!this->visit(SubExpr))
353       return false;
354 
355     // If SubExpr doesn't result in a pointer, make it one.
356     if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
357       assert(isPtrType(FromT));
358       if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
359         return false;
360     }
361 
362     PrimType T = classifyPrim(CE->getType());
363     if (T == PT_IntAP)
364       return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
365                                              CE);
366     if (T == PT_IntAPS)
367       return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
368                                               CE);
369     return this->emitCastPointerIntegral(T, CE);
370   }
371 
372   case CK_ArrayToPointerDecay: {
373     if (!this->visit(SubExpr))
374       return false;
375     if (!this->emitArrayDecay(CE))
376       return false;
377     if (DiscardResult)
378       return this->emitPopPtr(CE);
379     return true;
380   }
381 
382   case CK_IntegralToPointer: {
383     QualType IntType = SubExpr->getType();
384     assert(IntType->isIntegralOrEnumerationType());
385     if (!this->visit(SubExpr))
386       return false;
387     // FIXME: I think the discard is wrong since the int->ptr cast might cause a
388     // diagnostic.
389     PrimType T = classifyPrim(IntType);
390     if (DiscardResult)
391       return this->emitPop(T, CE);
392 
393     QualType PtrType = CE->getType();
394     const Descriptor *Desc;
395     if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
396       Desc = P.createDescriptor(SubExpr, *T);
397     else if (PtrType->getPointeeType()->isVoidType())
398       Desc = nullptr;
399     else
400       Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
401                                 Descriptor::InlineDescMD, true, false,
402                                 /*IsMutable=*/false, nullptr);
403 
404     if (!this->emitGetIntPtr(T, Desc, CE))
405       return false;
406 
407     PrimType DestPtrT = classifyPrim(PtrType);
408     if (DestPtrT == PT_Ptr)
409       return true;
410 
411     // In case we're converting the integer to a non-Pointer.
412     return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
413   }
414 
415   case CK_AtomicToNonAtomic:
416   case CK_ConstructorConversion:
417   case CK_FunctionToPointerDecay:
418   case CK_NonAtomicToAtomic:
419   case CK_NoOp:
420   case CK_UserDefinedConversion:
421   case CK_AddressSpaceConversion:
422     return this->delegate(SubExpr);
423 
424   case CK_BitCast: {
425     // Reject bitcasts to atomic types.
426     if (CE->getType()->isAtomicType()) {
427       if (!this->discard(SubExpr))
428         return false;
429       return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
430     }
431 
432     if (DiscardResult)
433       return this->discard(SubExpr);
434 
435     QualType SubExprTy = SubExpr->getType();
436     std::optional<PrimType> FromT = classify(SubExprTy);
437     std::optional<PrimType> ToT = classify(CE->getType());
438     if (!FromT || !ToT)
439       return false;
440 
441     assert(isPtrType(*FromT));
442     assert(isPtrType(*ToT));
443     if (FromT == ToT) {
444       if (CE->getType()->isVoidPointerType())
445         return this->delegate(SubExpr);
446 
447       if (!this->visit(SubExpr))
448         return false;
449       if (FromT == PT_Ptr)
450         return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
451       return true;
452     }
453 
454     if (!this->visit(SubExpr))
455       return false;
456     return this->emitDecayPtr(*FromT, *ToT, CE);
457   }
458 
459   case CK_IntegralToBoolean:
460   case CK_BooleanToSignedIntegral:
461   case CK_IntegralCast: {
462     if (DiscardResult)
463       return this->discard(SubExpr);
464     std::optional<PrimType> FromT = classify(SubExpr->getType());
465     std::optional<PrimType> ToT = classify(CE->getType());
466 
467     if (!FromT || !ToT)
468       return false;
469 
470     if (!this->visit(SubExpr))
471       return false;
472 
473     // Possibly diagnose casts to enum types if the target type does not
474     // have a fixed size.
475     if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
476       if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
477           ET && !ET->getDecl()->isFixed()) {
478         if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
479           return false;
480       }
481     }
482 
483     auto maybeNegate = [&]() -> bool {
484       if (CE->getCastKind() == CK_BooleanToSignedIntegral)
485         return this->emitNeg(*ToT, CE);
486       return true;
487     };
488 
489     if (ToT == PT_IntAP)
490       return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
491              maybeNegate();
492     if (ToT == PT_IntAPS)
493       return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
494              maybeNegate();
495 
496     if (FromT == ToT)
497       return true;
498     if (!this->emitCast(*FromT, *ToT, CE))
499       return false;
500 
501     return maybeNegate();
502   }
503 
504   case CK_PointerToBoolean:
505   case CK_MemberPointerToBoolean: {
506     PrimType PtrT = classifyPrim(SubExpr->getType());
507 
508     // Just emit p != nullptr for this.
509     if (!this->visit(SubExpr))
510       return false;
511 
512     if (!this->emitNull(PtrT, nullptr, CE))
513       return false;
514 
515     return this->emitNE(PtrT, CE);
516   }
517 
518   case CK_IntegralComplexToBoolean:
519   case CK_FloatingComplexToBoolean: {
520     if (DiscardResult)
521       return this->discard(SubExpr);
522     if (!this->visit(SubExpr))
523       return false;
524     return this->emitComplexBoolCast(SubExpr);
525   }
526 
527   case CK_IntegralComplexToReal:
528   case CK_FloatingComplexToReal:
529     return this->emitComplexReal(SubExpr);
530 
531   case CK_IntegralRealToComplex:
532   case CK_FloatingRealToComplex: {
533     // We're creating a complex value here, so we need to
534     // allocate storage for it.
535     if (!Initializing) {
536       unsigned LocalIndex = allocateTemporary(CE);
537       if (!this->emitGetPtrLocal(LocalIndex, CE))
538         return false;
539     }
540 
541     // Init the complex value to {SubExpr, 0}.
542     if (!this->visitArrayElemInit(0, SubExpr))
543       return false;
544     // Zero-init the second element.
545     PrimType T = classifyPrim(SubExpr->getType());
546     if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
547       return false;
548     return this->emitInitElem(T, 1, SubExpr);
549   }
550 
551   case CK_IntegralComplexCast:
552   case CK_FloatingComplexCast:
553   case CK_IntegralComplexToFloatingComplex:
554   case CK_FloatingComplexToIntegralComplex: {
555     assert(CE->getType()->isAnyComplexType());
556     assert(SubExpr->getType()->isAnyComplexType());
557     if (DiscardResult)
558       return this->discard(SubExpr);
559 
560     if (!Initializing) {
561       std::optional<unsigned> LocalIndex = allocateLocal(CE);
562       if (!LocalIndex)
563         return false;
564       if (!this->emitGetPtrLocal(*LocalIndex, CE))
565         return false;
566     }
567 
568     // Location for the SubExpr.
569     // Since SubExpr is of complex type, visiting it results in a pointer
570     // anyway, so we just create a temporary pointer variable.
571     unsigned SubExprOffset = allocateLocalPrimitive(
572         SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
573     if (!this->visit(SubExpr))
574       return false;
575     if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
576       return false;
577 
578     PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
579     QualType DestElemType =
580         CE->getType()->getAs<ComplexType>()->getElementType();
581     PrimType DestElemT = classifyPrim(DestElemType);
582     // Cast both elements individually.
583     for (unsigned I = 0; I != 2; ++I) {
584       if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
585         return false;
586       if (!this->emitArrayElemPop(SourceElemT, I, CE))
587         return false;
588 
589       // Do the cast.
590       if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
591         return false;
592 
593       // Save the value.
594       if (!this->emitInitElem(DestElemT, I, CE))
595         return false;
596     }
597     return true;
598   }
599 
600   case CK_VectorSplat: {
601     assert(!classify(CE->getType()));
602     assert(classify(SubExpr->getType()));
603     assert(CE->getType()->isVectorType());
604 
605     if (DiscardResult)
606       return this->discard(SubExpr);
607 
608     if (!Initializing) {
609       std::optional<unsigned> LocalIndex = allocateLocal(CE);
610       if (!LocalIndex)
611         return false;
612       if (!this->emitGetPtrLocal(*LocalIndex, CE))
613         return false;
614     }
615 
616     const auto *VT = CE->getType()->getAs<VectorType>();
617     PrimType ElemT = classifyPrim(SubExpr->getType());
618     unsigned ElemOffset = allocateLocalPrimitive(
619         SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
620 
621     // Prepare a local variable for the scalar value.
622     if (!this->visit(SubExpr))
623       return false;
624     if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
625       return false;
626 
627     if (!this->emitSetLocal(ElemT, ElemOffset, CE))
628       return false;
629 
630     for (unsigned I = 0; I != VT->getNumElements(); ++I) {
631       if (!this->emitGetLocal(ElemT, ElemOffset, CE))
632         return false;
633       if (!this->emitInitElem(ElemT, I, CE))
634         return false;
635     }
636 
637     return true;
638   }
639 
640   case CK_ToVoid:
641     return discard(SubExpr);
642 
643   default:
644     return this->emitInvalid(CE);
645   }
646   llvm_unreachable("Unhandled clang::CastKind enum");
647 }
648 
649 template <class Emitter>
650 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
651   if (DiscardResult)
652     return true;
653 
654   return this->emitConst(LE->getValue(), LE);
655 }
656 
657 template <class Emitter>
658 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
659   if (DiscardResult)
660     return true;
661 
662   return this->emitConstFloat(E->getValue(), E);
663 }
664 
665 template <class Emitter>
666 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
667   assert(E->getType()->isAnyComplexType());
668   if (DiscardResult)
669     return true;
670 
671   if (!Initializing) {
672     unsigned LocalIndex = allocateTemporary(E);
673     if (!this->emitGetPtrLocal(LocalIndex, E))
674       return false;
675   }
676 
677   const Expr *SubExpr = E->getSubExpr();
678   PrimType SubExprT = classifyPrim(SubExpr->getType());
679 
680   if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
681     return false;
682   if (!this->emitInitElem(SubExprT, 0, SubExpr))
683     return false;
684   return this->visitArrayElemInit(1, SubExpr);
685 }
686 
687 template <class Emitter>
688 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
689   return this->delegate(E->getSubExpr());
690 }
691 
692 template <class Emitter>
693 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
694   // Need short-circuiting for these.
695   if (BO->isLogicalOp())
696     return this->VisitLogicalBinOp(BO);
697 
698   const Expr *LHS = BO->getLHS();
699   const Expr *RHS = BO->getRHS();
700 
701   // Handle comma operators. Just discard the LHS
702   // and delegate to RHS.
703   if (BO->isCommaOp()) {
704     if (!this->discard(LHS))
705       return false;
706     if (RHS->getType()->isVoidType())
707       return this->discard(RHS);
708 
709     return this->delegate(RHS);
710   }
711 
712   if (BO->getType()->isAnyComplexType())
713     return this->VisitComplexBinOp(BO);
714   if ((LHS->getType()->isAnyComplexType() ||
715        RHS->getType()->isAnyComplexType()) &&
716       BO->isComparisonOp())
717     return this->emitComplexComparison(LHS, RHS, BO);
718 
719   if (BO->isPtrMemOp()) {
720     if (!this->visit(LHS))
721       return false;
722 
723     if (!this->visit(RHS))
724       return false;
725 
726     if (!this->emitToMemberPtr(BO))
727       return false;
728 
729     if (classifyPrim(BO) == PT_MemberPtr)
730       return true;
731 
732     if (!this->emitCastMemberPtrPtr(BO))
733       return false;
734     return DiscardResult ? this->emitPopPtr(BO) : true;
735   }
736 
737   // Typecheck the args.
738   std::optional<PrimType> LT = classify(LHS);
739   std::optional<PrimType> RT = classify(RHS);
740   std::optional<PrimType> T = classify(BO->getType());
741 
742   // Special case for C++'s three-way/spaceship operator <=>, which
743   // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
744   // have a PrimType).
745   if (!T && BO->getOpcode() == BO_Cmp) {
746     if (DiscardResult)
747       return true;
748     const ComparisonCategoryInfo *CmpInfo =
749         Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
750     assert(CmpInfo);
751 
752     // We need a temporary variable holding our return value.
753     if (!Initializing) {
754       std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
755       if (!this->emitGetPtrLocal(*ResultIndex, BO))
756         return false;
757     }
758 
759     if (!visit(LHS) || !visit(RHS))
760       return false;
761 
762     return this->emitCMP3(*LT, CmpInfo, BO);
763   }
764 
765   if (!LT || !RT || !T)
766     return false;
767 
768   // Pointer arithmetic special case.
769   if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
770     if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
771       return this->VisitPointerArithBinOp(BO);
772   }
773 
774   // Assignmentes require us to evalute the RHS first.
775   if (BO->getOpcode() == BO_Assign) {
776     if (!visit(RHS) || !visit(LHS))
777       return false;
778     if (!this->emitFlip(*LT, *RT, BO))
779       return false;
780   } else {
781     if (!visit(LHS) || !visit(RHS))
782       return false;
783   }
784 
785   // For languages such as C, cast the result of one
786   // of our comparision opcodes to T (which is usually int).
787   auto MaybeCastToBool = [this, T, BO](bool Result) {
788     if (!Result)
789       return false;
790     if (DiscardResult)
791       return this->emitPop(*T, BO);
792     if (T != PT_Bool)
793       return this->emitCast(PT_Bool, *T, BO);
794     return true;
795   };
796 
797   auto Discard = [this, T, BO](bool Result) {
798     if (!Result)
799       return false;
800     return DiscardResult ? this->emitPop(*T, BO) : true;
801   };
802 
803   switch (BO->getOpcode()) {
804   case BO_EQ:
805     return MaybeCastToBool(this->emitEQ(*LT, BO));
806   case BO_NE:
807     return MaybeCastToBool(this->emitNE(*LT, BO));
808   case BO_LT:
809     return MaybeCastToBool(this->emitLT(*LT, BO));
810   case BO_LE:
811     return MaybeCastToBool(this->emitLE(*LT, BO));
812   case BO_GT:
813     return MaybeCastToBool(this->emitGT(*LT, BO));
814   case BO_GE:
815     return MaybeCastToBool(this->emitGE(*LT, BO));
816   case BO_Sub:
817     if (BO->getType()->isFloatingType())
818       return Discard(this->emitSubf(getRoundingMode(BO), BO));
819     return Discard(this->emitSub(*T, BO));
820   case BO_Add:
821     if (BO->getType()->isFloatingType())
822       return Discard(this->emitAddf(getRoundingMode(BO), BO));
823     return Discard(this->emitAdd(*T, BO));
824   case BO_Mul:
825     if (BO->getType()->isFloatingType())
826       return Discard(this->emitMulf(getRoundingMode(BO), BO));
827     return Discard(this->emitMul(*T, BO));
828   case BO_Rem:
829     return Discard(this->emitRem(*T, BO));
830   case BO_Div:
831     if (BO->getType()->isFloatingType())
832       return Discard(this->emitDivf(getRoundingMode(BO), BO));
833     return Discard(this->emitDiv(*T, BO));
834   case BO_Assign:
835     if (DiscardResult)
836       return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
837                                      : this->emitStorePop(*T, BO);
838     if (LHS->refersToBitField()) {
839       if (!this->emitStoreBitField(*T, BO))
840         return false;
841     } else {
842       if (!this->emitStore(*T, BO))
843         return false;
844     }
845     // Assignments aren't necessarily lvalues in C.
846     // Load from them in that case.
847     if (!BO->isLValue())
848       return this->emitLoadPop(*T, BO);
849     return true;
850   case BO_And:
851     return Discard(this->emitBitAnd(*T, BO));
852   case BO_Or:
853     return Discard(this->emitBitOr(*T, BO));
854   case BO_Shl:
855     return Discard(this->emitShl(*LT, *RT, BO));
856   case BO_Shr:
857     return Discard(this->emitShr(*LT, *RT, BO));
858   case BO_Xor:
859     return Discard(this->emitBitXor(*T, BO));
860   case BO_LOr:
861   case BO_LAnd:
862     llvm_unreachable("Already handled earlier");
863   default:
864     return false;
865   }
866 
867   llvm_unreachable("Unhandled binary op");
868 }
869 
870 /// Perform addition/subtraction of a pointer and an integer or
871 /// subtraction of two pointers.
872 template <class Emitter>
873 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
874   BinaryOperatorKind Op = E->getOpcode();
875   const Expr *LHS = E->getLHS();
876   const Expr *RHS = E->getRHS();
877 
878   if ((Op != BO_Add && Op != BO_Sub) ||
879       (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
880     return false;
881 
882   std::optional<PrimType> LT = classify(LHS);
883   std::optional<PrimType> RT = classify(RHS);
884 
885   if (!LT || !RT)
886     return false;
887 
888   // Visit the given pointer expression and optionally convert to a PT_Ptr.
889   auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
890     if (!this->visit(E))
891       return false;
892     if (T != PT_Ptr)
893       return this->emitDecayPtr(T, PT_Ptr, E);
894     return true;
895   };
896 
897   if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
898     if (Op != BO_Sub)
899       return false;
900 
901     assert(E->getType()->isIntegerType());
902     if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
903       return false;
904 
905     return this->emitSubPtr(classifyPrim(E->getType()), E);
906   }
907 
908   PrimType OffsetType;
909   if (LHS->getType()->isIntegerType()) {
910     if (!visitAsPointer(RHS, *RT))
911       return false;
912     if (!this->visit(LHS))
913       return false;
914     OffsetType = *LT;
915   } else if (RHS->getType()->isIntegerType()) {
916     if (!visitAsPointer(LHS, *LT))
917       return false;
918     if (!this->visit(RHS))
919       return false;
920     OffsetType = *RT;
921   } else {
922     return false;
923   }
924 
925   // Do the operation and optionally transform to
926   // result pointer type.
927   if (Op == BO_Add) {
928     if (!this->emitAddOffset(OffsetType, E))
929       return false;
930 
931     if (classifyPrim(E) != PT_Ptr)
932       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
933     return true;
934   } else if (Op == BO_Sub) {
935     if (!this->emitSubOffset(OffsetType, E))
936       return false;
937 
938     if (classifyPrim(E) != PT_Ptr)
939       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
940     return true;
941   }
942 
943   return false;
944 }
945 
946 template <class Emitter>
947 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
948   assert(E->isLogicalOp());
949   BinaryOperatorKind Op = E->getOpcode();
950   const Expr *LHS = E->getLHS();
951   const Expr *RHS = E->getRHS();
952   std::optional<PrimType> T = classify(E->getType());
953 
954   if (Op == BO_LOr) {
955     // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
956     LabelTy LabelTrue = this->getLabel();
957     LabelTy LabelEnd = this->getLabel();
958 
959     if (!this->visitBool(LHS))
960       return false;
961     if (!this->jumpTrue(LabelTrue))
962       return false;
963 
964     if (!this->visitBool(RHS))
965       return false;
966     if (!this->jump(LabelEnd))
967       return false;
968 
969     this->emitLabel(LabelTrue);
970     this->emitConstBool(true, E);
971     this->fallthrough(LabelEnd);
972     this->emitLabel(LabelEnd);
973 
974   } else {
975     assert(Op == BO_LAnd);
976     // Logical AND.
977     // Visit LHS. Only visit RHS if LHS was TRUE.
978     LabelTy LabelFalse = this->getLabel();
979     LabelTy LabelEnd = this->getLabel();
980 
981     if (!this->visitBool(LHS))
982       return false;
983     if (!this->jumpFalse(LabelFalse))
984       return false;
985 
986     if (!this->visitBool(RHS))
987       return false;
988     if (!this->jump(LabelEnd))
989       return false;
990 
991     this->emitLabel(LabelFalse);
992     this->emitConstBool(false, E);
993     this->fallthrough(LabelEnd);
994     this->emitLabel(LabelEnd);
995   }
996 
997   if (DiscardResult)
998     return this->emitPopBool(E);
999 
1000   // For C, cast back to integer type.
1001   assert(T);
1002   if (T != PT_Bool)
1003     return this->emitCast(PT_Bool, *T, E);
1004   return true;
1005 }
1006 
1007 template <class Emitter>
1008 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
1009   // Prepare storage for result.
1010   if (!Initializing) {
1011     unsigned LocalIndex = allocateTemporary(E);
1012     if (!this->emitGetPtrLocal(LocalIndex, E))
1013       return false;
1014   }
1015 
1016   // Both LHS and RHS might _not_ be of complex type, but one of them
1017   // needs to be.
1018   const Expr *LHS = E->getLHS();
1019   const Expr *RHS = E->getRHS();
1020 
1021   PrimType ResultElemT = this->classifyComplexElementType(E->getType());
1022   unsigned ResultOffset = ~0u;
1023   if (!DiscardResult)
1024     ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
1025 
1026   // Save result pointer in ResultOffset
1027   if (!this->DiscardResult) {
1028     if (!this->emitDupPtr(E))
1029       return false;
1030     if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
1031       return false;
1032   }
1033   QualType LHSType = LHS->getType();
1034   if (const auto *AT = LHSType->getAs<AtomicType>())
1035     LHSType = AT->getValueType();
1036   QualType RHSType = RHS->getType();
1037   if (const auto *AT = RHSType->getAs<AtomicType>())
1038     RHSType = AT->getValueType();
1039 
1040   bool LHSIsComplex = LHSType->isAnyComplexType();
1041   unsigned LHSOffset;
1042   bool RHSIsComplex = RHSType->isAnyComplexType();
1043 
1044   // For ComplexComplex Mul, we have special ops to make their implementation
1045   // easier.
1046   BinaryOperatorKind Op = E->getOpcode();
1047   if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
1048     assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
1049            classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
1050     PrimType ElemT =
1051         classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
1052     if (!this->visit(LHS))
1053       return false;
1054     if (!this->visit(RHS))
1055       return false;
1056     return this->emitMulc(ElemT, E);
1057   }
1058 
1059   if (Op == BO_Div && RHSIsComplex) {
1060     QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
1061     PrimType ElemT = classifyPrim(ElemQT);
1062     // If the LHS is not complex, we still need to do the full complex
1063     // division, so just stub create a complex value and stub it out with
1064     // the LHS and a zero.
1065 
1066     if (!LHSIsComplex) {
1067       // This is using the RHS type for the fake-complex LHS.
1068       LHSOffset = allocateTemporary(RHS);
1069 
1070       if (!this->emitGetPtrLocal(LHSOffset, E))
1071         return false;
1072 
1073       if (!this->visit(LHS))
1074         return false;
1075       // real is LHS
1076       if (!this->emitInitElem(ElemT, 0, E))
1077         return false;
1078       // imag is zero
1079       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1080         return false;
1081       if (!this->emitInitElem(ElemT, 1, E))
1082         return false;
1083     } else {
1084       if (!this->visit(LHS))
1085         return false;
1086     }
1087 
1088     if (!this->visit(RHS))
1089       return false;
1090     return this->emitDivc(ElemT, E);
1091   }
1092 
1093   // Evaluate LHS and save value to LHSOffset.
1094   if (LHSType->isAnyComplexType()) {
1095     LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1096     if (!this->visit(LHS))
1097       return false;
1098     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1099       return false;
1100   } else {
1101     PrimType LHST = classifyPrim(LHSType);
1102     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
1103     if (!this->visit(LHS))
1104       return false;
1105     if (!this->emitSetLocal(LHST, LHSOffset, E))
1106       return false;
1107   }
1108 
1109   // Same with RHS.
1110   unsigned RHSOffset;
1111   if (RHSType->isAnyComplexType()) {
1112     RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1113     if (!this->visit(RHS))
1114       return false;
1115     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1116       return false;
1117   } else {
1118     PrimType RHST = classifyPrim(RHSType);
1119     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
1120     if (!this->visit(RHS))
1121       return false;
1122     if (!this->emitSetLocal(RHST, RHSOffset, E))
1123       return false;
1124   }
1125 
1126   // For both LHS and RHS, either load the value from the complex pointer, or
1127   // directly from the local variable. For index 1 (i.e. the imaginary part),
1128   // just load 0 and do the operation anyway.
1129   auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
1130                                  unsigned ElemIndex, unsigned Offset,
1131                                  const Expr *E) -> bool {
1132     if (IsComplex) {
1133       if (!this->emitGetLocal(PT_Ptr, Offset, E))
1134         return false;
1135       return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
1136                                     ElemIndex, E);
1137     }
1138     if (ElemIndex == 0 || !LoadZero)
1139       return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
1140     return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
1141                                       E);
1142   };
1143 
1144   // Now we can get pointers to the LHS and RHS from the offsets above.
1145   for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
1146     // Result pointer for the store later.
1147     if (!this->DiscardResult) {
1148       if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
1149         return false;
1150     }
1151 
1152     // The actual operation.
1153     switch (Op) {
1154     case BO_Add:
1155       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1156         return false;
1157 
1158       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1159         return false;
1160       if (ResultElemT == PT_Float) {
1161         if (!this->emitAddf(getRoundingMode(E), E))
1162           return false;
1163       } else {
1164         if (!this->emitAdd(ResultElemT, E))
1165           return false;
1166       }
1167       break;
1168     case BO_Sub:
1169       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1170         return false;
1171 
1172       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1173         return false;
1174       if (ResultElemT == PT_Float) {
1175         if (!this->emitSubf(getRoundingMode(E), E))
1176           return false;
1177       } else {
1178         if (!this->emitSub(ResultElemT, E))
1179           return false;
1180       }
1181       break;
1182     case BO_Mul:
1183       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1184         return false;
1185 
1186       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1187         return false;
1188 
1189       if (ResultElemT == PT_Float) {
1190         if (!this->emitMulf(getRoundingMode(E), E))
1191           return false;
1192       } else {
1193         if (!this->emitMul(ResultElemT, E))
1194           return false;
1195       }
1196       break;
1197     case BO_Div:
1198       assert(!RHSIsComplex);
1199       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1200         return false;
1201 
1202       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1203         return false;
1204 
1205       if (ResultElemT == PT_Float) {
1206         if (!this->emitDivf(getRoundingMode(E), E))
1207           return false;
1208       } else {
1209         if (!this->emitDiv(ResultElemT, E))
1210           return false;
1211       }
1212       break;
1213 
1214     default:
1215       return false;
1216     }
1217 
1218     if (!this->DiscardResult) {
1219       // Initialize array element with the value we just computed.
1220       if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
1221         return false;
1222     } else {
1223       if (!this->emitPop(ResultElemT, E))
1224         return false;
1225     }
1226   }
1227   return true;
1228 }
1229 
1230 template <class Emitter>
1231 bool Compiler<Emitter>::VisitImplicitValueInitExpr(
1232     const ImplicitValueInitExpr *E) {
1233   QualType QT = E->getType();
1234 
1235   if (std::optional<PrimType> T = classify(QT))
1236     return this->visitZeroInitializer(*T, QT, E);
1237 
1238   if (QT->isRecordType()) {
1239     const RecordDecl *RD = QT->getAsRecordDecl();
1240     assert(RD);
1241     if (RD->isInvalidDecl())
1242       return false;
1243     if (RD->isUnion()) {
1244       // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
1245       // object's first non-static named data member is zero-initialized
1246       // FIXME
1247       return false;
1248     }
1249 
1250     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1251         CXXRD && CXXRD->getNumVBases() > 0) {
1252       // TODO: Diagnose.
1253       return false;
1254     }
1255 
1256     const Record *R = getRecord(QT);
1257     if (!R)
1258       return false;
1259 
1260     assert(Initializing);
1261     return this->visitZeroRecordInitializer(R, E);
1262   }
1263 
1264   if (QT->isIncompleteArrayType())
1265     return true;
1266 
1267   if (QT->isArrayType()) {
1268     const ArrayType *AT = QT->getAsArrayTypeUnsafe();
1269     assert(AT);
1270     const auto *CAT = cast<ConstantArrayType>(AT);
1271     size_t NumElems = CAT->getZExtSize();
1272     PrimType ElemT = classifyPrim(CAT->getElementType());
1273 
1274     for (size_t I = 0; I != NumElems; ++I) {
1275       if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E))
1276         return false;
1277       if (!this->emitInitElem(ElemT, I, E))
1278         return false;
1279     }
1280 
1281     return true;
1282   }
1283 
1284   if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
1285     assert(Initializing);
1286     QualType ElemQT = ComplexTy->getElementType();
1287     PrimType ElemT = classifyPrim(ElemQT);
1288     for (unsigned I = 0; I < 2; ++I) {
1289       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1290         return false;
1291       if (!this->emitInitElem(ElemT, I, E))
1292         return false;
1293     }
1294     return true;
1295   }
1296 
1297   if (const auto *VecT = E->getType()->getAs<VectorType>()) {
1298     unsigned NumVecElements = VecT->getNumElements();
1299     QualType ElemQT = VecT->getElementType();
1300     PrimType ElemT = classifyPrim(ElemQT);
1301 
1302     for (unsigned I = 0; I < NumVecElements; ++I) {
1303       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1304         return false;
1305       if (!this->emitInitElem(ElemT, I, E))
1306         return false;
1307     }
1308     return true;
1309   }
1310 
1311   return false;
1312 }
1313 
1314 template <class Emitter>
1315 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1316   const Expr *LHS = E->getLHS();
1317   const Expr *RHS = E->getRHS();
1318   const Expr *Index = E->getIdx();
1319 
1320   if (DiscardResult)
1321     return this->discard(LHS) && this->discard(RHS);
1322 
1323   // C++17's rules require us to evaluate the LHS first, regardless of which
1324   // side is the base.
1325   bool Success = true;
1326   for (const Expr *SubExpr : {LHS, RHS}) {
1327     if (!this->visit(SubExpr))
1328       Success = false;
1329   }
1330 
1331   if (!Success)
1332     return false;
1333 
1334   PrimType IndexT = classifyPrim(Index->getType());
1335   // If the index is first, we need to change that.
1336   if (LHS == Index) {
1337     if (!this->emitFlip(PT_Ptr, IndexT, E))
1338       return false;
1339   }
1340 
1341   return this->emitArrayElemPtrPop(IndexT, E);
1342 }
1343 
1344 template <class Emitter>
1345 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
1346                                       const Expr *ArrayFiller, const Expr *E) {
1347   QualType QT = E->getType();
1348   if (const auto *AT = QT->getAs<AtomicType>())
1349     QT = AT->getValueType();
1350 
1351   if (QT->isVoidType()) {
1352     if (Inits.size() == 0)
1353       return true;
1354     return this->emitInvalid(E);
1355   }
1356 
1357   // Handle discarding first.
1358   if (DiscardResult) {
1359     for (const Expr *Init : Inits) {
1360       if (!this->discard(Init))
1361         return false;
1362     }
1363     return true;
1364   }
1365 
1366   // Primitive values.
1367   if (std::optional<PrimType> T = classify(QT)) {
1368     assert(!DiscardResult);
1369     if (Inits.size() == 0)
1370       return this->visitZeroInitializer(*T, QT, E);
1371     assert(Inits.size() == 1);
1372     return this->delegate(Inits[0]);
1373   }
1374 
1375   if (QT->isRecordType()) {
1376     const Record *R = getRecord(QT);
1377 
1378     if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
1379       return this->delegate(Inits[0]);
1380 
1381     auto initPrimitiveField = [=](const Record::Field *FieldToInit,
1382                                   const Expr *Init, PrimType T) -> bool {
1383       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1384       if (!this->visit(Init))
1385         return false;
1386 
1387       if (FieldToInit->isBitField())
1388         return this->emitInitBitField(T, FieldToInit, E);
1389       return this->emitInitField(T, FieldToInit->Offset, E);
1390     };
1391 
1392     auto initCompositeField = [=](const Record::Field *FieldToInit,
1393                                   const Expr *Init) -> bool {
1394       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1395       InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
1396       // Non-primitive case. Get a pointer to the field-to-initialize
1397       // on the stack and recurse into visitInitializer().
1398       if (!this->emitGetPtrField(FieldToInit->Offset, Init))
1399         return false;
1400       if (!this->visitInitializer(Init))
1401         return false;
1402       return this->emitPopPtr(E);
1403     };
1404 
1405     if (R->isUnion()) {
1406       if (Inits.size() == 0) {
1407         if (!this->visitZeroRecordInitializer(R, E))
1408           return false;
1409       } else {
1410         const Expr *Init = Inits[0];
1411         const FieldDecl *FToInit = nullptr;
1412         if (const auto *ILE = dyn_cast<InitListExpr>(E))
1413           FToInit = ILE->getInitializedFieldInUnion();
1414         else
1415           FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
1416 
1417         const Record::Field *FieldToInit = R->getField(FToInit);
1418         if (std::optional<PrimType> T = classify(Init)) {
1419           if (!initPrimitiveField(FieldToInit, Init, *T))
1420             return false;
1421         } else {
1422           if (!initCompositeField(FieldToInit, Init))
1423             return false;
1424         }
1425       }
1426       return this->emitFinishInit(E);
1427     }
1428 
1429     assert(!R->isUnion());
1430     unsigned InitIndex = 0;
1431     for (const Expr *Init : Inits) {
1432       // Skip unnamed bitfields.
1433       while (InitIndex < R->getNumFields() &&
1434              R->getField(InitIndex)->Decl->isUnnamedBitField())
1435         ++InitIndex;
1436 
1437       if (std::optional<PrimType> T = classify(Init)) {
1438         const Record::Field *FieldToInit = R->getField(InitIndex);
1439         if (!initPrimitiveField(FieldToInit, Init, *T))
1440           return false;
1441         ++InitIndex;
1442       } else {
1443         // Initializer for a direct base class.
1444         if (const Record::Base *B = R->getBase(Init->getType())) {
1445           if (!this->emitGetPtrBase(B->Offset, Init))
1446             return false;
1447 
1448           if (!this->visitInitializer(Init))
1449             return false;
1450 
1451           if (!this->emitFinishInitPop(E))
1452             return false;
1453           // Base initializers don't increase InitIndex, since they don't count
1454           // into the Record's fields.
1455         } else {
1456           const Record::Field *FieldToInit = R->getField(InitIndex);
1457           if (!initCompositeField(FieldToInit, Init))
1458             return false;
1459           ++InitIndex;
1460         }
1461       }
1462     }
1463     return this->emitFinishInit(E);
1464   }
1465 
1466   if (QT->isArrayType()) {
1467     if (Inits.size() == 1 && QT == Inits[0]->getType())
1468       return this->delegate(Inits[0]);
1469 
1470     unsigned ElementIndex = 0;
1471     for (const Expr *Init : Inits) {
1472       if (const auto *EmbedS =
1473               dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1474         PrimType TargetT = classifyPrim(Init->getType());
1475 
1476         auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
1477           PrimType InitT = classifyPrim(Init->getType());
1478           if (!this->visit(Init))
1479             return false;
1480           if (InitT != TargetT) {
1481             if (!this->emitCast(InitT, TargetT, E))
1482               return false;
1483           }
1484           return this->emitInitElem(TargetT, ElemIndex, Init);
1485         };
1486         if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
1487           return false;
1488       } else {
1489         if (!this->visitArrayElemInit(ElementIndex, Init))
1490           return false;
1491         ++ElementIndex;
1492       }
1493     }
1494 
1495     // Expand the filler expression.
1496     // FIXME: This should go away.
1497     if (ArrayFiller) {
1498       const ConstantArrayType *CAT =
1499           Ctx.getASTContext().getAsConstantArrayType(QT);
1500       uint64_t NumElems = CAT->getZExtSize();
1501 
1502       for (; ElementIndex != NumElems; ++ElementIndex) {
1503         if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
1504           return false;
1505       }
1506     }
1507 
1508     return this->emitFinishInit(E);
1509   }
1510 
1511   if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
1512     unsigned NumInits = Inits.size();
1513 
1514     if (NumInits == 1)
1515       return this->delegate(Inits[0]);
1516 
1517     QualType ElemQT = ComplexTy->getElementType();
1518     PrimType ElemT = classifyPrim(ElemQT);
1519     if (NumInits == 0) {
1520       // Zero-initialize both elements.
1521       for (unsigned I = 0; I < 2; ++I) {
1522         if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1523           return false;
1524         if (!this->emitInitElem(ElemT, I, E))
1525           return false;
1526       }
1527     } else if (NumInits == 2) {
1528       unsigned InitIndex = 0;
1529       for (const Expr *Init : Inits) {
1530         if (!this->visit(Init))
1531           return false;
1532 
1533         if (!this->emitInitElem(ElemT, InitIndex, E))
1534           return false;
1535         ++InitIndex;
1536       }
1537     }
1538     return true;
1539   }
1540 
1541   if (const auto *VecT = QT->getAs<VectorType>()) {
1542     unsigned NumVecElements = VecT->getNumElements();
1543     assert(NumVecElements >= Inits.size());
1544 
1545     QualType ElemQT = VecT->getElementType();
1546     PrimType ElemT = classifyPrim(ElemQT);
1547 
1548     // All initializer elements.
1549     unsigned InitIndex = 0;
1550     for (const Expr *Init : Inits) {
1551       if (!this->visit(Init))
1552         return false;
1553 
1554       // If the initializer is of vector type itself, we have to deconstruct
1555       // that and initialize all the target fields from the initializer fields.
1556       if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
1557         if (!this->emitCopyArray(ElemT, 0, InitIndex,
1558                                  InitVecT->getNumElements(), E))
1559           return false;
1560         InitIndex += InitVecT->getNumElements();
1561       } else {
1562         if (!this->emitInitElem(ElemT, InitIndex, E))
1563           return false;
1564         ++InitIndex;
1565       }
1566     }
1567 
1568     assert(InitIndex <= NumVecElements);
1569 
1570     // Fill the rest with zeroes.
1571     for (; InitIndex != NumVecElements; ++InitIndex) {
1572       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1573         return false;
1574       if (!this->emitInitElem(ElemT, InitIndex, E))
1575         return false;
1576     }
1577     return true;
1578   }
1579 
1580   return false;
1581 }
1582 
1583 /// Pointer to the array(not the element!) must be on the stack when calling
1584 /// this.
1585 template <class Emitter>
1586 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
1587                                            const Expr *Init) {
1588   if (std::optional<PrimType> T = classify(Init->getType())) {
1589     // Visit the primitive element like normal.
1590     if (!this->visit(Init))
1591       return false;
1592     return this->emitInitElem(*T, ElemIndex, Init);
1593   }
1594 
1595   InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
1596   // Advance the pointer currently on the stack to the given
1597   // dimension.
1598   if (!this->emitConstUint32(ElemIndex, Init))
1599     return false;
1600   if (!this->emitArrayElemPtrUint32(Init))
1601     return false;
1602   if (!this->visitInitializer(Init))
1603     return false;
1604   return this->emitFinishInitPop(Init);
1605 }
1606 
1607 template <class Emitter>
1608 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
1609   return this->visitInitList(E->inits(), E->getArrayFiller(), E);
1610 }
1611 
1612 template <class Emitter>
1613 bool Compiler<Emitter>::VisitCXXParenListInitExpr(
1614     const CXXParenListInitExpr *E) {
1615   return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
1616 }
1617 
1618 template <class Emitter>
1619 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
1620     const SubstNonTypeTemplateParmExpr *E) {
1621   return this->delegate(E->getReplacement());
1622 }
1623 
1624 template <class Emitter>
1625 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
1626   std::optional<PrimType> T = classify(E->getType());
1627   if (T && E->hasAPValueResult()) {
1628     // Try to emit the APValue directly, without visiting the subexpr.
1629     // This will only fail if we can't emit the APValue, so won't emit any
1630     // diagnostics or any double values.
1631     if (DiscardResult)
1632       return true;
1633 
1634     if (this->visitAPValue(E->getAPValueResult(), *T, E))
1635       return true;
1636   }
1637   return this->delegate(E->getSubExpr());
1638 }
1639 
1640 template <class Emitter>
1641 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
1642   auto It = E->begin();
1643   return this->visit(*It);
1644 }
1645 
1646 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
1647                              UnaryExprOrTypeTrait Kind) {
1648   bool AlignOfReturnsPreferred =
1649       ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
1650 
1651   // C++ [expr.alignof]p3:
1652   //     When alignof is applied to a reference type, the result is the
1653   //     alignment of the referenced type.
1654   if (const auto *Ref = T->getAs<ReferenceType>())
1655     T = Ref->getPointeeType();
1656 
1657   if (T.getQualifiers().hasUnaligned())
1658     return CharUnits::One();
1659 
1660   // __alignof is defined to return the preferred alignment.
1661   // Before 8, clang returned the preferred alignment for alignof and
1662   // _Alignof as well.
1663   if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
1664     return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
1665 
1666   return ASTCtx.getTypeAlignInChars(T);
1667 }
1668 
1669 template <class Emitter>
1670 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
1671     const UnaryExprOrTypeTraitExpr *E) {
1672   UnaryExprOrTypeTrait Kind = E->getKind();
1673   const ASTContext &ASTCtx = Ctx.getASTContext();
1674 
1675   if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
1676     QualType ArgType = E->getTypeOfArgument();
1677 
1678     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1679     //   the result is the size of the referenced type."
1680     if (const auto *Ref = ArgType->getAs<ReferenceType>())
1681       ArgType = Ref->getPointeeType();
1682 
1683     CharUnits Size;
1684     if (ArgType->isVoidType() || ArgType->isFunctionType())
1685       Size = CharUnits::One();
1686     else {
1687       if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
1688         return false;
1689 
1690       if (Kind == UETT_SizeOf)
1691         Size = ASTCtx.getTypeSizeInChars(ArgType);
1692       else
1693         Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
1694     }
1695 
1696     if (DiscardResult)
1697       return true;
1698 
1699     return this->emitConst(Size.getQuantity(), E);
1700   }
1701 
1702   if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
1703     CharUnits Size;
1704 
1705     if (E->isArgumentType()) {
1706       QualType ArgType = E->getTypeOfArgument();
1707 
1708       Size = AlignOfType(ArgType, ASTCtx, Kind);
1709     } else {
1710       // Argument is an expression, not a type.
1711       const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
1712 
1713       // The kinds of expressions that we have special-case logic here for
1714       // should be kept up to date with the special checks for those
1715       // expressions in Sema.
1716 
1717       // alignof decl is always accepted, even if it doesn't make sense: we
1718       // default to 1 in those cases.
1719       if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
1720         Size = ASTCtx.getDeclAlign(DRE->getDecl(),
1721                                    /*RefAsPointee*/ true);
1722       else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
1723         Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
1724                                    /*RefAsPointee*/ true);
1725       else
1726         Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
1727     }
1728 
1729     if (DiscardResult)
1730       return true;
1731 
1732     return this->emitConst(Size.getQuantity(), E);
1733   }
1734 
1735   if (Kind == UETT_VectorElements) {
1736     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
1737       return this->emitConst(VT->getNumElements(), E);
1738     assert(E->getTypeOfArgument()->isSizelessVectorType());
1739     return this->emitSizelessVectorElementSize(E);
1740   }
1741 
1742   if (Kind == UETT_VecStep) {
1743     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
1744       unsigned N = VT->getNumElements();
1745 
1746       // The vec_step built-in functions that take a 3-component
1747       // vector return 4. (OpenCL 1.1 spec 6.11.12)
1748       if (N == 3)
1749         N = 4;
1750 
1751       return this->emitConst(N, E);
1752     }
1753     return this->emitConst(1, E);
1754   }
1755 
1756   return false;
1757 }
1758 
1759 template <class Emitter>
1760 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
1761   // 'Base.Member'
1762   const Expr *Base = E->getBase();
1763   const ValueDecl *Member = E->getMemberDecl();
1764 
1765   if (DiscardResult)
1766     return this->discard(Base);
1767 
1768   // MemberExprs are almost always lvalues, in which case we don't need to
1769   // do the load. But sometimes they aren't.
1770   const auto maybeLoadValue = [&]() -> bool {
1771     if (E->isGLValue())
1772       return true;
1773     if (std::optional<PrimType> T = classify(E))
1774       return this->emitLoadPop(*T, E);
1775     return false;
1776   };
1777 
1778   if (const auto *VD = dyn_cast<VarDecl>(Member)) {
1779     // I am almost confident in saying that a var decl must be static
1780     // and therefore registered as a global variable. But this will probably
1781     // turn out to be wrong some time in the future, as always.
1782     if (auto GlobalIndex = P.getGlobal(VD))
1783       return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
1784     return false;
1785   }
1786 
1787   if (!isa<FieldDecl>(Member))
1788     return this->discard(Base) && this->visitDeclRef(Member, E);
1789 
1790   if (Initializing) {
1791     if (!this->delegate(Base))
1792       return false;
1793   } else {
1794     if (!this->visit(Base))
1795       return false;
1796   }
1797 
1798   // Base above gives us a pointer on the stack.
1799   const auto *FD = cast<FieldDecl>(Member);
1800   const RecordDecl *RD = FD->getParent();
1801   const Record *R = getRecord(RD);
1802   if (!R)
1803     return false;
1804   const Record::Field *F = R->getField(FD);
1805   // Leave a pointer to the field on the stack.
1806   if (F->Decl->getType()->isReferenceType())
1807     return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
1808   return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
1809 }
1810 
1811 template <class Emitter>
1812 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
1813   // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
1814   // stand-alone, e.g. via EvaluateAsInt().
1815   if (!ArrayIndex)
1816     return false;
1817   return this->emitConst(*ArrayIndex, E);
1818 }
1819 
1820 template <class Emitter>
1821 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
1822   assert(Initializing);
1823   assert(!DiscardResult);
1824 
1825   // We visit the common opaque expression here once so we have its value
1826   // cached.
1827   if (!this->discard(E->getCommonExpr()))
1828     return false;
1829 
1830   // TODO: This compiles to quite a lot of bytecode if the array is larger.
1831   //   Investigate compiling this to a loop.
1832   const Expr *SubExpr = E->getSubExpr();
1833   size_t Size = E->getArraySize().getZExtValue();
1834 
1835   // So, every iteration, we execute an assignment here
1836   // where the LHS is on the stack (the target array)
1837   // and the RHS is our SubExpr.
1838   for (size_t I = 0; I != Size; ++I) {
1839     ArrayIndexScope<Emitter> IndexScope(this, I);
1840     BlockScope<Emitter> BS(this);
1841 
1842     if (!this->visitArrayElemInit(I, SubExpr))
1843       return false;
1844     if (!BS.destroyLocals())
1845       return false;
1846   }
1847   return true;
1848 }
1849 
1850 template <class Emitter>
1851 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
1852   const Expr *SourceExpr = E->getSourceExpr();
1853   if (!SourceExpr)
1854     return false;
1855 
1856   if (Initializing)
1857     return this->visitInitializer(SourceExpr);
1858 
1859   PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
1860   if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
1861     return this->emitGetLocal(SubExprT, It->second, E);
1862 
1863   if (!this->visit(SourceExpr))
1864     return false;
1865 
1866   // At this point we either have the evaluated source expression or a pointer
1867   // to an object on the stack. We want to create a local variable that stores
1868   // this value.
1869   unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
1870   if (!this->emitSetLocal(SubExprT, LocalIndex, E))
1871     return false;
1872 
1873   // Here the local variable is created but the value is removed from the stack,
1874   // so we put it back if the caller needs it.
1875   if (!DiscardResult) {
1876     if (!this->emitGetLocal(SubExprT, LocalIndex, E))
1877       return false;
1878   }
1879 
1880   // This is cleaned up when the local variable is destroyed.
1881   OpaqueExprs.insert({E, LocalIndex});
1882 
1883   return true;
1884 }
1885 
1886 template <class Emitter>
1887 bool Compiler<Emitter>::VisitAbstractConditionalOperator(
1888     const AbstractConditionalOperator *E) {
1889   const Expr *Condition = E->getCond();
1890   const Expr *TrueExpr = E->getTrueExpr();
1891   const Expr *FalseExpr = E->getFalseExpr();
1892 
1893   LabelTy LabelEnd = this->getLabel();   // Label after the operator.
1894   LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
1895 
1896   if (!this->visitBool(Condition))
1897     return false;
1898 
1899   if (!this->jumpFalse(LabelFalse))
1900     return false;
1901 
1902   {
1903     LocalScope<Emitter> S(this);
1904     if (!this->delegate(TrueExpr))
1905       return false;
1906     if (!S.destroyLocals())
1907       return false;
1908   }
1909 
1910   if (!this->jump(LabelEnd))
1911     return false;
1912 
1913   this->emitLabel(LabelFalse);
1914 
1915   {
1916     LocalScope<Emitter> S(this);
1917     if (!this->delegate(FalseExpr))
1918       return false;
1919     if (!S.destroyLocals())
1920       return false;
1921   }
1922 
1923   this->fallthrough(LabelEnd);
1924   this->emitLabel(LabelEnd);
1925 
1926   return true;
1927 }
1928 
1929 template <class Emitter>
1930 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
1931   if (DiscardResult)
1932     return true;
1933 
1934   if (!Initializing) {
1935     unsigned StringIndex = P.createGlobalString(E);
1936     return this->emitGetPtrGlobal(StringIndex, E);
1937   }
1938 
1939   // We are initializing an array on the stack.
1940   const ConstantArrayType *CAT =
1941       Ctx.getASTContext().getAsConstantArrayType(E->getType());
1942   assert(CAT && "a string literal that's not a constant array?");
1943 
1944   // If the initializer string is too long, a diagnostic has already been
1945   // emitted. Read only the array length from the string literal.
1946   unsigned ArraySize = CAT->getZExtSize();
1947   unsigned N = std::min(ArraySize, E->getLength());
1948   size_t CharWidth = E->getCharByteWidth();
1949 
1950   for (unsigned I = 0; I != N; ++I) {
1951     uint32_t CodeUnit = E->getCodeUnit(I);
1952 
1953     if (CharWidth == 1) {
1954       this->emitConstSint8(CodeUnit, E);
1955       this->emitInitElemSint8(I, E);
1956     } else if (CharWidth == 2) {
1957       this->emitConstUint16(CodeUnit, E);
1958       this->emitInitElemUint16(I, E);
1959     } else if (CharWidth == 4) {
1960       this->emitConstUint32(CodeUnit, E);
1961       this->emitInitElemUint32(I, E);
1962     } else {
1963       llvm_unreachable("unsupported character width");
1964     }
1965   }
1966 
1967   // Fill up the rest of the char array with NUL bytes.
1968   for (unsigned I = N; I != ArraySize; ++I) {
1969     if (CharWidth == 1) {
1970       this->emitConstSint8(0, E);
1971       this->emitInitElemSint8(I, E);
1972     } else if (CharWidth == 2) {
1973       this->emitConstUint16(0, E);
1974       this->emitInitElemUint16(I, E);
1975     } else if (CharWidth == 4) {
1976       this->emitConstUint32(0, E);
1977       this->emitInitElemUint32(I, E);
1978     } else {
1979       llvm_unreachable("unsupported character width");
1980     }
1981   }
1982 
1983   return true;
1984 }
1985 
1986 template <class Emitter>
1987 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
1988   return this->delegate(E->getString());
1989 }
1990 
1991 template <class Emitter>
1992 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1993   auto &A = Ctx.getASTContext();
1994   std::string Str;
1995   A.getObjCEncodingForType(E->getEncodedType(), Str);
1996   StringLiteral *SL =
1997       StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
1998                             /*Pascal=*/false, E->getType(), E->getAtLoc());
1999   return this->delegate(SL);
2000 }
2001 
2002 template <class Emitter>
2003 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
2004     const SYCLUniqueStableNameExpr *E) {
2005   if (DiscardResult)
2006     return true;
2007 
2008   assert(!Initializing);
2009 
2010   auto &A = Ctx.getASTContext();
2011   std::string ResultStr = E->ComputeName(A);
2012 
2013   QualType CharTy = A.CharTy.withConst();
2014   APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
2015   QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
2016                                             ArraySizeModifier::Normal, 0);
2017 
2018   StringLiteral *SL =
2019       StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
2020                             /*Pascal=*/false, ArrayTy, E->getLocation());
2021 
2022   unsigned StringIndex = P.createGlobalString(SL);
2023   return this->emitGetPtrGlobal(StringIndex, E);
2024 }
2025 
2026 template <class Emitter>
2027 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
2028   if (DiscardResult)
2029     return true;
2030   return this->emitConst(E->getValue(), E);
2031 }
2032 
2033 template <class Emitter>
2034 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
2035     const CompoundAssignOperator *E) {
2036 
2037   const Expr *LHS = E->getLHS();
2038   const Expr *RHS = E->getRHS();
2039   QualType LHSType = LHS->getType();
2040   QualType LHSComputationType = E->getComputationLHSType();
2041   QualType ResultType = E->getComputationResultType();
2042   std::optional<PrimType> LT = classify(LHSComputationType);
2043   std::optional<PrimType> RT = classify(ResultType);
2044 
2045   assert(ResultType->isFloatingType());
2046 
2047   if (!LT || !RT)
2048     return false;
2049 
2050   PrimType LHST = classifyPrim(LHSType);
2051 
2052   // C++17 onwards require that we evaluate the RHS first.
2053   // Compute RHS and save it in a temporary variable so we can
2054   // load it again later.
2055   if (!visit(RHS))
2056     return false;
2057 
2058   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2059   if (!this->emitSetLocal(*RT, TempOffset, E))
2060     return false;
2061 
2062   // First, visit LHS.
2063   if (!visit(LHS))
2064     return false;
2065   if (!this->emitLoad(LHST, E))
2066     return false;
2067 
2068   // If necessary, convert LHS to its computation type.
2069   if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
2070                           LHSComputationType, E))
2071     return false;
2072 
2073   // Now load RHS.
2074   if (!this->emitGetLocal(*RT, TempOffset, E))
2075     return false;
2076 
2077   llvm::RoundingMode RM = getRoundingMode(E);
2078   switch (E->getOpcode()) {
2079   case BO_AddAssign:
2080     if (!this->emitAddf(RM, E))
2081       return false;
2082     break;
2083   case BO_SubAssign:
2084     if (!this->emitSubf(RM, E))
2085       return false;
2086     break;
2087   case BO_MulAssign:
2088     if (!this->emitMulf(RM, E))
2089       return false;
2090     break;
2091   case BO_DivAssign:
2092     if (!this->emitDivf(RM, E))
2093       return false;
2094     break;
2095   default:
2096     return false;
2097   }
2098 
2099   if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
2100     return false;
2101 
2102   if (DiscardResult)
2103     return this->emitStorePop(LHST, E);
2104   return this->emitStore(LHST, E);
2105 }
2106 
2107 template <class Emitter>
2108 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
2109     const CompoundAssignOperator *E) {
2110   BinaryOperatorKind Op = E->getOpcode();
2111   const Expr *LHS = E->getLHS();
2112   const Expr *RHS = E->getRHS();
2113   std::optional<PrimType> LT = classify(LHS->getType());
2114   std::optional<PrimType> RT = classify(RHS->getType());
2115 
2116   if (Op != BO_AddAssign && Op != BO_SubAssign)
2117     return false;
2118 
2119   if (!LT || !RT)
2120     return false;
2121 
2122   if (!visit(LHS))
2123     return false;
2124 
2125   if (!this->emitLoad(*LT, LHS))
2126     return false;
2127 
2128   if (!visit(RHS))
2129     return false;
2130 
2131   if (Op == BO_AddAssign) {
2132     if (!this->emitAddOffset(*RT, E))
2133       return false;
2134   } else {
2135     if (!this->emitSubOffset(*RT, E))
2136       return false;
2137   }
2138 
2139   if (DiscardResult)
2140     return this->emitStorePopPtr(E);
2141   return this->emitStorePtr(E);
2142 }
2143 
2144 template <class Emitter>
2145 bool Compiler<Emitter>::VisitCompoundAssignOperator(
2146     const CompoundAssignOperator *E) {
2147 
2148   const Expr *LHS = E->getLHS();
2149   const Expr *RHS = E->getRHS();
2150   std::optional<PrimType> LHSComputationT =
2151       classify(E->getComputationLHSType());
2152   std::optional<PrimType> LT = classify(LHS->getType());
2153   std::optional<PrimType> RT = classify(RHS->getType());
2154   std::optional<PrimType> ResultT = classify(E->getType());
2155 
2156   if (!Ctx.getLangOpts().CPlusPlus14)
2157     return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
2158 
2159   if (!LT || !RT || !ResultT || !LHSComputationT)
2160     return false;
2161 
2162   // Handle floating point operations separately here, since they
2163   // require special care.
2164 
2165   if (ResultT == PT_Float || RT == PT_Float)
2166     return VisitFloatCompoundAssignOperator(E);
2167 
2168   if (E->getType()->isPointerType())
2169     return VisitPointerCompoundAssignOperator(E);
2170 
2171   assert(!E->getType()->isPointerType() && "Handled above");
2172   assert(!E->getType()->isFloatingType() && "Handled above");
2173 
2174   // C++17 onwards require that we evaluate the RHS first.
2175   // Compute RHS and save it in a temporary variable so we can
2176   // load it again later.
2177   // FIXME: Compound assignments are unsequenced in C, so we might
2178   //   have to figure out how to reject them.
2179   if (!visit(RHS))
2180     return false;
2181 
2182   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2183 
2184   if (!this->emitSetLocal(*RT, TempOffset, E))
2185     return false;
2186 
2187   // Get LHS pointer, load its value and cast it to the
2188   // computation type if necessary.
2189   if (!visit(LHS))
2190     return false;
2191   if (!this->emitLoad(*LT, E))
2192     return false;
2193   if (LT != LHSComputationT) {
2194     if (!this->emitCast(*LT, *LHSComputationT, E))
2195       return false;
2196   }
2197 
2198   // Get the RHS value on the stack.
2199   if (!this->emitGetLocal(*RT, TempOffset, E))
2200     return false;
2201 
2202   // Perform operation.
2203   switch (E->getOpcode()) {
2204   case BO_AddAssign:
2205     if (!this->emitAdd(*LHSComputationT, E))
2206       return false;
2207     break;
2208   case BO_SubAssign:
2209     if (!this->emitSub(*LHSComputationT, E))
2210       return false;
2211     break;
2212   case BO_MulAssign:
2213     if (!this->emitMul(*LHSComputationT, E))
2214       return false;
2215     break;
2216   case BO_DivAssign:
2217     if (!this->emitDiv(*LHSComputationT, E))
2218       return false;
2219     break;
2220   case BO_RemAssign:
2221     if (!this->emitRem(*LHSComputationT, E))
2222       return false;
2223     break;
2224   case BO_ShlAssign:
2225     if (!this->emitShl(*LHSComputationT, *RT, E))
2226       return false;
2227     break;
2228   case BO_ShrAssign:
2229     if (!this->emitShr(*LHSComputationT, *RT, E))
2230       return false;
2231     break;
2232   case BO_AndAssign:
2233     if (!this->emitBitAnd(*LHSComputationT, E))
2234       return false;
2235     break;
2236   case BO_XorAssign:
2237     if (!this->emitBitXor(*LHSComputationT, E))
2238       return false;
2239     break;
2240   case BO_OrAssign:
2241     if (!this->emitBitOr(*LHSComputationT, E))
2242       return false;
2243     break;
2244   default:
2245     llvm_unreachable("Unimplemented compound assign operator");
2246   }
2247 
2248   // And now cast from LHSComputationT to ResultT.
2249   if (ResultT != LHSComputationT) {
2250     if (!this->emitCast(*LHSComputationT, *ResultT, E))
2251       return false;
2252   }
2253 
2254   // And store the result in LHS.
2255   if (DiscardResult) {
2256     if (LHS->refersToBitField())
2257       return this->emitStoreBitFieldPop(*ResultT, E);
2258     return this->emitStorePop(*ResultT, E);
2259   }
2260   if (LHS->refersToBitField())
2261     return this->emitStoreBitField(*ResultT, E);
2262   return this->emitStore(*ResultT, E);
2263 }
2264 
2265 template <class Emitter>
2266 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
2267   LocalScope<Emitter> ES(this);
2268   const Expr *SubExpr = E->getSubExpr();
2269 
2270   return this->delegate(SubExpr) && ES.destroyLocals(E);
2271 }
2272 
2273 template <class Emitter>
2274 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
2275     const MaterializeTemporaryExpr *E) {
2276   const Expr *SubExpr = E->getSubExpr();
2277 
2278   if (Initializing) {
2279     // We already have a value, just initialize that.
2280     return this->delegate(SubExpr);
2281   }
2282   // If we don't end up using the materialized temporary anyway, don't
2283   // bother creating it.
2284   if (DiscardResult)
2285     return this->discard(SubExpr);
2286 
2287   // When we're initializing a global variable *or* the storage duration of
2288   // the temporary is explicitly static, create a global variable.
2289   std::optional<PrimType> SubExprT = classify(SubExpr);
2290   bool IsStatic = E->getStorageDuration() == SD_Static;
2291   if (IsStatic) {
2292     std::optional<unsigned> GlobalIndex = P.createGlobal(E);
2293     if (!GlobalIndex)
2294       return false;
2295 
2296     const LifetimeExtendedTemporaryDecl *TempDecl =
2297         E->getLifetimeExtendedTemporaryDecl();
2298     if (IsStatic)
2299       assert(TempDecl);
2300 
2301     if (SubExprT) {
2302       if (!this->visit(SubExpr))
2303         return false;
2304       if (IsStatic) {
2305         if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
2306           return false;
2307       } else {
2308         if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
2309           return false;
2310       }
2311       return this->emitGetPtrGlobal(*GlobalIndex, E);
2312     }
2313 
2314     // Non-primitive values.
2315     if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2316       return false;
2317     if (!this->visitInitializer(SubExpr))
2318       return false;
2319     if (IsStatic)
2320       return this->emitInitGlobalTempComp(TempDecl, E);
2321     return true;
2322   }
2323 
2324   // For everyhing else, use local variables.
2325   if (SubExprT) {
2326     unsigned LocalIndex = allocateLocalPrimitive(
2327         SubExpr, *SubExprT, /*IsConst=*/true, /*IsExtended=*/true);
2328     if (!this->visit(SubExpr))
2329       return false;
2330     if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
2331       return false;
2332     return this->emitGetPtrLocal(LocalIndex, E);
2333   } else {
2334     const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2335     if (std::optional<unsigned> LocalIndex =
2336             allocateLocal(Inner, E->getExtendingDecl())) {
2337       InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
2338       if (!this->emitGetPtrLocal(*LocalIndex, E))
2339         return false;
2340       return this->visitInitializer(SubExpr);
2341     }
2342   }
2343   return false;
2344 }
2345 
2346 template <class Emitter>
2347 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
2348     const CXXBindTemporaryExpr *E) {
2349   return this->delegate(E->getSubExpr());
2350 }
2351 
2352 template <class Emitter>
2353 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2354   const Expr *Init = E->getInitializer();
2355   if (DiscardResult)
2356     return this->discard(Init);
2357 
2358   if (Initializing) {
2359     // We already have a value, just initialize that.
2360     return this->visitInitializer(Init) && this->emitFinishInit(E);
2361   }
2362 
2363   std::optional<PrimType> T = classify(E->getType());
2364   if (E->isFileScope()) {
2365     // Avoid creating a variable if this is a primitive RValue anyway.
2366     if (T && !E->isLValue())
2367       return this->delegate(Init);
2368 
2369     if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
2370       if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2371         return false;
2372 
2373       if (T) {
2374         if (!this->visit(Init))
2375           return false;
2376         return this->emitInitGlobal(*T, *GlobalIndex, E);
2377       }
2378 
2379       return this->visitInitializer(Init) && this->emitFinishInit(E);
2380     }
2381 
2382     return false;
2383   }
2384 
2385   // Otherwise, use a local variable.
2386   if (T && !E->isLValue()) {
2387     // For primitive types, we just visit the initializer.
2388     return this->delegate(Init);
2389   } else {
2390     unsigned LocalIndex;
2391 
2392     if (T)
2393       LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
2394     else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
2395       LocalIndex = *MaybeIndex;
2396     else
2397       return false;
2398 
2399     if (!this->emitGetPtrLocal(LocalIndex, E))
2400       return false;
2401 
2402     if (T) {
2403       if (!this->visit(Init)) {
2404         return false;
2405       }
2406       return this->emitInit(*T, E);
2407     } else {
2408       if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
2409         return false;
2410     }
2411     return true;
2412   }
2413 
2414   return false;
2415 }
2416 
2417 template <class Emitter>
2418 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
2419   if (DiscardResult)
2420     return true;
2421   if (E->getType()->isBooleanType())
2422     return this->emitConstBool(E->getValue(), E);
2423   return this->emitConst(E->getValue(), E);
2424 }
2425 
2426 template <class Emitter>
2427 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
2428   if (DiscardResult)
2429     return true;
2430   return this->emitConst(E->getValue(), E);
2431 }
2432 
2433 template <class Emitter>
2434 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
2435   if (DiscardResult)
2436     return true;
2437 
2438   assert(Initializing);
2439   const Record *R = P.getOrCreateRecord(E->getLambdaClass());
2440 
2441   auto *CaptureInitIt = E->capture_init_begin();
2442   // Initialize all fields (which represent lambda captures) of the
2443   // record with their initializers.
2444   for (const Record::Field &F : R->fields()) {
2445     const Expr *Init = *CaptureInitIt;
2446     ++CaptureInitIt;
2447 
2448     if (!Init)
2449       continue;
2450 
2451     if (std::optional<PrimType> T = classify(Init)) {
2452       if (!this->visit(Init))
2453         return false;
2454 
2455       if (!this->emitInitField(*T, F.Offset, E))
2456         return false;
2457     } else {
2458       if (!this->emitGetPtrField(F.Offset, E))
2459         return false;
2460 
2461       if (!this->visitInitializer(Init))
2462         return false;
2463 
2464       if (!this->emitPopPtr(E))
2465         return false;
2466     }
2467   }
2468 
2469   return true;
2470 }
2471 
2472 template <class Emitter>
2473 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
2474   if (DiscardResult)
2475     return true;
2476 
2477   return this->delegate(E->getFunctionName());
2478 }
2479 
2480 template <class Emitter>
2481 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
2482   if (E->getSubExpr() && !this->discard(E->getSubExpr()))
2483     return false;
2484 
2485   return this->emitInvalid(E);
2486 }
2487 
2488 template <class Emitter>
2489 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
2490     const CXXReinterpretCastExpr *E) {
2491   const Expr *SubExpr = E->getSubExpr();
2492 
2493   bool TypesMatch = classify(E) == classify(SubExpr);
2494   if (!this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/!TypesMatch, E))
2495     return false;
2496 
2497   return this->delegate(SubExpr);
2498 }
2499 
2500 template <class Emitter>
2501 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
2502   assert(E->getType()->isBooleanType());
2503 
2504   if (DiscardResult)
2505     return true;
2506   return this->emitConstBool(E->getValue(), E);
2507 }
2508 
2509 template <class Emitter>
2510 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
2511   QualType T = E->getType();
2512   assert(!classify(T));
2513 
2514   if (T->isRecordType()) {
2515     const CXXConstructorDecl *Ctor = E->getConstructor();
2516 
2517     // Trivial copy/move constructor. Avoid copy.
2518     if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
2519         Ctor->isTrivial() &&
2520         E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
2521                                         T->getAsCXXRecordDecl()))
2522       return this->visitInitializer(E->getArg(0));
2523 
2524     // If we're discarding a construct expression, we still need
2525     // to allocate a variable and call the constructor and destructor.
2526     if (DiscardResult) {
2527       if (Ctor->isTrivial())
2528         return true;
2529       assert(!Initializing);
2530       std::optional<unsigned> LocalIndex = allocateLocal(E);
2531 
2532       if (!LocalIndex)
2533         return false;
2534 
2535       if (!this->emitGetPtrLocal(*LocalIndex, E))
2536         return false;
2537     }
2538 
2539     // Zero initialization.
2540     if (E->requiresZeroInitialization()) {
2541       const Record *R = getRecord(E->getType());
2542 
2543       if (!this->visitZeroRecordInitializer(R, E))
2544         return false;
2545 
2546       // If the constructor is trivial anyway, we're done.
2547       if (Ctor->isTrivial())
2548         return true;
2549     }
2550 
2551     const Function *Func = getFunction(Ctor);
2552 
2553     if (!Func)
2554       return false;
2555 
2556     assert(Func->hasThisPointer());
2557     assert(!Func->hasRVO());
2558 
2559     //  The This pointer is already on the stack because this is an initializer,
2560     //  but we need to dup() so the call() below has its own copy.
2561     if (!this->emitDupPtr(E))
2562       return false;
2563 
2564     // Constructor arguments.
2565     for (const auto *Arg : E->arguments()) {
2566       if (!this->visit(Arg))
2567         return false;
2568     }
2569 
2570     if (Func->isVariadic()) {
2571       uint32_t VarArgSize = 0;
2572       unsigned NumParams = Func->getNumWrittenParams();
2573       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
2574         VarArgSize +=
2575             align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
2576       }
2577       if (!this->emitCallVar(Func, VarArgSize, E))
2578         return false;
2579     } else {
2580       if (!this->emitCall(Func, 0, E))
2581         return false;
2582     }
2583 
2584     if (DiscardResult)
2585       return this->emitPopPtr(E);
2586     return this->emitFinishInit(E);
2587   }
2588 
2589   if (T->isArrayType()) {
2590     const ConstantArrayType *CAT =
2591         Ctx.getASTContext().getAsConstantArrayType(E->getType());
2592     if (!CAT)
2593       return false;
2594 
2595     size_t NumElems = CAT->getZExtSize();
2596     const Function *Func = getFunction(E->getConstructor());
2597     if (!Func || !Func->isConstexpr())
2598       return false;
2599 
2600     // FIXME(perf): We're calling the constructor once per array element here,
2601     //   in the old intepreter we had a special-case for trivial constructors.
2602     for (size_t I = 0; I != NumElems; ++I) {
2603       if (!this->emitConstUint64(I, E))
2604         return false;
2605       if (!this->emitArrayElemPtrUint64(E))
2606         return false;
2607 
2608       // Constructor arguments.
2609       for (const auto *Arg : E->arguments()) {
2610         if (!this->visit(Arg))
2611           return false;
2612       }
2613 
2614       if (!this->emitCall(Func, 0, E))
2615         return false;
2616     }
2617     return true;
2618   }
2619 
2620   return false;
2621 }
2622 
2623 template <class Emitter>
2624 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
2625   if (DiscardResult)
2626     return true;
2627 
2628   const APValue Val =
2629       E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
2630 
2631   // Things like __builtin_LINE().
2632   if (E->getType()->isIntegerType()) {
2633     assert(Val.isInt());
2634     const APSInt &I = Val.getInt();
2635     return this->emitConst(I, E);
2636   }
2637   // Otherwise, the APValue is an LValue, with only one element.
2638   // Theoretically, we don't need the APValue at all of course.
2639   assert(E->getType()->isPointerType());
2640   assert(Val.isLValue());
2641   const APValue::LValueBase &Base = Val.getLValueBase();
2642   if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
2643     return this->visit(LValueExpr);
2644 
2645   // Otherwise, we have a decl (which is the case for
2646   // __builtin_source_location).
2647   assert(Base.is<const ValueDecl *>());
2648   assert(Val.getLValuePath().size() == 0);
2649   const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
2650   assert(BaseDecl);
2651 
2652   auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
2653 
2654   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
2655   if (!GlobalIndex)
2656     return false;
2657 
2658   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2659     return false;
2660 
2661   const Record *R = getRecord(E->getType());
2662   const APValue &V = UGCD->getValue();
2663   for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
2664     const Record::Field *F = R->getField(I);
2665     const APValue &FieldValue = V.getStructField(I);
2666 
2667     PrimType FieldT = classifyPrim(F->Decl->getType());
2668 
2669     if (!this->visitAPValue(FieldValue, FieldT, E))
2670       return false;
2671     if (!this->emitInitField(FieldT, F->Offset, E))
2672       return false;
2673   }
2674 
2675   // Leave the pointer to the global on the stack.
2676   return true;
2677 }
2678 
2679 template <class Emitter>
2680 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
2681   unsigned N = E->getNumComponents();
2682   if (N == 0)
2683     return false;
2684 
2685   for (unsigned I = 0; I != N; ++I) {
2686     const OffsetOfNode &Node = E->getComponent(I);
2687     if (Node.getKind() == OffsetOfNode::Array) {
2688       const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
2689       PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
2690 
2691       if (DiscardResult) {
2692         if (!this->discard(ArrayIndexExpr))
2693           return false;
2694         continue;
2695       }
2696 
2697       if (!this->visit(ArrayIndexExpr))
2698         return false;
2699       // Cast to Sint64.
2700       if (IndexT != PT_Sint64) {
2701         if (!this->emitCast(IndexT, PT_Sint64, E))
2702           return false;
2703       }
2704     }
2705   }
2706 
2707   if (DiscardResult)
2708     return true;
2709 
2710   PrimType T = classifyPrim(E->getType());
2711   return this->emitOffsetOf(T, E, E);
2712 }
2713 
2714 template <class Emitter>
2715 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
2716     const CXXScalarValueInitExpr *E) {
2717   QualType Ty = E->getType();
2718 
2719   if (DiscardResult || Ty->isVoidType())
2720     return true;
2721 
2722   if (std::optional<PrimType> T = classify(Ty))
2723     return this->visitZeroInitializer(*T, Ty, E);
2724 
2725   if (const auto *CT = Ty->getAs<ComplexType>()) {
2726     if (!Initializing) {
2727       std::optional<unsigned> LocalIndex = allocateLocal(E);
2728       if (!LocalIndex)
2729         return false;
2730       if (!this->emitGetPtrLocal(*LocalIndex, E))
2731         return false;
2732     }
2733 
2734     // Initialize both fields to 0.
2735     QualType ElemQT = CT->getElementType();
2736     PrimType ElemT = classifyPrim(ElemQT);
2737 
2738     for (unsigned I = 0; I != 2; ++I) {
2739       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
2740         return false;
2741       if (!this->emitInitElem(ElemT, I, E))
2742         return false;
2743     }
2744     return true;
2745   }
2746 
2747   if (const auto *VT = Ty->getAs<VectorType>()) {
2748     // FIXME: Code duplication with the _Complex case above.
2749     if (!Initializing) {
2750       std::optional<unsigned> LocalIndex = allocateLocal(E);
2751       if (!LocalIndex)
2752         return false;
2753       if (!this->emitGetPtrLocal(*LocalIndex, E))
2754         return false;
2755     }
2756 
2757     // Initialize all fields to 0.
2758     QualType ElemQT = VT->getElementType();
2759     PrimType ElemT = classifyPrim(ElemQT);
2760 
2761     for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
2762       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
2763         return false;
2764       if (!this->emitInitElem(ElemT, I, E))
2765         return false;
2766     }
2767     return true;
2768   }
2769 
2770   return false;
2771 }
2772 
2773 template <class Emitter>
2774 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
2775   return this->emitConst(E->getPackLength(), E);
2776 }
2777 
2778 template <class Emitter>
2779 bool Compiler<Emitter>::VisitGenericSelectionExpr(
2780     const GenericSelectionExpr *E) {
2781   return this->delegate(E->getResultExpr());
2782 }
2783 
2784 template <class Emitter>
2785 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
2786   return this->delegate(E->getChosenSubExpr());
2787 }
2788 
2789 template <class Emitter>
2790 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
2791   if (DiscardResult)
2792     return true;
2793 
2794   return this->emitConst(E->getValue(), E);
2795 }
2796 
2797 template <class Emitter>
2798 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
2799     const CXXInheritedCtorInitExpr *E) {
2800   const CXXConstructorDecl *Ctor = E->getConstructor();
2801   assert(!Ctor->isTrivial() &&
2802          "Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
2803   const Function *F = this->getFunction(Ctor);
2804   assert(F);
2805   assert(!F->hasRVO());
2806   assert(F->hasThisPointer());
2807 
2808   if (!this->emitDupPtr(SourceInfo{}))
2809     return false;
2810 
2811   // Forward all arguments of the current function (which should be a
2812   // constructor itself) to the inherited ctor.
2813   // This is necessary because the calling code has pushed the pointer
2814   // of the correct base for  us already, but the arguments need
2815   // to come after.
2816   unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
2817   for (const ParmVarDecl *PD : Ctor->parameters()) {
2818     PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
2819 
2820     if (!this->emitGetParam(PT, Offset, E))
2821       return false;
2822     Offset += align(primSize(PT));
2823   }
2824 
2825   return this->emitCall(F, 0, E);
2826 }
2827 
2828 template <class Emitter>
2829 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
2830   assert(classifyPrim(E->getType()) == PT_Ptr);
2831   const Expr *Init = E->getInitializer();
2832   QualType ElementType = E->getAllocatedType();
2833   std::optional<PrimType> ElemT = classify(ElementType);
2834   unsigned PlacementArgs = E->getNumPlacementArgs();
2835   bool IsNoThrow = false;
2836 
2837   // FIXME: Better diagnostic. diag::note_constexpr_new_placement
2838   if (PlacementArgs != 0) {
2839     // The only new-placement list we support is of the form (std::nothrow).
2840     //
2841     // FIXME: There is no restriction on this, but it's not clear that any
2842     // other form makes any sense. We get here for cases such as:
2843     //
2844     //   new (std::align_val_t{N}) X(int)
2845     //
2846     // (which should presumably be valid only if N is a multiple of
2847     // alignof(int), and in any case can't be deallocated unless N is
2848     // alignof(X) and X has new-extended alignment).
2849     if (PlacementArgs != 1 || !E->getPlacementArg(0)->getType()->isNothrowT())
2850       return this->emitInvalid(E);
2851 
2852     if (!this->discard(E->getPlacementArg(0)))
2853       return false;
2854     IsNoThrow = true;
2855   }
2856 
2857   const Descriptor *Desc;
2858   if (ElemT) {
2859     if (E->isArray())
2860       Desc = nullptr; // We're not going to use it in this case.
2861     else
2862       Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
2863                                 /*IsConst=*/false, /*IsTemporary=*/false,
2864                                 /*IsMutable=*/false);
2865   } else {
2866     Desc = P.createDescriptor(
2867         E, ElementType.getTypePtr(),
2868         E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
2869         /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
2870   }
2871 
2872   if (E->isArray()) {
2873     std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
2874     if (!ArraySizeExpr)
2875       return false;
2876 
2877     const Expr *Stripped = *ArraySizeExpr;
2878     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
2879          Stripped = ICE->getSubExpr())
2880       if (ICE->getCastKind() != CK_NoOp &&
2881           ICE->getCastKind() != CK_IntegralCast)
2882         break;
2883 
2884     PrimType SizeT = classifyPrim(Stripped->getType());
2885 
2886     if (!this->visit(Stripped))
2887       return false;
2888 
2889     if (ElemT) {
2890       // N primitive elements.
2891       if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
2892         return false;
2893     } else {
2894       // N Composite elements.
2895       if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
2896         return false;
2897     }
2898 
2899     if (Init && !this->visitInitializer(Init))
2900       return false;
2901 
2902   } else {
2903     // Allocate just one element.
2904     if (!this->emitAlloc(Desc, E))
2905       return false;
2906 
2907     if (Init) {
2908       if (ElemT) {
2909         if (!this->visit(Init))
2910           return false;
2911 
2912         if (!this->emitInit(*ElemT, E))
2913           return false;
2914       } else {
2915         // Composite.
2916         if (!this->visitInitializer(Init))
2917           return false;
2918       }
2919     }
2920   }
2921 
2922   if (DiscardResult)
2923     return this->emitPopPtr(E);
2924 
2925   return true;
2926 }
2927 
2928 template <class Emitter>
2929 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
2930   const Expr *Arg = E->getArgument();
2931 
2932   // Arg must be an lvalue.
2933   if (!this->visit(Arg))
2934     return false;
2935 
2936   return this->emitFree(E->isArrayForm(), E);
2937 }
2938 
2939 template <class Emitter>
2940 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
2941   const Function *Func = nullptr;
2942   if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E))
2943     Func = F;
2944 
2945   if (!Func)
2946     return false;
2947   return this->emitGetFnPtr(Func, E);
2948 }
2949 
2950 template <class Emitter>
2951 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
2952   assert(Ctx.getLangOpts().CPlusPlus);
2953   return this->emitConstBool(E->getValue(), E);
2954 }
2955 
2956 template <class Emitter>
2957 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
2958   if (DiscardResult)
2959     return true;
2960   assert(!Initializing);
2961 
2962   const MSGuidDecl *GuidDecl = E->getGuidDecl();
2963   const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
2964   assert(RD);
2965   // If the definiton of the result type is incomplete, just return a dummy.
2966   // If (and when) that is read from, we will fail, but not now.
2967   if (!RD->isCompleteDefinition()) {
2968     if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl))
2969       return this->emitGetPtrGlobal(*I, E);
2970     return false;
2971   }
2972 
2973   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
2974   if (!GlobalIndex)
2975     return false;
2976   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2977     return false;
2978 
2979   assert(this->getRecord(E->getType()));
2980 
2981   const APValue &V = GuidDecl->getAsAPValue();
2982   if (V.getKind() == APValue::None)
2983     return true;
2984 
2985   assert(V.isStruct());
2986   assert(V.getStructNumBases() == 0);
2987   if (!this->visitAPValueInitializer(V, E))
2988     return false;
2989 
2990   return this->emitFinishInit(E);
2991 }
2992 
2993 template <class Emitter>
2994 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
2995   assert(classifyPrim(E->getType()) == PT_Bool);
2996   if (DiscardResult)
2997     return true;
2998   return this->emitConstBool(E->isSatisfied(), E);
2999 }
3000 
3001 template <class Emitter>
3002 bool Compiler<Emitter>::VisitConceptSpecializationExpr(
3003     const ConceptSpecializationExpr *E) {
3004   assert(classifyPrim(E->getType()) == PT_Bool);
3005   if (DiscardResult)
3006     return true;
3007   return this->emitConstBool(E->isSatisfied(), E);
3008 }
3009 
3010 template <class Emitter>
3011 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
3012     const CXXRewrittenBinaryOperator *E) {
3013   return this->delegate(E->getSemanticForm());
3014 }
3015 
3016 template <class Emitter>
3017 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
3018 
3019   for (const Expr *SemE : E->semantics()) {
3020     if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
3021       if (SemE == E->getResultExpr())
3022         return false;
3023 
3024       if (OVE->isUnique())
3025         continue;
3026 
3027       if (!this->discard(OVE))
3028         return false;
3029     } else if (SemE == E->getResultExpr()) {
3030       if (!this->delegate(SemE))
3031         return false;
3032     } else {
3033       if (!this->discard(SemE))
3034         return false;
3035     }
3036   }
3037   return true;
3038 }
3039 
3040 template <class Emitter>
3041 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
3042   return this->delegate(E->getSelectedExpr());
3043 }
3044 
3045 template <class Emitter>
3046 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
3047   return this->emitError(E);
3048 }
3049 
3050 template <class Emitter>
3051 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
3052   assert(E->getType()->isVoidPointerType());
3053 
3054   unsigned Offset = allocateLocalPrimitive(
3055       E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3056 
3057   return this->emitGetLocal(PT_Ptr, Offset, E);
3058 }
3059 
3060 template <class Emitter>
3061 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
3062   assert(Initializing);
3063   const auto *VT = E->getType()->castAs<VectorType>();
3064   QualType ElemType = VT->getElementType();
3065   PrimType ElemT = classifyPrim(ElemType);
3066   const Expr *Src = E->getSrcExpr();
3067   PrimType SrcElemT =
3068       classifyPrim(Src->getType()->castAs<VectorType>()->getElementType());
3069 
3070   unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
3071   if (!this->visit(Src))
3072     return false;
3073   if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
3074     return false;
3075 
3076   for (unsigned I = 0; I != VT->getNumElements(); ++I) {
3077     if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
3078       return false;
3079     if (!this->emitArrayElemPop(SrcElemT, I, E))
3080       return false;
3081     if (SrcElemT != ElemT) {
3082       if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
3083         return false;
3084     }
3085     if (!this->emitInitElem(ElemT, I, E))
3086       return false;
3087   }
3088 
3089   return true;
3090 }
3091 
3092 template <class Emitter>
3093 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
3094   assert(Initializing);
3095   assert(E->getNumSubExprs() > 2);
3096 
3097   const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
3098   const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
3099   PrimType ElemT = classifyPrim(VT->getElementType());
3100   unsigned NumInputElems = VT->getNumElements();
3101   unsigned NumOutputElems = E->getNumSubExprs() - 2;
3102   assert(NumOutputElems > 0);
3103 
3104   // Save both input vectors to a local variable.
3105   unsigned VectorOffsets[2];
3106   for (unsigned I = 0; I != 2; ++I) {
3107     VectorOffsets[I] = this->allocateLocalPrimitive(
3108         Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3109     if (!this->visit(Vecs[I]))
3110       return false;
3111     if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
3112       return false;
3113   }
3114   for (unsigned I = 0; I != NumOutputElems; ++I) {
3115     APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
3116     if (ShuffleIndex == -1)
3117       return this->emitInvalid(E); // FIXME: Better diagnostic.
3118 
3119     assert(ShuffleIndex < (NumInputElems * 2));
3120     if (!this->emitGetLocal(PT_Ptr,
3121                             VectorOffsets[ShuffleIndex >= NumInputElems], E))
3122       return false;
3123     unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
3124     if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
3125       return false;
3126 
3127     if (!this->emitInitElem(ElemT, I, E))
3128       return false;
3129   }
3130 
3131   return true;
3132 }
3133 
3134 template <class Emitter>
3135 bool Compiler<Emitter>::VisitExtVectorElementExpr(
3136     const ExtVectorElementExpr *E) {
3137   const Expr *Base = E->getBase();
3138   assert(
3139       Base->getType()->isVectorType() ||
3140       Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
3141 
3142   SmallVector<uint32_t, 4> Indices;
3143   E->getEncodedElementAccess(Indices);
3144 
3145   if (Indices.size() == 1) {
3146     if (!this->visit(Base))
3147       return false;
3148 
3149     if (E->isGLValue()) {
3150       if (!this->emitConstUint32(Indices[0], E))
3151         return false;
3152       return this->emitArrayElemPtrPop(PT_Uint32, E);
3153     }
3154     // Else, also load the value.
3155     return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
3156   }
3157 
3158   // Create a local variable for the base.
3159   unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
3160                                                /*IsExtended=*/false);
3161   if (!this->visit(Base))
3162     return false;
3163   if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
3164     return false;
3165 
3166   // Now the vector variable for the return value.
3167   if (!Initializing) {
3168     std::optional<unsigned> ResultIndex;
3169     ResultIndex = allocateLocal(E);
3170     if (!ResultIndex)
3171       return false;
3172     if (!this->emitGetPtrLocal(*ResultIndex, E))
3173       return false;
3174   }
3175 
3176   assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
3177 
3178   PrimType ElemT =
3179       classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
3180   uint32_t DstIndex = 0;
3181   for (uint32_t I : Indices) {
3182     if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
3183       return false;
3184     if (!this->emitArrayElemPop(ElemT, I, E))
3185       return false;
3186     if (!this->emitInitElem(ElemT, DstIndex, E))
3187       return false;
3188     ++DstIndex;
3189   }
3190 
3191   // Leave the result pointer on the stack.
3192   assert(!DiscardResult);
3193   return true;
3194 }
3195 
3196 template <class Emitter>
3197 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
3198   const Expr *SubExpr = E->getSubExpr();
3199   if (!E->isExpressibleAsConstantInitializer())
3200     return this->discard(SubExpr) && this->emitInvalid(E);
3201 
3202   return this->delegate(SubExpr);
3203 }
3204 
3205 template <class Emitter>
3206 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
3207     const CXXStdInitializerListExpr *E) {
3208   const Expr *SubExpr = E->getSubExpr();
3209   const ConstantArrayType *ArrayType =
3210       Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
3211   const Record *R = getRecord(E->getType());
3212   assert(Initializing);
3213   assert(SubExpr->isGLValue());
3214 
3215   if (!this->visit(SubExpr))
3216     return false;
3217   if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
3218     return false;
3219 
3220   PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
3221   if (isIntegralType(SecondFieldT)) {
3222     if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
3223                          SecondFieldT, E))
3224       return false;
3225     return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
3226   }
3227   assert(SecondFieldT == PT_Ptr);
3228 
3229   if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
3230     return false;
3231   if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
3232     return false;
3233   if (!this->emitArrayElemPtrPop(PT_Uint64, E))
3234     return false;
3235   return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
3236 }
3237 
3238 template <class Emitter>
3239 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
3240   BlockScope<Emitter> BS(this);
3241   StmtExprScope<Emitter> SS(this);
3242 
3243   const CompoundStmt *CS = E->getSubStmt();
3244   const Stmt *Result = CS->getStmtExprResult();
3245   for (const Stmt *S : CS->body()) {
3246     if (S != Result) {
3247       if (!this->visitStmt(S))
3248         return false;
3249       continue;
3250     }
3251 
3252     assert(S == Result);
3253     if (const Expr *ResultExpr = dyn_cast<Expr>(S))
3254       return this->delegate(ResultExpr);
3255     return this->emitUnsupported(E);
3256   }
3257 
3258   return BS.destroyLocals();
3259 }
3260 
3261 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
3262   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
3263                              /*NewInitializing=*/false);
3264   return this->Visit(E);
3265 }
3266 
3267 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
3268   // We're basically doing:
3269   // OptionScope<Emitter> Scope(this, DicardResult, Initializing);
3270   // but that's unnecessary of course.
3271   return this->Visit(E);
3272 }
3273 
3274 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
3275   if (E->getType().isNull())
3276     return false;
3277 
3278   if (E->getType()->isVoidType())
3279     return this->discard(E);
3280 
3281   // Create local variable to hold the return value.
3282   if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
3283       !classify(E->getType())) {
3284     std::optional<unsigned> LocalIndex = allocateLocal(E);
3285     if (!LocalIndex)
3286       return false;
3287 
3288     if (!this->emitGetPtrLocal(*LocalIndex, E))
3289       return false;
3290     return this->visitInitializer(E);
3291   }
3292 
3293   //  Otherwise,we have a primitive return value, produce the value directly
3294   //  and push it on the stack.
3295   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3296                              /*NewInitializing=*/false);
3297   return this->Visit(E);
3298 }
3299 
3300 template <class Emitter>
3301 bool Compiler<Emitter>::visitInitializer(const Expr *E) {
3302   assert(!classify(E->getType()));
3303 
3304   if (E->containsErrors())
3305     return this->emitError(E);
3306 
3307   if (!this->checkLiteralType(E))
3308     return false;
3309 
3310   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3311                              /*NewInitializing=*/true);
3312   return this->Visit(E);
3313 }
3314 
3315 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
3316   std::optional<PrimType> T = classify(E->getType());
3317   if (!T) {
3318     // Convert complex values to bool.
3319     if (E->getType()->isAnyComplexType()) {
3320       if (!this->visit(E))
3321         return false;
3322       return this->emitComplexBoolCast(E);
3323     }
3324     return false;
3325   }
3326 
3327   if (!this->visit(E))
3328     return false;
3329 
3330   if (T == PT_Bool)
3331     return true;
3332 
3333   // Convert pointers to bool.
3334   if (T == PT_Ptr || T == PT_FnPtr) {
3335     if (!this->emitNull(*T, nullptr, E))
3336       return false;
3337     return this->emitNE(*T, E);
3338   }
3339 
3340   // Or Floats.
3341   if (T == PT_Float)
3342     return this->emitCastFloatingIntegralBool(E);
3343 
3344   // Or anything else we can.
3345   return this->emitCast(*T, PT_Bool, E);
3346 }
3347 
3348 template <class Emitter>
3349 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
3350                                              const Expr *E) {
3351   switch (T) {
3352   case PT_Bool:
3353     return this->emitZeroBool(E);
3354   case PT_Sint8:
3355     return this->emitZeroSint8(E);
3356   case PT_Uint8:
3357     return this->emitZeroUint8(E);
3358   case PT_Sint16:
3359     return this->emitZeroSint16(E);
3360   case PT_Uint16:
3361     return this->emitZeroUint16(E);
3362   case PT_Sint32:
3363     return this->emitZeroSint32(E);
3364   case PT_Uint32:
3365     return this->emitZeroUint32(E);
3366   case PT_Sint64:
3367     return this->emitZeroSint64(E);
3368   case PT_Uint64:
3369     return this->emitZeroUint64(E);
3370   case PT_IntAP:
3371     return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
3372   case PT_IntAPS:
3373     return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
3374   case PT_Ptr:
3375     return this->emitNullPtr(nullptr, E);
3376   case PT_FnPtr:
3377     return this->emitNullFnPtr(nullptr, E);
3378   case PT_MemberPtr:
3379     return this->emitNullMemberPtr(nullptr, E);
3380   case PT_Float: {
3381     return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
3382   }
3383   }
3384   llvm_unreachable("unknown primitive type");
3385 }
3386 
3387 template <class Emitter>
3388 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
3389                                                    const Expr *E) {
3390   assert(E);
3391   assert(R);
3392   // Fields
3393   for (const Record::Field &Field : R->fields()) {
3394     if (Field.Decl->isUnnamedBitField())
3395       continue;
3396 
3397     const Descriptor *D = Field.Desc;
3398     if (D->isPrimitive()) {
3399       QualType QT = D->getType();
3400       PrimType T = classifyPrim(D->getType());
3401       if (!this->visitZeroInitializer(T, QT, E))
3402         return false;
3403       if (!this->emitInitField(T, Field.Offset, E))
3404         return false;
3405       if (R->isUnion())
3406         break;
3407       continue;
3408     }
3409 
3410     if (!this->emitGetPtrField(Field.Offset, E))
3411       return false;
3412 
3413     if (D->isPrimitiveArray()) {
3414       QualType ET = D->getElemQualType();
3415       PrimType T = classifyPrim(ET);
3416       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3417         if (!this->visitZeroInitializer(T, ET, E))
3418           return false;
3419         if (!this->emitInitElem(T, I, E))
3420           return false;
3421       }
3422     } else if (D->isCompositeArray()) {
3423       const Record *ElemRecord = D->ElemDesc->ElemRecord;
3424       assert(D->ElemDesc->ElemRecord);
3425       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3426         if (!this->emitConstUint32(I, E))
3427           return false;
3428         if (!this->emitArrayElemPtr(PT_Uint32, E))
3429           return false;
3430         if (!this->visitZeroRecordInitializer(ElemRecord, E))
3431           return false;
3432         if (!this->emitPopPtr(E))
3433           return false;
3434       }
3435     } else if (D->isRecord()) {
3436       if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
3437         return false;
3438     } else {
3439       assert(false);
3440     }
3441 
3442     if (!this->emitFinishInitPop(E))
3443       return false;
3444 
3445     if (R->isUnion())
3446       break;
3447   }
3448 
3449   for (const Record::Base &B : R->bases()) {
3450     if (!this->emitGetPtrBase(B.Offset, E))
3451       return false;
3452     if (!this->visitZeroRecordInitializer(B.R, E))
3453       return false;
3454     if (!this->emitFinishInitPop(E))
3455       return false;
3456   }
3457 
3458   // FIXME: Virtual bases.
3459 
3460   return true;
3461 }
3462 
3463 template <class Emitter>
3464 template <typename T>
3465 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
3466   switch (Ty) {
3467   case PT_Sint8:
3468     return this->emitConstSint8(Value, E);
3469   case PT_Uint8:
3470     return this->emitConstUint8(Value, E);
3471   case PT_Sint16:
3472     return this->emitConstSint16(Value, E);
3473   case PT_Uint16:
3474     return this->emitConstUint16(Value, E);
3475   case PT_Sint32:
3476     return this->emitConstSint32(Value, E);
3477   case PT_Uint32:
3478     return this->emitConstUint32(Value, E);
3479   case PT_Sint64:
3480     return this->emitConstSint64(Value, E);
3481   case PT_Uint64:
3482     return this->emitConstUint64(Value, E);
3483   case PT_Bool:
3484     return this->emitConstBool(Value, E);
3485   case PT_Ptr:
3486   case PT_FnPtr:
3487   case PT_MemberPtr:
3488   case PT_Float:
3489   case PT_IntAP:
3490   case PT_IntAPS:
3491     llvm_unreachable("Invalid integral type");
3492     break;
3493   }
3494   llvm_unreachable("unknown primitive type");
3495 }
3496 
3497 template <class Emitter>
3498 template <typename T>
3499 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
3500   return this->emitConst(Value, classifyPrim(E->getType()), E);
3501 }
3502 
3503 template <class Emitter>
3504 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
3505                                   const Expr *E) {
3506   if (Ty == PT_IntAPS)
3507     return this->emitConstIntAPS(Value, E);
3508   if (Ty == PT_IntAP)
3509     return this->emitConstIntAP(Value, E);
3510 
3511   if (Value.isSigned())
3512     return this->emitConst(Value.getSExtValue(), Ty, E);
3513   return this->emitConst(Value.getZExtValue(), Ty, E);
3514 }
3515 
3516 template <class Emitter>
3517 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
3518   return this->emitConst(Value, classifyPrim(E->getType()), E);
3519 }
3520 
3521 template <class Emitter>
3522 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
3523                                                    bool IsConst,
3524                                                    bool IsExtended) {
3525   // Make sure we don't accidentally register the same decl twice.
3526   if (const auto *VD =
3527           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3528     assert(!P.getGlobal(VD));
3529     assert(!Locals.contains(VD));
3530     (void)VD;
3531   }
3532 
3533   // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
3534   //   (int){12} in C. Consider using Expr::isTemporaryObject() instead
3535   //   or isa<MaterializeTemporaryExpr>().
3536   Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
3537                                      Src.is<const Expr *>());
3538   Scope::Local Local = this->createLocal(D);
3539   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
3540     Locals.insert({VD, Local});
3541   VarScope->add(Local, IsExtended);
3542   return Local.Offset;
3543 }
3544 
3545 template <class Emitter>
3546 std::optional<unsigned>
3547 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) {
3548   // Make sure we don't accidentally register the same decl twice.
3549   if ([[maybe_unused]] const auto *VD =
3550           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3551     assert(!P.getGlobal(VD));
3552     assert(!Locals.contains(VD));
3553   }
3554 
3555   QualType Ty;
3556   const ValueDecl *Key = nullptr;
3557   const Expr *Init = nullptr;
3558   bool IsTemporary = false;
3559   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3560     Key = VD;
3561     Ty = VD->getType();
3562 
3563     if (const auto *VarD = dyn_cast<VarDecl>(VD))
3564       Init = VarD->getInit();
3565   }
3566   if (auto *E = Src.dyn_cast<const Expr *>()) {
3567     IsTemporary = true;
3568     Ty = E->getType();
3569   }
3570 
3571   Descriptor *D = P.createDescriptor(
3572       Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
3573       IsTemporary, /*IsMutable=*/false, Init);
3574   if (!D)
3575     return std::nullopt;
3576 
3577   Scope::Local Local = this->createLocal(D);
3578   if (Key)
3579     Locals.insert({Key, Local});
3580   if (ExtendingDecl)
3581     VarScope->addExtended(Local, ExtendingDecl);
3582   else
3583     VarScope->add(Local, false);
3584   return Local.Offset;
3585 }
3586 
3587 template <class Emitter>
3588 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) {
3589   QualType Ty = E->getType();
3590   assert(!Ty->isRecordType());
3591 
3592   Descriptor *D = P.createDescriptor(
3593       E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
3594       /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
3595   assert(D);
3596 
3597   Scope::Local Local = this->createLocal(D);
3598   VariableScope<Emitter> *S = VarScope;
3599   assert(S);
3600   // Attach to topmost scope.
3601   while (S->getParent())
3602     S = S->getParent();
3603   assert(S && !S->getParent());
3604   S->addLocal(Local);
3605   return Local.Offset;
3606 }
3607 
3608 template <class Emitter>
3609 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
3610   if (const PointerType *PT = dyn_cast<PointerType>(Ty))
3611     return PT->getPointeeType()->getAs<RecordType>();
3612   return Ty->getAs<RecordType>();
3613 }
3614 
3615 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
3616   if (const auto *RecordTy = getRecordTy(Ty))
3617     return getRecord(RecordTy->getDecl());
3618   return nullptr;
3619 }
3620 
3621 template <class Emitter>
3622 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
3623   return P.getOrCreateRecord(RD);
3624 }
3625 
3626 template <class Emitter>
3627 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
3628   return Ctx.getOrCreateFunction(FD);
3629 }
3630 
3631 template <class Emitter> bool Compiler<Emitter>::visitExpr(const Expr *E) {
3632   LocalScope<Emitter> RootScope(this);
3633   // Void expressions.
3634   if (E->getType()->isVoidType()) {
3635     if (!visit(E))
3636       return false;
3637     return this->emitRetVoid(E) && RootScope.destroyLocals();
3638   }
3639 
3640   // Expressions with a primitive return type.
3641   if (std::optional<PrimType> T = classify(E)) {
3642     if (!visit(E))
3643       return false;
3644     return this->emitRet(*T, E) && RootScope.destroyLocals();
3645   }
3646 
3647   // Expressions with a composite return type.
3648   // For us, that means everything we don't
3649   // have a PrimType for.
3650   if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
3651     if (!this->emitGetPtrLocal(*LocalOffset, E))
3652       return false;
3653 
3654     if (!visitInitializer(E))
3655       return false;
3656 
3657     if (!this->emitFinishInit(E))
3658       return false;
3659     // We are destroying the locals AFTER the Ret op.
3660     // The Ret op needs to copy the (alive) values, but the
3661     // destructors may still turn the entire expression invalid.
3662     return this->emitRetValue(E) && RootScope.destroyLocals();
3663   }
3664 
3665   RootScope.destroyLocals();
3666   return false;
3667 }
3668 
3669 template <class Emitter>
3670 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
3671 
3672   auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
3673 
3674   if (R.notCreated())
3675     return R;
3676 
3677   if (R)
3678     return true;
3679 
3680   if (!R && Context::shouldBeGloballyIndexed(VD)) {
3681     if (auto GlobalIndex = P.getGlobal(VD)) {
3682       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
3683       GlobalInlineDescriptor &GD =
3684           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
3685 
3686       GD.InitState = GlobalInitState::InitializerFailed;
3687       GlobalBlock->invokeDtor();
3688     }
3689   }
3690 
3691   return R;
3692 }
3693 
3694 /// Toplevel visitDeclAndReturn().
3695 /// We get here from evaluateAsInitializer().
3696 /// We need to evaluate the initializer and return its value.
3697 template <class Emitter>
3698 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
3699                                            bool ConstantContext) {
3700   std::optional<PrimType> VarT = classify(VD->getType());
3701 
3702   // We only create variables if we're evaluating in a constant context.
3703   // Otherwise, just evaluate the initializer and return it.
3704   if (!ConstantContext) {
3705     DeclScope<Emitter> LS(this, VD);
3706     if (!this->visit(VD->getAnyInitializer()))
3707       return false;
3708     return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals();
3709   }
3710 
3711   LocalScope<Emitter> VDScope(this, VD);
3712   if (!this->visitVarDecl(VD, /*Toplevel=*/true))
3713     return false;
3714 
3715   if (Context::shouldBeGloballyIndexed(VD)) {
3716     auto GlobalIndex = P.getGlobal(VD);
3717     assert(GlobalIndex); // visitVarDecl() didn't return false.
3718     if (VarT) {
3719       if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
3720         return false;
3721     } else {
3722       if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
3723         return false;
3724     }
3725   } else {
3726     auto Local = Locals.find(VD);
3727     assert(Local != Locals.end()); // Same here.
3728     if (VarT) {
3729       if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
3730         return false;
3731     } else {
3732       if (!this->emitGetPtrLocal(Local->second.Offset, VD))
3733         return false;
3734     }
3735   }
3736 
3737   // Return the value.
3738   if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
3739     // If the Ret above failed and this is a global variable, mark it as
3740     // uninitialized, even everything else succeeded.
3741     if (Context::shouldBeGloballyIndexed(VD)) {
3742       auto GlobalIndex = P.getGlobal(VD);
3743       assert(GlobalIndex);
3744       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
3745       GlobalInlineDescriptor &GD =
3746           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
3747 
3748       GD.InitState = GlobalInitState::InitializerFailed;
3749       GlobalBlock->invokeDtor();
3750     }
3751     return false;
3752   }
3753 
3754   return VDScope.destroyLocals();
3755 }
3756 
3757 template <class Emitter>
3758 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
3759                                                  bool Toplevel) {
3760   // We don't know what to do with these, so just return false.
3761   if (VD->getType().isNull())
3762     return false;
3763 
3764   // This case is EvalEmitter-only. If we won't create any instructions for the
3765   // initializer anyway, don't bother creating the variable in the first place.
3766   if (!this->isActive())
3767     return VarCreationState::NotCreated();
3768 
3769   const Expr *Init = VD->getInit();
3770   std::optional<PrimType> VarT = classify(VD->getType());
3771 
3772   if (Init && Init->isValueDependent())
3773     return false;
3774 
3775   if (Context::shouldBeGloballyIndexed(VD)) {
3776     auto checkDecl = [&]() -> bool {
3777       bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
3778       return !NeedsOp || this->emitCheckDecl(VD, VD);
3779     };
3780 
3781     auto initGlobal = [&](unsigned GlobalIndex) -> bool {
3782       assert(Init);
3783       DeclScope<Emitter> LocalScope(this, VD);
3784 
3785       if (VarT) {
3786         if (!this->visit(Init))
3787           return checkDecl() && false;
3788 
3789         return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
3790       }
3791 
3792       if (!checkDecl())
3793         return false;
3794 
3795       if (!this->emitGetPtrGlobal(GlobalIndex, Init))
3796         return false;
3797 
3798       if (!visitInitializer(Init))
3799         return false;
3800 
3801       if (!this->emitFinishInit(Init))
3802         return false;
3803 
3804       return this->emitPopPtr(Init);
3805     };
3806 
3807     // We've already seen and initialized this global.
3808     if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
3809       if (P.getPtrGlobal(*GlobalIndex).isInitialized())
3810         return checkDecl();
3811 
3812       // The previous attempt at initialization might've been unsuccessful,
3813       // so let's try this one.
3814       return Init && checkDecl() && initGlobal(*GlobalIndex);
3815     }
3816 
3817     std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
3818 
3819     if (!GlobalIndex)
3820       return false;
3821 
3822     return !Init || (checkDecl() && initGlobal(*GlobalIndex));
3823   } else {
3824     InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
3825 
3826     if (VarT) {
3827       unsigned Offset = this->allocateLocalPrimitive(
3828           VD, *VarT, VD->getType().isConstQualified());
3829       if (Init) {
3830         // If this is a toplevel declaration, create a scope for the
3831         // initializer.
3832         if (Toplevel) {
3833           LocalScope<Emitter> Scope(this);
3834           if (!this->visit(Init))
3835             return false;
3836           return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
3837         } else {
3838           if (!this->visit(Init))
3839             return false;
3840           return this->emitSetLocal(*VarT, Offset, VD);
3841         }
3842       }
3843     } else {
3844       if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
3845         if (!Init)
3846           return true;
3847 
3848         if (!this->emitGetPtrLocal(*Offset, Init))
3849           return false;
3850 
3851         if (!visitInitializer(Init))
3852           return false;
3853 
3854         if (!this->emitFinishInit(Init))
3855           return false;
3856 
3857         return this->emitPopPtr(Init);
3858       }
3859       return false;
3860     }
3861     return true;
3862   }
3863 
3864   return false;
3865 }
3866 
3867 template <class Emitter>
3868 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
3869                                      const Expr *E) {
3870   assert(!DiscardResult);
3871   if (Val.isInt())
3872     return this->emitConst(Val.getInt(), ValType, E);
3873   else if (Val.isFloat())
3874     return this->emitConstFloat(Val.getFloat(), E);
3875 
3876   if (Val.isLValue()) {
3877     if (Val.isNullPointer())
3878       return this->emitNull(ValType, nullptr, E);
3879     APValue::LValueBase Base = Val.getLValueBase();
3880     if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
3881       return this->visit(BaseExpr);
3882     else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
3883       return this->visitDeclRef(VD, E);
3884     }
3885   } else if (Val.isMemberPointer()) {
3886     if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
3887       return this->emitGetMemberPtr(MemberDecl, E);
3888     return this->emitNullMemberPtr(nullptr, E);
3889   }
3890 
3891   return false;
3892 }
3893 
3894 template <class Emitter>
3895 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
3896                                                 const Expr *E) {
3897 
3898   if (Val.isStruct()) {
3899     const Record *R = this->getRecord(E->getType());
3900     assert(R);
3901     for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
3902       const APValue &F = Val.getStructField(I);
3903       const Record::Field *RF = R->getField(I);
3904 
3905       if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
3906         PrimType T = classifyPrim(RF->Decl->getType());
3907         if (!this->visitAPValue(F, T, E))
3908           return false;
3909         if (!this->emitInitField(T, RF->Offset, E))
3910           return false;
3911       } else if (F.isArray()) {
3912         assert(RF->Desc->isPrimitiveArray());
3913         const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
3914         PrimType ElemT = classifyPrim(ArrType->getElementType());
3915         assert(ArrType);
3916 
3917         if (!this->emitGetPtrField(RF->Offset, E))
3918           return false;
3919 
3920         for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
3921           if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
3922             return false;
3923           if (!this->emitInitElem(ElemT, A, E))
3924             return false;
3925         }
3926 
3927         if (!this->emitPopPtr(E))
3928           return false;
3929       } else if (F.isStruct() || F.isUnion()) {
3930         if (!this->emitGetPtrField(RF->Offset, E))
3931           return false;
3932         if (!this->visitAPValueInitializer(F, E))
3933           return false;
3934         if (!this->emitPopPtr(E))
3935           return false;
3936       } else {
3937         assert(false && "I don't think this should be possible");
3938       }
3939     }
3940     return true;
3941   } else if (Val.isUnion()) {
3942     const FieldDecl *UnionField = Val.getUnionField();
3943     const Record *R = this->getRecord(UnionField->getParent());
3944     assert(R);
3945     const APValue &F = Val.getUnionValue();
3946     const Record::Field *RF = R->getField(UnionField);
3947     PrimType T = classifyPrim(RF->Decl->getType());
3948     if (!this->visitAPValue(F, T, E))
3949       return false;
3950     return this->emitInitField(T, RF->Offset, E);
3951   }
3952   // TODO: Other types.
3953 
3954   return false;
3955 }
3956 
3957 template <class Emitter>
3958 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E) {
3959   const Function *Func = getFunction(E->getDirectCallee());
3960   if (!Func)
3961     return false;
3962 
3963   // For these, we're expected to ultimately return an APValue pointing
3964   // to the CallExpr. This is needed to get the correct codegen.
3965   unsigned Builtin = E->getBuiltinCallee();
3966   if (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
3967       Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
3968       Builtin == Builtin::BI__builtin_ptrauth_sign_constant ||
3969       Builtin == Builtin::BI__builtin_function_start) {
3970     if (std::optional<unsigned> GlobalOffset = P.createGlobal(E)) {
3971       if (!this->emitGetPtrGlobal(*GlobalOffset, E))
3972         return false;
3973 
3974       if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT))
3975         return this->emitDecayPtr(PT_Ptr, PT, E);
3976       return true;
3977     }
3978     return false;
3979   }
3980 
3981   QualType ReturnType = E->getType();
3982   std::optional<PrimType> ReturnT = classify(E);
3983 
3984   // Non-primitive return type. Prepare storage.
3985   if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
3986     std::optional<unsigned> LocalIndex = allocateLocal(E);
3987     if (!LocalIndex)
3988       return false;
3989     if (!this->emitGetPtrLocal(*LocalIndex, E))
3990       return false;
3991   }
3992 
3993   if (!Func->isUnevaluatedBuiltin()) {
3994     // Put arguments on the stack.
3995     for (const auto *Arg : E->arguments()) {
3996       if (!this->visit(Arg))
3997         return false;
3998     }
3999   }
4000 
4001   if (!this->emitCallBI(Func, E, E))
4002     return false;
4003 
4004   if (DiscardResult && !ReturnType->isVoidType()) {
4005     assert(ReturnT);
4006     return this->emitPop(*ReturnT, E);
4007   }
4008 
4009   return true;
4010 }
4011 
4012 template <class Emitter>
4013 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
4014   if (E->getBuiltinCallee())
4015     return VisitBuiltinCallExpr(E);
4016 
4017   QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
4018   std::optional<PrimType> T = classify(ReturnType);
4019   bool HasRVO = !ReturnType->isVoidType() && !T;
4020   const FunctionDecl *FuncDecl = E->getDirectCallee();
4021 
4022   if (HasRVO) {
4023     if (DiscardResult) {
4024       // If we need to discard the return value but the function returns its
4025       // value via an RVO pointer, we need to create one such pointer just
4026       // for this call.
4027       if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4028         if (!this->emitGetPtrLocal(*LocalIndex, E))
4029           return false;
4030       }
4031     } else {
4032       // We need the result. Prepare a pointer to return or
4033       // dup the current one.
4034       if (!Initializing) {
4035         if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4036           if (!this->emitGetPtrLocal(*LocalIndex, E))
4037             return false;
4038         }
4039       }
4040       if (!this->emitDupPtr(E))
4041         return false;
4042     }
4043   }
4044 
4045   SmallVector<const Expr *, 8> Args(
4046       llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
4047 
4048   bool IsAssignmentOperatorCall = false;
4049   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
4050       OCE && OCE->isAssignmentOp()) {
4051     // Just like with regular assignments, we need to special-case assignment
4052     // operators here and evaluate the RHS (the second arg) before the LHS (the
4053     // first arg. We fix this by using a Flip op later.
4054     assert(Args.size() == 2);
4055     IsAssignmentOperatorCall = true;
4056     std::reverse(Args.begin(), Args.end());
4057   }
4058   // Calling a static operator will still
4059   // pass the instance, but we don't need it.
4060   // Discard it here.
4061   if (isa<CXXOperatorCallExpr>(E)) {
4062     if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
4063         MD && MD->isStatic()) {
4064       if (!this->discard(E->getArg(0)))
4065         return false;
4066       // Drop first arg.
4067       Args.erase(Args.begin());
4068     }
4069   }
4070 
4071   std::optional<unsigned> CalleeOffset;
4072   // Add the (optional, implicit) This pointer.
4073   if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
4074     if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
4075       // If we end up creating a CallPtr op for this, we need the base of the
4076       // member pointer as the instance pointer, and later extract the function
4077       // decl as the function pointer.
4078       const Expr *Callee = E->getCallee();
4079       CalleeOffset =
4080           this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
4081       if (!this->visit(Callee))
4082         return false;
4083       if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
4084         return false;
4085       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4086         return false;
4087       if (!this->emitGetMemberPtrBase(E))
4088         return false;
4089     } else if (!this->visit(MC->getImplicitObjectArgument())) {
4090       return false;
4091     }
4092   } else if (!FuncDecl) {
4093     const Expr *Callee = E->getCallee();
4094     CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false);
4095     if (!this->visit(Callee))
4096       return false;
4097     if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E))
4098       return false;
4099   }
4100 
4101   llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
4102   // Put arguments on the stack.
4103   unsigned ArgIndex = 0;
4104   for (const auto *Arg : Args) {
4105     if (!this->visit(Arg))
4106       return false;
4107 
4108     // If we know the callee already, check the known parametrs for nullability.
4109     if (FuncDecl && NonNullArgs[ArgIndex]) {
4110       PrimType ArgT = classify(Arg).value_or(PT_Ptr);
4111       if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
4112         if (!this->emitCheckNonNullArg(ArgT, Arg))
4113           return false;
4114       }
4115     }
4116     ++ArgIndex;
4117   }
4118 
4119   // Undo the argument reversal we did earlier.
4120   if (IsAssignmentOperatorCall) {
4121     assert(Args.size() == 2);
4122     PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
4123     PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
4124     if (!this->emitFlip(Arg2T, Arg1T, E))
4125       return false;
4126   }
4127 
4128   if (FuncDecl) {
4129     const Function *Func = getFunction(FuncDecl);
4130     if (!Func)
4131       return false;
4132     assert(HasRVO == Func->hasRVO());
4133 
4134     bool HasQualifier = false;
4135     if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
4136       HasQualifier = ME->hasQualifier();
4137 
4138     bool IsVirtual = false;
4139     if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
4140       IsVirtual = MD->isVirtual();
4141 
4142     // In any case call the function. The return value will end up on the stack
4143     // and if the function has RVO, we already have the pointer on the stack to
4144     // write the result into.
4145     if (IsVirtual && !HasQualifier) {
4146       uint32_t VarArgSize = 0;
4147       unsigned NumParams =
4148           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4149       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4150         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4151 
4152       if (!this->emitCallVirt(Func, VarArgSize, E))
4153         return false;
4154     } else if (Func->isVariadic()) {
4155       uint32_t VarArgSize = 0;
4156       unsigned NumParams =
4157           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4158       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4159         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4160       if (!this->emitCallVar(Func, VarArgSize, E))
4161         return false;
4162     } else {
4163       if (!this->emitCall(Func, 0, E))
4164         return false;
4165     }
4166   } else {
4167     // Indirect call. Visit the callee, which will leave a FunctionPointer on
4168     // the stack. Cleanup of the returned value if necessary will be done after
4169     // the function call completed.
4170 
4171     // Sum the size of all args from the call expr.
4172     uint32_t ArgSize = 0;
4173     for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
4174       ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4175 
4176     // Get the callee, either from a member pointer or function pointer saved in
4177     // CalleeOffset.
4178     if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
4179       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4180         return false;
4181       if (!this->emitGetMemberPtrDecl(E))
4182         return false;
4183     } else {
4184       if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E))
4185         return false;
4186     }
4187     if (!this->emitCallPtr(ArgSize, E, E))
4188       return false;
4189   }
4190 
4191   // Cleanup for discarded return values.
4192   if (DiscardResult && !ReturnType->isVoidType() && T)
4193     return this->emitPop(*T, E);
4194 
4195   return true;
4196 }
4197 
4198 template <class Emitter>
4199 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4200   SourceLocScope<Emitter> SLS(this, E);
4201 
4202   return this->delegate(E->getExpr());
4203 }
4204 
4205 template <class Emitter>
4206 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
4207   SourceLocScope<Emitter> SLS(this, E);
4208 
4209   const Expr *SubExpr = E->getExpr();
4210   if (std::optional<PrimType> T = classify(E->getExpr()))
4211     return this->visit(SubExpr);
4212 
4213   assert(Initializing);
4214   return this->visitInitializer(SubExpr);
4215 }
4216 
4217 template <class Emitter>
4218 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4219   if (DiscardResult)
4220     return true;
4221 
4222   return this->emitConstBool(E->getValue(), E);
4223 }
4224 
4225 template <class Emitter>
4226 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
4227     const CXXNullPtrLiteralExpr *E) {
4228   if (DiscardResult)
4229     return true;
4230 
4231   return this->emitNullPtr(nullptr, E);
4232 }
4233 
4234 template <class Emitter>
4235 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
4236   if (DiscardResult)
4237     return true;
4238 
4239   assert(E->getType()->isIntegerType());
4240 
4241   PrimType T = classifyPrim(E->getType());
4242   return this->emitZero(T, E);
4243 }
4244 
4245 template <class Emitter>
4246 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
4247   if (DiscardResult)
4248     return true;
4249 
4250   if (this->LambdaThisCapture.Offset > 0) {
4251     if (this->LambdaThisCapture.IsPtr)
4252       return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
4253     return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
4254   }
4255 
4256   // In some circumstances, the 'this' pointer does not actually refer to the
4257   // instance pointer of the current function frame, but e.g. to the declaration
4258   // currently being initialized. Here we emit the necessary instruction(s) for
4259   // this scenario.
4260   if (!InitStackActive || !E->isImplicit())
4261     return this->emitThis(E);
4262 
4263   if (InitStackActive && !InitStack.empty()) {
4264     unsigned StartIndex = 0;
4265     for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
4266       if (InitStack[StartIndex].Kind != InitLink::K_Field &&
4267           InitStack[StartIndex].Kind != InitLink::K_Elem)
4268         break;
4269     }
4270 
4271     for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) {
4272       if (!InitStack[I].template emit<Emitter>(this, E))
4273         return false;
4274     }
4275     return true;
4276   }
4277   return this->emitThis(E);
4278 }
4279 
4280 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
4281   switch (S->getStmtClass()) {
4282   case Stmt::CompoundStmtClass:
4283     return visitCompoundStmt(cast<CompoundStmt>(S));
4284   case Stmt::DeclStmtClass:
4285     return visitDeclStmt(cast<DeclStmt>(S));
4286   case Stmt::ReturnStmtClass:
4287     return visitReturnStmt(cast<ReturnStmt>(S));
4288   case Stmt::IfStmtClass:
4289     return visitIfStmt(cast<IfStmt>(S));
4290   case Stmt::WhileStmtClass:
4291     return visitWhileStmt(cast<WhileStmt>(S));
4292   case Stmt::DoStmtClass:
4293     return visitDoStmt(cast<DoStmt>(S));
4294   case Stmt::ForStmtClass:
4295     return visitForStmt(cast<ForStmt>(S));
4296   case Stmt::CXXForRangeStmtClass:
4297     return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
4298   case Stmt::BreakStmtClass:
4299     return visitBreakStmt(cast<BreakStmt>(S));
4300   case Stmt::ContinueStmtClass:
4301     return visitContinueStmt(cast<ContinueStmt>(S));
4302   case Stmt::SwitchStmtClass:
4303     return visitSwitchStmt(cast<SwitchStmt>(S));
4304   case Stmt::CaseStmtClass:
4305     return visitCaseStmt(cast<CaseStmt>(S));
4306   case Stmt::DefaultStmtClass:
4307     return visitDefaultStmt(cast<DefaultStmt>(S));
4308   case Stmt::AttributedStmtClass:
4309     return visitAttributedStmt(cast<AttributedStmt>(S));
4310   case Stmt::CXXTryStmtClass:
4311     return visitCXXTryStmt(cast<CXXTryStmt>(S));
4312   case Stmt::NullStmtClass:
4313     return true;
4314   // Always invalid statements.
4315   case Stmt::GCCAsmStmtClass:
4316   case Stmt::MSAsmStmtClass:
4317   case Stmt::GotoStmtClass:
4318     return this->emitInvalid(S);
4319   case Stmt::LabelStmtClass:
4320     return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
4321   default: {
4322     if (const auto *E = dyn_cast<Expr>(S))
4323       return this->discard(E);
4324     return false;
4325   }
4326   }
4327 }
4328 
4329 template <class Emitter>
4330 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
4331   BlockScope<Emitter> Scope(this);
4332   for (const auto *InnerStmt : S->body())
4333     if (!visitStmt(InnerStmt))
4334       return false;
4335   return Scope.destroyLocals();
4336 }
4337 
4338 template <class Emitter>
4339 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
4340   for (const auto *D : DS->decls()) {
4341     if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
4342             FunctionDecl>(D))
4343       continue;
4344 
4345     const auto *VD = dyn_cast<VarDecl>(D);
4346     if (!VD)
4347       return false;
4348     if (!this->visitVarDecl(VD))
4349       return false;
4350   }
4351 
4352   return true;
4353 }
4354 
4355 template <class Emitter>
4356 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
4357   if (this->InStmtExpr)
4358     return this->emitUnsupported(RS);
4359 
4360   if (const Expr *RE = RS->getRetValue()) {
4361     LocalScope<Emitter> RetScope(this);
4362     if (ReturnType) {
4363       // Primitive types are simply returned.
4364       if (!this->visit(RE))
4365         return false;
4366       this->emitCleanup();
4367       return this->emitRet(*ReturnType, RS);
4368     } else if (RE->getType()->isVoidType()) {
4369       if (!this->visit(RE))
4370         return false;
4371     } else {
4372       // RVO - construct the value in the return location.
4373       if (!this->emitRVOPtr(RE))
4374         return false;
4375       if (!this->visitInitializer(RE))
4376         return false;
4377       if (!this->emitPopPtr(RE))
4378         return false;
4379 
4380       this->emitCleanup();
4381       return this->emitRetVoid(RS);
4382     }
4383   }
4384 
4385   // Void return.
4386   this->emitCleanup();
4387   return this->emitRetVoid(RS);
4388 }
4389 
4390 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
4391   if (auto *CondInit = IS->getInit())
4392     if (!visitStmt(CondInit))
4393       return false;
4394 
4395   if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
4396     if (!visitDeclStmt(CondDecl))
4397       return false;
4398 
4399   // Compile condition.
4400   if (IS->isNonNegatedConsteval()) {
4401     if (!this->emitIsConstantContext(IS))
4402       return false;
4403   } else if (IS->isNegatedConsteval()) {
4404     if (!this->emitIsConstantContext(IS))
4405       return false;
4406     if (!this->emitInv(IS))
4407       return false;
4408   } else {
4409     if (!this->visitBool(IS->getCond()))
4410       return false;
4411   }
4412 
4413   if (const Stmt *Else = IS->getElse()) {
4414     LabelTy LabelElse = this->getLabel();
4415     LabelTy LabelEnd = this->getLabel();
4416     if (!this->jumpFalse(LabelElse))
4417       return false;
4418     if (!visitStmt(IS->getThen()))
4419       return false;
4420     if (!this->jump(LabelEnd))
4421       return false;
4422     this->emitLabel(LabelElse);
4423     if (!visitStmt(Else))
4424       return false;
4425     this->emitLabel(LabelEnd);
4426   } else {
4427     LabelTy LabelEnd = this->getLabel();
4428     if (!this->jumpFalse(LabelEnd))
4429       return false;
4430     if (!visitStmt(IS->getThen()))
4431       return false;
4432     this->emitLabel(LabelEnd);
4433   }
4434 
4435   return true;
4436 }
4437 
4438 template <class Emitter>
4439 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
4440   const Expr *Cond = S->getCond();
4441   const Stmt *Body = S->getBody();
4442 
4443   LabelTy CondLabel = this->getLabel(); // Label before the condition.
4444   LabelTy EndLabel = this->getLabel();  // Label after the loop.
4445   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4446 
4447   this->fallthrough(CondLabel);
4448   this->emitLabel(CondLabel);
4449 
4450   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4451     if (!visitDeclStmt(CondDecl))
4452       return false;
4453 
4454   if (!this->visitBool(Cond))
4455     return false;
4456   if (!this->jumpFalse(EndLabel))
4457     return false;
4458 
4459   if (!this->visitStmt(Body))
4460     return false;
4461 
4462   if (!this->jump(CondLabel))
4463     return false;
4464   this->fallthrough(EndLabel);
4465   this->emitLabel(EndLabel);
4466 
4467   return true;
4468 }
4469 
4470 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
4471   const Expr *Cond = S->getCond();
4472   const Stmt *Body = S->getBody();
4473 
4474   LabelTy StartLabel = this->getLabel();
4475   LabelTy EndLabel = this->getLabel();
4476   LabelTy CondLabel = this->getLabel();
4477   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4478 
4479   this->fallthrough(StartLabel);
4480   this->emitLabel(StartLabel);
4481   {
4482     if (!this->visitStmt(Body))
4483       return false;
4484     this->fallthrough(CondLabel);
4485     this->emitLabel(CondLabel);
4486     if (!this->visitBool(Cond))
4487       return false;
4488   }
4489   if (!this->jumpTrue(StartLabel))
4490     return false;
4491 
4492   this->fallthrough(EndLabel);
4493   this->emitLabel(EndLabel);
4494   return true;
4495 }
4496 
4497 template <class Emitter>
4498 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
4499   // for (Init; Cond; Inc) { Body }
4500   const Stmt *Init = S->getInit();
4501   const Expr *Cond = S->getCond();
4502   const Expr *Inc = S->getInc();
4503   const Stmt *Body = S->getBody();
4504 
4505   LabelTy EndLabel = this->getLabel();
4506   LabelTy CondLabel = this->getLabel();
4507   LabelTy IncLabel = this->getLabel();
4508   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4509 
4510   if (Init && !this->visitStmt(Init))
4511     return false;
4512 
4513   this->fallthrough(CondLabel);
4514   this->emitLabel(CondLabel);
4515 
4516   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4517     if (!visitDeclStmt(CondDecl))
4518       return false;
4519 
4520   if (Cond) {
4521     if (!this->visitBool(Cond))
4522       return false;
4523     if (!this->jumpFalse(EndLabel))
4524       return false;
4525   }
4526 
4527   {
4528     if (Body && !this->visitStmt(Body))
4529       return false;
4530 
4531     this->fallthrough(IncLabel);
4532     this->emitLabel(IncLabel);
4533     if (Inc && !this->discard(Inc))
4534       return false;
4535   }
4536 
4537   if (!this->jump(CondLabel))
4538     return false;
4539   this->fallthrough(EndLabel);
4540   this->emitLabel(EndLabel);
4541   return true;
4542 }
4543 
4544 template <class Emitter>
4545 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
4546   const Stmt *Init = S->getInit();
4547   const Expr *Cond = S->getCond();
4548   const Expr *Inc = S->getInc();
4549   const Stmt *Body = S->getBody();
4550   const Stmt *BeginStmt = S->getBeginStmt();
4551   const Stmt *RangeStmt = S->getRangeStmt();
4552   const Stmt *EndStmt = S->getEndStmt();
4553   const VarDecl *LoopVar = S->getLoopVariable();
4554 
4555   LabelTy EndLabel = this->getLabel();
4556   LabelTy CondLabel = this->getLabel();
4557   LabelTy IncLabel = this->getLabel();
4558   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4559 
4560   // Emit declarations needed in the loop.
4561   if (Init && !this->visitStmt(Init))
4562     return false;
4563   if (!this->visitStmt(RangeStmt))
4564     return false;
4565   if (!this->visitStmt(BeginStmt))
4566     return false;
4567   if (!this->visitStmt(EndStmt))
4568     return false;
4569 
4570   // Now the condition as well as the loop variable assignment.
4571   this->fallthrough(CondLabel);
4572   this->emitLabel(CondLabel);
4573   if (!this->visitBool(Cond))
4574     return false;
4575   if (!this->jumpFalse(EndLabel))
4576     return false;
4577 
4578   if (!this->visitVarDecl(LoopVar))
4579     return false;
4580 
4581   // Body.
4582   {
4583     if (!this->visitStmt(Body))
4584       return false;
4585 
4586     this->fallthrough(IncLabel);
4587     this->emitLabel(IncLabel);
4588     if (!this->discard(Inc))
4589       return false;
4590   }
4591 
4592   if (!this->jump(CondLabel))
4593     return false;
4594 
4595   this->fallthrough(EndLabel);
4596   this->emitLabel(EndLabel);
4597   return true;
4598 }
4599 
4600 template <class Emitter>
4601 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
4602   if (!BreakLabel)
4603     return false;
4604 
4605   this->emitCleanup();
4606   return this->jump(*BreakLabel);
4607 }
4608 
4609 template <class Emitter>
4610 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
4611   if (!ContinueLabel)
4612     return false;
4613 
4614   this->emitCleanup();
4615   return this->jump(*ContinueLabel);
4616 }
4617 
4618 template <class Emitter>
4619 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
4620   const Expr *Cond = S->getCond();
4621   PrimType CondT = this->classifyPrim(Cond->getType());
4622 
4623   LabelTy EndLabel = this->getLabel();
4624   OptLabelTy DefaultLabel = std::nullopt;
4625   unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
4626 
4627   if (const auto *CondInit = S->getInit())
4628     if (!visitStmt(CondInit))
4629       return false;
4630 
4631   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4632     if (!visitDeclStmt(CondDecl))
4633       return false;
4634 
4635   // Initialize condition variable.
4636   if (!this->visit(Cond))
4637     return false;
4638   if (!this->emitSetLocal(CondT, CondVar, S))
4639     return false;
4640 
4641   CaseMap CaseLabels;
4642   // Create labels and comparison ops for all case statements.
4643   for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
4644        SC = SC->getNextSwitchCase()) {
4645     if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
4646       // FIXME: Implement ranges.
4647       if (CS->caseStmtIsGNURange())
4648         return false;
4649       CaseLabels[SC] = this->getLabel();
4650 
4651       const Expr *Value = CS->getLHS();
4652       PrimType ValueT = this->classifyPrim(Value->getType());
4653 
4654       // Compare the case statement's value to the switch condition.
4655       if (!this->emitGetLocal(CondT, CondVar, CS))
4656         return false;
4657       if (!this->visit(Value))
4658         return false;
4659 
4660       // Compare and jump to the case label.
4661       if (!this->emitEQ(ValueT, S))
4662         return false;
4663       if (!this->jumpTrue(CaseLabels[CS]))
4664         return false;
4665     } else {
4666       assert(!DefaultLabel);
4667       DefaultLabel = this->getLabel();
4668     }
4669   }
4670 
4671   // If none of the conditions above were true, fall through to the default
4672   // statement or jump after the switch statement.
4673   if (DefaultLabel) {
4674     if (!this->jump(*DefaultLabel))
4675       return false;
4676   } else {
4677     if (!this->jump(EndLabel))
4678       return false;
4679   }
4680 
4681   SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
4682   if (!this->visitStmt(S->getBody()))
4683     return false;
4684   this->emitLabel(EndLabel);
4685   return true;
4686 }
4687 
4688 template <class Emitter>
4689 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
4690   this->emitLabel(CaseLabels[S]);
4691   return this->visitStmt(S->getSubStmt());
4692 }
4693 
4694 template <class Emitter>
4695 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
4696   this->emitLabel(*DefaultLabel);
4697   return this->visitStmt(S->getSubStmt());
4698 }
4699 
4700 template <class Emitter>
4701 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
4702   if (this->Ctx.getLangOpts().CXXAssumptions &&
4703       !this->Ctx.getLangOpts().MSVCCompat) {
4704     for (const Attr *A : S->getAttrs()) {
4705       auto *AA = dyn_cast<CXXAssumeAttr>(A);
4706       if (!AA)
4707         continue;
4708 
4709       assert(isa<NullStmt>(S->getSubStmt()));
4710 
4711       const Expr *Assumption = AA->getAssumption();
4712       if (Assumption->isValueDependent())
4713         return false;
4714 
4715       if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
4716         continue;
4717 
4718       // Evaluate assumption.
4719       if (!this->visitBool(Assumption))
4720         return false;
4721 
4722       if (!this->emitAssume(Assumption))
4723         return false;
4724     }
4725   }
4726 
4727   // Ignore other attributes.
4728   return this->visitStmt(S->getSubStmt());
4729 }
4730 
4731 template <class Emitter>
4732 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
4733   // Ignore all handlers.
4734   return this->visitStmt(S->getTryBlock());
4735 }
4736 
4737 template <class Emitter>
4738 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
4739   assert(MD->isLambdaStaticInvoker());
4740   assert(MD->hasBody());
4741   assert(cast<CompoundStmt>(MD->getBody())->body_empty());
4742 
4743   const CXXRecordDecl *ClosureClass = MD->getParent();
4744   const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
4745   assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
4746   const Function *Func = this->getFunction(LambdaCallOp);
4747   if (!Func)
4748     return false;
4749   assert(Func->hasThisPointer());
4750   assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
4751 
4752   if (Func->hasRVO()) {
4753     if (!this->emitRVOPtr(MD))
4754       return false;
4755   }
4756 
4757   // The lambda call operator needs an instance pointer, but we don't have
4758   // one here, and we don't need one either because the lambda cannot have
4759   // any captures, as verified above. Emit a null pointer. This is then
4760   // special-cased when interpreting to not emit any misleading diagnostics.
4761   if (!this->emitNullPtr(nullptr, MD))
4762     return false;
4763 
4764   // Forward all arguments from the static invoker to the lambda call operator.
4765   for (const ParmVarDecl *PVD : MD->parameters()) {
4766     auto It = this->Params.find(PVD);
4767     assert(It != this->Params.end());
4768 
4769     // We do the lvalue-to-rvalue conversion manually here, so no need
4770     // to care about references.
4771     PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
4772     if (!this->emitGetParam(ParamType, It->second.Offset, MD))
4773       return false;
4774   }
4775 
4776   if (!this->emitCall(Func, 0, LambdaCallOp))
4777     return false;
4778 
4779   this->emitCleanup();
4780   if (ReturnType)
4781     return this->emitRet(*ReturnType, MD);
4782 
4783   // Nothing to do, since we emitted the RVO pointer above.
4784   return this->emitRetVoid(MD);
4785 }
4786 
4787 template <class Emitter>
4788 bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
4789   if (Ctx.getLangOpts().CPlusPlus23)
4790     return true;
4791 
4792   if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
4793     return true;
4794 
4795   return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
4796 }
4797 
4798 template <class Emitter>
4799 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
4800   assert(!ReturnType);
4801 
4802   auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
4803                                   const Expr *InitExpr) -> bool {
4804     // We don't know what to do with these, so just return false.
4805     if (InitExpr->getType().isNull())
4806       return false;
4807 
4808     if (std::optional<PrimType> T = this->classify(InitExpr)) {
4809       if (!this->visit(InitExpr))
4810         return false;
4811 
4812       if (F->isBitField())
4813         return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
4814       return this->emitInitThisField(*T, FieldOffset, InitExpr);
4815     }
4816     // Non-primitive case. Get a pointer to the field-to-initialize
4817     // on the stack and call visitInitialzer() for it.
4818     InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
4819     if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
4820       return false;
4821 
4822     if (!this->visitInitializer(InitExpr))
4823       return false;
4824 
4825     return this->emitFinishInitPop(InitExpr);
4826   };
4827 
4828   const RecordDecl *RD = Ctor->getParent();
4829   const Record *R = this->getRecord(RD);
4830   if (!R)
4831     return false;
4832 
4833   if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
4834     // union copy and move ctors are special.
4835     assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
4836     if (!this->emitThis(Ctor))
4837       return false;
4838 
4839     auto PVD = Ctor->getParamDecl(0);
4840     ParamOffset PO = this->Params[PVD]; // Must exist.
4841 
4842     if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
4843       return false;
4844 
4845     return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
4846            this->emitRetVoid(Ctor);
4847   }
4848 
4849   InitLinkScope<Emitter> InitScope(this, InitLink::This());
4850   for (const auto *Init : Ctor->inits()) {
4851     // Scope needed for the initializers.
4852     BlockScope<Emitter> Scope(this);
4853 
4854     const Expr *InitExpr = Init->getInit();
4855     if (const FieldDecl *Member = Init->getMember()) {
4856       const Record::Field *F = R->getField(Member);
4857 
4858       if (!emitFieldInitializer(F, F->Offset, InitExpr))
4859         return false;
4860     } else if (const Type *Base = Init->getBaseClass()) {
4861       const auto *BaseDecl = Base->getAsCXXRecordDecl();
4862       assert(BaseDecl);
4863 
4864       if (Init->isBaseVirtual()) {
4865         assert(R->getVirtualBase(BaseDecl));
4866         if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
4867           return false;
4868 
4869       } else {
4870         // Base class initializer.
4871         // Get This Base and call initializer on it.
4872         const Record::Base *B = R->getBase(BaseDecl);
4873         assert(B);
4874         if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
4875           return false;
4876       }
4877 
4878       if (!this->visitInitializer(InitExpr))
4879         return false;
4880       if (!this->emitFinishInitPop(InitExpr))
4881         return false;
4882     } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
4883       assert(IFD->getChainingSize() >= 2);
4884 
4885       unsigned NestedFieldOffset = 0;
4886       const Record::Field *NestedField = nullptr;
4887       for (const NamedDecl *ND : IFD->chain()) {
4888         const auto *FD = cast<FieldDecl>(ND);
4889         const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
4890         assert(FieldRecord);
4891 
4892         NestedField = FieldRecord->getField(FD);
4893         assert(NestedField);
4894 
4895         NestedFieldOffset += NestedField->Offset;
4896       }
4897       assert(NestedField);
4898 
4899       if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
4900         return false;
4901     } else {
4902       assert(Init->isDelegatingInitializer());
4903       if (!this->emitThis(InitExpr))
4904         return false;
4905       if (!this->visitInitializer(Init->getInit()))
4906         return false;
4907       if (!this->emitPopPtr(InitExpr))
4908         return false;
4909     }
4910 
4911     if (!Scope.destroyLocals())
4912       return false;
4913   }
4914 
4915   if (const auto *Body = Ctor->getBody())
4916     if (!visitStmt(Body))
4917       return false;
4918 
4919   return this->emitRetVoid(SourceInfo{});
4920 }
4921 
4922 template <class Emitter>
4923 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
4924   const RecordDecl *RD = Dtor->getParent();
4925   const Record *R = this->getRecord(RD);
4926   if (!R)
4927     return false;
4928 
4929   if (!Dtor->isTrivial() && Dtor->getBody()) {
4930     if (!this->visitStmt(Dtor->getBody()))
4931       return false;
4932   }
4933 
4934   if (!this->emitThis(Dtor))
4935     return false;
4936 
4937   assert(R);
4938   if (!R->isUnion()) {
4939     // First, destroy all fields.
4940     for (const Record::Field &Field : llvm::reverse(R->fields())) {
4941       const Descriptor *D = Field.Desc;
4942       if (!D->isPrimitive() && !D->isPrimitiveArray()) {
4943         if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
4944           return false;
4945         if (!this->emitDestruction(D))
4946           return false;
4947         if (!this->emitPopPtr(SourceInfo{}))
4948           return false;
4949       }
4950     }
4951   }
4952 
4953   for (const Record::Base &Base : llvm::reverse(R->bases())) {
4954     if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
4955       return false;
4956     if (!this->emitRecordDestruction(Base.R))
4957       return false;
4958     if (!this->emitPopPtr(SourceInfo{}))
4959       return false;
4960   }
4961 
4962   // FIXME: Virtual bases.
4963   return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
4964 }
4965 
4966 template <class Emitter>
4967 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
4968   // Classify the return type.
4969   ReturnType = this->classify(F->getReturnType());
4970 
4971   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
4972     return this->compileConstructor(Ctor);
4973   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
4974     return this->compileDestructor(Dtor);
4975 
4976   // Emit custom code if this is a lambda static invoker.
4977   if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
4978       MD && MD->isLambdaStaticInvoker())
4979     return this->emitLambdaStaticInvokerBody(MD);
4980 
4981   // Regular functions.
4982   if (const auto *Body = F->getBody())
4983     if (!visitStmt(Body))
4984       return false;
4985 
4986   // Emit a guard return to protect against a code path missing one.
4987   if (F->getReturnType()->isVoidType())
4988     return this->emitRetVoid(SourceInfo{});
4989   return this->emitNoRet(SourceInfo{});
4990 }
4991 
4992 template <class Emitter>
4993 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
4994   const Expr *SubExpr = E->getSubExpr();
4995   if (SubExpr->getType()->isAnyComplexType())
4996     return this->VisitComplexUnaryOperator(E);
4997   std::optional<PrimType> T = classify(SubExpr->getType());
4998 
4999   switch (E->getOpcode()) {
5000   case UO_PostInc: { // x++
5001     if (!Ctx.getLangOpts().CPlusPlus14)
5002       return this->emitInvalid(E);
5003     if (!T)
5004       return this->emitError(E);
5005 
5006     if (!this->visit(SubExpr))
5007       return false;
5008 
5009     if (T == PT_Ptr || T == PT_FnPtr) {
5010       if (!this->emitIncPtr(E))
5011         return false;
5012 
5013       return DiscardResult ? this->emitPopPtr(E) : true;
5014     }
5015 
5016     if (T == PT_Float) {
5017       return DiscardResult ? this->emitIncfPop(getRoundingMode(E), E)
5018                            : this->emitIncf(getRoundingMode(E), E);
5019     }
5020 
5021     return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
5022   }
5023   case UO_PostDec: { // x--
5024     if (!Ctx.getLangOpts().CPlusPlus14)
5025       return this->emitInvalid(E);
5026     if (!T)
5027       return this->emitError(E);
5028 
5029     if (!this->visit(SubExpr))
5030       return false;
5031 
5032     if (T == PT_Ptr || T == PT_FnPtr) {
5033       if (!this->emitDecPtr(E))
5034         return false;
5035 
5036       return DiscardResult ? this->emitPopPtr(E) : true;
5037     }
5038 
5039     if (T == PT_Float) {
5040       return DiscardResult ? this->emitDecfPop(getRoundingMode(E), E)
5041                            : this->emitDecf(getRoundingMode(E), E);
5042     }
5043 
5044     return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
5045   }
5046   case UO_PreInc: { // ++x
5047     if (!Ctx.getLangOpts().CPlusPlus14)
5048       return this->emitInvalid(E);
5049     if (!T)
5050       return this->emitError(E);
5051 
5052     if (!this->visit(SubExpr))
5053       return false;
5054 
5055     if (T == PT_Ptr || T == PT_FnPtr) {
5056       if (!this->emitLoadPtr(E))
5057         return false;
5058       if (!this->emitConstUint8(1, E))
5059         return false;
5060       if (!this->emitAddOffsetUint8(E))
5061         return false;
5062       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5063     }
5064 
5065     // Post-inc and pre-inc are the same if the value is to be discarded.
5066     if (DiscardResult) {
5067       if (T == PT_Float)
5068         return this->emitIncfPop(getRoundingMode(E), E);
5069       return this->emitIncPop(*T, E);
5070     }
5071 
5072     if (T == PT_Float) {
5073       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5074       if (!this->emitLoadFloat(E))
5075         return false;
5076       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5077         return false;
5078       if (!this->emitAddf(getRoundingMode(E), E))
5079         return false;
5080       if (!this->emitStoreFloat(E))
5081         return false;
5082     } else {
5083       assert(isIntegralType(*T));
5084       if (!this->emitLoad(*T, E))
5085         return false;
5086       if (!this->emitConst(1, E))
5087         return false;
5088       if (!this->emitAdd(*T, E))
5089         return false;
5090       if (!this->emitStore(*T, E))
5091         return false;
5092     }
5093     return E->isGLValue() || this->emitLoadPop(*T, E);
5094   }
5095   case UO_PreDec: { // --x
5096     if (!Ctx.getLangOpts().CPlusPlus14)
5097       return this->emitInvalid(E);
5098     if (!T)
5099       return this->emitError(E);
5100 
5101     if (!this->visit(SubExpr))
5102       return false;
5103 
5104     if (T == PT_Ptr || T == PT_FnPtr) {
5105       if (!this->emitLoadPtr(E))
5106         return false;
5107       if (!this->emitConstUint8(1, E))
5108         return false;
5109       if (!this->emitSubOffsetUint8(E))
5110         return false;
5111       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5112     }
5113 
5114     // Post-dec and pre-dec are the same if the value is to be discarded.
5115     if (DiscardResult) {
5116       if (T == PT_Float)
5117         return this->emitDecfPop(getRoundingMode(E), E);
5118       return this->emitDecPop(*T, E);
5119     }
5120 
5121     if (T == PT_Float) {
5122       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5123       if (!this->emitLoadFloat(E))
5124         return false;
5125       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5126         return false;
5127       if (!this->emitSubf(getRoundingMode(E), E))
5128         return false;
5129       if (!this->emitStoreFloat(E))
5130         return false;
5131     } else {
5132       assert(isIntegralType(*T));
5133       if (!this->emitLoad(*T, E))
5134         return false;
5135       if (!this->emitConst(1, E))
5136         return false;
5137       if (!this->emitSub(*T, E))
5138         return false;
5139       if (!this->emitStore(*T, E))
5140         return false;
5141     }
5142     return E->isGLValue() || this->emitLoadPop(*T, E);
5143   }
5144   case UO_LNot: // !x
5145     if (!T)
5146       return this->emitError(E);
5147 
5148     if (DiscardResult)
5149       return this->discard(SubExpr);
5150 
5151     if (!this->visitBool(SubExpr))
5152       return false;
5153 
5154     if (!this->emitInv(E))
5155       return false;
5156 
5157     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5158       return this->emitCast(PT_Bool, ET, E);
5159     return true;
5160   case UO_Minus: // -x
5161     if (!T)
5162       return this->emitError(E);
5163 
5164     if (!this->visit(SubExpr))
5165       return false;
5166     return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
5167   case UO_Plus: // +x
5168     if (!T)
5169       return this->emitError(E);
5170 
5171     if (!this->visit(SubExpr)) // noop
5172       return false;
5173     return DiscardResult ? this->emitPop(*T, E) : true;
5174   case UO_AddrOf: // &x
5175     if (E->getType()->isMemberPointerType()) {
5176       // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5177       // member can be formed.
5178       return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
5179     }
5180     // We should already have a pointer when we get here.
5181     return this->delegate(SubExpr);
5182   case UO_Deref: // *x
5183     if (DiscardResult)
5184       return this->discard(SubExpr);
5185     return this->visit(SubExpr);
5186   case UO_Not: // ~x
5187     if (!T)
5188       return this->emitError(E);
5189 
5190     if (!this->visit(SubExpr))
5191       return false;
5192     return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
5193   case UO_Real: // __real x
5194     assert(T);
5195     return this->delegate(SubExpr);
5196   case UO_Imag: { // __imag x
5197     assert(T);
5198     if (!this->discard(SubExpr))
5199       return false;
5200     return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
5201   }
5202   case UO_Extension:
5203     return this->delegate(SubExpr);
5204   case UO_Coawait:
5205     assert(false && "Unhandled opcode");
5206   }
5207 
5208   return false;
5209 }
5210 
5211 template <class Emitter>
5212 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
5213   const Expr *SubExpr = E->getSubExpr();
5214   assert(SubExpr->getType()->isAnyComplexType());
5215 
5216   if (DiscardResult)
5217     return this->discard(SubExpr);
5218 
5219   std::optional<PrimType> ResT = classify(E);
5220   auto prepareResult = [=]() -> bool {
5221     if (!ResT && !Initializing) {
5222       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5223       if (!LocalIndex)
5224         return false;
5225       return this->emitGetPtrLocal(*LocalIndex, E);
5226     }
5227 
5228     return true;
5229   };
5230 
5231   // The offset of the temporary, if we created one.
5232   unsigned SubExprOffset = ~0u;
5233   auto createTemp = [=, &SubExprOffset]() -> bool {
5234     SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5235     if (!this->visit(SubExpr))
5236       return false;
5237     return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
5238   };
5239 
5240   PrimType ElemT = classifyComplexElementType(SubExpr->getType());
5241   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5242     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5243       return false;
5244     return this->emitArrayElemPop(ElemT, Index, E);
5245   };
5246 
5247   switch (E->getOpcode()) {
5248   case UO_Minus:
5249     if (!prepareResult())
5250       return false;
5251     if (!createTemp())
5252       return false;
5253     for (unsigned I = 0; I != 2; ++I) {
5254       if (!getElem(SubExprOffset, I))
5255         return false;
5256       if (!this->emitNeg(ElemT, E))
5257         return false;
5258       if (!this->emitInitElem(ElemT, I, E))
5259         return false;
5260     }
5261     break;
5262 
5263   case UO_Plus:   // +x
5264   case UO_AddrOf: // &x
5265   case UO_Deref:  // *x
5266     return this->delegate(SubExpr);
5267 
5268   case UO_LNot:
5269     if (!this->visit(SubExpr))
5270       return false;
5271     if (!this->emitComplexBoolCast(SubExpr))
5272       return false;
5273     if (!this->emitInv(E))
5274       return false;
5275     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5276       return this->emitCast(PT_Bool, ET, E);
5277     return true;
5278 
5279   case UO_Real:
5280     return this->emitComplexReal(SubExpr);
5281 
5282   case UO_Imag:
5283     if (!this->visit(SubExpr))
5284       return false;
5285 
5286     if (SubExpr->isLValue()) {
5287       if (!this->emitConstUint8(1, E))
5288         return false;
5289       return this->emitArrayElemPtrPopUint8(E);
5290     }
5291 
5292     // Since our _Complex implementation does not map to a primitive type,
5293     // we sometimes have to do the lvalue-to-rvalue conversion here manually.
5294     return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
5295 
5296   case UO_Not: // ~x
5297     if (!this->visit(SubExpr))
5298       return false;
5299     // Negate the imaginary component.
5300     if (!this->emitArrayElem(ElemT, 1, E))
5301       return false;
5302     if (!this->emitNeg(ElemT, E))
5303       return false;
5304     if (!this->emitInitElem(ElemT, 1, E))
5305       return false;
5306     return DiscardResult ? this->emitPopPtr(E) : true;
5307 
5308   case UO_Extension:
5309     return this->delegate(SubExpr);
5310 
5311   default:
5312     return this->emitInvalid(E);
5313   }
5314 
5315   return true;
5316 }
5317 
5318 template <class Emitter>
5319 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
5320   if (DiscardResult)
5321     return true;
5322 
5323   if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
5324     return this->emitConst(ECD->getInitVal(), E);
5325   } else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
5326     return this->visit(BD->getBinding());
5327   } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
5328     const Function *F = getFunction(FuncDecl);
5329     return F && this->emitGetFnPtr(F, E);
5330   } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
5331     if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
5332       if (!this->emitGetPtrGlobal(*Index, E))
5333         return false;
5334       if (std::optional<PrimType> T = classify(E->getType())) {
5335         if (!this->visitAPValue(TPOD->getValue(), *T, E))
5336           return false;
5337         return this->emitInitGlobal(*T, *Index, E);
5338       }
5339       return this->visitAPValueInitializer(TPOD->getValue(), E);
5340     }
5341     return false;
5342   }
5343 
5344   // References are implemented via pointers, so when we see a DeclRefExpr
5345   // pointing to a reference, we need to get its value directly (i.e. the
5346   // pointer to the actual value) instead of a pointer to the pointer to the
5347   // value.
5348   bool IsReference = D->getType()->isReferenceType();
5349 
5350   // Check for local/global variables and parameters.
5351   if (auto It = Locals.find(D); It != Locals.end()) {
5352     const unsigned Offset = It->second.Offset;
5353     if (IsReference)
5354       return this->emitGetLocal(PT_Ptr, Offset, E);
5355     return this->emitGetPtrLocal(Offset, E);
5356   } else if (auto GlobalIndex = P.getGlobal(D)) {
5357     if (IsReference) {
5358       if (!Ctx.getLangOpts().CPlusPlus11)
5359         return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
5360       return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
5361     }
5362 
5363     return this->emitGetPtrGlobal(*GlobalIndex, E);
5364   } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
5365     if (auto It = this->Params.find(PVD); It != this->Params.end()) {
5366       if (IsReference || !It->second.IsPtr)
5367         return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
5368 
5369       return this->emitGetPtrParam(It->second.Offset, E);
5370     }
5371   }
5372 
5373   // In case we need to re-visit a declaration.
5374   auto revisit = [&](const VarDecl *VD) -> bool {
5375     auto VarState = this->visitDecl(VD);
5376 
5377     if (VarState.notCreated())
5378       return true;
5379     if (!VarState)
5380       return false;
5381     // Retry.
5382     return this->visitDeclRef(D, E);
5383   };
5384 
5385   // Handle lambda captures.
5386   if (auto It = this->LambdaCaptures.find(D);
5387       It != this->LambdaCaptures.end()) {
5388     auto [Offset, IsPtr] = It->second;
5389 
5390     if (IsPtr)
5391       return this->emitGetThisFieldPtr(Offset, E);
5392     return this->emitGetPtrThisField(Offset, E);
5393   } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
5394              DRE && DRE->refersToEnclosingVariableOrCapture()) {
5395     if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
5396       return revisit(VD);
5397   }
5398 
5399   if (D != InitializingDecl) {
5400     // Try to lazily visit (or emit dummy pointers for) declarations
5401     // we haven't seen yet.
5402     if (Ctx.getLangOpts().CPlusPlus) {
5403       if (const auto *VD = dyn_cast<VarDecl>(D)) {
5404         const auto typeShouldBeVisited = [&](QualType T) -> bool {
5405           if (T.isConstant(Ctx.getASTContext()))
5406             return true;
5407           if (const auto *RT = T->getAs<ReferenceType>())
5408             return RT->getPointeeType().isConstQualified();
5409           return false;
5410         };
5411 
5412         // DecompositionDecls are just proxies for us.
5413         if (isa<DecompositionDecl>(VD))
5414           return revisit(VD);
5415 
5416         // Visit local const variables like normal.
5417         if ((VD->hasGlobalStorage() || VD->isLocalVarDecl() ||
5418              VD->isStaticDataMember()) &&
5419             typeShouldBeVisited(VD->getType()))
5420           return revisit(VD);
5421       }
5422     } else {
5423       if (const auto *VD = dyn_cast<VarDecl>(D);
5424           VD && VD->getAnyInitializer() &&
5425           VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
5426         return revisit(VD);
5427     }
5428   }
5429 
5430   if (std::optional<unsigned> I = P.getOrCreateDummy(D)) {
5431     if (!this->emitGetPtrGlobal(*I, E))
5432       return false;
5433     if (E->getType()->isVoidType())
5434       return true;
5435     // Convert the dummy pointer to another pointer type if we have to.
5436     if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
5437       if (isPtrType(PT))
5438         return this->emitDecayPtr(PT_Ptr, PT, E);
5439       return false;
5440     }
5441     return true;
5442   }
5443 
5444   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
5445     return this->emitInvalidDeclRef(DRE, E);
5446   return false;
5447 }
5448 
5449 template <class Emitter>
5450 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
5451   const auto *D = E->getDecl();
5452   return this->visitDeclRef(D, E);
5453 }
5454 
5455 template <class Emitter> void Compiler<Emitter>::emitCleanup() {
5456   for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
5457     C->emitDestruction();
5458 }
5459 
5460 template <class Emitter>
5461 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
5462                                               const QualType DerivedType) {
5463   const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
5464     if (const auto *R = Ty->getPointeeCXXRecordDecl())
5465       return R;
5466     return Ty->getAsCXXRecordDecl();
5467   };
5468   const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
5469   const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
5470 
5471   return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
5472 }
5473 
5474 /// Emit casts from a PrimType to another PrimType.
5475 template <class Emitter>
5476 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
5477                                      QualType ToQT, const Expr *E) {
5478 
5479   if (FromT == PT_Float) {
5480     // Floating to floating.
5481     if (ToT == PT_Float) {
5482       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
5483       return this->emitCastFP(ToSem, getRoundingMode(E), E);
5484     }
5485 
5486     if (ToT == PT_IntAP)
5487       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), E);
5488     if (ToT == PT_IntAPS)
5489       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), E);
5490 
5491     // Float to integral.
5492     if (isIntegralType(ToT) || ToT == PT_Bool)
5493       return this->emitCastFloatingIntegral(ToT, E);
5494   }
5495 
5496   if (isIntegralType(FromT) || FromT == PT_Bool) {
5497     if (ToT == PT_IntAP)
5498       return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
5499     if (ToT == PT_IntAPS)
5500       return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
5501 
5502     // Integral to integral.
5503     if (isIntegralType(ToT) || ToT == PT_Bool)
5504       return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
5505 
5506     if (ToT == PT_Float) {
5507       // Integral to floating.
5508       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
5509       return this->emitCastIntegralFloating(FromT, ToSem, getRoundingMode(E),
5510                                             E);
5511     }
5512   }
5513 
5514   return false;
5515 }
5516 
5517 /// Emits __real(SubExpr)
5518 template <class Emitter>
5519 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
5520   assert(SubExpr->getType()->isAnyComplexType());
5521 
5522   if (DiscardResult)
5523     return this->discard(SubExpr);
5524 
5525   if (!this->visit(SubExpr))
5526     return false;
5527   if (SubExpr->isLValue()) {
5528     if (!this->emitConstUint8(0, SubExpr))
5529       return false;
5530     return this->emitArrayElemPtrPopUint8(SubExpr);
5531   }
5532 
5533   // Rvalue, load the actual element.
5534   return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
5535                                 0, SubExpr);
5536 }
5537 
5538 template <class Emitter>
5539 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
5540   assert(!DiscardResult);
5541   PrimType ElemT = classifyComplexElementType(E->getType());
5542   // We emit the expression (__real(E) != 0 || __imag(E) != 0)
5543   // for us, that means (bool)E[0] || (bool)E[1]
5544   if (!this->emitArrayElem(ElemT, 0, E))
5545     return false;
5546   if (ElemT == PT_Float) {
5547     if (!this->emitCastFloatingIntegral(PT_Bool, E))
5548       return false;
5549   } else {
5550     if (!this->emitCast(ElemT, PT_Bool, E))
5551       return false;
5552   }
5553 
5554   // We now have the bool value of E[0] on the stack.
5555   LabelTy LabelTrue = this->getLabel();
5556   if (!this->jumpTrue(LabelTrue))
5557     return false;
5558 
5559   if (!this->emitArrayElemPop(ElemT, 1, E))
5560     return false;
5561   if (ElemT == PT_Float) {
5562     if (!this->emitCastFloatingIntegral(PT_Bool, E))
5563       return false;
5564   } else {
5565     if (!this->emitCast(ElemT, PT_Bool, E))
5566       return false;
5567   }
5568   // Leave the boolean value of E[1] on the stack.
5569   LabelTy EndLabel = this->getLabel();
5570   this->jump(EndLabel);
5571 
5572   this->emitLabel(LabelTrue);
5573   if (!this->emitPopPtr(E))
5574     return false;
5575   if (!this->emitConstBool(true, E))
5576     return false;
5577 
5578   this->fallthrough(EndLabel);
5579   this->emitLabel(EndLabel);
5580 
5581   return true;
5582 }
5583 
5584 template <class Emitter>
5585 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
5586                                               const BinaryOperator *E) {
5587   assert(E->isComparisonOp());
5588   assert(!Initializing);
5589   assert(!DiscardResult);
5590 
5591   PrimType ElemT;
5592   bool LHSIsComplex;
5593   unsigned LHSOffset;
5594   if (LHS->getType()->isAnyComplexType()) {
5595     LHSIsComplex = true;
5596     ElemT = classifyComplexElementType(LHS->getType());
5597     LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
5598                                        /*IsExtended=*/false);
5599     if (!this->visit(LHS))
5600       return false;
5601     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
5602       return false;
5603   } else {
5604     LHSIsComplex = false;
5605     PrimType LHST = classifyPrim(LHS->getType());
5606     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
5607     if (!this->visit(LHS))
5608       return false;
5609     if (!this->emitSetLocal(LHST, LHSOffset, E))
5610       return false;
5611   }
5612 
5613   bool RHSIsComplex;
5614   unsigned RHSOffset;
5615   if (RHS->getType()->isAnyComplexType()) {
5616     RHSIsComplex = true;
5617     ElemT = classifyComplexElementType(RHS->getType());
5618     RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
5619                                        /*IsExtended=*/false);
5620     if (!this->visit(RHS))
5621       return false;
5622     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
5623       return false;
5624   } else {
5625     RHSIsComplex = false;
5626     PrimType RHST = classifyPrim(RHS->getType());
5627     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
5628     if (!this->visit(RHS))
5629       return false;
5630     if (!this->emitSetLocal(RHST, RHSOffset, E))
5631       return false;
5632   }
5633 
5634   auto getElem = [&](unsigned LocalOffset, unsigned Index,
5635                      bool IsComplex) -> bool {
5636     if (IsComplex) {
5637       if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
5638         return false;
5639       return this->emitArrayElemPop(ElemT, Index, E);
5640     }
5641     return this->emitGetLocal(ElemT, LocalOffset, E);
5642   };
5643 
5644   for (unsigned I = 0; I != 2; ++I) {
5645     // Get both values.
5646     if (!getElem(LHSOffset, I, LHSIsComplex))
5647       return false;
5648     if (!getElem(RHSOffset, I, RHSIsComplex))
5649       return false;
5650     // And compare them.
5651     if (!this->emitEQ(ElemT, E))
5652       return false;
5653 
5654     if (!this->emitCastBoolUint8(E))
5655       return false;
5656   }
5657 
5658   // We now have two bool values on the stack. Compare those.
5659   if (!this->emitAddUint8(E))
5660     return false;
5661   if (!this->emitConstUint8(2, E))
5662     return false;
5663 
5664   if (E->getOpcode() == BO_EQ) {
5665     if (!this->emitEQUint8(E))
5666       return false;
5667   } else if (E->getOpcode() == BO_NE) {
5668     if (!this->emitNEUint8(E))
5669       return false;
5670   } else
5671     return false;
5672 
5673   // In C, this returns an int.
5674   if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
5675     return this->emitCast(PT_Bool, ResT, E);
5676   return true;
5677 }
5678 
5679 /// When calling this, we have a pointer of the local-to-destroy
5680 /// on the stack.
5681 /// Emit destruction of record types (or arrays of record types).
5682 template <class Emitter>
5683 bool Compiler<Emitter>::emitRecordDestruction(const Record *R) {
5684   assert(R);
5685   const CXXDestructorDecl *Dtor = R->getDestructor();
5686   if (!Dtor || Dtor->isTrivial())
5687     return true;
5688 
5689   assert(Dtor);
5690   const Function *DtorFunc = getFunction(Dtor);
5691   if (!DtorFunc)
5692     return false;
5693   assert(DtorFunc->hasThisPointer());
5694   assert(DtorFunc->getNumParams() == 1);
5695   if (!this->emitDupPtr(SourceInfo{}))
5696     return false;
5697   return this->emitCall(DtorFunc, 0, SourceInfo{});
5698 }
5699 /// When calling this, we have a pointer of the local-to-destroy
5700 /// on the stack.
5701 /// Emit destruction of record types (or arrays of record types).
5702 template <class Emitter>
5703 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc) {
5704   assert(Desc);
5705   assert(!Desc->isPrimitive());
5706   assert(!Desc->isPrimitiveArray());
5707 
5708   // Arrays.
5709   if (Desc->isArray()) {
5710     const Descriptor *ElemDesc = Desc->ElemDesc;
5711     assert(ElemDesc);
5712 
5713     // Don't need to do anything for these.
5714     if (ElemDesc->isPrimitiveArray())
5715       return true;
5716 
5717     // If this is an array of record types, check if we need
5718     // to call the element destructors at all. If not, try
5719     // to save the work.
5720     if (const Record *ElemRecord = ElemDesc->ElemRecord) {
5721       if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
5722           !Dtor || Dtor->isTrivial())
5723         return true;
5724     }
5725 
5726     for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
5727       if (!this->emitConstUint64(I, SourceInfo{}))
5728         return false;
5729       if (!this->emitArrayElemPtrUint64(SourceInfo{}))
5730         return false;
5731       if (!this->emitDestruction(ElemDesc))
5732         return false;
5733       if (!this->emitPopPtr(SourceInfo{}))
5734         return false;
5735     }
5736     return true;
5737   }
5738 
5739   assert(Desc->ElemRecord);
5740   return this->emitRecordDestruction(Desc->ElemRecord);
5741 }
5742 
5743 namespace clang {
5744 namespace interp {
5745 
5746 template class Compiler<ByteCodeEmitter>;
5747 template class Compiler<EvalEmitter>;
5748 
5749 } // namespace interp
5750 } // namespace clang
5751