1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Compiler.h" 10 #include "ByteCodeEmitter.h" 11 #include "Context.h" 12 #include "FixedPoint.h" 13 #include "Floating.h" 14 #include "Function.h" 15 #include "InterpShared.h" 16 #include "PrimType.h" 17 #include "Program.h" 18 #include "clang/AST/Attr.h" 19 20 using namespace clang; 21 using namespace clang::interp; 22 23 using APSInt = llvm::APSInt; 24 25 namespace clang { 26 namespace interp { 27 28 /// Scope used to handle temporaries in toplevel variable declarations. 29 template <class Emitter> class DeclScope final : public LocalScope<Emitter> { 30 public: 31 DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD) 32 : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD), 33 OldInitializingDecl(Ctx->InitializingDecl) { 34 Ctx->InitializingDecl = VD; 35 Ctx->InitStack.push_back(InitLink::Decl(VD)); 36 } 37 38 void addExtended(const Scope::Local &Local) override { 39 return this->addLocal(Local); 40 } 41 42 ~DeclScope() { 43 this->Ctx->InitializingDecl = OldInitializingDecl; 44 this->Ctx->InitStack.pop_back(); 45 } 46 47 private: 48 Program::DeclScope Scope; 49 const ValueDecl *OldInitializingDecl; 50 }; 51 52 /// Scope used to handle initialization methods. 53 template <class Emitter> class OptionScope final { 54 public: 55 /// Root constructor, compiling or discarding primitives. 56 OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult, 57 bool NewInitializing) 58 : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), 59 OldInitializing(Ctx->Initializing) { 60 Ctx->DiscardResult = NewDiscardResult; 61 Ctx->Initializing = NewInitializing; 62 } 63 64 ~OptionScope() { 65 Ctx->DiscardResult = OldDiscardResult; 66 Ctx->Initializing = OldInitializing; 67 } 68 69 private: 70 /// Parent context. 71 Compiler<Emitter> *Ctx; 72 /// Old discard flag to restore. 73 bool OldDiscardResult; 74 bool OldInitializing; 75 }; 76 77 template <class Emitter> 78 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const { 79 switch (Kind) { 80 case K_This: 81 return Ctx->emitThis(E); 82 case K_Field: 83 // We're assuming there's a base pointer on the stack already. 84 return Ctx->emitGetPtrFieldPop(Offset, E); 85 case K_Temp: 86 return Ctx->emitGetPtrLocal(Offset, E); 87 case K_Decl: 88 return Ctx->visitDeclRef(D, E); 89 case K_Elem: 90 if (!Ctx->emitConstUint32(Offset, E)) 91 return false; 92 return Ctx->emitArrayElemPtrPopUint32(E); 93 default: 94 llvm_unreachable("Unhandled InitLink kind"); 95 } 96 return true; 97 } 98 99 /// Scope managing label targets. 100 template <class Emitter> class LabelScope { 101 public: 102 virtual ~LabelScope() {} 103 104 protected: 105 LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {} 106 /// Compiler instance. 107 Compiler<Emitter> *Ctx; 108 }; 109 110 /// Sets the context for break/continue statements. 111 template <class Emitter> class LoopScope final : public LabelScope<Emitter> { 112 public: 113 using LabelTy = typename Compiler<Emitter>::LabelTy; 114 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 115 116 LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel) 117 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 118 OldContinueLabel(Ctx->ContinueLabel), 119 OldBreakVarScope(Ctx->BreakVarScope), 120 OldContinueVarScope(Ctx->ContinueVarScope) { 121 this->Ctx->BreakLabel = BreakLabel; 122 this->Ctx->ContinueLabel = ContinueLabel; 123 this->Ctx->BreakVarScope = this->Ctx->VarScope; 124 this->Ctx->ContinueVarScope = this->Ctx->VarScope; 125 } 126 127 ~LoopScope() { 128 this->Ctx->BreakLabel = OldBreakLabel; 129 this->Ctx->ContinueLabel = OldContinueLabel; 130 this->Ctx->ContinueVarScope = OldContinueVarScope; 131 this->Ctx->BreakVarScope = OldBreakVarScope; 132 } 133 134 private: 135 OptLabelTy OldBreakLabel; 136 OptLabelTy OldContinueLabel; 137 VariableScope<Emitter> *OldBreakVarScope; 138 VariableScope<Emitter> *OldContinueVarScope; 139 }; 140 141 // Sets the context for a switch scope, mapping labels. 142 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> { 143 public: 144 using LabelTy = typename Compiler<Emitter>::LabelTy; 145 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 146 using CaseMap = typename Compiler<Emitter>::CaseMap; 147 148 SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel, 149 OptLabelTy DefaultLabel) 150 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 151 OldDefaultLabel(this->Ctx->DefaultLabel), 152 OldCaseLabels(std::move(this->Ctx->CaseLabels)), 153 OldLabelVarScope(Ctx->BreakVarScope) { 154 this->Ctx->BreakLabel = BreakLabel; 155 this->Ctx->DefaultLabel = DefaultLabel; 156 this->Ctx->CaseLabels = std::move(CaseLabels); 157 this->Ctx->BreakVarScope = this->Ctx->VarScope; 158 } 159 160 ~SwitchScope() { 161 this->Ctx->BreakLabel = OldBreakLabel; 162 this->Ctx->DefaultLabel = OldDefaultLabel; 163 this->Ctx->CaseLabels = std::move(OldCaseLabels); 164 this->Ctx->BreakVarScope = OldLabelVarScope; 165 } 166 167 private: 168 OptLabelTy OldBreakLabel; 169 OptLabelTy OldDefaultLabel; 170 CaseMap OldCaseLabels; 171 VariableScope<Emitter> *OldLabelVarScope; 172 }; 173 174 template <class Emitter> class StmtExprScope final { 175 public: 176 StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) { 177 Ctx->InStmtExpr = true; 178 } 179 180 ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; } 181 182 private: 183 Compiler<Emitter> *Ctx; 184 bool OldFlag; 185 }; 186 187 } // namespace interp 188 } // namespace clang 189 190 template <class Emitter> 191 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) { 192 const Expr *SubExpr = CE->getSubExpr(); 193 switch (CE->getCastKind()) { 194 195 case CK_LValueToRValue: { 196 if (DiscardResult) 197 return this->discard(SubExpr); 198 199 std::optional<PrimType> SubExprT = classify(SubExpr->getType()); 200 // Prepare storage for the result. 201 if (!Initializing && !SubExprT) { 202 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 203 if (!LocalIndex) 204 return false; 205 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 206 return false; 207 } 208 209 if (!this->visit(SubExpr)) 210 return false; 211 212 if (SubExprT) 213 return this->emitLoadPop(*SubExprT, CE); 214 215 // If the subexpr type is not primitive, we need to perform a copy here. 216 // This happens for example in C when dereferencing a pointer of struct 217 // type. 218 return this->emitMemcpy(CE); 219 } 220 221 case CK_DerivedToBaseMemberPointer: { 222 assert(classifyPrim(CE->getType()) == PT_MemberPtr); 223 assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr); 224 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 225 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 226 227 unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0), 228 QualType(FromMP->getClass(), 0)); 229 230 if (!this->delegate(SubExpr)) 231 return false; 232 233 return this->emitGetMemberPtrBasePop(DerivedOffset, CE); 234 } 235 236 case CK_BaseToDerivedMemberPointer: { 237 assert(classifyPrim(CE) == PT_MemberPtr); 238 assert(classifyPrim(SubExpr) == PT_MemberPtr); 239 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 240 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 241 242 unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0), 243 QualType(ToMP->getClass(), 0)); 244 245 if (!this->delegate(SubExpr)) 246 return false; 247 return this->emitGetMemberPtrBasePop(-DerivedOffset, CE); 248 } 249 250 case CK_UncheckedDerivedToBase: 251 case CK_DerivedToBase: { 252 if (!this->delegate(SubExpr)) 253 return false; 254 255 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 256 if (const auto *PT = dyn_cast<PointerType>(Ty)) 257 return PT->getPointeeType()->getAsCXXRecordDecl(); 258 return Ty->getAsCXXRecordDecl(); 259 }; 260 261 // FIXME: We can express a series of non-virtual casts as a single 262 // GetPtrBasePop op. 263 QualType CurType = SubExpr->getType(); 264 for (const CXXBaseSpecifier *B : CE->path()) { 265 if (B->isVirtual()) { 266 if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE)) 267 return false; 268 CurType = B->getType(); 269 } else { 270 unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType); 271 if (!this->emitGetPtrBasePop(DerivedOffset, CE)) 272 return false; 273 CurType = B->getType(); 274 } 275 } 276 277 return true; 278 } 279 280 case CK_BaseToDerived: { 281 if (!this->delegate(SubExpr)) 282 return false; 283 284 unsigned DerivedOffset = 285 collectBaseOffset(SubExpr->getType(), CE->getType()); 286 287 return this->emitGetPtrDerivedPop(DerivedOffset, CE); 288 } 289 290 case CK_FloatingCast: { 291 // HLSL uses CK_FloatingCast to cast between vectors. 292 if (!SubExpr->getType()->isFloatingType() || 293 !CE->getType()->isFloatingType()) 294 return false; 295 if (DiscardResult) 296 return this->discard(SubExpr); 297 if (!this->visit(SubExpr)) 298 return false; 299 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 300 return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE); 301 } 302 303 case CK_IntegralToFloating: { 304 if (DiscardResult) 305 return this->discard(SubExpr); 306 std::optional<PrimType> FromT = classify(SubExpr->getType()); 307 if (!FromT) 308 return false; 309 310 if (!this->visit(SubExpr)) 311 return false; 312 313 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 314 return this->emitCastIntegralFloating(*FromT, TargetSemantics, 315 getFPOptions(CE), CE); 316 } 317 318 case CK_FloatingToBoolean: 319 case CK_FloatingToIntegral: { 320 if (DiscardResult) 321 return this->discard(SubExpr); 322 323 std::optional<PrimType> ToT = classify(CE->getType()); 324 325 if (!ToT) 326 return false; 327 328 if (!this->visit(SubExpr)) 329 return false; 330 331 if (ToT == PT_IntAP) 332 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()), 333 getFPOptions(CE), CE); 334 if (ToT == PT_IntAPS) 335 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()), 336 getFPOptions(CE), CE); 337 338 return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE); 339 } 340 341 case CK_NullToPointer: 342 case CK_NullToMemberPointer: { 343 if (!this->discard(SubExpr)) 344 return false; 345 if (DiscardResult) 346 return true; 347 348 const Descriptor *Desc = nullptr; 349 const QualType PointeeType = CE->getType()->getPointeeType(); 350 if (!PointeeType.isNull()) { 351 if (std::optional<PrimType> T = classify(PointeeType)) 352 Desc = P.createDescriptor(SubExpr, *T); 353 else 354 Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(), 355 std::nullopt, true, false, 356 /*IsMutable=*/false, nullptr); 357 } 358 return this->emitNull(classifyPrim(CE->getType()), Desc, CE); 359 } 360 361 case CK_PointerToIntegral: { 362 if (DiscardResult) 363 return this->discard(SubExpr); 364 365 if (!this->visit(SubExpr)) 366 return false; 367 368 // If SubExpr doesn't result in a pointer, make it one. 369 if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) { 370 assert(isPtrType(FromT)); 371 if (!this->emitDecayPtr(FromT, PT_Ptr, CE)) 372 return false; 373 } 374 375 PrimType T = classifyPrim(CE->getType()); 376 if (T == PT_IntAP) 377 return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()), 378 CE); 379 if (T == PT_IntAPS) 380 return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()), 381 CE); 382 return this->emitCastPointerIntegral(T, CE); 383 } 384 385 case CK_ArrayToPointerDecay: { 386 if (!this->visit(SubExpr)) 387 return false; 388 if (!this->emitArrayDecay(CE)) 389 return false; 390 if (DiscardResult) 391 return this->emitPopPtr(CE); 392 return true; 393 } 394 395 case CK_IntegralToPointer: { 396 QualType IntType = SubExpr->getType(); 397 assert(IntType->isIntegralOrEnumerationType()); 398 if (!this->visit(SubExpr)) 399 return false; 400 // FIXME: I think the discard is wrong since the int->ptr cast might cause a 401 // diagnostic. 402 PrimType T = classifyPrim(IntType); 403 if (DiscardResult) 404 return this->emitPop(T, CE); 405 406 QualType PtrType = CE->getType(); 407 const Descriptor *Desc; 408 if (std::optional<PrimType> T = classify(PtrType->getPointeeType())) 409 Desc = P.createDescriptor(SubExpr, *T); 410 else if (PtrType->getPointeeType()->isVoidType()) 411 Desc = nullptr; 412 else 413 Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(), 414 Descriptor::InlineDescMD, true, false, 415 /*IsMutable=*/false, nullptr); 416 417 if (!this->emitGetIntPtr(T, Desc, CE)) 418 return false; 419 420 PrimType DestPtrT = classifyPrim(PtrType); 421 if (DestPtrT == PT_Ptr) 422 return true; 423 424 // In case we're converting the integer to a non-Pointer. 425 return this->emitDecayPtr(PT_Ptr, DestPtrT, CE); 426 } 427 428 case CK_AtomicToNonAtomic: 429 case CK_ConstructorConversion: 430 case CK_FunctionToPointerDecay: 431 case CK_NonAtomicToAtomic: 432 case CK_NoOp: 433 case CK_UserDefinedConversion: 434 case CK_AddressSpaceConversion: 435 case CK_CPointerToObjCPointerCast: 436 return this->delegate(SubExpr); 437 438 case CK_BitCast: { 439 // Reject bitcasts to atomic types. 440 if (CE->getType()->isAtomicType()) { 441 if (!this->discard(SubExpr)) 442 return false; 443 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE); 444 } 445 446 if (DiscardResult) 447 return this->discard(SubExpr); 448 449 QualType SubExprTy = SubExpr->getType(); 450 std::optional<PrimType> FromT = classify(SubExprTy); 451 // Casts from integer/vector to vector. 452 if (CE->getType()->isVectorType()) 453 return this->emitBuiltinBitCast(CE); 454 455 std::optional<PrimType> ToT = classify(CE->getType()); 456 if (!FromT || !ToT) 457 return false; 458 459 assert(isPtrType(*FromT)); 460 assert(isPtrType(*ToT)); 461 if (FromT == ToT) { 462 if (CE->getType()->isVoidPointerType()) 463 return this->delegate(SubExpr); 464 465 if (!this->visit(SubExpr)) 466 return false; 467 if (FromT == PT_Ptr) 468 return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE); 469 return true; 470 } 471 472 if (!this->visit(SubExpr)) 473 return false; 474 return this->emitDecayPtr(*FromT, *ToT, CE); 475 } 476 477 case CK_LValueToRValueBitCast: 478 return this->emitBuiltinBitCast(CE); 479 480 case CK_IntegralToBoolean: 481 case CK_FixedPointToBoolean: 482 case CK_BooleanToSignedIntegral: 483 case CK_IntegralCast: { 484 if (DiscardResult) 485 return this->discard(SubExpr); 486 std::optional<PrimType> FromT = classify(SubExpr->getType()); 487 std::optional<PrimType> ToT = classify(CE->getType()); 488 489 if (!FromT || !ToT) 490 return false; 491 492 if (!this->visit(SubExpr)) 493 return false; 494 495 // Possibly diagnose casts to enum types if the target type does not 496 // have a fixed size. 497 if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) { 498 if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>(); 499 ET && !ET->getDecl()->isFixed()) { 500 if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE)) 501 return false; 502 } 503 } 504 505 auto maybeNegate = [&]() -> bool { 506 if (CE->getCastKind() == CK_BooleanToSignedIntegral) 507 return this->emitNeg(*ToT, CE); 508 return true; 509 }; 510 511 if (ToT == PT_IntAP) 512 return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 513 maybeNegate(); 514 if (ToT == PT_IntAPS) 515 return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 516 maybeNegate(); 517 518 if (FromT == ToT) 519 return true; 520 if (!this->emitCast(*FromT, *ToT, CE)) 521 return false; 522 523 return maybeNegate(); 524 } 525 526 case CK_PointerToBoolean: 527 case CK_MemberPointerToBoolean: { 528 PrimType PtrT = classifyPrim(SubExpr->getType()); 529 530 if (!this->visit(SubExpr)) 531 return false; 532 return this->emitIsNonNull(PtrT, CE); 533 } 534 535 case CK_IntegralComplexToBoolean: 536 case CK_FloatingComplexToBoolean: { 537 if (DiscardResult) 538 return this->discard(SubExpr); 539 if (!this->visit(SubExpr)) 540 return false; 541 return this->emitComplexBoolCast(SubExpr); 542 } 543 544 case CK_IntegralComplexToReal: 545 case CK_FloatingComplexToReal: 546 return this->emitComplexReal(SubExpr); 547 548 case CK_IntegralRealToComplex: 549 case CK_FloatingRealToComplex: { 550 // We're creating a complex value here, so we need to 551 // allocate storage for it. 552 if (!Initializing) { 553 unsigned LocalIndex = allocateTemporary(CE); 554 if (!this->emitGetPtrLocal(LocalIndex, CE)) 555 return false; 556 } 557 558 // Init the complex value to {SubExpr, 0}. 559 if (!this->visitArrayElemInit(0, SubExpr)) 560 return false; 561 // Zero-init the second element. 562 PrimType T = classifyPrim(SubExpr->getType()); 563 if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr)) 564 return false; 565 return this->emitInitElem(T, 1, SubExpr); 566 } 567 568 case CK_IntegralComplexCast: 569 case CK_FloatingComplexCast: 570 case CK_IntegralComplexToFloatingComplex: 571 case CK_FloatingComplexToIntegralComplex: { 572 assert(CE->getType()->isAnyComplexType()); 573 assert(SubExpr->getType()->isAnyComplexType()); 574 if (DiscardResult) 575 return this->discard(SubExpr); 576 577 if (!Initializing) { 578 std::optional<unsigned> LocalIndex = allocateLocal(CE); 579 if (!LocalIndex) 580 return false; 581 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 582 return false; 583 } 584 585 // Location for the SubExpr. 586 // Since SubExpr is of complex type, visiting it results in a pointer 587 // anyway, so we just create a temporary pointer variable. 588 unsigned SubExprOffset = allocateLocalPrimitive( 589 SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 590 if (!this->visit(SubExpr)) 591 return false; 592 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE)) 593 return false; 594 595 PrimType SourceElemT = classifyComplexElementType(SubExpr->getType()); 596 QualType DestElemType = 597 CE->getType()->getAs<ComplexType>()->getElementType(); 598 PrimType DestElemT = classifyPrim(DestElemType); 599 // Cast both elements individually. 600 for (unsigned I = 0; I != 2; ++I) { 601 if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE)) 602 return false; 603 if (!this->emitArrayElemPop(SourceElemT, I, CE)) 604 return false; 605 606 // Do the cast. 607 if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE)) 608 return false; 609 610 // Save the value. 611 if (!this->emitInitElem(DestElemT, I, CE)) 612 return false; 613 } 614 return true; 615 } 616 617 case CK_VectorSplat: { 618 assert(!classify(CE->getType())); 619 assert(classify(SubExpr->getType())); 620 assert(CE->getType()->isVectorType()); 621 622 if (DiscardResult) 623 return this->discard(SubExpr); 624 625 if (!Initializing) { 626 std::optional<unsigned> LocalIndex = allocateLocal(CE); 627 if (!LocalIndex) 628 return false; 629 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 630 return false; 631 } 632 633 const auto *VT = CE->getType()->getAs<VectorType>(); 634 PrimType ElemT = classifyPrim(SubExpr->getType()); 635 unsigned ElemOffset = allocateLocalPrimitive( 636 SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false); 637 638 // Prepare a local variable for the scalar value. 639 if (!this->visit(SubExpr)) 640 return false; 641 if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE)) 642 return false; 643 644 if (!this->emitSetLocal(ElemT, ElemOffset, CE)) 645 return false; 646 647 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 648 if (!this->emitGetLocal(ElemT, ElemOffset, CE)) 649 return false; 650 if (!this->emitInitElem(ElemT, I, CE)) 651 return false; 652 } 653 654 return true; 655 } 656 657 case CK_HLSLVectorTruncation: { 658 assert(SubExpr->getType()->isVectorType()); 659 if (std::optional<PrimType> ResultT = classify(CE)) { 660 assert(!DiscardResult); 661 // Result must be either a float or integer. Take the first element. 662 if (!this->visit(SubExpr)) 663 return false; 664 return this->emitArrayElemPop(*ResultT, 0, CE); 665 } 666 // Otherwise, this truncates from one vector type to another. 667 assert(CE->getType()->isVectorType()); 668 669 if (!Initializing) { 670 unsigned LocalIndex = allocateTemporary(CE); 671 if (!this->emitGetPtrLocal(LocalIndex, CE)) 672 return false; 673 } 674 unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements(); 675 assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize); 676 if (!this->visit(SubExpr)) 677 return false; 678 return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0, 679 ToSize, CE); 680 }; 681 682 case CK_IntegralToFixedPoint: { 683 if (!this->visit(SubExpr)) 684 return false; 685 686 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 687 uint32_t I; 688 std::memcpy(&I, &Sem, sizeof(Sem)); 689 return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), I, 690 CE); 691 } 692 case CK_FloatingToFixedPoint: { 693 if (!this->visit(SubExpr)) 694 return false; 695 696 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 697 uint32_t I; 698 std::memcpy(&I, &Sem, sizeof(Sem)); 699 return this->emitCastFloatingFixedPoint(I, CE); 700 } 701 case CK_FixedPointToFloating: { 702 if (!this->visit(SubExpr)) 703 return false; 704 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 705 return this->emitCastFixedPointFloating(TargetSemantics, CE); 706 } 707 case CK_FixedPointToIntegral: { 708 if (!this->visit(SubExpr)) 709 return false; 710 return this->emitCastFixedPointIntegral(classifyPrim(CE->getType()), CE); 711 } 712 case CK_FixedPointCast: { 713 if (!this->visit(SubExpr)) 714 return false; 715 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 716 uint32_t I; 717 std::memcpy(&I, &Sem, sizeof(Sem)); 718 return this->emitCastFixedPoint(I, CE); 719 } 720 721 case CK_ToVoid: 722 return discard(SubExpr); 723 724 default: 725 return this->emitInvalid(CE); 726 } 727 llvm_unreachable("Unhandled clang::CastKind enum"); 728 } 729 730 template <class Emitter> 731 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) { 732 if (DiscardResult) 733 return true; 734 735 return this->emitConst(LE->getValue(), LE); 736 } 737 738 template <class Emitter> 739 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) { 740 if (DiscardResult) 741 return true; 742 743 return this->emitConstFloat(E->getValue(), E); 744 } 745 746 template <class Emitter> 747 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 748 assert(E->getType()->isAnyComplexType()); 749 if (DiscardResult) 750 return true; 751 752 if (!Initializing) { 753 unsigned LocalIndex = allocateTemporary(E); 754 if (!this->emitGetPtrLocal(LocalIndex, E)) 755 return false; 756 } 757 758 const Expr *SubExpr = E->getSubExpr(); 759 PrimType SubExprT = classifyPrim(SubExpr->getType()); 760 761 if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr)) 762 return false; 763 if (!this->emitInitElem(SubExprT, 0, SubExpr)) 764 return false; 765 return this->visitArrayElemInit(1, SubExpr); 766 } 767 768 template <class Emitter> 769 bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) { 770 assert(E->getType()->isFixedPointType()); 771 assert(classifyPrim(E) == PT_FixedPoint); 772 773 if (DiscardResult) 774 return true; 775 776 auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 777 APInt Value = E->getValue(); 778 return this->emitConstFixedPoint(FixedPoint(Value, Sem), E); 779 } 780 781 template <class Emitter> 782 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) { 783 return this->delegate(E->getSubExpr()); 784 } 785 786 template <class Emitter> 787 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) { 788 // Need short-circuiting for these. 789 if (BO->isLogicalOp() && !BO->getType()->isVectorType()) 790 return this->VisitLogicalBinOp(BO); 791 792 const Expr *LHS = BO->getLHS(); 793 const Expr *RHS = BO->getRHS(); 794 795 // Handle comma operators. Just discard the LHS 796 // and delegate to RHS. 797 if (BO->isCommaOp()) { 798 if (!this->discard(LHS)) 799 return false; 800 if (RHS->getType()->isVoidType()) 801 return this->discard(RHS); 802 803 return this->delegate(RHS); 804 } 805 806 if (BO->getType()->isAnyComplexType()) 807 return this->VisitComplexBinOp(BO); 808 if (BO->getType()->isVectorType()) 809 return this->VisitVectorBinOp(BO); 810 if ((LHS->getType()->isAnyComplexType() || 811 RHS->getType()->isAnyComplexType()) && 812 BO->isComparisonOp()) 813 return this->emitComplexComparison(LHS, RHS, BO); 814 if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType()) 815 return this->VisitFixedPointBinOp(BO); 816 817 if (BO->isPtrMemOp()) { 818 if (!this->visit(LHS)) 819 return false; 820 821 if (!this->visit(RHS)) 822 return false; 823 824 if (!this->emitToMemberPtr(BO)) 825 return false; 826 827 if (classifyPrim(BO) == PT_MemberPtr) 828 return true; 829 830 if (!this->emitCastMemberPtrPtr(BO)) 831 return false; 832 return DiscardResult ? this->emitPopPtr(BO) : true; 833 } 834 835 // Typecheck the args. 836 std::optional<PrimType> LT = classify(LHS); 837 std::optional<PrimType> RT = classify(RHS); 838 std::optional<PrimType> T = classify(BO->getType()); 839 840 // Special case for C++'s three-way/spaceship operator <=>, which 841 // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't 842 // have a PrimType). 843 if (!T && BO->getOpcode() == BO_Cmp) { 844 if (DiscardResult) 845 return true; 846 const ComparisonCategoryInfo *CmpInfo = 847 Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType()); 848 assert(CmpInfo); 849 850 // We need a temporary variable holding our return value. 851 if (!Initializing) { 852 std::optional<unsigned> ResultIndex = this->allocateLocal(BO); 853 if (!this->emitGetPtrLocal(*ResultIndex, BO)) 854 return false; 855 } 856 857 if (!visit(LHS) || !visit(RHS)) 858 return false; 859 860 return this->emitCMP3(*LT, CmpInfo, BO); 861 } 862 863 if (!LT || !RT || !T) 864 return false; 865 866 // Pointer arithmetic special case. 867 if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) { 868 if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT))) 869 return this->VisitPointerArithBinOp(BO); 870 } 871 872 // Assignmentes require us to evalute the RHS first. 873 if (BO->getOpcode() == BO_Assign) { 874 if (!visit(RHS) || !visit(LHS)) 875 return false; 876 if (!this->emitFlip(*LT, *RT, BO)) 877 return false; 878 } else { 879 if (!visit(LHS) || !visit(RHS)) 880 return false; 881 } 882 883 // For languages such as C, cast the result of one 884 // of our comparision opcodes to T (which is usually int). 885 auto MaybeCastToBool = [this, T, BO](bool Result) { 886 if (!Result) 887 return false; 888 if (DiscardResult) 889 return this->emitPop(*T, BO); 890 if (T != PT_Bool) 891 return this->emitCast(PT_Bool, *T, BO); 892 return true; 893 }; 894 895 auto Discard = [this, T, BO](bool Result) { 896 if (!Result) 897 return false; 898 return DiscardResult ? this->emitPop(*T, BO) : true; 899 }; 900 901 switch (BO->getOpcode()) { 902 case BO_EQ: 903 return MaybeCastToBool(this->emitEQ(*LT, BO)); 904 case BO_NE: 905 return MaybeCastToBool(this->emitNE(*LT, BO)); 906 case BO_LT: 907 return MaybeCastToBool(this->emitLT(*LT, BO)); 908 case BO_LE: 909 return MaybeCastToBool(this->emitLE(*LT, BO)); 910 case BO_GT: 911 return MaybeCastToBool(this->emitGT(*LT, BO)); 912 case BO_GE: 913 return MaybeCastToBool(this->emitGE(*LT, BO)); 914 case BO_Sub: 915 if (BO->getType()->isFloatingType()) 916 return Discard(this->emitSubf(getFPOptions(BO), BO)); 917 return Discard(this->emitSub(*T, BO)); 918 case BO_Add: 919 if (BO->getType()->isFloatingType()) 920 return Discard(this->emitAddf(getFPOptions(BO), BO)); 921 return Discard(this->emitAdd(*T, BO)); 922 case BO_Mul: 923 if (BO->getType()->isFloatingType()) 924 return Discard(this->emitMulf(getFPOptions(BO), BO)); 925 return Discard(this->emitMul(*T, BO)); 926 case BO_Rem: 927 return Discard(this->emitRem(*T, BO)); 928 case BO_Div: 929 if (BO->getType()->isFloatingType()) 930 return Discard(this->emitDivf(getFPOptions(BO), BO)); 931 return Discard(this->emitDiv(*T, BO)); 932 case BO_Assign: 933 if (DiscardResult) 934 return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO) 935 : this->emitStorePop(*T, BO); 936 if (LHS->refersToBitField()) { 937 if (!this->emitStoreBitField(*T, BO)) 938 return false; 939 } else { 940 if (!this->emitStore(*T, BO)) 941 return false; 942 } 943 // Assignments aren't necessarily lvalues in C. 944 // Load from them in that case. 945 if (!BO->isLValue()) 946 return this->emitLoadPop(*T, BO); 947 return true; 948 case BO_And: 949 return Discard(this->emitBitAnd(*T, BO)); 950 case BO_Or: 951 return Discard(this->emitBitOr(*T, BO)); 952 case BO_Shl: 953 return Discard(this->emitShl(*LT, *RT, BO)); 954 case BO_Shr: 955 return Discard(this->emitShr(*LT, *RT, BO)); 956 case BO_Xor: 957 return Discard(this->emitBitXor(*T, BO)); 958 case BO_LOr: 959 case BO_LAnd: 960 llvm_unreachable("Already handled earlier"); 961 default: 962 return false; 963 } 964 965 llvm_unreachable("Unhandled binary op"); 966 } 967 968 /// Perform addition/subtraction of a pointer and an integer or 969 /// subtraction of two pointers. 970 template <class Emitter> 971 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) { 972 BinaryOperatorKind Op = E->getOpcode(); 973 const Expr *LHS = E->getLHS(); 974 const Expr *RHS = E->getRHS(); 975 976 if ((Op != BO_Add && Op != BO_Sub) || 977 (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType())) 978 return false; 979 980 std::optional<PrimType> LT = classify(LHS); 981 std::optional<PrimType> RT = classify(RHS); 982 983 if (!LT || !RT) 984 return false; 985 986 // Visit the given pointer expression and optionally convert to a PT_Ptr. 987 auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool { 988 if (!this->visit(E)) 989 return false; 990 if (T != PT_Ptr) 991 return this->emitDecayPtr(T, PT_Ptr, E); 992 return true; 993 }; 994 995 if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) { 996 if (Op != BO_Sub) 997 return false; 998 999 assert(E->getType()->isIntegerType()); 1000 if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT)) 1001 return false; 1002 1003 PrimType IntT = classifyPrim(E->getType()); 1004 if (!this->emitSubPtr(IntT, E)) 1005 return false; 1006 return DiscardResult ? this->emitPop(IntT, E) : true; 1007 } 1008 1009 PrimType OffsetType; 1010 if (LHS->getType()->isIntegerType()) { 1011 if (!visitAsPointer(RHS, *RT)) 1012 return false; 1013 if (!this->visit(LHS)) 1014 return false; 1015 OffsetType = *LT; 1016 } else if (RHS->getType()->isIntegerType()) { 1017 if (!visitAsPointer(LHS, *LT)) 1018 return false; 1019 if (!this->visit(RHS)) 1020 return false; 1021 OffsetType = *RT; 1022 } else { 1023 return false; 1024 } 1025 1026 // Do the operation and optionally transform to 1027 // result pointer type. 1028 if (Op == BO_Add) { 1029 if (!this->emitAddOffset(OffsetType, E)) 1030 return false; 1031 1032 if (classifyPrim(E) != PT_Ptr) 1033 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 1034 return true; 1035 } else if (Op == BO_Sub) { 1036 if (!this->emitSubOffset(OffsetType, E)) 1037 return false; 1038 1039 if (classifyPrim(E) != PT_Ptr) 1040 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 1041 return true; 1042 } 1043 1044 return false; 1045 } 1046 1047 template <class Emitter> 1048 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) { 1049 assert(E->isLogicalOp()); 1050 BinaryOperatorKind Op = E->getOpcode(); 1051 const Expr *LHS = E->getLHS(); 1052 const Expr *RHS = E->getRHS(); 1053 std::optional<PrimType> T = classify(E->getType()); 1054 1055 if (Op == BO_LOr) { 1056 // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE. 1057 LabelTy LabelTrue = this->getLabel(); 1058 LabelTy LabelEnd = this->getLabel(); 1059 1060 if (!this->visitBool(LHS)) 1061 return false; 1062 if (!this->jumpTrue(LabelTrue)) 1063 return false; 1064 1065 if (!this->visitBool(RHS)) 1066 return false; 1067 if (!this->jump(LabelEnd)) 1068 return false; 1069 1070 this->emitLabel(LabelTrue); 1071 this->emitConstBool(true, E); 1072 this->fallthrough(LabelEnd); 1073 this->emitLabel(LabelEnd); 1074 1075 } else { 1076 assert(Op == BO_LAnd); 1077 // Logical AND. 1078 // Visit LHS. Only visit RHS if LHS was TRUE. 1079 LabelTy LabelFalse = this->getLabel(); 1080 LabelTy LabelEnd = this->getLabel(); 1081 1082 if (!this->visitBool(LHS)) 1083 return false; 1084 if (!this->jumpFalse(LabelFalse)) 1085 return false; 1086 1087 if (!this->visitBool(RHS)) 1088 return false; 1089 if (!this->jump(LabelEnd)) 1090 return false; 1091 1092 this->emitLabel(LabelFalse); 1093 this->emitConstBool(false, E); 1094 this->fallthrough(LabelEnd); 1095 this->emitLabel(LabelEnd); 1096 } 1097 1098 if (DiscardResult) 1099 return this->emitPopBool(E); 1100 1101 // For C, cast back to integer type. 1102 assert(T); 1103 if (T != PT_Bool) 1104 return this->emitCast(PT_Bool, *T, E); 1105 return true; 1106 } 1107 1108 template <class Emitter> 1109 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) { 1110 // Prepare storage for result. 1111 if (!Initializing) { 1112 unsigned LocalIndex = allocateTemporary(E); 1113 if (!this->emitGetPtrLocal(LocalIndex, E)) 1114 return false; 1115 } 1116 1117 // Both LHS and RHS might _not_ be of complex type, but one of them 1118 // needs to be. 1119 const Expr *LHS = E->getLHS(); 1120 const Expr *RHS = E->getRHS(); 1121 1122 PrimType ResultElemT = this->classifyComplexElementType(E->getType()); 1123 unsigned ResultOffset = ~0u; 1124 if (!DiscardResult) 1125 ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false); 1126 1127 // Save result pointer in ResultOffset 1128 if (!this->DiscardResult) { 1129 if (!this->emitDupPtr(E)) 1130 return false; 1131 if (!this->emitSetLocal(PT_Ptr, ResultOffset, E)) 1132 return false; 1133 } 1134 QualType LHSType = LHS->getType(); 1135 if (const auto *AT = LHSType->getAs<AtomicType>()) 1136 LHSType = AT->getValueType(); 1137 QualType RHSType = RHS->getType(); 1138 if (const auto *AT = RHSType->getAs<AtomicType>()) 1139 RHSType = AT->getValueType(); 1140 1141 bool LHSIsComplex = LHSType->isAnyComplexType(); 1142 unsigned LHSOffset; 1143 bool RHSIsComplex = RHSType->isAnyComplexType(); 1144 1145 // For ComplexComplex Mul, we have special ops to make their implementation 1146 // easier. 1147 BinaryOperatorKind Op = E->getOpcode(); 1148 if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) { 1149 assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) == 1150 classifyPrim(RHSType->getAs<ComplexType>()->getElementType())); 1151 PrimType ElemT = 1152 classifyPrim(LHSType->getAs<ComplexType>()->getElementType()); 1153 if (!this->visit(LHS)) 1154 return false; 1155 if (!this->visit(RHS)) 1156 return false; 1157 return this->emitMulc(ElemT, E); 1158 } 1159 1160 if (Op == BO_Div && RHSIsComplex) { 1161 QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType(); 1162 PrimType ElemT = classifyPrim(ElemQT); 1163 // If the LHS is not complex, we still need to do the full complex 1164 // division, so just stub create a complex value and stub it out with 1165 // the LHS and a zero. 1166 1167 if (!LHSIsComplex) { 1168 // This is using the RHS type for the fake-complex LHS. 1169 LHSOffset = allocateTemporary(RHS); 1170 1171 if (!this->emitGetPtrLocal(LHSOffset, E)) 1172 return false; 1173 1174 if (!this->visit(LHS)) 1175 return false; 1176 // real is LHS 1177 if (!this->emitInitElem(ElemT, 0, E)) 1178 return false; 1179 // imag is zero 1180 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1181 return false; 1182 if (!this->emitInitElem(ElemT, 1, E)) 1183 return false; 1184 } else { 1185 if (!this->visit(LHS)) 1186 return false; 1187 } 1188 1189 if (!this->visit(RHS)) 1190 return false; 1191 return this->emitDivc(ElemT, E); 1192 } 1193 1194 // Evaluate LHS and save value to LHSOffset. 1195 if (LHSType->isAnyComplexType()) { 1196 LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1197 if (!this->visit(LHS)) 1198 return false; 1199 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1200 return false; 1201 } else { 1202 PrimType LHST = classifyPrim(LHSType); 1203 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 1204 if (!this->visit(LHS)) 1205 return false; 1206 if (!this->emitSetLocal(LHST, LHSOffset, E)) 1207 return false; 1208 } 1209 1210 // Same with RHS. 1211 unsigned RHSOffset; 1212 if (RHSType->isAnyComplexType()) { 1213 RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1214 if (!this->visit(RHS)) 1215 return false; 1216 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1217 return false; 1218 } else { 1219 PrimType RHST = classifyPrim(RHSType); 1220 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 1221 if (!this->visit(RHS)) 1222 return false; 1223 if (!this->emitSetLocal(RHST, RHSOffset, E)) 1224 return false; 1225 } 1226 1227 // For both LHS and RHS, either load the value from the complex pointer, or 1228 // directly from the local variable. For index 1 (i.e. the imaginary part), 1229 // just load 0 and do the operation anyway. 1230 auto loadComplexValue = [this](bool IsComplex, bool LoadZero, 1231 unsigned ElemIndex, unsigned Offset, 1232 const Expr *E) -> bool { 1233 if (IsComplex) { 1234 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1235 return false; 1236 return this->emitArrayElemPop(classifyComplexElementType(E->getType()), 1237 ElemIndex, E); 1238 } 1239 if (ElemIndex == 0 || !LoadZero) 1240 return this->emitGetLocal(classifyPrim(E->getType()), Offset, E); 1241 return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(), 1242 E); 1243 }; 1244 1245 // Now we can get pointers to the LHS and RHS from the offsets above. 1246 for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) { 1247 // Result pointer for the store later. 1248 if (!this->DiscardResult) { 1249 if (!this->emitGetLocal(PT_Ptr, ResultOffset, E)) 1250 return false; 1251 } 1252 1253 // The actual operation. 1254 switch (Op) { 1255 case BO_Add: 1256 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1257 return false; 1258 1259 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1260 return false; 1261 if (ResultElemT == PT_Float) { 1262 if (!this->emitAddf(getFPOptions(E), E)) 1263 return false; 1264 } else { 1265 if (!this->emitAdd(ResultElemT, E)) 1266 return false; 1267 } 1268 break; 1269 case BO_Sub: 1270 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1271 return false; 1272 1273 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1274 return false; 1275 if (ResultElemT == PT_Float) { 1276 if (!this->emitSubf(getFPOptions(E), E)) 1277 return false; 1278 } else { 1279 if (!this->emitSub(ResultElemT, E)) 1280 return false; 1281 } 1282 break; 1283 case BO_Mul: 1284 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1285 return false; 1286 1287 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1288 return false; 1289 1290 if (ResultElemT == PT_Float) { 1291 if (!this->emitMulf(getFPOptions(E), E)) 1292 return false; 1293 } else { 1294 if (!this->emitMul(ResultElemT, E)) 1295 return false; 1296 } 1297 break; 1298 case BO_Div: 1299 assert(!RHSIsComplex); 1300 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1301 return false; 1302 1303 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1304 return false; 1305 1306 if (ResultElemT == PT_Float) { 1307 if (!this->emitDivf(getFPOptions(E), E)) 1308 return false; 1309 } else { 1310 if (!this->emitDiv(ResultElemT, E)) 1311 return false; 1312 } 1313 break; 1314 1315 default: 1316 return false; 1317 } 1318 1319 if (!this->DiscardResult) { 1320 // Initialize array element with the value we just computed. 1321 if (!this->emitInitElemPop(ResultElemT, ElemIndex, E)) 1322 return false; 1323 } else { 1324 if (!this->emitPop(ResultElemT, E)) 1325 return false; 1326 } 1327 } 1328 return true; 1329 } 1330 1331 template <class Emitter> 1332 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) { 1333 assert(!E->isCommaOp() && 1334 "Comma op should be handled in VisitBinaryOperator"); 1335 assert(E->getType()->isVectorType()); 1336 assert(E->getLHS()->getType()->isVectorType()); 1337 assert(E->getRHS()->getType()->isVectorType()); 1338 1339 // Prepare storage for result. 1340 if (!Initializing && !E->isCompoundAssignmentOp()) { 1341 unsigned LocalIndex = allocateTemporary(E); 1342 if (!this->emitGetPtrLocal(LocalIndex, E)) 1343 return false; 1344 } 1345 1346 const Expr *LHS = E->getLHS(); 1347 const Expr *RHS = E->getRHS(); 1348 const auto *VecTy = E->getType()->getAs<VectorType>(); 1349 auto Op = E->isCompoundAssignmentOp() 1350 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode()) 1351 : E->getOpcode(); 1352 1353 PrimType ElemT = this->classifyVectorElementType(LHS->getType()); 1354 PrimType RHSElemT = this->classifyVectorElementType(RHS->getType()); 1355 PrimType ResultElemT = this->classifyVectorElementType(E->getType()); 1356 1357 // Evaluate LHS and save value to LHSOffset. 1358 unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1359 if (!this->visit(LHS)) 1360 return false; 1361 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1362 return false; 1363 1364 // Evaluate RHS and save value to RHSOffset. 1365 unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1366 if (!this->visit(RHS)) 1367 return false; 1368 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1369 return false; 1370 1371 if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E)) 1372 return false; 1373 1374 // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the 1375 // integer promotion. 1376 bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp()); 1377 QualType PromotTy = 1378 Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy); 1379 PrimType PromotT = classifyPrim(PromotTy); 1380 PrimType OpT = NeedIntPromot ? PromotT : ElemT; 1381 1382 auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) { 1383 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1384 return false; 1385 if (!this->emitArrayElemPop(ElemT, Index, E)) 1386 return false; 1387 if (E->isLogicalOp()) { 1388 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 1389 return false; 1390 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1391 return false; 1392 } else if (NeedIntPromot) { 1393 if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E)) 1394 return false; 1395 } 1396 return true; 1397 }; 1398 1399 #define EMIT_ARITH_OP(OP) \ 1400 { \ 1401 if (ElemT == PT_Float) { \ 1402 if (!this->emit##OP##f(getFPOptions(E), E)) \ 1403 return false; \ 1404 } else { \ 1405 if (!this->emit##OP(ElemT, E)) \ 1406 return false; \ 1407 } \ 1408 break; \ 1409 } 1410 1411 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 1412 if (!getElem(LHSOffset, ElemT, I)) 1413 return false; 1414 if (!getElem(RHSOffset, RHSElemT, I)) 1415 return false; 1416 switch (Op) { 1417 case BO_Add: 1418 EMIT_ARITH_OP(Add) 1419 case BO_Sub: 1420 EMIT_ARITH_OP(Sub) 1421 case BO_Mul: 1422 EMIT_ARITH_OP(Mul) 1423 case BO_Div: 1424 EMIT_ARITH_OP(Div) 1425 case BO_Rem: 1426 if (!this->emitRem(ElemT, E)) 1427 return false; 1428 break; 1429 case BO_And: 1430 if (!this->emitBitAnd(OpT, E)) 1431 return false; 1432 break; 1433 case BO_Or: 1434 if (!this->emitBitOr(OpT, E)) 1435 return false; 1436 break; 1437 case BO_Xor: 1438 if (!this->emitBitXor(OpT, E)) 1439 return false; 1440 break; 1441 case BO_Shl: 1442 if (!this->emitShl(OpT, RHSElemT, E)) 1443 return false; 1444 break; 1445 case BO_Shr: 1446 if (!this->emitShr(OpT, RHSElemT, E)) 1447 return false; 1448 break; 1449 case BO_EQ: 1450 if (!this->emitEQ(ElemT, E)) 1451 return false; 1452 break; 1453 case BO_NE: 1454 if (!this->emitNE(ElemT, E)) 1455 return false; 1456 break; 1457 case BO_LE: 1458 if (!this->emitLE(ElemT, E)) 1459 return false; 1460 break; 1461 case BO_LT: 1462 if (!this->emitLT(ElemT, E)) 1463 return false; 1464 break; 1465 case BO_GE: 1466 if (!this->emitGE(ElemT, E)) 1467 return false; 1468 break; 1469 case BO_GT: 1470 if (!this->emitGT(ElemT, E)) 1471 return false; 1472 break; 1473 case BO_LAnd: 1474 // a && b is equivalent to a!=0 & b!=0 1475 if (!this->emitBitAnd(ResultElemT, E)) 1476 return false; 1477 break; 1478 case BO_LOr: 1479 // a || b is equivalent to a!=0 | b!=0 1480 if (!this->emitBitOr(ResultElemT, E)) 1481 return false; 1482 break; 1483 default: 1484 return this->emitInvalid(E); 1485 } 1486 1487 // The result of the comparison is a vector of the same width and number 1488 // of elements as the comparison operands with a signed integral element 1489 // type. 1490 // 1491 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 1492 if (E->isComparisonOp()) { 1493 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1494 return false; 1495 if (!this->emitNeg(ResultElemT, E)) 1496 return false; 1497 } 1498 1499 // If we performed an integer promotion, we need to cast the compute result 1500 // into result vector element type. 1501 if (NeedIntPromot && 1502 !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E)) 1503 return false; 1504 1505 // Initialize array element with the value we just computed. 1506 if (!this->emitInitElem(ResultElemT, I, E)) 1507 return false; 1508 } 1509 1510 if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E)) 1511 return false; 1512 return true; 1513 } 1514 1515 template <class Emitter> 1516 bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) { 1517 const Expr *LHS = E->getLHS(); 1518 const Expr *RHS = E->getRHS(); 1519 1520 assert(LHS->getType()->isFixedPointType() || 1521 RHS->getType()->isFixedPointType()); 1522 1523 auto LHSSema = Ctx.getASTContext().getFixedPointSemantics(LHS->getType()); 1524 auto RHSSema = Ctx.getASTContext().getFixedPointSemantics(RHS->getType()); 1525 1526 if (!this->visit(LHS)) 1527 return false; 1528 if (!LHS->getType()->isFixedPointType()) { 1529 uint32_t I; 1530 std::memcpy(&I, &LHSSema, sizeof(llvm::FixedPointSemantics)); 1531 if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()), I, E)) 1532 return false; 1533 } 1534 1535 if (!this->visit(RHS)) 1536 return false; 1537 if (!RHS->getType()->isFixedPointType()) { 1538 uint32_t I; 1539 std::memcpy(&I, &RHSSema, sizeof(llvm::FixedPointSemantics)); 1540 if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()), I, E)) 1541 return false; 1542 } 1543 1544 // Convert the result to the target semantics. 1545 auto ConvertResult = [&](bool R) -> bool { 1546 if (!R) 1547 return false; 1548 auto ResultSema = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 1549 auto CommonSema = LHSSema.getCommonSemantics(RHSSema); 1550 if (ResultSema != CommonSema) { 1551 uint32_t I; 1552 std::memcpy(&I, &ResultSema, sizeof(ResultSema)); 1553 return this->emitCastFixedPoint(I, E); 1554 } 1555 return true; 1556 }; 1557 1558 auto MaybeCastToBool = [&](bool Result) { 1559 if (!Result) 1560 return false; 1561 PrimType T = classifyPrim(E); 1562 if (DiscardResult) 1563 return this->emitPop(T, E); 1564 if (T != PT_Bool) 1565 return this->emitCast(PT_Bool, T, E); 1566 return true; 1567 }; 1568 1569 switch (E->getOpcode()) { 1570 case BO_EQ: 1571 return MaybeCastToBool(this->emitEQFixedPoint(E)); 1572 case BO_NE: 1573 return MaybeCastToBool(this->emitNEFixedPoint(E)); 1574 case BO_LT: 1575 return MaybeCastToBool(this->emitLTFixedPoint(E)); 1576 case BO_LE: 1577 return MaybeCastToBool(this->emitLEFixedPoint(E)); 1578 case BO_GT: 1579 return MaybeCastToBool(this->emitGTFixedPoint(E)); 1580 case BO_GE: 1581 return MaybeCastToBool(this->emitGEFixedPoint(E)); 1582 case BO_Add: 1583 return ConvertResult(this->emitAddFixedPoint(E)); 1584 case BO_Sub: 1585 return ConvertResult(this->emitSubFixedPoint(E)); 1586 case BO_Mul: 1587 return ConvertResult(this->emitMulFixedPoint(E)); 1588 case BO_Div: 1589 return ConvertResult(this->emitDivFixedPoint(E)); 1590 case BO_Shl: 1591 return ConvertResult(this->emitShiftFixedPoint(/*Left=*/true, E)); 1592 case BO_Shr: 1593 return ConvertResult(this->emitShiftFixedPoint(/*Left=*/false, E)); 1594 1595 default: 1596 return this->emitInvalid(E); 1597 } 1598 1599 llvm_unreachable("unhandled binop opcode"); 1600 } 1601 1602 template <class Emitter> 1603 bool Compiler<Emitter>::VisitFixedPointUnaryOperator(const UnaryOperator *E) { 1604 const Expr *SubExpr = E->getSubExpr(); 1605 assert(SubExpr->getType()->isFixedPointType()); 1606 1607 switch (E->getOpcode()) { 1608 case UO_Plus: 1609 return this->delegate(SubExpr); 1610 case UO_Minus: 1611 if (!this->visit(SubExpr)) 1612 return false; 1613 return this->emitNegFixedPoint(E); 1614 default: 1615 return false; 1616 } 1617 1618 llvm_unreachable("Unhandled unary opcode"); 1619 } 1620 1621 template <class Emitter> 1622 bool Compiler<Emitter>::VisitImplicitValueInitExpr( 1623 const ImplicitValueInitExpr *E) { 1624 QualType QT = E->getType(); 1625 1626 if (std::optional<PrimType> T = classify(QT)) 1627 return this->visitZeroInitializer(*T, QT, E); 1628 1629 if (QT->isRecordType()) { 1630 const RecordDecl *RD = QT->getAsRecordDecl(); 1631 assert(RD); 1632 if (RD->isInvalidDecl()) 1633 return false; 1634 1635 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1636 CXXRD && CXXRD->getNumVBases() > 0) { 1637 // TODO: Diagnose. 1638 return false; 1639 } 1640 1641 const Record *R = getRecord(QT); 1642 if (!R) 1643 return false; 1644 1645 assert(Initializing); 1646 return this->visitZeroRecordInitializer(R, E); 1647 } 1648 1649 if (QT->isIncompleteArrayType()) 1650 return true; 1651 1652 if (QT->isArrayType()) 1653 return this->visitZeroArrayInitializer(QT, E); 1654 1655 if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) { 1656 assert(Initializing); 1657 QualType ElemQT = ComplexTy->getElementType(); 1658 PrimType ElemT = classifyPrim(ElemQT); 1659 for (unsigned I = 0; I < 2; ++I) { 1660 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1661 return false; 1662 if (!this->emitInitElem(ElemT, I, E)) 1663 return false; 1664 } 1665 return true; 1666 } 1667 1668 if (const auto *VecT = E->getType()->getAs<VectorType>()) { 1669 unsigned NumVecElements = VecT->getNumElements(); 1670 QualType ElemQT = VecT->getElementType(); 1671 PrimType ElemT = classifyPrim(ElemQT); 1672 1673 for (unsigned I = 0; I < NumVecElements; ++I) { 1674 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1675 return false; 1676 if (!this->emitInitElem(ElemT, I, E)) 1677 return false; 1678 } 1679 return true; 1680 } 1681 1682 return false; 1683 } 1684 1685 template <class Emitter> 1686 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1687 const Expr *LHS = E->getLHS(); 1688 const Expr *RHS = E->getRHS(); 1689 const Expr *Index = E->getIdx(); 1690 1691 if (DiscardResult) 1692 return this->discard(LHS) && this->discard(RHS); 1693 1694 // C++17's rules require us to evaluate the LHS first, regardless of which 1695 // side is the base. 1696 bool Success = true; 1697 for (const Expr *SubExpr : {LHS, RHS}) { 1698 if (!this->visit(SubExpr)) 1699 Success = false; 1700 } 1701 1702 if (!Success) 1703 return false; 1704 1705 PrimType IndexT = classifyPrim(Index->getType()); 1706 // If the index is first, we need to change that. 1707 if (LHS == Index) { 1708 if (!this->emitFlip(PT_Ptr, IndexT, E)) 1709 return false; 1710 } 1711 1712 return this->emitArrayElemPtrPop(IndexT, E); 1713 } 1714 1715 template <class Emitter> 1716 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits, 1717 const Expr *ArrayFiller, const Expr *E) { 1718 QualType QT = E->getType(); 1719 if (const auto *AT = QT->getAs<AtomicType>()) 1720 QT = AT->getValueType(); 1721 1722 if (QT->isVoidType()) { 1723 if (Inits.size() == 0) 1724 return true; 1725 return this->emitInvalid(E); 1726 } 1727 1728 // Handle discarding first. 1729 if (DiscardResult) { 1730 for (const Expr *Init : Inits) { 1731 if (!this->discard(Init)) 1732 return false; 1733 } 1734 return true; 1735 } 1736 1737 // Primitive values. 1738 if (std::optional<PrimType> T = classify(QT)) { 1739 assert(!DiscardResult); 1740 if (Inits.size() == 0) 1741 return this->visitZeroInitializer(*T, QT, E); 1742 assert(Inits.size() == 1); 1743 return this->delegate(Inits[0]); 1744 } 1745 1746 if (QT->isRecordType()) { 1747 const Record *R = getRecord(QT); 1748 1749 if (Inits.size() == 1 && E->getType() == Inits[0]->getType()) 1750 return this->delegate(Inits[0]); 1751 1752 auto initPrimitiveField = [=](const Record::Field *FieldToInit, 1753 const Expr *Init, PrimType T) -> bool { 1754 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1755 if (!this->visit(Init)) 1756 return false; 1757 1758 if (FieldToInit->isBitField()) 1759 return this->emitInitBitField(T, FieldToInit, E); 1760 return this->emitInitField(T, FieldToInit->Offset, E); 1761 }; 1762 1763 auto initCompositeField = [=](const Record::Field *FieldToInit, 1764 const Expr *Init) -> bool { 1765 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1766 InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset)); 1767 // Non-primitive case. Get a pointer to the field-to-initialize 1768 // on the stack and recurse into visitInitializer(). 1769 if (!this->emitGetPtrField(FieldToInit->Offset, Init)) 1770 return false; 1771 if (!this->visitInitializer(Init)) 1772 return false; 1773 return this->emitPopPtr(E); 1774 }; 1775 1776 if (R->isUnion()) { 1777 if (Inits.size() == 0) { 1778 if (!this->visitZeroRecordInitializer(R, E)) 1779 return false; 1780 } else { 1781 const Expr *Init = Inits[0]; 1782 const FieldDecl *FToInit = nullptr; 1783 if (const auto *ILE = dyn_cast<InitListExpr>(E)) 1784 FToInit = ILE->getInitializedFieldInUnion(); 1785 else 1786 FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion(); 1787 1788 const Record::Field *FieldToInit = R->getField(FToInit); 1789 if (std::optional<PrimType> T = classify(Init)) { 1790 if (!initPrimitiveField(FieldToInit, Init, *T)) 1791 return false; 1792 } else { 1793 if (!initCompositeField(FieldToInit, Init)) 1794 return false; 1795 } 1796 } 1797 return this->emitFinishInit(E); 1798 } 1799 1800 assert(!R->isUnion()); 1801 unsigned InitIndex = 0; 1802 for (const Expr *Init : Inits) { 1803 // Skip unnamed bitfields. 1804 while (InitIndex < R->getNumFields() && 1805 R->getField(InitIndex)->Decl->isUnnamedBitField()) 1806 ++InitIndex; 1807 1808 if (std::optional<PrimType> T = classify(Init)) { 1809 const Record::Field *FieldToInit = R->getField(InitIndex); 1810 if (!initPrimitiveField(FieldToInit, Init, *T)) 1811 return false; 1812 ++InitIndex; 1813 } else { 1814 // Initializer for a direct base class. 1815 if (const Record::Base *B = R->getBase(Init->getType())) { 1816 if (!this->emitGetPtrBase(B->Offset, Init)) 1817 return false; 1818 1819 if (!this->visitInitializer(Init)) 1820 return false; 1821 1822 if (!this->emitFinishInitPop(E)) 1823 return false; 1824 // Base initializers don't increase InitIndex, since they don't count 1825 // into the Record's fields. 1826 } else { 1827 const Record::Field *FieldToInit = R->getField(InitIndex); 1828 if (!initCompositeField(FieldToInit, Init)) 1829 return false; 1830 ++InitIndex; 1831 } 1832 } 1833 } 1834 return this->emitFinishInit(E); 1835 } 1836 1837 if (QT->isArrayType()) { 1838 if (Inits.size() == 1 && QT == Inits[0]->getType()) 1839 return this->delegate(Inits[0]); 1840 1841 unsigned ElementIndex = 0; 1842 for (const Expr *Init : Inits) { 1843 if (const auto *EmbedS = 1844 dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 1845 PrimType TargetT = classifyPrim(Init->getType()); 1846 1847 auto Eval = [&](const Expr *Init, unsigned ElemIndex) { 1848 PrimType InitT = classifyPrim(Init->getType()); 1849 if (!this->visit(Init)) 1850 return false; 1851 if (InitT != TargetT) { 1852 if (!this->emitCast(InitT, TargetT, E)) 1853 return false; 1854 } 1855 return this->emitInitElem(TargetT, ElemIndex, Init); 1856 }; 1857 if (!EmbedS->doForEachDataElement(Eval, ElementIndex)) 1858 return false; 1859 } else { 1860 if (!this->visitArrayElemInit(ElementIndex, Init)) 1861 return false; 1862 ++ElementIndex; 1863 } 1864 } 1865 1866 // Expand the filler expression. 1867 // FIXME: This should go away. 1868 if (ArrayFiller) { 1869 const ConstantArrayType *CAT = 1870 Ctx.getASTContext().getAsConstantArrayType(QT); 1871 uint64_t NumElems = CAT->getZExtSize(); 1872 1873 for (; ElementIndex != NumElems; ++ElementIndex) { 1874 if (!this->visitArrayElemInit(ElementIndex, ArrayFiller)) 1875 return false; 1876 } 1877 } 1878 1879 return this->emitFinishInit(E); 1880 } 1881 1882 if (const auto *ComplexTy = QT->getAs<ComplexType>()) { 1883 unsigned NumInits = Inits.size(); 1884 1885 if (NumInits == 1) 1886 return this->delegate(Inits[0]); 1887 1888 QualType ElemQT = ComplexTy->getElementType(); 1889 PrimType ElemT = classifyPrim(ElemQT); 1890 if (NumInits == 0) { 1891 // Zero-initialize both elements. 1892 for (unsigned I = 0; I < 2; ++I) { 1893 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1894 return false; 1895 if (!this->emitInitElem(ElemT, I, E)) 1896 return false; 1897 } 1898 } else if (NumInits == 2) { 1899 unsigned InitIndex = 0; 1900 for (const Expr *Init : Inits) { 1901 if (!this->visit(Init)) 1902 return false; 1903 1904 if (!this->emitInitElem(ElemT, InitIndex, E)) 1905 return false; 1906 ++InitIndex; 1907 } 1908 } 1909 return true; 1910 } 1911 1912 if (const auto *VecT = QT->getAs<VectorType>()) { 1913 unsigned NumVecElements = VecT->getNumElements(); 1914 assert(NumVecElements >= Inits.size()); 1915 1916 QualType ElemQT = VecT->getElementType(); 1917 PrimType ElemT = classifyPrim(ElemQT); 1918 1919 // All initializer elements. 1920 unsigned InitIndex = 0; 1921 for (const Expr *Init : Inits) { 1922 if (!this->visit(Init)) 1923 return false; 1924 1925 // If the initializer is of vector type itself, we have to deconstruct 1926 // that and initialize all the target fields from the initializer fields. 1927 if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) { 1928 if (!this->emitCopyArray(ElemT, 0, InitIndex, 1929 InitVecT->getNumElements(), E)) 1930 return false; 1931 InitIndex += InitVecT->getNumElements(); 1932 } else { 1933 if (!this->emitInitElem(ElemT, InitIndex, E)) 1934 return false; 1935 ++InitIndex; 1936 } 1937 } 1938 1939 assert(InitIndex <= NumVecElements); 1940 1941 // Fill the rest with zeroes. 1942 for (; InitIndex != NumVecElements; ++InitIndex) { 1943 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1944 return false; 1945 if (!this->emitInitElem(ElemT, InitIndex, E)) 1946 return false; 1947 } 1948 return true; 1949 } 1950 1951 return false; 1952 } 1953 1954 /// Pointer to the array(not the element!) must be on the stack when calling 1955 /// this. 1956 template <class Emitter> 1957 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex, 1958 const Expr *Init) { 1959 if (std::optional<PrimType> T = classify(Init->getType())) { 1960 // Visit the primitive element like normal. 1961 if (!this->visit(Init)) 1962 return false; 1963 return this->emitInitElem(*T, ElemIndex, Init); 1964 } 1965 1966 InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex)); 1967 // Advance the pointer currently on the stack to the given 1968 // dimension. 1969 if (!this->emitConstUint32(ElemIndex, Init)) 1970 return false; 1971 if (!this->emitArrayElemPtrUint32(Init)) 1972 return false; 1973 if (!this->visitInitializer(Init)) 1974 return false; 1975 return this->emitFinishInitPop(Init); 1976 } 1977 1978 template <class Emitter> 1979 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) { 1980 return this->visitInitList(E->inits(), E->getArrayFiller(), E); 1981 } 1982 1983 template <class Emitter> 1984 bool Compiler<Emitter>::VisitCXXParenListInitExpr( 1985 const CXXParenListInitExpr *E) { 1986 return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E); 1987 } 1988 1989 template <class Emitter> 1990 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr( 1991 const SubstNonTypeTemplateParmExpr *E) { 1992 return this->delegate(E->getReplacement()); 1993 } 1994 1995 template <class Emitter> 1996 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) { 1997 std::optional<PrimType> T = classify(E->getType()); 1998 if (T && E->hasAPValueResult()) { 1999 // Try to emit the APValue directly, without visiting the subexpr. 2000 // This will only fail if we can't emit the APValue, so won't emit any 2001 // diagnostics or any double values. 2002 if (DiscardResult) 2003 return true; 2004 2005 if (this->visitAPValue(E->getAPValueResult(), *T, E)) 2006 return true; 2007 } 2008 return this->delegate(E->getSubExpr()); 2009 } 2010 2011 template <class Emitter> 2012 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) { 2013 auto It = E->begin(); 2014 return this->visit(*It); 2015 } 2016 2017 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx, 2018 UnaryExprOrTypeTrait Kind) { 2019 bool AlignOfReturnsPreferred = 2020 ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 2021 2022 // C++ [expr.alignof]p3: 2023 // When alignof is applied to a reference type, the result is the 2024 // alignment of the referenced type. 2025 if (const auto *Ref = T->getAs<ReferenceType>()) 2026 T = Ref->getPointeeType(); 2027 2028 if (T.getQualifiers().hasUnaligned()) 2029 return CharUnits::One(); 2030 2031 // __alignof is defined to return the preferred alignment. 2032 // Before 8, clang returned the preferred alignment for alignof and 2033 // _Alignof as well. 2034 if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 2035 return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T)); 2036 2037 return ASTCtx.getTypeAlignInChars(T); 2038 } 2039 2040 template <class Emitter> 2041 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr( 2042 const UnaryExprOrTypeTraitExpr *E) { 2043 UnaryExprOrTypeTrait Kind = E->getKind(); 2044 const ASTContext &ASTCtx = Ctx.getASTContext(); 2045 2046 if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) { 2047 QualType ArgType = E->getTypeOfArgument(); 2048 2049 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 2050 // the result is the size of the referenced type." 2051 if (const auto *Ref = ArgType->getAs<ReferenceType>()) 2052 ArgType = Ref->getPointeeType(); 2053 2054 CharUnits Size; 2055 if (ArgType->isVoidType() || ArgType->isFunctionType()) 2056 Size = CharUnits::One(); 2057 else { 2058 if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) 2059 return false; 2060 2061 if (Kind == UETT_SizeOf) 2062 Size = ASTCtx.getTypeSizeInChars(ArgType); 2063 else 2064 Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width; 2065 } 2066 2067 if (DiscardResult) 2068 return true; 2069 2070 return this->emitConst(Size.getQuantity(), E); 2071 } 2072 2073 if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) { 2074 CharUnits Size; 2075 2076 if (E->isArgumentType()) { 2077 QualType ArgType = E->getTypeOfArgument(); 2078 2079 Size = AlignOfType(ArgType, ASTCtx, Kind); 2080 } else { 2081 // Argument is an expression, not a type. 2082 const Expr *Arg = E->getArgumentExpr()->IgnoreParens(); 2083 2084 // The kinds of expressions that we have special-case logic here for 2085 // should be kept up to date with the special checks for those 2086 // expressions in Sema. 2087 2088 // alignof decl is always accepted, even if it doesn't make sense: we 2089 // default to 1 in those cases. 2090 if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg)) 2091 Size = ASTCtx.getDeclAlign(DRE->getDecl(), 2092 /*RefAsPointee*/ true); 2093 else if (const auto *ME = dyn_cast<MemberExpr>(Arg)) 2094 Size = ASTCtx.getDeclAlign(ME->getMemberDecl(), 2095 /*RefAsPointee*/ true); 2096 else 2097 Size = AlignOfType(Arg->getType(), ASTCtx, Kind); 2098 } 2099 2100 if (DiscardResult) 2101 return true; 2102 2103 return this->emitConst(Size.getQuantity(), E); 2104 } 2105 2106 if (Kind == UETT_VectorElements) { 2107 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) 2108 return this->emitConst(VT->getNumElements(), E); 2109 assert(E->getTypeOfArgument()->isSizelessVectorType()); 2110 return this->emitSizelessVectorElementSize(E); 2111 } 2112 2113 if (Kind == UETT_VecStep) { 2114 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) { 2115 unsigned N = VT->getNumElements(); 2116 2117 // The vec_step built-in functions that take a 3-component 2118 // vector return 4. (OpenCL 1.1 spec 6.11.12) 2119 if (N == 3) 2120 N = 4; 2121 2122 return this->emitConst(N, E); 2123 } 2124 return this->emitConst(1, E); 2125 } 2126 2127 if (Kind == UETT_OpenMPRequiredSimdAlign) { 2128 assert(E->isArgumentType()); 2129 unsigned Bits = ASTCtx.getOpenMPDefaultSimdAlign(E->getArgumentType()); 2130 2131 return this->emitConst(ASTCtx.toCharUnitsFromBits(Bits).getQuantity(), E); 2132 } 2133 2134 return false; 2135 } 2136 2137 template <class Emitter> 2138 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) { 2139 // 'Base.Member' 2140 const Expr *Base = E->getBase(); 2141 const ValueDecl *Member = E->getMemberDecl(); 2142 2143 if (DiscardResult) 2144 return this->discard(Base); 2145 2146 // MemberExprs are almost always lvalues, in which case we don't need to 2147 // do the load. But sometimes they aren't. 2148 const auto maybeLoadValue = [&]() -> bool { 2149 if (E->isGLValue()) 2150 return true; 2151 if (std::optional<PrimType> T = classify(E)) 2152 return this->emitLoadPop(*T, E); 2153 return false; 2154 }; 2155 2156 if (const auto *VD = dyn_cast<VarDecl>(Member)) { 2157 // I am almost confident in saying that a var decl must be static 2158 // and therefore registered as a global variable. But this will probably 2159 // turn out to be wrong some time in the future, as always. 2160 if (auto GlobalIndex = P.getGlobal(VD)) 2161 return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue(); 2162 return false; 2163 } 2164 2165 if (!isa<FieldDecl>(Member)) { 2166 if (!this->discard(Base) && !this->emitSideEffect(E)) 2167 return false; 2168 2169 return this->visitDeclRef(Member, E); 2170 } 2171 2172 if (Initializing) { 2173 if (!this->delegate(Base)) 2174 return false; 2175 } else { 2176 if (!this->visit(Base)) 2177 return false; 2178 } 2179 2180 // Base above gives us a pointer on the stack. 2181 const auto *FD = cast<FieldDecl>(Member); 2182 const RecordDecl *RD = FD->getParent(); 2183 const Record *R = getRecord(RD); 2184 if (!R) 2185 return false; 2186 const Record::Field *F = R->getField(FD); 2187 // Leave a pointer to the field on the stack. 2188 if (F->Decl->getType()->isReferenceType()) 2189 return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue(); 2190 return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue(); 2191 } 2192 2193 template <class Emitter> 2194 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 2195 // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated 2196 // stand-alone, e.g. via EvaluateAsInt(). 2197 if (!ArrayIndex) 2198 return false; 2199 return this->emitConst(*ArrayIndex, E); 2200 } 2201 2202 template <class Emitter> 2203 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 2204 assert(Initializing); 2205 assert(!DiscardResult); 2206 2207 // We visit the common opaque expression here once so we have its value 2208 // cached. 2209 if (!this->discard(E->getCommonExpr())) 2210 return false; 2211 2212 // TODO: This compiles to quite a lot of bytecode if the array is larger. 2213 // Investigate compiling this to a loop. 2214 const Expr *SubExpr = E->getSubExpr(); 2215 size_t Size = E->getArraySize().getZExtValue(); 2216 2217 // So, every iteration, we execute an assignment here 2218 // where the LHS is on the stack (the target array) 2219 // and the RHS is our SubExpr. 2220 for (size_t I = 0; I != Size; ++I) { 2221 ArrayIndexScope<Emitter> IndexScope(this, I); 2222 BlockScope<Emitter> BS(this); 2223 2224 if (!this->visitArrayElemInit(I, SubExpr)) 2225 return false; 2226 if (!BS.destroyLocals()) 2227 return false; 2228 } 2229 return true; 2230 } 2231 2232 template <class Emitter> 2233 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 2234 const Expr *SourceExpr = E->getSourceExpr(); 2235 if (!SourceExpr) 2236 return false; 2237 2238 if (Initializing) 2239 return this->visitInitializer(SourceExpr); 2240 2241 PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr); 2242 if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end()) 2243 return this->emitGetLocal(SubExprT, It->second, E); 2244 2245 if (!this->visit(SourceExpr)) 2246 return false; 2247 2248 // At this point we either have the evaluated source expression or a pointer 2249 // to an object on the stack. We want to create a local variable that stores 2250 // this value. 2251 unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true); 2252 if (!this->emitSetLocal(SubExprT, LocalIndex, E)) 2253 return false; 2254 2255 // Here the local variable is created but the value is removed from the stack, 2256 // so we put it back if the caller needs it. 2257 if (!DiscardResult) { 2258 if (!this->emitGetLocal(SubExprT, LocalIndex, E)) 2259 return false; 2260 } 2261 2262 // This is cleaned up when the local variable is destroyed. 2263 OpaqueExprs.insert({E, LocalIndex}); 2264 2265 return true; 2266 } 2267 2268 template <class Emitter> 2269 bool Compiler<Emitter>::VisitAbstractConditionalOperator( 2270 const AbstractConditionalOperator *E) { 2271 const Expr *Condition = E->getCond(); 2272 const Expr *TrueExpr = E->getTrueExpr(); 2273 const Expr *FalseExpr = E->getFalseExpr(); 2274 2275 LabelTy LabelEnd = this->getLabel(); // Label after the operator. 2276 LabelTy LabelFalse = this->getLabel(); // Label for the false expr. 2277 2278 if (!this->visitBool(Condition)) 2279 return false; 2280 2281 if (!this->jumpFalse(LabelFalse)) 2282 return false; 2283 2284 { 2285 LocalScope<Emitter> S(this); 2286 if (!this->delegate(TrueExpr)) 2287 return false; 2288 if (!S.destroyLocals()) 2289 return false; 2290 } 2291 2292 if (!this->jump(LabelEnd)) 2293 return false; 2294 2295 this->emitLabel(LabelFalse); 2296 2297 { 2298 LocalScope<Emitter> S(this); 2299 if (!this->delegate(FalseExpr)) 2300 return false; 2301 if (!S.destroyLocals()) 2302 return false; 2303 } 2304 2305 this->fallthrough(LabelEnd); 2306 this->emitLabel(LabelEnd); 2307 2308 return true; 2309 } 2310 2311 template <class Emitter> 2312 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) { 2313 if (DiscardResult) 2314 return true; 2315 2316 if (!Initializing) { 2317 unsigned StringIndex = P.createGlobalString(E); 2318 return this->emitGetPtrGlobal(StringIndex, E); 2319 } 2320 2321 // We are initializing an array on the stack. 2322 const ConstantArrayType *CAT = 2323 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 2324 assert(CAT && "a string literal that's not a constant array?"); 2325 2326 // If the initializer string is too long, a diagnostic has already been 2327 // emitted. Read only the array length from the string literal. 2328 unsigned ArraySize = CAT->getZExtSize(); 2329 unsigned N = std::min(ArraySize, E->getLength()); 2330 size_t CharWidth = E->getCharByteWidth(); 2331 2332 for (unsigned I = 0; I != N; ++I) { 2333 uint32_t CodeUnit = E->getCodeUnit(I); 2334 2335 if (CharWidth == 1) { 2336 this->emitConstSint8(CodeUnit, E); 2337 this->emitInitElemSint8(I, E); 2338 } else if (CharWidth == 2) { 2339 this->emitConstUint16(CodeUnit, E); 2340 this->emitInitElemUint16(I, E); 2341 } else if (CharWidth == 4) { 2342 this->emitConstUint32(CodeUnit, E); 2343 this->emitInitElemUint32(I, E); 2344 } else { 2345 llvm_unreachable("unsupported character width"); 2346 } 2347 } 2348 2349 // Fill up the rest of the char array with NUL bytes. 2350 for (unsigned I = N; I != ArraySize; ++I) { 2351 if (CharWidth == 1) { 2352 this->emitConstSint8(0, E); 2353 this->emitInitElemSint8(I, E); 2354 } else if (CharWidth == 2) { 2355 this->emitConstUint16(0, E); 2356 this->emitInitElemUint16(I, E); 2357 } else if (CharWidth == 4) { 2358 this->emitConstUint32(0, E); 2359 this->emitInitElemUint32(I, E); 2360 } else { 2361 llvm_unreachable("unsupported character width"); 2362 } 2363 } 2364 2365 return true; 2366 } 2367 2368 template <class Emitter> 2369 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 2370 if (DiscardResult) 2371 return true; 2372 return this->emitDummyPtr(E, E); 2373 } 2374 2375 template <class Emitter> 2376 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 2377 auto &A = Ctx.getASTContext(); 2378 std::string Str; 2379 A.getObjCEncodingForType(E->getEncodedType(), Str); 2380 StringLiteral *SL = 2381 StringLiteral::Create(A, Str, StringLiteralKind::Ordinary, 2382 /*Pascal=*/false, E->getType(), E->getAtLoc()); 2383 return this->delegate(SL); 2384 } 2385 2386 template <class Emitter> 2387 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr( 2388 const SYCLUniqueStableNameExpr *E) { 2389 if (DiscardResult) 2390 return true; 2391 2392 assert(!Initializing); 2393 2394 auto &A = Ctx.getASTContext(); 2395 std::string ResultStr = E->ComputeName(A); 2396 2397 QualType CharTy = A.CharTy.withConst(); 2398 APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1); 2399 QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr, 2400 ArraySizeModifier::Normal, 0); 2401 2402 StringLiteral *SL = 2403 StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary, 2404 /*Pascal=*/false, ArrayTy, E->getLocation()); 2405 2406 unsigned StringIndex = P.createGlobalString(SL); 2407 return this->emitGetPtrGlobal(StringIndex, E); 2408 } 2409 2410 template <class Emitter> 2411 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) { 2412 if (DiscardResult) 2413 return true; 2414 return this->emitConst(E->getValue(), E); 2415 } 2416 2417 template <class Emitter> 2418 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator( 2419 const CompoundAssignOperator *E) { 2420 2421 const Expr *LHS = E->getLHS(); 2422 const Expr *RHS = E->getRHS(); 2423 QualType LHSType = LHS->getType(); 2424 QualType LHSComputationType = E->getComputationLHSType(); 2425 QualType ResultType = E->getComputationResultType(); 2426 std::optional<PrimType> LT = classify(LHSComputationType); 2427 std::optional<PrimType> RT = classify(ResultType); 2428 2429 assert(ResultType->isFloatingType()); 2430 2431 if (!LT || !RT) 2432 return false; 2433 2434 PrimType LHST = classifyPrim(LHSType); 2435 2436 // C++17 onwards require that we evaluate the RHS first. 2437 // Compute RHS and save it in a temporary variable so we can 2438 // load it again later. 2439 if (!visit(RHS)) 2440 return false; 2441 2442 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2443 if (!this->emitSetLocal(*RT, TempOffset, E)) 2444 return false; 2445 2446 // First, visit LHS. 2447 if (!visit(LHS)) 2448 return false; 2449 if (!this->emitLoad(LHST, E)) 2450 return false; 2451 2452 // If necessary, convert LHS to its computation type. 2453 if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType), 2454 LHSComputationType, E)) 2455 return false; 2456 2457 // Now load RHS. 2458 if (!this->emitGetLocal(*RT, TempOffset, E)) 2459 return false; 2460 2461 switch (E->getOpcode()) { 2462 case BO_AddAssign: 2463 if (!this->emitAddf(getFPOptions(E), E)) 2464 return false; 2465 break; 2466 case BO_SubAssign: 2467 if (!this->emitSubf(getFPOptions(E), E)) 2468 return false; 2469 break; 2470 case BO_MulAssign: 2471 if (!this->emitMulf(getFPOptions(E), E)) 2472 return false; 2473 break; 2474 case BO_DivAssign: 2475 if (!this->emitDivf(getFPOptions(E), E)) 2476 return false; 2477 break; 2478 default: 2479 return false; 2480 } 2481 2482 if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E)) 2483 return false; 2484 2485 if (DiscardResult) 2486 return this->emitStorePop(LHST, E); 2487 return this->emitStore(LHST, E); 2488 } 2489 2490 template <class Emitter> 2491 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator( 2492 const CompoundAssignOperator *E) { 2493 BinaryOperatorKind Op = E->getOpcode(); 2494 const Expr *LHS = E->getLHS(); 2495 const Expr *RHS = E->getRHS(); 2496 std::optional<PrimType> LT = classify(LHS->getType()); 2497 std::optional<PrimType> RT = classify(RHS->getType()); 2498 2499 if (Op != BO_AddAssign && Op != BO_SubAssign) 2500 return false; 2501 2502 if (!LT || !RT) 2503 return false; 2504 2505 if (!visit(LHS)) 2506 return false; 2507 2508 if (!this->emitLoad(*LT, LHS)) 2509 return false; 2510 2511 if (!visit(RHS)) 2512 return false; 2513 2514 if (Op == BO_AddAssign) { 2515 if (!this->emitAddOffset(*RT, E)) 2516 return false; 2517 } else { 2518 if (!this->emitSubOffset(*RT, E)) 2519 return false; 2520 } 2521 2522 if (DiscardResult) 2523 return this->emitStorePopPtr(E); 2524 return this->emitStorePtr(E); 2525 } 2526 2527 template <class Emitter> 2528 bool Compiler<Emitter>::VisitCompoundAssignOperator( 2529 const CompoundAssignOperator *E) { 2530 if (E->getType()->isVectorType()) 2531 return VisitVectorBinOp(E); 2532 2533 const Expr *LHS = E->getLHS(); 2534 const Expr *RHS = E->getRHS(); 2535 std::optional<PrimType> LHSComputationT = 2536 classify(E->getComputationLHSType()); 2537 std::optional<PrimType> LT = classify(LHS->getType()); 2538 std::optional<PrimType> RT = classify(RHS->getType()); 2539 std::optional<PrimType> ResultT = classify(E->getType()); 2540 2541 if (!Ctx.getLangOpts().CPlusPlus14) 2542 return this->visit(RHS) && this->visit(LHS) && this->emitError(E); 2543 2544 if (!LT || !RT || !ResultT || !LHSComputationT) 2545 return false; 2546 2547 // Handle floating point operations separately here, since they 2548 // require special care. 2549 2550 if (ResultT == PT_Float || RT == PT_Float) 2551 return VisitFloatCompoundAssignOperator(E); 2552 2553 if (E->getType()->isPointerType()) 2554 return VisitPointerCompoundAssignOperator(E); 2555 2556 assert(!E->getType()->isPointerType() && "Handled above"); 2557 assert(!E->getType()->isFloatingType() && "Handled above"); 2558 2559 // C++17 onwards require that we evaluate the RHS first. 2560 // Compute RHS and save it in a temporary variable so we can 2561 // load it again later. 2562 // FIXME: Compound assignments are unsequenced in C, so we might 2563 // have to figure out how to reject them. 2564 if (!visit(RHS)) 2565 return false; 2566 2567 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2568 2569 if (!this->emitSetLocal(*RT, TempOffset, E)) 2570 return false; 2571 2572 // Get LHS pointer, load its value and cast it to the 2573 // computation type if necessary. 2574 if (!visit(LHS)) 2575 return false; 2576 if (!this->emitLoad(*LT, E)) 2577 return false; 2578 if (LT != LHSComputationT) { 2579 if (!this->emitCast(*LT, *LHSComputationT, E)) 2580 return false; 2581 } 2582 2583 // Get the RHS value on the stack. 2584 if (!this->emitGetLocal(*RT, TempOffset, E)) 2585 return false; 2586 2587 // Perform operation. 2588 switch (E->getOpcode()) { 2589 case BO_AddAssign: 2590 if (!this->emitAdd(*LHSComputationT, E)) 2591 return false; 2592 break; 2593 case BO_SubAssign: 2594 if (!this->emitSub(*LHSComputationT, E)) 2595 return false; 2596 break; 2597 case BO_MulAssign: 2598 if (!this->emitMul(*LHSComputationT, E)) 2599 return false; 2600 break; 2601 case BO_DivAssign: 2602 if (!this->emitDiv(*LHSComputationT, E)) 2603 return false; 2604 break; 2605 case BO_RemAssign: 2606 if (!this->emitRem(*LHSComputationT, E)) 2607 return false; 2608 break; 2609 case BO_ShlAssign: 2610 if (!this->emitShl(*LHSComputationT, *RT, E)) 2611 return false; 2612 break; 2613 case BO_ShrAssign: 2614 if (!this->emitShr(*LHSComputationT, *RT, E)) 2615 return false; 2616 break; 2617 case BO_AndAssign: 2618 if (!this->emitBitAnd(*LHSComputationT, E)) 2619 return false; 2620 break; 2621 case BO_XorAssign: 2622 if (!this->emitBitXor(*LHSComputationT, E)) 2623 return false; 2624 break; 2625 case BO_OrAssign: 2626 if (!this->emitBitOr(*LHSComputationT, E)) 2627 return false; 2628 break; 2629 default: 2630 llvm_unreachable("Unimplemented compound assign operator"); 2631 } 2632 2633 // And now cast from LHSComputationT to ResultT. 2634 if (ResultT != LHSComputationT) { 2635 if (!this->emitCast(*LHSComputationT, *ResultT, E)) 2636 return false; 2637 } 2638 2639 // And store the result in LHS. 2640 if (DiscardResult) { 2641 if (LHS->refersToBitField()) 2642 return this->emitStoreBitFieldPop(*ResultT, E); 2643 return this->emitStorePop(*ResultT, E); 2644 } 2645 if (LHS->refersToBitField()) 2646 return this->emitStoreBitField(*ResultT, E); 2647 return this->emitStore(*ResultT, E); 2648 } 2649 2650 template <class Emitter> 2651 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) { 2652 LocalScope<Emitter> ES(this); 2653 const Expr *SubExpr = E->getSubExpr(); 2654 2655 return this->delegate(SubExpr) && ES.destroyLocals(E); 2656 } 2657 2658 template <class Emitter> 2659 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr( 2660 const MaterializeTemporaryExpr *E) { 2661 const Expr *SubExpr = E->getSubExpr(); 2662 2663 if (Initializing) { 2664 // We already have a value, just initialize that. 2665 return this->delegate(SubExpr); 2666 } 2667 // If we don't end up using the materialized temporary anyway, don't 2668 // bother creating it. 2669 if (DiscardResult) 2670 return this->discard(SubExpr); 2671 2672 // When we're initializing a global variable *or* the storage duration of 2673 // the temporary is explicitly static, create a global variable. 2674 std::optional<PrimType> SubExprT = classify(SubExpr); 2675 bool IsStatic = E->getStorageDuration() == SD_Static; 2676 if (IsStatic) { 2677 std::optional<unsigned> GlobalIndex = P.createGlobal(E); 2678 if (!GlobalIndex) 2679 return false; 2680 2681 const LifetimeExtendedTemporaryDecl *TempDecl = 2682 E->getLifetimeExtendedTemporaryDecl(); 2683 if (IsStatic) 2684 assert(TempDecl); 2685 2686 if (SubExprT) { 2687 if (!this->visit(SubExpr)) 2688 return false; 2689 if (IsStatic) { 2690 if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E)) 2691 return false; 2692 } else { 2693 if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E)) 2694 return false; 2695 } 2696 return this->emitGetPtrGlobal(*GlobalIndex, E); 2697 } 2698 2699 if (!this->checkLiteralType(SubExpr)) 2700 return false; 2701 // Non-primitive values. 2702 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2703 return false; 2704 if (!this->visitInitializer(SubExpr)) 2705 return false; 2706 if (IsStatic) 2707 return this->emitInitGlobalTempComp(TempDecl, E); 2708 return true; 2709 } 2710 2711 // For everyhing else, use local variables. 2712 if (SubExprT) { 2713 unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true, 2714 /*IsExtended=*/true); 2715 if (!this->visit(SubExpr)) 2716 return false; 2717 if (!this->emitSetLocal(*SubExprT, LocalIndex, E)) 2718 return false; 2719 return this->emitGetPtrLocal(LocalIndex, E); 2720 } else { 2721 2722 if (!this->checkLiteralType(SubExpr)) 2723 return false; 2724 2725 const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); 2726 if (std::optional<unsigned> LocalIndex = 2727 allocateLocal(E, Inner->getType(), E->getExtendingDecl())) { 2728 InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); 2729 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2730 return false; 2731 return this->visitInitializer(SubExpr) && this->emitFinishInit(E); 2732 } 2733 } 2734 return false; 2735 } 2736 2737 template <class Emitter> 2738 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr( 2739 const CXXBindTemporaryExpr *E) { 2740 return this->delegate(E->getSubExpr()); 2741 } 2742 2743 template <class Emitter> 2744 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 2745 const Expr *Init = E->getInitializer(); 2746 if (DiscardResult) 2747 return this->discard(Init); 2748 2749 if (Initializing) { 2750 // We already have a value, just initialize that. 2751 return this->visitInitializer(Init) && this->emitFinishInit(E); 2752 } 2753 2754 std::optional<PrimType> T = classify(E->getType()); 2755 if (E->isFileScope()) { 2756 // Avoid creating a variable if this is a primitive RValue anyway. 2757 if (T && !E->isLValue()) 2758 return this->delegate(Init); 2759 2760 if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) { 2761 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2762 return false; 2763 2764 if (T) { 2765 if (!this->visit(Init)) 2766 return false; 2767 return this->emitInitGlobal(*T, *GlobalIndex, E); 2768 } 2769 2770 return this->visitInitializer(Init) && this->emitFinishInit(E); 2771 } 2772 2773 return false; 2774 } 2775 2776 // Otherwise, use a local variable. 2777 if (T && !E->isLValue()) { 2778 // For primitive types, we just visit the initializer. 2779 return this->delegate(Init); 2780 } else { 2781 unsigned LocalIndex; 2782 2783 if (T) 2784 LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false); 2785 else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init)) 2786 LocalIndex = *MaybeIndex; 2787 else 2788 return false; 2789 2790 if (!this->emitGetPtrLocal(LocalIndex, E)) 2791 return false; 2792 2793 if (T) { 2794 if (!this->visit(Init)) { 2795 return false; 2796 } 2797 return this->emitInit(*T, E); 2798 } else { 2799 if (!this->visitInitializer(Init) || !this->emitFinishInit(E)) 2800 return false; 2801 } 2802 return true; 2803 } 2804 2805 return false; 2806 } 2807 2808 template <class Emitter> 2809 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) { 2810 if (DiscardResult) 2811 return true; 2812 if (E->getType()->isBooleanType()) 2813 return this->emitConstBool(E->getValue(), E); 2814 return this->emitConst(E->getValue(), E); 2815 } 2816 2817 template <class Emitter> 2818 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 2819 if (DiscardResult) 2820 return true; 2821 return this->emitConst(E->getValue(), E); 2822 } 2823 2824 template <class Emitter> 2825 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) { 2826 if (DiscardResult) 2827 return true; 2828 2829 assert(Initializing); 2830 const Record *R = P.getOrCreateRecord(E->getLambdaClass()); 2831 2832 auto *CaptureInitIt = E->capture_init_begin(); 2833 // Initialize all fields (which represent lambda captures) of the 2834 // record with their initializers. 2835 for (const Record::Field &F : R->fields()) { 2836 const Expr *Init = *CaptureInitIt; 2837 ++CaptureInitIt; 2838 2839 if (!Init) 2840 continue; 2841 2842 if (std::optional<PrimType> T = classify(Init)) { 2843 if (!this->visit(Init)) 2844 return false; 2845 2846 if (!this->emitInitField(*T, F.Offset, E)) 2847 return false; 2848 } else { 2849 if (!this->emitGetPtrField(F.Offset, E)) 2850 return false; 2851 2852 if (!this->visitInitializer(Init)) 2853 return false; 2854 2855 if (!this->emitPopPtr(E)) 2856 return false; 2857 } 2858 } 2859 2860 return true; 2861 } 2862 2863 template <class Emitter> 2864 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) { 2865 if (DiscardResult) 2866 return true; 2867 2868 if (!Initializing) { 2869 unsigned StringIndex = P.createGlobalString(E->getFunctionName(), E); 2870 return this->emitGetPtrGlobal(StringIndex, E); 2871 } 2872 2873 return this->delegate(E->getFunctionName()); 2874 } 2875 2876 template <class Emitter> 2877 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) { 2878 if (E->getSubExpr() && !this->discard(E->getSubExpr())) 2879 return false; 2880 2881 return this->emitInvalid(E); 2882 } 2883 2884 template <class Emitter> 2885 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr( 2886 const CXXReinterpretCastExpr *E) { 2887 const Expr *SubExpr = E->getSubExpr(); 2888 2889 std::optional<PrimType> FromT = classify(SubExpr); 2890 std::optional<PrimType> ToT = classify(E); 2891 2892 if (!FromT || !ToT) 2893 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E); 2894 2895 if (FromT == PT_Ptr || ToT == PT_Ptr) { 2896 // Both types could be PT_Ptr because their expressions are glvalues. 2897 std::optional<PrimType> PointeeFromT; 2898 if (SubExpr->getType()->isPointerOrReferenceType()) 2899 PointeeFromT = classify(SubExpr->getType()->getPointeeType()); 2900 else 2901 PointeeFromT = classify(SubExpr->getType()); 2902 2903 std::optional<PrimType> PointeeToT; 2904 if (E->getType()->isPointerOrReferenceType()) 2905 PointeeToT = classify(E->getType()->getPointeeType()); 2906 else 2907 PointeeToT = classify(E->getType()); 2908 2909 bool Fatal = true; 2910 if (PointeeToT && PointeeFromT) { 2911 if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT)) 2912 Fatal = false; 2913 } 2914 2915 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2916 return false; 2917 2918 if (E->getCastKind() == CK_LValueBitCast) 2919 return this->delegate(SubExpr); 2920 return this->VisitCastExpr(E); 2921 } 2922 2923 // Try to actually do the cast. 2924 bool Fatal = (ToT != FromT); 2925 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2926 return false; 2927 2928 return this->VisitCastExpr(E); 2929 } 2930 2931 template <class Emitter> 2932 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 2933 assert(E->getType()->isBooleanType()); 2934 2935 if (DiscardResult) 2936 return true; 2937 return this->emitConstBool(E->getValue(), E); 2938 } 2939 2940 template <class Emitter> 2941 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) { 2942 QualType T = E->getType(); 2943 assert(!classify(T)); 2944 2945 if (T->isRecordType()) { 2946 const CXXConstructorDecl *Ctor = E->getConstructor(); 2947 2948 // Trivial copy/move constructor. Avoid copy. 2949 if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() && 2950 Ctor->isTrivial() && 2951 E->getArg(0)->isTemporaryObject(Ctx.getASTContext(), 2952 T->getAsCXXRecordDecl())) 2953 return this->visitInitializer(E->getArg(0)); 2954 2955 // If we're discarding a construct expression, we still need 2956 // to allocate a variable and call the constructor and destructor. 2957 if (DiscardResult) { 2958 if (Ctor->isTrivial()) 2959 return true; 2960 assert(!Initializing); 2961 std::optional<unsigned> LocalIndex = allocateLocal(E); 2962 2963 if (!LocalIndex) 2964 return false; 2965 2966 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2967 return false; 2968 } 2969 2970 // Zero initialization. 2971 if (E->requiresZeroInitialization()) { 2972 const Record *R = getRecord(E->getType()); 2973 2974 if (!this->visitZeroRecordInitializer(R, E)) 2975 return false; 2976 2977 // If the constructor is trivial anyway, we're done. 2978 if (Ctor->isTrivial()) 2979 return true; 2980 } 2981 2982 const Function *Func = getFunction(Ctor); 2983 2984 if (!Func) 2985 return false; 2986 2987 assert(Func->hasThisPointer()); 2988 assert(!Func->hasRVO()); 2989 2990 // The This pointer is already on the stack because this is an initializer, 2991 // but we need to dup() so the call() below has its own copy. 2992 if (!this->emitDupPtr(E)) 2993 return false; 2994 2995 // Constructor arguments. 2996 for (const auto *Arg : E->arguments()) { 2997 if (!this->visit(Arg)) 2998 return false; 2999 } 3000 3001 if (Func->isVariadic()) { 3002 uint32_t VarArgSize = 0; 3003 unsigned NumParams = Func->getNumWrittenParams(); 3004 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) { 3005 VarArgSize += 3006 align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr))); 3007 } 3008 if (!this->emitCallVar(Func, VarArgSize, E)) 3009 return false; 3010 } else { 3011 if (!this->emitCall(Func, 0, E)) { 3012 // When discarding, we don't need the result anyway, so clean up 3013 // the instance dup we did earlier in case surrounding code wants 3014 // to keep evaluating. 3015 if (DiscardResult) 3016 (void)this->emitPopPtr(E); 3017 return false; 3018 } 3019 } 3020 3021 if (DiscardResult) 3022 return this->emitPopPtr(E); 3023 return this->emitFinishInit(E); 3024 } 3025 3026 if (T->isArrayType()) { 3027 const ConstantArrayType *CAT = 3028 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 3029 if (!CAT) 3030 return false; 3031 3032 size_t NumElems = CAT->getZExtSize(); 3033 const Function *Func = getFunction(E->getConstructor()); 3034 if (!Func || !Func->isConstexpr()) 3035 return false; 3036 3037 // FIXME(perf): We're calling the constructor once per array element here, 3038 // in the old intepreter we had a special-case for trivial constructors. 3039 for (size_t I = 0; I != NumElems; ++I) { 3040 if (!this->emitConstUint64(I, E)) 3041 return false; 3042 if (!this->emitArrayElemPtrUint64(E)) 3043 return false; 3044 3045 // Constructor arguments. 3046 for (const auto *Arg : E->arguments()) { 3047 if (!this->visit(Arg)) 3048 return false; 3049 } 3050 3051 if (!this->emitCall(Func, 0, E)) 3052 return false; 3053 } 3054 return true; 3055 } 3056 3057 return false; 3058 } 3059 3060 template <class Emitter> 3061 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) { 3062 if (DiscardResult) 3063 return true; 3064 3065 const APValue Val = 3066 E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr); 3067 3068 // Things like __builtin_LINE(). 3069 if (E->getType()->isIntegerType()) { 3070 assert(Val.isInt()); 3071 const APSInt &I = Val.getInt(); 3072 return this->emitConst(I, E); 3073 } 3074 // Otherwise, the APValue is an LValue, with only one element. 3075 // Theoretically, we don't need the APValue at all of course. 3076 assert(E->getType()->isPointerType()); 3077 assert(Val.isLValue()); 3078 const APValue::LValueBase &Base = Val.getLValueBase(); 3079 if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>()) 3080 return this->visit(LValueExpr); 3081 3082 // Otherwise, we have a decl (which is the case for 3083 // __builtin_source_location). 3084 assert(Base.is<const ValueDecl *>()); 3085 assert(Val.getLValuePath().size() == 0); 3086 const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>(); 3087 assert(BaseDecl); 3088 3089 auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl); 3090 3091 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD); 3092 if (!GlobalIndex) 3093 return false; 3094 3095 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 3096 return false; 3097 3098 const Record *R = getRecord(E->getType()); 3099 const APValue &V = UGCD->getValue(); 3100 for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) { 3101 const Record::Field *F = R->getField(I); 3102 const APValue &FieldValue = V.getStructField(I); 3103 3104 PrimType FieldT = classifyPrim(F->Decl->getType()); 3105 3106 if (!this->visitAPValue(FieldValue, FieldT, E)) 3107 return false; 3108 if (!this->emitInitField(FieldT, F->Offset, E)) 3109 return false; 3110 } 3111 3112 // Leave the pointer to the global on the stack. 3113 return true; 3114 } 3115 3116 template <class Emitter> 3117 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) { 3118 unsigned N = E->getNumComponents(); 3119 if (N == 0) 3120 return false; 3121 3122 for (unsigned I = 0; I != N; ++I) { 3123 const OffsetOfNode &Node = E->getComponent(I); 3124 if (Node.getKind() == OffsetOfNode::Array) { 3125 const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex()); 3126 PrimType IndexT = classifyPrim(ArrayIndexExpr->getType()); 3127 3128 if (DiscardResult) { 3129 if (!this->discard(ArrayIndexExpr)) 3130 return false; 3131 continue; 3132 } 3133 3134 if (!this->visit(ArrayIndexExpr)) 3135 return false; 3136 // Cast to Sint64. 3137 if (IndexT != PT_Sint64) { 3138 if (!this->emitCast(IndexT, PT_Sint64, E)) 3139 return false; 3140 } 3141 } 3142 } 3143 3144 if (DiscardResult) 3145 return true; 3146 3147 PrimType T = classifyPrim(E->getType()); 3148 return this->emitOffsetOf(T, E, E); 3149 } 3150 3151 template <class Emitter> 3152 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr( 3153 const CXXScalarValueInitExpr *E) { 3154 QualType Ty = E->getType(); 3155 3156 if (DiscardResult || Ty->isVoidType()) 3157 return true; 3158 3159 if (std::optional<PrimType> T = classify(Ty)) 3160 return this->visitZeroInitializer(*T, Ty, E); 3161 3162 if (const auto *CT = Ty->getAs<ComplexType>()) { 3163 if (!Initializing) { 3164 std::optional<unsigned> LocalIndex = allocateLocal(E); 3165 if (!LocalIndex) 3166 return false; 3167 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3168 return false; 3169 } 3170 3171 // Initialize both fields to 0. 3172 QualType ElemQT = CT->getElementType(); 3173 PrimType ElemT = classifyPrim(ElemQT); 3174 3175 for (unsigned I = 0; I != 2; ++I) { 3176 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 3177 return false; 3178 if (!this->emitInitElem(ElemT, I, E)) 3179 return false; 3180 } 3181 return true; 3182 } 3183 3184 if (const auto *VT = Ty->getAs<VectorType>()) { 3185 // FIXME: Code duplication with the _Complex case above. 3186 if (!Initializing) { 3187 std::optional<unsigned> LocalIndex = allocateLocal(E); 3188 if (!LocalIndex) 3189 return false; 3190 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3191 return false; 3192 } 3193 3194 // Initialize all fields to 0. 3195 QualType ElemQT = VT->getElementType(); 3196 PrimType ElemT = classifyPrim(ElemQT); 3197 3198 for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) { 3199 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 3200 return false; 3201 if (!this->emitInitElem(ElemT, I, E)) 3202 return false; 3203 } 3204 return true; 3205 } 3206 3207 return false; 3208 } 3209 3210 template <class Emitter> 3211 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 3212 return this->emitConst(E->getPackLength(), E); 3213 } 3214 3215 template <class Emitter> 3216 bool Compiler<Emitter>::VisitGenericSelectionExpr( 3217 const GenericSelectionExpr *E) { 3218 return this->delegate(E->getResultExpr()); 3219 } 3220 3221 template <class Emitter> 3222 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) { 3223 return this->delegate(E->getChosenSubExpr()); 3224 } 3225 3226 template <class Emitter> 3227 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 3228 if (DiscardResult) 3229 return true; 3230 3231 return this->emitConst(E->getValue(), E); 3232 } 3233 3234 template <class Emitter> 3235 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr( 3236 const CXXInheritedCtorInitExpr *E) { 3237 const CXXConstructorDecl *Ctor = E->getConstructor(); 3238 assert(!Ctor->isTrivial() && 3239 "Trivial CXXInheritedCtorInitExpr, implement. (possible?)"); 3240 const Function *F = this->getFunction(Ctor); 3241 assert(F); 3242 assert(!F->hasRVO()); 3243 assert(F->hasThisPointer()); 3244 3245 if (!this->emitDupPtr(SourceInfo{})) 3246 return false; 3247 3248 // Forward all arguments of the current function (which should be a 3249 // constructor itself) to the inherited ctor. 3250 // This is necessary because the calling code has pushed the pointer 3251 // of the correct base for us already, but the arguments need 3252 // to come after. 3253 unsigned Offset = align(primSize(PT_Ptr)); // instance pointer. 3254 for (const ParmVarDecl *PD : Ctor->parameters()) { 3255 PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr); 3256 3257 if (!this->emitGetParam(PT, Offset, E)) 3258 return false; 3259 Offset += align(primSize(PT)); 3260 } 3261 3262 return this->emitCall(F, 0, E); 3263 } 3264 3265 template <class Emitter> 3266 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) { 3267 assert(classifyPrim(E->getType()) == PT_Ptr); 3268 const Expr *Init = E->getInitializer(); 3269 QualType ElementType = E->getAllocatedType(); 3270 std::optional<PrimType> ElemT = classify(ElementType); 3271 unsigned PlacementArgs = E->getNumPlacementArgs(); 3272 const FunctionDecl *OperatorNew = E->getOperatorNew(); 3273 const Expr *PlacementDest = nullptr; 3274 bool IsNoThrow = false; 3275 3276 if (PlacementArgs != 0) { 3277 // FIXME: There is no restriction on this, but it's not clear that any 3278 // other form makes any sense. We get here for cases such as: 3279 // 3280 // new (std::align_val_t{N}) X(int) 3281 // 3282 // (which should presumably be valid only if N is a multiple of 3283 // alignof(int), and in any case can't be deallocated unless N is 3284 // alignof(X) and X has new-extended alignment). 3285 if (PlacementArgs == 1) { 3286 const Expr *Arg1 = E->getPlacementArg(0); 3287 if (Arg1->getType()->isNothrowT()) { 3288 if (!this->discard(Arg1)) 3289 return false; 3290 IsNoThrow = true; 3291 } else { 3292 // Invalid unless we have C++26 or are in a std:: function. 3293 if (!this->emitInvalidNewDeleteExpr(E, E)) 3294 return false; 3295 3296 // If we have a placement-new destination, we'll later use that instead 3297 // of allocating. 3298 if (OperatorNew->isReservedGlobalPlacementOperator()) 3299 PlacementDest = Arg1; 3300 } 3301 } else { 3302 // Always invalid. 3303 return this->emitInvalid(E); 3304 } 3305 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) 3306 return this->emitInvalidNewDeleteExpr(E, E); 3307 3308 const Descriptor *Desc; 3309 if (!PlacementDest) { 3310 if (ElemT) { 3311 if (E->isArray()) 3312 Desc = nullptr; // We're not going to use it in this case. 3313 else 3314 Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD, 3315 /*IsConst=*/false, /*IsTemporary=*/false, 3316 /*IsMutable=*/false); 3317 } else { 3318 Desc = P.createDescriptor( 3319 E, ElementType.getTypePtr(), 3320 E->isArray() ? std::nullopt : Descriptor::InlineDescMD, 3321 /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init); 3322 } 3323 } 3324 3325 if (E->isArray()) { 3326 std::optional<const Expr *> ArraySizeExpr = E->getArraySize(); 3327 if (!ArraySizeExpr) 3328 return false; 3329 3330 const Expr *Stripped = *ArraySizeExpr; 3331 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 3332 Stripped = ICE->getSubExpr()) 3333 if (ICE->getCastKind() != CK_NoOp && 3334 ICE->getCastKind() != CK_IntegralCast) 3335 break; 3336 3337 PrimType SizeT = classifyPrim(Stripped->getType()); 3338 3339 if (PlacementDest) { 3340 if (!this->visit(PlacementDest)) 3341 return false; 3342 if (!this->visit(Stripped)) 3343 return false; 3344 if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E)) 3345 return false; 3346 } else { 3347 if (!this->visit(Stripped)) 3348 return false; 3349 3350 if (ElemT) { 3351 // N primitive elements. 3352 if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E)) 3353 return false; 3354 } else { 3355 // N Composite elements. 3356 if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E)) 3357 return false; 3358 } 3359 } 3360 3361 if (Init && !this->visitInitializer(Init)) 3362 return false; 3363 3364 } else { 3365 if (PlacementDest) { 3366 if (!this->visit(PlacementDest)) 3367 return false; 3368 if (!this->emitCheckNewTypeMismatch(E, E)) 3369 return false; 3370 } else { 3371 // Allocate just one element. 3372 if (!this->emitAlloc(Desc, E)) 3373 return false; 3374 } 3375 3376 if (Init) { 3377 if (ElemT) { 3378 if (!this->visit(Init)) 3379 return false; 3380 3381 if (!this->emitInit(*ElemT, E)) 3382 return false; 3383 } else { 3384 // Composite. 3385 if (!this->visitInitializer(Init)) 3386 return false; 3387 } 3388 } 3389 } 3390 3391 if (DiscardResult) 3392 return this->emitPopPtr(E); 3393 3394 return true; 3395 } 3396 3397 template <class Emitter> 3398 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 3399 const Expr *Arg = E->getArgument(); 3400 3401 const FunctionDecl *OperatorDelete = E->getOperatorDelete(); 3402 3403 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) 3404 return this->emitInvalidNewDeleteExpr(E, E); 3405 3406 // Arg must be an lvalue. 3407 if (!this->visit(Arg)) 3408 return false; 3409 3410 return this->emitFree(E->isArrayForm(), E->isGlobalDelete(), E); 3411 } 3412 3413 template <class Emitter> 3414 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) { 3415 if (DiscardResult) 3416 return true; 3417 3418 const Function *Func = nullptr; 3419 if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E)) 3420 Func = F; 3421 3422 if (!Func) 3423 return false; 3424 return this->emitGetFnPtr(Func, E); 3425 } 3426 3427 template <class Emitter> 3428 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 3429 assert(Ctx.getLangOpts().CPlusPlus); 3430 return this->emitConstBool(E->getValue(), E); 3431 } 3432 3433 template <class Emitter> 3434 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 3435 if (DiscardResult) 3436 return true; 3437 assert(!Initializing); 3438 3439 const MSGuidDecl *GuidDecl = E->getGuidDecl(); 3440 const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl(); 3441 assert(RD); 3442 // If the definiton of the result type is incomplete, just return a dummy. 3443 // If (and when) that is read from, we will fail, but not now. 3444 if (!RD->isCompleteDefinition()) 3445 return this->emitDummyPtr(GuidDecl, E); 3446 3447 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl); 3448 if (!GlobalIndex) 3449 return false; 3450 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 3451 return false; 3452 3453 assert(this->getRecord(E->getType())); 3454 3455 const APValue &V = GuidDecl->getAsAPValue(); 3456 if (V.getKind() == APValue::None) 3457 return true; 3458 3459 assert(V.isStruct()); 3460 assert(V.getStructNumBases() == 0); 3461 if (!this->visitAPValueInitializer(V, E)) 3462 return false; 3463 3464 return this->emitFinishInit(E); 3465 } 3466 3467 template <class Emitter> 3468 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) { 3469 assert(classifyPrim(E->getType()) == PT_Bool); 3470 if (DiscardResult) 3471 return true; 3472 return this->emitConstBool(E->isSatisfied(), E); 3473 } 3474 3475 template <class Emitter> 3476 bool Compiler<Emitter>::VisitConceptSpecializationExpr( 3477 const ConceptSpecializationExpr *E) { 3478 assert(classifyPrim(E->getType()) == PT_Bool); 3479 if (DiscardResult) 3480 return true; 3481 return this->emitConstBool(E->isSatisfied(), E); 3482 } 3483 3484 template <class Emitter> 3485 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator( 3486 const CXXRewrittenBinaryOperator *E) { 3487 return this->delegate(E->getSemanticForm()); 3488 } 3489 3490 template <class Emitter> 3491 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) { 3492 3493 for (const Expr *SemE : E->semantics()) { 3494 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { 3495 if (SemE == E->getResultExpr()) 3496 return false; 3497 3498 if (OVE->isUnique()) 3499 continue; 3500 3501 if (!this->discard(OVE)) 3502 return false; 3503 } else if (SemE == E->getResultExpr()) { 3504 if (!this->delegate(SemE)) 3505 return false; 3506 } else { 3507 if (!this->discard(SemE)) 3508 return false; 3509 } 3510 } 3511 return true; 3512 } 3513 3514 template <class Emitter> 3515 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) { 3516 return this->delegate(E->getSelectedExpr()); 3517 } 3518 3519 template <class Emitter> 3520 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) { 3521 return this->emitError(E); 3522 } 3523 3524 template <class Emitter> 3525 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) { 3526 assert(E->getType()->isVoidPointerType()); 3527 3528 unsigned Offset = allocateLocalPrimitive( 3529 E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3530 3531 return this->emitGetLocal(PT_Ptr, Offset, E); 3532 } 3533 3534 template <class Emitter> 3535 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) { 3536 assert(Initializing); 3537 const auto *VT = E->getType()->castAs<VectorType>(); 3538 QualType ElemType = VT->getElementType(); 3539 PrimType ElemT = classifyPrim(ElemType); 3540 const Expr *Src = E->getSrcExpr(); 3541 QualType SrcType = Src->getType(); 3542 PrimType SrcElemT = classifyVectorElementType(SrcType); 3543 3544 unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false); 3545 if (!this->visit(Src)) 3546 return false; 3547 if (!this->emitSetLocal(PT_Ptr, SrcOffset, E)) 3548 return false; 3549 3550 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 3551 if (!this->emitGetLocal(PT_Ptr, SrcOffset, E)) 3552 return false; 3553 if (!this->emitArrayElemPop(SrcElemT, I, E)) 3554 return false; 3555 3556 // Cast to the desired result element type. 3557 if (SrcElemT != ElemT) { 3558 if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E)) 3559 return false; 3560 } else if (ElemType->isFloatingType() && SrcType != ElemType) { 3561 const auto *TargetSemantics = &Ctx.getFloatSemantics(ElemType); 3562 if (!this->emitCastFP(TargetSemantics, getRoundingMode(E), E)) 3563 return false; 3564 } 3565 if (!this->emitInitElem(ElemT, I, E)) 3566 return false; 3567 } 3568 3569 return true; 3570 } 3571 3572 template <class Emitter> 3573 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { 3574 assert(Initializing); 3575 assert(E->getNumSubExprs() > 2); 3576 3577 const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)}; 3578 const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>(); 3579 PrimType ElemT = classifyPrim(VT->getElementType()); 3580 unsigned NumInputElems = VT->getNumElements(); 3581 unsigned NumOutputElems = E->getNumSubExprs() - 2; 3582 assert(NumOutputElems > 0); 3583 3584 // Save both input vectors to a local variable. 3585 unsigned VectorOffsets[2]; 3586 for (unsigned I = 0; I != 2; ++I) { 3587 VectorOffsets[I] = this->allocateLocalPrimitive( 3588 Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3589 if (!this->visit(Vecs[I])) 3590 return false; 3591 if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E)) 3592 return false; 3593 } 3594 for (unsigned I = 0; I != NumOutputElems; ++I) { 3595 APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I); 3596 assert(ShuffleIndex >= -1); 3597 if (ShuffleIndex == -1) 3598 return this->emitInvalidShuffleVectorIndex(I, E); 3599 3600 assert(ShuffleIndex < (NumInputElems * 2)); 3601 if (!this->emitGetLocal(PT_Ptr, 3602 VectorOffsets[ShuffleIndex >= NumInputElems], E)) 3603 return false; 3604 unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems; 3605 if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E)) 3606 return false; 3607 3608 if (!this->emitInitElem(ElemT, I, E)) 3609 return false; 3610 } 3611 3612 return true; 3613 } 3614 3615 template <class Emitter> 3616 bool Compiler<Emitter>::VisitExtVectorElementExpr( 3617 const ExtVectorElementExpr *E) { 3618 const Expr *Base = E->getBase(); 3619 assert( 3620 Base->getType()->isVectorType() || 3621 Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType()); 3622 3623 SmallVector<uint32_t, 4> Indices; 3624 E->getEncodedElementAccess(Indices); 3625 3626 if (Indices.size() == 1) { 3627 if (!this->visit(Base)) 3628 return false; 3629 3630 if (E->isGLValue()) { 3631 if (!this->emitConstUint32(Indices[0], E)) 3632 return false; 3633 return this->emitArrayElemPtrPop(PT_Uint32, E); 3634 } 3635 // Else, also load the value. 3636 return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E); 3637 } 3638 3639 // Create a local variable for the base. 3640 unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true, 3641 /*IsExtended=*/false); 3642 if (!this->visit(Base)) 3643 return false; 3644 if (!this->emitSetLocal(PT_Ptr, BaseOffset, E)) 3645 return false; 3646 3647 // Now the vector variable for the return value. 3648 if (!Initializing) { 3649 std::optional<unsigned> ResultIndex; 3650 ResultIndex = allocateLocal(E); 3651 if (!ResultIndex) 3652 return false; 3653 if (!this->emitGetPtrLocal(*ResultIndex, E)) 3654 return false; 3655 } 3656 3657 assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements()); 3658 3659 PrimType ElemT = 3660 classifyPrim(E->getType()->getAs<VectorType>()->getElementType()); 3661 uint32_t DstIndex = 0; 3662 for (uint32_t I : Indices) { 3663 if (!this->emitGetLocal(PT_Ptr, BaseOffset, E)) 3664 return false; 3665 if (!this->emitArrayElemPop(ElemT, I, E)) 3666 return false; 3667 if (!this->emitInitElem(ElemT, DstIndex, E)) 3668 return false; 3669 ++DstIndex; 3670 } 3671 3672 // Leave the result pointer on the stack. 3673 assert(!DiscardResult); 3674 return true; 3675 } 3676 3677 template <class Emitter> 3678 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 3679 const Expr *SubExpr = E->getSubExpr(); 3680 if (!E->isExpressibleAsConstantInitializer()) 3681 return this->discard(SubExpr) && this->emitInvalid(E); 3682 3683 if (DiscardResult) 3684 return true; 3685 3686 assert(classifyPrim(E) == PT_Ptr); 3687 return this->emitDummyPtr(E, E); 3688 } 3689 3690 template <class Emitter> 3691 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr( 3692 const CXXStdInitializerListExpr *E) { 3693 const Expr *SubExpr = E->getSubExpr(); 3694 const ConstantArrayType *ArrayType = 3695 Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType()); 3696 const Record *R = getRecord(E->getType()); 3697 assert(Initializing); 3698 assert(SubExpr->isGLValue()); 3699 3700 if (!this->visit(SubExpr)) 3701 return false; 3702 if (!this->emitConstUint8(0, E)) 3703 return false; 3704 if (!this->emitArrayElemPtrPopUint8(E)) 3705 return false; 3706 if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E)) 3707 return false; 3708 3709 PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType()); 3710 if (isIntegralType(SecondFieldT)) { 3711 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), 3712 SecondFieldT, E)) 3713 return false; 3714 return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E); 3715 } 3716 assert(SecondFieldT == PT_Ptr); 3717 3718 if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E)) 3719 return false; 3720 if (!this->emitExpandPtr(E)) 3721 return false; 3722 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E)) 3723 return false; 3724 if (!this->emitArrayElemPtrPop(PT_Uint64, E)) 3725 return false; 3726 return this->emitInitFieldPtr(R->getField(1u)->Offset, E); 3727 } 3728 3729 template <class Emitter> 3730 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) { 3731 BlockScope<Emitter> BS(this); 3732 StmtExprScope<Emitter> SS(this); 3733 3734 const CompoundStmt *CS = E->getSubStmt(); 3735 const Stmt *Result = CS->getStmtExprResult(); 3736 for (const Stmt *S : CS->body()) { 3737 if (S != Result) { 3738 if (!this->visitStmt(S)) 3739 return false; 3740 continue; 3741 } 3742 3743 assert(S == Result); 3744 if (const Expr *ResultExpr = dyn_cast<Expr>(S)) 3745 return this->delegate(ResultExpr); 3746 return this->emitUnsupported(E); 3747 } 3748 3749 return BS.destroyLocals(); 3750 } 3751 3752 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) { 3753 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true, 3754 /*NewInitializing=*/false); 3755 return this->Visit(E); 3756 } 3757 3758 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) { 3759 // We're basically doing: 3760 // OptionScope<Emitter> Scope(this, DicardResult, Initializing); 3761 // but that's unnecessary of course. 3762 return this->Visit(E); 3763 } 3764 3765 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) { 3766 if (E->getType().isNull()) 3767 return false; 3768 3769 if (E->getType()->isVoidType()) 3770 return this->discard(E); 3771 3772 // Create local variable to hold the return value. 3773 if (!E->isGLValue() && !E->getType()->isAnyComplexType() && 3774 !classify(E->getType())) { 3775 std::optional<unsigned> LocalIndex = allocateLocal(E); 3776 if (!LocalIndex) 3777 return false; 3778 3779 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3780 return false; 3781 return this->visitInitializer(E); 3782 } 3783 3784 // Otherwise,we have a primitive return value, produce the value directly 3785 // and push it on the stack. 3786 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3787 /*NewInitializing=*/false); 3788 return this->Visit(E); 3789 } 3790 3791 template <class Emitter> 3792 bool Compiler<Emitter>::visitInitializer(const Expr *E) { 3793 assert(!classify(E->getType())); 3794 3795 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3796 /*NewInitializing=*/true); 3797 return this->Visit(E); 3798 } 3799 3800 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) { 3801 std::optional<PrimType> T = classify(E->getType()); 3802 if (!T) { 3803 // Convert complex values to bool. 3804 if (E->getType()->isAnyComplexType()) { 3805 if (!this->visit(E)) 3806 return false; 3807 return this->emitComplexBoolCast(E); 3808 } 3809 return false; 3810 } 3811 3812 if (!this->visit(E)) 3813 return false; 3814 3815 if (T == PT_Bool) 3816 return true; 3817 3818 // Convert pointers to bool. 3819 if (T == PT_Ptr || T == PT_FnPtr) { 3820 if (!this->emitNull(*T, nullptr, E)) 3821 return false; 3822 return this->emitNE(*T, E); 3823 } 3824 3825 // Or Floats. 3826 if (T == PT_Float) 3827 return this->emitCastFloatingIntegralBool(getFPOptions(E), E); 3828 3829 // Or anything else we can. 3830 return this->emitCast(*T, PT_Bool, E); 3831 } 3832 3833 template <class Emitter> 3834 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT, 3835 const Expr *E) { 3836 switch (T) { 3837 case PT_Bool: 3838 return this->emitZeroBool(E); 3839 case PT_Sint8: 3840 return this->emitZeroSint8(E); 3841 case PT_Uint8: 3842 return this->emitZeroUint8(E); 3843 case PT_Sint16: 3844 return this->emitZeroSint16(E); 3845 case PT_Uint16: 3846 return this->emitZeroUint16(E); 3847 case PT_Sint32: 3848 return this->emitZeroSint32(E); 3849 case PT_Uint32: 3850 return this->emitZeroUint32(E); 3851 case PT_Sint64: 3852 return this->emitZeroSint64(E); 3853 case PT_Uint64: 3854 return this->emitZeroUint64(E); 3855 case PT_IntAP: 3856 return this->emitZeroIntAP(Ctx.getBitWidth(QT), E); 3857 case PT_IntAPS: 3858 return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E); 3859 case PT_Ptr: 3860 return this->emitNullPtr(nullptr, E); 3861 case PT_FnPtr: 3862 return this->emitNullFnPtr(nullptr, E); 3863 case PT_MemberPtr: 3864 return this->emitNullMemberPtr(nullptr, E); 3865 case PT_Float: 3866 return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E); 3867 case PT_FixedPoint: { 3868 auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 3869 return this->emitConstFixedPoint(FixedPoint::zero(Sem), E); 3870 } 3871 llvm_unreachable("Implement"); 3872 } 3873 llvm_unreachable("unknown primitive type"); 3874 } 3875 3876 template <class Emitter> 3877 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R, 3878 const Expr *E) { 3879 assert(E); 3880 assert(R); 3881 // Fields 3882 for (const Record::Field &Field : R->fields()) { 3883 if (Field.Decl->isUnnamedBitField()) 3884 continue; 3885 3886 const Descriptor *D = Field.Desc; 3887 if (D->isPrimitive()) { 3888 QualType QT = D->getType(); 3889 PrimType T = classifyPrim(D->getType()); 3890 if (!this->visitZeroInitializer(T, QT, E)) 3891 return false; 3892 if (!this->emitInitField(T, Field.Offset, E)) 3893 return false; 3894 if (R->isUnion()) 3895 break; 3896 continue; 3897 } 3898 3899 if (!this->emitGetPtrField(Field.Offset, E)) 3900 return false; 3901 3902 if (D->isPrimitiveArray()) { 3903 QualType ET = D->getElemQualType(); 3904 PrimType T = classifyPrim(ET); 3905 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3906 if (!this->visitZeroInitializer(T, ET, E)) 3907 return false; 3908 if (!this->emitInitElem(T, I, E)) 3909 return false; 3910 } 3911 } else if (D->isCompositeArray()) { 3912 // Can't be a vector or complex field. 3913 if (!this->visitZeroArrayInitializer(D->getType(), E)) 3914 return false; 3915 } else if (D->isRecord()) { 3916 if (!this->visitZeroRecordInitializer(D->ElemRecord, E)) 3917 return false; 3918 } else { 3919 assert(false); 3920 } 3921 3922 if (!this->emitFinishInitPop(E)) 3923 return false; 3924 3925 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 3926 // object's first non-static named data member is zero-initialized 3927 if (R->isUnion()) 3928 break; 3929 } 3930 3931 for (const Record::Base &B : R->bases()) { 3932 if (!this->emitGetPtrBase(B.Offset, E)) 3933 return false; 3934 if (!this->visitZeroRecordInitializer(B.R, E)) 3935 return false; 3936 if (!this->emitFinishInitPop(E)) 3937 return false; 3938 } 3939 3940 // FIXME: Virtual bases. 3941 3942 return true; 3943 } 3944 3945 template <class Emitter> 3946 bool Compiler<Emitter>::visitZeroArrayInitializer(QualType T, const Expr *E) { 3947 assert(T->isArrayType() || T->isAnyComplexType() || T->isVectorType()); 3948 const ArrayType *AT = T->getAsArrayTypeUnsafe(); 3949 QualType ElemType = AT->getElementType(); 3950 size_t NumElems = cast<ConstantArrayType>(AT)->getZExtSize(); 3951 3952 if (std::optional<PrimType> ElemT = classify(ElemType)) { 3953 for (size_t I = 0; I != NumElems; ++I) { 3954 if (!this->visitZeroInitializer(*ElemT, ElemType, E)) 3955 return false; 3956 if (!this->emitInitElem(*ElemT, I, E)) 3957 return false; 3958 } 3959 return true; 3960 } else if (ElemType->isRecordType()) { 3961 const Record *R = getRecord(ElemType); 3962 3963 for (size_t I = 0; I != NumElems; ++I) { 3964 if (!this->emitConstUint32(I, E)) 3965 return false; 3966 if (!this->emitArrayElemPtr(PT_Uint32, E)) 3967 return false; 3968 if (!this->visitZeroRecordInitializer(R, E)) 3969 return false; 3970 if (!this->emitPopPtr(E)) 3971 return false; 3972 } 3973 return true; 3974 } else if (ElemType->isArrayType()) { 3975 for (size_t I = 0; I != NumElems; ++I) { 3976 if (!this->emitConstUint32(I, E)) 3977 return false; 3978 if (!this->emitArrayElemPtr(PT_Uint32, E)) 3979 return false; 3980 if (!this->visitZeroArrayInitializer(ElemType, E)) 3981 return false; 3982 if (!this->emitPopPtr(E)) 3983 return false; 3984 } 3985 return true; 3986 } 3987 3988 return false; 3989 } 3990 3991 template <class Emitter> 3992 template <typename T> 3993 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) { 3994 switch (Ty) { 3995 case PT_Sint8: 3996 return this->emitConstSint8(Value, E); 3997 case PT_Uint8: 3998 return this->emitConstUint8(Value, E); 3999 case PT_Sint16: 4000 return this->emitConstSint16(Value, E); 4001 case PT_Uint16: 4002 return this->emitConstUint16(Value, E); 4003 case PT_Sint32: 4004 return this->emitConstSint32(Value, E); 4005 case PT_Uint32: 4006 return this->emitConstUint32(Value, E); 4007 case PT_Sint64: 4008 return this->emitConstSint64(Value, E); 4009 case PT_Uint64: 4010 return this->emitConstUint64(Value, E); 4011 case PT_Bool: 4012 return this->emitConstBool(Value, E); 4013 case PT_Ptr: 4014 case PT_FnPtr: 4015 case PT_MemberPtr: 4016 case PT_Float: 4017 case PT_IntAP: 4018 case PT_IntAPS: 4019 case PT_FixedPoint: 4020 llvm_unreachable("Invalid integral type"); 4021 break; 4022 } 4023 llvm_unreachable("unknown primitive type"); 4024 } 4025 4026 template <class Emitter> 4027 template <typename T> 4028 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) { 4029 return this->emitConst(Value, classifyPrim(E->getType()), E); 4030 } 4031 4032 template <class Emitter> 4033 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty, 4034 const Expr *E) { 4035 if (Ty == PT_IntAPS) 4036 return this->emitConstIntAPS(Value, E); 4037 if (Ty == PT_IntAP) 4038 return this->emitConstIntAP(Value, E); 4039 4040 if (Value.isSigned()) 4041 return this->emitConst(Value.getSExtValue(), Ty, E); 4042 return this->emitConst(Value.getZExtValue(), Ty, E); 4043 } 4044 4045 template <class Emitter> 4046 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) { 4047 return this->emitConst(Value, classifyPrim(E->getType()), E); 4048 } 4049 4050 template <class Emitter> 4051 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty, 4052 bool IsConst, 4053 bool IsExtended) { 4054 // Make sure we don't accidentally register the same decl twice. 4055 if (const auto *VD = 4056 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 4057 assert(!P.getGlobal(VD)); 4058 assert(!Locals.contains(VD)); 4059 (void)VD; 4060 } 4061 4062 // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g. 4063 // (int){12} in C. Consider using Expr::isTemporaryObject() instead 4064 // or isa<MaterializeTemporaryExpr>(). 4065 Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst, 4066 isa<const Expr *>(Src)); 4067 Scope::Local Local = this->createLocal(D); 4068 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) 4069 Locals.insert({VD, Local}); 4070 VarScope->add(Local, IsExtended); 4071 return Local.Offset; 4072 } 4073 4074 template <class Emitter> 4075 std::optional<unsigned> 4076 Compiler<Emitter>::allocateLocal(DeclTy &&Src, QualType Ty, 4077 const ValueDecl *ExtendingDecl) { 4078 // Make sure we don't accidentally register the same decl twice. 4079 if ([[maybe_unused]] const auto *VD = 4080 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 4081 assert(!P.getGlobal(VD)); 4082 assert(!Locals.contains(VD)); 4083 } 4084 4085 const ValueDecl *Key = nullptr; 4086 const Expr *Init = nullptr; 4087 bool IsTemporary = false; 4088 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 4089 Key = VD; 4090 Ty = VD->getType(); 4091 4092 if (const auto *VarD = dyn_cast<VarDecl>(VD)) 4093 Init = VarD->getInit(); 4094 } 4095 if (auto *E = Src.dyn_cast<const Expr *>()) { 4096 IsTemporary = true; 4097 if (Ty.isNull()) 4098 Ty = E->getType(); 4099 } 4100 4101 Descriptor *D = P.createDescriptor( 4102 Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 4103 IsTemporary, /*IsMutable=*/false, Init); 4104 if (!D) 4105 return std::nullopt; 4106 4107 Scope::Local Local = this->createLocal(D); 4108 if (Key) 4109 Locals.insert({Key, Local}); 4110 if (ExtendingDecl) 4111 VarScope->addExtended(Local, ExtendingDecl); 4112 else 4113 VarScope->add(Local, false); 4114 return Local.Offset; 4115 } 4116 4117 template <class Emitter> 4118 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) { 4119 QualType Ty = E->getType(); 4120 assert(!Ty->isRecordType()); 4121 4122 Descriptor *D = P.createDescriptor( 4123 E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 4124 /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr); 4125 assert(D); 4126 4127 Scope::Local Local = this->createLocal(D); 4128 VariableScope<Emitter> *S = VarScope; 4129 assert(S); 4130 // Attach to topmost scope. 4131 while (S->getParent()) 4132 S = S->getParent(); 4133 assert(S && !S->getParent()); 4134 S->addLocal(Local); 4135 return Local.Offset; 4136 } 4137 4138 template <class Emitter> 4139 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) { 4140 if (const PointerType *PT = dyn_cast<PointerType>(Ty)) 4141 return PT->getPointeeType()->getAs<RecordType>(); 4142 return Ty->getAs<RecordType>(); 4143 } 4144 4145 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) { 4146 if (const auto *RecordTy = getRecordTy(Ty)) 4147 return getRecord(RecordTy->getDecl()); 4148 return nullptr; 4149 } 4150 4151 template <class Emitter> 4152 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) { 4153 return P.getOrCreateRecord(RD); 4154 } 4155 4156 template <class Emitter> 4157 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) { 4158 return Ctx.getOrCreateFunction(FD); 4159 } 4160 4161 template <class Emitter> 4162 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) { 4163 LocalScope<Emitter> RootScope(this); 4164 4165 // If we won't destroy the toplevel scope, check for memory leaks first. 4166 if (!DestroyToplevelScope) { 4167 if (!this->emitCheckAllocations(E)) 4168 return false; 4169 } 4170 4171 auto maybeDestroyLocals = [&]() -> bool { 4172 if (DestroyToplevelScope) 4173 return RootScope.destroyLocals() && this->emitCheckAllocations(E); 4174 return this->emitCheckAllocations(E); 4175 }; 4176 4177 // Void expressions. 4178 if (E->getType()->isVoidType()) { 4179 if (!visit(E)) 4180 return false; 4181 return this->emitRetVoid(E) && maybeDestroyLocals(); 4182 } 4183 4184 // Expressions with a primitive return type. 4185 if (std::optional<PrimType> T = classify(E)) { 4186 if (!visit(E)) 4187 return false; 4188 4189 return this->emitRet(*T, E) && maybeDestroyLocals(); 4190 } 4191 4192 // Expressions with a composite return type. 4193 // For us, that means everything we don't 4194 // have a PrimType for. 4195 if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) { 4196 if (!this->emitGetPtrLocal(*LocalOffset, E)) 4197 return false; 4198 4199 if (!visitInitializer(E)) 4200 return false; 4201 4202 if (!this->emitFinishInit(E)) 4203 return false; 4204 // We are destroying the locals AFTER the Ret op. 4205 // The Ret op needs to copy the (alive) values, but the 4206 // destructors may still turn the entire expression invalid. 4207 return this->emitRetValue(E) && maybeDestroyLocals(); 4208 } 4209 4210 return maybeDestroyLocals() && this->emitCheckAllocations(E) && false; 4211 } 4212 4213 template <class Emitter> 4214 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) { 4215 4216 auto R = this->visitVarDecl(VD, /*Toplevel=*/true); 4217 4218 if (R.notCreated()) 4219 return R; 4220 4221 if (R) 4222 return true; 4223 4224 if (!R && Context::shouldBeGloballyIndexed(VD)) { 4225 if (auto GlobalIndex = P.getGlobal(VD)) { 4226 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 4227 GlobalInlineDescriptor &GD = 4228 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 4229 4230 GD.InitState = GlobalInitState::InitializerFailed; 4231 GlobalBlock->invokeDtor(); 4232 } 4233 } 4234 4235 return R; 4236 } 4237 4238 /// Toplevel visitDeclAndReturn(). 4239 /// We get here from evaluateAsInitializer(). 4240 /// We need to evaluate the initializer and return its value. 4241 template <class Emitter> 4242 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD, 4243 bool ConstantContext) { 4244 std::optional<PrimType> VarT = classify(VD->getType()); 4245 4246 // We only create variables if we're evaluating in a constant context. 4247 // Otherwise, just evaluate the initializer and return it. 4248 if (!ConstantContext) { 4249 DeclScope<Emitter> LS(this, VD); 4250 if (!this->visit(VD->getAnyInitializer())) 4251 return false; 4252 return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals() && 4253 this->emitCheckAllocations(VD); 4254 } 4255 4256 LocalScope<Emitter> VDScope(this, VD); 4257 if (!this->visitVarDecl(VD, /*Toplevel=*/true)) 4258 return false; 4259 4260 if (Context::shouldBeGloballyIndexed(VD)) { 4261 auto GlobalIndex = P.getGlobal(VD); 4262 assert(GlobalIndex); // visitVarDecl() didn't return false. 4263 if (VarT) { 4264 if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD)) 4265 return false; 4266 } else { 4267 if (!this->emitGetPtrGlobal(*GlobalIndex, VD)) 4268 return false; 4269 } 4270 } else { 4271 auto Local = Locals.find(VD); 4272 assert(Local != Locals.end()); // Same here. 4273 if (VarT) { 4274 if (!this->emitGetLocal(*VarT, Local->second.Offset, VD)) 4275 return false; 4276 } else { 4277 if (!this->emitGetPtrLocal(Local->second.Offset, VD)) 4278 return false; 4279 } 4280 } 4281 4282 // Return the value. 4283 if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) { 4284 // If the Ret above failed and this is a global variable, mark it as 4285 // uninitialized, even everything else succeeded. 4286 if (Context::shouldBeGloballyIndexed(VD)) { 4287 auto GlobalIndex = P.getGlobal(VD); 4288 assert(GlobalIndex); 4289 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 4290 GlobalInlineDescriptor &GD = 4291 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 4292 4293 GD.InitState = GlobalInitState::InitializerFailed; 4294 GlobalBlock->invokeDtor(); 4295 } 4296 return false; 4297 } 4298 4299 return VDScope.destroyLocals() && this->emitCheckAllocations(VD); 4300 } 4301 4302 template <class Emitter> 4303 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD, 4304 bool Toplevel) { 4305 // We don't know what to do with these, so just return false. 4306 if (VD->getType().isNull()) 4307 return false; 4308 4309 // This case is EvalEmitter-only. If we won't create any instructions for the 4310 // initializer anyway, don't bother creating the variable in the first place. 4311 if (!this->isActive()) 4312 return VarCreationState::NotCreated(); 4313 4314 const Expr *Init = VD->getInit(); 4315 std::optional<PrimType> VarT = classify(VD->getType()); 4316 4317 if (Init && Init->isValueDependent()) 4318 return false; 4319 4320 if (Context::shouldBeGloballyIndexed(VD)) { 4321 auto checkDecl = [&]() -> bool { 4322 bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal(); 4323 return !NeedsOp || this->emitCheckDecl(VD, VD); 4324 }; 4325 4326 auto initGlobal = [&](unsigned GlobalIndex) -> bool { 4327 assert(Init); 4328 4329 if (VarT) { 4330 if (!this->visit(Init)) 4331 return checkDecl() && false; 4332 4333 return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD); 4334 } 4335 4336 if (!checkDecl()) 4337 return false; 4338 4339 if (!this->emitGetPtrGlobal(GlobalIndex, Init)) 4340 return false; 4341 4342 if (!visitInitializer(Init)) 4343 return false; 4344 4345 if (!this->emitFinishInit(Init)) 4346 return false; 4347 4348 return this->emitPopPtr(Init); 4349 }; 4350 4351 DeclScope<Emitter> LocalScope(this, VD); 4352 4353 // We've already seen and initialized this global. 4354 if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) { 4355 if (P.getPtrGlobal(*GlobalIndex).isInitialized()) 4356 return checkDecl(); 4357 4358 // The previous attempt at initialization might've been unsuccessful, 4359 // so let's try this one. 4360 return Init && checkDecl() && initGlobal(*GlobalIndex); 4361 } 4362 4363 std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init); 4364 4365 if (!GlobalIndex) 4366 return false; 4367 4368 return !Init || (checkDecl() && initGlobal(*GlobalIndex)); 4369 } else { 4370 InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD)); 4371 4372 if (VarT) { 4373 unsigned Offset = this->allocateLocalPrimitive( 4374 VD, *VarT, VD->getType().isConstQualified()); 4375 if (Init) { 4376 // If this is a toplevel declaration, create a scope for the 4377 // initializer. 4378 if (Toplevel) { 4379 LocalScope<Emitter> Scope(this); 4380 if (!this->visit(Init)) 4381 return false; 4382 return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals(); 4383 } else { 4384 if (!this->visit(Init)) 4385 return false; 4386 return this->emitSetLocal(*VarT, Offset, VD); 4387 } 4388 } 4389 } else { 4390 if (std::optional<unsigned> Offset = this->allocateLocal(VD)) { 4391 if (!Init) 4392 return true; 4393 4394 if (!this->emitGetPtrLocal(*Offset, Init)) 4395 return false; 4396 4397 if (!visitInitializer(Init)) 4398 return false; 4399 4400 if (!this->emitFinishInit(Init)) 4401 return false; 4402 4403 return this->emitPopPtr(Init); 4404 } 4405 return false; 4406 } 4407 return true; 4408 } 4409 4410 return false; 4411 } 4412 4413 template <class Emitter> 4414 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType, 4415 const Expr *E) { 4416 assert(!DiscardResult); 4417 if (Val.isInt()) 4418 return this->emitConst(Val.getInt(), ValType, E); 4419 else if (Val.isFloat()) 4420 return this->emitConstFloat(Val.getFloat(), E); 4421 4422 if (Val.isLValue()) { 4423 if (Val.isNullPointer()) 4424 return this->emitNull(ValType, nullptr, E); 4425 APValue::LValueBase Base = Val.getLValueBase(); 4426 if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>()) 4427 return this->visit(BaseExpr); 4428 else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) { 4429 return this->visitDeclRef(VD, E); 4430 } 4431 } else if (Val.isMemberPointer()) { 4432 if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl()) 4433 return this->emitGetMemberPtr(MemberDecl, E); 4434 return this->emitNullMemberPtr(nullptr, E); 4435 } 4436 4437 return false; 4438 } 4439 4440 template <class Emitter> 4441 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val, 4442 const Expr *E) { 4443 4444 if (Val.isStruct()) { 4445 const Record *R = this->getRecord(E->getType()); 4446 assert(R); 4447 for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) { 4448 const APValue &F = Val.getStructField(I); 4449 const Record::Field *RF = R->getField(I); 4450 4451 if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) { 4452 PrimType T = classifyPrim(RF->Decl->getType()); 4453 if (!this->visitAPValue(F, T, E)) 4454 return false; 4455 if (!this->emitInitField(T, RF->Offset, E)) 4456 return false; 4457 } else if (F.isArray()) { 4458 assert(RF->Desc->isPrimitiveArray()); 4459 const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe(); 4460 PrimType ElemT = classifyPrim(ArrType->getElementType()); 4461 assert(ArrType); 4462 4463 if (!this->emitGetPtrField(RF->Offset, E)) 4464 return false; 4465 4466 for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) { 4467 if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E)) 4468 return false; 4469 if (!this->emitInitElem(ElemT, A, E)) 4470 return false; 4471 } 4472 4473 if (!this->emitPopPtr(E)) 4474 return false; 4475 } else if (F.isStruct() || F.isUnion()) { 4476 if (!this->emitGetPtrField(RF->Offset, E)) 4477 return false; 4478 if (!this->visitAPValueInitializer(F, E)) 4479 return false; 4480 if (!this->emitPopPtr(E)) 4481 return false; 4482 } else { 4483 assert(false && "I don't think this should be possible"); 4484 } 4485 } 4486 return true; 4487 } else if (Val.isUnion()) { 4488 const FieldDecl *UnionField = Val.getUnionField(); 4489 const Record *R = this->getRecord(UnionField->getParent()); 4490 assert(R); 4491 const APValue &F = Val.getUnionValue(); 4492 const Record::Field *RF = R->getField(UnionField); 4493 PrimType T = classifyPrim(RF->Decl->getType()); 4494 if (!this->visitAPValue(F, T, E)) 4495 return false; 4496 return this->emitInitField(T, RF->Offset, E); 4497 } 4498 // TODO: Other types. 4499 4500 return false; 4501 } 4502 4503 template <class Emitter> 4504 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E, 4505 unsigned BuiltinID) { 4506 const Function *Func = getFunction(E->getDirectCallee()); 4507 if (!Func) 4508 return false; 4509 4510 // For these, we're expected to ultimately return an APValue pointing 4511 // to the CallExpr. This is needed to get the correct codegen. 4512 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 4513 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString || 4514 BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant || 4515 BuiltinID == Builtin::BI__builtin_function_start) { 4516 if (DiscardResult) 4517 return true; 4518 return this->emitDummyPtr(E, E); 4519 } 4520 4521 QualType ReturnType = E->getType(); 4522 std::optional<PrimType> ReturnT = classify(E); 4523 4524 // Non-primitive return type. Prepare storage. 4525 if (!Initializing && !ReturnT && !ReturnType->isVoidType()) { 4526 std::optional<unsigned> LocalIndex = allocateLocal(E); 4527 if (!LocalIndex) 4528 return false; 4529 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4530 return false; 4531 } 4532 4533 if (!Func->isUnevaluatedBuiltin()) { 4534 // Put arguments on the stack. 4535 for (const auto *Arg : E->arguments()) { 4536 if (!this->visit(Arg)) 4537 return false; 4538 } 4539 } 4540 4541 if (!this->emitCallBI(Func, E, BuiltinID, E)) 4542 return false; 4543 4544 if (DiscardResult && !ReturnType->isVoidType()) { 4545 assert(ReturnT); 4546 return this->emitPop(*ReturnT, E); 4547 } 4548 4549 return true; 4550 } 4551 4552 template <class Emitter> 4553 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) { 4554 if (unsigned BuiltinID = E->getBuiltinCallee()) 4555 return VisitBuiltinCallExpr(E, BuiltinID); 4556 4557 const FunctionDecl *FuncDecl = E->getDirectCallee(); 4558 // Calls to replaceable operator new/operator delete. 4559 if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) { 4560 if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New || 4561 FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { 4562 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new); 4563 } else { 4564 assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete); 4565 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete); 4566 } 4567 } 4568 // Explicit calls to trivial destructors 4569 if (const auto *DD = dyn_cast_if_present<CXXDestructorDecl>(FuncDecl); 4570 DD && DD->isTrivial()) 4571 return true; 4572 4573 QualType ReturnType = E->getCallReturnType(Ctx.getASTContext()); 4574 std::optional<PrimType> T = classify(ReturnType); 4575 bool HasRVO = !ReturnType->isVoidType() && !T; 4576 4577 if (HasRVO) { 4578 if (DiscardResult) { 4579 // If we need to discard the return value but the function returns its 4580 // value via an RVO pointer, we need to create one such pointer just 4581 // for this call. 4582 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4583 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4584 return false; 4585 } 4586 } else { 4587 // We need the result. Prepare a pointer to return or 4588 // dup the current one. 4589 if (!Initializing) { 4590 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4591 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4592 return false; 4593 } 4594 } 4595 if (!this->emitDupPtr(E)) 4596 return false; 4597 } 4598 } 4599 4600 SmallVector<const Expr *, 8> Args( 4601 llvm::ArrayRef(E->getArgs(), E->getNumArgs())); 4602 4603 bool IsAssignmentOperatorCall = false; 4604 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); 4605 OCE && OCE->isAssignmentOp()) { 4606 // Just like with regular assignments, we need to special-case assignment 4607 // operators here and evaluate the RHS (the second arg) before the LHS (the 4608 // first arg. We fix this by using a Flip op later. 4609 assert(Args.size() == 2); 4610 IsAssignmentOperatorCall = true; 4611 std::reverse(Args.begin(), Args.end()); 4612 } 4613 // Calling a static operator will still 4614 // pass the instance, but we don't need it. 4615 // Discard it here. 4616 if (isa<CXXOperatorCallExpr>(E)) { 4617 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl); 4618 MD && MD->isStatic()) { 4619 if (!this->discard(E->getArg(0))) 4620 return false; 4621 // Drop first arg. 4622 Args.erase(Args.begin()); 4623 } 4624 } 4625 4626 std::optional<unsigned> CalleeOffset; 4627 // Add the (optional, implicit) This pointer. 4628 if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) { 4629 if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) { 4630 // If we end up creating a CallPtr op for this, we need the base of the 4631 // member pointer as the instance pointer, and later extract the function 4632 // decl as the function pointer. 4633 const Expr *Callee = E->getCallee(); 4634 CalleeOffset = 4635 this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false); 4636 if (!this->visit(Callee)) 4637 return false; 4638 if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E)) 4639 return false; 4640 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4641 return false; 4642 if (!this->emitGetMemberPtrBase(E)) 4643 return false; 4644 } else if (!this->visit(MC->getImplicitObjectArgument())) { 4645 return false; 4646 } 4647 } else if (!FuncDecl) { 4648 const Expr *Callee = E->getCallee(); 4649 CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false); 4650 if (!this->visit(Callee)) 4651 return false; 4652 if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E)) 4653 return false; 4654 } 4655 4656 llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args); 4657 // Put arguments on the stack. 4658 unsigned ArgIndex = 0; 4659 for (const auto *Arg : Args) { 4660 if (!this->visit(Arg)) 4661 return false; 4662 4663 // If we know the callee already, check the known parametrs for nullability. 4664 if (FuncDecl && NonNullArgs[ArgIndex]) { 4665 PrimType ArgT = classify(Arg).value_or(PT_Ptr); 4666 if (ArgT == PT_Ptr || ArgT == PT_FnPtr) { 4667 if (!this->emitCheckNonNullArg(ArgT, Arg)) 4668 return false; 4669 } 4670 } 4671 ++ArgIndex; 4672 } 4673 4674 // Undo the argument reversal we did earlier. 4675 if (IsAssignmentOperatorCall) { 4676 assert(Args.size() == 2); 4677 PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr); 4678 PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr); 4679 if (!this->emitFlip(Arg2T, Arg1T, E)) 4680 return false; 4681 } 4682 4683 if (FuncDecl) { 4684 const Function *Func = getFunction(FuncDecl); 4685 if (!Func) 4686 return false; 4687 assert(HasRVO == Func->hasRVO()); 4688 4689 bool HasQualifier = false; 4690 if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee())) 4691 HasQualifier = ME->hasQualifier(); 4692 4693 bool IsVirtual = false; 4694 if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) 4695 IsVirtual = MD->isVirtual(); 4696 4697 // In any case call the function. The return value will end up on the stack 4698 // and if the function has RVO, we already have the pointer on the stack to 4699 // write the result into. 4700 if (IsVirtual && !HasQualifier) { 4701 uint32_t VarArgSize = 0; 4702 unsigned NumParams = 4703 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4704 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4705 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4706 4707 if (!this->emitCallVirt(Func, VarArgSize, E)) 4708 return false; 4709 } else if (Func->isVariadic()) { 4710 uint32_t VarArgSize = 0; 4711 unsigned NumParams = 4712 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4713 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4714 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4715 if (!this->emitCallVar(Func, VarArgSize, E)) 4716 return false; 4717 } else { 4718 if (!this->emitCall(Func, 0, E)) 4719 return false; 4720 } 4721 } else { 4722 // Indirect call. Visit the callee, which will leave a FunctionPointer on 4723 // the stack. Cleanup of the returned value if necessary will be done after 4724 // the function call completed. 4725 4726 // Sum the size of all args from the call expr. 4727 uint32_t ArgSize = 0; 4728 for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) 4729 ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4730 4731 // Get the callee, either from a member pointer or function pointer saved in 4732 // CalleeOffset. 4733 if (isa<CXXMemberCallExpr>(E) && CalleeOffset) { 4734 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4735 return false; 4736 if (!this->emitGetMemberPtrDecl(E)) 4737 return false; 4738 } else { 4739 if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E)) 4740 return false; 4741 } 4742 if (!this->emitCallPtr(ArgSize, E, E)) 4743 return false; 4744 } 4745 4746 // Cleanup for discarded return values. 4747 if (DiscardResult && !ReturnType->isVoidType() && T) 4748 return this->emitPop(*T, E); 4749 4750 return true; 4751 } 4752 4753 template <class Emitter> 4754 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 4755 SourceLocScope<Emitter> SLS(this, E); 4756 4757 return this->delegate(E->getExpr()); 4758 } 4759 4760 template <class Emitter> 4761 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 4762 SourceLocScope<Emitter> SLS(this, E); 4763 4764 const Expr *SubExpr = E->getExpr(); 4765 if (std::optional<PrimType> T = classify(E->getExpr())) 4766 return this->visit(SubExpr); 4767 4768 assert(Initializing); 4769 return this->visitInitializer(SubExpr); 4770 } 4771 4772 template <class Emitter> 4773 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 4774 if (DiscardResult) 4775 return true; 4776 4777 return this->emitConstBool(E->getValue(), E); 4778 } 4779 4780 template <class Emitter> 4781 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr( 4782 const CXXNullPtrLiteralExpr *E) { 4783 if (DiscardResult) 4784 return true; 4785 4786 return this->emitNullPtr(nullptr, E); 4787 } 4788 4789 template <class Emitter> 4790 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) { 4791 if (DiscardResult) 4792 return true; 4793 4794 assert(E->getType()->isIntegerType()); 4795 4796 PrimType T = classifyPrim(E->getType()); 4797 return this->emitZero(T, E); 4798 } 4799 4800 template <class Emitter> 4801 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) { 4802 if (DiscardResult) 4803 return true; 4804 4805 if (this->LambdaThisCapture.Offset > 0) { 4806 if (this->LambdaThisCapture.IsPtr) 4807 return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E); 4808 return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E); 4809 } 4810 4811 // In some circumstances, the 'this' pointer does not actually refer to the 4812 // instance pointer of the current function frame, but e.g. to the declaration 4813 // currently being initialized. Here we emit the necessary instruction(s) for 4814 // this scenario. 4815 if (!InitStackActive || !E->isImplicit()) 4816 return this->emitThis(E); 4817 4818 if (InitStackActive && !InitStack.empty()) { 4819 unsigned StartIndex = 0; 4820 for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) { 4821 if (InitStack[StartIndex].Kind != InitLink::K_Field && 4822 InitStack[StartIndex].Kind != InitLink::K_Elem) 4823 break; 4824 } 4825 4826 for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) { 4827 if (!InitStack[I].template emit<Emitter>(this, E)) 4828 return false; 4829 } 4830 return true; 4831 } 4832 return this->emitThis(E); 4833 } 4834 4835 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) { 4836 switch (S->getStmtClass()) { 4837 case Stmt::CompoundStmtClass: 4838 return visitCompoundStmt(cast<CompoundStmt>(S)); 4839 case Stmt::DeclStmtClass: 4840 return visitDeclStmt(cast<DeclStmt>(S)); 4841 case Stmt::ReturnStmtClass: 4842 return visitReturnStmt(cast<ReturnStmt>(S)); 4843 case Stmt::IfStmtClass: 4844 return visitIfStmt(cast<IfStmt>(S)); 4845 case Stmt::WhileStmtClass: 4846 return visitWhileStmt(cast<WhileStmt>(S)); 4847 case Stmt::DoStmtClass: 4848 return visitDoStmt(cast<DoStmt>(S)); 4849 case Stmt::ForStmtClass: 4850 return visitForStmt(cast<ForStmt>(S)); 4851 case Stmt::CXXForRangeStmtClass: 4852 return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); 4853 case Stmt::BreakStmtClass: 4854 return visitBreakStmt(cast<BreakStmt>(S)); 4855 case Stmt::ContinueStmtClass: 4856 return visitContinueStmt(cast<ContinueStmt>(S)); 4857 case Stmt::SwitchStmtClass: 4858 return visitSwitchStmt(cast<SwitchStmt>(S)); 4859 case Stmt::CaseStmtClass: 4860 return visitCaseStmt(cast<CaseStmt>(S)); 4861 case Stmt::DefaultStmtClass: 4862 return visitDefaultStmt(cast<DefaultStmt>(S)); 4863 case Stmt::AttributedStmtClass: 4864 return visitAttributedStmt(cast<AttributedStmt>(S)); 4865 case Stmt::CXXTryStmtClass: 4866 return visitCXXTryStmt(cast<CXXTryStmt>(S)); 4867 case Stmt::NullStmtClass: 4868 return true; 4869 // Always invalid statements. 4870 case Stmt::GCCAsmStmtClass: 4871 case Stmt::MSAsmStmtClass: 4872 case Stmt::GotoStmtClass: 4873 return this->emitInvalid(S); 4874 case Stmt::LabelStmtClass: 4875 return this->visitStmt(cast<LabelStmt>(S)->getSubStmt()); 4876 default: { 4877 if (const auto *E = dyn_cast<Expr>(S)) 4878 return this->discard(E); 4879 return false; 4880 } 4881 } 4882 } 4883 4884 template <class Emitter> 4885 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) { 4886 BlockScope<Emitter> Scope(this); 4887 for (const auto *InnerStmt : S->body()) 4888 if (!visitStmt(InnerStmt)) 4889 return false; 4890 return Scope.destroyLocals(); 4891 } 4892 4893 template <class Emitter> 4894 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) { 4895 for (const auto *D : DS->decls()) { 4896 if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl, 4897 FunctionDecl>(D)) 4898 continue; 4899 4900 const auto *VD = dyn_cast<VarDecl>(D); 4901 if (!VD) 4902 return false; 4903 if (!this->visitVarDecl(VD)) 4904 return false; 4905 } 4906 4907 return true; 4908 } 4909 4910 template <class Emitter> 4911 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) { 4912 if (this->InStmtExpr) 4913 return this->emitUnsupported(RS); 4914 4915 if (const Expr *RE = RS->getRetValue()) { 4916 LocalScope<Emitter> RetScope(this); 4917 if (ReturnType) { 4918 // Primitive types are simply returned. 4919 if (!this->visit(RE)) 4920 return false; 4921 this->emitCleanup(); 4922 return this->emitRet(*ReturnType, RS); 4923 } else if (RE->getType()->isVoidType()) { 4924 if (!this->visit(RE)) 4925 return false; 4926 } else { 4927 // RVO - construct the value in the return location. 4928 if (!this->emitRVOPtr(RE)) 4929 return false; 4930 if (!this->visitInitializer(RE)) 4931 return false; 4932 if (!this->emitPopPtr(RE)) 4933 return false; 4934 4935 this->emitCleanup(); 4936 return this->emitRetVoid(RS); 4937 } 4938 } 4939 4940 // Void return. 4941 this->emitCleanup(); 4942 return this->emitRetVoid(RS); 4943 } 4944 4945 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) { 4946 if (auto *CondInit = IS->getInit()) 4947 if (!visitStmt(CondInit)) 4948 return false; 4949 4950 if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt()) 4951 if (!visitDeclStmt(CondDecl)) 4952 return false; 4953 4954 // Compile condition. 4955 if (IS->isNonNegatedConsteval()) { 4956 if (!this->emitIsConstantContext(IS)) 4957 return false; 4958 } else if (IS->isNegatedConsteval()) { 4959 if (!this->emitIsConstantContext(IS)) 4960 return false; 4961 if (!this->emitInv(IS)) 4962 return false; 4963 } else { 4964 if (!this->visitBool(IS->getCond())) 4965 return false; 4966 } 4967 4968 if (const Stmt *Else = IS->getElse()) { 4969 LabelTy LabelElse = this->getLabel(); 4970 LabelTy LabelEnd = this->getLabel(); 4971 if (!this->jumpFalse(LabelElse)) 4972 return false; 4973 if (!visitStmt(IS->getThen())) 4974 return false; 4975 if (!this->jump(LabelEnd)) 4976 return false; 4977 this->emitLabel(LabelElse); 4978 if (!visitStmt(Else)) 4979 return false; 4980 this->emitLabel(LabelEnd); 4981 } else { 4982 LabelTy LabelEnd = this->getLabel(); 4983 if (!this->jumpFalse(LabelEnd)) 4984 return false; 4985 if (!visitStmt(IS->getThen())) 4986 return false; 4987 this->emitLabel(LabelEnd); 4988 } 4989 4990 return true; 4991 } 4992 4993 template <class Emitter> 4994 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) { 4995 const Expr *Cond = S->getCond(); 4996 const Stmt *Body = S->getBody(); 4997 4998 LabelTy CondLabel = this->getLabel(); // Label before the condition. 4999 LabelTy EndLabel = this->getLabel(); // Label after the loop. 5000 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 5001 5002 this->fallthrough(CondLabel); 5003 this->emitLabel(CondLabel); 5004 5005 { 5006 LocalScope<Emitter> CondScope(this); 5007 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 5008 if (!visitDeclStmt(CondDecl)) 5009 return false; 5010 5011 if (!this->visitBool(Cond)) 5012 return false; 5013 if (!this->jumpFalse(EndLabel)) 5014 return false; 5015 5016 if (!this->visitStmt(Body)) 5017 return false; 5018 5019 if (!CondScope.destroyLocals()) 5020 return false; 5021 } 5022 if (!this->jump(CondLabel)) 5023 return false; 5024 this->fallthrough(EndLabel); 5025 this->emitLabel(EndLabel); 5026 5027 return true; 5028 } 5029 5030 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) { 5031 const Expr *Cond = S->getCond(); 5032 const Stmt *Body = S->getBody(); 5033 5034 LabelTy StartLabel = this->getLabel(); 5035 LabelTy EndLabel = this->getLabel(); 5036 LabelTy CondLabel = this->getLabel(); 5037 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 5038 5039 this->fallthrough(StartLabel); 5040 this->emitLabel(StartLabel); 5041 5042 { 5043 LocalScope<Emitter> CondScope(this); 5044 if (!this->visitStmt(Body)) 5045 return false; 5046 this->fallthrough(CondLabel); 5047 this->emitLabel(CondLabel); 5048 if (!this->visitBool(Cond)) 5049 return false; 5050 5051 if (!CondScope.destroyLocals()) 5052 return false; 5053 } 5054 if (!this->jumpTrue(StartLabel)) 5055 return false; 5056 5057 this->fallthrough(EndLabel); 5058 this->emitLabel(EndLabel); 5059 return true; 5060 } 5061 5062 template <class Emitter> 5063 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) { 5064 // for (Init; Cond; Inc) { Body } 5065 const Stmt *Init = S->getInit(); 5066 const Expr *Cond = S->getCond(); 5067 const Expr *Inc = S->getInc(); 5068 const Stmt *Body = S->getBody(); 5069 5070 LabelTy EndLabel = this->getLabel(); 5071 LabelTy CondLabel = this->getLabel(); 5072 LabelTy IncLabel = this->getLabel(); 5073 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 5074 5075 if (Init && !this->visitStmt(Init)) 5076 return false; 5077 5078 this->fallthrough(CondLabel); 5079 this->emitLabel(CondLabel); 5080 5081 { 5082 LocalScope<Emitter> CondScope(this); 5083 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 5084 if (!visitDeclStmt(CondDecl)) 5085 return false; 5086 5087 if (Cond) { 5088 if (!this->visitBool(Cond)) 5089 return false; 5090 if (!this->jumpFalse(EndLabel)) 5091 return false; 5092 } 5093 5094 if (Body && !this->visitStmt(Body)) 5095 return false; 5096 5097 this->fallthrough(IncLabel); 5098 this->emitLabel(IncLabel); 5099 if (Inc && !this->discard(Inc)) 5100 return false; 5101 5102 if (!CondScope.destroyLocals()) 5103 return false; 5104 } 5105 if (!this->jump(CondLabel)) 5106 return false; 5107 5108 this->fallthrough(EndLabel); 5109 this->emitLabel(EndLabel); 5110 return true; 5111 } 5112 5113 template <class Emitter> 5114 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) { 5115 const Stmt *Init = S->getInit(); 5116 const Expr *Cond = S->getCond(); 5117 const Expr *Inc = S->getInc(); 5118 const Stmt *Body = S->getBody(); 5119 const Stmt *BeginStmt = S->getBeginStmt(); 5120 const Stmt *RangeStmt = S->getRangeStmt(); 5121 const Stmt *EndStmt = S->getEndStmt(); 5122 const VarDecl *LoopVar = S->getLoopVariable(); 5123 5124 LabelTy EndLabel = this->getLabel(); 5125 LabelTy CondLabel = this->getLabel(); 5126 LabelTy IncLabel = this->getLabel(); 5127 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 5128 5129 // Emit declarations needed in the loop. 5130 if (Init && !this->visitStmt(Init)) 5131 return false; 5132 if (!this->visitStmt(RangeStmt)) 5133 return false; 5134 if (!this->visitStmt(BeginStmt)) 5135 return false; 5136 if (!this->visitStmt(EndStmt)) 5137 return false; 5138 5139 // Now the condition as well as the loop variable assignment. 5140 this->fallthrough(CondLabel); 5141 this->emitLabel(CondLabel); 5142 if (!this->visitBool(Cond)) 5143 return false; 5144 if (!this->jumpFalse(EndLabel)) 5145 return false; 5146 5147 if (!this->visitVarDecl(LoopVar)) 5148 return false; 5149 5150 // Body. 5151 { 5152 if (!this->visitStmt(Body)) 5153 return false; 5154 5155 this->fallthrough(IncLabel); 5156 this->emitLabel(IncLabel); 5157 if (!this->discard(Inc)) 5158 return false; 5159 } 5160 5161 if (!this->jump(CondLabel)) 5162 return false; 5163 5164 this->fallthrough(EndLabel); 5165 this->emitLabel(EndLabel); 5166 return true; 5167 } 5168 5169 template <class Emitter> 5170 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) { 5171 if (!BreakLabel) 5172 return false; 5173 5174 for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope; 5175 C = C->getParent()) 5176 C->emitDestruction(); 5177 return this->jump(*BreakLabel); 5178 } 5179 5180 template <class Emitter> 5181 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) { 5182 if (!ContinueLabel) 5183 return false; 5184 5185 for (VariableScope<Emitter> *C = VarScope; 5186 C && C->getParent() != ContinueVarScope; C = C->getParent()) 5187 C->emitDestruction(); 5188 return this->jump(*ContinueLabel); 5189 } 5190 5191 template <class Emitter> 5192 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) { 5193 const Expr *Cond = S->getCond(); 5194 PrimType CondT = this->classifyPrim(Cond->getType()); 5195 LocalScope<Emitter> LS(this); 5196 5197 LabelTy EndLabel = this->getLabel(); 5198 OptLabelTy DefaultLabel = std::nullopt; 5199 unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false); 5200 5201 if (const auto *CondInit = S->getInit()) 5202 if (!visitStmt(CondInit)) 5203 return false; 5204 5205 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 5206 if (!visitDeclStmt(CondDecl)) 5207 return false; 5208 5209 // Initialize condition variable. 5210 if (!this->visit(Cond)) 5211 return false; 5212 if (!this->emitSetLocal(CondT, CondVar, S)) 5213 return false; 5214 5215 CaseMap CaseLabels; 5216 // Create labels and comparison ops for all case statements. 5217 for (const SwitchCase *SC = S->getSwitchCaseList(); SC; 5218 SC = SC->getNextSwitchCase()) { 5219 if (const auto *CS = dyn_cast<CaseStmt>(SC)) { 5220 // FIXME: Implement ranges. 5221 if (CS->caseStmtIsGNURange()) 5222 return false; 5223 CaseLabels[SC] = this->getLabel(); 5224 5225 const Expr *Value = CS->getLHS(); 5226 PrimType ValueT = this->classifyPrim(Value->getType()); 5227 5228 // Compare the case statement's value to the switch condition. 5229 if (!this->emitGetLocal(CondT, CondVar, CS)) 5230 return false; 5231 if (!this->visit(Value)) 5232 return false; 5233 5234 // Compare and jump to the case label. 5235 if (!this->emitEQ(ValueT, S)) 5236 return false; 5237 if (!this->jumpTrue(CaseLabels[CS])) 5238 return false; 5239 } else { 5240 assert(!DefaultLabel); 5241 DefaultLabel = this->getLabel(); 5242 } 5243 } 5244 5245 // If none of the conditions above were true, fall through to the default 5246 // statement or jump after the switch statement. 5247 if (DefaultLabel) { 5248 if (!this->jump(*DefaultLabel)) 5249 return false; 5250 } else { 5251 if (!this->jump(EndLabel)) 5252 return false; 5253 } 5254 5255 SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel); 5256 if (!this->visitStmt(S->getBody())) 5257 return false; 5258 this->emitLabel(EndLabel); 5259 5260 return LS.destroyLocals(); 5261 } 5262 5263 template <class Emitter> 5264 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) { 5265 this->emitLabel(CaseLabels[S]); 5266 return this->visitStmt(S->getSubStmt()); 5267 } 5268 5269 template <class Emitter> 5270 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) { 5271 this->emitLabel(*DefaultLabel); 5272 return this->visitStmt(S->getSubStmt()); 5273 } 5274 5275 template <class Emitter> 5276 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) { 5277 if (this->Ctx.getLangOpts().CXXAssumptions && 5278 !this->Ctx.getLangOpts().MSVCCompat) { 5279 for (const Attr *A : S->getAttrs()) { 5280 auto *AA = dyn_cast<CXXAssumeAttr>(A); 5281 if (!AA) 5282 continue; 5283 5284 assert(isa<NullStmt>(S->getSubStmt())); 5285 5286 const Expr *Assumption = AA->getAssumption(); 5287 if (Assumption->isValueDependent()) 5288 return false; 5289 5290 if (Assumption->HasSideEffects(this->Ctx.getASTContext())) 5291 continue; 5292 5293 // Evaluate assumption. 5294 if (!this->visitBool(Assumption)) 5295 return false; 5296 5297 if (!this->emitAssume(Assumption)) 5298 return false; 5299 } 5300 } 5301 5302 // Ignore other attributes. 5303 return this->visitStmt(S->getSubStmt()); 5304 } 5305 5306 template <class Emitter> 5307 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) { 5308 // Ignore all handlers. 5309 return this->visitStmt(S->getTryBlock()); 5310 } 5311 5312 template <class Emitter> 5313 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) { 5314 assert(MD->isLambdaStaticInvoker()); 5315 assert(MD->hasBody()); 5316 assert(cast<CompoundStmt>(MD->getBody())->body_empty()); 5317 5318 const CXXRecordDecl *ClosureClass = MD->getParent(); 5319 const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); 5320 assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); 5321 const Function *Func = this->getFunction(LambdaCallOp); 5322 if (!Func) 5323 return false; 5324 assert(Func->hasThisPointer()); 5325 assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO())); 5326 5327 if (Func->hasRVO()) { 5328 if (!this->emitRVOPtr(MD)) 5329 return false; 5330 } 5331 5332 // The lambda call operator needs an instance pointer, but we don't have 5333 // one here, and we don't need one either because the lambda cannot have 5334 // any captures, as verified above. Emit a null pointer. This is then 5335 // special-cased when interpreting to not emit any misleading diagnostics. 5336 if (!this->emitNullPtr(nullptr, MD)) 5337 return false; 5338 5339 // Forward all arguments from the static invoker to the lambda call operator. 5340 for (const ParmVarDecl *PVD : MD->parameters()) { 5341 auto It = this->Params.find(PVD); 5342 assert(It != this->Params.end()); 5343 5344 // We do the lvalue-to-rvalue conversion manually here, so no need 5345 // to care about references. 5346 PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr); 5347 if (!this->emitGetParam(ParamType, It->second.Offset, MD)) 5348 return false; 5349 } 5350 5351 if (!this->emitCall(Func, 0, LambdaCallOp)) 5352 return false; 5353 5354 this->emitCleanup(); 5355 if (ReturnType) 5356 return this->emitRet(*ReturnType, MD); 5357 5358 // Nothing to do, since we emitted the RVO pointer above. 5359 return this->emitRetVoid(MD); 5360 } 5361 5362 template <class Emitter> 5363 bool Compiler<Emitter>::checkLiteralType(const Expr *E) { 5364 if (Ctx.getLangOpts().CPlusPlus23) 5365 return true; 5366 5367 if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext())) 5368 return true; 5369 5370 return this->emitCheckLiteralType(E->getType().getTypePtr(), E); 5371 } 5372 5373 template <class Emitter> 5374 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) { 5375 assert(!ReturnType); 5376 5377 auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset, 5378 const Expr *InitExpr) -> bool { 5379 // We don't know what to do with these, so just return false. 5380 if (InitExpr->getType().isNull()) 5381 return false; 5382 5383 if (std::optional<PrimType> T = this->classify(InitExpr)) { 5384 if (!this->visit(InitExpr)) 5385 return false; 5386 5387 if (F->isBitField()) 5388 return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr); 5389 return this->emitInitThisField(*T, FieldOffset, InitExpr); 5390 } 5391 // Non-primitive case. Get a pointer to the field-to-initialize 5392 // on the stack and call visitInitialzer() for it. 5393 InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset)); 5394 if (!this->emitGetPtrThisField(FieldOffset, InitExpr)) 5395 return false; 5396 5397 if (!this->visitInitializer(InitExpr)) 5398 return false; 5399 5400 return this->emitFinishInitPop(InitExpr); 5401 }; 5402 5403 const RecordDecl *RD = Ctor->getParent(); 5404 const Record *R = this->getRecord(RD); 5405 if (!R) 5406 return false; 5407 5408 if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) { 5409 // union copy and move ctors are special. 5410 assert(cast<CompoundStmt>(Ctor->getBody())->body_empty()); 5411 if (!this->emitThis(Ctor)) 5412 return false; 5413 5414 auto PVD = Ctor->getParamDecl(0); 5415 ParamOffset PO = this->Params[PVD]; // Must exist. 5416 5417 if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor)) 5418 return false; 5419 5420 return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) && 5421 this->emitRetVoid(Ctor); 5422 } 5423 5424 InitLinkScope<Emitter> InitScope(this, InitLink::This()); 5425 for (const auto *Init : Ctor->inits()) { 5426 // Scope needed for the initializers. 5427 BlockScope<Emitter> Scope(this); 5428 5429 const Expr *InitExpr = Init->getInit(); 5430 if (const FieldDecl *Member = Init->getMember()) { 5431 const Record::Field *F = R->getField(Member); 5432 5433 if (!emitFieldInitializer(F, F->Offset, InitExpr)) 5434 return false; 5435 } else if (const Type *Base = Init->getBaseClass()) { 5436 const auto *BaseDecl = Base->getAsCXXRecordDecl(); 5437 assert(BaseDecl); 5438 5439 if (Init->isBaseVirtual()) { 5440 assert(R->getVirtualBase(BaseDecl)); 5441 if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr)) 5442 return false; 5443 5444 } else { 5445 // Base class initializer. 5446 // Get This Base and call initializer on it. 5447 const Record::Base *B = R->getBase(BaseDecl); 5448 assert(B); 5449 if (!this->emitGetPtrThisBase(B->Offset, InitExpr)) 5450 return false; 5451 } 5452 5453 if (!this->visitInitializer(InitExpr)) 5454 return false; 5455 if (!this->emitFinishInitPop(InitExpr)) 5456 return false; 5457 } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) { 5458 assert(IFD->getChainingSize() >= 2); 5459 5460 unsigned NestedFieldOffset = 0; 5461 const Record::Field *NestedField = nullptr; 5462 for (const NamedDecl *ND : IFD->chain()) { 5463 const auto *FD = cast<FieldDecl>(ND); 5464 const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); 5465 assert(FieldRecord); 5466 5467 NestedField = FieldRecord->getField(FD); 5468 assert(NestedField); 5469 5470 NestedFieldOffset += NestedField->Offset; 5471 } 5472 assert(NestedField); 5473 5474 if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr)) 5475 return false; 5476 } else { 5477 assert(Init->isDelegatingInitializer()); 5478 if (!this->emitThis(InitExpr)) 5479 return false; 5480 if (!this->visitInitializer(Init->getInit())) 5481 return false; 5482 if (!this->emitPopPtr(InitExpr)) 5483 return false; 5484 } 5485 5486 if (!Scope.destroyLocals()) 5487 return false; 5488 } 5489 5490 if (const auto *Body = Ctor->getBody()) 5491 if (!visitStmt(Body)) 5492 return false; 5493 5494 return this->emitRetVoid(SourceInfo{}); 5495 } 5496 5497 template <class Emitter> 5498 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) { 5499 const RecordDecl *RD = Dtor->getParent(); 5500 const Record *R = this->getRecord(RD); 5501 if (!R) 5502 return false; 5503 5504 if (!Dtor->isTrivial() && Dtor->getBody()) { 5505 if (!this->visitStmt(Dtor->getBody())) 5506 return false; 5507 } 5508 5509 if (!this->emitThis(Dtor)) 5510 return false; 5511 5512 assert(R); 5513 if (!R->isUnion()) { 5514 // First, destroy all fields. 5515 for (const Record::Field &Field : llvm::reverse(R->fields())) { 5516 const Descriptor *D = Field.Desc; 5517 if (!D->isPrimitive() && !D->isPrimitiveArray()) { 5518 if (!this->emitGetPtrField(Field.Offset, SourceInfo{})) 5519 return false; 5520 if (!this->emitDestruction(D, SourceInfo{})) 5521 return false; 5522 if (!this->emitPopPtr(SourceInfo{})) 5523 return false; 5524 } 5525 } 5526 } 5527 5528 for (const Record::Base &Base : llvm::reverse(R->bases())) { 5529 if (Base.R->isAnonymousUnion()) 5530 continue; 5531 5532 if (!this->emitGetPtrBase(Base.Offset, SourceInfo{})) 5533 return false; 5534 if (!this->emitRecordDestruction(Base.R, {})) 5535 return false; 5536 if (!this->emitPopPtr(SourceInfo{})) 5537 return false; 5538 } 5539 5540 // FIXME: Virtual bases. 5541 return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor); 5542 } 5543 5544 template <class Emitter> 5545 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) { 5546 // Classify the return type. 5547 ReturnType = this->classify(F->getReturnType()); 5548 5549 if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F)) 5550 return this->compileConstructor(Ctor); 5551 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F)) 5552 return this->compileDestructor(Dtor); 5553 5554 // Emit custom code if this is a lambda static invoker. 5555 if (const auto *MD = dyn_cast<CXXMethodDecl>(F); 5556 MD && MD->isLambdaStaticInvoker()) 5557 return this->emitLambdaStaticInvokerBody(MD); 5558 5559 // Regular functions. 5560 if (const auto *Body = F->getBody()) 5561 if (!visitStmt(Body)) 5562 return false; 5563 5564 // Emit a guard return to protect against a code path missing one. 5565 if (F->getReturnType()->isVoidType()) 5566 return this->emitRetVoid(SourceInfo{}); 5567 return this->emitNoRet(SourceInfo{}); 5568 } 5569 5570 template <class Emitter> 5571 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) { 5572 const Expr *SubExpr = E->getSubExpr(); 5573 if (SubExpr->getType()->isAnyComplexType()) 5574 return this->VisitComplexUnaryOperator(E); 5575 if (SubExpr->getType()->isVectorType()) 5576 return this->VisitVectorUnaryOperator(E); 5577 if (SubExpr->getType()->isFixedPointType()) 5578 return this->VisitFixedPointUnaryOperator(E); 5579 std::optional<PrimType> T = classify(SubExpr->getType()); 5580 5581 switch (E->getOpcode()) { 5582 case UO_PostInc: { // x++ 5583 if (!Ctx.getLangOpts().CPlusPlus14) 5584 return this->emitInvalid(E); 5585 if (!T) 5586 return this->emitError(E); 5587 5588 if (!this->visit(SubExpr)) 5589 return false; 5590 5591 if (T == PT_Ptr || T == PT_FnPtr) { 5592 if (!this->emitIncPtr(E)) 5593 return false; 5594 5595 return DiscardResult ? this->emitPopPtr(E) : true; 5596 } 5597 5598 if (T == PT_Float) { 5599 return DiscardResult ? this->emitIncfPop(getFPOptions(E), E) 5600 : this->emitIncf(getFPOptions(E), E); 5601 } 5602 5603 return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E); 5604 } 5605 case UO_PostDec: { // x-- 5606 if (!Ctx.getLangOpts().CPlusPlus14) 5607 return this->emitInvalid(E); 5608 if (!T) 5609 return this->emitError(E); 5610 5611 if (!this->visit(SubExpr)) 5612 return false; 5613 5614 if (T == PT_Ptr || T == PT_FnPtr) { 5615 if (!this->emitDecPtr(E)) 5616 return false; 5617 5618 return DiscardResult ? this->emitPopPtr(E) : true; 5619 } 5620 5621 if (T == PT_Float) { 5622 return DiscardResult ? this->emitDecfPop(getFPOptions(E), E) 5623 : this->emitDecf(getFPOptions(E), E); 5624 } 5625 5626 return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E); 5627 } 5628 case UO_PreInc: { // ++x 5629 if (!Ctx.getLangOpts().CPlusPlus14) 5630 return this->emitInvalid(E); 5631 if (!T) 5632 return this->emitError(E); 5633 5634 if (!this->visit(SubExpr)) 5635 return false; 5636 5637 if (T == PT_Ptr || T == PT_FnPtr) { 5638 if (!this->emitLoadPtr(E)) 5639 return false; 5640 if (!this->emitConstUint8(1, E)) 5641 return false; 5642 if (!this->emitAddOffsetUint8(E)) 5643 return false; 5644 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5645 } 5646 5647 // Post-inc and pre-inc are the same if the value is to be discarded. 5648 if (DiscardResult) { 5649 if (T == PT_Float) 5650 return this->emitIncfPop(getFPOptions(E), E); 5651 return this->emitIncPop(*T, E); 5652 } 5653 5654 if (T == PT_Float) { 5655 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5656 if (!this->emitLoadFloat(E)) 5657 return false; 5658 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5659 return false; 5660 if (!this->emitAddf(getFPOptions(E), E)) 5661 return false; 5662 if (!this->emitStoreFloat(E)) 5663 return false; 5664 } else { 5665 assert(isIntegralType(*T)); 5666 if (!this->emitLoad(*T, E)) 5667 return false; 5668 if (!this->emitConst(1, E)) 5669 return false; 5670 if (!this->emitAdd(*T, E)) 5671 return false; 5672 if (!this->emitStore(*T, E)) 5673 return false; 5674 } 5675 return E->isGLValue() || this->emitLoadPop(*T, E); 5676 } 5677 case UO_PreDec: { // --x 5678 if (!Ctx.getLangOpts().CPlusPlus14) 5679 return this->emitInvalid(E); 5680 if (!T) 5681 return this->emitError(E); 5682 5683 if (!this->visit(SubExpr)) 5684 return false; 5685 5686 if (T == PT_Ptr || T == PT_FnPtr) { 5687 if (!this->emitLoadPtr(E)) 5688 return false; 5689 if (!this->emitConstUint8(1, E)) 5690 return false; 5691 if (!this->emitSubOffsetUint8(E)) 5692 return false; 5693 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5694 } 5695 5696 // Post-dec and pre-dec are the same if the value is to be discarded. 5697 if (DiscardResult) { 5698 if (T == PT_Float) 5699 return this->emitDecfPop(getFPOptions(E), E); 5700 return this->emitDecPop(*T, E); 5701 } 5702 5703 if (T == PT_Float) { 5704 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5705 if (!this->emitLoadFloat(E)) 5706 return false; 5707 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5708 return false; 5709 if (!this->emitSubf(getFPOptions(E), E)) 5710 return false; 5711 if (!this->emitStoreFloat(E)) 5712 return false; 5713 } else { 5714 assert(isIntegralType(*T)); 5715 if (!this->emitLoad(*T, E)) 5716 return false; 5717 if (!this->emitConst(1, E)) 5718 return false; 5719 if (!this->emitSub(*T, E)) 5720 return false; 5721 if (!this->emitStore(*T, E)) 5722 return false; 5723 } 5724 return E->isGLValue() || this->emitLoadPop(*T, E); 5725 } 5726 case UO_LNot: // !x 5727 if (!T) 5728 return this->emitError(E); 5729 5730 if (DiscardResult) 5731 return this->discard(SubExpr); 5732 5733 if (!this->visitBool(SubExpr)) 5734 return false; 5735 5736 if (!this->emitInv(E)) 5737 return false; 5738 5739 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5740 return this->emitCast(PT_Bool, ET, E); 5741 return true; 5742 case UO_Minus: // -x 5743 if (!T) 5744 return this->emitError(E); 5745 5746 if (!this->visit(SubExpr)) 5747 return false; 5748 return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E); 5749 case UO_Plus: // +x 5750 if (!T) 5751 return this->emitError(E); 5752 5753 if (!this->visit(SubExpr)) // noop 5754 return false; 5755 return DiscardResult ? this->emitPop(*T, E) : true; 5756 case UO_AddrOf: // &x 5757 if (E->getType()->isMemberPointerType()) { 5758 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 5759 // member can be formed. 5760 return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E); 5761 } 5762 // We should already have a pointer when we get here. 5763 return this->delegate(SubExpr); 5764 case UO_Deref: // *x 5765 if (DiscardResult) { 5766 // assert(false); 5767 return this->discard(SubExpr); 5768 } 5769 5770 if (!this->visit(SubExpr)) 5771 return false; 5772 if (classifyPrim(SubExpr) == PT_Ptr) 5773 return this->emitNarrowPtr(E); 5774 return true; 5775 5776 case UO_Not: // ~x 5777 if (!T) 5778 return this->emitError(E); 5779 5780 if (!this->visit(SubExpr)) 5781 return false; 5782 return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E); 5783 case UO_Real: // __real x 5784 assert(T); 5785 return this->delegate(SubExpr); 5786 case UO_Imag: { // __imag x 5787 assert(T); 5788 if (!this->discard(SubExpr)) 5789 return false; 5790 return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr); 5791 } 5792 case UO_Extension: 5793 return this->delegate(SubExpr); 5794 case UO_Coawait: 5795 assert(false && "Unhandled opcode"); 5796 } 5797 5798 return false; 5799 } 5800 5801 template <class Emitter> 5802 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) { 5803 const Expr *SubExpr = E->getSubExpr(); 5804 assert(SubExpr->getType()->isAnyComplexType()); 5805 5806 if (DiscardResult) 5807 return this->discard(SubExpr); 5808 5809 std::optional<PrimType> ResT = classify(E); 5810 auto prepareResult = [=]() -> bool { 5811 if (!ResT && !Initializing) { 5812 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5813 if (!LocalIndex) 5814 return false; 5815 return this->emitGetPtrLocal(*LocalIndex, E); 5816 } 5817 5818 return true; 5819 }; 5820 5821 // The offset of the temporary, if we created one. 5822 unsigned SubExprOffset = ~0u; 5823 auto createTemp = [=, &SubExprOffset]() -> bool { 5824 SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5825 if (!this->visit(SubExpr)) 5826 return false; 5827 return this->emitSetLocal(PT_Ptr, SubExprOffset, E); 5828 }; 5829 5830 PrimType ElemT = classifyComplexElementType(SubExpr->getType()); 5831 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5832 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5833 return false; 5834 return this->emitArrayElemPop(ElemT, Index, E); 5835 }; 5836 5837 switch (E->getOpcode()) { 5838 case UO_Minus: 5839 if (!prepareResult()) 5840 return false; 5841 if (!createTemp()) 5842 return false; 5843 for (unsigned I = 0; I != 2; ++I) { 5844 if (!getElem(SubExprOffset, I)) 5845 return false; 5846 if (!this->emitNeg(ElemT, E)) 5847 return false; 5848 if (!this->emitInitElem(ElemT, I, E)) 5849 return false; 5850 } 5851 break; 5852 5853 case UO_Plus: // +x 5854 case UO_AddrOf: // &x 5855 case UO_Deref: // *x 5856 return this->delegate(SubExpr); 5857 5858 case UO_LNot: 5859 if (!this->visit(SubExpr)) 5860 return false; 5861 if (!this->emitComplexBoolCast(SubExpr)) 5862 return false; 5863 if (!this->emitInv(E)) 5864 return false; 5865 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5866 return this->emitCast(PT_Bool, ET, E); 5867 return true; 5868 5869 case UO_Real: 5870 return this->emitComplexReal(SubExpr); 5871 5872 case UO_Imag: 5873 if (!this->visit(SubExpr)) 5874 return false; 5875 5876 if (SubExpr->isLValue()) { 5877 if (!this->emitConstUint8(1, E)) 5878 return false; 5879 return this->emitArrayElemPtrPopUint8(E); 5880 } 5881 5882 // Since our _Complex implementation does not map to a primitive type, 5883 // we sometimes have to do the lvalue-to-rvalue conversion here manually. 5884 return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E); 5885 5886 case UO_Not: // ~x 5887 if (!this->visit(SubExpr)) 5888 return false; 5889 // Negate the imaginary component. 5890 if (!this->emitArrayElem(ElemT, 1, E)) 5891 return false; 5892 if (!this->emitNeg(ElemT, E)) 5893 return false; 5894 if (!this->emitInitElem(ElemT, 1, E)) 5895 return false; 5896 return DiscardResult ? this->emitPopPtr(E) : true; 5897 5898 case UO_Extension: 5899 return this->delegate(SubExpr); 5900 5901 default: 5902 return this->emitInvalid(E); 5903 } 5904 5905 return true; 5906 } 5907 5908 template <class Emitter> 5909 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) { 5910 const Expr *SubExpr = E->getSubExpr(); 5911 assert(SubExpr->getType()->isVectorType()); 5912 5913 if (DiscardResult) 5914 return this->discard(SubExpr); 5915 5916 auto UnaryOp = E->getOpcode(); 5917 if (UnaryOp == UO_Extension) 5918 return this->delegate(SubExpr); 5919 5920 if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot && 5921 UnaryOp != UO_Not && UnaryOp != UO_AddrOf) 5922 return this->emitInvalid(E); 5923 5924 // Nothing to do here. 5925 if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf) 5926 return this->delegate(SubExpr); 5927 5928 if (!Initializing) { 5929 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5930 if (!LocalIndex) 5931 return false; 5932 if (!this->emitGetPtrLocal(*LocalIndex, E)) 5933 return false; 5934 } 5935 5936 // The offset of the temporary, if we created one. 5937 unsigned SubExprOffset = 5938 this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5939 if (!this->visit(SubExpr)) 5940 return false; 5941 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E)) 5942 return false; 5943 5944 const auto *VecTy = SubExpr->getType()->getAs<VectorType>(); 5945 PrimType ElemT = classifyVectorElementType(SubExpr->getType()); 5946 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5947 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5948 return false; 5949 return this->emitArrayElemPop(ElemT, Index, E); 5950 }; 5951 5952 switch (UnaryOp) { 5953 case UO_Minus: 5954 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5955 if (!getElem(SubExprOffset, I)) 5956 return false; 5957 if (!this->emitNeg(ElemT, E)) 5958 return false; 5959 if (!this->emitInitElem(ElemT, I, E)) 5960 return false; 5961 } 5962 break; 5963 case UO_LNot: { // !x 5964 // In C++, the logic operators !, &&, || are available for vectors. !v is 5965 // equivalent to v == 0. 5966 // 5967 // The result of the comparison is a vector of the same width and number of 5968 // elements as the comparison operands with a signed integral element type. 5969 // 5970 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 5971 QualType ResultVecTy = E->getType(); 5972 PrimType ResultVecElemT = 5973 classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType()); 5974 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5975 if (!getElem(SubExprOffset, I)) 5976 return false; 5977 // operator ! on vectors returns -1 for 'truth', so negate it. 5978 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 5979 return false; 5980 if (!this->emitInv(E)) 5981 return false; 5982 if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E)) 5983 return false; 5984 if (!this->emitNeg(ElemT, E)) 5985 return false; 5986 if (ElemT != ResultVecElemT && 5987 !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E)) 5988 return false; 5989 if (!this->emitInitElem(ResultVecElemT, I, E)) 5990 return false; 5991 } 5992 break; 5993 } 5994 case UO_Not: // ~x 5995 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5996 if (!getElem(SubExprOffset, I)) 5997 return false; 5998 if (ElemT == PT_Bool) { 5999 if (!this->emitInv(E)) 6000 return false; 6001 } else { 6002 if (!this->emitComp(ElemT, E)) 6003 return false; 6004 } 6005 if (!this->emitInitElem(ElemT, I, E)) 6006 return false; 6007 } 6008 break; 6009 default: 6010 llvm_unreachable("Unsupported unary operators should be handled up front"); 6011 } 6012 return true; 6013 } 6014 6015 template <class Emitter> 6016 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) { 6017 if (DiscardResult) 6018 return true; 6019 6020 if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) { 6021 return this->emitConst(ECD->getInitVal(), E); 6022 } else if (const auto *BD = dyn_cast<BindingDecl>(D)) { 6023 return this->visit(BD->getBinding()); 6024 } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) { 6025 const Function *F = getFunction(FuncDecl); 6026 return F && this->emitGetFnPtr(F, E); 6027 } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) { 6028 if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) { 6029 if (!this->emitGetPtrGlobal(*Index, E)) 6030 return false; 6031 if (std::optional<PrimType> T = classify(E->getType())) { 6032 if (!this->visitAPValue(TPOD->getValue(), *T, E)) 6033 return false; 6034 return this->emitInitGlobal(*T, *Index, E); 6035 } 6036 return this->visitAPValueInitializer(TPOD->getValue(), E); 6037 } 6038 return false; 6039 } 6040 6041 // References are implemented via pointers, so when we see a DeclRefExpr 6042 // pointing to a reference, we need to get its value directly (i.e. the 6043 // pointer to the actual value) instead of a pointer to the pointer to the 6044 // value. 6045 bool IsReference = D->getType()->isReferenceType(); 6046 6047 // Check for local/global variables and parameters. 6048 if (auto It = Locals.find(D); It != Locals.end()) { 6049 const unsigned Offset = It->second.Offset; 6050 if (IsReference) 6051 return this->emitGetLocal(PT_Ptr, Offset, E); 6052 return this->emitGetPtrLocal(Offset, E); 6053 } else if (auto GlobalIndex = P.getGlobal(D)) { 6054 if (IsReference) { 6055 if (!Ctx.getLangOpts().CPlusPlus11) 6056 return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E); 6057 return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E); 6058 } 6059 6060 return this->emitGetPtrGlobal(*GlobalIndex, E); 6061 } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { 6062 if (auto It = this->Params.find(PVD); It != this->Params.end()) { 6063 if (IsReference || !It->second.IsPtr) 6064 return this->emitGetParam(classifyPrim(E), It->second.Offset, E); 6065 6066 return this->emitGetPtrParam(It->second.Offset, E); 6067 } 6068 6069 if (D->getType()->isReferenceType()) 6070 return false; // FIXME: Do we need to emit InvalidDeclRef? 6071 } 6072 6073 // In case we need to re-visit a declaration. 6074 auto revisit = [&](const VarDecl *VD) -> bool { 6075 auto VarState = this->visitDecl(VD); 6076 6077 if (VarState.notCreated()) 6078 return true; 6079 if (!VarState) 6080 return false; 6081 // Retry. 6082 return this->visitDeclRef(D, E); 6083 }; 6084 6085 // Handle lambda captures. 6086 if (auto It = this->LambdaCaptures.find(D); 6087 It != this->LambdaCaptures.end()) { 6088 auto [Offset, IsPtr] = It->second; 6089 6090 if (IsPtr) 6091 return this->emitGetThisFieldPtr(Offset, E); 6092 return this->emitGetPtrThisField(Offset, E); 6093 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E); 6094 DRE && DRE->refersToEnclosingVariableOrCapture()) { 6095 if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture()) 6096 return revisit(VD); 6097 } 6098 6099 if (D != InitializingDecl) { 6100 // Try to lazily visit (or emit dummy pointers for) declarations 6101 // we haven't seen yet. 6102 if (Ctx.getLangOpts().CPlusPlus) { 6103 if (const auto *VD = dyn_cast<VarDecl>(D)) { 6104 const auto typeShouldBeVisited = [&](QualType T) -> bool { 6105 if (T.isConstant(Ctx.getASTContext())) 6106 return true; 6107 return T->isReferenceType(); 6108 }; 6109 6110 // DecompositionDecls are just proxies for us. 6111 if (isa<DecompositionDecl>(VD)) 6112 return revisit(VD); 6113 6114 if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) && 6115 typeShouldBeVisited(VD->getType())) 6116 return revisit(VD); 6117 6118 // FIXME: The evaluateValue() check here is a little ridiculous, since 6119 // it will ultimately call into Context::evaluateAsInitializer(). In 6120 // other words, we're evaluating the initializer, just to know if we can 6121 // evaluate the initializer. 6122 if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) && 6123 VD->getInit() && !VD->getInit()->isValueDependent()) { 6124 6125 if (VD->evaluateValue()) 6126 return revisit(VD); 6127 6128 if (!D->getType()->isReferenceType()) 6129 return this->emitDummyPtr(D, E); 6130 6131 return this->emitInvalidDeclRef(cast<DeclRefExpr>(E), 6132 /*InitializerFailed=*/true, E); 6133 } 6134 } 6135 } else { 6136 if (const auto *VD = dyn_cast<VarDecl>(D); 6137 VD && VD->getAnyInitializer() && 6138 VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak()) 6139 return revisit(VD); 6140 } 6141 } 6142 6143 return this->emitDummyPtr(D, E); 6144 } 6145 6146 template <class Emitter> 6147 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) { 6148 const auto *D = E->getDecl(); 6149 return this->visitDeclRef(D, E); 6150 } 6151 6152 template <class Emitter> void Compiler<Emitter>::emitCleanup() { 6153 for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent()) 6154 C->emitDestruction(); 6155 } 6156 6157 template <class Emitter> 6158 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType, 6159 const QualType DerivedType) { 6160 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 6161 if (const auto *R = Ty->getPointeeCXXRecordDecl()) 6162 return R; 6163 return Ty->getAsCXXRecordDecl(); 6164 }; 6165 const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType); 6166 const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType); 6167 6168 return Ctx.collectBaseOffset(BaseDecl, DerivedDecl); 6169 } 6170 6171 /// Emit casts from a PrimType to another PrimType. 6172 template <class Emitter> 6173 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT, 6174 QualType ToQT, const Expr *E) { 6175 6176 if (FromT == PT_Float) { 6177 // Floating to floating. 6178 if (ToT == PT_Float) { 6179 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 6180 return this->emitCastFP(ToSem, getRoundingMode(E), E); 6181 } 6182 6183 if (ToT == PT_IntAP) 6184 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), 6185 getFPOptions(E), E); 6186 if (ToT == PT_IntAPS) 6187 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), 6188 getFPOptions(E), E); 6189 6190 // Float to integral. 6191 if (isIntegralType(ToT) || ToT == PT_Bool) 6192 return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E); 6193 } 6194 6195 if (isIntegralType(FromT) || FromT == PT_Bool) { 6196 if (ToT == PT_IntAP) 6197 return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E); 6198 if (ToT == PT_IntAPS) 6199 return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E); 6200 6201 // Integral to integral. 6202 if (isIntegralType(ToT) || ToT == PT_Bool) 6203 return FromT != ToT ? this->emitCast(FromT, ToT, E) : true; 6204 6205 if (ToT == PT_Float) { 6206 // Integral to floating. 6207 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 6208 return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E); 6209 } 6210 } 6211 6212 return false; 6213 } 6214 6215 /// Emits __real(SubExpr) 6216 template <class Emitter> 6217 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) { 6218 assert(SubExpr->getType()->isAnyComplexType()); 6219 6220 if (DiscardResult) 6221 return this->discard(SubExpr); 6222 6223 if (!this->visit(SubExpr)) 6224 return false; 6225 if (SubExpr->isLValue()) { 6226 if (!this->emitConstUint8(0, SubExpr)) 6227 return false; 6228 return this->emitArrayElemPtrPopUint8(SubExpr); 6229 } 6230 6231 // Rvalue, load the actual element. 6232 return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()), 6233 0, SubExpr); 6234 } 6235 6236 template <class Emitter> 6237 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) { 6238 assert(!DiscardResult); 6239 PrimType ElemT = classifyComplexElementType(E->getType()); 6240 // We emit the expression (__real(E) != 0 || __imag(E) != 0) 6241 // for us, that means (bool)E[0] || (bool)E[1] 6242 if (!this->emitArrayElem(ElemT, 0, E)) 6243 return false; 6244 if (ElemT == PT_Float) { 6245 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 6246 return false; 6247 } else { 6248 if (!this->emitCast(ElemT, PT_Bool, E)) 6249 return false; 6250 } 6251 6252 // We now have the bool value of E[0] on the stack. 6253 LabelTy LabelTrue = this->getLabel(); 6254 if (!this->jumpTrue(LabelTrue)) 6255 return false; 6256 6257 if (!this->emitArrayElemPop(ElemT, 1, E)) 6258 return false; 6259 if (ElemT == PT_Float) { 6260 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 6261 return false; 6262 } else { 6263 if (!this->emitCast(ElemT, PT_Bool, E)) 6264 return false; 6265 } 6266 // Leave the boolean value of E[1] on the stack. 6267 LabelTy EndLabel = this->getLabel(); 6268 this->jump(EndLabel); 6269 6270 this->emitLabel(LabelTrue); 6271 if (!this->emitPopPtr(E)) 6272 return false; 6273 if (!this->emitConstBool(true, E)) 6274 return false; 6275 6276 this->fallthrough(EndLabel); 6277 this->emitLabel(EndLabel); 6278 6279 return true; 6280 } 6281 6282 template <class Emitter> 6283 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS, 6284 const BinaryOperator *E) { 6285 assert(E->isComparisonOp()); 6286 assert(!Initializing); 6287 assert(!DiscardResult); 6288 6289 PrimType ElemT; 6290 bool LHSIsComplex; 6291 unsigned LHSOffset; 6292 if (LHS->getType()->isAnyComplexType()) { 6293 LHSIsComplex = true; 6294 ElemT = classifyComplexElementType(LHS->getType()); 6295 LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true, 6296 /*IsExtended=*/false); 6297 if (!this->visit(LHS)) 6298 return false; 6299 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 6300 return false; 6301 } else { 6302 LHSIsComplex = false; 6303 PrimType LHST = classifyPrim(LHS->getType()); 6304 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 6305 if (!this->visit(LHS)) 6306 return false; 6307 if (!this->emitSetLocal(LHST, LHSOffset, E)) 6308 return false; 6309 } 6310 6311 bool RHSIsComplex; 6312 unsigned RHSOffset; 6313 if (RHS->getType()->isAnyComplexType()) { 6314 RHSIsComplex = true; 6315 ElemT = classifyComplexElementType(RHS->getType()); 6316 RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true, 6317 /*IsExtended=*/false); 6318 if (!this->visit(RHS)) 6319 return false; 6320 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 6321 return false; 6322 } else { 6323 RHSIsComplex = false; 6324 PrimType RHST = classifyPrim(RHS->getType()); 6325 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 6326 if (!this->visit(RHS)) 6327 return false; 6328 if (!this->emitSetLocal(RHST, RHSOffset, E)) 6329 return false; 6330 } 6331 6332 auto getElem = [&](unsigned LocalOffset, unsigned Index, 6333 bool IsComplex) -> bool { 6334 if (IsComplex) { 6335 if (!this->emitGetLocal(PT_Ptr, LocalOffset, E)) 6336 return false; 6337 return this->emitArrayElemPop(ElemT, Index, E); 6338 } 6339 return this->emitGetLocal(ElemT, LocalOffset, E); 6340 }; 6341 6342 for (unsigned I = 0; I != 2; ++I) { 6343 // Get both values. 6344 if (!getElem(LHSOffset, I, LHSIsComplex)) 6345 return false; 6346 if (!getElem(RHSOffset, I, RHSIsComplex)) 6347 return false; 6348 // And compare them. 6349 if (!this->emitEQ(ElemT, E)) 6350 return false; 6351 6352 if (!this->emitCastBoolUint8(E)) 6353 return false; 6354 } 6355 6356 // We now have two bool values on the stack. Compare those. 6357 if (!this->emitAddUint8(E)) 6358 return false; 6359 if (!this->emitConstUint8(2, E)) 6360 return false; 6361 6362 if (E->getOpcode() == BO_EQ) { 6363 if (!this->emitEQUint8(E)) 6364 return false; 6365 } else if (E->getOpcode() == BO_NE) { 6366 if (!this->emitNEUint8(E)) 6367 return false; 6368 } else 6369 return false; 6370 6371 // In C, this returns an int. 6372 if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool) 6373 return this->emitCast(PT_Bool, ResT, E); 6374 return true; 6375 } 6376 6377 /// When calling this, we have a pointer of the local-to-destroy 6378 /// on the stack. 6379 /// Emit destruction of record types (or arrays of record types). 6380 template <class Emitter> 6381 bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) { 6382 assert(R); 6383 assert(!R->isAnonymousUnion()); 6384 const CXXDestructorDecl *Dtor = R->getDestructor(); 6385 if (!Dtor || Dtor->isTrivial()) 6386 return true; 6387 6388 assert(Dtor); 6389 const Function *DtorFunc = getFunction(Dtor); 6390 if (!DtorFunc) 6391 return false; 6392 assert(DtorFunc->hasThisPointer()); 6393 assert(DtorFunc->getNumParams() == 1); 6394 if (!this->emitDupPtr(Loc)) 6395 return false; 6396 return this->emitCall(DtorFunc, 0, Loc); 6397 } 6398 /// When calling this, we have a pointer of the local-to-destroy 6399 /// on the stack. 6400 /// Emit destruction of record types (or arrays of record types). 6401 template <class Emitter> 6402 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc, 6403 SourceInfo Loc) { 6404 assert(Desc); 6405 assert(!Desc->isPrimitive()); 6406 assert(!Desc->isPrimitiveArray()); 6407 6408 // Arrays. 6409 if (Desc->isArray()) { 6410 const Descriptor *ElemDesc = Desc->ElemDesc; 6411 assert(ElemDesc); 6412 6413 // Don't need to do anything for these. 6414 if (ElemDesc->isPrimitiveArray()) 6415 return true; 6416 6417 // If this is an array of record types, check if we need 6418 // to call the element destructors at all. If not, try 6419 // to save the work. 6420 if (const Record *ElemRecord = ElemDesc->ElemRecord) { 6421 if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor(); 6422 !Dtor || Dtor->isTrivial()) 6423 return true; 6424 } 6425 6426 for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) { 6427 if (!this->emitConstUint64(I, Loc)) 6428 return false; 6429 if (!this->emitArrayElemPtrUint64(Loc)) 6430 return false; 6431 if (!this->emitDestruction(ElemDesc, Loc)) 6432 return false; 6433 if (!this->emitPopPtr(Loc)) 6434 return false; 6435 } 6436 return true; 6437 } 6438 6439 assert(Desc->ElemRecord); 6440 if (Desc->ElemRecord->isAnonymousUnion()) 6441 return true; 6442 6443 return this->emitRecordDestruction(Desc->ElemRecord, Loc); 6444 } 6445 6446 /// Create a dummy pointer for the given decl (or expr) and 6447 /// push a pointer to it on the stack. 6448 template <class Emitter> 6449 bool Compiler<Emitter>::emitDummyPtr(const DeclTy &D, const Expr *E) { 6450 assert(!DiscardResult && "Should've been checked before"); 6451 6452 unsigned DummyID = P.getOrCreateDummy(D); 6453 6454 if (!this->emitGetPtrGlobal(DummyID, E)) 6455 return false; 6456 if (E->getType()->isVoidType()) 6457 return true; 6458 6459 // Convert the dummy pointer to another pointer type if we have to. 6460 if (PrimType PT = classifyPrim(E); PT != PT_Ptr) { 6461 if (isPtrType(PT)) 6462 return this->emitDecayPtr(PT_Ptr, PT, E); 6463 return false; 6464 } 6465 return true; 6466 } 6467 6468 // This function is constexpr if and only if To, From, and the types of 6469 // all subobjects of To and From are types T such that... 6470 // (3.1) - is_union_v<T> is false; 6471 // (3.2) - is_pointer_v<T> is false; 6472 // (3.3) - is_member_pointer_v<T> is false; 6473 // (3.4) - is_volatile_v<T> is false; and 6474 // (3.5) - T has no non-static data members of reference type 6475 template <class Emitter> 6476 bool Compiler<Emitter>::emitBuiltinBitCast(const CastExpr *E) { 6477 const Expr *SubExpr = E->getSubExpr(); 6478 QualType FromType = SubExpr->getType(); 6479 QualType ToType = E->getType(); 6480 std::optional<PrimType> ToT = classify(ToType); 6481 6482 if (ToType->isNullPtrType()) { 6483 if (!this->discard(SubExpr)) 6484 return false; 6485 6486 return this->emitNullPtr(nullptr, E); 6487 } 6488 6489 if (FromType->isNullPtrType() && ToT) { 6490 if (!this->discard(SubExpr)) 6491 return false; 6492 6493 return visitZeroInitializer(*ToT, ToType, E); 6494 } 6495 assert(!ToType->isReferenceType()); 6496 6497 // Prepare storage for the result in case we discard. 6498 if (DiscardResult && !Initializing && !ToT) { 6499 std::optional<unsigned> LocalIndex = allocateLocal(E); 6500 if (!LocalIndex) 6501 return false; 6502 if (!this->emitGetPtrLocal(*LocalIndex, E)) 6503 return false; 6504 } 6505 6506 // Get a pointer to the value-to-cast on the stack. 6507 // For CK_LValueToRValueBitCast, this is always an lvalue and 6508 // we later assume it to be one (i.e. a PT_Ptr). However, 6509 // we call this function for other utility methods where 6510 // a bitcast might be useful, so convert it to a PT_Ptr in that case. 6511 if (SubExpr->isGLValue() || FromType->isVectorType()) { 6512 if (!this->visit(SubExpr)) 6513 return false; 6514 } else if (std::optional<PrimType> FromT = classify(SubExpr)) { 6515 unsigned TempOffset = allocateLocalPrimitive( 6516 SubExpr, *FromT, /*IsConst=*/true, /*IsExtended=*/false); 6517 if (!this->visit(SubExpr)) 6518 return false; 6519 if (!this->emitSetLocal(*FromT, TempOffset, E)) 6520 return false; 6521 if (!this->emitGetPtrLocal(TempOffset, E)) 6522 return false; 6523 } else { 6524 return false; 6525 } 6526 6527 if (!ToT || ToT == PT_Ptr) { 6528 if (!this->emitBitCastPtr(E)) 6529 return false; 6530 return DiscardResult ? this->emitPopPtr(E) : true; 6531 } 6532 assert(ToT); 6533 6534 const llvm::fltSemantics *TargetSemantics = nullptr; 6535 if (ToT == PT_Float) 6536 TargetSemantics = &Ctx.getFloatSemantics(ToType); 6537 6538 // Conversion to a primitive type. FromType can be another 6539 // primitive type, or a record/array. 6540 bool ToTypeIsUChar = (ToType->isSpecificBuiltinType(BuiltinType::UChar) || 6541 ToType->isSpecificBuiltinType(BuiltinType::Char_U)); 6542 uint32_t ResultBitWidth = std::max(Ctx.getBitWidth(ToType), 8u); 6543 6544 if (!this->emitBitCast(*ToT, ToTypeIsUChar || ToType->isStdByteType(), 6545 ResultBitWidth, TargetSemantics, E)) 6546 return false; 6547 6548 if (DiscardResult) 6549 return this->emitPop(*ToT, E); 6550 6551 return true; 6552 } 6553 6554 namespace clang { 6555 namespace interp { 6556 6557 template class Compiler<ByteCodeEmitter>; 6558 template class Compiler<EvalEmitter>; 6559 6560 } // namespace interp 6561 } // namespace clang 6562