xref: /llvm-project/clang/lib/AST/ByteCode/Compiler.cpp (revision 6fd870bf3585db7d9b4af5e4b95bc731bbf9c0fa)
1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Compiler.h"
10 #include "ByteCodeEmitter.h"
11 #include "Context.h"
12 #include "FixedPoint.h"
13 #include "Floating.h"
14 #include "Function.h"
15 #include "InterpShared.h"
16 #include "PrimType.h"
17 #include "Program.h"
18 #include "clang/AST/Attr.h"
19 
20 using namespace clang;
21 using namespace clang::interp;
22 
23 using APSInt = llvm::APSInt;
24 
25 namespace clang {
26 namespace interp {
27 
28 /// Scope used to handle temporaries in toplevel variable declarations.
29 template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
30 public:
31   DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
32       : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
33         OldInitializingDecl(Ctx->InitializingDecl) {
34     Ctx->InitializingDecl = VD;
35     Ctx->InitStack.push_back(InitLink::Decl(VD));
36   }
37 
38   void addExtended(const Scope::Local &Local) override {
39     return this->addLocal(Local);
40   }
41 
42   ~DeclScope() {
43     this->Ctx->InitializingDecl = OldInitializingDecl;
44     this->Ctx->InitStack.pop_back();
45   }
46 
47 private:
48   Program::DeclScope Scope;
49   const ValueDecl *OldInitializingDecl;
50 };
51 
52 /// Scope used to handle initialization methods.
53 template <class Emitter> class OptionScope final {
54 public:
55   /// Root constructor, compiling or discarding primitives.
56   OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
57               bool NewInitializing)
58       : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
59         OldInitializing(Ctx->Initializing) {
60     Ctx->DiscardResult = NewDiscardResult;
61     Ctx->Initializing = NewInitializing;
62   }
63 
64   ~OptionScope() {
65     Ctx->DiscardResult = OldDiscardResult;
66     Ctx->Initializing = OldInitializing;
67   }
68 
69 private:
70   /// Parent context.
71   Compiler<Emitter> *Ctx;
72   /// Old discard flag to restore.
73   bool OldDiscardResult;
74   bool OldInitializing;
75 };
76 
77 template <class Emitter>
78 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
79   switch (Kind) {
80   case K_This:
81     return Ctx->emitThis(E);
82   case K_Field:
83     // We're assuming there's a base pointer on the stack already.
84     return Ctx->emitGetPtrFieldPop(Offset, E);
85   case K_Temp:
86     return Ctx->emitGetPtrLocal(Offset, E);
87   case K_Decl:
88     return Ctx->visitDeclRef(D, E);
89   case K_Elem:
90     if (!Ctx->emitConstUint32(Offset, E))
91       return false;
92     return Ctx->emitArrayElemPtrPopUint32(E);
93   default:
94     llvm_unreachable("Unhandled InitLink kind");
95   }
96   return true;
97 }
98 
99 /// Scope managing label targets.
100 template <class Emitter> class LabelScope {
101 public:
102   virtual ~LabelScope() {}
103 
104 protected:
105   LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
106   /// Compiler instance.
107   Compiler<Emitter> *Ctx;
108 };
109 
110 /// Sets the context for break/continue statements.
111 template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
112 public:
113   using LabelTy = typename Compiler<Emitter>::LabelTy;
114   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
115 
116   LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
117       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
118         OldContinueLabel(Ctx->ContinueLabel),
119         OldBreakVarScope(Ctx->BreakVarScope),
120         OldContinueVarScope(Ctx->ContinueVarScope) {
121     this->Ctx->BreakLabel = BreakLabel;
122     this->Ctx->ContinueLabel = ContinueLabel;
123     this->Ctx->BreakVarScope = this->Ctx->VarScope;
124     this->Ctx->ContinueVarScope = this->Ctx->VarScope;
125   }
126 
127   ~LoopScope() {
128     this->Ctx->BreakLabel = OldBreakLabel;
129     this->Ctx->ContinueLabel = OldContinueLabel;
130     this->Ctx->ContinueVarScope = OldContinueVarScope;
131     this->Ctx->BreakVarScope = OldBreakVarScope;
132   }
133 
134 private:
135   OptLabelTy OldBreakLabel;
136   OptLabelTy OldContinueLabel;
137   VariableScope<Emitter> *OldBreakVarScope;
138   VariableScope<Emitter> *OldContinueVarScope;
139 };
140 
141 // Sets the context for a switch scope, mapping labels.
142 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
143 public:
144   using LabelTy = typename Compiler<Emitter>::LabelTy;
145   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
146   using CaseMap = typename Compiler<Emitter>::CaseMap;
147 
148   SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
149               OptLabelTy DefaultLabel)
150       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
151         OldDefaultLabel(this->Ctx->DefaultLabel),
152         OldCaseLabels(std::move(this->Ctx->CaseLabels)),
153         OldLabelVarScope(Ctx->BreakVarScope) {
154     this->Ctx->BreakLabel = BreakLabel;
155     this->Ctx->DefaultLabel = DefaultLabel;
156     this->Ctx->CaseLabels = std::move(CaseLabels);
157     this->Ctx->BreakVarScope = this->Ctx->VarScope;
158   }
159 
160   ~SwitchScope() {
161     this->Ctx->BreakLabel = OldBreakLabel;
162     this->Ctx->DefaultLabel = OldDefaultLabel;
163     this->Ctx->CaseLabels = std::move(OldCaseLabels);
164     this->Ctx->BreakVarScope = OldLabelVarScope;
165   }
166 
167 private:
168   OptLabelTy OldBreakLabel;
169   OptLabelTy OldDefaultLabel;
170   CaseMap OldCaseLabels;
171   VariableScope<Emitter> *OldLabelVarScope;
172 };
173 
174 template <class Emitter> class StmtExprScope final {
175 public:
176   StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
177     Ctx->InStmtExpr = true;
178   }
179 
180   ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
181 
182 private:
183   Compiler<Emitter> *Ctx;
184   bool OldFlag;
185 };
186 
187 } // namespace interp
188 } // namespace clang
189 
190 template <class Emitter>
191 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
192   const Expr *SubExpr = CE->getSubExpr();
193   switch (CE->getCastKind()) {
194 
195   case CK_LValueToRValue: {
196     if (DiscardResult)
197       return this->discard(SubExpr);
198 
199     std::optional<PrimType> SubExprT = classify(SubExpr->getType());
200     // Prepare storage for the result.
201     if (!Initializing && !SubExprT) {
202       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
203       if (!LocalIndex)
204         return false;
205       if (!this->emitGetPtrLocal(*LocalIndex, CE))
206         return false;
207     }
208 
209     if (!this->visit(SubExpr))
210       return false;
211 
212     if (SubExprT)
213       return this->emitLoadPop(*SubExprT, CE);
214 
215     // If the subexpr type is not primitive, we need to perform a copy here.
216     // This happens for example in C when dereferencing a pointer of struct
217     // type.
218     return this->emitMemcpy(CE);
219   }
220 
221   case CK_DerivedToBaseMemberPointer: {
222     assert(classifyPrim(CE->getType()) == PT_MemberPtr);
223     assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
224     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
225     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
226 
227     unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
228                                                QualType(FromMP->getClass(), 0));
229 
230     if (!this->delegate(SubExpr))
231       return false;
232 
233     return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
234   }
235 
236   case CK_BaseToDerivedMemberPointer: {
237     assert(classifyPrim(CE) == PT_MemberPtr);
238     assert(classifyPrim(SubExpr) == PT_MemberPtr);
239     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
240     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
241 
242     unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
243                                                QualType(ToMP->getClass(), 0));
244 
245     if (!this->delegate(SubExpr))
246       return false;
247     return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
248   }
249 
250   case CK_UncheckedDerivedToBase:
251   case CK_DerivedToBase: {
252     if (!this->delegate(SubExpr))
253       return false;
254 
255     const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
256       if (const auto *PT = dyn_cast<PointerType>(Ty))
257         return PT->getPointeeType()->getAsCXXRecordDecl();
258       return Ty->getAsCXXRecordDecl();
259     };
260 
261     // FIXME: We can express a series of non-virtual casts as a single
262     // GetPtrBasePop op.
263     QualType CurType = SubExpr->getType();
264     for (const CXXBaseSpecifier *B : CE->path()) {
265       if (B->isVirtual()) {
266         if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
267           return false;
268         CurType = B->getType();
269       } else {
270         unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
271         if (!this->emitGetPtrBasePop(DerivedOffset, CE))
272           return false;
273         CurType = B->getType();
274       }
275     }
276 
277     return true;
278   }
279 
280   case CK_BaseToDerived: {
281     if (!this->delegate(SubExpr))
282       return false;
283 
284     unsigned DerivedOffset =
285         collectBaseOffset(SubExpr->getType(), CE->getType());
286 
287     return this->emitGetPtrDerivedPop(DerivedOffset, CE);
288   }
289 
290   case CK_FloatingCast: {
291     // HLSL uses CK_FloatingCast to cast between vectors.
292     if (!SubExpr->getType()->isFloatingType() ||
293         !CE->getType()->isFloatingType())
294       return false;
295     if (DiscardResult)
296       return this->discard(SubExpr);
297     if (!this->visit(SubExpr))
298       return false;
299     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
300     return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
301   }
302 
303   case CK_IntegralToFloating: {
304     if (DiscardResult)
305       return this->discard(SubExpr);
306     std::optional<PrimType> FromT = classify(SubExpr->getType());
307     if (!FromT)
308       return false;
309 
310     if (!this->visit(SubExpr))
311       return false;
312 
313     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
314     return this->emitCastIntegralFloating(*FromT, TargetSemantics,
315                                           getFPOptions(CE), CE);
316   }
317 
318   case CK_FloatingToBoolean:
319   case CK_FloatingToIntegral: {
320     if (DiscardResult)
321       return this->discard(SubExpr);
322 
323     std::optional<PrimType> ToT = classify(CE->getType());
324 
325     if (!ToT)
326       return false;
327 
328     if (!this->visit(SubExpr))
329       return false;
330 
331     if (ToT == PT_IntAP)
332       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
333                                               getFPOptions(CE), CE);
334     if (ToT == PT_IntAPS)
335       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
336                                                getFPOptions(CE), CE);
337 
338     return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE);
339   }
340 
341   case CK_NullToPointer:
342   case CK_NullToMemberPointer: {
343     if (!this->discard(SubExpr))
344       return false;
345     if (DiscardResult)
346       return true;
347 
348     const Descriptor *Desc = nullptr;
349     const QualType PointeeType = CE->getType()->getPointeeType();
350     if (!PointeeType.isNull()) {
351       if (std::optional<PrimType> T = classify(PointeeType))
352         Desc = P.createDescriptor(SubExpr, *T);
353       else
354         Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
355                                   std::nullopt, true, false,
356                                   /*IsMutable=*/false, nullptr);
357     }
358     return this->emitNull(classifyPrim(CE->getType()), Desc, CE);
359   }
360 
361   case CK_PointerToIntegral: {
362     if (DiscardResult)
363       return this->discard(SubExpr);
364 
365     if (!this->visit(SubExpr))
366       return false;
367 
368     // If SubExpr doesn't result in a pointer, make it one.
369     if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
370       assert(isPtrType(FromT));
371       if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
372         return false;
373     }
374 
375     PrimType T = classifyPrim(CE->getType());
376     if (T == PT_IntAP)
377       return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
378                                              CE);
379     if (T == PT_IntAPS)
380       return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
381                                               CE);
382     return this->emitCastPointerIntegral(T, CE);
383   }
384 
385   case CK_ArrayToPointerDecay: {
386     if (!this->visit(SubExpr))
387       return false;
388     if (!this->emitArrayDecay(CE))
389       return false;
390     if (DiscardResult)
391       return this->emitPopPtr(CE);
392     return true;
393   }
394 
395   case CK_IntegralToPointer: {
396     QualType IntType = SubExpr->getType();
397     assert(IntType->isIntegralOrEnumerationType());
398     if (!this->visit(SubExpr))
399       return false;
400     // FIXME: I think the discard is wrong since the int->ptr cast might cause a
401     // diagnostic.
402     PrimType T = classifyPrim(IntType);
403     if (DiscardResult)
404       return this->emitPop(T, CE);
405 
406     QualType PtrType = CE->getType();
407     const Descriptor *Desc;
408     if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
409       Desc = P.createDescriptor(SubExpr, *T);
410     else if (PtrType->getPointeeType()->isVoidType())
411       Desc = nullptr;
412     else
413       Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
414                                 Descriptor::InlineDescMD, true, false,
415                                 /*IsMutable=*/false, nullptr);
416 
417     if (!this->emitGetIntPtr(T, Desc, CE))
418       return false;
419 
420     PrimType DestPtrT = classifyPrim(PtrType);
421     if (DestPtrT == PT_Ptr)
422       return true;
423 
424     // In case we're converting the integer to a non-Pointer.
425     return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
426   }
427 
428   case CK_AtomicToNonAtomic:
429   case CK_ConstructorConversion:
430   case CK_FunctionToPointerDecay:
431   case CK_NonAtomicToAtomic:
432   case CK_NoOp:
433   case CK_UserDefinedConversion:
434   case CK_AddressSpaceConversion:
435   case CK_CPointerToObjCPointerCast:
436     return this->delegate(SubExpr);
437 
438   case CK_BitCast: {
439     // Reject bitcasts to atomic types.
440     if (CE->getType()->isAtomicType()) {
441       if (!this->discard(SubExpr))
442         return false;
443       return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
444     }
445 
446     if (DiscardResult)
447       return this->discard(SubExpr);
448 
449     QualType SubExprTy = SubExpr->getType();
450     std::optional<PrimType> FromT = classify(SubExprTy);
451     std::optional<PrimType> ToT = classify(CE->getType());
452     if (!FromT || !ToT)
453       return false;
454 
455     assert(isPtrType(*FromT));
456     assert(isPtrType(*ToT));
457     if (FromT == ToT) {
458       if (CE->getType()->isVoidPointerType())
459         return this->delegate(SubExpr);
460 
461       if (!this->visit(SubExpr))
462         return false;
463       if (FromT == PT_Ptr)
464         return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
465       return true;
466     }
467 
468     if (!this->visit(SubExpr))
469       return false;
470     return this->emitDecayPtr(*FromT, *ToT, CE);
471   }
472 
473   case CK_IntegralToBoolean:
474   case CK_FixedPointToBoolean:
475   case CK_BooleanToSignedIntegral:
476   case CK_IntegralCast: {
477     if (DiscardResult)
478       return this->discard(SubExpr);
479     std::optional<PrimType> FromT = classify(SubExpr->getType());
480     std::optional<PrimType> ToT = classify(CE->getType());
481 
482     if (!FromT || !ToT)
483       return false;
484 
485     if (!this->visit(SubExpr))
486       return false;
487 
488     // Possibly diagnose casts to enum types if the target type does not
489     // have a fixed size.
490     if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
491       if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
492           ET && !ET->getDecl()->isFixed()) {
493         if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
494           return false;
495       }
496     }
497 
498     auto maybeNegate = [&]() -> bool {
499       if (CE->getCastKind() == CK_BooleanToSignedIntegral)
500         return this->emitNeg(*ToT, CE);
501       return true;
502     };
503 
504     if (ToT == PT_IntAP)
505       return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
506              maybeNegate();
507     if (ToT == PT_IntAPS)
508       return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
509              maybeNegate();
510 
511     if (FromT == ToT)
512       return true;
513     if (!this->emitCast(*FromT, *ToT, CE))
514       return false;
515 
516     return maybeNegate();
517   }
518 
519   case CK_PointerToBoolean:
520   case CK_MemberPointerToBoolean: {
521     PrimType PtrT = classifyPrim(SubExpr->getType());
522 
523     if (!this->visit(SubExpr))
524       return false;
525     return this->emitIsNonNull(PtrT, CE);
526   }
527 
528   case CK_IntegralComplexToBoolean:
529   case CK_FloatingComplexToBoolean: {
530     if (DiscardResult)
531       return this->discard(SubExpr);
532     if (!this->visit(SubExpr))
533       return false;
534     return this->emitComplexBoolCast(SubExpr);
535   }
536 
537   case CK_IntegralComplexToReal:
538   case CK_FloatingComplexToReal:
539     return this->emitComplexReal(SubExpr);
540 
541   case CK_IntegralRealToComplex:
542   case CK_FloatingRealToComplex: {
543     // We're creating a complex value here, so we need to
544     // allocate storage for it.
545     if (!Initializing) {
546       unsigned LocalIndex = allocateTemporary(CE);
547       if (!this->emitGetPtrLocal(LocalIndex, CE))
548         return false;
549     }
550 
551     // Init the complex value to {SubExpr, 0}.
552     if (!this->visitArrayElemInit(0, SubExpr))
553       return false;
554     // Zero-init the second element.
555     PrimType T = classifyPrim(SubExpr->getType());
556     if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
557       return false;
558     return this->emitInitElem(T, 1, SubExpr);
559   }
560 
561   case CK_IntegralComplexCast:
562   case CK_FloatingComplexCast:
563   case CK_IntegralComplexToFloatingComplex:
564   case CK_FloatingComplexToIntegralComplex: {
565     assert(CE->getType()->isAnyComplexType());
566     assert(SubExpr->getType()->isAnyComplexType());
567     if (DiscardResult)
568       return this->discard(SubExpr);
569 
570     if (!Initializing) {
571       std::optional<unsigned> LocalIndex = allocateLocal(CE);
572       if (!LocalIndex)
573         return false;
574       if (!this->emitGetPtrLocal(*LocalIndex, CE))
575         return false;
576     }
577 
578     // Location for the SubExpr.
579     // Since SubExpr is of complex type, visiting it results in a pointer
580     // anyway, so we just create a temporary pointer variable.
581     unsigned SubExprOffset = allocateLocalPrimitive(
582         SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
583     if (!this->visit(SubExpr))
584       return false;
585     if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
586       return false;
587 
588     PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
589     QualType DestElemType =
590         CE->getType()->getAs<ComplexType>()->getElementType();
591     PrimType DestElemT = classifyPrim(DestElemType);
592     // Cast both elements individually.
593     for (unsigned I = 0; I != 2; ++I) {
594       if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
595         return false;
596       if (!this->emitArrayElemPop(SourceElemT, I, CE))
597         return false;
598 
599       // Do the cast.
600       if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
601         return false;
602 
603       // Save the value.
604       if (!this->emitInitElem(DestElemT, I, CE))
605         return false;
606     }
607     return true;
608   }
609 
610   case CK_VectorSplat: {
611     assert(!classify(CE->getType()));
612     assert(classify(SubExpr->getType()));
613     assert(CE->getType()->isVectorType());
614 
615     if (DiscardResult)
616       return this->discard(SubExpr);
617 
618     if (!Initializing) {
619       std::optional<unsigned> LocalIndex = allocateLocal(CE);
620       if (!LocalIndex)
621         return false;
622       if (!this->emitGetPtrLocal(*LocalIndex, CE))
623         return false;
624     }
625 
626     const auto *VT = CE->getType()->getAs<VectorType>();
627     PrimType ElemT = classifyPrim(SubExpr->getType());
628     unsigned ElemOffset = allocateLocalPrimitive(
629         SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
630 
631     // Prepare a local variable for the scalar value.
632     if (!this->visit(SubExpr))
633       return false;
634     if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
635       return false;
636 
637     if (!this->emitSetLocal(ElemT, ElemOffset, CE))
638       return false;
639 
640     for (unsigned I = 0; I != VT->getNumElements(); ++I) {
641       if (!this->emitGetLocal(ElemT, ElemOffset, CE))
642         return false;
643       if (!this->emitInitElem(ElemT, I, CE))
644         return false;
645     }
646 
647     return true;
648   }
649 
650   case CK_HLSLVectorTruncation: {
651     assert(SubExpr->getType()->isVectorType());
652     if (std::optional<PrimType> ResultT = classify(CE)) {
653       assert(!DiscardResult);
654       // Result must be either a float or integer. Take the first element.
655       if (!this->visit(SubExpr))
656         return false;
657       return this->emitArrayElemPop(*ResultT, 0, CE);
658     }
659     // Otherwise, this truncates from one vector type to another.
660     assert(CE->getType()->isVectorType());
661 
662     if (!Initializing) {
663       unsigned LocalIndex = allocateTemporary(CE);
664       if (!this->emitGetPtrLocal(LocalIndex, CE))
665         return false;
666     }
667     unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements();
668     assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize);
669     if (!this->visit(SubExpr))
670       return false;
671     return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0,
672                                ToSize, CE);
673   };
674 
675   case CK_ToVoid:
676     return discard(SubExpr);
677 
678   default:
679     return this->emitInvalid(CE);
680   }
681   llvm_unreachable("Unhandled clang::CastKind enum");
682 }
683 
684 template <class Emitter>
685 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
686   if (DiscardResult)
687     return true;
688 
689   return this->emitConst(LE->getValue(), LE);
690 }
691 
692 template <class Emitter>
693 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
694   if (DiscardResult)
695     return true;
696 
697   return this->emitConstFloat(E->getValue(), E);
698 }
699 
700 template <class Emitter>
701 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
702   assert(E->getType()->isAnyComplexType());
703   if (DiscardResult)
704     return true;
705 
706   if (!Initializing) {
707     unsigned LocalIndex = allocateTemporary(E);
708     if (!this->emitGetPtrLocal(LocalIndex, E))
709       return false;
710   }
711 
712   const Expr *SubExpr = E->getSubExpr();
713   PrimType SubExprT = classifyPrim(SubExpr->getType());
714 
715   if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
716     return false;
717   if (!this->emitInitElem(SubExprT, 0, SubExpr))
718     return false;
719   return this->visitArrayElemInit(1, SubExpr);
720 }
721 
722 template <class Emitter>
723 bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) {
724   assert(E->getType()->isFixedPointType());
725   assert(classifyPrim(E) == PT_FixedPoint);
726 
727   auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
728   APInt Value = E->getValue();
729   return this->emitConstFixedPoint(FixedPoint(Value, Sem), E);
730 }
731 
732 template <class Emitter>
733 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
734   return this->delegate(E->getSubExpr());
735 }
736 
737 template <class Emitter>
738 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
739   // Need short-circuiting for these.
740   if (BO->isLogicalOp() && !BO->getType()->isVectorType())
741     return this->VisitLogicalBinOp(BO);
742 
743   const Expr *LHS = BO->getLHS();
744   const Expr *RHS = BO->getRHS();
745 
746   // Handle comma operators. Just discard the LHS
747   // and delegate to RHS.
748   if (BO->isCommaOp()) {
749     if (!this->discard(LHS))
750       return false;
751     if (RHS->getType()->isVoidType())
752       return this->discard(RHS);
753 
754     return this->delegate(RHS);
755   }
756 
757   if (BO->getType()->isAnyComplexType())
758     return this->VisitComplexBinOp(BO);
759   if (BO->getType()->isVectorType())
760     return this->VisitVectorBinOp(BO);
761   if ((LHS->getType()->isAnyComplexType() ||
762        RHS->getType()->isAnyComplexType()) &&
763       BO->isComparisonOp())
764     return this->emitComplexComparison(LHS, RHS, BO);
765 
766   if (BO->isPtrMemOp()) {
767     if (!this->visit(LHS))
768       return false;
769 
770     if (!this->visit(RHS))
771       return false;
772 
773     if (!this->emitToMemberPtr(BO))
774       return false;
775 
776     if (classifyPrim(BO) == PT_MemberPtr)
777       return true;
778 
779     if (!this->emitCastMemberPtrPtr(BO))
780       return false;
781     return DiscardResult ? this->emitPopPtr(BO) : true;
782   }
783 
784   // Typecheck the args.
785   std::optional<PrimType> LT = classify(LHS);
786   std::optional<PrimType> RT = classify(RHS);
787   std::optional<PrimType> T = classify(BO->getType());
788 
789   // Special case for C++'s three-way/spaceship operator <=>, which
790   // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
791   // have a PrimType).
792   if (!T && BO->getOpcode() == BO_Cmp) {
793     if (DiscardResult)
794       return true;
795     const ComparisonCategoryInfo *CmpInfo =
796         Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
797     assert(CmpInfo);
798 
799     // We need a temporary variable holding our return value.
800     if (!Initializing) {
801       std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
802       if (!this->emitGetPtrLocal(*ResultIndex, BO))
803         return false;
804     }
805 
806     if (!visit(LHS) || !visit(RHS))
807       return false;
808 
809     return this->emitCMP3(*LT, CmpInfo, BO);
810   }
811 
812   if (!LT || !RT || !T)
813     return false;
814 
815   // Pointer arithmetic special case.
816   if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
817     if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
818       return this->VisitPointerArithBinOp(BO);
819   }
820 
821   // Assignmentes require us to evalute the RHS first.
822   if (BO->getOpcode() == BO_Assign) {
823     if (!visit(RHS) || !visit(LHS))
824       return false;
825     if (!this->emitFlip(*LT, *RT, BO))
826       return false;
827   } else {
828     if (!visit(LHS) || !visit(RHS))
829       return false;
830   }
831 
832   // For languages such as C, cast the result of one
833   // of our comparision opcodes to T (which is usually int).
834   auto MaybeCastToBool = [this, T, BO](bool Result) {
835     if (!Result)
836       return false;
837     if (DiscardResult)
838       return this->emitPop(*T, BO);
839     if (T != PT_Bool)
840       return this->emitCast(PT_Bool, *T, BO);
841     return true;
842   };
843 
844   auto Discard = [this, T, BO](bool Result) {
845     if (!Result)
846       return false;
847     return DiscardResult ? this->emitPop(*T, BO) : true;
848   };
849 
850   switch (BO->getOpcode()) {
851   case BO_EQ:
852     return MaybeCastToBool(this->emitEQ(*LT, BO));
853   case BO_NE:
854     return MaybeCastToBool(this->emitNE(*LT, BO));
855   case BO_LT:
856     return MaybeCastToBool(this->emitLT(*LT, BO));
857   case BO_LE:
858     return MaybeCastToBool(this->emitLE(*LT, BO));
859   case BO_GT:
860     return MaybeCastToBool(this->emitGT(*LT, BO));
861   case BO_GE:
862     return MaybeCastToBool(this->emitGE(*LT, BO));
863   case BO_Sub:
864     if (BO->getType()->isFloatingType())
865       return Discard(this->emitSubf(getFPOptions(BO), BO));
866     return Discard(this->emitSub(*T, BO));
867   case BO_Add:
868     if (BO->getType()->isFloatingType())
869       return Discard(this->emitAddf(getFPOptions(BO), BO));
870     return Discard(this->emitAdd(*T, BO));
871   case BO_Mul:
872     if (BO->getType()->isFloatingType())
873       return Discard(this->emitMulf(getFPOptions(BO), BO));
874     return Discard(this->emitMul(*T, BO));
875   case BO_Rem:
876     return Discard(this->emitRem(*T, BO));
877   case BO_Div:
878     if (BO->getType()->isFloatingType())
879       return Discard(this->emitDivf(getFPOptions(BO), BO));
880     return Discard(this->emitDiv(*T, BO));
881   case BO_Assign:
882     if (DiscardResult)
883       return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
884                                      : this->emitStorePop(*T, BO);
885     if (LHS->refersToBitField()) {
886       if (!this->emitStoreBitField(*T, BO))
887         return false;
888     } else {
889       if (!this->emitStore(*T, BO))
890         return false;
891     }
892     // Assignments aren't necessarily lvalues in C.
893     // Load from them in that case.
894     if (!BO->isLValue())
895       return this->emitLoadPop(*T, BO);
896     return true;
897   case BO_And:
898     return Discard(this->emitBitAnd(*T, BO));
899   case BO_Or:
900     return Discard(this->emitBitOr(*T, BO));
901   case BO_Shl:
902     return Discard(this->emitShl(*LT, *RT, BO));
903   case BO_Shr:
904     return Discard(this->emitShr(*LT, *RT, BO));
905   case BO_Xor:
906     return Discard(this->emitBitXor(*T, BO));
907   case BO_LOr:
908   case BO_LAnd:
909     llvm_unreachable("Already handled earlier");
910   default:
911     return false;
912   }
913 
914   llvm_unreachable("Unhandled binary op");
915 }
916 
917 /// Perform addition/subtraction of a pointer and an integer or
918 /// subtraction of two pointers.
919 template <class Emitter>
920 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
921   BinaryOperatorKind Op = E->getOpcode();
922   const Expr *LHS = E->getLHS();
923   const Expr *RHS = E->getRHS();
924 
925   if ((Op != BO_Add && Op != BO_Sub) ||
926       (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
927     return false;
928 
929   std::optional<PrimType> LT = classify(LHS);
930   std::optional<PrimType> RT = classify(RHS);
931 
932   if (!LT || !RT)
933     return false;
934 
935   // Visit the given pointer expression and optionally convert to a PT_Ptr.
936   auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
937     if (!this->visit(E))
938       return false;
939     if (T != PT_Ptr)
940       return this->emitDecayPtr(T, PT_Ptr, E);
941     return true;
942   };
943 
944   if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
945     if (Op != BO_Sub)
946       return false;
947 
948     assert(E->getType()->isIntegerType());
949     if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
950       return false;
951 
952     return this->emitSubPtr(classifyPrim(E->getType()), E);
953   }
954 
955   PrimType OffsetType;
956   if (LHS->getType()->isIntegerType()) {
957     if (!visitAsPointer(RHS, *RT))
958       return false;
959     if (!this->visit(LHS))
960       return false;
961     OffsetType = *LT;
962   } else if (RHS->getType()->isIntegerType()) {
963     if (!visitAsPointer(LHS, *LT))
964       return false;
965     if (!this->visit(RHS))
966       return false;
967     OffsetType = *RT;
968   } else {
969     return false;
970   }
971 
972   // Do the operation and optionally transform to
973   // result pointer type.
974   if (Op == BO_Add) {
975     if (!this->emitAddOffset(OffsetType, E))
976       return false;
977 
978     if (classifyPrim(E) != PT_Ptr)
979       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
980     return true;
981   } else if (Op == BO_Sub) {
982     if (!this->emitSubOffset(OffsetType, E))
983       return false;
984 
985     if (classifyPrim(E) != PT_Ptr)
986       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
987     return true;
988   }
989 
990   return false;
991 }
992 
993 template <class Emitter>
994 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
995   assert(E->isLogicalOp());
996   BinaryOperatorKind Op = E->getOpcode();
997   const Expr *LHS = E->getLHS();
998   const Expr *RHS = E->getRHS();
999   std::optional<PrimType> T = classify(E->getType());
1000 
1001   if (Op == BO_LOr) {
1002     // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
1003     LabelTy LabelTrue = this->getLabel();
1004     LabelTy LabelEnd = this->getLabel();
1005 
1006     if (!this->visitBool(LHS))
1007       return false;
1008     if (!this->jumpTrue(LabelTrue))
1009       return false;
1010 
1011     if (!this->visitBool(RHS))
1012       return false;
1013     if (!this->jump(LabelEnd))
1014       return false;
1015 
1016     this->emitLabel(LabelTrue);
1017     this->emitConstBool(true, E);
1018     this->fallthrough(LabelEnd);
1019     this->emitLabel(LabelEnd);
1020 
1021   } else {
1022     assert(Op == BO_LAnd);
1023     // Logical AND.
1024     // Visit LHS. Only visit RHS if LHS was TRUE.
1025     LabelTy LabelFalse = this->getLabel();
1026     LabelTy LabelEnd = this->getLabel();
1027 
1028     if (!this->visitBool(LHS))
1029       return false;
1030     if (!this->jumpFalse(LabelFalse))
1031       return false;
1032 
1033     if (!this->visitBool(RHS))
1034       return false;
1035     if (!this->jump(LabelEnd))
1036       return false;
1037 
1038     this->emitLabel(LabelFalse);
1039     this->emitConstBool(false, E);
1040     this->fallthrough(LabelEnd);
1041     this->emitLabel(LabelEnd);
1042   }
1043 
1044   if (DiscardResult)
1045     return this->emitPopBool(E);
1046 
1047   // For C, cast back to integer type.
1048   assert(T);
1049   if (T != PT_Bool)
1050     return this->emitCast(PT_Bool, *T, E);
1051   return true;
1052 }
1053 
1054 template <class Emitter>
1055 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
1056   // Prepare storage for result.
1057   if (!Initializing) {
1058     unsigned LocalIndex = allocateTemporary(E);
1059     if (!this->emitGetPtrLocal(LocalIndex, E))
1060       return false;
1061   }
1062 
1063   // Both LHS and RHS might _not_ be of complex type, but one of them
1064   // needs to be.
1065   const Expr *LHS = E->getLHS();
1066   const Expr *RHS = E->getRHS();
1067 
1068   PrimType ResultElemT = this->classifyComplexElementType(E->getType());
1069   unsigned ResultOffset = ~0u;
1070   if (!DiscardResult)
1071     ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
1072 
1073   // Save result pointer in ResultOffset
1074   if (!this->DiscardResult) {
1075     if (!this->emitDupPtr(E))
1076       return false;
1077     if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
1078       return false;
1079   }
1080   QualType LHSType = LHS->getType();
1081   if (const auto *AT = LHSType->getAs<AtomicType>())
1082     LHSType = AT->getValueType();
1083   QualType RHSType = RHS->getType();
1084   if (const auto *AT = RHSType->getAs<AtomicType>())
1085     RHSType = AT->getValueType();
1086 
1087   bool LHSIsComplex = LHSType->isAnyComplexType();
1088   unsigned LHSOffset;
1089   bool RHSIsComplex = RHSType->isAnyComplexType();
1090 
1091   // For ComplexComplex Mul, we have special ops to make their implementation
1092   // easier.
1093   BinaryOperatorKind Op = E->getOpcode();
1094   if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
1095     assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
1096            classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
1097     PrimType ElemT =
1098         classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
1099     if (!this->visit(LHS))
1100       return false;
1101     if (!this->visit(RHS))
1102       return false;
1103     return this->emitMulc(ElemT, E);
1104   }
1105 
1106   if (Op == BO_Div && RHSIsComplex) {
1107     QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
1108     PrimType ElemT = classifyPrim(ElemQT);
1109     // If the LHS is not complex, we still need to do the full complex
1110     // division, so just stub create a complex value and stub it out with
1111     // the LHS and a zero.
1112 
1113     if (!LHSIsComplex) {
1114       // This is using the RHS type for the fake-complex LHS.
1115       LHSOffset = allocateTemporary(RHS);
1116 
1117       if (!this->emitGetPtrLocal(LHSOffset, E))
1118         return false;
1119 
1120       if (!this->visit(LHS))
1121         return false;
1122       // real is LHS
1123       if (!this->emitInitElem(ElemT, 0, E))
1124         return false;
1125       // imag is zero
1126       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1127         return false;
1128       if (!this->emitInitElem(ElemT, 1, E))
1129         return false;
1130     } else {
1131       if (!this->visit(LHS))
1132         return false;
1133     }
1134 
1135     if (!this->visit(RHS))
1136       return false;
1137     return this->emitDivc(ElemT, E);
1138   }
1139 
1140   // Evaluate LHS and save value to LHSOffset.
1141   if (LHSType->isAnyComplexType()) {
1142     LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1143     if (!this->visit(LHS))
1144       return false;
1145     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1146       return false;
1147   } else {
1148     PrimType LHST = classifyPrim(LHSType);
1149     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
1150     if (!this->visit(LHS))
1151       return false;
1152     if (!this->emitSetLocal(LHST, LHSOffset, E))
1153       return false;
1154   }
1155 
1156   // Same with RHS.
1157   unsigned RHSOffset;
1158   if (RHSType->isAnyComplexType()) {
1159     RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1160     if (!this->visit(RHS))
1161       return false;
1162     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1163       return false;
1164   } else {
1165     PrimType RHST = classifyPrim(RHSType);
1166     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
1167     if (!this->visit(RHS))
1168       return false;
1169     if (!this->emitSetLocal(RHST, RHSOffset, E))
1170       return false;
1171   }
1172 
1173   // For both LHS and RHS, either load the value from the complex pointer, or
1174   // directly from the local variable. For index 1 (i.e. the imaginary part),
1175   // just load 0 and do the operation anyway.
1176   auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
1177                                  unsigned ElemIndex, unsigned Offset,
1178                                  const Expr *E) -> bool {
1179     if (IsComplex) {
1180       if (!this->emitGetLocal(PT_Ptr, Offset, E))
1181         return false;
1182       return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
1183                                     ElemIndex, E);
1184     }
1185     if (ElemIndex == 0 || !LoadZero)
1186       return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
1187     return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
1188                                       E);
1189   };
1190 
1191   // Now we can get pointers to the LHS and RHS from the offsets above.
1192   for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
1193     // Result pointer for the store later.
1194     if (!this->DiscardResult) {
1195       if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
1196         return false;
1197     }
1198 
1199     // The actual operation.
1200     switch (Op) {
1201     case BO_Add:
1202       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1203         return false;
1204 
1205       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1206         return false;
1207       if (ResultElemT == PT_Float) {
1208         if (!this->emitAddf(getFPOptions(E), E))
1209           return false;
1210       } else {
1211         if (!this->emitAdd(ResultElemT, E))
1212           return false;
1213       }
1214       break;
1215     case BO_Sub:
1216       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1217         return false;
1218 
1219       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1220         return false;
1221       if (ResultElemT == PT_Float) {
1222         if (!this->emitSubf(getFPOptions(E), E))
1223           return false;
1224       } else {
1225         if (!this->emitSub(ResultElemT, E))
1226           return false;
1227       }
1228       break;
1229     case BO_Mul:
1230       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1231         return false;
1232 
1233       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1234         return false;
1235 
1236       if (ResultElemT == PT_Float) {
1237         if (!this->emitMulf(getFPOptions(E), E))
1238           return false;
1239       } else {
1240         if (!this->emitMul(ResultElemT, E))
1241           return false;
1242       }
1243       break;
1244     case BO_Div:
1245       assert(!RHSIsComplex);
1246       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1247         return false;
1248 
1249       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1250         return false;
1251 
1252       if (ResultElemT == PT_Float) {
1253         if (!this->emitDivf(getFPOptions(E), E))
1254           return false;
1255       } else {
1256         if (!this->emitDiv(ResultElemT, E))
1257           return false;
1258       }
1259       break;
1260 
1261     default:
1262       return false;
1263     }
1264 
1265     if (!this->DiscardResult) {
1266       // Initialize array element with the value we just computed.
1267       if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
1268         return false;
1269     } else {
1270       if (!this->emitPop(ResultElemT, E))
1271         return false;
1272     }
1273   }
1274   return true;
1275 }
1276 
1277 template <class Emitter>
1278 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) {
1279   assert(!E->isCommaOp() &&
1280          "Comma op should be handled in VisitBinaryOperator");
1281   assert(E->getType()->isVectorType());
1282   assert(E->getLHS()->getType()->isVectorType());
1283   assert(E->getRHS()->getType()->isVectorType());
1284 
1285   // Prepare storage for result.
1286   if (!Initializing && !E->isCompoundAssignmentOp()) {
1287     unsigned LocalIndex = allocateTemporary(E);
1288     if (!this->emitGetPtrLocal(LocalIndex, E))
1289       return false;
1290   }
1291 
1292   const Expr *LHS = E->getLHS();
1293   const Expr *RHS = E->getRHS();
1294   const auto *VecTy = E->getType()->getAs<VectorType>();
1295   auto Op = E->isCompoundAssignmentOp()
1296                 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode())
1297                 : E->getOpcode();
1298 
1299   PrimType ElemT = this->classifyVectorElementType(LHS->getType());
1300   PrimType RHSElemT = this->classifyVectorElementType(RHS->getType());
1301   PrimType ResultElemT = this->classifyVectorElementType(E->getType());
1302 
1303   // Evaluate LHS and save value to LHSOffset.
1304   unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1305   if (!this->visit(LHS))
1306     return false;
1307   if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1308     return false;
1309 
1310   // Evaluate RHS and save value to RHSOffset.
1311   unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1312   if (!this->visit(RHS))
1313     return false;
1314   if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1315     return false;
1316 
1317   if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E))
1318     return false;
1319 
1320   // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the
1321   // integer promotion.
1322   bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp());
1323   QualType PromotTy =
1324       Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy);
1325   PrimType PromotT = classifyPrim(PromotTy);
1326   PrimType OpT = NeedIntPromot ? PromotT : ElemT;
1327 
1328   auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) {
1329     if (!this->emitGetLocal(PT_Ptr, Offset, E))
1330       return false;
1331     if (!this->emitArrayElemPop(ElemT, Index, E))
1332       return false;
1333     if (E->isLogicalOp()) {
1334       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
1335         return false;
1336       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1337         return false;
1338     } else if (NeedIntPromot) {
1339       if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E))
1340         return false;
1341     }
1342     return true;
1343   };
1344 
1345 #define EMIT_ARITH_OP(OP)                                                      \
1346   {                                                                            \
1347     if (ElemT == PT_Float) {                                                   \
1348       if (!this->emit##OP##f(getFPOptions(E), E))                              \
1349         return false;                                                          \
1350     } else {                                                                   \
1351       if (!this->emit##OP(ElemT, E))                                           \
1352         return false;                                                          \
1353     }                                                                          \
1354     break;                                                                     \
1355   }
1356 
1357   for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
1358     if (!getElem(LHSOffset, ElemT, I))
1359       return false;
1360     if (!getElem(RHSOffset, RHSElemT, I))
1361       return false;
1362     switch (Op) {
1363     case BO_Add:
1364       EMIT_ARITH_OP(Add)
1365     case BO_Sub:
1366       EMIT_ARITH_OP(Sub)
1367     case BO_Mul:
1368       EMIT_ARITH_OP(Mul)
1369     case BO_Div:
1370       EMIT_ARITH_OP(Div)
1371     case BO_Rem:
1372       if (!this->emitRem(ElemT, E))
1373         return false;
1374       break;
1375     case BO_And:
1376       if (!this->emitBitAnd(OpT, E))
1377         return false;
1378       break;
1379     case BO_Or:
1380       if (!this->emitBitOr(OpT, E))
1381         return false;
1382       break;
1383     case BO_Xor:
1384       if (!this->emitBitXor(OpT, E))
1385         return false;
1386       break;
1387     case BO_Shl:
1388       if (!this->emitShl(OpT, RHSElemT, E))
1389         return false;
1390       break;
1391     case BO_Shr:
1392       if (!this->emitShr(OpT, RHSElemT, E))
1393         return false;
1394       break;
1395     case BO_EQ:
1396       if (!this->emitEQ(ElemT, E))
1397         return false;
1398       break;
1399     case BO_NE:
1400       if (!this->emitNE(ElemT, E))
1401         return false;
1402       break;
1403     case BO_LE:
1404       if (!this->emitLE(ElemT, E))
1405         return false;
1406       break;
1407     case BO_LT:
1408       if (!this->emitLT(ElemT, E))
1409         return false;
1410       break;
1411     case BO_GE:
1412       if (!this->emitGE(ElemT, E))
1413         return false;
1414       break;
1415     case BO_GT:
1416       if (!this->emitGT(ElemT, E))
1417         return false;
1418       break;
1419     case BO_LAnd:
1420       // a && b is equivalent to a!=0 & b!=0
1421       if (!this->emitBitAnd(ResultElemT, E))
1422         return false;
1423       break;
1424     case BO_LOr:
1425       // a || b is equivalent to a!=0 | b!=0
1426       if (!this->emitBitOr(ResultElemT, E))
1427         return false;
1428       break;
1429     default:
1430       return this->emitInvalid(E);
1431     }
1432 
1433     // The result of the comparison is a vector of the same width and number
1434     // of elements as the comparison operands with a signed integral element
1435     // type.
1436     //
1437     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
1438     if (E->isComparisonOp()) {
1439       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1440         return false;
1441       if (!this->emitNeg(ResultElemT, E))
1442         return false;
1443     }
1444 
1445     // If we performed an integer promotion, we need to cast the compute result
1446     // into result vector element type.
1447     if (NeedIntPromot &&
1448         !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E))
1449       return false;
1450 
1451     // Initialize array element with the value we just computed.
1452     if (!this->emitInitElem(ResultElemT, I, E))
1453       return false;
1454   }
1455 
1456   if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E))
1457     return false;
1458   return true;
1459 }
1460 
1461 template <class Emitter>
1462 bool Compiler<Emitter>::VisitImplicitValueInitExpr(
1463     const ImplicitValueInitExpr *E) {
1464   QualType QT = E->getType();
1465 
1466   if (std::optional<PrimType> T = classify(QT))
1467     return this->visitZeroInitializer(*T, QT, E);
1468 
1469   if (QT->isRecordType()) {
1470     const RecordDecl *RD = QT->getAsRecordDecl();
1471     assert(RD);
1472     if (RD->isInvalidDecl())
1473       return false;
1474 
1475     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1476         CXXRD && CXXRD->getNumVBases() > 0) {
1477       // TODO: Diagnose.
1478       return false;
1479     }
1480 
1481     const Record *R = getRecord(QT);
1482     if (!R)
1483       return false;
1484 
1485     assert(Initializing);
1486     return this->visitZeroRecordInitializer(R, E);
1487   }
1488 
1489   if (QT->isIncompleteArrayType())
1490     return true;
1491 
1492   if (QT->isArrayType()) {
1493     const ArrayType *AT = QT->getAsArrayTypeUnsafe();
1494     assert(AT);
1495     const auto *CAT = cast<ConstantArrayType>(AT);
1496     size_t NumElems = CAT->getZExtSize();
1497     PrimType ElemT = classifyPrim(CAT->getElementType());
1498 
1499     for (size_t I = 0; I != NumElems; ++I) {
1500       if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E))
1501         return false;
1502       if (!this->emitInitElem(ElemT, I, E))
1503         return false;
1504     }
1505 
1506     return true;
1507   }
1508 
1509   if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
1510     assert(Initializing);
1511     QualType ElemQT = ComplexTy->getElementType();
1512     PrimType ElemT = classifyPrim(ElemQT);
1513     for (unsigned I = 0; I < 2; ++I) {
1514       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1515         return false;
1516       if (!this->emitInitElem(ElemT, I, E))
1517         return false;
1518     }
1519     return true;
1520   }
1521 
1522   if (const auto *VecT = E->getType()->getAs<VectorType>()) {
1523     unsigned NumVecElements = VecT->getNumElements();
1524     QualType ElemQT = VecT->getElementType();
1525     PrimType ElemT = classifyPrim(ElemQT);
1526 
1527     for (unsigned I = 0; I < NumVecElements; ++I) {
1528       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1529         return false;
1530       if (!this->emitInitElem(ElemT, I, E))
1531         return false;
1532     }
1533     return true;
1534   }
1535 
1536   return false;
1537 }
1538 
1539 template <class Emitter>
1540 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1541   const Expr *LHS = E->getLHS();
1542   const Expr *RHS = E->getRHS();
1543   const Expr *Index = E->getIdx();
1544 
1545   if (DiscardResult)
1546     return this->discard(LHS) && this->discard(RHS);
1547 
1548   // C++17's rules require us to evaluate the LHS first, regardless of which
1549   // side is the base.
1550   bool Success = true;
1551   for (const Expr *SubExpr : {LHS, RHS}) {
1552     if (!this->visit(SubExpr))
1553       Success = false;
1554   }
1555 
1556   if (!Success)
1557     return false;
1558 
1559   PrimType IndexT = classifyPrim(Index->getType());
1560   // If the index is first, we need to change that.
1561   if (LHS == Index) {
1562     if (!this->emitFlip(PT_Ptr, IndexT, E))
1563       return false;
1564   }
1565 
1566   return this->emitArrayElemPtrPop(IndexT, E);
1567 }
1568 
1569 template <class Emitter>
1570 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
1571                                       const Expr *ArrayFiller, const Expr *E) {
1572   QualType QT = E->getType();
1573   if (const auto *AT = QT->getAs<AtomicType>())
1574     QT = AT->getValueType();
1575 
1576   if (QT->isVoidType()) {
1577     if (Inits.size() == 0)
1578       return true;
1579     return this->emitInvalid(E);
1580   }
1581 
1582   // Handle discarding first.
1583   if (DiscardResult) {
1584     for (const Expr *Init : Inits) {
1585       if (!this->discard(Init))
1586         return false;
1587     }
1588     return true;
1589   }
1590 
1591   // Primitive values.
1592   if (std::optional<PrimType> T = classify(QT)) {
1593     assert(!DiscardResult);
1594     if (Inits.size() == 0)
1595       return this->visitZeroInitializer(*T, QT, E);
1596     assert(Inits.size() == 1);
1597     return this->delegate(Inits[0]);
1598   }
1599 
1600   if (QT->isRecordType()) {
1601     const Record *R = getRecord(QT);
1602 
1603     if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
1604       return this->delegate(Inits[0]);
1605 
1606     auto initPrimitiveField = [=](const Record::Field *FieldToInit,
1607                                   const Expr *Init, PrimType T) -> bool {
1608       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1609       if (!this->visit(Init))
1610         return false;
1611 
1612       if (FieldToInit->isBitField())
1613         return this->emitInitBitField(T, FieldToInit, E);
1614       return this->emitInitField(T, FieldToInit->Offset, E);
1615     };
1616 
1617     auto initCompositeField = [=](const Record::Field *FieldToInit,
1618                                   const Expr *Init) -> bool {
1619       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1620       InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
1621       // Non-primitive case. Get a pointer to the field-to-initialize
1622       // on the stack and recurse into visitInitializer().
1623       if (!this->emitGetPtrField(FieldToInit->Offset, Init))
1624         return false;
1625       if (!this->visitInitializer(Init))
1626         return false;
1627       return this->emitPopPtr(E);
1628     };
1629 
1630     if (R->isUnion()) {
1631       if (Inits.size() == 0) {
1632         if (!this->visitZeroRecordInitializer(R, E))
1633           return false;
1634       } else {
1635         const Expr *Init = Inits[0];
1636         const FieldDecl *FToInit = nullptr;
1637         if (const auto *ILE = dyn_cast<InitListExpr>(E))
1638           FToInit = ILE->getInitializedFieldInUnion();
1639         else
1640           FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
1641 
1642         const Record::Field *FieldToInit = R->getField(FToInit);
1643         if (std::optional<PrimType> T = classify(Init)) {
1644           if (!initPrimitiveField(FieldToInit, Init, *T))
1645             return false;
1646         } else {
1647           if (!initCompositeField(FieldToInit, Init))
1648             return false;
1649         }
1650       }
1651       return this->emitFinishInit(E);
1652     }
1653 
1654     assert(!R->isUnion());
1655     unsigned InitIndex = 0;
1656     for (const Expr *Init : Inits) {
1657       // Skip unnamed bitfields.
1658       while (InitIndex < R->getNumFields() &&
1659              R->getField(InitIndex)->Decl->isUnnamedBitField())
1660         ++InitIndex;
1661 
1662       if (std::optional<PrimType> T = classify(Init)) {
1663         const Record::Field *FieldToInit = R->getField(InitIndex);
1664         if (!initPrimitiveField(FieldToInit, Init, *T))
1665           return false;
1666         ++InitIndex;
1667       } else {
1668         // Initializer for a direct base class.
1669         if (const Record::Base *B = R->getBase(Init->getType())) {
1670           if (!this->emitGetPtrBase(B->Offset, Init))
1671             return false;
1672 
1673           if (!this->visitInitializer(Init))
1674             return false;
1675 
1676           if (!this->emitFinishInitPop(E))
1677             return false;
1678           // Base initializers don't increase InitIndex, since they don't count
1679           // into the Record's fields.
1680         } else {
1681           const Record::Field *FieldToInit = R->getField(InitIndex);
1682           if (!initCompositeField(FieldToInit, Init))
1683             return false;
1684           ++InitIndex;
1685         }
1686       }
1687     }
1688     return this->emitFinishInit(E);
1689   }
1690 
1691   if (QT->isArrayType()) {
1692     if (Inits.size() == 1 && QT == Inits[0]->getType())
1693       return this->delegate(Inits[0]);
1694 
1695     unsigned ElementIndex = 0;
1696     for (const Expr *Init : Inits) {
1697       if (const auto *EmbedS =
1698               dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1699         PrimType TargetT = classifyPrim(Init->getType());
1700 
1701         auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
1702           PrimType InitT = classifyPrim(Init->getType());
1703           if (!this->visit(Init))
1704             return false;
1705           if (InitT != TargetT) {
1706             if (!this->emitCast(InitT, TargetT, E))
1707               return false;
1708           }
1709           return this->emitInitElem(TargetT, ElemIndex, Init);
1710         };
1711         if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
1712           return false;
1713       } else {
1714         if (!this->visitArrayElemInit(ElementIndex, Init))
1715           return false;
1716         ++ElementIndex;
1717       }
1718     }
1719 
1720     // Expand the filler expression.
1721     // FIXME: This should go away.
1722     if (ArrayFiller) {
1723       const ConstantArrayType *CAT =
1724           Ctx.getASTContext().getAsConstantArrayType(QT);
1725       uint64_t NumElems = CAT->getZExtSize();
1726 
1727       for (; ElementIndex != NumElems; ++ElementIndex) {
1728         if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
1729           return false;
1730       }
1731     }
1732 
1733     return this->emitFinishInit(E);
1734   }
1735 
1736   if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
1737     unsigned NumInits = Inits.size();
1738 
1739     if (NumInits == 1)
1740       return this->delegate(Inits[0]);
1741 
1742     QualType ElemQT = ComplexTy->getElementType();
1743     PrimType ElemT = classifyPrim(ElemQT);
1744     if (NumInits == 0) {
1745       // Zero-initialize both elements.
1746       for (unsigned I = 0; I < 2; ++I) {
1747         if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1748           return false;
1749         if (!this->emitInitElem(ElemT, I, E))
1750           return false;
1751       }
1752     } else if (NumInits == 2) {
1753       unsigned InitIndex = 0;
1754       for (const Expr *Init : Inits) {
1755         if (!this->visit(Init))
1756           return false;
1757 
1758         if (!this->emitInitElem(ElemT, InitIndex, E))
1759           return false;
1760         ++InitIndex;
1761       }
1762     }
1763     return true;
1764   }
1765 
1766   if (const auto *VecT = QT->getAs<VectorType>()) {
1767     unsigned NumVecElements = VecT->getNumElements();
1768     assert(NumVecElements >= Inits.size());
1769 
1770     QualType ElemQT = VecT->getElementType();
1771     PrimType ElemT = classifyPrim(ElemQT);
1772 
1773     // All initializer elements.
1774     unsigned InitIndex = 0;
1775     for (const Expr *Init : Inits) {
1776       if (!this->visit(Init))
1777         return false;
1778 
1779       // If the initializer is of vector type itself, we have to deconstruct
1780       // that and initialize all the target fields from the initializer fields.
1781       if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
1782         if (!this->emitCopyArray(ElemT, 0, InitIndex,
1783                                  InitVecT->getNumElements(), E))
1784           return false;
1785         InitIndex += InitVecT->getNumElements();
1786       } else {
1787         if (!this->emitInitElem(ElemT, InitIndex, E))
1788           return false;
1789         ++InitIndex;
1790       }
1791     }
1792 
1793     assert(InitIndex <= NumVecElements);
1794 
1795     // Fill the rest with zeroes.
1796     for (; InitIndex != NumVecElements; ++InitIndex) {
1797       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1798         return false;
1799       if (!this->emitInitElem(ElemT, InitIndex, E))
1800         return false;
1801     }
1802     return true;
1803   }
1804 
1805   return false;
1806 }
1807 
1808 /// Pointer to the array(not the element!) must be on the stack when calling
1809 /// this.
1810 template <class Emitter>
1811 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
1812                                            const Expr *Init) {
1813   if (std::optional<PrimType> T = classify(Init->getType())) {
1814     // Visit the primitive element like normal.
1815     if (!this->visit(Init))
1816       return false;
1817     return this->emitInitElem(*T, ElemIndex, Init);
1818   }
1819 
1820   InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
1821   // Advance the pointer currently on the stack to the given
1822   // dimension.
1823   if (!this->emitConstUint32(ElemIndex, Init))
1824     return false;
1825   if (!this->emitArrayElemPtrUint32(Init))
1826     return false;
1827   if (!this->visitInitializer(Init))
1828     return false;
1829   return this->emitFinishInitPop(Init);
1830 }
1831 
1832 template <class Emitter>
1833 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
1834   return this->visitInitList(E->inits(), E->getArrayFiller(), E);
1835 }
1836 
1837 template <class Emitter>
1838 bool Compiler<Emitter>::VisitCXXParenListInitExpr(
1839     const CXXParenListInitExpr *E) {
1840   return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
1841 }
1842 
1843 template <class Emitter>
1844 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
1845     const SubstNonTypeTemplateParmExpr *E) {
1846   return this->delegate(E->getReplacement());
1847 }
1848 
1849 template <class Emitter>
1850 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
1851   std::optional<PrimType> T = classify(E->getType());
1852   if (T && E->hasAPValueResult()) {
1853     // Try to emit the APValue directly, without visiting the subexpr.
1854     // This will only fail if we can't emit the APValue, so won't emit any
1855     // diagnostics or any double values.
1856     if (DiscardResult)
1857       return true;
1858 
1859     if (this->visitAPValue(E->getAPValueResult(), *T, E))
1860       return true;
1861   }
1862   return this->delegate(E->getSubExpr());
1863 }
1864 
1865 template <class Emitter>
1866 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
1867   auto It = E->begin();
1868   return this->visit(*It);
1869 }
1870 
1871 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
1872                              UnaryExprOrTypeTrait Kind) {
1873   bool AlignOfReturnsPreferred =
1874       ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
1875 
1876   // C++ [expr.alignof]p3:
1877   //     When alignof is applied to a reference type, the result is the
1878   //     alignment of the referenced type.
1879   if (const auto *Ref = T->getAs<ReferenceType>())
1880     T = Ref->getPointeeType();
1881 
1882   if (T.getQualifiers().hasUnaligned())
1883     return CharUnits::One();
1884 
1885   // __alignof is defined to return the preferred alignment.
1886   // Before 8, clang returned the preferred alignment for alignof and
1887   // _Alignof as well.
1888   if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
1889     return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
1890 
1891   return ASTCtx.getTypeAlignInChars(T);
1892 }
1893 
1894 template <class Emitter>
1895 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
1896     const UnaryExprOrTypeTraitExpr *E) {
1897   UnaryExprOrTypeTrait Kind = E->getKind();
1898   const ASTContext &ASTCtx = Ctx.getASTContext();
1899 
1900   if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
1901     QualType ArgType = E->getTypeOfArgument();
1902 
1903     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1904     //   the result is the size of the referenced type."
1905     if (const auto *Ref = ArgType->getAs<ReferenceType>())
1906       ArgType = Ref->getPointeeType();
1907 
1908     CharUnits Size;
1909     if (ArgType->isVoidType() || ArgType->isFunctionType())
1910       Size = CharUnits::One();
1911     else {
1912       if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
1913         return false;
1914 
1915       if (Kind == UETT_SizeOf)
1916         Size = ASTCtx.getTypeSizeInChars(ArgType);
1917       else
1918         Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
1919     }
1920 
1921     if (DiscardResult)
1922       return true;
1923 
1924     return this->emitConst(Size.getQuantity(), E);
1925   }
1926 
1927   if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
1928     CharUnits Size;
1929 
1930     if (E->isArgumentType()) {
1931       QualType ArgType = E->getTypeOfArgument();
1932 
1933       Size = AlignOfType(ArgType, ASTCtx, Kind);
1934     } else {
1935       // Argument is an expression, not a type.
1936       const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
1937 
1938       // The kinds of expressions that we have special-case logic here for
1939       // should be kept up to date with the special checks for those
1940       // expressions in Sema.
1941 
1942       // alignof decl is always accepted, even if it doesn't make sense: we
1943       // default to 1 in those cases.
1944       if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
1945         Size = ASTCtx.getDeclAlign(DRE->getDecl(),
1946                                    /*RefAsPointee*/ true);
1947       else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
1948         Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
1949                                    /*RefAsPointee*/ true);
1950       else
1951         Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
1952     }
1953 
1954     if (DiscardResult)
1955       return true;
1956 
1957     return this->emitConst(Size.getQuantity(), E);
1958   }
1959 
1960   if (Kind == UETT_VectorElements) {
1961     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
1962       return this->emitConst(VT->getNumElements(), E);
1963     assert(E->getTypeOfArgument()->isSizelessVectorType());
1964     return this->emitSizelessVectorElementSize(E);
1965   }
1966 
1967   if (Kind == UETT_VecStep) {
1968     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
1969       unsigned N = VT->getNumElements();
1970 
1971       // The vec_step built-in functions that take a 3-component
1972       // vector return 4. (OpenCL 1.1 spec 6.11.12)
1973       if (N == 3)
1974         N = 4;
1975 
1976       return this->emitConst(N, E);
1977     }
1978     return this->emitConst(1, E);
1979   }
1980 
1981   return false;
1982 }
1983 
1984 template <class Emitter>
1985 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
1986   // 'Base.Member'
1987   const Expr *Base = E->getBase();
1988   const ValueDecl *Member = E->getMemberDecl();
1989 
1990   if (DiscardResult)
1991     return this->discard(Base);
1992 
1993   // MemberExprs are almost always lvalues, in which case we don't need to
1994   // do the load. But sometimes they aren't.
1995   const auto maybeLoadValue = [&]() -> bool {
1996     if (E->isGLValue())
1997       return true;
1998     if (std::optional<PrimType> T = classify(E))
1999       return this->emitLoadPop(*T, E);
2000     return false;
2001   };
2002 
2003   if (const auto *VD = dyn_cast<VarDecl>(Member)) {
2004     // I am almost confident in saying that a var decl must be static
2005     // and therefore registered as a global variable. But this will probably
2006     // turn out to be wrong some time in the future, as always.
2007     if (auto GlobalIndex = P.getGlobal(VD))
2008       return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
2009     return false;
2010   }
2011 
2012   if (!isa<FieldDecl>(Member)) {
2013     if (!this->discard(Base) && !this->emitSideEffect(E))
2014       return false;
2015 
2016     return this->visitDeclRef(Member, E);
2017   }
2018 
2019   if (Initializing) {
2020     if (!this->delegate(Base))
2021       return false;
2022   } else {
2023     if (!this->visit(Base))
2024       return false;
2025   }
2026 
2027   // Base above gives us a pointer on the stack.
2028   const auto *FD = cast<FieldDecl>(Member);
2029   const RecordDecl *RD = FD->getParent();
2030   const Record *R = getRecord(RD);
2031   if (!R)
2032     return false;
2033   const Record::Field *F = R->getField(FD);
2034   // Leave a pointer to the field on the stack.
2035   if (F->Decl->getType()->isReferenceType())
2036     return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
2037   return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
2038 }
2039 
2040 template <class Emitter>
2041 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
2042   // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
2043   // stand-alone, e.g. via EvaluateAsInt().
2044   if (!ArrayIndex)
2045     return false;
2046   return this->emitConst(*ArrayIndex, E);
2047 }
2048 
2049 template <class Emitter>
2050 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
2051   assert(Initializing);
2052   assert(!DiscardResult);
2053 
2054   // We visit the common opaque expression here once so we have its value
2055   // cached.
2056   if (!this->discard(E->getCommonExpr()))
2057     return false;
2058 
2059   // TODO: This compiles to quite a lot of bytecode if the array is larger.
2060   //   Investigate compiling this to a loop.
2061   const Expr *SubExpr = E->getSubExpr();
2062   size_t Size = E->getArraySize().getZExtValue();
2063 
2064   // So, every iteration, we execute an assignment here
2065   // where the LHS is on the stack (the target array)
2066   // and the RHS is our SubExpr.
2067   for (size_t I = 0; I != Size; ++I) {
2068     ArrayIndexScope<Emitter> IndexScope(this, I);
2069     BlockScope<Emitter> BS(this);
2070 
2071     if (!this->visitArrayElemInit(I, SubExpr))
2072       return false;
2073     if (!BS.destroyLocals())
2074       return false;
2075   }
2076   return true;
2077 }
2078 
2079 template <class Emitter>
2080 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2081   const Expr *SourceExpr = E->getSourceExpr();
2082   if (!SourceExpr)
2083     return false;
2084 
2085   if (Initializing)
2086     return this->visitInitializer(SourceExpr);
2087 
2088   PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
2089   if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
2090     return this->emitGetLocal(SubExprT, It->second, E);
2091 
2092   if (!this->visit(SourceExpr))
2093     return false;
2094 
2095   // At this point we either have the evaluated source expression or a pointer
2096   // to an object on the stack. We want to create a local variable that stores
2097   // this value.
2098   unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
2099   if (!this->emitSetLocal(SubExprT, LocalIndex, E))
2100     return false;
2101 
2102   // Here the local variable is created but the value is removed from the stack,
2103   // so we put it back if the caller needs it.
2104   if (!DiscardResult) {
2105     if (!this->emitGetLocal(SubExprT, LocalIndex, E))
2106       return false;
2107   }
2108 
2109   // This is cleaned up when the local variable is destroyed.
2110   OpaqueExprs.insert({E, LocalIndex});
2111 
2112   return true;
2113 }
2114 
2115 template <class Emitter>
2116 bool Compiler<Emitter>::VisitAbstractConditionalOperator(
2117     const AbstractConditionalOperator *E) {
2118   const Expr *Condition = E->getCond();
2119   const Expr *TrueExpr = E->getTrueExpr();
2120   const Expr *FalseExpr = E->getFalseExpr();
2121 
2122   LabelTy LabelEnd = this->getLabel();   // Label after the operator.
2123   LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
2124 
2125   if (!this->visitBool(Condition))
2126     return false;
2127 
2128   if (!this->jumpFalse(LabelFalse))
2129     return false;
2130 
2131   {
2132     LocalScope<Emitter> S(this);
2133     if (!this->delegate(TrueExpr))
2134       return false;
2135     if (!S.destroyLocals())
2136       return false;
2137   }
2138 
2139   if (!this->jump(LabelEnd))
2140     return false;
2141 
2142   this->emitLabel(LabelFalse);
2143 
2144   {
2145     LocalScope<Emitter> S(this);
2146     if (!this->delegate(FalseExpr))
2147       return false;
2148     if (!S.destroyLocals())
2149       return false;
2150   }
2151 
2152   this->fallthrough(LabelEnd);
2153   this->emitLabel(LabelEnd);
2154 
2155   return true;
2156 }
2157 
2158 template <class Emitter>
2159 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
2160   if (DiscardResult)
2161     return true;
2162 
2163   if (!Initializing) {
2164     unsigned StringIndex = P.createGlobalString(E);
2165     return this->emitGetPtrGlobal(StringIndex, E);
2166   }
2167 
2168   // We are initializing an array on the stack.
2169   const ConstantArrayType *CAT =
2170       Ctx.getASTContext().getAsConstantArrayType(E->getType());
2171   assert(CAT && "a string literal that's not a constant array?");
2172 
2173   // If the initializer string is too long, a diagnostic has already been
2174   // emitted. Read only the array length from the string literal.
2175   unsigned ArraySize = CAT->getZExtSize();
2176   unsigned N = std::min(ArraySize, E->getLength());
2177   size_t CharWidth = E->getCharByteWidth();
2178 
2179   for (unsigned I = 0; I != N; ++I) {
2180     uint32_t CodeUnit = E->getCodeUnit(I);
2181 
2182     if (CharWidth == 1) {
2183       this->emitConstSint8(CodeUnit, E);
2184       this->emitInitElemSint8(I, E);
2185     } else if (CharWidth == 2) {
2186       this->emitConstUint16(CodeUnit, E);
2187       this->emitInitElemUint16(I, E);
2188     } else if (CharWidth == 4) {
2189       this->emitConstUint32(CodeUnit, E);
2190       this->emitInitElemUint32(I, E);
2191     } else {
2192       llvm_unreachable("unsupported character width");
2193     }
2194   }
2195 
2196   // Fill up the rest of the char array with NUL bytes.
2197   for (unsigned I = N; I != ArraySize; ++I) {
2198     if (CharWidth == 1) {
2199       this->emitConstSint8(0, E);
2200       this->emitInitElemSint8(I, E);
2201     } else if (CharWidth == 2) {
2202       this->emitConstUint16(0, E);
2203       this->emitInitElemUint16(I, E);
2204     } else if (CharWidth == 4) {
2205       this->emitConstUint32(0, E);
2206       this->emitInitElemUint32(I, E);
2207     } else {
2208       llvm_unreachable("unsupported character width");
2209     }
2210   }
2211 
2212   return true;
2213 }
2214 
2215 template <class Emitter>
2216 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2217   if (std::optional<unsigned> I = P.getOrCreateDummy(E))
2218     return this->emitGetPtrGlobal(*I, E);
2219   return false;
2220 }
2221 
2222 template <class Emitter>
2223 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2224   auto &A = Ctx.getASTContext();
2225   std::string Str;
2226   A.getObjCEncodingForType(E->getEncodedType(), Str);
2227   StringLiteral *SL =
2228       StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
2229                             /*Pascal=*/false, E->getType(), E->getAtLoc());
2230   return this->delegate(SL);
2231 }
2232 
2233 template <class Emitter>
2234 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
2235     const SYCLUniqueStableNameExpr *E) {
2236   if (DiscardResult)
2237     return true;
2238 
2239   assert(!Initializing);
2240 
2241   auto &A = Ctx.getASTContext();
2242   std::string ResultStr = E->ComputeName(A);
2243 
2244   QualType CharTy = A.CharTy.withConst();
2245   APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
2246   QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
2247                                             ArraySizeModifier::Normal, 0);
2248 
2249   StringLiteral *SL =
2250       StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
2251                             /*Pascal=*/false, ArrayTy, E->getLocation());
2252 
2253   unsigned StringIndex = P.createGlobalString(SL);
2254   return this->emitGetPtrGlobal(StringIndex, E);
2255 }
2256 
2257 template <class Emitter>
2258 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
2259   if (DiscardResult)
2260     return true;
2261   return this->emitConst(E->getValue(), E);
2262 }
2263 
2264 template <class Emitter>
2265 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
2266     const CompoundAssignOperator *E) {
2267 
2268   const Expr *LHS = E->getLHS();
2269   const Expr *RHS = E->getRHS();
2270   QualType LHSType = LHS->getType();
2271   QualType LHSComputationType = E->getComputationLHSType();
2272   QualType ResultType = E->getComputationResultType();
2273   std::optional<PrimType> LT = classify(LHSComputationType);
2274   std::optional<PrimType> RT = classify(ResultType);
2275 
2276   assert(ResultType->isFloatingType());
2277 
2278   if (!LT || !RT)
2279     return false;
2280 
2281   PrimType LHST = classifyPrim(LHSType);
2282 
2283   // C++17 onwards require that we evaluate the RHS first.
2284   // Compute RHS and save it in a temporary variable so we can
2285   // load it again later.
2286   if (!visit(RHS))
2287     return false;
2288 
2289   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2290   if (!this->emitSetLocal(*RT, TempOffset, E))
2291     return false;
2292 
2293   // First, visit LHS.
2294   if (!visit(LHS))
2295     return false;
2296   if (!this->emitLoad(LHST, E))
2297     return false;
2298 
2299   // If necessary, convert LHS to its computation type.
2300   if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
2301                           LHSComputationType, E))
2302     return false;
2303 
2304   // Now load RHS.
2305   if (!this->emitGetLocal(*RT, TempOffset, E))
2306     return false;
2307 
2308   switch (E->getOpcode()) {
2309   case BO_AddAssign:
2310     if (!this->emitAddf(getFPOptions(E), E))
2311       return false;
2312     break;
2313   case BO_SubAssign:
2314     if (!this->emitSubf(getFPOptions(E), E))
2315       return false;
2316     break;
2317   case BO_MulAssign:
2318     if (!this->emitMulf(getFPOptions(E), E))
2319       return false;
2320     break;
2321   case BO_DivAssign:
2322     if (!this->emitDivf(getFPOptions(E), E))
2323       return false;
2324     break;
2325   default:
2326     return false;
2327   }
2328 
2329   if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
2330     return false;
2331 
2332   if (DiscardResult)
2333     return this->emitStorePop(LHST, E);
2334   return this->emitStore(LHST, E);
2335 }
2336 
2337 template <class Emitter>
2338 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
2339     const CompoundAssignOperator *E) {
2340   BinaryOperatorKind Op = E->getOpcode();
2341   const Expr *LHS = E->getLHS();
2342   const Expr *RHS = E->getRHS();
2343   std::optional<PrimType> LT = classify(LHS->getType());
2344   std::optional<PrimType> RT = classify(RHS->getType());
2345 
2346   if (Op != BO_AddAssign && Op != BO_SubAssign)
2347     return false;
2348 
2349   if (!LT || !RT)
2350     return false;
2351 
2352   if (!visit(LHS))
2353     return false;
2354 
2355   if (!this->emitLoad(*LT, LHS))
2356     return false;
2357 
2358   if (!visit(RHS))
2359     return false;
2360 
2361   if (Op == BO_AddAssign) {
2362     if (!this->emitAddOffset(*RT, E))
2363       return false;
2364   } else {
2365     if (!this->emitSubOffset(*RT, E))
2366       return false;
2367   }
2368 
2369   if (DiscardResult)
2370     return this->emitStorePopPtr(E);
2371   return this->emitStorePtr(E);
2372 }
2373 
2374 template <class Emitter>
2375 bool Compiler<Emitter>::VisitCompoundAssignOperator(
2376     const CompoundAssignOperator *E) {
2377   if (E->getType()->isVectorType())
2378     return VisitVectorBinOp(E);
2379 
2380   const Expr *LHS = E->getLHS();
2381   const Expr *RHS = E->getRHS();
2382   std::optional<PrimType> LHSComputationT =
2383       classify(E->getComputationLHSType());
2384   std::optional<PrimType> LT = classify(LHS->getType());
2385   std::optional<PrimType> RT = classify(RHS->getType());
2386   std::optional<PrimType> ResultT = classify(E->getType());
2387 
2388   if (!Ctx.getLangOpts().CPlusPlus14)
2389     return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
2390 
2391   if (!LT || !RT || !ResultT || !LHSComputationT)
2392     return false;
2393 
2394   // Handle floating point operations separately here, since they
2395   // require special care.
2396 
2397   if (ResultT == PT_Float || RT == PT_Float)
2398     return VisitFloatCompoundAssignOperator(E);
2399 
2400   if (E->getType()->isPointerType())
2401     return VisitPointerCompoundAssignOperator(E);
2402 
2403   assert(!E->getType()->isPointerType() && "Handled above");
2404   assert(!E->getType()->isFloatingType() && "Handled above");
2405 
2406   // C++17 onwards require that we evaluate the RHS first.
2407   // Compute RHS and save it in a temporary variable so we can
2408   // load it again later.
2409   // FIXME: Compound assignments are unsequenced in C, so we might
2410   //   have to figure out how to reject them.
2411   if (!visit(RHS))
2412     return false;
2413 
2414   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2415 
2416   if (!this->emitSetLocal(*RT, TempOffset, E))
2417     return false;
2418 
2419   // Get LHS pointer, load its value and cast it to the
2420   // computation type if necessary.
2421   if (!visit(LHS))
2422     return false;
2423   if (!this->emitLoad(*LT, E))
2424     return false;
2425   if (LT != LHSComputationT) {
2426     if (!this->emitCast(*LT, *LHSComputationT, E))
2427       return false;
2428   }
2429 
2430   // Get the RHS value on the stack.
2431   if (!this->emitGetLocal(*RT, TempOffset, E))
2432     return false;
2433 
2434   // Perform operation.
2435   switch (E->getOpcode()) {
2436   case BO_AddAssign:
2437     if (!this->emitAdd(*LHSComputationT, E))
2438       return false;
2439     break;
2440   case BO_SubAssign:
2441     if (!this->emitSub(*LHSComputationT, E))
2442       return false;
2443     break;
2444   case BO_MulAssign:
2445     if (!this->emitMul(*LHSComputationT, E))
2446       return false;
2447     break;
2448   case BO_DivAssign:
2449     if (!this->emitDiv(*LHSComputationT, E))
2450       return false;
2451     break;
2452   case BO_RemAssign:
2453     if (!this->emitRem(*LHSComputationT, E))
2454       return false;
2455     break;
2456   case BO_ShlAssign:
2457     if (!this->emitShl(*LHSComputationT, *RT, E))
2458       return false;
2459     break;
2460   case BO_ShrAssign:
2461     if (!this->emitShr(*LHSComputationT, *RT, E))
2462       return false;
2463     break;
2464   case BO_AndAssign:
2465     if (!this->emitBitAnd(*LHSComputationT, E))
2466       return false;
2467     break;
2468   case BO_XorAssign:
2469     if (!this->emitBitXor(*LHSComputationT, E))
2470       return false;
2471     break;
2472   case BO_OrAssign:
2473     if (!this->emitBitOr(*LHSComputationT, E))
2474       return false;
2475     break;
2476   default:
2477     llvm_unreachable("Unimplemented compound assign operator");
2478   }
2479 
2480   // And now cast from LHSComputationT to ResultT.
2481   if (ResultT != LHSComputationT) {
2482     if (!this->emitCast(*LHSComputationT, *ResultT, E))
2483       return false;
2484   }
2485 
2486   // And store the result in LHS.
2487   if (DiscardResult) {
2488     if (LHS->refersToBitField())
2489       return this->emitStoreBitFieldPop(*ResultT, E);
2490     return this->emitStorePop(*ResultT, E);
2491   }
2492   if (LHS->refersToBitField())
2493     return this->emitStoreBitField(*ResultT, E);
2494   return this->emitStore(*ResultT, E);
2495 }
2496 
2497 template <class Emitter>
2498 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
2499   LocalScope<Emitter> ES(this);
2500   const Expr *SubExpr = E->getSubExpr();
2501 
2502   return this->delegate(SubExpr) && ES.destroyLocals(E);
2503 }
2504 
2505 template <class Emitter>
2506 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
2507     const MaterializeTemporaryExpr *E) {
2508   const Expr *SubExpr = E->getSubExpr();
2509 
2510   if (Initializing) {
2511     // We already have a value, just initialize that.
2512     return this->delegate(SubExpr);
2513   }
2514   // If we don't end up using the materialized temporary anyway, don't
2515   // bother creating it.
2516   if (DiscardResult)
2517     return this->discard(SubExpr);
2518 
2519   // When we're initializing a global variable *or* the storage duration of
2520   // the temporary is explicitly static, create a global variable.
2521   std::optional<PrimType> SubExprT = classify(SubExpr);
2522   bool IsStatic = E->getStorageDuration() == SD_Static;
2523   if (IsStatic) {
2524     std::optional<unsigned> GlobalIndex = P.createGlobal(E);
2525     if (!GlobalIndex)
2526       return false;
2527 
2528     const LifetimeExtendedTemporaryDecl *TempDecl =
2529         E->getLifetimeExtendedTemporaryDecl();
2530     if (IsStatic)
2531       assert(TempDecl);
2532 
2533     if (SubExprT) {
2534       if (!this->visit(SubExpr))
2535         return false;
2536       if (IsStatic) {
2537         if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
2538           return false;
2539       } else {
2540         if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
2541           return false;
2542       }
2543       return this->emitGetPtrGlobal(*GlobalIndex, E);
2544     }
2545 
2546     if (!this->checkLiteralType(SubExpr))
2547       return false;
2548     // Non-primitive values.
2549     if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2550       return false;
2551     if (!this->visitInitializer(SubExpr))
2552       return false;
2553     if (IsStatic)
2554       return this->emitInitGlobalTempComp(TempDecl, E);
2555     return true;
2556   }
2557 
2558   // For everyhing else, use local variables.
2559   if (SubExprT) {
2560     unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true,
2561                                                  /*IsExtended=*/true);
2562     if (!this->visit(SubExpr))
2563       return false;
2564     if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
2565       return false;
2566     return this->emitGetPtrLocal(LocalIndex, E);
2567   } else {
2568 
2569     if (!this->checkLiteralType(SubExpr))
2570       return false;
2571 
2572     const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2573     if (std::optional<unsigned> LocalIndex =
2574             allocateLocal(Inner, E->getExtendingDecl())) {
2575       InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
2576       if (!this->emitGetPtrLocal(*LocalIndex, E))
2577         return false;
2578       return this->visitInitializer(SubExpr);
2579     }
2580   }
2581   return false;
2582 }
2583 
2584 template <class Emitter>
2585 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
2586     const CXXBindTemporaryExpr *E) {
2587   return this->delegate(E->getSubExpr());
2588 }
2589 
2590 template <class Emitter>
2591 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2592   const Expr *Init = E->getInitializer();
2593   if (DiscardResult)
2594     return this->discard(Init);
2595 
2596   if (Initializing) {
2597     // We already have a value, just initialize that.
2598     return this->visitInitializer(Init) && this->emitFinishInit(E);
2599   }
2600 
2601   std::optional<PrimType> T = classify(E->getType());
2602   if (E->isFileScope()) {
2603     // Avoid creating a variable if this is a primitive RValue anyway.
2604     if (T && !E->isLValue())
2605       return this->delegate(Init);
2606 
2607     if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
2608       if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2609         return false;
2610 
2611       if (T) {
2612         if (!this->visit(Init))
2613           return false;
2614         return this->emitInitGlobal(*T, *GlobalIndex, E);
2615       }
2616 
2617       return this->visitInitializer(Init) && this->emitFinishInit(E);
2618     }
2619 
2620     return false;
2621   }
2622 
2623   // Otherwise, use a local variable.
2624   if (T && !E->isLValue()) {
2625     // For primitive types, we just visit the initializer.
2626     return this->delegate(Init);
2627   } else {
2628     unsigned LocalIndex;
2629 
2630     if (T)
2631       LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
2632     else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
2633       LocalIndex = *MaybeIndex;
2634     else
2635       return false;
2636 
2637     if (!this->emitGetPtrLocal(LocalIndex, E))
2638       return false;
2639 
2640     if (T) {
2641       if (!this->visit(Init)) {
2642         return false;
2643       }
2644       return this->emitInit(*T, E);
2645     } else {
2646       if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
2647         return false;
2648     }
2649     return true;
2650   }
2651 
2652   return false;
2653 }
2654 
2655 template <class Emitter>
2656 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
2657   if (DiscardResult)
2658     return true;
2659   if (E->getType()->isBooleanType())
2660     return this->emitConstBool(E->getValue(), E);
2661   return this->emitConst(E->getValue(), E);
2662 }
2663 
2664 template <class Emitter>
2665 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
2666   if (DiscardResult)
2667     return true;
2668   return this->emitConst(E->getValue(), E);
2669 }
2670 
2671 template <class Emitter>
2672 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
2673   if (DiscardResult)
2674     return true;
2675 
2676   assert(Initializing);
2677   const Record *R = P.getOrCreateRecord(E->getLambdaClass());
2678 
2679   auto *CaptureInitIt = E->capture_init_begin();
2680   // Initialize all fields (which represent lambda captures) of the
2681   // record with their initializers.
2682   for (const Record::Field &F : R->fields()) {
2683     const Expr *Init = *CaptureInitIt;
2684     ++CaptureInitIt;
2685 
2686     if (!Init)
2687       continue;
2688 
2689     if (std::optional<PrimType> T = classify(Init)) {
2690       if (!this->visit(Init))
2691         return false;
2692 
2693       if (!this->emitInitField(*T, F.Offset, E))
2694         return false;
2695     } else {
2696       if (!this->emitGetPtrField(F.Offset, E))
2697         return false;
2698 
2699       if (!this->visitInitializer(Init))
2700         return false;
2701 
2702       if (!this->emitPopPtr(E))
2703         return false;
2704     }
2705   }
2706 
2707   return true;
2708 }
2709 
2710 template <class Emitter>
2711 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
2712   if (DiscardResult)
2713     return true;
2714 
2715   return this->delegate(E->getFunctionName());
2716 }
2717 
2718 template <class Emitter>
2719 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
2720   if (E->getSubExpr() && !this->discard(E->getSubExpr()))
2721     return false;
2722 
2723   return this->emitInvalid(E);
2724 }
2725 
2726 template <class Emitter>
2727 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
2728     const CXXReinterpretCastExpr *E) {
2729   const Expr *SubExpr = E->getSubExpr();
2730 
2731   std::optional<PrimType> FromT = classify(SubExpr);
2732   std::optional<PrimType> ToT = classify(E);
2733 
2734   if (!FromT || !ToT)
2735     return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E);
2736 
2737   if (FromT == PT_Ptr || ToT == PT_Ptr) {
2738     // Both types could be PT_Ptr because their expressions are glvalues.
2739     std::optional<PrimType> PointeeFromT;
2740     if (SubExpr->getType()->isPointerOrReferenceType())
2741       PointeeFromT = classify(SubExpr->getType()->getPointeeType());
2742     else
2743       PointeeFromT = classify(SubExpr->getType());
2744 
2745     std::optional<PrimType> PointeeToT;
2746     if (E->getType()->isPointerOrReferenceType())
2747       PointeeToT = classify(E->getType()->getPointeeType());
2748     else
2749       PointeeToT = classify(E->getType());
2750 
2751     bool Fatal = true;
2752     if (PointeeToT && PointeeFromT) {
2753       if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT))
2754         Fatal = false;
2755     }
2756 
2757     if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2758       return false;
2759 
2760     if (E->getCastKind() == CK_LValueBitCast)
2761       return this->delegate(SubExpr);
2762     return this->VisitCastExpr(E);
2763   }
2764 
2765   // Try to actually do the cast.
2766   bool Fatal = (ToT != FromT);
2767   if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2768     return false;
2769 
2770   return this->VisitCastExpr(E);
2771 }
2772 
2773 template <class Emitter>
2774 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
2775   assert(E->getType()->isBooleanType());
2776 
2777   if (DiscardResult)
2778     return true;
2779   return this->emitConstBool(E->getValue(), E);
2780 }
2781 
2782 template <class Emitter>
2783 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
2784   QualType T = E->getType();
2785   assert(!classify(T));
2786 
2787   if (T->isRecordType()) {
2788     const CXXConstructorDecl *Ctor = E->getConstructor();
2789 
2790     // Trivial copy/move constructor. Avoid copy.
2791     if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
2792         Ctor->isTrivial() &&
2793         E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
2794                                         T->getAsCXXRecordDecl()))
2795       return this->visitInitializer(E->getArg(0));
2796 
2797     // If we're discarding a construct expression, we still need
2798     // to allocate a variable and call the constructor and destructor.
2799     if (DiscardResult) {
2800       if (Ctor->isTrivial())
2801         return true;
2802       assert(!Initializing);
2803       std::optional<unsigned> LocalIndex = allocateLocal(E);
2804 
2805       if (!LocalIndex)
2806         return false;
2807 
2808       if (!this->emitGetPtrLocal(*LocalIndex, E))
2809         return false;
2810     }
2811 
2812     // Zero initialization.
2813     if (E->requiresZeroInitialization()) {
2814       const Record *R = getRecord(E->getType());
2815 
2816       if (!this->visitZeroRecordInitializer(R, E))
2817         return false;
2818 
2819       // If the constructor is trivial anyway, we're done.
2820       if (Ctor->isTrivial())
2821         return true;
2822     }
2823 
2824     const Function *Func = getFunction(Ctor);
2825 
2826     if (!Func)
2827       return false;
2828 
2829     assert(Func->hasThisPointer());
2830     assert(!Func->hasRVO());
2831 
2832     //  The This pointer is already on the stack because this is an initializer,
2833     //  but we need to dup() so the call() below has its own copy.
2834     if (!this->emitDupPtr(E))
2835       return false;
2836 
2837     // Constructor arguments.
2838     for (const auto *Arg : E->arguments()) {
2839       if (!this->visit(Arg))
2840         return false;
2841     }
2842 
2843     if (Func->isVariadic()) {
2844       uint32_t VarArgSize = 0;
2845       unsigned NumParams = Func->getNumWrittenParams();
2846       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
2847         VarArgSize +=
2848             align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
2849       }
2850       if (!this->emitCallVar(Func, VarArgSize, E))
2851         return false;
2852     } else {
2853       if (!this->emitCall(Func, 0, E)) {
2854         // When discarding, we don't need the result anyway, so clean up
2855         // the instance dup we did earlier in case surrounding code wants
2856         // to keep evaluating.
2857         if (DiscardResult)
2858           (void)this->emitPopPtr(E);
2859         return false;
2860       }
2861     }
2862 
2863     if (DiscardResult)
2864       return this->emitPopPtr(E);
2865     return this->emitFinishInit(E);
2866   }
2867 
2868   if (T->isArrayType()) {
2869     const ConstantArrayType *CAT =
2870         Ctx.getASTContext().getAsConstantArrayType(E->getType());
2871     if (!CAT)
2872       return false;
2873 
2874     size_t NumElems = CAT->getZExtSize();
2875     const Function *Func = getFunction(E->getConstructor());
2876     if (!Func || !Func->isConstexpr())
2877       return false;
2878 
2879     // FIXME(perf): We're calling the constructor once per array element here,
2880     //   in the old intepreter we had a special-case for trivial constructors.
2881     for (size_t I = 0; I != NumElems; ++I) {
2882       if (!this->emitConstUint64(I, E))
2883         return false;
2884       if (!this->emitArrayElemPtrUint64(E))
2885         return false;
2886 
2887       // Constructor arguments.
2888       for (const auto *Arg : E->arguments()) {
2889         if (!this->visit(Arg))
2890           return false;
2891       }
2892 
2893       if (!this->emitCall(Func, 0, E))
2894         return false;
2895     }
2896     return true;
2897   }
2898 
2899   return false;
2900 }
2901 
2902 template <class Emitter>
2903 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
2904   if (DiscardResult)
2905     return true;
2906 
2907   const APValue Val =
2908       E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
2909 
2910   // Things like __builtin_LINE().
2911   if (E->getType()->isIntegerType()) {
2912     assert(Val.isInt());
2913     const APSInt &I = Val.getInt();
2914     return this->emitConst(I, E);
2915   }
2916   // Otherwise, the APValue is an LValue, with only one element.
2917   // Theoretically, we don't need the APValue at all of course.
2918   assert(E->getType()->isPointerType());
2919   assert(Val.isLValue());
2920   const APValue::LValueBase &Base = Val.getLValueBase();
2921   if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
2922     return this->visit(LValueExpr);
2923 
2924   // Otherwise, we have a decl (which is the case for
2925   // __builtin_source_location).
2926   assert(Base.is<const ValueDecl *>());
2927   assert(Val.getLValuePath().size() == 0);
2928   const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
2929   assert(BaseDecl);
2930 
2931   auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
2932 
2933   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
2934   if (!GlobalIndex)
2935     return false;
2936 
2937   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2938     return false;
2939 
2940   const Record *R = getRecord(E->getType());
2941   const APValue &V = UGCD->getValue();
2942   for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
2943     const Record::Field *F = R->getField(I);
2944     const APValue &FieldValue = V.getStructField(I);
2945 
2946     PrimType FieldT = classifyPrim(F->Decl->getType());
2947 
2948     if (!this->visitAPValue(FieldValue, FieldT, E))
2949       return false;
2950     if (!this->emitInitField(FieldT, F->Offset, E))
2951       return false;
2952   }
2953 
2954   // Leave the pointer to the global on the stack.
2955   return true;
2956 }
2957 
2958 template <class Emitter>
2959 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
2960   unsigned N = E->getNumComponents();
2961   if (N == 0)
2962     return false;
2963 
2964   for (unsigned I = 0; I != N; ++I) {
2965     const OffsetOfNode &Node = E->getComponent(I);
2966     if (Node.getKind() == OffsetOfNode::Array) {
2967       const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
2968       PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
2969 
2970       if (DiscardResult) {
2971         if (!this->discard(ArrayIndexExpr))
2972           return false;
2973         continue;
2974       }
2975 
2976       if (!this->visit(ArrayIndexExpr))
2977         return false;
2978       // Cast to Sint64.
2979       if (IndexT != PT_Sint64) {
2980         if (!this->emitCast(IndexT, PT_Sint64, E))
2981           return false;
2982       }
2983     }
2984   }
2985 
2986   if (DiscardResult)
2987     return true;
2988 
2989   PrimType T = classifyPrim(E->getType());
2990   return this->emitOffsetOf(T, E, E);
2991 }
2992 
2993 template <class Emitter>
2994 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
2995     const CXXScalarValueInitExpr *E) {
2996   QualType Ty = E->getType();
2997 
2998   if (DiscardResult || Ty->isVoidType())
2999     return true;
3000 
3001   if (std::optional<PrimType> T = classify(Ty))
3002     return this->visitZeroInitializer(*T, Ty, E);
3003 
3004   if (const auto *CT = Ty->getAs<ComplexType>()) {
3005     if (!Initializing) {
3006       std::optional<unsigned> LocalIndex = allocateLocal(E);
3007       if (!LocalIndex)
3008         return false;
3009       if (!this->emitGetPtrLocal(*LocalIndex, E))
3010         return false;
3011     }
3012 
3013     // Initialize both fields to 0.
3014     QualType ElemQT = CT->getElementType();
3015     PrimType ElemT = classifyPrim(ElemQT);
3016 
3017     for (unsigned I = 0; I != 2; ++I) {
3018       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3019         return false;
3020       if (!this->emitInitElem(ElemT, I, E))
3021         return false;
3022     }
3023     return true;
3024   }
3025 
3026   if (const auto *VT = Ty->getAs<VectorType>()) {
3027     // FIXME: Code duplication with the _Complex case above.
3028     if (!Initializing) {
3029       std::optional<unsigned> LocalIndex = allocateLocal(E);
3030       if (!LocalIndex)
3031         return false;
3032       if (!this->emitGetPtrLocal(*LocalIndex, E))
3033         return false;
3034     }
3035 
3036     // Initialize all fields to 0.
3037     QualType ElemQT = VT->getElementType();
3038     PrimType ElemT = classifyPrim(ElemQT);
3039 
3040     for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
3041       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3042         return false;
3043       if (!this->emitInitElem(ElemT, I, E))
3044         return false;
3045     }
3046     return true;
3047   }
3048 
3049   return false;
3050 }
3051 
3052 template <class Emitter>
3053 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
3054   return this->emitConst(E->getPackLength(), E);
3055 }
3056 
3057 template <class Emitter>
3058 bool Compiler<Emitter>::VisitGenericSelectionExpr(
3059     const GenericSelectionExpr *E) {
3060   return this->delegate(E->getResultExpr());
3061 }
3062 
3063 template <class Emitter>
3064 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
3065   return this->delegate(E->getChosenSubExpr());
3066 }
3067 
3068 template <class Emitter>
3069 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
3070   if (DiscardResult)
3071     return true;
3072 
3073   return this->emitConst(E->getValue(), E);
3074 }
3075 
3076 template <class Emitter>
3077 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
3078     const CXXInheritedCtorInitExpr *E) {
3079   const CXXConstructorDecl *Ctor = E->getConstructor();
3080   assert(!Ctor->isTrivial() &&
3081          "Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
3082   const Function *F = this->getFunction(Ctor);
3083   assert(F);
3084   assert(!F->hasRVO());
3085   assert(F->hasThisPointer());
3086 
3087   if (!this->emitDupPtr(SourceInfo{}))
3088     return false;
3089 
3090   // Forward all arguments of the current function (which should be a
3091   // constructor itself) to the inherited ctor.
3092   // This is necessary because the calling code has pushed the pointer
3093   // of the correct base for  us already, but the arguments need
3094   // to come after.
3095   unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
3096   for (const ParmVarDecl *PD : Ctor->parameters()) {
3097     PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
3098 
3099     if (!this->emitGetParam(PT, Offset, E))
3100       return false;
3101     Offset += align(primSize(PT));
3102   }
3103 
3104   return this->emitCall(F, 0, E);
3105 }
3106 
3107 template <class Emitter>
3108 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
3109   assert(classifyPrim(E->getType()) == PT_Ptr);
3110   const Expr *Init = E->getInitializer();
3111   QualType ElementType = E->getAllocatedType();
3112   std::optional<PrimType> ElemT = classify(ElementType);
3113   unsigned PlacementArgs = E->getNumPlacementArgs();
3114   const FunctionDecl *OperatorNew = E->getOperatorNew();
3115   const Expr *PlacementDest = nullptr;
3116   bool IsNoThrow = false;
3117 
3118   if (PlacementArgs != 0) {
3119     // FIXME: There is no restriction on this, but it's not clear that any
3120     // other form makes any sense. We get here for cases such as:
3121     //
3122     //   new (std::align_val_t{N}) X(int)
3123     //
3124     // (which should presumably be valid only if N is a multiple of
3125     // alignof(int), and in any case can't be deallocated unless N is
3126     // alignof(X) and X has new-extended alignment).
3127     if (PlacementArgs == 1) {
3128       const Expr *Arg1 = E->getPlacementArg(0);
3129       if (Arg1->getType()->isNothrowT()) {
3130         if (!this->discard(Arg1))
3131           return false;
3132         IsNoThrow = true;
3133       } else {
3134         // Invalid unless we have C++26 or are in a std:: function.
3135         if (!this->emitInvalidNewDeleteExpr(E, E))
3136           return false;
3137 
3138         // If we have a placement-new destination, we'll later use that instead
3139         // of allocating.
3140         if (OperatorNew->isReservedGlobalPlacementOperator())
3141           PlacementDest = Arg1;
3142       }
3143     } else {
3144       // Always invalid.
3145       return this->emitInvalid(E);
3146     }
3147   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction())
3148     return this->emitInvalidNewDeleteExpr(E, E);
3149 
3150   const Descriptor *Desc;
3151   if (!PlacementDest) {
3152     if (ElemT) {
3153       if (E->isArray())
3154         Desc = nullptr; // We're not going to use it in this case.
3155       else
3156         Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
3157                                   /*IsConst=*/false, /*IsTemporary=*/false,
3158                                   /*IsMutable=*/false);
3159     } else {
3160       Desc = P.createDescriptor(
3161           E, ElementType.getTypePtr(),
3162           E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
3163           /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
3164     }
3165   }
3166 
3167   if (E->isArray()) {
3168     std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
3169     if (!ArraySizeExpr)
3170       return false;
3171 
3172     const Expr *Stripped = *ArraySizeExpr;
3173     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
3174          Stripped = ICE->getSubExpr())
3175       if (ICE->getCastKind() != CK_NoOp &&
3176           ICE->getCastKind() != CK_IntegralCast)
3177         break;
3178 
3179     PrimType SizeT = classifyPrim(Stripped->getType());
3180 
3181     if (PlacementDest) {
3182       if (!this->visit(PlacementDest))
3183         return false;
3184       if (!this->visit(Stripped))
3185         return false;
3186       if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E))
3187         return false;
3188     } else {
3189       if (!this->visit(Stripped))
3190         return false;
3191 
3192       if (ElemT) {
3193         // N primitive elements.
3194         if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
3195           return false;
3196       } else {
3197         // N Composite elements.
3198         if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
3199           return false;
3200       }
3201     }
3202 
3203     if (Init && !this->visitInitializer(Init))
3204       return false;
3205 
3206   } else {
3207     if (PlacementDest) {
3208       if (!this->visit(PlacementDest))
3209         return false;
3210       if (!this->emitCheckNewTypeMismatch(E, E))
3211         return false;
3212     } else {
3213       // Allocate just one element.
3214       if (!this->emitAlloc(Desc, E))
3215         return false;
3216     }
3217 
3218     if (Init) {
3219       if (ElemT) {
3220         if (!this->visit(Init))
3221           return false;
3222 
3223         if (!this->emitInit(*ElemT, E))
3224           return false;
3225       } else {
3226         // Composite.
3227         if (!this->visitInitializer(Init))
3228           return false;
3229       }
3230     }
3231   }
3232 
3233   if (DiscardResult)
3234     return this->emitPopPtr(E);
3235 
3236   return true;
3237 }
3238 
3239 template <class Emitter>
3240 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
3241   const Expr *Arg = E->getArgument();
3242 
3243   const FunctionDecl *OperatorDelete = E->getOperatorDelete();
3244 
3245   if (!OperatorDelete->isReplaceableGlobalAllocationFunction())
3246     return this->emitInvalidNewDeleteExpr(E, E);
3247 
3248   // Arg must be an lvalue.
3249   if (!this->visit(Arg))
3250     return false;
3251 
3252   return this->emitFree(E->isArrayForm(), E);
3253 }
3254 
3255 template <class Emitter>
3256 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
3257   const Function *Func = nullptr;
3258   if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E))
3259     Func = F;
3260 
3261   if (!Func)
3262     return false;
3263   return this->emitGetFnPtr(Func, E);
3264 }
3265 
3266 template <class Emitter>
3267 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
3268   assert(Ctx.getLangOpts().CPlusPlus);
3269   return this->emitConstBool(E->getValue(), E);
3270 }
3271 
3272 template <class Emitter>
3273 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
3274   if (DiscardResult)
3275     return true;
3276   assert(!Initializing);
3277 
3278   const MSGuidDecl *GuidDecl = E->getGuidDecl();
3279   const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
3280   assert(RD);
3281   // If the definiton of the result type is incomplete, just return a dummy.
3282   // If (and when) that is read from, we will fail, but not now.
3283   if (!RD->isCompleteDefinition()) {
3284     if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl))
3285       return this->emitGetPtrGlobal(*I, E);
3286     return false;
3287   }
3288 
3289   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
3290   if (!GlobalIndex)
3291     return false;
3292   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3293     return false;
3294 
3295   assert(this->getRecord(E->getType()));
3296 
3297   const APValue &V = GuidDecl->getAsAPValue();
3298   if (V.getKind() == APValue::None)
3299     return true;
3300 
3301   assert(V.isStruct());
3302   assert(V.getStructNumBases() == 0);
3303   if (!this->visitAPValueInitializer(V, E))
3304     return false;
3305 
3306   return this->emitFinishInit(E);
3307 }
3308 
3309 template <class Emitter>
3310 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
3311   assert(classifyPrim(E->getType()) == PT_Bool);
3312   if (DiscardResult)
3313     return true;
3314   return this->emitConstBool(E->isSatisfied(), E);
3315 }
3316 
3317 template <class Emitter>
3318 bool Compiler<Emitter>::VisitConceptSpecializationExpr(
3319     const ConceptSpecializationExpr *E) {
3320   assert(classifyPrim(E->getType()) == PT_Bool);
3321   if (DiscardResult)
3322     return true;
3323   return this->emitConstBool(E->isSatisfied(), E);
3324 }
3325 
3326 template <class Emitter>
3327 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
3328     const CXXRewrittenBinaryOperator *E) {
3329   return this->delegate(E->getSemanticForm());
3330 }
3331 
3332 template <class Emitter>
3333 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
3334 
3335   for (const Expr *SemE : E->semantics()) {
3336     if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
3337       if (SemE == E->getResultExpr())
3338         return false;
3339 
3340       if (OVE->isUnique())
3341         continue;
3342 
3343       if (!this->discard(OVE))
3344         return false;
3345     } else if (SemE == E->getResultExpr()) {
3346       if (!this->delegate(SemE))
3347         return false;
3348     } else {
3349       if (!this->discard(SemE))
3350         return false;
3351     }
3352   }
3353   return true;
3354 }
3355 
3356 template <class Emitter>
3357 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
3358   return this->delegate(E->getSelectedExpr());
3359 }
3360 
3361 template <class Emitter>
3362 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
3363   return this->emitError(E);
3364 }
3365 
3366 template <class Emitter>
3367 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
3368   assert(E->getType()->isVoidPointerType());
3369 
3370   unsigned Offset = allocateLocalPrimitive(
3371       E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3372 
3373   return this->emitGetLocal(PT_Ptr, Offset, E);
3374 }
3375 
3376 template <class Emitter>
3377 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
3378   assert(Initializing);
3379   const auto *VT = E->getType()->castAs<VectorType>();
3380   QualType ElemType = VT->getElementType();
3381   PrimType ElemT = classifyPrim(ElemType);
3382   const Expr *Src = E->getSrcExpr();
3383   PrimType SrcElemT =
3384       classifyPrim(Src->getType()->castAs<VectorType>()->getElementType());
3385 
3386   unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
3387   if (!this->visit(Src))
3388     return false;
3389   if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
3390     return false;
3391 
3392   for (unsigned I = 0; I != VT->getNumElements(); ++I) {
3393     if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
3394       return false;
3395     if (!this->emitArrayElemPop(SrcElemT, I, E))
3396       return false;
3397     if (SrcElemT != ElemT) {
3398       if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
3399         return false;
3400     }
3401     if (!this->emitInitElem(ElemT, I, E))
3402       return false;
3403   }
3404 
3405   return true;
3406 }
3407 
3408 template <class Emitter>
3409 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
3410   assert(Initializing);
3411   assert(E->getNumSubExprs() > 2);
3412 
3413   const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
3414   const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
3415   PrimType ElemT = classifyPrim(VT->getElementType());
3416   unsigned NumInputElems = VT->getNumElements();
3417   unsigned NumOutputElems = E->getNumSubExprs() - 2;
3418   assert(NumOutputElems > 0);
3419 
3420   // Save both input vectors to a local variable.
3421   unsigned VectorOffsets[2];
3422   for (unsigned I = 0; I != 2; ++I) {
3423     VectorOffsets[I] = this->allocateLocalPrimitive(
3424         Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3425     if (!this->visit(Vecs[I]))
3426       return false;
3427     if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
3428       return false;
3429   }
3430   for (unsigned I = 0; I != NumOutputElems; ++I) {
3431     APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
3432     if (ShuffleIndex == -1)
3433       return this->emitInvalid(E); // FIXME: Better diagnostic.
3434 
3435     assert(ShuffleIndex < (NumInputElems * 2));
3436     if (!this->emitGetLocal(PT_Ptr,
3437                             VectorOffsets[ShuffleIndex >= NumInputElems], E))
3438       return false;
3439     unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
3440     if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
3441       return false;
3442 
3443     if (!this->emitInitElem(ElemT, I, E))
3444       return false;
3445   }
3446 
3447   return true;
3448 }
3449 
3450 template <class Emitter>
3451 bool Compiler<Emitter>::VisitExtVectorElementExpr(
3452     const ExtVectorElementExpr *E) {
3453   const Expr *Base = E->getBase();
3454   assert(
3455       Base->getType()->isVectorType() ||
3456       Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
3457 
3458   SmallVector<uint32_t, 4> Indices;
3459   E->getEncodedElementAccess(Indices);
3460 
3461   if (Indices.size() == 1) {
3462     if (!this->visit(Base))
3463       return false;
3464 
3465     if (E->isGLValue()) {
3466       if (!this->emitConstUint32(Indices[0], E))
3467         return false;
3468       return this->emitArrayElemPtrPop(PT_Uint32, E);
3469     }
3470     // Else, also load the value.
3471     return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
3472   }
3473 
3474   // Create a local variable for the base.
3475   unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
3476                                                /*IsExtended=*/false);
3477   if (!this->visit(Base))
3478     return false;
3479   if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
3480     return false;
3481 
3482   // Now the vector variable for the return value.
3483   if (!Initializing) {
3484     std::optional<unsigned> ResultIndex;
3485     ResultIndex = allocateLocal(E);
3486     if (!ResultIndex)
3487       return false;
3488     if (!this->emitGetPtrLocal(*ResultIndex, E))
3489       return false;
3490   }
3491 
3492   assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
3493 
3494   PrimType ElemT =
3495       classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
3496   uint32_t DstIndex = 0;
3497   for (uint32_t I : Indices) {
3498     if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
3499       return false;
3500     if (!this->emitArrayElemPop(ElemT, I, E))
3501       return false;
3502     if (!this->emitInitElem(ElemT, DstIndex, E))
3503       return false;
3504     ++DstIndex;
3505   }
3506 
3507   // Leave the result pointer on the stack.
3508   assert(!DiscardResult);
3509   return true;
3510 }
3511 
3512 template <class Emitter>
3513 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
3514   const Expr *SubExpr = E->getSubExpr();
3515   if (!E->isExpressibleAsConstantInitializer())
3516     return this->discard(SubExpr) && this->emitInvalid(E);
3517 
3518   assert(classifyPrim(E) == PT_Ptr);
3519   if (std::optional<unsigned> I = P.getOrCreateDummy(E))
3520     return this->emitGetPtrGlobal(*I, E);
3521 
3522   return false;
3523 }
3524 
3525 template <class Emitter>
3526 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
3527     const CXXStdInitializerListExpr *E) {
3528   const Expr *SubExpr = E->getSubExpr();
3529   const ConstantArrayType *ArrayType =
3530       Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
3531   const Record *R = getRecord(E->getType());
3532   assert(Initializing);
3533   assert(SubExpr->isGLValue());
3534 
3535   if (!this->visit(SubExpr))
3536     return false;
3537   if (!this->emitConstUint8(0, E))
3538     return false;
3539   if (!this->emitArrayElemPtrPopUint8(E))
3540     return false;
3541   if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
3542     return false;
3543 
3544   PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
3545   if (isIntegralType(SecondFieldT)) {
3546     if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
3547                          SecondFieldT, E))
3548       return false;
3549     return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
3550   }
3551   assert(SecondFieldT == PT_Ptr);
3552 
3553   if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
3554     return false;
3555   if (!this->emitExpandPtr(E))
3556     return false;
3557   if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
3558     return false;
3559   if (!this->emitArrayElemPtrPop(PT_Uint64, E))
3560     return false;
3561   return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
3562 }
3563 
3564 template <class Emitter>
3565 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
3566   BlockScope<Emitter> BS(this);
3567   StmtExprScope<Emitter> SS(this);
3568 
3569   const CompoundStmt *CS = E->getSubStmt();
3570   const Stmt *Result = CS->getStmtExprResult();
3571   for (const Stmt *S : CS->body()) {
3572     if (S != Result) {
3573       if (!this->visitStmt(S))
3574         return false;
3575       continue;
3576     }
3577 
3578     assert(S == Result);
3579     if (const Expr *ResultExpr = dyn_cast<Expr>(S))
3580       return this->delegate(ResultExpr);
3581     return this->emitUnsupported(E);
3582   }
3583 
3584   return BS.destroyLocals();
3585 }
3586 
3587 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
3588   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
3589                              /*NewInitializing=*/false);
3590   return this->Visit(E);
3591 }
3592 
3593 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
3594   // We're basically doing:
3595   // OptionScope<Emitter> Scope(this, DicardResult, Initializing);
3596   // but that's unnecessary of course.
3597   return this->Visit(E);
3598 }
3599 
3600 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
3601   if (E->getType().isNull())
3602     return false;
3603 
3604   if (E->getType()->isVoidType())
3605     return this->discard(E);
3606 
3607   // Create local variable to hold the return value.
3608   if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
3609       !classify(E->getType())) {
3610     std::optional<unsigned> LocalIndex = allocateLocal(E);
3611     if (!LocalIndex)
3612       return false;
3613 
3614     if (!this->emitGetPtrLocal(*LocalIndex, E))
3615       return false;
3616     return this->visitInitializer(E);
3617   }
3618 
3619   //  Otherwise,we have a primitive return value, produce the value directly
3620   //  and push it on the stack.
3621   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3622                              /*NewInitializing=*/false);
3623   return this->Visit(E);
3624 }
3625 
3626 template <class Emitter>
3627 bool Compiler<Emitter>::visitInitializer(const Expr *E) {
3628   assert(!classify(E->getType()));
3629 
3630   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3631                              /*NewInitializing=*/true);
3632   return this->Visit(E);
3633 }
3634 
3635 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
3636   std::optional<PrimType> T = classify(E->getType());
3637   if (!T) {
3638     // Convert complex values to bool.
3639     if (E->getType()->isAnyComplexType()) {
3640       if (!this->visit(E))
3641         return false;
3642       return this->emitComplexBoolCast(E);
3643     }
3644     return false;
3645   }
3646 
3647   if (!this->visit(E))
3648     return false;
3649 
3650   if (T == PT_Bool)
3651     return true;
3652 
3653   // Convert pointers to bool.
3654   if (T == PT_Ptr || T == PT_FnPtr) {
3655     if (!this->emitNull(*T, nullptr, E))
3656       return false;
3657     return this->emitNE(*T, E);
3658   }
3659 
3660   // Or Floats.
3661   if (T == PT_Float)
3662     return this->emitCastFloatingIntegralBool(getFPOptions(E), E);
3663 
3664   // Or anything else we can.
3665   return this->emitCast(*T, PT_Bool, E);
3666 }
3667 
3668 template <class Emitter>
3669 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
3670                                              const Expr *E) {
3671   switch (T) {
3672   case PT_Bool:
3673     return this->emitZeroBool(E);
3674   case PT_Sint8:
3675     return this->emitZeroSint8(E);
3676   case PT_Uint8:
3677     return this->emitZeroUint8(E);
3678   case PT_Sint16:
3679     return this->emitZeroSint16(E);
3680   case PT_Uint16:
3681     return this->emitZeroUint16(E);
3682   case PT_Sint32:
3683     return this->emitZeroSint32(E);
3684   case PT_Uint32:
3685     return this->emitZeroUint32(E);
3686   case PT_Sint64:
3687     return this->emitZeroSint64(E);
3688   case PT_Uint64:
3689     return this->emitZeroUint64(E);
3690   case PT_IntAP:
3691     return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
3692   case PT_IntAPS:
3693     return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
3694   case PT_Ptr:
3695     return this->emitNullPtr(nullptr, E);
3696   case PT_FnPtr:
3697     return this->emitNullFnPtr(nullptr, E);
3698   case PT_MemberPtr:
3699     return this->emitNullMemberPtr(nullptr, E);
3700   case PT_Float:
3701     return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
3702   case PT_FixedPoint: {
3703     auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
3704     return this->emitConstFixedPoint(FixedPoint::Zero(Sem), E);
3705   }
3706     llvm_unreachable("Implement");
3707   }
3708   llvm_unreachable("unknown primitive type");
3709 }
3710 
3711 template <class Emitter>
3712 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
3713                                                    const Expr *E) {
3714   assert(E);
3715   assert(R);
3716   // Fields
3717   for (const Record::Field &Field : R->fields()) {
3718     if (Field.Decl->isUnnamedBitField())
3719       continue;
3720 
3721     const Descriptor *D = Field.Desc;
3722     if (D->isPrimitive()) {
3723       QualType QT = D->getType();
3724       PrimType T = classifyPrim(D->getType());
3725       if (!this->visitZeroInitializer(T, QT, E))
3726         return false;
3727       if (!this->emitInitField(T, Field.Offset, E))
3728         return false;
3729       if (R->isUnion())
3730         break;
3731       continue;
3732     }
3733 
3734     if (!this->emitGetPtrField(Field.Offset, E))
3735       return false;
3736 
3737     if (D->isPrimitiveArray()) {
3738       QualType ET = D->getElemQualType();
3739       PrimType T = classifyPrim(ET);
3740       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3741         if (!this->visitZeroInitializer(T, ET, E))
3742           return false;
3743         if (!this->emitInitElem(T, I, E))
3744           return false;
3745       }
3746     } else if (D->isCompositeArray()) {
3747       const Record *ElemRecord = D->ElemDesc->ElemRecord;
3748       assert(D->ElemDesc->ElemRecord);
3749       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3750         if (!this->emitConstUint32(I, E))
3751           return false;
3752         if (!this->emitArrayElemPtr(PT_Uint32, E))
3753           return false;
3754         if (!this->visitZeroRecordInitializer(ElemRecord, E))
3755           return false;
3756         if (!this->emitPopPtr(E))
3757           return false;
3758       }
3759     } else if (D->isRecord()) {
3760       if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
3761         return false;
3762     } else {
3763       assert(false);
3764     }
3765 
3766     if (!this->emitFinishInitPop(E))
3767       return false;
3768 
3769     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3770     // object's first non-static named data member is zero-initialized
3771     if (R->isUnion())
3772       break;
3773   }
3774 
3775   for (const Record::Base &B : R->bases()) {
3776     if (!this->emitGetPtrBase(B.Offset, E))
3777       return false;
3778     if (!this->visitZeroRecordInitializer(B.R, E))
3779       return false;
3780     if (!this->emitFinishInitPop(E))
3781       return false;
3782   }
3783 
3784   // FIXME: Virtual bases.
3785 
3786   return true;
3787 }
3788 
3789 template <class Emitter>
3790 template <typename T>
3791 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
3792   switch (Ty) {
3793   case PT_Sint8:
3794     return this->emitConstSint8(Value, E);
3795   case PT_Uint8:
3796     return this->emitConstUint8(Value, E);
3797   case PT_Sint16:
3798     return this->emitConstSint16(Value, E);
3799   case PT_Uint16:
3800     return this->emitConstUint16(Value, E);
3801   case PT_Sint32:
3802     return this->emitConstSint32(Value, E);
3803   case PT_Uint32:
3804     return this->emitConstUint32(Value, E);
3805   case PT_Sint64:
3806     return this->emitConstSint64(Value, E);
3807   case PT_Uint64:
3808     return this->emitConstUint64(Value, E);
3809   case PT_Bool:
3810     return this->emitConstBool(Value, E);
3811   case PT_Ptr:
3812   case PT_FnPtr:
3813   case PT_MemberPtr:
3814   case PT_Float:
3815   case PT_IntAP:
3816   case PT_IntAPS:
3817   case PT_FixedPoint:
3818     llvm_unreachable("Invalid integral type");
3819     break;
3820   }
3821   llvm_unreachable("unknown primitive type");
3822 }
3823 
3824 template <class Emitter>
3825 template <typename T>
3826 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
3827   return this->emitConst(Value, classifyPrim(E->getType()), E);
3828 }
3829 
3830 template <class Emitter>
3831 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
3832                                   const Expr *E) {
3833   if (Ty == PT_IntAPS)
3834     return this->emitConstIntAPS(Value, E);
3835   if (Ty == PT_IntAP)
3836     return this->emitConstIntAP(Value, E);
3837 
3838   if (Value.isSigned())
3839     return this->emitConst(Value.getSExtValue(), Ty, E);
3840   return this->emitConst(Value.getZExtValue(), Ty, E);
3841 }
3842 
3843 template <class Emitter>
3844 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
3845   return this->emitConst(Value, classifyPrim(E->getType()), E);
3846 }
3847 
3848 template <class Emitter>
3849 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
3850                                                    bool IsConst,
3851                                                    bool IsExtended) {
3852   // Make sure we don't accidentally register the same decl twice.
3853   if (const auto *VD =
3854           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3855     assert(!P.getGlobal(VD));
3856     assert(!Locals.contains(VD));
3857     (void)VD;
3858   }
3859 
3860   // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
3861   //   (int){12} in C. Consider using Expr::isTemporaryObject() instead
3862   //   or isa<MaterializeTemporaryExpr>().
3863   Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
3864                                      Src.is<const Expr *>());
3865   Scope::Local Local = this->createLocal(D);
3866   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
3867     Locals.insert({VD, Local});
3868   VarScope->add(Local, IsExtended);
3869   return Local.Offset;
3870 }
3871 
3872 template <class Emitter>
3873 std::optional<unsigned>
3874 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) {
3875   // Make sure we don't accidentally register the same decl twice.
3876   if ([[maybe_unused]] const auto *VD =
3877           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3878     assert(!P.getGlobal(VD));
3879     assert(!Locals.contains(VD));
3880   }
3881 
3882   QualType Ty;
3883   const ValueDecl *Key = nullptr;
3884   const Expr *Init = nullptr;
3885   bool IsTemporary = false;
3886   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3887     Key = VD;
3888     Ty = VD->getType();
3889 
3890     if (const auto *VarD = dyn_cast<VarDecl>(VD))
3891       Init = VarD->getInit();
3892   }
3893   if (auto *E = Src.dyn_cast<const Expr *>()) {
3894     IsTemporary = true;
3895     Ty = E->getType();
3896   }
3897 
3898   Descriptor *D = P.createDescriptor(
3899       Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
3900       IsTemporary, /*IsMutable=*/false, Init);
3901   if (!D)
3902     return std::nullopt;
3903 
3904   Scope::Local Local = this->createLocal(D);
3905   if (Key)
3906     Locals.insert({Key, Local});
3907   if (ExtendingDecl)
3908     VarScope->addExtended(Local, ExtendingDecl);
3909   else
3910     VarScope->add(Local, false);
3911   return Local.Offset;
3912 }
3913 
3914 template <class Emitter>
3915 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) {
3916   QualType Ty = E->getType();
3917   assert(!Ty->isRecordType());
3918 
3919   Descriptor *D = P.createDescriptor(
3920       E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
3921       /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
3922   assert(D);
3923 
3924   Scope::Local Local = this->createLocal(D);
3925   VariableScope<Emitter> *S = VarScope;
3926   assert(S);
3927   // Attach to topmost scope.
3928   while (S->getParent())
3929     S = S->getParent();
3930   assert(S && !S->getParent());
3931   S->addLocal(Local);
3932   return Local.Offset;
3933 }
3934 
3935 template <class Emitter>
3936 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
3937   if (const PointerType *PT = dyn_cast<PointerType>(Ty))
3938     return PT->getPointeeType()->getAs<RecordType>();
3939   return Ty->getAs<RecordType>();
3940 }
3941 
3942 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
3943   if (const auto *RecordTy = getRecordTy(Ty))
3944     return getRecord(RecordTy->getDecl());
3945   return nullptr;
3946 }
3947 
3948 template <class Emitter>
3949 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
3950   return P.getOrCreateRecord(RD);
3951 }
3952 
3953 template <class Emitter>
3954 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
3955   return Ctx.getOrCreateFunction(FD);
3956 }
3957 
3958 template <class Emitter>
3959 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) {
3960   LocalScope<Emitter> RootScope(this);
3961 
3962   auto maybeDestroyLocals = [&]() -> bool {
3963     if (DestroyToplevelScope)
3964       return RootScope.destroyLocals();
3965     return true;
3966   };
3967 
3968   // Void expressions.
3969   if (E->getType()->isVoidType()) {
3970     if (!visit(E))
3971       return false;
3972     return this->emitRetVoid(E) && maybeDestroyLocals();
3973   }
3974 
3975   // Expressions with a primitive return type.
3976   if (std::optional<PrimType> T = classify(E)) {
3977     if (!visit(E))
3978       return false;
3979 
3980     return this->emitRet(*T, E) && maybeDestroyLocals();
3981   }
3982 
3983   // Expressions with a composite return type.
3984   // For us, that means everything we don't
3985   // have a PrimType for.
3986   if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
3987     if (!this->emitGetPtrLocal(*LocalOffset, E))
3988       return false;
3989 
3990     if (!visitInitializer(E))
3991       return false;
3992 
3993     if (!this->emitFinishInit(E))
3994       return false;
3995     // We are destroying the locals AFTER the Ret op.
3996     // The Ret op needs to copy the (alive) values, but the
3997     // destructors may still turn the entire expression invalid.
3998     return this->emitRetValue(E) && maybeDestroyLocals();
3999   }
4000 
4001   (void)maybeDestroyLocals();
4002   return false;
4003 }
4004 
4005 template <class Emitter>
4006 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
4007 
4008   auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
4009 
4010   if (R.notCreated())
4011     return R;
4012 
4013   if (R)
4014     return true;
4015 
4016   if (!R && Context::shouldBeGloballyIndexed(VD)) {
4017     if (auto GlobalIndex = P.getGlobal(VD)) {
4018       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4019       GlobalInlineDescriptor &GD =
4020           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4021 
4022       GD.InitState = GlobalInitState::InitializerFailed;
4023       GlobalBlock->invokeDtor();
4024     }
4025   }
4026 
4027   return R;
4028 }
4029 
4030 /// Toplevel visitDeclAndReturn().
4031 /// We get here from evaluateAsInitializer().
4032 /// We need to evaluate the initializer and return its value.
4033 template <class Emitter>
4034 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
4035                                            bool ConstantContext) {
4036   std::optional<PrimType> VarT = classify(VD->getType());
4037 
4038   // We only create variables if we're evaluating in a constant context.
4039   // Otherwise, just evaluate the initializer and return it.
4040   if (!ConstantContext) {
4041     DeclScope<Emitter> LS(this, VD);
4042     if (!this->visit(VD->getAnyInitializer()))
4043       return false;
4044     return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals();
4045   }
4046 
4047   LocalScope<Emitter> VDScope(this, VD);
4048   if (!this->visitVarDecl(VD, /*Toplevel=*/true))
4049     return false;
4050 
4051   if (Context::shouldBeGloballyIndexed(VD)) {
4052     auto GlobalIndex = P.getGlobal(VD);
4053     assert(GlobalIndex); // visitVarDecl() didn't return false.
4054     if (VarT) {
4055       if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
4056         return false;
4057     } else {
4058       if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
4059         return false;
4060     }
4061   } else {
4062     auto Local = Locals.find(VD);
4063     assert(Local != Locals.end()); // Same here.
4064     if (VarT) {
4065       if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
4066         return false;
4067     } else {
4068       if (!this->emitGetPtrLocal(Local->second.Offset, VD))
4069         return false;
4070     }
4071   }
4072 
4073   // Return the value.
4074   if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
4075     // If the Ret above failed and this is a global variable, mark it as
4076     // uninitialized, even everything else succeeded.
4077     if (Context::shouldBeGloballyIndexed(VD)) {
4078       auto GlobalIndex = P.getGlobal(VD);
4079       assert(GlobalIndex);
4080       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4081       GlobalInlineDescriptor &GD =
4082           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4083 
4084       GD.InitState = GlobalInitState::InitializerFailed;
4085       GlobalBlock->invokeDtor();
4086     }
4087     return false;
4088   }
4089 
4090   return VDScope.destroyLocals();
4091 }
4092 
4093 template <class Emitter>
4094 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
4095                                                  bool Toplevel) {
4096   // We don't know what to do with these, so just return false.
4097   if (VD->getType().isNull())
4098     return false;
4099 
4100   // This case is EvalEmitter-only. If we won't create any instructions for the
4101   // initializer anyway, don't bother creating the variable in the first place.
4102   if (!this->isActive())
4103     return VarCreationState::NotCreated();
4104 
4105   const Expr *Init = VD->getInit();
4106   std::optional<PrimType> VarT = classify(VD->getType());
4107 
4108   if (Init && Init->isValueDependent())
4109     return false;
4110 
4111   if (Context::shouldBeGloballyIndexed(VD)) {
4112     auto checkDecl = [&]() -> bool {
4113       bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
4114       return !NeedsOp || this->emitCheckDecl(VD, VD);
4115     };
4116 
4117     auto initGlobal = [&](unsigned GlobalIndex) -> bool {
4118       assert(Init);
4119 
4120       if (VarT) {
4121         if (!this->visit(Init))
4122           return checkDecl() && false;
4123 
4124         return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
4125       }
4126 
4127       if (!checkDecl())
4128         return false;
4129 
4130       if (!this->emitGetPtrGlobal(GlobalIndex, Init))
4131         return false;
4132 
4133       if (!visitInitializer(Init))
4134         return false;
4135 
4136       if (!this->emitFinishInit(Init))
4137         return false;
4138 
4139       return this->emitPopPtr(Init);
4140     };
4141 
4142     DeclScope<Emitter> LocalScope(this, VD);
4143 
4144     // We've already seen and initialized this global.
4145     if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
4146       if (P.getPtrGlobal(*GlobalIndex).isInitialized())
4147         return checkDecl();
4148 
4149       // The previous attempt at initialization might've been unsuccessful,
4150       // so let's try this one.
4151       return Init && checkDecl() && initGlobal(*GlobalIndex);
4152     }
4153 
4154     std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
4155 
4156     if (!GlobalIndex)
4157       return false;
4158 
4159     return !Init || (checkDecl() && initGlobal(*GlobalIndex));
4160   } else {
4161     InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
4162 
4163     if (VarT) {
4164       unsigned Offset = this->allocateLocalPrimitive(
4165           VD, *VarT, VD->getType().isConstQualified());
4166       if (Init) {
4167         // If this is a toplevel declaration, create a scope for the
4168         // initializer.
4169         if (Toplevel) {
4170           LocalScope<Emitter> Scope(this);
4171           if (!this->visit(Init))
4172             return false;
4173           return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
4174         } else {
4175           if (!this->visit(Init))
4176             return false;
4177           return this->emitSetLocal(*VarT, Offset, VD);
4178         }
4179       }
4180     } else {
4181       if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
4182         if (!Init)
4183           return true;
4184 
4185         if (!this->emitGetPtrLocal(*Offset, Init))
4186           return false;
4187 
4188         if (!visitInitializer(Init))
4189           return false;
4190 
4191         if (!this->emitFinishInit(Init))
4192           return false;
4193 
4194         return this->emitPopPtr(Init);
4195       }
4196       return false;
4197     }
4198     return true;
4199   }
4200 
4201   return false;
4202 }
4203 
4204 template <class Emitter>
4205 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
4206                                      const Expr *E) {
4207   assert(!DiscardResult);
4208   if (Val.isInt())
4209     return this->emitConst(Val.getInt(), ValType, E);
4210   else if (Val.isFloat())
4211     return this->emitConstFloat(Val.getFloat(), E);
4212 
4213   if (Val.isLValue()) {
4214     if (Val.isNullPointer())
4215       return this->emitNull(ValType, nullptr, E);
4216     APValue::LValueBase Base = Val.getLValueBase();
4217     if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
4218       return this->visit(BaseExpr);
4219     else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
4220       return this->visitDeclRef(VD, E);
4221     }
4222   } else if (Val.isMemberPointer()) {
4223     if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
4224       return this->emitGetMemberPtr(MemberDecl, E);
4225     return this->emitNullMemberPtr(nullptr, E);
4226   }
4227 
4228   return false;
4229 }
4230 
4231 template <class Emitter>
4232 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
4233                                                 const Expr *E) {
4234 
4235   if (Val.isStruct()) {
4236     const Record *R = this->getRecord(E->getType());
4237     assert(R);
4238     for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
4239       const APValue &F = Val.getStructField(I);
4240       const Record::Field *RF = R->getField(I);
4241 
4242       if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
4243         PrimType T = classifyPrim(RF->Decl->getType());
4244         if (!this->visitAPValue(F, T, E))
4245           return false;
4246         if (!this->emitInitField(T, RF->Offset, E))
4247           return false;
4248       } else if (F.isArray()) {
4249         assert(RF->Desc->isPrimitiveArray());
4250         const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
4251         PrimType ElemT = classifyPrim(ArrType->getElementType());
4252         assert(ArrType);
4253 
4254         if (!this->emitGetPtrField(RF->Offset, E))
4255           return false;
4256 
4257         for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
4258           if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
4259             return false;
4260           if (!this->emitInitElem(ElemT, A, E))
4261             return false;
4262         }
4263 
4264         if (!this->emitPopPtr(E))
4265           return false;
4266       } else if (F.isStruct() || F.isUnion()) {
4267         if (!this->emitGetPtrField(RF->Offset, E))
4268           return false;
4269         if (!this->visitAPValueInitializer(F, E))
4270           return false;
4271         if (!this->emitPopPtr(E))
4272           return false;
4273       } else {
4274         assert(false && "I don't think this should be possible");
4275       }
4276     }
4277     return true;
4278   } else if (Val.isUnion()) {
4279     const FieldDecl *UnionField = Val.getUnionField();
4280     const Record *R = this->getRecord(UnionField->getParent());
4281     assert(R);
4282     const APValue &F = Val.getUnionValue();
4283     const Record::Field *RF = R->getField(UnionField);
4284     PrimType T = classifyPrim(RF->Decl->getType());
4285     if (!this->visitAPValue(F, T, E))
4286       return false;
4287     return this->emitInitField(T, RF->Offset, E);
4288   }
4289   // TODO: Other types.
4290 
4291   return false;
4292 }
4293 
4294 template <class Emitter>
4295 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E,
4296                                              unsigned BuiltinID) {
4297   const Function *Func = getFunction(E->getDirectCallee());
4298   if (!Func)
4299     return false;
4300 
4301   // For these, we're expected to ultimately return an APValue pointing
4302   // to the CallExpr. This is needed to get the correct codegen.
4303   if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
4304       BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString ||
4305       BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant ||
4306       BuiltinID == Builtin::BI__builtin_function_start) {
4307     if (std::optional<unsigned> GlobalOffset = P.getOrCreateDummy(E)) {
4308       if (!this->emitGetPtrGlobal(*GlobalOffset, E))
4309         return false;
4310 
4311       if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT))
4312         return this->emitDecayPtr(PT_Ptr, PT, E);
4313       return true;
4314     }
4315     return false;
4316   }
4317 
4318   QualType ReturnType = E->getType();
4319   std::optional<PrimType> ReturnT = classify(E);
4320 
4321   // Non-primitive return type. Prepare storage.
4322   if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
4323     std::optional<unsigned> LocalIndex = allocateLocal(E);
4324     if (!LocalIndex)
4325       return false;
4326     if (!this->emitGetPtrLocal(*LocalIndex, E))
4327       return false;
4328   }
4329 
4330   if (!Func->isUnevaluatedBuiltin()) {
4331     // Put arguments on the stack.
4332     for (const auto *Arg : E->arguments()) {
4333       if (!this->visit(Arg))
4334         return false;
4335     }
4336   }
4337 
4338   if (!this->emitCallBI(Func, E, BuiltinID, E))
4339     return false;
4340 
4341   if (DiscardResult && !ReturnType->isVoidType()) {
4342     assert(ReturnT);
4343     return this->emitPop(*ReturnT, E);
4344   }
4345 
4346   return true;
4347 }
4348 
4349 template <class Emitter>
4350 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
4351   if (unsigned BuiltinID = E->getBuiltinCallee())
4352     return VisitBuiltinCallExpr(E, BuiltinID);
4353 
4354   const FunctionDecl *FuncDecl = E->getDirectCallee();
4355   // Calls to replaceable operator new/operator delete.
4356   if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) {
4357     if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New ||
4358         FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
4359       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new);
4360     } else {
4361       assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete);
4362       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete);
4363     }
4364   }
4365 
4366   QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
4367   std::optional<PrimType> T = classify(ReturnType);
4368   bool HasRVO = !ReturnType->isVoidType() && !T;
4369 
4370   if (HasRVO) {
4371     if (DiscardResult) {
4372       // If we need to discard the return value but the function returns its
4373       // value via an RVO pointer, we need to create one such pointer just
4374       // for this call.
4375       if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4376         if (!this->emitGetPtrLocal(*LocalIndex, E))
4377           return false;
4378       }
4379     } else {
4380       // We need the result. Prepare a pointer to return or
4381       // dup the current one.
4382       if (!Initializing) {
4383         if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4384           if (!this->emitGetPtrLocal(*LocalIndex, E))
4385             return false;
4386         }
4387       }
4388       if (!this->emitDupPtr(E))
4389         return false;
4390     }
4391   }
4392 
4393   SmallVector<const Expr *, 8> Args(
4394       llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
4395 
4396   bool IsAssignmentOperatorCall = false;
4397   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
4398       OCE && OCE->isAssignmentOp()) {
4399     // Just like with regular assignments, we need to special-case assignment
4400     // operators here and evaluate the RHS (the second arg) before the LHS (the
4401     // first arg. We fix this by using a Flip op later.
4402     assert(Args.size() == 2);
4403     IsAssignmentOperatorCall = true;
4404     std::reverse(Args.begin(), Args.end());
4405   }
4406   // Calling a static operator will still
4407   // pass the instance, but we don't need it.
4408   // Discard it here.
4409   if (isa<CXXOperatorCallExpr>(E)) {
4410     if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
4411         MD && MD->isStatic()) {
4412       if (!this->discard(E->getArg(0)))
4413         return false;
4414       // Drop first arg.
4415       Args.erase(Args.begin());
4416     }
4417   }
4418 
4419   std::optional<unsigned> CalleeOffset;
4420   // Add the (optional, implicit) This pointer.
4421   if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
4422     if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
4423       // If we end up creating a CallPtr op for this, we need the base of the
4424       // member pointer as the instance pointer, and later extract the function
4425       // decl as the function pointer.
4426       const Expr *Callee = E->getCallee();
4427       CalleeOffset =
4428           this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
4429       if (!this->visit(Callee))
4430         return false;
4431       if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
4432         return false;
4433       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4434         return false;
4435       if (!this->emitGetMemberPtrBase(E))
4436         return false;
4437     } else if (!this->visit(MC->getImplicitObjectArgument())) {
4438       return false;
4439     }
4440   } else if (!FuncDecl) {
4441     const Expr *Callee = E->getCallee();
4442     CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false);
4443     if (!this->visit(Callee))
4444       return false;
4445     if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E))
4446       return false;
4447   }
4448 
4449   llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
4450   // Put arguments on the stack.
4451   unsigned ArgIndex = 0;
4452   for (const auto *Arg : Args) {
4453     if (!this->visit(Arg))
4454       return false;
4455 
4456     // If we know the callee already, check the known parametrs for nullability.
4457     if (FuncDecl && NonNullArgs[ArgIndex]) {
4458       PrimType ArgT = classify(Arg).value_or(PT_Ptr);
4459       if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
4460         if (!this->emitCheckNonNullArg(ArgT, Arg))
4461           return false;
4462       }
4463     }
4464     ++ArgIndex;
4465   }
4466 
4467   // Undo the argument reversal we did earlier.
4468   if (IsAssignmentOperatorCall) {
4469     assert(Args.size() == 2);
4470     PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
4471     PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
4472     if (!this->emitFlip(Arg2T, Arg1T, E))
4473       return false;
4474   }
4475 
4476   if (FuncDecl) {
4477     const Function *Func = getFunction(FuncDecl);
4478     if (!Func)
4479       return false;
4480     assert(HasRVO == Func->hasRVO());
4481 
4482     bool HasQualifier = false;
4483     if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
4484       HasQualifier = ME->hasQualifier();
4485 
4486     bool IsVirtual = false;
4487     if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
4488       IsVirtual = MD->isVirtual();
4489 
4490     // In any case call the function. The return value will end up on the stack
4491     // and if the function has RVO, we already have the pointer on the stack to
4492     // write the result into.
4493     if (IsVirtual && !HasQualifier) {
4494       uint32_t VarArgSize = 0;
4495       unsigned NumParams =
4496           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4497       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4498         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4499 
4500       if (!this->emitCallVirt(Func, VarArgSize, E))
4501         return false;
4502     } else if (Func->isVariadic()) {
4503       uint32_t VarArgSize = 0;
4504       unsigned NumParams =
4505           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4506       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4507         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4508       if (!this->emitCallVar(Func, VarArgSize, E))
4509         return false;
4510     } else {
4511       if (!this->emitCall(Func, 0, E))
4512         return false;
4513     }
4514   } else {
4515     // Indirect call. Visit the callee, which will leave a FunctionPointer on
4516     // the stack. Cleanup of the returned value if necessary will be done after
4517     // the function call completed.
4518 
4519     // Sum the size of all args from the call expr.
4520     uint32_t ArgSize = 0;
4521     for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
4522       ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4523 
4524     // Get the callee, either from a member pointer or function pointer saved in
4525     // CalleeOffset.
4526     if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
4527       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4528         return false;
4529       if (!this->emitGetMemberPtrDecl(E))
4530         return false;
4531     } else {
4532       if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E))
4533         return false;
4534     }
4535     if (!this->emitCallPtr(ArgSize, E, E))
4536       return false;
4537   }
4538 
4539   // Cleanup for discarded return values.
4540   if (DiscardResult && !ReturnType->isVoidType() && T)
4541     return this->emitPop(*T, E);
4542 
4543   return true;
4544 }
4545 
4546 template <class Emitter>
4547 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4548   SourceLocScope<Emitter> SLS(this, E);
4549 
4550   return this->delegate(E->getExpr());
4551 }
4552 
4553 template <class Emitter>
4554 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
4555   SourceLocScope<Emitter> SLS(this, E);
4556 
4557   const Expr *SubExpr = E->getExpr();
4558   if (std::optional<PrimType> T = classify(E->getExpr()))
4559     return this->visit(SubExpr);
4560 
4561   assert(Initializing);
4562   return this->visitInitializer(SubExpr);
4563 }
4564 
4565 template <class Emitter>
4566 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4567   if (DiscardResult)
4568     return true;
4569 
4570   return this->emitConstBool(E->getValue(), E);
4571 }
4572 
4573 template <class Emitter>
4574 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
4575     const CXXNullPtrLiteralExpr *E) {
4576   if (DiscardResult)
4577     return true;
4578 
4579   return this->emitNullPtr(nullptr, E);
4580 }
4581 
4582 template <class Emitter>
4583 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
4584   if (DiscardResult)
4585     return true;
4586 
4587   assert(E->getType()->isIntegerType());
4588 
4589   PrimType T = classifyPrim(E->getType());
4590   return this->emitZero(T, E);
4591 }
4592 
4593 template <class Emitter>
4594 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
4595   if (DiscardResult)
4596     return true;
4597 
4598   if (this->LambdaThisCapture.Offset > 0) {
4599     if (this->LambdaThisCapture.IsPtr)
4600       return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
4601     return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
4602   }
4603 
4604   // In some circumstances, the 'this' pointer does not actually refer to the
4605   // instance pointer of the current function frame, but e.g. to the declaration
4606   // currently being initialized. Here we emit the necessary instruction(s) for
4607   // this scenario.
4608   if (!InitStackActive || !E->isImplicit())
4609     return this->emitThis(E);
4610 
4611   if (InitStackActive && !InitStack.empty()) {
4612     unsigned StartIndex = 0;
4613     for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
4614       if (InitStack[StartIndex].Kind != InitLink::K_Field &&
4615           InitStack[StartIndex].Kind != InitLink::K_Elem)
4616         break;
4617     }
4618 
4619     for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) {
4620       if (!InitStack[I].template emit<Emitter>(this, E))
4621         return false;
4622     }
4623     return true;
4624   }
4625   return this->emitThis(E);
4626 }
4627 
4628 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
4629   switch (S->getStmtClass()) {
4630   case Stmt::CompoundStmtClass:
4631     return visitCompoundStmt(cast<CompoundStmt>(S));
4632   case Stmt::DeclStmtClass:
4633     return visitDeclStmt(cast<DeclStmt>(S));
4634   case Stmt::ReturnStmtClass:
4635     return visitReturnStmt(cast<ReturnStmt>(S));
4636   case Stmt::IfStmtClass:
4637     return visitIfStmt(cast<IfStmt>(S));
4638   case Stmt::WhileStmtClass:
4639     return visitWhileStmt(cast<WhileStmt>(S));
4640   case Stmt::DoStmtClass:
4641     return visitDoStmt(cast<DoStmt>(S));
4642   case Stmt::ForStmtClass:
4643     return visitForStmt(cast<ForStmt>(S));
4644   case Stmt::CXXForRangeStmtClass:
4645     return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
4646   case Stmt::BreakStmtClass:
4647     return visitBreakStmt(cast<BreakStmt>(S));
4648   case Stmt::ContinueStmtClass:
4649     return visitContinueStmt(cast<ContinueStmt>(S));
4650   case Stmt::SwitchStmtClass:
4651     return visitSwitchStmt(cast<SwitchStmt>(S));
4652   case Stmt::CaseStmtClass:
4653     return visitCaseStmt(cast<CaseStmt>(S));
4654   case Stmt::DefaultStmtClass:
4655     return visitDefaultStmt(cast<DefaultStmt>(S));
4656   case Stmt::AttributedStmtClass:
4657     return visitAttributedStmt(cast<AttributedStmt>(S));
4658   case Stmt::CXXTryStmtClass:
4659     return visitCXXTryStmt(cast<CXXTryStmt>(S));
4660   case Stmt::NullStmtClass:
4661     return true;
4662   // Always invalid statements.
4663   case Stmt::GCCAsmStmtClass:
4664   case Stmt::MSAsmStmtClass:
4665   case Stmt::GotoStmtClass:
4666     return this->emitInvalid(S);
4667   case Stmt::LabelStmtClass:
4668     return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
4669   default: {
4670     if (const auto *E = dyn_cast<Expr>(S))
4671       return this->discard(E);
4672     return false;
4673   }
4674   }
4675 }
4676 
4677 template <class Emitter>
4678 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
4679   BlockScope<Emitter> Scope(this);
4680   for (const auto *InnerStmt : S->body())
4681     if (!visitStmt(InnerStmt))
4682       return false;
4683   return Scope.destroyLocals();
4684 }
4685 
4686 template <class Emitter>
4687 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
4688   for (const auto *D : DS->decls()) {
4689     if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
4690             FunctionDecl>(D))
4691       continue;
4692 
4693     const auto *VD = dyn_cast<VarDecl>(D);
4694     if (!VD)
4695       return false;
4696     if (!this->visitVarDecl(VD))
4697       return false;
4698   }
4699 
4700   return true;
4701 }
4702 
4703 template <class Emitter>
4704 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
4705   if (this->InStmtExpr)
4706     return this->emitUnsupported(RS);
4707 
4708   if (const Expr *RE = RS->getRetValue()) {
4709     LocalScope<Emitter> RetScope(this);
4710     if (ReturnType) {
4711       // Primitive types are simply returned.
4712       if (!this->visit(RE))
4713         return false;
4714       this->emitCleanup();
4715       return this->emitRet(*ReturnType, RS);
4716     } else if (RE->getType()->isVoidType()) {
4717       if (!this->visit(RE))
4718         return false;
4719     } else {
4720       // RVO - construct the value in the return location.
4721       if (!this->emitRVOPtr(RE))
4722         return false;
4723       if (!this->visitInitializer(RE))
4724         return false;
4725       if (!this->emitPopPtr(RE))
4726         return false;
4727 
4728       this->emitCleanup();
4729       return this->emitRetVoid(RS);
4730     }
4731   }
4732 
4733   // Void return.
4734   this->emitCleanup();
4735   return this->emitRetVoid(RS);
4736 }
4737 
4738 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
4739   if (auto *CondInit = IS->getInit())
4740     if (!visitStmt(CondInit))
4741       return false;
4742 
4743   if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
4744     if (!visitDeclStmt(CondDecl))
4745       return false;
4746 
4747   // Compile condition.
4748   if (IS->isNonNegatedConsteval()) {
4749     if (!this->emitIsConstantContext(IS))
4750       return false;
4751   } else if (IS->isNegatedConsteval()) {
4752     if (!this->emitIsConstantContext(IS))
4753       return false;
4754     if (!this->emitInv(IS))
4755       return false;
4756   } else {
4757     if (!this->visitBool(IS->getCond()))
4758       return false;
4759   }
4760 
4761   if (const Stmt *Else = IS->getElse()) {
4762     LabelTy LabelElse = this->getLabel();
4763     LabelTy LabelEnd = this->getLabel();
4764     if (!this->jumpFalse(LabelElse))
4765       return false;
4766     if (!visitStmt(IS->getThen()))
4767       return false;
4768     if (!this->jump(LabelEnd))
4769       return false;
4770     this->emitLabel(LabelElse);
4771     if (!visitStmt(Else))
4772       return false;
4773     this->emitLabel(LabelEnd);
4774   } else {
4775     LabelTy LabelEnd = this->getLabel();
4776     if (!this->jumpFalse(LabelEnd))
4777       return false;
4778     if (!visitStmt(IS->getThen()))
4779       return false;
4780     this->emitLabel(LabelEnd);
4781   }
4782 
4783   return true;
4784 }
4785 
4786 template <class Emitter>
4787 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
4788   const Expr *Cond = S->getCond();
4789   const Stmt *Body = S->getBody();
4790 
4791   LabelTy CondLabel = this->getLabel(); // Label before the condition.
4792   LabelTy EndLabel = this->getLabel();  // Label after the loop.
4793   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4794 
4795   this->fallthrough(CondLabel);
4796   this->emitLabel(CondLabel);
4797 
4798   {
4799     LocalScope<Emitter> CondScope(this);
4800     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4801       if (!visitDeclStmt(CondDecl))
4802         return false;
4803 
4804     if (!this->visitBool(Cond))
4805       return false;
4806     if (!this->jumpFalse(EndLabel))
4807       return false;
4808 
4809     if (!this->visitStmt(Body))
4810       return false;
4811 
4812     if (!CondScope.destroyLocals())
4813       return false;
4814   }
4815   if (!this->jump(CondLabel))
4816     return false;
4817   this->fallthrough(EndLabel);
4818   this->emitLabel(EndLabel);
4819 
4820   return true;
4821 }
4822 
4823 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
4824   const Expr *Cond = S->getCond();
4825   const Stmt *Body = S->getBody();
4826 
4827   LabelTy StartLabel = this->getLabel();
4828   LabelTy EndLabel = this->getLabel();
4829   LabelTy CondLabel = this->getLabel();
4830   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4831 
4832   this->fallthrough(StartLabel);
4833   this->emitLabel(StartLabel);
4834 
4835   {
4836     LocalScope<Emitter> CondScope(this);
4837     if (!this->visitStmt(Body))
4838       return false;
4839     this->fallthrough(CondLabel);
4840     this->emitLabel(CondLabel);
4841     if (!this->visitBool(Cond))
4842       return false;
4843 
4844     if (!CondScope.destroyLocals())
4845       return false;
4846   }
4847   if (!this->jumpTrue(StartLabel))
4848     return false;
4849 
4850   this->fallthrough(EndLabel);
4851   this->emitLabel(EndLabel);
4852   return true;
4853 }
4854 
4855 template <class Emitter>
4856 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
4857   // for (Init; Cond; Inc) { Body }
4858   const Stmt *Init = S->getInit();
4859   const Expr *Cond = S->getCond();
4860   const Expr *Inc = S->getInc();
4861   const Stmt *Body = S->getBody();
4862 
4863   LabelTy EndLabel = this->getLabel();
4864   LabelTy CondLabel = this->getLabel();
4865   LabelTy IncLabel = this->getLabel();
4866   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4867 
4868   if (Init && !this->visitStmt(Init))
4869     return false;
4870 
4871   this->fallthrough(CondLabel);
4872   this->emitLabel(CondLabel);
4873 
4874   {
4875     LocalScope<Emitter> CondScope(this);
4876     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4877       if (!visitDeclStmt(CondDecl))
4878         return false;
4879 
4880     if (Cond) {
4881       if (!this->visitBool(Cond))
4882         return false;
4883       if (!this->jumpFalse(EndLabel))
4884         return false;
4885     }
4886 
4887     if (Body && !this->visitStmt(Body))
4888       return false;
4889 
4890     this->fallthrough(IncLabel);
4891     this->emitLabel(IncLabel);
4892     if (Inc && !this->discard(Inc))
4893       return false;
4894 
4895     if (!CondScope.destroyLocals())
4896       return false;
4897   }
4898   if (!this->jump(CondLabel))
4899     return false;
4900 
4901   this->fallthrough(EndLabel);
4902   this->emitLabel(EndLabel);
4903   return true;
4904 }
4905 
4906 template <class Emitter>
4907 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
4908   const Stmt *Init = S->getInit();
4909   const Expr *Cond = S->getCond();
4910   const Expr *Inc = S->getInc();
4911   const Stmt *Body = S->getBody();
4912   const Stmt *BeginStmt = S->getBeginStmt();
4913   const Stmt *RangeStmt = S->getRangeStmt();
4914   const Stmt *EndStmt = S->getEndStmt();
4915   const VarDecl *LoopVar = S->getLoopVariable();
4916 
4917   LabelTy EndLabel = this->getLabel();
4918   LabelTy CondLabel = this->getLabel();
4919   LabelTy IncLabel = this->getLabel();
4920   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4921 
4922   // Emit declarations needed in the loop.
4923   if (Init && !this->visitStmt(Init))
4924     return false;
4925   if (!this->visitStmt(RangeStmt))
4926     return false;
4927   if (!this->visitStmt(BeginStmt))
4928     return false;
4929   if (!this->visitStmt(EndStmt))
4930     return false;
4931 
4932   // Now the condition as well as the loop variable assignment.
4933   this->fallthrough(CondLabel);
4934   this->emitLabel(CondLabel);
4935   if (!this->visitBool(Cond))
4936     return false;
4937   if (!this->jumpFalse(EndLabel))
4938     return false;
4939 
4940   if (!this->visitVarDecl(LoopVar))
4941     return false;
4942 
4943   // Body.
4944   {
4945     if (!this->visitStmt(Body))
4946       return false;
4947 
4948     this->fallthrough(IncLabel);
4949     this->emitLabel(IncLabel);
4950     if (!this->discard(Inc))
4951       return false;
4952   }
4953 
4954   if (!this->jump(CondLabel))
4955     return false;
4956 
4957   this->fallthrough(EndLabel);
4958   this->emitLabel(EndLabel);
4959   return true;
4960 }
4961 
4962 template <class Emitter>
4963 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
4964   if (!BreakLabel)
4965     return false;
4966 
4967   for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope;
4968        C = C->getParent())
4969     C->emitDestruction();
4970   return this->jump(*BreakLabel);
4971 }
4972 
4973 template <class Emitter>
4974 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
4975   if (!ContinueLabel)
4976     return false;
4977 
4978   for (VariableScope<Emitter> *C = VarScope;
4979        C && C->getParent() != ContinueVarScope; C = C->getParent())
4980     C->emitDestruction();
4981   return this->jump(*ContinueLabel);
4982 }
4983 
4984 template <class Emitter>
4985 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
4986   const Expr *Cond = S->getCond();
4987   PrimType CondT = this->classifyPrim(Cond->getType());
4988   LocalScope<Emitter> LS(this);
4989 
4990   LabelTy EndLabel = this->getLabel();
4991   OptLabelTy DefaultLabel = std::nullopt;
4992   unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
4993 
4994   if (const auto *CondInit = S->getInit())
4995     if (!visitStmt(CondInit))
4996       return false;
4997 
4998   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4999     if (!visitDeclStmt(CondDecl))
5000       return false;
5001 
5002   // Initialize condition variable.
5003   if (!this->visit(Cond))
5004     return false;
5005   if (!this->emitSetLocal(CondT, CondVar, S))
5006     return false;
5007 
5008   CaseMap CaseLabels;
5009   // Create labels and comparison ops for all case statements.
5010   for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
5011        SC = SC->getNextSwitchCase()) {
5012     if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
5013       // FIXME: Implement ranges.
5014       if (CS->caseStmtIsGNURange())
5015         return false;
5016       CaseLabels[SC] = this->getLabel();
5017 
5018       const Expr *Value = CS->getLHS();
5019       PrimType ValueT = this->classifyPrim(Value->getType());
5020 
5021       // Compare the case statement's value to the switch condition.
5022       if (!this->emitGetLocal(CondT, CondVar, CS))
5023         return false;
5024       if (!this->visit(Value))
5025         return false;
5026 
5027       // Compare and jump to the case label.
5028       if (!this->emitEQ(ValueT, S))
5029         return false;
5030       if (!this->jumpTrue(CaseLabels[CS]))
5031         return false;
5032     } else {
5033       assert(!DefaultLabel);
5034       DefaultLabel = this->getLabel();
5035     }
5036   }
5037 
5038   // If none of the conditions above were true, fall through to the default
5039   // statement or jump after the switch statement.
5040   if (DefaultLabel) {
5041     if (!this->jump(*DefaultLabel))
5042       return false;
5043   } else {
5044     if (!this->jump(EndLabel))
5045       return false;
5046   }
5047 
5048   SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
5049   if (!this->visitStmt(S->getBody()))
5050     return false;
5051   this->emitLabel(EndLabel);
5052 
5053   return LS.destroyLocals();
5054 }
5055 
5056 template <class Emitter>
5057 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
5058   this->emitLabel(CaseLabels[S]);
5059   return this->visitStmt(S->getSubStmt());
5060 }
5061 
5062 template <class Emitter>
5063 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
5064   this->emitLabel(*DefaultLabel);
5065   return this->visitStmt(S->getSubStmt());
5066 }
5067 
5068 template <class Emitter>
5069 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
5070   if (this->Ctx.getLangOpts().CXXAssumptions &&
5071       !this->Ctx.getLangOpts().MSVCCompat) {
5072     for (const Attr *A : S->getAttrs()) {
5073       auto *AA = dyn_cast<CXXAssumeAttr>(A);
5074       if (!AA)
5075         continue;
5076 
5077       assert(isa<NullStmt>(S->getSubStmt()));
5078 
5079       const Expr *Assumption = AA->getAssumption();
5080       if (Assumption->isValueDependent())
5081         return false;
5082 
5083       if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
5084         continue;
5085 
5086       // Evaluate assumption.
5087       if (!this->visitBool(Assumption))
5088         return false;
5089 
5090       if (!this->emitAssume(Assumption))
5091         return false;
5092     }
5093   }
5094 
5095   // Ignore other attributes.
5096   return this->visitStmt(S->getSubStmt());
5097 }
5098 
5099 template <class Emitter>
5100 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
5101   // Ignore all handlers.
5102   return this->visitStmt(S->getTryBlock());
5103 }
5104 
5105 template <class Emitter>
5106 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
5107   assert(MD->isLambdaStaticInvoker());
5108   assert(MD->hasBody());
5109   assert(cast<CompoundStmt>(MD->getBody())->body_empty());
5110 
5111   const CXXRecordDecl *ClosureClass = MD->getParent();
5112   const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
5113   assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
5114   const Function *Func = this->getFunction(LambdaCallOp);
5115   if (!Func)
5116     return false;
5117   assert(Func->hasThisPointer());
5118   assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
5119 
5120   if (Func->hasRVO()) {
5121     if (!this->emitRVOPtr(MD))
5122       return false;
5123   }
5124 
5125   // The lambda call operator needs an instance pointer, but we don't have
5126   // one here, and we don't need one either because the lambda cannot have
5127   // any captures, as verified above. Emit a null pointer. This is then
5128   // special-cased when interpreting to not emit any misleading diagnostics.
5129   if (!this->emitNullPtr(nullptr, MD))
5130     return false;
5131 
5132   // Forward all arguments from the static invoker to the lambda call operator.
5133   for (const ParmVarDecl *PVD : MD->parameters()) {
5134     auto It = this->Params.find(PVD);
5135     assert(It != this->Params.end());
5136 
5137     // We do the lvalue-to-rvalue conversion manually here, so no need
5138     // to care about references.
5139     PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
5140     if (!this->emitGetParam(ParamType, It->second.Offset, MD))
5141       return false;
5142   }
5143 
5144   if (!this->emitCall(Func, 0, LambdaCallOp))
5145     return false;
5146 
5147   this->emitCleanup();
5148   if (ReturnType)
5149     return this->emitRet(*ReturnType, MD);
5150 
5151   // Nothing to do, since we emitted the RVO pointer above.
5152   return this->emitRetVoid(MD);
5153 }
5154 
5155 template <class Emitter>
5156 bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
5157   if (Ctx.getLangOpts().CPlusPlus23)
5158     return true;
5159 
5160   if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
5161     return true;
5162 
5163   return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
5164 }
5165 
5166 template <class Emitter>
5167 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
5168   assert(!ReturnType);
5169 
5170   auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
5171                                   const Expr *InitExpr) -> bool {
5172     // We don't know what to do with these, so just return false.
5173     if (InitExpr->getType().isNull())
5174       return false;
5175 
5176     if (std::optional<PrimType> T = this->classify(InitExpr)) {
5177       if (!this->visit(InitExpr))
5178         return false;
5179 
5180       if (F->isBitField())
5181         return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
5182       return this->emitInitThisField(*T, FieldOffset, InitExpr);
5183     }
5184     // Non-primitive case. Get a pointer to the field-to-initialize
5185     // on the stack and call visitInitialzer() for it.
5186     InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
5187     if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
5188       return false;
5189 
5190     if (!this->visitInitializer(InitExpr))
5191       return false;
5192 
5193     return this->emitFinishInitPop(InitExpr);
5194   };
5195 
5196   const RecordDecl *RD = Ctor->getParent();
5197   const Record *R = this->getRecord(RD);
5198   if (!R)
5199     return false;
5200 
5201   if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
5202     // union copy and move ctors are special.
5203     assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
5204     if (!this->emitThis(Ctor))
5205       return false;
5206 
5207     auto PVD = Ctor->getParamDecl(0);
5208     ParamOffset PO = this->Params[PVD]; // Must exist.
5209 
5210     if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
5211       return false;
5212 
5213     return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
5214            this->emitRetVoid(Ctor);
5215   }
5216 
5217   InitLinkScope<Emitter> InitScope(this, InitLink::This());
5218   for (const auto *Init : Ctor->inits()) {
5219     // Scope needed for the initializers.
5220     BlockScope<Emitter> Scope(this);
5221 
5222     const Expr *InitExpr = Init->getInit();
5223     if (const FieldDecl *Member = Init->getMember()) {
5224       const Record::Field *F = R->getField(Member);
5225 
5226       if (!emitFieldInitializer(F, F->Offset, InitExpr))
5227         return false;
5228     } else if (const Type *Base = Init->getBaseClass()) {
5229       const auto *BaseDecl = Base->getAsCXXRecordDecl();
5230       assert(BaseDecl);
5231 
5232       if (Init->isBaseVirtual()) {
5233         assert(R->getVirtualBase(BaseDecl));
5234         if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
5235           return false;
5236 
5237       } else {
5238         // Base class initializer.
5239         // Get This Base and call initializer on it.
5240         const Record::Base *B = R->getBase(BaseDecl);
5241         assert(B);
5242         if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
5243           return false;
5244       }
5245 
5246       if (!this->visitInitializer(InitExpr))
5247         return false;
5248       if (!this->emitFinishInitPop(InitExpr))
5249         return false;
5250     } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
5251       assert(IFD->getChainingSize() >= 2);
5252 
5253       unsigned NestedFieldOffset = 0;
5254       const Record::Field *NestedField = nullptr;
5255       for (const NamedDecl *ND : IFD->chain()) {
5256         const auto *FD = cast<FieldDecl>(ND);
5257         const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
5258         assert(FieldRecord);
5259 
5260         NestedField = FieldRecord->getField(FD);
5261         assert(NestedField);
5262 
5263         NestedFieldOffset += NestedField->Offset;
5264       }
5265       assert(NestedField);
5266 
5267       if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
5268         return false;
5269     } else {
5270       assert(Init->isDelegatingInitializer());
5271       if (!this->emitThis(InitExpr))
5272         return false;
5273       if (!this->visitInitializer(Init->getInit()))
5274         return false;
5275       if (!this->emitPopPtr(InitExpr))
5276         return false;
5277     }
5278 
5279     if (!Scope.destroyLocals())
5280       return false;
5281   }
5282 
5283   if (const auto *Body = Ctor->getBody())
5284     if (!visitStmt(Body))
5285       return false;
5286 
5287   return this->emitRetVoid(SourceInfo{});
5288 }
5289 
5290 template <class Emitter>
5291 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
5292   const RecordDecl *RD = Dtor->getParent();
5293   const Record *R = this->getRecord(RD);
5294   if (!R)
5295     return false;
5296 
5297   if (!Dtor->isTrivial() && Dtor->getBody()) {
5298     if (!this->visitStmt(Dtor->getBody()))
5299       return false;
5300   }
5301 
5302   if (!this->emitThis(Dtor))
5303     return false;
5304 
5305   assert(R);
5306   if (!R->isUnion()) {
5307     // First, destroy all fields.
5308     for (const Record::Field &Field : llvm::reverse(R->fields())) {
5309       const Descriptor *D = Field.Desc;
5310       if (!D->isPrimitive() && !D->isPrimitiveArray()) {
5311         if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
5312           return false;
5313         if (!this->emitDestruction(D, SourceInfo{}))
5314           return false;
5315         if (!this->emitPopPtr(SourceInfo{}))
5316           return false;
5317       }
5318     }
5319   }
5320 
5321   for (const Record::Base &Base : llvm::reverse(R->bases())) {
5322     if (Base.R->isAnonymousUnion())
5323       continue;
5324 
5325     if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
5326       return false;
5327     if (!this->emitRecordDestruction(Base.R, {}))
5328       return false;
5329     if (!this->emitPopPtr(SourceInfo{}))
5330       return false;
5331   }
5332 
5333   // FIXME: Virtual bases.
5334   return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
5335 }
5336 
5337 template <class Emitter>
5338 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
5339   // Classify the return type.
5340   ReturnType = this->classify(F->getReturnType());
5341 
5342   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
5343     return this->compileConstructor(Ctor);
5344   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
5345     return this->compileDestructor(Dtor);
5346 
5347   // Emit custom code if this is a lambda static invoker.
5348   if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
5349       MD && MD->isLambdaStaticInvoker())
5350     return this->emitLambdaStaticInvokerBody(MD);
5351 
5352   // Regular functions.
5353   if (const auto *Body = F->getBody())
5354     if (!visitStmt(Body))
5355       return false;
5356 
5357   // Emit a guard return to protect against a code path missing one.
5358   if (F->getReturnType()->isVoidType())
5359     return this->emitRetVoid(SourceInfo{});
5360   return this->emitNoRet(SourceInfo{});
5361 }
5362 
5363 template <class Emitter>
5364 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
5365   const Expr *SubExpr = E->getSubExpr();
5366   if (SubExpr->getType()->isAnyComplexType())
5367     return this->VisitComplexUnaryOperator(E);
5368   if (SubExpr->getType()->isVectorType())
5369     return this->VisitVectorUnaryOperator(E);
5370   std::optional<PrimType> T = classify(SubExpr->getType());
5371 
5372   switch (E->getOpcode()) {
5373   case UO_PostInc: { // x++
5374     if (!Ctx.getLangOpts().CPlusPlus14)
5375       return this->emitInvalid(E);
5376     if (!T)
5377       return this->emitError(E);
5378 
5379     if (!this->visit(SubExpr))
5380       return false;
5381 
5382     if (T == PT_Ptr || T == PT_FnPtr) {
5383       if (!this->emitIncPtr(E))
5384         return false;
5385 
5386       return DiscardResult ? this->emitPopPtr(E) : true;
5387     }
5388 
5389     if (T == PT_Float) {
5390       return DiscardResult ? this->emitIncfPop(getFPOptions(E), E)
5391                            : this->emitIncf(getFPOptions(E), E);
5392     }
5393 
5394     return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
5395   }
5396   case UO_PostDec: { // x--
5397     if (!Ctx.getLangOpts().CPlusPlus14)
5398       return this->emitInvalid(E);
5399     if (!T)
5400       return this->emitError(E);
5401 
5402     if (!this->visit(SubExpr))
5403       return false;
5404 
5405     if (T == PT_Ptr || T == PT_FnPtr) {
5406       if (!this->emitDecPtr(E))
5407         return false;
5408 
5409       return DiscardResult ? this->emitPopPtr(E) : true;
5410     }
5411 
5412     if (T == PT_Float) {
5413       return DiscardResult ? this->emitDecfPop(getFPOptions(E), E)
5414                            : this->emitDecf(getFPOptions(E), E);
5415     }
5416 
5417     return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
5418   }
5419   case UO_PreInc: { // ++x
5420     if (!Ctx.getLangOpts().CPlusPlus14)
5421       return this->emitInvalid(E);
5422     if (!T)
5423       return this->emitError(E);
5424 
5425     if (!this->visit(SubExpr))
5426       return false;
5427 
5428     if (T == PT_Ptr || T == PT_FnPtr) {
5429       if (!this->emitLoadPtr(E))
5430         return false;
5431       if (!this->emitConstUint8(1, E))
5432         return false;
5433       if (!this->emitAddOffsetUint8(E))
5434         return false;
5435       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5436     }
5437 
5438     // Post-inc and pre-inc are the same if the value is to be discarded.
5439     if (DiscardResult) {
5440       if (T == PT_Float)
5441         return this->emitIncfPop(getFPOptions(E), E);
5442       return this->emitIncPop(*T, E);
5443     }
5444 
5445     if (T == PT_Float) {
5446       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5447       if (!this->emitLoadFloat(E))
5448         return false;
5449       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5450         return false;
5451       if (!this->emitAddf(getFPOptions(E), E))
5452         return false;
5453       if (!this->emitStoreFloat(E))
5454         return false;
5455     } else {
5456       assert(isIntegralType(*T));
5457       if (!this->emitLoad(*T, E))
5458         return false;
5459       if (!this->emitConst(1, E))
5460         return false;
5461       if (!this->emitAdd(*T, E))
5462         return false;
5463       if (!this->emitStore(*T, E))
5464         return false;
5465     }
5466     return E->isGLValue() || this->emitLoadPop(*T, E);
5467   }
5468   case UO_PreDec: { // --x
5469     if (!Ctx.getLangOpts().CPlusPlus14)
5470       return this->emitInvalid(E);
5471     if (!T)
5472       return this->emitError(E);
5473 
5474     if (!this->visit(SubExpr))
5475       return false;
5476 
5477     if (T == PT_Ptr || T == PT_FnPtr) {
5478       if (!this->emitLoadPtr(E))
5479         return false;
5480       if (!this->emitConstUint8(1, E))
5481         return false;
5482       if (!this->emitSubOffsetUint8(E))
5483         return false;
5484       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5485     }
5486 
5487     // Post-dec and pre-dec are the same if the value is to be discarded.
5488     if (DiscardResult) {
5489       if (T == PT_Float)
5490         return this->emitDecfPop(getFPOptions(E), E);
5491       return this->emitDecPop(*T, E);
5492     }
5493 
5494     if (T == PT_Float) {
5495       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5496       if (!this->emitLoadFloat(E))
5497         return false;
5498       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5499         return false;
5500       if (!this->emitSubf(getFPOptions(E), E))
5501         return false;
5502       if (!this->emitStoreFloat(E))
5503         return false;
5504     } else {
5505       assert(isIntegralType(*T));
5506       if (!this->emitLoad(*T, E))
5507         return false;
5508       if (!this->emitConst(1, E))
5509         return false;
5510       if (!this->emitSub(*T, E))
5511         return false;
5512       if (!this->emitStore(*T, E))
5513         return false;
5514     }
5515     return E->isGLValue() || this->emitLoadPop(*T, E);
5516   }
5517   case UO_LNot: // !x
5518     if (!T)
5519       return this->emitError(E);
5520 
5521     if (DiscardResult)
5522       return this->discard(SubExpr);
5523 
5524     if (!this->visitBool(SubExpr))
5525       return false;
5526 
5527     if (!this->emitInv(E))
5528       return false;
5529 
5530     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5531       return this->emitCast(PT_Bool, ET, E);
5532     return true;
5533   case UO_Minus: // -x
5534     if (!T)
5535       return this->emitError(E);
5536 
5537     if (!this->visit(SubExpr))
5538       return false;
5539     return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
5540   case UO_Plus: // +x
5541     if (!T)
5542       return this->emitError(E);
5543 
5544     if (!this->visit(SubExpr)) // noop
5545       return false;
5546     return DiscardResult ? this->emitPop(*T, E) : true;
5547   case UO_AddrOf: // &x
5548     if (E->getType()->isMemberPointerType()) {
5549       // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5550       // member can be formed.
5551       return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
5552     }
5553     // We should already have a pointer when we get here.
5554     return this->delegate(SubExpr);
5555   case UO_Deref: // *x
5556     if (DiscardResult)
5557       return this->discard(SubExpr);
5558     return this->visit(SubExpr);
5559   case UO_Not: // ~x
5560     if (!T)
5561       return this->emitError(E);
5562 
5563     if (!this->visit(SubExpr))
5564       return false;
5565     return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
5566   case UO_Real: // __real x
5567     assert(T);
5568     return this->delegate(SubExpr);
5569   case UO_Imag: { // __imag x
5570     assert(T);
5571     if (!this->discard(SubExpr))
5572       return false;
5573     return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
5574   }
5575   case UO_Extension:
5576     return this->delegate(SubExpr);
5577   case UO_Coawait:
5578     assert(false && "Unhandled opcode");
5579   }
5580 
5581   return false;
5582 }
5583 
5584 template <class Emitter>
5585 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
5586   const Expr *SubExpr = E->getSubExpr();
5587   assert(SubExpr->getType()->isAnyComplexType());
5588 
5589   if (DiscardResult)
5590     return this->discard(SubExpr);
5591 
5592   std::optional<PrimType> ResT = classify(E);
5593   auto prepareResult = [=]() -> bool {
5594     if (!ResT && !Initializing) {
5595       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5596       if (!LocalIndex)
5597         return false;
5598       return this->emitGetPtrLocal(*LocalIndex, E);
5599     }
5600 
5601     return true;
5602   };
5603 
5604   // The offset of the temporary, if we created one.
5605   unsigned SubExprOffset = ~0u;
5606   auto createTemp = [=, &SubExprOffset]() -> bool {
5607     SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5608     if (!this->visit(SubExpr))
5609       return false;
5610     return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
5611   };
5612 
5613   PrimType ElemT = classifyComplexElementType(SubExpr->getType());
5614   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5615     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5616       return false;
5617     return this->emitArrayElemPop(ElemT, Index, E);
5618   };
5619 
5620   switch (E->getOpcode()) {
5621   case UO_Minus:
5622     if (!prepareResult())
5623       return false;
5624     if (!createTemp())
5625       return false;
5626     for (unsigned I = 0; I != 2; ++I) {
5627       if (!getElem(SubExprOffset, I))
5628         return false;
5629       if (!this->emitNeg(ElemT, E))
5630         return false;
5631       if (!this->emitInitElem(ElemT, I, E))
5632         return false;
5633     }
5634     break;
5635 
5636   case UO_Plus:   // +x
5637   case UO_AddrOf: // &x
5638   case UO_Deref:  // *x
5639     return this->delegate(SubExpr);
5640 
5641   case UO_LNot:
5642     if (!this->visit(SubExpr))
5643       return false;
5644     if (!this->emitComplexBoolCast(SubExpr))
5645       return false;
5646     if (!this->emitInv(E))
5647       return false;
5648     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5649       return this->emitCast(PT_Bool, ET, E);
5650     return true;
5651 
5652   case UO_Real:
5653     return this->emitComplexReal(SubExpr);
5654 
5655   case UO_Imag:
5656     if (!this->visit(SubExpr))
5657       return false;
5658 
5659     if (SubExpr->isLValue()) {
5660       if (!this->emitConstUint8(1, E))
5661         return false;
5662       return this->emitArrayElemPtrPopUint8(E);
5663     }
5664 
5665     // Since our _Complex implementation does not map to a primitive type,
5666     // we sometimes have to do the lvalue-to-rvalue conversion here manually.
5667     return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
5668 
5669   case UO_Not: // ~x
5670     if (!this->visit(SubExpr))
5671       return false;
5672     // Negate the imaginary component.
5673     if (!this->emitArrayElem(ElemT, 1, E))
5674       return false;
5675     if (!this->emitNeg(ElemT, E))
5676       return false;
5677     if (!this->emitInitElem(ElemT, 1, E))
5678       return false;
5679     return DiscardResult ? this->emitPopPtr(E) : true;
5680 
5681   case UO_Extension:
5682     return this->delegate(SubExpr);
5683 
5684   default:
5685     return this->emitInvalid(E);
5686   }
5687 
5688   return true;
5689 }
5690 
5691 template <class Emitter>
5692 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) {
5693   const Expr *SubExpr = E->getSubExpr();
5694   assert(SubExpr->getType()->isVectorType());
5695 
5696   if (DiscardResult)
5697     return this->discard(SubExpr);
5698 
5699   auto UnaryOp = E->getOpcode();
5700   if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot &&
5701       UnaryOp != UO_Not && UnaryOp != UO_AddrOf)
5702     return this->emitInvalid(E);
5703 
5704   // Nothing to do here.
5705   if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf)
5706     return this->delegate(SubExpr);
5707 
5708   if (!Initializing) {
5709     std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5710     if (!LocalIndex)
5711       return false;
5712     if (!this->emitGetPtrLocal(*LocalIndex, E))
5713       return false;
5714   }
5715 
5716   // The offset of the temporary, if we created one.
5717   unsigned SubExprOffset =
5718       this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5719   if (!this->visit(SubExpr))
5720     return false;
5721   if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E))
5722     return false;
5723 
5724   const auto *VecTy = SubExpr->getType()->getAs<VectorType>();
5725   PrimType ElemT = classifyVectorElementType(SubExpr->getType());
5726   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5727     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5728       return false;
5729     return this->emitArrayElemPop(ElemT, Index, E);
5730   };
5731 
5732   switch (UnaryOp) {
5733   case UO_Minus:
5734     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5735       if (!getElem(SubExprOffset, I))
5736         return false;
5737       if (!this->emitNeg(ElemT, E))
5738         return false;
5739       if (!this->emitInitElem(ElemT, I, E))
5740         return false;
5741     }
5742     break;
5743   case UO_LNot: { // !x
5744     // In C++, the logic operators !, &&, || are available for vectors. !v is
5745     // equivalent to v == 0.
5746     //
5747     // The result of the comparison is a vector of the same width and number of
5748     // elements as the comparison operands with a signed integral element type.
5749     //
5750     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
5751     QualType ResultVecTy = E->getType();
5752     PrimType ResultVecElemT =
5753         classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType());
5754     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5755       if (!getElem(SubExprOffset, I))
5756         return false;
5757       // operator ! on vectors returns -1 for 'truth', so negate it.
5758       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
5759         return false;
5760       if (!this->emitInv(E))
5761         return false;
5762       if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E))
5763         return false;
5764       if (!this->emitNeg(ElemT, E))
5765         return false;
5766       if (ElemT != ResultVecElemT &&
5767           !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E))
5768         return false;
5769       if (!this->emitInitElem(ResultVecElemT, I, E))
5770         return false;
5771     }
5772     break;
5773   }
5774   case UO_Not: // ~x
5775     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5776       if (!getElem(SubExprOffset, I))
5777         return false;
5778       if (ElemT == PT_Bool) {
5779         if (!this->emitInv(E))
5780           return false;
5781       } else {
5782         if (!this->emitComp(ElemT, E))
5783           return false;
5784       }
5785       if (!this->emitInitElem(ElemT, I, E))
5786         return false;
5787     }
5788     break;
5789   default:
5790     llvm_unreachable("Unsupported unary operators should be handled up front");
5791   }
5792   return true;
5793 }
5794 
5795 template <class Emitter>
5796 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
5797   if (DiscardResult)
5798     return true;
5799 
5800   if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
5801     return this->emitConst(ECD->getInitVal(), E);
5802   } else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
5803     return this->visit(BD->getBinding());
5804   } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
5805     const Function *F = getFunction(FuncDecl);
5806     return F && this->emitGetFnPtr(F, E);
5807   } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
5808     if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
5809       if (!this->emitGetPtrGlobal(*Index, E))
5810         return false;
5811       if (std::optional<PrimType> T = classify(E->getType())) {
5812         if (!this->visitAPValue(TPOD->getValue(), *T, E))
5813           return false;
5814         return this->emitInitGlobal(*T, *Index, E);
5815       }
5816       return this->visitAPValueInitializer(TPOD->getValue(), E);
5817     }
5818     return false;
5819   }
5820 
5821   // References are implemented via pointers, so when we see a DeclRefExpr
5822   // pointing to a reference, we need to get its value directly (i.e. the
5823   // pointer to the actual value) instead of a pointer to the pointer to the
5824   // value.
5825   bool IsReference = D->getType()->isReferenceType();
5826 
5827   // Check for local/global variables and parameters.
5828   if (auto It = Locals.find(D); It != Locals.end()) {
5829     const unsigned Offset = It->second.Offset;
5830     if (IsReference)
5831       return this->emitGetLocal(PT_Ptr, Offset, E);
5832     return this->emitGetPtrLocal(Offset, E);
5833   } else if (auto GlobalIndex = P.getGlobal(D)) {
5834     if (IsReference) {
5835       if (!Ctx.getLangOpts().CPlusPlus11)
5836         return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
5837       return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
5838     }
5839 
5840     return this->emitGetPtrGlobal(*GlobalIndex, E);
5841   } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
5842     if (auto It = this->Params.find(PVD); It != this->Params.end()) {
5843       if (IsReference || !It->second.IsPtr)
5844         return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
5845 
5846       return this->emitGetPtrParam(It->second.Offset, E);
5847     }
5848   }
5849 
5850   // In case we need to re-visit a declaration.
5851   auto revisit = [&](const VarDecl *VD) -> bool {
5852     auto VarState = this->visitDecl(VD);
5853 
5854     if (VarState.notCreated())
5855       return true;
5856     if (!VarState)
5857       return false;
5858     // Retry.
5859     return this->visitDeclRef(D, E);
5860   };
5861 
5862   // Handle lambda captures.
5863   if (auto It = this->LambdaCaptures.find(D);
5864       It != this->LambdaCaptures.end()) {
5865     auto [Offset, IsPtr] = It->second;
5866 
5867     if (IsPtr)
5868       return this->emitGetThisFieldPtr(Offset, E);
5869     return this->emitGetPtrThisField(Offset, E);
5870   } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
5871              DRE && DRE->refersToEnclosingVariableOrCapture()) {
5872     if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
5873       return revisit(VD);
5874   }
5875 
5876   if (D != InitializingDecl) {
5877     // Try to lazily visit (or emit dummy pointers for) declarations
5878     // we haven't seen yet.
5879     if (Ctx.getLangOpts().CPlusPlus) {
5880       if (const auto *VD = dyn_cast<VarDecl>(D)) {
5881         const auto typeShouldBeVisited = [&](QualType T) -> bool {
5882           if (T.isConstant(Ctx.getASTContext()))
5883             return true;
5884           if (const auto *RT = T->getAs<ReferenceType>())
5885             return RT->getPointeeType().isConstQualified();
5886           return false;
5887         };
5888 
5889         // DecompositionDecls are just proxies for us.
5890         if (isa<DecompositionDecl>(VD))
5891           return revisit(VD);
5892 
5893         if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) &&
5894             typeShouldBeVisited(VD->getType()))
5895           return revisit(VD);
5896 
5897         // FIXME: The evaluateValue() check here is a little ridiculous, since
5898         // it will ultimately call into Context::evaluateAsInitializer(). In
5899         // other words, we're evaluating the initializer, just to know if we can
5900         // evaluate the initializer.
5901         if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) &&
5902             VD->getInit() && !VD->getInit()->isValueDependent() &&
5903             VD->evaluateValue())
5904           return revisit(VD);
5905       }
5906     } else {
5907       if (const auto *VD = dyn_cast<VarDecl>(D);
5908           VD && VD->getAnyInitializer() &&
5909           VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
5910         return revisit(VD);
5911     }
5912   }
5913 
5914   if (std::optional<unsigned> I = P.getOrCreateDummy(D)) {
5915     if (!this->emitGetPtrGlobal(*I, E))
5916       return false;
5917     if (E->getType()->isVoidType())
5918       return true;
5919     // Convert the dummy pointer to another pointer type if we have to.
5920     if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
5921       if (isPtrType(PT))
5922         return this->emitDecayPtr(PT_Ptr, PT, E);
5923       return false;
5924     }
5925     return true;
5926   }
5927 
5928   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
5929     return this->emitInvalidDeclRef(DRE, E);
5930   return false;
5931 }
5932 
5933 template <class Emitter>
5934 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
5935   const auto *D = E->getDecl();
5936   return this->visitDeclRef(D, E);
5937 }
5938 
5939 template <class Emitter> void Compiler<Emitter>::emitCleanup() {
5940   for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
5941     C->emitDestruction();
5942 }
5943 
5944 template <class Emitter>
5945 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
5946                                               const QualType DerivedType) {
5947   const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
5948     if (const auto *R = Ty->getPointeeCXXRecordDecl())
5949       return R;
5950     return Ty->getAsCXXRecordDecl();
5951   };
5952   const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
5953   const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
5954 
5955   return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
5956 }
5957 
5958 /// Emit casts from a PrimType to another PrimType.
5959 template <class Emitter>
5960 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
5961                                      QualType ToQT, const Expr *E) {
5962 
5963   if (FromT == PT_Float) {
5964     // Floating to floating.
5965     if (ToT == PT_Float) {
5966       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
5967       return this->emitCastFP(ToSem, getRoundingMode(E), E);
5968     }
5969 
5970     if (ToT == PT_IntAP)
5971       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT),
5972                                               getFPOptions(E), E);
5973     if (ToT == PT_IntAPS)
5974       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT),
5975                                                getFPOptions(E), E);
5976 
5977     // Float to integral.
5978     if (isIntegralType(ToT) || ToT == PT_Bool)
5979       return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E);
5980   }
5981 
5982   if (isIntegralType(FromT) || FromT == PT_Bool) {
5983     if (ToT == PT_IntAP)
5984       return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
5985     if (ToT == PT_IntAPS)
5986       return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
5987 
5988     // Integral to integral.
5989     if (isIntegralType(ToT) || ToT == PT_Bool)
5990       return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
5991 
5992     if (ToT == PT_Float) {
5993       // Integral to floating.
5994       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
5995       return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E);
5996     }
5997   }
5998 
5999   return false;
6000 }
6001 
6002 /// Emits __real(SubExpr)
6003 template <class Emitter>
6004 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
6005   assert(SubExpr->getType()->isAnyComplexType());
6006 
6007   if (DiscardResult)
6008     return this->discard(SubExpr);
6009 
6010   if (!this->visit(SubExpr))
6011     return false;
6012   if (SubExpr->isLValue()) {
6013     if (!this->emitConstUint8(0, SubExpr))
6014       return false;
6015     return this->emitArrayElemPtrPopUint8(SubExpr);
6016   }
6017 
6018   // Rvalue, load the actual element.
6019   return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
6020                                 0, SubExpr);
6021 }
6022 
6023 template <class Emitter>
6024 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
6025   assert(!DiscardResult);
6026   PrimType ElemT = classifyComplexElementType(E->getType());
6027   // We emit the expression (__real(E) != 0 || __imag(E) != 0)
6028   // for us, that means (bool)E[0] || (bool)E[1]
6029   if (!this->emitArrayElem(ElemT, 0, E))
6030     return false;
6031   if (ElemT == PT_Float) {
6032     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6033       return false;
6034   } else {
6035     if (!this->emitCast(ElemT, PT_Bool, E))
6036       return false;
6037   }
6038 
6039   // We now have the bool value of E[0] on the stack.
6040   LabelTy LabelTrue = this->getLabel();
6041   if (!this->jumpTrue(LabelTrue))
6042     return false;
6043 
6044   if (!this->emitArrayElemPop(ElemT, 1, E))
6045     return false;
6046   if (ElemT == PT_Float) {
6047     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6048       return false;
6049   } else {
6050     if (!this->emitCast(ElemT, PT_Bool, E))
6051       return false;
6052   }
6053   // Leave the boolean value of E[1] on the stack.
6054   LabelTy EndLabel = this->getLabel();
6055   this->jump(EndLabel);
6056 
6057   this->emitLabel(LabelTrue);
6058   if (!this->emitPopPtr(E))
6059     return false;
6060   if (!this->emitConstBool(true, E))
6061     return false;
6062 
6063   this->fallthrough(EndLabel);
6064   this->emitLabel(EndLabel);
6065 
6066   return true;
6067 }
6068 
6069 template <class Emitter>
6070 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
6071                                               const BinaryOperator *E) {
6072   assert(E->isComparisonOp());
6073   assert(!Initializing);
6074   assert(!DiscardResult);
6075 
6076   PrimType ElemT;
6077   bool LHSIsComplex;
6078   unsigned LHSOffset;
6079   if (LHS->getType()->isAnyComplexType()) {
6080     LHSIsComplex = true;
6081     ElemT = classifyComplexElementType(LHS->getType());
6082     LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
6083                                        /*IsExtended=*/false);
6084     if (!this->visit(LHS))
6085       return false;
6086     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
6087       return false;
6088   } else {
6089     LHSIsComplex = false;
6090     PrimType LHST = classifyPrim(LHS->getType());
6091     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
6092     if (!this->visit(LHS))
6093       return false;
6094     if (!this->emitSetLocal(LHST, LHSOffset, E))
6095       return false;
6096   }
6097 
6098   bool RHSIsComplex;
6099   unsigned RHSOffset;
6100   if (RHS->getType()->isAnyComplexType()) {
6101     RHSIsComplex = true;
6102     ElemT = classifyComplexElementType(RHS->getType());
6103     RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
6104                                        /*IsExtended=*/false);
6105     if (!this->visit(RHS))
6106       return false;
6107     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
6108       return false;
6109   } else {
6110     RHSIsComplex = false;
6111     PrimType RHST = classifyPrim(RHS->getType());
6112     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
6113     if (!this->visit(RHS))
6114       return false;
6115     if (!this->emitSetLocal(RHST, RHSOffset, E))
6116       return false;
6117   }
6118 
6119   auto getElem = [&](unsigned LocalOffset, unsigned Index,
6120                      bool IsComplex) -> bool {
6121     if (IsComplex) {
6122       if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
6123         return false;
6124       return this->emitArrayElemPop(ElemT, Index, E);
6125     }
6126     return this->emitGetLocal(ElemT, LocalOffset, E);
6127   };
6128 
6129   for (unsigned I = 0; I != 2; ++I) {
6130     // Get both values.
6131     if (!getElem(LHSOffset, I, LHSIsComplex))
6132       return false;
6133     if (!getElem(RHSOffset, I, RHSIsComplex))
6134       return false;
6135     // And compare them.
6136     if (!this->emitEQ(ElemT, E))
6137       return false;
6138 
6139     if (!this->emitCastBoolUint8(E))
6140       return false;
6141   }
6142 
6143   // We now have two bool values on the stack. Compare those.
6144   if (!this->emitAddUint8(E))
6145     return false;
6146   if (!this->emitConstUint8(2, E))
6147     return false;
6148 
6149   if (E->getOpcode() == BO_EQ) {
6150     if (!this->emitEQUint8(E))
6151       return false;
6152   } else if (E->getOpcode() == BO_NE) {
6153     if (!this->emitNEUint8(E))
6154       return false;
6155   } else
6156     return false;
6157 
6158   // In C, this returns an int.
6159   if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
6160     return this->emitCast(PT_Bool, ResT, E);
6161   return true;
6162 }
6163 
6164 /// When calling this, we have a pointer of the local-to-destroy
6165 /// on the stack.
6166 /// Emit destruction of record types (or arrays of record types).
6167 template <class Emitter>
6168 bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) {
6169   assert(R);
6170   assert(!R->isAnonymousUnion());
6171   const CXXDestructorDecl *Dtor = R->getDestructor();
6172   if (!Dtor || Dtor->isTrivial())
6173     return true;
6174 
6175   assert(Dtor);
6176   const Function *DtorFunc = getFunction(Dtor);
6177   if (!DtorFunc)
6178     return false;
6179   assert(DtorFunc->hasThisPointer());
6180   assert(DtorFunc->getNumParams() == 1);
6181   if (!this->emitDupPtr(Loc))
6182     return false;
6183   return this->emitCall(DtorFunc, 0, Loc);
6184 }
6185 /// When calling this, we have a pointer of the local-to-destroy
6186 /// on the stack.
6187 /// Emit destruction of record types (or arrays of record types).
6188 template <class Emitter>
6189 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc,
6190                                         SourceInfo Loc) {
6191   assert(Desc);
6192   assert(!Desc->isPrimitive());
6193   assert(!Desc->isPrimitiveArray());
6194 
6195   // Arrays.
6196   if (Desc->isArray()) {
6197     const Descriptor *ElemDesc = Desc->ElemDesc;
6198     assert(ElemDesc);
6199 
6200     // Don't need to do anything for these.
6201     if (ElemDesc->isPrimitiveArray())
6202       return true;
6203 
6204     // If this is an array of record types, check if we need
6205     // to call the element destructors at all. If not, try
6206     // to save the work.
6207     if (const Record *ElemRecord = ElemDesc->ElemRecord) {
6208       if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
6209           !Dtor || Dtor->isTrivial())
6210         return true;
6211     }
6212 
6213     for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
6214       if (!this->emitConstUint64(I, Loc))
6215         return false;
6216       if (!this->emitArrayElemPtrUint64(Loc))
6217         return false;
6218       if (!this->emitDestruction(ElemDesc, Loc))
6219         return false;
6220       if (!this->emitPopPtr(Loc))
6221         return false;
6222     }
6223     return true;
6224   }
6225 
6226   assert(Desc->ElemRecord);
6227   if (Desc->ElemRecord->isAnonymousUnion())
6228     return true;
6229 
6230   return this->emitRecordDestruction(Desc->ElemRecord, Loc);
6231 }
6232 
6233 namespace clang {
6234 namespace interp {
6235 
6236 template class Compiler<ByteCodeEmitter>;
6237 template class Compiler<EvalEmitter>;
6238 
6239 } // namespace interp
6240 } // namespace clang
6241