1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Compiler.h" 10 #include "ByteCodeEmitter.h" 11 #include "Context.h" 12 #include "Floating.h" 13 #include "Function.h" 14 #include "InterpShared.h" 15 #include "PrimType.h" 16 #include "Program.h" 17 #include "clang/AST/Attr.h" 18 19 using namespace clang; 20 using namespace clang::interp; 21 22 using APSInt = llvm::APSInt; 23 24 namespace clang { 25 namespace interp { 26 27 /// Scope used to handle temporaries in toplevel variable declarations. 28 template <class Emitter> class DeclScope final : public LocalScope<Emitter> { 29 public: 30 DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD) 31 : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD), 32 OldInitializingDecl(Ctx->InitializingDecl) { 33 Ctx->InitializingDecl = VD; 34 Ctx->InitStack.push_back(InitLink::Decl(VD)); 35 } 36 37 void addExtended(const Scope::Local &Local) override { 38 return this->addLocal(Local); 39 } 40 41 ~DeclScope() { 42 this->Ctx->InitializingDecl = OldInitializingDecl; 43 this->Ctx->InitStack.pop_back(); 44 } 45 46 private: 47 Program::DeclScope Scope; 48 const ValueDecl *OldInitializingDecl; 49 }; 50 51 /// Scope used to handle initialization methods. 52 template <class Emitter> class OptionScope final { 53 public: 54 /// Root constructor, compiling or discarding primitives. 55 OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult, 56 bool NewInitializing) 57 : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), 58 OldInitializing(Ctx->Initializing) { 59 Ctx->DiscardResult = NewDiscardResult; 60 Ctx->Initializing = NewInitializing; 61 } 62 63 ~OptionScope() { 64 Ctx->DiscardResult = OldDiscardResult; 65 Ctx->Initializing = OldInitializing; 66 } 67 68 private: 69 /// Parent context. 70 Compiler<Emitter> *Ctx; 71 /// Old discard flag to restore. 72 bool OldDiscardResult; 73 bool OldInitializing; 74 }; 75 76 template <class Emitter> 77 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const { 78 switch (Kind) { 79 case K_This: 80 return Ctx->emitThis(E); 81 case K_Field: 82 // We're assuming there's a base pointer on the stack already. 83 return Ctx->emitGetPtrFieldPop(Offset, E); 84 case K_Temp: 85 return Ctx->emitGetPtrLocal(Offset, E); 86 case K_Decl: 87 return Ctx->visitDeclRef(D, E); 88 case K_Elem: 89 if (!Ctx->emitConstUint32(Offset, E)) 90 return false; 91 return Ctx->emitArrayElemPtrPopUint32(E); 92 default: 93 llvm_unreachable("Unhandled InitLink kind"); 94 } 95 return true; 96 } 97 98 /// Scope managing label targets. 99 template <class Emitter> class LabelScope { 100 public: 101 virtual ~LabelScope() {} 102 103 protected: 104 LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {} 105 /// Compiler instance. 106 Compiler<Emitter> *Ctx; 107 }; 108 109 /// Sets the context for break/continue statements. 110 template <class Emitter> class LoopScope final : public LabelScope<Emitter> { 111 public: 112 using LabelTy = typename Compiler<Emitter>::LabelTy; 113 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 114 115 LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel) 116 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 117 OldContinueLabel(Ctx->ContinueLabel), 118 OldLabelVarScope(Ctx->LabelVarScope) { 119 this->Ctx->BreakLabel = BreakLabel; 120 this->Ctx->ContinueLabel = ContinueLabel; 121 this->Ctx->LabelVarScope = this->Ctx->VarScope; 122 } 123 124 ~LoopScope() { 125 this->Ctx->BreakLabel = OldBreakLabel; 126 this->Ctx->ContinueLabel = OldContinueLabel; 127 this->Ctx->LabelVarScope = OldLabelVarScope; 128 } 129 130 private: 131 OptLabelTy OldBreakLabel; 132 OptLabelTy OldContinueLabel; 133 VariableScope<Emitter> *OldLabelVarScope; 134 }; 135 136 // Sets the context for a switch scope, mapping labels. 137 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> { 138 public: 139 using LabelTy = typename Compiler<Emitter>::LabelTy; 140 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 141 using CaseMap = typename Compiler<Emitter>::CaseMap; 142 143 SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel, 144 OptLabelTy DefaultLabel) 145 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 146 OldDefaultLabel(this->Ctx->DefaultLabel), 147 OldCaseLabels(std::move(this->Ctx->CaseLabels)), 148 OldLabelVarScope(Ctx->LabelVarScope) { 149 this->Ctx->BreakLabel = BreakLabel; 150 this->Ctx->DefaultLabel = DefaultLabel; 151 this->Ctx->CaseLabels = std::move(CaseLabels); 152 this->Ctx->LabelVarScope = this->Ctx->VarScope; 153 } 154 155 ~SwitchScope() { 156 this->Ctx->BreakLabel = OldBreakLabel; 157 this->Ctx->DefaultLabel = OldDefaultLabel; 158 this->Ctx->CaseLabels = std::move(OldCaseLabels); 159 this->Ctx->LabelVarScope = OldLabelVarScope; 160 } 161 162 private: 163 OptLabelTy OldBreakLabel; 164 OptLabelTy OldDefaultLabel; 165 CaseMap OldCaseLabels; 166 VariableScope<Emitter> *OldLabelVarScope; 167 }; 168 169 template <class Emitter> class StmtExprScope final { 170 public: 171 StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) { 172 Ctx->InStmtExpr = true; 173 } 174 175 ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; } 176 177 private: 178 Compiler<Emitter> *Ctx; 179 bool OldFlag; 180 }; 181 182 } // namespace interp 183 } // namespace clang 184 185 template <class Emitter> 186 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) { 187 const Expr *SubExpr = CE->getSubExpr(); 188 switch (CE->getCastKind()) { 189 190 case CK_LValueToRValue: { 191 if (DiscardResult) 192 return this->discard(SubExpr); 193 194 std::optional<PrimType> SubExprT = classify(SubExpr->getType()); 195 // Prepare storage for the result. 196 if (!Initializing && !SubExprT) { 197 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 198 if (!LocalIndex) 199 return false; 200 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 201 return false; 202 } 203 204 if (!this->visit(SubExpr)) 205 return false; 206 207 if (SubExprT) 208 return this->emitLoadPop(*SubExprT, CE); 209 210 // If the subexpr type is not primitive, we need to perform a copy here. 211 // This happens for example in C when dereferencing a pointer of struct 212 // type. 213 return this->emitMemcpy(CE); 214 } 215 216 case CK_DerivedToBaseMemberPointer: { 217 assert(classifyPrim(CE->getType()) == PT_MemberPtr); 218 assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr); 219 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 220 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 221 222 unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0), 223 QualType(FromMP->getClass(), 0)); 224 225 if (!this->delegate(SubExpr)) 226 return false; 227 228 return this->emitGetMemberPtrBasePop(DerivedOffset, CE); 229 } 230 231 case CK_BaseToDerivedMemberPointer: { 232 assert(classifyPrim(CE) == PT_MemberPtr); 233 assert(classifyPrim(SubExpr) == PT_MemberPtr); 234 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 235 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 236 237 unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0), 238 QualType(ToMP->getClass(), 0)); 239 240 if (!this->delegate(SubExpr)) 241 return false; 242 return this->emitGetMemberPtrBasePop(-DerivedOffset, CE); 243 } 244 245 case CK_UncheckedDerivedToBase: 246 case CK_DerivedToBase: { 247 if (!this->delegate(SubExpr)) 248 return false; 249 250 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 251 if (const auto *PT = dyn_cast<PointerType>(Ty)) 252 return PT->getPointeeType()->getAsCXXRecordDecl(); 253 return Ty->getAsCXXRecordDecl(); 254 }; 255 256 // FIXME: We can express a series of non-virtual casts as a single 257 // GetPtrBasePop op. 258 QualType CurType = SubExpr->getType(); 259 for (const CXXBaseSpecifier *B : CE->path()) { 260 if (B->isVirtual()) { 261 if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE)) 262 return false; 263 CurType = B->getType(); 264 } else { 265 unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType); 266 if (!this->emitGetPtrBasePop(DerivedOffset, CE)) 267 return false; 268 CurType = B->getType(); 269 } 270 } 271 272 return true; 273 } 274 275 case CK_BaseToDerived: { 276 if (!this->delegate(SubExpr)) 277 return false; 278 279 unsigned DerivedOffset = 280 collectBaseOffset(SubExpr->getType(), CE->getType()); 281 282 return this->emitGetPtrDerivedPop(DerivedOffset, CE); 283 } 284 285 case CK_FloatingCast: { 286 // HLSL uses CK_FloatingCast to cast between vectors. 287 if (!SubExpr->getType()->isFloatingType() || 288 !CE->getType()->isFloatingType()) 289 return false; 290 if (DiscardResult) 291 return this->discard(SubExpr); 292 if (!this->visit(SubExpr)) 293 return false; 294 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 295 return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE); 296 } 297 298 case CK_IntegralToFloating: { 299 if (DiscardResult) 300 return this->discard(SubExpr); 301 std::optional<PrimType> FromT = classify(SubExpr->getType()); 302 if (!FromT) 303 return false; 304 305 if (!this->visit(SubExpr)) 306 return false; 307 308 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 309 return this->emitCastIntegralFloating(*FromT, TargetSemantics, 310 getFPOptions(CE), CE); 311 } 312 313 case CK_FloatingToBoolean: 314 case CK_FloatingToIntegral: { 315 if (DiscardResult) 316 return this->discard(SubExpr); 317 318 std::optional<PrimType> ToT = classify(CE->getType()); 319 320 if (!ToT) 321 return false; 322 323 if (!this->visit(SubExpr)) 324 return false; 325 326 if (ToT == PT_IntAP) 327 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()), 328 getFPOptions(CE), CE); 329 if (ToT == PT_IntAPS) 330 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()), 331 getFPOptions(CE), CE); 332 333 return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE); 334 } 335 336 case CK_NullToPointer: 337 case CK_NullToMemberPointer: { 338 if (!this->discard(SubExpr)) 339 return false; 340 if (DiscardResult) 341 return true; 342 343 const Descriptor *Desc = nullptr; 344 const QualType PointeeType = CE->getType()->getPointeeType(); 345 if (!PointeeType.isNull()) { 346 if (std::optional<PrimType> T = classify(PointeeType)) 347 Desc = P.createDescriptor(SubExpr, *T); 348 else 349 Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(), 350 std::nullopt, true, false, 351 /*IsMutable=*/false, nullptr); 352 } 353 return this->emitNull(classifyPrim(CE->getType()), Desc, CE); 354 } 355 356 case CK_PointerToIntegral: { 357 if (DiscardResult) 358 return this->discard(SubExpr); 359 360 if (!this->visit(SubExpr)) 361 return false; 362 363 // If SubExpr doesn't result in a pointer, make it one. 364 if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) { 365 assert(isPtrType(FromT)); 366 if (!this->emitDecayPtr(FromT, PT_Ptr, CE)) 367 return false; 368 } 369 370 PrimType T = classifyPrim(CE->getType()); 371 if (T == PT_IntAP) 372 return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()), 373 CE); 374 if (T == PT_IntAPS) 375 return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()), 376 CE); 377 return this->emitCastPointerIntegral(T, CE); 378 } 379 380 case CK_ArrayToPointerDecay: { 381 if (!this->visit(SubExpr)) 382 return false; 383 if (!this->emitArrayDecay(CE)) 384 return false; 385 if (DiscardResult) 386 return this->emitPopPtr(CE); 387 return true; 388 } 389 390 case CK_IntegralToPointer: { 391 QualType IntType = SubExpr->getType(); 392 assert(IntType->isIntegralOrEnumerationType()); 393 if (!this->visit(SubExpr)) 394 return false; 395 // FIXME: I think the discard is wrong since the int->ptr cast might cause a 396 // diagnostic. 397 PrimType T = classifyPrim(IntType); 398 if (DiscardResult) 399 return this->emitPop(T, CE); 400 401 QualType PtrType = CE->getType(); 402 const Descriptor *Desc; 403 if (std::optional<PrimType> T = classify(PtrType->getPointeeType())) 404 Desc = P.createDescriptor(SubExpr, *T); 405 else if (PtrType->getPointeeType()->isVoidType()) 406 Desc = nullptr; 407 else 408 Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(), 409 Descriptor::InlineDescMD, true, false, 410 /*IsMutable=*/false, nullptr); 411 412 if (!this->emitGetIntPtr(T, Desc, CE)) 413 return false; 414 415 PrimType DestPtrT = classifyPrim(PtrType); 416 if (DestPtrT == PT_Ptr) 417 return true; 418 419 // In case we're converting the integer to a non-Pointer. 420 return this->emitDecayPtr(PT_Ptr, DestPtrT, CE); 421 } 422 423 case CK_AtomicToNonAtomic: 424 case CK_ConstructorConversion: 425 case CK_FunctionToPointerDecay: 426 case CK_NonAtomicToAtomic: 427 case CK_NoOp: 428 case CK_UserDefinedConversion: 429 case CK_AddressSpaceConversion: 430 return this->delegate(SubExpr); 431 432 case CK_BitCast: { 433 // Reject bitcasts to atomic types. 434 if (CE->getType()->isAtomicType()) { 435 if (!this->discard(SubExpr)) 436 return false; 437 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE); 438 } 439 440 if (DiscardResult) 441 return this->discard(SubExpr); 442 443 QualType SubExprTy = SubExpr->getType(); 444 std::optional<PrimType> FromT = classify(SubExprTy); 445 std::optional<PrimType> ToT = classify(CE->getType()); 446 if (!FromT || !ToT) 447 return false; 448 449 assert(isPtrType(*FromT)); 450 assert(isPtrType(*ToT)); 451 if (FromT == ToT) { 452 if (CE->getType()->isVoidPointerType()) 453 return this->delegate(SubExpr); 454 455 if (!this->visit(SubExpr)) 456 return false; 457 if (FromT == PT_Ptr) 458 return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE); 459 return true; 460 } 461 462 if (!this->visit(SubExpr)) 463 return false; 464 return this->emitDecayPtr(*FromT, *ToT, CE); 465 } 466 467 case CK_IntegralToBoolean: 468 case CK_BooleanToSignedIntegral: 469 case CK_IntegralCast: { 470 if (DiscardResult) 471 return this->discard(SubExpr); 472 std::optional<PrimType> FromT = classify(SubExpr->getType()); 473 std::optional<PrimType> ToT = classify(CE->getType()); 474 475 if (!FromT || !ToT) 476 return false; 477 478 if (!this->visit(SubExpr)) 479 return false; 480 481 // Possibly diagnose casts to enum types if the target type does not 482 // have a fixed size. 483 if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) { 484 if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>(); 485 ET && !ET->getDecl()->isFixed()) { 486 if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE)) 487 return false; 488 } 489 } 490 491 auto maybeNegate = [&]() -> bool { 492 if (CE->getCastKind() == CK_BooleanToSignedIntegral) 493 return this->emitNeg(*ToT, CE); 494 return true; 495 }; 496 497 if (ToT == PT_IntAP) 498 return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 499 maybeNegate(); 500 if (ToT == PT_IntAPS) 501 return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 502 maybeNegate(); 503 504 if (FromT == ToT) 505 return true; 506 if (!this->emitCast(*FromT, *ToT, CE)) 507 return false; 508 509 return maybeNegate(); 510 } 511 512 case CK_PointerToBoolean: 513 case CK_MemberPointerToBoolean: { 514 PrimType PtrT = classifyPrim(SubExpr->getType()); 515 516 if (!this->visit(SubExpr)) 517 return false; 518 return this->emitIsNonNull(PtrT, CE); 519 } 520 521 case CK_IntegralComplexToBoolean: 522 case CK_FloatingComplexToBoolean: { 523 if (DiscardResult) 524 return this->discard(SubExpr); 525 if (!this->visit(SubExpr)) 526 return false; 527 return this->emitComplexBoolCast(SubExpr); 528 } 529 530 case CK_IntegralComplexToReal: 531 case CK_FloatingComplexToReal: 532 return this->emitComplexReal(SubExpr); 533 534 case CK_IntegralRealToComplex: 535 case CK_FloatingRealToComplex: { 536 // We're creating a complex value here, so we need to 537 // allocate storage for it. 538 if (!Initializing) { 539 unsigned LocalIndex = allocateTemporary(CE); 540 if (!this->emitGetPtrLocal(LocalIndex, CE)) 541 return false; 542 } 543 544 // Init the complex value to {SubExpr, 0}. 545 if (!this->visitArrayElemInit(0, SubExpr)) 546 return false; 547 // Zero-init the second element. 548 PrimType T = classifyPrim(SubExpr->getType()); 549 if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr)) 550 return false; 551 return this->emitInitElem(T, 1, SubExpr); 552 } 553 554 case CK_IntegralComplexCast: 555 case CK_FloatingComplexCast: 556 case CK_IntegralComplexToFloatingComplex: 557 case CK_FloatingComplexToIntegralComplex: { 558 assert(CE->getType()->isAnyComplexType()); 559 assert(SubExpr->getType()->isAnyComplexType()); 560 if (DiscardResult) 561 return this->discard(SubExpr); 562 563 if (!Initializing) { 564 std::optional<unsigned> LocalIndex = allocateLocal(CE); 565 if (!LocalIndex) 566 return false; 567 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 568 return false; 569 } 570 571 // Location for the SubExpr. 572 // Since SubExpr is of complex type, visiting it results in a pointer 573 // anyway, so we just create a temporary pointer variable. 574 unsigned SubExprOffset = allocateLocalPrimitive( 575 SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 576 if (!this->visit(SubExpr)) 577 return false; 578 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE)) 579 return false; 580 581 PrimType SourceElemT = classifyComplexElementType(SubExpr->getType()); 582 QualType DestElemType = 583 CE->getType()->getAs<ComplexType>()->getElementType(); 584 PrimType DestElemT = classifyPrim(DestElemType); 585 // Cast both elements individually. 586 for (unsigned I = 0; I != 2; ++I) { 587 if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE)) 588 return false; 589 if (!this->emitArrayElemPop(SourceElemT, I, CE)) 590 return false; 591 592 // Do the cast. 593 if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE)) 594 return false; 595 596 // Save the value. 597 if (!this->emitInitElem(DestElemT, I, CE)) 598 return false; 599 } 600 return true; 601 } 602 603 case CK_VectorSplat: { 604 assert(!classify(CE->getType())); 605 assert(classify(SubExpr->getType())); 606 assert(CE->getType()->isVectorType()); 607 608 if (DiscardResult) 609 return this->discard(SubExpr); 610 611 if (!Initializing) { 612 std::optional<unsigned> LocalIndex = allocateLocal(CE); 613 if (!LocalIndex) 614 return false; 615 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 616 return false; 617 } 618 619 const auto *VT = CE->getType()->getAs<VectorType>(); 620 PrimType ElemT = classifyPrim(SubExpr->getType()); 621 unsigned ElemOffset = allocateLocalPrimitive( 622 SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false); 623 624 // Prepare a local variable for the scalar value. 625 if (!this->visit(SubExpr)) 626 return false; 627 if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE)) 628 return false; 629 630 if (!this->emitSetLocal(ElemT, ElemOffset, CE)) 631 return false; 632 633 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 634 if (!this->emitGetLocal(ElemT, ElemOffset, CE)) 635 return false; 636 if (!this->emitInitElem(ElemT, I, CE)) 637 return false; 638 } 639 640 return true; 641 } 642 643 case CK_ToVoid: 644 return discard(SubExpr); 645 646 default: 647 return this->emitInvalid(CE); 648 } 649 llvm_unreachable("Unhandled clang::CastKind enum"); 650 } 651 652 template <class Emitter> 653 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) { 654 if (DiscardResult) 655 return true; 656 657 return this->emitConst(LE->getValue(), LE); 658 } 659 660 template <class Emitter> 661 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) { 662 if (DiscardResult) 663 return true; 664 665 return this->emitConstFloat(E->getValue(), E); 666 } 667 668 template <class Emitter> 669 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 670 assert(E->getType()->isAnyComplexType()); 671 if (DiscardResult) 672 return true; 673 674 if (!Initializing) { 675 unsigned LocalIndex = allocateTemporary(E); 676 if (!this->emitGetPtrLocal(LocalIndex, E)) 677 return false; 678 } 679 680 const Expr *SubExpr = E->getSubExpr(); 681 PrimType SubExprT = classifyPrim(SubExpr->getType()); 682 683 if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr)) 684 return false; 685 if (!this->emitInitElem(SubExprT, 0, SubExpr)) 686 return false; 687 return this->visitArrayElemInit(1, SubExpr); 688 } 689 690 template <class Emitter> 691 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) { 692 return this->delegate(E->getSubExpr()); 693 } 694 695 template <class Emitter> 696 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) { 697 // Need short-circuiting for these. 698 if (BO->getType()->isVectorType()) 699 return this->VisitVectorBinOp(BO); 700 if (BO->isLogicalOp()) 701 return this->VisitLogicalBinOp(BO); 702 703 const Expr *LHS = BO->getLHS(); 704 const Expr *RHS = BO->getRHS(); 705 706 // Handle comma operators. Just discard the LHS 707 // and delegate to RHS. 708 if (BO->isCommaOp()) { 709 if (!this->discard(LHS)) 710 return false; 711 if (RHS->getType()->isVoidType()) 712 return this->discard(RHS); 713 714 return this->delegate(RHS); 715 } 716 717 if (BO->getType()->isAnyComplexType()) 718 return this->VisitComplexBinOp(BO); 719 if ((LHS->getType()->isAnyComplexType() || 720 RHS->getType()->isAnyComplexType()) && 721 BO->isComparisonOp()) 722 return this->emitComplexComparison(LHS, RHS, BO); 723 724 if (BO->isPtrMemOp()) { 725 if (!this->visit(LHS)) 726 return false; 727 728 if (!this->visit(RHS)) 729 return false; 730 731 if (!this->emitToMemberPtr(BO)) 732 return false; 733 734 if (classifyPrim(BO) == PT_MemberPtr) 735 return true; 736 737 if (!this->emitCastMemberPtrPtr(BO)) 738 return false; 739 return DiscardResult ? this->emitPopPtr(BO) : true; 740 } 741 742 // Typecheck the args. 743 std::optional<PrimType> LT = classify(LHS); 744 std::optional<PrimType> RT = classify(RHS); 745 std::optional<PrimType> T = classify(BO->getType()); 746 747 // Special case for C++'s three-way/spaceship operator <=>, which 748 // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't 749 // have a PrimType). 750 if (!T && BO->getOpcode() == BO_Cmp) { 751 if (DiscardResult) 752 return true; 753 const ComparisonCategoryInfo *CmpInfo = 754 Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType()); 755 assert(CmpInfo); 756 757 // We need a temporary variable holding our return value. 758 if (!Initializing) { 759 std::optional<unsigned> ResultIndex = this->allocateLocal(BO); 760 if (!this->emitGetPtrLocal(*ResultIndex, BO)) 761 return false; 762 } 763 764 if (!visit(LHS) || !visit(RHS)) 765 return false; 766 767 return this->emitCMP3(*LT, CmpInfo, BO); 768 } 769 770 if (!LT || !RT || !T) 771 return false; 772 773 // Pointer arithmetic special case. 774 if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) { 775 if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT))) 776 return this->VisitPointerArithBinOp(BO); 777 } 778 779 // Assignmentes require us to evalute the RHS first. 780 if (BO->getOpcode() == BO_Assign) { 781 if (!visit(RHS) || !visit(LHS)) 782 return false; 783 if (!this->emitFlip(*LT, *RT, BO)) 784 return false; 785 } else { 786 if (!visit(LHS) || !visit(RHS)) 787 return false; 788 } 789 790 // For languages such as C, cast the result of one 791 // of our comparision opcodes to T (which is usually int). 792 auto MaybeCastToBool = [this, T, BO](bool Result) { 793 if (!Result) 794 return false; 795 if (DiscardResult) 796 return this->emitPop(*T, BO); 797 if (T != PT_Bool) 798 return this->emitCast(PT_Bool, *T, BO); 799 return true; 800 }; 801 802 auto Discard = [this, T, BO](bool Result) { 803 if (!Result) 804 return false; 805 return DiscardResult ? this->emitPop(*T, BO) : true; 806 }; 807 808 switch (BO->getOpcode()) { 809 case BO_EQ: 810 return MaybeCastToBool(this->emitEQ(*LT, BO)); 811 case BO_NE: 812 return MaybeCastToBool(this->emitNE(*LT, BO)); 813 case BO_LT: 814 return MaybeCastToBool(this->emitLT(*LT, BO)); 815 case BO_LE: 816 return MaybeCastToBool(this->emitLE(*LT, BO)); 817 case BO_GT: 818 return MaybeCastToBool(this->emitGT(*LT, BO)); 819 case BO_GE: 820 return MaybeCastToBool(this->emitGE(*LT, BO)); 821 case BO_Sub: 822 if (BO->getType()->isFloatingType()) 823 return Discard(this->emitSubf(getFPOptions(BO), BO)); 824 return Discard(this->emitSub(*T, BO)); 825 case BO_Add: 826 if (BO->getType()->isFloatingType()) 827 return Discard(this->emitAddf(getFPOptions(BO), BO)); 828 return Discard(this->emitAdd(*T, BO)); 829 case BO_Mul: 830 if (BO->getType()->isFloatingType()) 831 return Discard(this->emitMulf(getFPOptions(BO), BO)); 832 return Discard(this->emitMul(*T, BO)); 833 case BO_Rem: 834 return Discard(this->emitRem(*T, BO)); 835 case BO_Div: 836 if (BO->getType()->isFloatingType()) 837 return Discard(this->emitDivf(getFPOptions(BO), BO)); 838 return Discard(this->emitDiv(*T, BO)); 839 case BO_Assign: 840 if (DiscardResult) 841 return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO) 842 : this->emitStorePop(*T, BO); 843 if (LHS->refersToBitField()) { 844 if (!this->emitStoreBitField(*T, BO)) 845 return false; 846 } else { 847 if (!this->emitStore(*T, BO)) 848 return false; 849 } 850 // Assignments aren't necessarily lvalues in C. 851 // Load from them in that case. 852 if (!BO->isLValue()) 853 return this->emitLoadPop(*T, BO); 854 return true; 855 case BO_And: 856 return Discard(this->emitBitAnd(*T, BO)); 857 case BO_Or: 858 return Discard(this->emitBitOr(*T, BO)); 859 case BO_Shl: 860 return Discard(this->emitShl(*LT, *RT, BO)); 861 case BO_Shr: 862 return Discard(this->emitShr(*LT, *RT, BO)); 863 case BO_Xor: 864 return Discard(this->emitBitXor(*T, BO)); 865 case BO_LOr: 866 case BO_LAnd: 867 llvm_unreachable("Already handled earlier"); 868 default: 869 return false; 870 } 871 872 llvm_unreachable("Unhandled binary op"); 873 } 874 875 /// Perform addition/subtraction of a pointer and an integer or 876 /// subtraction of two pointers. 877 template <class Emitter> 878 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) { 879 BinaryOperatorKind Op = E->getOpcode(); 880 const Expr *LHS = E->getLHS(); 881 const Expr *RHS = E->getRHS(); 882 883 if ((Op != BO_Add && Op != BO_Sub) || 884 (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType())) 885 return false; 886 887 std::optional<PrimType> LT = classify(LHS); 888 std::optional<PrimType> RT = classify(RHS); 889 890 if (!LT || !RT) 891 return false; 892 893 // Visit the given pointer expression and optionally convert to a PT_Ptr. 894 auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool { 895 if (!this->visit(E)) 896 return false; 897 if (T != PT_Ptr) 898 return this->emitDecayPtr(T, PT_Ptr, E); 899 return true; 900 }; 901 902 if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) { 903 if (Op != BO_Sub) 904 return false; 905 906 assert(E->getType()->isIntegerType()); 907 if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT)) 908 return false; 909 910 return this->emitSubPtr(classifyPrim(E->getType()), E); 911 } 912 913 PrimType OffsetType; 914 if (LHS->getType()->isIntegerType()) { 915 if (!visitAsPointer(RHS, *RT)) 916 return false; 917 if (!this->visit(LHS)) 918 return false; 919 OffsetType = *LT; 920 } else if (RHS->getType()->isIntegerType()) { 921 if (!visitAsPointer(LHS, *LT)) 922 return false; 923 if (!this->visit(RHS)) 924 return false; 925 OffsetType = *RT; 926 } else { 927 return false; 928 } 929 930 // Do the operation and optionally transform to 931 // result pointer type. 932 if (Op == BO_Add) { 933 if (!this->emitAddOffset(OffsetType, E)) 934 return false; 935 936 if (classifyPrim(E) != PT_Ptr) 937 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 938 return true; 939 } else if (Op == BO_Sub) { 940 if (!this->emitSubOffset(OffsetType, E)) 941 return false; 942 943 if (classifyPrim(E) != PT_Ptr) 944 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 945 return true; 946 } 947 948 return false; 949 } 950 951 template <class Emitter> 952 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) { 953 assert(E->isLogicalOp()); 954 BinaryOperatorKind Op = E->getOpcode(); 955 const Expr *LHS = E->getLHS(); 956 const Expr *RHS = E->getRHS(); 957 std::optional<PrimType> T = classify(E->getType()); 958 959 if (Op == BO_LOr) { 960 // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE. 961 LabelTy LabelTrue = this->getLabel(); 962 LabelTy LabelEnd = this->getLabel(); 963 964 if (!this->visitBool(LHS)) 965 return false; 966 if (!this->jumpTrue(LabelTrue)) 967 return false; 968 969 if (!this->visitBool(RHS)) 970 return false; 971 if (!this->jump(LabelEnd)) 972 return false; 973 974 this->emitLabel(LabelTrue); 975 this->emitConstBool(true, E); 976 this->fallthrough(LabelEnd); 977 this->emitLabel(LabelEnd); 978 979 } else { 980 assert(Op == BO_LAnd); 981 // Logical AND. 982 // Visit LHS. Only visit RHS if LHS was TRUE. 983 LabelTy LabelFalse = this->getLabel(); 984 LabelTy LabelEnd = this->getLabel(); 985 986 if (!this->visitBool(LHS)) 987 return false; 988 if (!this->jumpFalse(LabelFalse)) 989 return false; 990 991 if (!this->visitBool(RHS)) 992 return false; 993 if (!this->jump(LabelEnd)) 994 return false; 995 996 this->emitLabel(LabelFalse); 997 this->emitConstBool(false, E); 998 this->fallthrough(LabelEnd); 999 this->emitLabel(LabelEnd); 1000 } 1001 1002 if (DiscardResult) 1003 return this->emitPopBool(E); 1004 1005 // For C, cast back to integer type. 1006 assert(T); 1007 if (T != PT_Bool) 1008 return this->emitCast(PT_Bool, *T, E); 1009 return true; 1010 } 1011 1012 template <class Emitter> 1013 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) { 1014 // Prepare storage for result. 1015 if (!Initializing) { 1016 unsigned LocalIndex = allocateTemporary(E); 1017 if (!this->emitGetPtrLocal(LocalIndex, E)) 1018 return false; 1019 } 1020 1021 // Both LHS and RHS might _not_ be of complex type, but one of them 1022 // needs to be. 1023 const Expr *LHS = E->getLHS(); 1024 const Expr *RHS = E->getRHS(); 1025 1026 PrimType ResultElemT = this->classifyComplexElementType(E->getType()); 1027 unsigned ResultOffset = ~0u; 1028 if (!DiscardResult) 1029 ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false); 1030 1031 // Save result pointer in ResultOffset 1032 if (!this->DiscardResult) { 1033 if (!this->emitDupPtr(E)) 1034 return false; 1035 if (!this->emitSetLocal(PT_Ptr, ResultOffset, E)) 1036 return false; 1037 } 1038 QualType LHSType = LHS->getType(); 1039 if (const auto *AT = LHSType->getAs<AtomicType>()) 1040 LHSType = AT->getValueType(); 1041 QualType RHSType = RHS->getType(); 1042 if (const auto *AT = RHSType->getAs<AtomicType>()) 1043 RHSType = AT->getValueType(); 1044 1045 bool LHSIsComplex = LHSType->isAnyComplexType(); 1046 unsigned LHSOffset; 1047 bool RHSIsComplex = RHSType->isAnyComplexType(); 1048 1049 // For ComplexComplex Mul, we have special ops to make their implementation 1050 // easier. 1051 BinaryOperatorKind Op = E->getOpcode(); 1052 if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) { 1053 assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) == 1054 classifyPrim(RHSType->getAs<ComplexType>()->getElementType())); 1055 PrimType ElemT = 1056 classifyPrim(LHSType->getAs<ComplexType>()->getElementType()); 1057 if (!this->visit(LHS)) 1058 return false; 1059 if (!this->visit(RHS)) 1060 return false; 1061 return this->emitMulc(ElemT, E); 1062 } 1063 1064 if (Op == BO_Div && RHSIsComplex) { 1065 QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType(); 1066 PrimType ElemT = classifyPrim(ElemQT); 1067 // If the LHS is not complex, we still need to do the full complex 1068 // division, so just stub create a complex value and stub it out with 1069 // the LHS and a zero. 1070 1071 if (!LHSIsComplex) { 1072 // This is using the RHS type for the fake-complex LHS. 1073 LHSOffset = allocateTemporary(RHS); 1074 1075 if (!this->emitGetPtrLocal(LHSOffset, E)) 1076 return false; 1077 1078 if (!this->visit(LHS)) 1079 return false; 1080 // real is LHS 1081 if (!this->emitInitElem(ElemT, 0, E)) 1082 return false; 1083 // imag is zero 1084 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1085 return false; 1086 if (!this->emitInitElem(ElemT, 1, E)) 1087 return false; 1088 } else { 1089 if (!this->visit(LHS)) 1090 return false; 1091 } 1092 1093 if (!this->visit(RHS)) 1094 return false; 1095 return this->emitDivc(ElemT, E); 1096 } 1097 1098 // Evaluate LHS and save value to LHSOffset. 1099 if (LHSType->isAnyComplexType()) { 1100 LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1101 if (!this->visit(LHS)) 1102 return false; 1103 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1104 return false; 1105 } else { 1106 PrimType LHST = classifyPrim(LHSType); 1107 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 1108 if (!this->visit(LHS)) 1109 return false; 1110 if (!this->emitSetLocal(LHST, LHSOffset, E)) 1111 return false; 1112 } 1113 1114 // Same with RHS. 1115 unsigned RHSOffset; 1116 if (RHSType->isAnyComplexType()) { 1117 RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1118 if (!this->visit(RHS)) 1119 return false; 1120 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1121 return false; 1122 } else { 1123 PrimType RHST = classifyPrim(RHSType); 1124 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 1125 if (!this->visit(RHS)) 1126 return false; 1127 if (!this->emitSetLocal(RHST, RHSOffset, E)) 1128 return false; 1129 } 1130 1131 // For both LHS and RHS, either load the value from the complex pointer, or 1132 // directly from the local variable. For index 1 (i.e. the imaginary part), 1133 // just load 0 and do the operation anyway. 1134 auto loadComplexValue = [this](bool IsComplex, bool LoadZero, 1135 unsigned ElemIndex, unsigned Offset, 1136 const Expr *E) -> bool { 1137 if (IsComplex) { 1138 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1139 return false; 1140 return this->emitArrayElemPop(classifyComplexElementType(E->getType()), 1141 ElemIndex, E); 1142 } 1143 if (ElemIndex == 0 || !LoadZero) 1144 return this->emitGetLocal(classifyPrim(E->getType()), Offset, E); 1145 return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(), 1146 E); 1147 }; 1148 1149 // Now we can get pointers to the LHS and RHS from the offsets above. 1150 for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) { 1151 // Result pointer for the store later. 1152 if (!this->DiscardResult) { 1153 if (!this->emitGetLocal(PT_Ptr, ResultOffset, E)) 1154 return false; 1155 } 1156 1157 // The actual operation. 1158 switch (Op) { 1159 case BO_Add: 1160 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1161 return false; 1162 1163 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1164 return false; 1165 if (ResultElemT == PT_Float) { 1166 if (!this->emitAddf(getFPOptions(E), E)) 1167 return false; 1168 } else { 1169 if (!this->emitAdd(ResultElemT, E)) 1170 return false; 1171 } 1172 break; 1173 case BO_Sub: 1174 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1175 return false; 1176 1177 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1178 return false; 1179 if (ResultElemT == PT_Float) { 1180 if (!this->emitSubf(getFPOptions(E), E)) 1181 return false; 1182 } else { 1183 if (!this->emitSub(ResultElemT, E)) 1184 return false; 1185 } 1186 break; 1187 case BO_Mul: 1188 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1189 return false; 1190 1191 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1192 return false; 1193 1194 if (ResultElemT == PT_Float) { 1195 if (!this->emitMulf(getFPOptions(E), E)) 1196 return false; 1197 } else { 1198 if (!this->emitMul(ResultElemT, E)) 1199 return false; 1200 } 1201 break; 1202 case BO_Div: 1203 assert(!RHSIsComplex); 1204 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1205 return false; 1206 1207 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1208 return false; 1209 1210 if (ResultElemT == PT_Float) { 1211 if (!this->emitDivf(getFPOptions(E), E)) 1212 return false; 1213 } else { 1214 if (!this->emitDiv(ResultElemT, E)) 1215 return false; 1216 } 1217 break; 1218 1219 default: 1220 return false; 1221 } 1222 1223 if (!this->DiscardResult) { 1224 // Initialize array element with the value we just computed. 1225 if (!this->emitInitElemPop(ResultElemT, ElemIndex, E)) 1226 return false; 1227 } else { 1228 if (!this->emitPop(ResultElemT, E)) 1229 return false; 1230 } 1231 } 1232 return true; 1233 } 1234 1235 template <class Emitter> 1236 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) { 1237 assert(E->getType()->isVectorType()); 1238 assert(E->getLHS()->getType()->isVectorType()); 1239 assert(E->getRHS()->getType()->isVectorType()); 1240 1241 // FIXME: Current only support comparison binary operator, add support for 1242 // other binary operator. 1243 if (!E->isComparisonOp() && !E->isLogicalOp()) 1244 return this->emitInvalid(E); 1245 // Prepare storage for result. 1246 if (!Initializing) { 1247 unsigned LocalIndex = allocateTemporary(E); 1248 if (!this->emitGetPtrLocal(LocalIndex, E)) 1249 return false; 1250 } 1251 1252 const Expr *LHS = E->getLHS(); 1253 const Expr *RHS = E->getRHS(); 1254 const auto *VecTy = E->getType()->getAs<VectorType>(); 1255 1256 // The LHS and RHS of a comparison operator must have the same type. So we 1257 // just use LHS vector element type here. 1258 PrimType ElemT = this->classifyVectorElementType(LHS->getType()); 1259 PrimType ResultElemT = this->classifyVectorElementType(E->getType()); 1260 1261 // Evaluate LHS and save value to LHSOffset. 1262 unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1263 if (!this->visit(LHS)) 1264 return false; 1265 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1266 return false; 1267 1268 // Evaluate RHS and save value to RHSOffset. 1269 unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1270 if (!this->visit(RHS)) 1271 return false; 1272 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1273 return false; 1274 1275 auto getElem = [=](unsigned Offset, unsigned Index) { 1276 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1277 return false; 1278 if (!this->emitArrayElemPop(ElemT, Index, E)) 1279 return false; 1280 if (E->isLogicalOp()) { 1281 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 1282 return false; 1283 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1284 return false; 1285 } 1286 return true; 1287 }; 1288 1289 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 1290 if (!getElem(LHSOffset, I)) 1291 return false; 1292 if (!getElem(RHSOffset, I)) 1293 return false; 1294 switch (E->getOpcode()) { 1295 case BO_EQ: 1296 if (!this->emitEQ(ElemT, E)) 1297 return false; 1298 break; 1299 case BO_NE: 1300 if (!this->emitNE(ElemT, E)) 1301 return false; 1302 break; 1303 case BO_LE: 1304 if (!this->emitLE(ElemT, E)) 1305 return false; 1306 break; 1307 case BO_LT: 1308 if (!this->emitLT(ElemT, E)) 1309 return false; 1310 break; 1311 case BO_GE: 1312 if (!this->emitGE(ElemT, E)) 1313 return false; 1314 break; 1315 case BO_GT: 1316 if (!this->emitGT(ElemT, E)) 1317 return false; 1318 break; 1319 case BO_LAnd: 1320 // a && b is equivalent to a!=0 & b!=0 1321 if (!this->emitBitAnd(ResultElemT, E)) 1322 return false; 1323 break; 1324 case BO_LOr: 1325 // a || b is equivalent to a!=0 | b!=0 1326 if (!this->emitBitOr(ResultElemT, E)) 1327 return false; 1328 break; 1329 default: 1330 llvm_unreachable("Unsupported binary operator"); 1331 } 1332 1333 // The result of the comparison is a vector of the same width and number 1334 // of elements as the comparison operands with a signed integral element 1335 // type. 1336 // 1337 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 1338 if (E->isComparisonOp()) { 1339 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1340 return false; 1341 if (!this->emitNeg(ResultElemT, E)) 1342 return false; 1343 } 1344 1345 // Initialize array element with the value we just computed. 1346 if (!this->emitInitElem(ResultElemT, I, E)) 1347 return false; 1348 } 1349 return true; 1350 } 1351 1352 template <class Emitter> 1353 bool Compiler<Emitter>::VisitImplicitValueInitExpr( 1354 const ImplicitValueInitExpr *E) { 1355 QualType QT = E->getType(); 1356 1357 if (std::optional<PrimType> T = classify(QT)) 1358 return this->visitZeroInitializer(*T, QT, E); 1359 1360 if (QT->isRecordType()) { 1361 const RecordDecl *RD = QT->getAsRecordDecl(); 1362 assert(RD); 1363 if (RD->isInvalidDecl()) 1364 return false; 1365 1366 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1367 CXXRD && CXXRD->getNumVBases() > 0) { 1368 // TODO: Diagnose. 1369 return false; 1370 } 1371 1372 const Record *R = getRecord(QT); 1373 if (!R) 1374 return false; 1375 1376 assert(Initializing); 1377 return this->visitZeroRecordInitializer(R, E); 1378 } 1379 1380 if (QT->isIncompleteArrayType()) 1381 return true; 1382 1383 if (QT->isArrayType()) { 1384 const ArrayType *AT = QT->getAsArrayTypeUnsafe(); 1385 assert(AT); 1386 const auto *CAT = cast<ConstantArrayType>(AT); 1387 size_t NumElems = CAT->getZExtSize(); 1388 PrimType ElemT = classifyPrim(CAT->getElementType()); 1389 1390 for (size_t I = 0; I != NumElems; ++I) { 1391 if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E)) 1392 return false; 1393 if (!this->emitInitElem(ElemT, I, E)) 1394 return false; 1395 } 1396 1397 return true; 1398 } 1399 1400 if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) { 1401 assert(Initializing); 1402 QualType ElemQT = ComplexTy->getElementType(); 1403 PrimType ElemT = classifyPrim(ElemQT); 1404 for (unsigned I = 0; I < 2; ++I) { 1405 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1406 return false; 1407 if (!this->emitInitElem(ElemT, I, E)) 1408 return false; 1409 } 1410 return true; 1411 } 1412 1413 if (const auto *VecT = E->getType()->getAs<VectorType>()) { 1414 unsigned NumVecElements = VecT->getNumElements(); 1415 QualType ElemQT = VecT->getElementType(); 1416 PrimType ElemT = classifyPrim(ElemQT); 1417 1418 for (unsigned I = 0; I < NumVecElements; ++I) { 1419 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1420 return false; 1421 if (!this->emitInitElem(ElemT, I, E)) 1422 return false; 1423 } 1424 return true; 1425 } 1426 1427 return false; 1428 } 1429 1430 template <class Emitter> 1431 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1432 const Expr *LHS = E->getLHS(); 1433 const Expr *RHS = E->getRHS(); 1434 const Expr *Index = E->getIdx(); 1435 1436 if (DiscardResult) 1437 return this->discard(LHS) && this->discard(RHS); 1438 1439 // C++17's rules require us to evaluate the LHS first, regardless of which 1440 // side is the base. 1441 bool Success = true; 1442 for (const Expr *SubExpr : {LHS, RHS}) { 1443 if (!this->visit(SubExpr)) 1444 Success = false; 1445 } 1446 1447 if (!Success) 1448 return false; 1449 1450 PrimType IndexT = classifyPrim(Index->getType()); 1451 // If the index is first, we need to change that. 1452 if (LHS == Index) { 1453 if (!this->emitFlip(PT_Ptr, IndexT, E)) 1454 return false; 1455 } 1456 1457 return this->emitArrayElemPtrPop(IndexT, E); 1458 } 1459 1460 template <class Emitter> 1461 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits, 1462 const Expr *ArrayFiller, const Expr *E) { 1463 QualType QT = E->getType(); 1464 if (const auto *AT = QT->getAs<AtomicType>()) 1465 QT = AT->getValueType(); 1466 1467 if (QT->isVoidType()) { 1468 if (Inits.size() == 0) 1469 return true; 1470 return this->emitInvalid(E); 1471 } 1472 1473 // Handle discarding first. 1474 if (DiscardResult) { 1475 for (const Expr *Init : Inits) { 1476 if (!this->discard(Init)) 1477 return false; 1478 } 1479 return true; 1480 } 1481 1482 // Primitive values. 1483 if (std::optional<PrimType> T = classify(QT)) { 1484 assert(!DiscardResult); 1485 if (Inits.size() == 0) 1486 return this->visitZeroInitializer(*T, QT, E); 1487 assert(Inits.size() == 1); 1488 return this->delegate(Inits[0]); 1489 } 1490 1491 if (QT->isRecordType()) { 1492 const Record *R = getRecord(QT); 1493 1494 if (Inits.size() == 1 && E->getType() == Inits[0]->getType()) 1495 return this->delegate(Inits[0]); 1496 1497 auto initPrimitiveField = [=](const Record::Field *FieldToInit, 1498 const Expr *Init, PrimType T) -> bool { 1499 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1500 if (!this->visit(Init)) 1501 return false; 1502 1503 if (FieldToInit->isBitField()) 1504 return this->emitInitBitField(T, FieldToInit, E); 1505 return this->emitInitField(T, FieldToInit->Offset, E); 1506 }; 1507 1508 auto initCompositeField = [=](const Record::Field *FieldToInit, 1509 const Expr *Init) -> bool { 1510 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1511 InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset)); 1512 // Non-primitive case. Get a pointer to the field-to-initialize 1513 // on the stack and recurse into visitInitializer(). 1514 if (!this->emitGetPtrField(FieldToInit->Offset, Init)) 1515 return false; 1516 if (!this->visitInitializer(Init)) 1517 return false; 1518 return this->emitPopPtr(E); 1519 }; 1520 1521 if (R->isUnion()) { 1522 if (Inits.size() == 0) { 1523 if (!this->visitZeroRecordInitializer(R, E)) 1524 return false; 1525 } else { 1526 const Expr *Init = Inits[0]; 1527 const FieldDecl *FToInit = nullptr; 1528 if (const auto *ILE = dyn_cast<InitListExpr>(E)) 1529 FToInit = ILE->getInitializedFieldInUnion(); 1530 else 1531 FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion(); 1532 1533 const Record::Field *FieldToInit = R->getField(FToInit); 1534 if (std::optional<PrimType> T = classify(Init)) { 1535 if (!initPrimitiveField(FieldToInit, Init, *T)) 1536 return false; 1537 } else { 1538 if (!initCompositeField(FieldToInit, Init)) 1539 return false; 1540 } 1541 } 1542 return this->emitFinishInit(E); 1543 } 1544 1545 assert(!R->isUnion()); 1546 unsigned InitIndex = 0; 1547 for (const Expr *Init : Inits) { 1548 // Skip unnamed bitfields. 1549 while (InitIndex < R->getNumFields() && 1550 R->getField(InitIndex)->Decl->isUnnamedBitField()) 1551 ++InitIndex; 1552 1553 if (std::optional<PrimType> T = classify(Init)) { 1554 const Record::Field *FieldToInit = R->getField(InitIndex); 1555 if (!initPrimitiveField(FieldToInit, Init, *T)) 1556 return false; 1557 ++InitIndex; 1558 } else { 1559 // Initializer for a direct base class. 1560 if (const Record::Base *B = R->getBase(Init->getType())) { 1561 if (!this->emitGetPtrBase(B->Offset, Init)) 1562 return false; 1563 1564 if (!this->visitInitializer(Init)) 1565 return false; 1566 1567 if (!this->emitFinishInitPop(E)) 1568 return false; 1569 // Base initializers don't increase InitIndex, since they don't count 1570 // into the Record's fields. 1571 } else { 1572 const Record::Field *FieldToInit = R->getField(InitIndex); 1573 if (!initCompositeField(FieldToInit, Init)) 1574 return false; 1575 ++InitIndex; 1576 } 1577 } 1578 } 1579 return this->emitFinishInit(E); 1580 } 1581 1582 if (QT->isArrayType()) { 1583 if (Inits.size() == 1 && QT == Inits[0]->getType()) 1584 return this->delegate(Inits[0]); 1585 1586 unsigned ElementIndex = 0; 1587 for (const Expr *Init : Inits) { 1588 if (const auto *EmbedS = 1589 dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 1590 PrimType TargetT = classifyPrim(Init->getType()); 1591 1592 auto Eval = [&](const Expr *Init, unsigned ElemIndex) { 1593 PrimType InitT = classifyPrim(Init->getType()); 1594 if (!this->visit(Init)) 1595 return false; 1596 if (InitT != TargetT) { 1597 if (!this->emitCast(InitT, TargetT, E)) 1598 return false; 1599 } 1600 return this->emitInitElem(TargetT, ElemIndex, Init); 1601 }; 1602 if (!EmbedS->doForEachDataElement(Eval, ElementIndex)) 1603 return false; 1604 } else { 1605 if (!this->visitArrayElemInit(ElementIndex, Init)) 1606 return false; 1607 ++ElementIndex; 1608 } 1609 } 1610 1611 // Expand the filler expression. 1612 // FIXME: This should go away. 1613 if (ArrayFiller) { 1614 const ConstantArrayType *CAT = 1615 Ctx.getASTContext().getAsConstantArrayType(QT); 1616 uint64_t NumElems = CAT->getZExtSize(); 1617 1618 for (; ElementIndex != NumElems; ++ElementIndex) { 1619 if (!this->visitArrayElemInit(ElementIndex, ArrayFiller)) 1620 return false; 1621 } 1622 } 1623 1624 return this->emitFinishInit(E); 1625 } 1626 1627 if (const auto *ComplexTy = QT->getAs<ComplexType>()) { 1628 unsigned NumInits = Inits.size(); 1629 1630 if (NumInits == 1) 1631 return this->delegate(Inits[0]); 1632 1633 QualType ElemQT = ComplexTy->getElementType(); 1634 PrimType ElemT = classifyPrim(ElemQT); 1635 if (NumInits == 0) { 1636 // Zero-initialize both elements. 1637 for (unsigned I = 0; I < 2; ++I) { 1638 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1639 return false; 1640 if (!this->emitInitElem(ElemT, I, E)) 1641 return false; 1642 } 1643 } else if (NumInits == 2) { 1644 unsigned InitIndex = 0; 1645 for (const Expr *Init : Inits) { 1646 if (!this->visit(Init)) 1647 return false; 1648 1649 if (!this->emitInitElem(ElemT, InitIndex, E)) 1650 return false; 1651 ++InitIndex; 1652 } 1653 } 1654 return true; 1655 } 1656 1657 if (const auto *VecT = QT->getAs<VectorType>()) { 1658 unsigned NumVecElements = VecT->getNumElements(); 1659 assert(NumVecElements >= Inits.size()); 1660 1661 QualType ElemQT = VecT->getElementType(); 1662 PrimType ElemT = classifyPrim(ElemQT); 1663 1664 // All initializer elements. 1665 unsigned InitIndex = 0; 1666 for (const Expr *Init : Inits) { 1667 if (!this->visit(Init)) 1668 return false; 1669 1670 // If the initializer is of vector type itself, we have to deconstruct 1671 // that and initialize all the target fields from the initializer fields. 1672 if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) { 1673 if (!this->emitCopyArray(ElemT, 0, InitIndex, 1674 InitVecT->getNumElements(), E)) 1675 return false; 1676 InitIndex += InitVecT->getNumElements(); 1677 } else { 1678 if (!this->emitInitElem(ElemT, InitIndex, E)) 1679 return false; 1680 ++InitIndex; 1681 } 1682 } 1683 1684 assert(InitIndex <= NumVecElements); 1685 1686 // Fill the rest with zeroes. 1687 for (; InitIndex != NumVecElements; ++InitIndex) { 1688 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1689 return false; 1690 if (!this->emitInitElem(ElemT, InitIndex, E)) 1691 return false; 1692 } 1693 return true; 1694 } 1695 1696 return false; 1697 } 1698 1699 /// Pointer to the array(not the element!) must be on the stack when calling 1700 /// this. 1701 template <class Emitter> 1702 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex, 1703 const Expr *Init) { 1704 if (std::optional<PrimType> T = classify(Init->getType())) { 1705 // Visit the primitive element like normal. 1706 if (!this->visit(Init)) 1707 return false; 1708 return this->emitInitElem(*T, ElemIndex, Init); 1709 } 1710 1711 InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex)); 1712 // Advance the pointer currently on the stack to the given 1713 // dimension. 1714 if (!this->emitConstUint32(ElemIndex, Init)) 1715 return false; 1716 if (!this->emitArrayElemPtrUint32(Init)) 1717 return false; 1718 if (!this->visitInitializer(Init)) 1719 return false; 1720 return this->emitFinishInitPop(Init); 1721 } 1722 1723 template <class Emitter> 1724 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) { 1725 return this->visitInitList(E->inits(), E->getArrayFiller(), E); 1726 } 1727 1728 template <class Emitter> 1729 bool Compiler<Emitter>::VisitCXXParenListInitExpr( 1730 const CXXParenListInitExpr *E) { 1731 return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E); 1732 } 1733 1734 template <class Emitter> 1735 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr( 1736 const SubstNonTypeTemplateParmExpr *E) { 1737 return this->delegate(E->getReplacement()); 1738 } 1739 1740 template <class Emitter> 1741 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) { 1742 std::optional<PrimType> T = classify(E->getType()); 1743 if (T && E->hasAPValueResult()) { 1744 // Try to emit the APValue directly, without visiting the subexpr. 1745 // This will only fail if we can't emit the APValue, so won't emit any 1746 // diagnostics or any double values. 1747 if (DiscardResult) 1748 return true; 1749 1750 if (this->visitAPValue(E->getAPValueResult(), *T, E)) 1751 return true; 1752 } 1753 return this->delegate(E->getSubExpr()); 1754 } 1755 1756 template <class Emitter> 1757 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) { 1758 auto It = E->begin(); 1759 return this->visit(*It); 1760 } 1761 1762 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx, 1763 UnaryExprOrTypeTrait Kind) { 1764 bool AlignOfReturnsPreferred = 1765 ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 1766 1767 // C++ [expr.alignof]p3: 1768 // When alignof is applied to a reference type, the result is the 1769 // alignment of the referenced type. 1770 if (const auto *Ref = T->getAs<ReferenceType>()) 1771 T = Ref->getPointeeType(); 1772 1773 if (T.getQualifiers().hasUnaligned()) 1774 return CharUnits::One(); 1775 1776 // __alignof is defined to return the preferred alignment. 1777 // Before 8, clang returned the preferred alignment for alignof and 1778 // _Alignof as well. 1779 if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 1780 return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T)); 1781 1782 return ASTCtx.getTypeAlignInChars(T); 1783 } 1784 1785 template <class Emitter> 1786 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr( 1787 const UnaryExprOrTypeTraitExpr *E) { 1788 UnaryExprOrTypeTrait Kind = E->getKind(); 1789 const ASTContext &ASTCtx = Ctx.getASTContext(); 1790 1791 if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) { 1792 QualType ArgType = E->getTypeOfArgument(); 1793 1794 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 1795 // the result is the size of the referenced type." 1796 if (const auto *Ref = ArgType->getAs<ReferenceType>()) 1797 ArgType = Ref->getPointeeType(); 1798 1799 CharUnits Size; 1800 if (ArgType->isVoidType() || ArgType->isFunctionType()) 1801 Size = CharUnits::One(); 1802 else { 1803 if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) 1804 return false; 1805 1806 if (Kind == UETT_SizeOf) 1807 Size = ASTCtx.getTypeSizeInChars(ArgType); 1808 else 1809 Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width; 1810 } 1811 1812 if (DiscardResult) 1813 return true; 1814 1815 return this->emitConst(Size.getQuantity(), E); 1816 } 1817 1818 if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) { 1819 CharUnits Size; 1820 1821 if (E->isArgumentType()) { 1822 QualType ArgType = E->getTypeOfArgument(); 1823 1824 Size = AlignOfType(ArgType, ASTCtx, Kind); 1825 } else { 1826 // Argument is an expression, not a type. 1827 const Expr *Arg = E->getArgumentExpr()->IgnoreParens(); 1828 1829 // The kinds of expressions that we have special-case logic here for 1830 // should be kept up to date with the special checks for those 1831 // expressions in Sema. 1832 1833 // alignof decl is always accepted, even if it doesn't make sense: we 1834 // default to 1 in those cases. 1835 if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg)) 1836 Size = ASTCtx.getDeclAlign(DRE->getDecl(), 1837 /*RefAsPointee*/ true); 1838 else if (const auto *ME = dyn_cast<MemberExpr>(Arg)) 1839 Size = ASTCtx.getDeclAlign(ME->getMemberDecl(), 1840 /*RefAsPointee*/ true); 1841 else 1842 Size = AlignOfType(Arg->getType(), ASTCtx, Kind); 1843 } 1844 1845 if (DiscardResult) 1846 return true; 1847 1848 return this->emitConst(Size.getQuantity(), E); 1849 } 1850 1851 if (Kind == UETT_VectorElements) { 1852 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) 1853 return this->emitConst(VT->getNumElements(), E); 1854 assert(E->getTypeOfArgument()->isSizelessVectorType()); 1855 return this->emitSizelessVectorElementSize(E); 1856 } 1857 1858 if (Kind == UETT_VecStep) { 1859 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) { 1860 unsigned N = VT->getNumElements(); 1861 1862 // The vec_step built-in functions that take a 3-component 1863 // vector return 4. (OpenCL 1.1 spec 6.11.12) 1864 if (N == 3) 1865 N = 4; 1866 1867 return this->emitConst(N, E); 1868 } 1869 return this->emitConst(1, E); 1870 } 1871 1872 return false; 1873 } 1874 1875 template <class Emitter> 1876 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) { 1877 // 'Base.Member' 1878 const Expr *Base = E->getBase(); 1879 const ValueDecl *Member = E->getMemberDecl(); 1880 1881 if (DiscardResult) 1882 return this->discard(Base); 1883 1884 // MemberExprs are almost always lvalues, in which case we don't need to 1885 // do the load. But sometimes they aren't. 1886 const auto maybeLoadValue = [&]() -> bool { 1887 if (E->isGLValue()) 1888 return true; 1889 if (std::optional<PrimType> T = classify(E)) 1890 return this->emitLoadPop(*T, E); 1891 return false; 1892 }; 1893 1894 if (const auto *VD = dyn_cast<VarDecl>(Member)) { 1895 // I am almost confident in saying that a var decl must be static 1896 // and therefore registered as a global variable. But this will probably 1897 // turn out to be wrong some time in the future, as always. 1898 if (auto GlobalIndex = P.getGlobal(VD)) 1899 return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue(); 1900 return false; 1901 } 1902 1903 if (!isa<FieldDecl>(Member)) { 1904 if (!this->discard(Base) && !this->emitSideEffect(E)) 1905 return false; 1906 1907 return this->visitDeclRef(Member, E); 1908 } 1909 1910 if (Initializing) { 1911 if (!this->delegate(Base)) 1912 return false; 1913 } else { 1914 if (!this->visit(Base)) 1915 return false; 1916 } 1917 1918 // Base above gives us a pointer on the stack. 1919 const auto *FD = cast<FieldDecl>(Member); 1920 const RecordDecl *RD = FD->getParent(); 1921 const Record *R = getRecord(RD); 1922 if (!R) 1923 return false; 1924 const Record::Field *F = R->getField(FD); 1925 // Leave a pointer to the field on the stack. 1926 if (F->Decl->getType()->isReferenceType()) 1927 return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue(); 1928 return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue(); 1929 } 1930 1931 template <class Emitter> 1932 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 1933 // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated 1934 // stand-alone, e.g. via EvaluateAsInt(). 1935 if (!ArrayIndex) 1936 return false; 1937 return this->emitConst(*ArrayIndex, E); 1938 } 1939 1940 template <class Emitter> 1941 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 1942 assert(Initializing); 1943 assert(!DiscardResult); 1944 1945 // We visit the common opaque expression here once so we have its value 1946 // cached. 1947 if (!this->discard(E->getCommonExpr())) 1948 return false; 1949 1950 // TODO: This compiles to quite a lot of bytecode if the array is larger. 1951 // Investigate compiling this to a loop. 1952 const Expr *SubExpr = E->getSubExpr(); 1953 size_t Size = E->getArraySize().getZExtValue(); 1954 1955 // So, every iteration, we execute an assignment here 1956 // where the LHS is on the stack (the target array) 1957 // and the RHS is our SubExpr. 1958 for (size_t I = 0; I != Size; ++I) { 1959 ArrayIndexScope<Emitter> IndexScope(this, I); 1960 BlockScope<Emitter> BS(this); 1961 1962 if (!this->visitArrayElemInit(I, SubExpr)) 1963 return false; 1964 if (!BS.destroyLocals()) 1965 return false; 1966 } 1967 return true; 1968 } 1969 1970 template <class Emitter> 1971 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 1972 const Expr *SourceExpr = E->getSourceExpr(); 1973 if (!SourceExpr) 1974 return false; 1975 1976 if (Initializing) 1977 return this->visitInitializer(SourceExpr); 1978 1979 PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr); 1980 if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end()) 1981 return this->emitGetLocal(SubExprT, It->second, E); 1982 1983 if (!this->visit(SourceExpr)) 1984 return false; 1985 1986 // At this point we either have the evaluated source expression or a pointer 1987 // to an object on the stack. We want to create a local variable that stores 1988 // this value. 1989 unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true); 1990 if (!this->emitSetLocal(SubExprT, LocalIndex, E)) 1991 return false; 1992 1993 // Here the local variable is created but the value is removed from the stack, 1994 // so we put it back if the caller needs it. 1995 if (!DiscardResult) { 1996 if (!this->emitGetLocal(SubExprT, LocalIndex, E)) 1997 return false; 1998 } 1999 2000 // This is cleaned up when the local variable is destroyed. 2001 OpaqueExprs.insert({E, LocalIndex}); 2002 2003 return true; 2004 } 2005 2006 template <class Emitter> 2007 bool Compiler<Emitter>::VisitAbstractConditionalOperator( 2008 const AbstractConditionalOperator *E) { 2009 const Expr *Condition = E->getCond(); 2010 const Expr *TrueExpr = E->getTrueExpr(); 2011 const Expr *FalseExpr = E->getFalseExpr(); 2012 2013 LabelTy LabelEnd = this->getLabel(); // Label after the operator. 2014 LabelTy LabelFalse = this->getLabel(); // Label for the false expr. 2015 2016 if (!this->visitBool(Condition)) 2017 return false; 2018 2019 if (!this->jumpFalse(LabelFalse)) 2020 return false; 2021 2022 { 2023 LocalScope<Emitter> S(this); 2024 if (!this->delegate(TrueExpr)) 2025 return false; 2026 if (!S.destroyLocals()) 2027 return false; 2028 } 2029 2030 if (!this->jump(LabelEnd)) 2031 return false; 2032 2033 this->emitLabel(LabelFalse); 2034 2035 { 2036 LocalScope<Emitter> S(this); 2037 if (!this->delegate(FalseExpr)) 2038 return false; 2039 if (!S.destroyLocals()) 2040 return false; 2041 } 2042 2043 this->fallthrough(LabelEnd); 2044 this->emitLabel(LabelEnd); 2045 2046 return true; 2047 } 2048 2049 template <class Emitter> 2050 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) { 2051 if (DiscardResult) 2052 return true; 2053 2054 if (!Initializing) { 2055 unsigned StringIndex = P.createGlobalString(E); 2056 return this->emitGetPtrGlobal(StringIndex, E); 2057 } 2058 2059 // We are initializing an array on the stack. 2060 const ConstantArrayType *CAT = 2061 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 2062 assert(CAT && "a string literal that's not a constant array?"); 2063 2064 // If the initializer string is too long, a diagnostic has already been 2065 // emitted. Read only the array length from the string literal. 2066 unsigned ArraySize = CAT->getZExtSize(); 2067 unsigned N = std::min(ArraySize, E->getLength()); 2068 size_t CharWidth = E->getCharByteWidth(); 2069 2070 for (unsigned I = 0; I != N; ++I) { 2071 uint32_t CodeUnit = E->getCodeUnit(I); 2072 2073 if (CharWidth == 1) { 2074 this->emitConstSint8(CodeUnit, E); 2075 this->emitInitElemSint8(I, E); 2076 } else if (CharWidth == 2) { 2077 this->emitConstUint16(CodeUnit, E); 2078 this->emitInitElemUint16(I, E); 2079 } else if (CharWidth == 4) { 2080 this->emitConstUint32(CodeUnit, E); 2081 this->emitInitElemUint32(I, E); 2082 } else { 2083 llvm_unreachable("unsupported character width"); 2084 } 2085 } 2086 2087 // Fill up the rest of the char array with NUL bytes. 2088 for (unsigned I = N; I != ArraySize; ++I) { 2089 if (CharWidth == 1) { 2090 this->emitConstSint8(0, E); 2091 this->emitInitElemSint8(I, E); 2092 } else if (CharWidth == 2) { 2093 this->emitConstUint16(0, E); 2094 this->emitInitElemUint16(I, E); 2095 } else if (CharWidth == 4) { 2096 this->emitConstUint32(0, E); 2097 this->emitInitElemUint32(I, E); 2098 } else { 2099 llvm_unreachable("unsupported character width"); 2100 } 2101 } 2102 2103 return true; 2104 } 2105 2106 template <class Emitter> 2107 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 2108 return this->delegate(E->getString()); 2109 } 2110 2111 template <class Emitter> 2112 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 2113 auto &A = Ctx.getASTContext(); 2114 std::string Str; 2115 A.getObjCEncodingForType(E->getEncodedType(), Str); 2116 StringLiteral *SL = 2117 StringLiteral::Create(A, Str, StringLiteralKind::Ordinary, 2118 /*Pascal=*/false, E->getType(), E->getAtLoc()); 2119 return this->delegate(SL); 2120 } 2121 2122 template <class Emitter> 2123 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr( 2124 const SYCLUniqueStableNameExpr *E) { 2125 if (DiscardResult) 2126 return true; 2127 2128 assert(!Initializing); 2129 2130 auto &A = Ctx.getASTContext(); 2131 std::string ResultStr = E->ComputeName(A); 2132 2133 QualType CharTy = A.CharTy.withConst(); 2134 APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1); 2135 QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr, 2136 ArraySizeModifier::Normal, 0); 2137 2138 StringLiteral *SL = 2139 StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary, 2140 /*Pascal=*/false, ArrayTy, E->getLocation()); 2141 2142 unsigned StringIndex = P.createGlobalString(SL); 2143 return this->emitGetPtrGlobal(StringIndex, E); 2144 } 2145 2146 template <class Emitter> 2147 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) { 2148 if (DiscardResult) 2149 return true; 2150 return this->emitConst(E->getValue(), E); 2151 } 2152 2153 template <class Emitter> 2154 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator( 2155 const CompoundAssignOperator *E) { 2156 2157 const Expr *LHS = E->getLHS(); 2158 const Expr *RHS = E->getRHS(); 2159 QualType LHSType = LHS->getType(); 2160 QualType LHSComputationType = E->getComputationLHSType(); 2161 QualType ResultType = E->getComputationResultType(); 2162 std::optional<PrimType> LT = classify(LHSComputationType); 2163 std::optional<PrimType> RT = classify(ResultType); 2164 2165 assert(ResultType->isFloatingType()); 2166 2167 if (!LT || !RT) 2168 return false; 2169 2170 PrimType LHST = classifyPrim(LHSType); 2171 2172 // C++17 onwards require that we evaluate the RHS first. 2173 // Compute RHS and save it in a temporary variable so we can 2174 // load it again later. 2175 if (!visit(RHS)) 2176 return false; 2177 2178 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2179 if (!this->emitSetLocal(*RT, TempOffset, E)) 2180 return false; 2181 2182 // First, visit LHS. 2183 if (!visit(LHS)) 2184 return false; 2185 if (!this->emitLoad(LHST, E)) 2186 return false; 2187 2188 // If necessary, convert LHS to its computation type. 2189 if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType), 2190 LHSComputationType, E)) 2191 return false; 2192 2193 // Now load RHS. 2194 if (!this->emitGetLocal(*RT, TempOffset, E)) 2195 return false; 2196 2197 switch (E->getOpcode()) { 2198 case BO_AddAssign: 2199 if (!this->emitAddf(getFPOptions(E), E)) 2200 return false; 2201 break; 2202 case BO_SubAssign: 2203 if (!this->emitSubf(getFPOptions(E), E)) 2204 return false; 2205 break; 2206 case BO_MulAssign: 2207 if (!this->emitMulf(getFPOptions(E), E)) 2208 return false; 2209 break; 2210 case BO_DivAssign: 2211 if (!this->emitDivf(getFPOptions(E), E)) 2212 return false; 2213 break; 2214 default: 2215 return false; 2216 } 2217 2218 if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E)) 2219 return false; 2220 2221 if (DiscardResult) 2222 return this->emitStorePop(LHST, E); 2223 return this->emitStore(LHST, E); 2224 } 2225 2226 template <class Emitter> 2227 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator( 2228 const CompoundAssignOperator *E) { 2229 BinaryOperatorKind Op = E->getOpcode(); 2230 const Expr *LHS = E->getLHS(); 2231 const Expr *RHS = E->getRHS(); 2232 std::optional<PrimType> LT = classify(LHS->getType()); 2233 std::optional<PrimType> RT = classify(RHS->getType()); 2234 2235 if (Op != BO_AddAssign && Op != BO_SubAssign) 2236 return false; 2237 2238 if (!LT || !RT) 2239 return false; 2240 2241 if (!visit(LHS)) 2242 return false; 2243 2244 if (!this->emitLoad(*LT, LHS)) 2245 return false; 2246 2247 if (!visit(RHS)) 2248 return false; 2249 2250 if (Op == BO_AddAssign) { 2251 if (!this->emitAddOffset(*RT, E)) 2252 return false; 2253 } else { 2254 if (!this->emitSubOffset(*RT, E)) 2255 return false; 2256 } 2257 2258 if (DiscardResult) 2259 return this->emitStorePopPtr(E); 2260 return this->emitStorePtr(E); 2261 } 2262 2263 template <class Emitter> 2264 bool Compiler<Emitter>::VisitCompoundAssignOperator( 2265 const CompoundAssignOperator *E) { 2266 2267 const Expr *LHS = E->getLHS(); 2268 const Expr *RHS = E->getRHS(); 2269 std::optional<PrimType> LHSComputationT = 2270 classify(E->getComputationLHSType()); 2271 std::optional<PrimType> LT = classify(LHS->getType()); 2272 std::optional<PrimType> RT = classify(RHS->getType()); 2273 std::optional<PrimType> ResultT = classify(E->getType()); 2274 2275 if (!Ctx.getLangOpts().CPlusPlus14) 2276 return this->visit(RHS) && this->visit(LHS) && this->emitError(E); 2277 2278 if (!LT || !RT || !ResultT || !LHSComputationT) 2279 return false; 2280 2281 // Handle floating point operations separately here, since they 2282 // require special care. 2283 2284 if (ResultT == PT_Float || RT == PT_Float) 2285 return VisitFloatCompoundAssignOperator(E); 2286 2287 if (E->getType()->isPointerType()) 2288 return VisitPointerCompoundAssignOperator(E); 2289 2290 assert(!E->getType()->isPointerType() && "Handled above"); 2291 assert(!E->getType()->isFloatingType() && "Handled above"); 2292 2293 // C++17 onwards require that we evaluate the RHS first. 2294 // Compute RHS and save it in a temporary variable so we can 2295 // load it again later. 2296 // FIXME: Compound assignments are unsequenced in C, so we might 2297 // have to figure out how to reject them. 2298 if (!visit(RHS)) 2299 return false; 2300 2301 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2302 2303 if (!this->emitSetLocal(*RT, TempOffset, E)) 2304 return false; 2305 2306 // Get LHS pointer, load its value and cast it to the 2307 // computation type if necessary. 2308 if (!visit(LHS)) 2309 return false; 2310 if (!this->emitLoad(*LT, E)) 2311 return false; 2312 if (LT != LHSComputationT) { 2313 if (!this->emitCast(*LT, *LHSComputationT, E)) 2314 return false; 2315 } 2316 2317 // Get the RHS value on the stack. 2318 if (!this->emitGetLocal(*RT, TempOffset, E)) 2319 return false; 2320 2321 // Perform operation. 2322 switch (E->getOpcode()) { 2323 case BO_AddAssign: 2324 if (!this->emitAdd(*LHSComputationT, E)) 2325 return false; 2326 break; 2327 case BO_SubAssign: 2328 if (!this->emitSub(*LHSComputationT, E)) 2329 return false; 2330 break; 2331 case BO_MulAssign: 2332 if (!this->emitMul(*LHSComputationT, E)) 2333 return false; 2334 break; 2335 case BO_DivAssign: 2336 if (!this->emitDiv(*LHSComputationT, E)) 2337 return false; 2338 break; 2339 case BO_RemAssign: 2340 if (!this->emitRem(*LHSComputationT, E)) 2341 return false; 2342 break; 2343 case BO_ShlAssign: 2344 if (!this->emitShl(*LHSComputationT, *RT, E)) 2345 return false; 2346 break; 2347 case BO_ShrAssign: 2348 if (!this->emitShr(*LHSComputationT, *RT, E)) 2349 return false; 2350 break; 2351 case BO_AndAssign: 2352 if (!this->emitBitAnd(*LHSComputationT, E)) 2353 return false; 2354 break; 2355 case BO_XorAssign: 2356 if (!this->emitBitXor(*LHSComputationT, E)) 2357 return false; 2358 break; 2359 case BO_OrAssign: 2360 if (!this->emitBitOr(*LHSComputationT, E)) 2361 return false; 2362 break; 2363 default: 2364 llvm_unreachable("Unimplemented compound assign operator"); 2365 } 2366 2367 // And now cast from LHSComputationT to ResultT. 2368 if (ResultT != LHSComputationT) { 2369 if (!this->emitCast(*LHSComputationT, *ResultT, E)) 2370 return false; 2371 } 2372 2373 // And store the result in LHS. 2374 if (DiscardResult) { 2375 if (LHS->refersToBitField()) 2376 return this->emitStoreBitFieldPop(*ResultT, E); 2377 return this->emitStorePop(*ResultT, E); 2378 } 2379 if (LHS->refersToBitField()) 2380 return this->emitStoreBitField(*ResultT, E); 2381 return this->emitStore(*ResultT, E); 2382 } 2383 2384 template <class Emitter> 2385 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) { 2386 LocalScope<Emitter> ES(this); 2387 const Expr *SubExpr = E->getSubExpr(); 2388 2389 return this->delegate(SubExpr) && ES.destroyLocals(E); 2390 } 2391 2392 template <class Emitter> 2393 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr( 2394 const MaterializeTemporaryExpr *E) { 2395 const Expr *SubExpr = E->getSubExpr(); 2396 2397 if (Initializing) { 2398 // We already have a value, just initialize that. 2399 return this->delegate(SubExpr); 2400 } 2401 // If we don't end up using the materialized temporary anyway, don't 2402 // bother creating it. 2403 if (DiscardResult) 2404 return this->discard(SubExpr); 2405 2406 // When we're initializing a global variable *or* the storage duration of 2407 // the temporary is explicitly static, create a global variable. 2408 std::optional<PrimType> SubExprT = classify(SubExpr); 2409 bool IsStatic = E->getStorageDuration() == SD_Static; 2410 if (IsStatic) { 2411 std::optional<unsigned> GlobalIndex = P.createGlobal(E); 2412 if (!GlobalIndex) 2413 return false; 2414 2415 const LifetimeExtendedTemporaryDecl *TempDecl = 2416 E->getLifetimeExtendedTemporaryDecl(); 2417 if (IsStatic) 2418 assert(TempDecl); 2419 2420 if (SubExprT) { 2421 if (!this->visit(SubExpr)) 2422 return false; 2423 if (IsStatic) { 2424 if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E)) 2425 return false; 2426 } else { 2427 if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E)) 2428 return false; 2429 } 2430 return this->emitGetPtrGlobal(*GlobalIndex, E); 2431 } 2432 2433 // Non-primitive values. 2434 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2435 return false; 2436 if (!this->visitInitializer(SubExpr)) 2437 return false; 2438 if (IsStatic) 2439 return this->emitInitGlobalTempComp(TempDecl, E); 2440 return true; 2441 } 2442 2443 // For everyhing else, use local variables. 2444 if (SubExprT) { 2445 unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true, 2446 /*IsExtended=*/true); 2447 if (!this->visit(SubExpr)) 2448 return false; 2449 if (!this->emitSetLocal(*SubExprT, LocalIndex, E)) 2450 return false; 2451 return this->emitGetPtrLocal(LocalIndex, E); 2452 } else { 2453 const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); 2454 if (std::optional<unsigned> LocalIndex = 2455 allocateLocal(Inner, E->getExtendingDecl())) { 2456 InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); 2457 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2458 return false; 2459 return this->visitInitializer(SubExpr); 2460 } 2461 } 2462 return false; 2463 } 2464 2465 template <class Emitter> 2466 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr( 2467 const CXXBindTemporaryExpr *E) { 2468 return this->delegate(E->getSubExpr()); 2469 } 2470 2471 template <class Emitter> 2472 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 2473 const Expr *Init = E->getInitializer(); 2474 if (DiscardResult) 2475 return this->discard(Init); 2476 2477 if (Initializing) { 2478 // We already have a value, just initialize that. 2479 return this->visitInitializer(Init) && this->emitFinishInit(E); 2480 } 2481 2482 std::optional<PrimType> T = classify(E->getType()); 2483 if (E->isFileScope()) { 2484 // Avoid creating a variable if this is a primitive RValue anyway. 2485 if (T && !E->isLValue()) 2486 return this->delegate(Init); 2487 2488 if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) { 2489 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2490 return false; 2491 2492 if (T) { 2493 if (!this->visit(Init)) 2494 return false; 2495 return this->emitInitGlobal(*T, *GlobalIndex, E); 2496 } 2497 2498 return this->visitInitializer(Init) && this->emitFinishInit(E); 2499 } 2500 2501 return false; 2502 } 2503 2504 // Otherwise, use a local variable. 2505 if (T && !E->isLValue()) { 2506 // For primitive types, we just visit the initializer. 2507 return this->delegate(Init); 2508 } else { 2509 unsigned LocalIndex; 2510 2511 if (T) 2512 LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false); 2513 else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init)) 2514 LocalIndex = *MaybeIndex; 2515 else 2516 return false; 2517 2518 if (!this->emitGetPtrLocal(LocalIndex, E)) 2519 return false; 2520 2521 if (T) { 2522 if (!this->visit(Init)) { 2523 return false; 2524 } 2525 return this->emitInit(*T, E); 2526 } else { 2527 if (!this->visitInitializer(Init) || !this->emitFinishInit(E)) 2528 return false; 2529 } 2530 return true; 2531 } 2532 2533 return false; 2534 } 2535 2536 template <class Emitter> 2537 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) { 2538 if (DiscardResult) 2539 return true; 2540 if (E->getType()->isBooleanType()) 2541 return this->emitConstBool(E->getValue(), E); 2542 return this->emitConst(E->getValue(), E); 2543 } 2544 2545 template <class Emitter> 2546 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 2547 if (DiscardResult) 2548 return true; 2549 return this->emitConst(E->getValue(), E); 2550 } 2551 2552 template <class Emitter> 2553 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) { 2554 if (DiscardResult) 2555 return true; 2556 2557 assert(Initializing); 2558 const Record *R = P.getOrCreateRecord(E->getLambdaClass()); 2559 2560 auto *CaptureInitIt = E->capture_init_begin(); 2561 // Initialize all fields (which represent lambda captures) of the 2562 // record with their initializers. 2563 for (const Record::Field &F : R->fields()) { 2564 const Expr *Init = *CaptureInitIt; 2565 ++CaptureInitIt; 2566 2567 if (!Init) 2568 continue; 2569 2570 if (std::optional<PrimType> T = classify(Init)) { 2571 if (!this->visit(Init)) 2572 return false; 2573 2574 if (!this->emitInitField(*T, F.Offset, E)) 2575 return false; 2576 } else { 2577 if (!this->emitGetPtrField(F.Offset, E)) 2578 return false; 2579 2580 if (!this->visitInitializer(Init)) 2581 return false; 2582 2583 if (!this->emitPopPtr(E)) 2584 return false; 2585 } 2586 } 2587 2588 return true; 2589 } 2590 2591 template <class Emitter> 2592 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) { 2593 if (DiscardResult) 2594 return true; 2595 2596 return this->delegate(E->getFunctionName()); 2597 } 2598 2599 template <class Emitter> 2600 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) { 2601 if (E->getSubExpr() && !this->discard(E->getSubExpr())) 2602 return false; 2603 2604 return this->emitInvalid(E); 2605 } 2606 2607 template <class Emitter> 2608 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr( 2609 const CXXReinterpretCastExpr *E) { 2610 const Expr *SubExpr = E->getSubExpr(); 2611 2612 bool Fatal = false; 2613 std::optional<PrimType> FromT = classify(SubExpr); 2614 std::optional<PrimType> ToT = classify(E); 2615 if (!FromT || !ToT) 2616 Fatal = true; 2617 else 2618 Fatal = (ToT != FromT); 2619 2620 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2621 return false; 2622 2623 return this->delegate(SubExpr); 2624 } 2625 2626 template <class Emitter> 2627 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 2628 assert(E->getType()->isBooleanType()); 2629 2630 if (DiscardResult) 2631 return true; 2632 return this->emitConstBool(E->getValue(), E); 2633 } 2634 2635 template <class Emitter> 2636 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) { 2637 QualType T = E->getType(); 2638 assert(!classify(T)); 2639 2640 if (T->isRecordType()) { 2641 const CXXConstructorDecl *Ctor = E->getConstructor(); 2642 2643 // Trivial copy/move constructor. Avoid copy. 2644 if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() && 2645 Ctor->isTrivial() && 2646 E->getArg(0)->isTemporaryObject(Ctx.getASTContext(), 2647 T->getAsCXXRecordDecl())) 2648 return this->visitInitializer(E->getArg(0)); 2649 2650 // If we're discarding a construct expression, we still need 2651 // to allocate a variable and call the constructor and destructor. 2652 if (DiscardResult) { 2653 if (Ctor->isTrivial()) 2654 return true; 2655 assert(!Initializing); 2656 std::optional<unsigned> LocalIndex = allocateLocal(E); 2657 2658 if (!LocalIndex) 2659 return false; 2660 2661 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2662 return false; 2663 } 2664 2665 // Zero initialization. 2666 if (E->requiresZeroInitialization()) { 2667 const Record *R = getRecord(E->getType()); 2668 2669 if (!this->visitZeroRecordInitializer(R, E)) 2670 return false; 2671 2672 // If the constructor is trivial anyway, we're done. 2673 if (Ctor->isTrivial()) 2674 return true; 2675 } 2676 2677 const Function *Func = getFunction(Ctor); 2678 2679 if (!Func) 2680 return false; 2681 2682 assert(Func->hasThisPointer()); 2683 assert(!Func->hasRVO()); 2684 2685 // The This pointer is already on the stack because this is an initializer, 2686 // but we need to dup() so the call() below has its own copy. 2687 if (!this->emitDupPtr(E)) 2688 return false; 2689 2690 // Constructor arguments. 2691 for (const auto *Arg : E->arguments()) { 2692 if (!this->visit(Arg)) 2693 return false; 2694 } 2695 2696 if (Func->isVariadic()) { 2697 uint32_t VarArgSize = 0; 2698 unsigned NumParams = Func->getNumWrittenParams(); 2699 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) { 2700 VarArgSize += 2701 align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr))); 2702 } 2703 if (!this->emitCallVar(Func, VarArgSize, E)) 2704 return false; 2705 } else { 2706 if (!this->emitCall(Func, 0, E)) { 2707 // When discarding, we don't need the result anyway, so clean up 2708 // the instance dup we did earlier in case surrounding code wants 2709 // to keep evaluating. 2710 if (DiscardResult) 2711 (void)this->emitPopPtr(E); 2712 return false; 2713 } 2714 } 2715 2716 if (DiscardResult) 2717 return this->emitPopPtr(E); 2718 return this->emitFinishInit(E); 2719 } 2720 2721 if (T->isArrayType()) { 2722 const ConstantArrayType *CAT = 2723 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 2724 if (!CAT) 2725 return false; 2726 2727 size_t NumElems = CAT->getZExtSize(); 2728 const Function *Func = getFunction(E->getConstructor()); 2729 if (!Func || !Func->isConstexpr()) 2730 return false; 2731 2732 // FIXME(perf): We're calling the constructor once per array element here, 2733 // in the old intepreter we had a special-case for trivial constructors. 2734 for (size_t I = 0; I != NumElems; ++I) { 2735 if (!this->emitConstUint64(I, E)) 2736 return false; 2737 if (!this->emitArrayElemPtrUint64(E)) 2738 return false; 2739 2740 // Constructor arguments. 2741 for (const auto *Arg : E->arguments()) { 2742 if (!this->visit(Arg)) 2743 return false; 2744 } 2745 2746 if (!this->emitCall(Func, 0, E)) 2747 return false; 2748 } 2749 return true; 2750 } 2751 2752 return false; 2753 } 2754 2755 template <class Emitter> 2756 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) { 2757 if (DiscardResult) 2758 return true; 2759 2760 const APValue Val = 2761 E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr); 2762 2763 // Things like __builtin_LINE(). 2764 if (E->getType()->isIntegerType()) { 2765 assert(Val.isInt()); 2766 const APSInt &I = Val.getInt(); 2767 return this->emitConst(I, E); 2768 } 2769 // Otherwise, the APValue is an LValue, with only one element. 2770 // Theoretically, we don't need the APValue at all of course. 2771 assert(E->getType()->isPointerType()); 2772 assert(Val.isLValue()); 2773 const APValue::LValueBase &Base = Val.getLValueBase(); 2774 if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>()) 2775 return this->visit(LValueExpr); 2776 2777 // Otherwise, we have a decl (which is the case for 2778 // __builtin_source_location). 2779 assert(Base.is<const ValueDecl *>()); 2780 assert(Val.getLValuePath().size() == 0); 2781 const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>(); 2782 assert(BaseDecl); 2783 2784 auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl); 2785 2786 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD); 2787 if (!GlobalIndex) 2788 return false; 2789 2790 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2791 return false; 2792 2793 const Record *R = getRecord(E->getType()); 2794 const APValue &V = UGCD->getValue(); 2795 for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) { 2796 const Record::Field *F = R->getField(I); 2797 const APValue &FieldValue = V.getStructField(I); 2798 2799 PrimType FieldT = classifyPrim(F->Decl->getType()); 2800 2801 if (!this->visitAPValue(FieldValue, FieldT, E)) 2802 return false; 2803 if (!this->emitInitField(FieldT, F->Offset, E)) 2804 return false; 2805 } 2806 2807 // Leave the pointer to the global on the stack. 2808 return true; 2809 } 2810 2811 template <class Emitter> 2812 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) { 2813 unsigned N = E->getNumComponents(); 2814 if (N == 0) 2815 return false; 2816 2817 for (unsigned I = 0; I != N; ++I) { 2818 const OffsetOfNode &Node = E->getComponent(I); 2819 if (Node.getKind() == OffsetOfNode::Array) { 2820 const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex()); 2821 PrimType IndexT = classifyPrim(ArrayIndexExpr->getType()); 2822 2823 if (DiscardResult) { 2824 if (!this->discard(ArrayIndexExpr)) 2825 return false; 2826 continue; 2827 } 2828 2829 if (!this->visit(ArrayIndexExpr)) 2830 return false; 2831 // Cast to Sint64. 2832 if (IndexT != PT_Sint64) { 2833 if (!this->emitCast(IndexT, PT_Sint64, E)) 2834 return false; 2835 } 2836 } 2837 } 2838 2839 if (DiscardResult) 2840 return true; 2841 2842 PrimType T = classifyPrim(E->getType()); 2843 return this->emitOffsetOf(T, E, E); 2844 } 2845 2846 template <class Emitter> 2847 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr( 2848 const CXXScalarValueInitExpr *E) { 2849 QualType Ty = E->getType(); 2850 2851 if (DiscardResult || Ty->isVoidType()) 2852 return true; 2853 2854 if (std::optional<PrimType> T = classify(Ty)) 2855 return this->visitZeroInitializer(*T, Ty, E); 2856 2857 if (const auto *CT = Ty->getAs<ComplexType>()) { 2858 if (!Initializing) { 2859 std::optional<unsigned> LocalIndex = allocateLocal(E); 2860 if (!LocalIndex) 2861 return false; 2862 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2863 return false; 2864 } 2865 2866 // Initialize both fields to 0. 2867 QualType ElemQT = CT->getElementType(); 2868 PrimType ElemT = classifyPrim(ElemQT); 2869 2870 for (unsigned I = 0; I != 2; ++I) { 2871 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 2872 return false; 2873 if (!this->emitInitElem(ElemT, I, E)) 2874 return false; 2875 } 2876 return true; 2877 } 2878 2879 if (const auto *VT = Ty->getAs<VectorType>()) { 2880 // FIXME: Code duplication with the _Complex case above. 2881 if (!Initializing) { 2882 std::optional<unsigned> LocalIndex = allocateLocal(E); 2883 if (!LocalIndex) 2884 return false; 2885 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2886 return false; 2887 } 2888 2889 // Initialize all fields to 0. 2890 QualType ElemQT = VT->getElementType(); 2891 PrimType ElemT = classifyPrim(ElemQT); 2892 2893 for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) { 2894 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 2895 return false; 2896 if (!this->emitInitElem(ElemT, I, E)) 2897 return false; 2898 } 2899 return true; 2900 } 2901 2902 return false; 2903 } 2904 2905 template <class Emitter> 2906 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 2907 return this->emitConst(E->getPackLength(), E); 2908 } 2909 2910 template <class Emitter> 2911 bool Compiler<Emitter>::VisitGenericSelectionExpr( 2912 const GenericSelectionExpr *E) { 2913 return this->delegate(E->getResultExpr()); 2914 } 2915 2916 template <class Emitter> 2917 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) { 2918 return this->delegate(E->getChosenSubExpr()); 2919 } 2920 2921 template <class Emitter> 2922 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 2923 if (DiscardResult) 2924 return true; 2925 2926 return this->emitConst(E->getValue(), E); 2927 } 2928 2929 template <class Emitter> 2930 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr( 2931 const CXXInheritedCtorInitExpr *E) { 2932 const CXXConstructorDecl *Ctor = E->getConstructor(); 2933 assert(!Ctor->isTrivial() && 2934 "Trivial CXXInheritedCtorInitExpr, implement. (possible?)"); 2935 const Function *F = this->getFunction(Ctor); 2936 assert(F); 2937 assert(!F->hasRVO()); 2938 assert(F->hasThisPointer()); 2939 2940 if (!this->emitDupPtr(SourceInfo{})) 2941 return false; 2942 2943 // Forward all arguments of the current function (which should be a 2944 // constructor itself) to the inherited ctor. 2945 // This is necessary because the calling code has pushed the pointer 2946 // of the correct base for us already, but the arguments need 2947 // to come after. 2948 unsigned Offset = align(primSize(PT_Ptr)); // instance pointer. 2949 for (const ParmVarDecl *PD : Ctor->parameters()) { 2950 PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr); 2951 2952 if (!this->emitGetParam(PT, Offset, E)) 2953 return false; 2954 Offset += align(primSize(PT)); 2955 } 2956 2957 return this->emitCall(F, 0, E); 2958 } 2959 2960 template <class Emitter> 2961 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) { 2962 assert(classifyPrim(E->getType()) == PT_Ptr); 2963 const Expr *Init = E->getInitializer(); 2964 QualType ElementType = E->getAllocatedType(); 2965 std::optional<PrimType> ElemT = classify(ElementType); 2966 unsigned PlacementArgs = E->getNumPlacementArgs(); 2967 bool IsNoThrow = false; 2968 2969 // FIXME: Better diagnostic. diag::note_constexpr_new_placement 2970 if (PlacementArgs != 0) { 2971 // The only new-placement list we support is of the form (std::nothrow). 2972 // 2973 // FIXME: There is no restriction on this, but it's not clear that any 2974 // other form makes any sense. We get here for cases such as: 2975 // 2976 // new (std::align_val_t{N}) X(int) 2977 // 2978 // (which should presumably be valid only if N is a multiple of 2979 // alignof(int), and in any case can't be deallocated unless N is 2980 // alignof(X) and X has new-extended alignment). 2981 if (PlacementArgs != 1 || !E->getPlacementArg(0)->getType()->isNothrowT()) 2982 return this->emitInvalid(E); 2983 2984 if (!this->discard(E->getPlacementArg(0))) 2985 return false; 2986 IsNoThrow = true; 2987 } 2988 2989 const Descriptor *Desc; 2990 if (ElemT) { 2991 if (E->isArray()) 2992 Desc = nullptr; // We're not going to use it in this case. 2993 else 2994 Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD, 2995 /*IsConst=*/false, /*IsTemporary=*/false, 2996 /*IsMutable=*/false); 2997 } else { 2998 Desc = P.createDescriptor( 2999 E, ElementType.getTypePtr(), 3000 E->isArray() ? std::nullopt : Descriptor::InlineDescMD, 3001 /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init); 3002 } 3003 3004 if (E->isArray()) { 3005 std::optional<const Expr *> ArraySizeExpr = E->getArraySize(); 3006 if (!ArraySizeExpr) 3007 return false; 3008 3009 const Expr *Stripped = *ArraySizeExpr; 3010 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 3011 Stripped = ICE->getSubExpr()) 3012 if (ICE->getCastKind() != CK_NoOp && 3013 ICE->getCastKind() != CK_IntegralCast) 3014 break; 3015 3016 PrimType SizeT = classifyPrim(Stripped->getType()); 3017 3018 if (!this->visit(Stripped)) 3019 return false; 3020 3021 if (ElemT) { 3022 // N primitive elements. 3023 if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E)) 3024 return false; 3025 } else { 3026 // N Composite elements. 3027 if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E)) 3028 return false; 3029 } 3030 3031 if (Init && !this->visitInitializer(Init)) 3032 return false; 3033 3034 } else { 3035 // Allocate just one element. 3036 if (!this->emitAlloc(Desc, E)) 3037 return false; 3038 3039 if (Init) { 3040 if (ElemT) { 3041 if (!this->visit(Init)) 3042 return false; 3043 3044 if (!this->emitInit(*ElemT, E)) 3045 return false; 3046 } else { 3047 // Composite. 3048 if (!this->visitInitializer(Init)) 3049 return false; 3050 } 3051 } 3052 } 3053 3054 if (DiscardResult) 3055 return this->emitPopPtr(E); 3056 3057 return true; 3058 } 3059 3060 template <class Emitter> 3061 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 3062 const Expr *Arg = E->getArgument(); 3063 3064 // Arg must be an lvalue. 3065 if (!this->visit(Arg)) 3066 return false; 3067 3068 return this->emitFree(E->isArrayForm(), E); 3069 } 3070 3071 template <class Emitter> 3072 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) { 3073 const Function *Func = nullptr; 3074 if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E)) 3075 Func = F; 3076 3077 if (!Func) 3078 return false; 3079 return this->emitGetFnPtr(Func, E); 3080 } 3081 3082 template <class Emitter> 3083 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 3084 assert(Ctx.getLangOpts().CPlusPlus); 3085 return this->emitConstBool(E->getValue(), E); 3086 } 3087 3088 template <class Emitter> 3089 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 3090 if (DiscardResult) 3091 return true; 3092 assert(!Initializing); 3093 3094 const MSGuidDecl *GuidDecl = E->getGuidDecl(); 3095 const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl(); 3096 assert(RD); 3097 // If the definiton of the result type is incomplete, just return a dummy. 3098 // If (and when) that is read from, we will fail, but not now. 3099 if (!RD->isCompleteDefinition()) { 3100 if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl)) 3101 return this->emitGetPtrGlobal(*I, E); 3102 return false; 3103 } 3104 3105 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl); 3106 if (!GlobalIndex) 3107 return false; 3108 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 3109 return false; 3110 3111 assert(this->getRecord(E->getType())); 3112 3113 const APValue &V = GuidDecl->getAsAPValue(); 3114 if (V.getKind() == APValue::None) 3115 return true; 3116 3117 assert(V.isStruct()); 3118 assert(V.getStructNumBases() == 0); 3119 if (!this->visitAPValueInitializer(V, E)) 3120 return false; 3121 3122 return this->emitFinishInit(E); 3123 } 3124 3125 template <class Emitter> 3126 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) { 3127 assert(classifyPrim(E->getType()) == PT_Bool); 3128 if (DiscardResult) 3129 return true; 3130 return this->emitConstBool(E->isSatisfied(), E); 3131 } 3132 3133 template <class Emitter> 3134 bool Compiler<Emitter>::VisitConceptSpecializationExpr( 3135 const ConceptSpecializationExpr *E) { 3136 assert(classifyPrim(E->getType()) == PT_Bool); 3137 if (DiscardResult) 3138 return true; 3139 return this->emitConstBool(E->isSatisfied(), E); 3140 } 3141 3142 template <class Emitter> 3143 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator( 3144 const CXXRewrittenBinaryOperator *E) { 3145 return this->delegate(E->getSemanticForm()); 3146 } 3147 3148 template <class Emitter> 3149 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) { 3150 3151 for (const Expr *SemE : E->semantics()) { 3152 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { 3153 if (SemE == E->getResultExpr()) 3154 return false; 3155 3156 if (OVE->isUnique()) 3157 continue; 3158 3159 if (!this->discard(OVE)) 3160 return false; 3161 } else if (SemE == E->getResultExpr()) { 3162 if (!this->delegate(SemE)) 3163 return false; 3164 } else { 3165 if (!this->discard(SemE)) 3166 return false; 3167 } 3168 } 3169 return true; 3170 } 3171 3172 template <class Emitter> 3173 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) { 3174 return this->delegate(E->getSelectedExpr()); 3175 } 3176 3177 template <class Emitter> 3178 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) { 3179 return this->emitError(E); 3180 } 3181 3182 template <class Emitter> 3183 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) { 3184 assert(E->getType()->isVoidPointerType()); 3185 3186 unsigned Offset = allocateLocalPrimitive( 3187 E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3188 3189 return this->emitGetLocal(PT_Ptr, Offset, E); 3190 } 3191 3192 template <class Emitter> 3193 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) { 3194 assert(Initializing); 3195 const auto *VT = E->getType()->castAs<VectorType>(); 3196 QualType ElemType = VT->getElementType(); 3197 PrimType ElemT = classifyPrim(ElemType); 3198 const Expr *Src = E->getSrcExpr(); 3199 PrimType SrcElemT = 3200 classifyPrim(Src->getType()->castAs<VectorType>()->getElementType()); 3201 3202 unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false); 3203 if (!this->visit(Src)) 3204 return false; 3205 if (!this->emitSetLocal(PT_Ptr, SrcOffset, E)) 3206 return false; 3207 3208 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 3209 if (!this->emitGetLocal(PT_Ptr, SrcOffset, E)) 3210 return false; 3211 if (!this->emitArrayElemPop(SrcElemT, I, E)) 3212 return false; 3213 if (SrcElemT != ElemT) { 3214 if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E)) 3215 return false; 3216 } 3217 if (!this->emitInitElem(ElemT, I, E)) 3218 return false; 3219 } 3220 3221 return true; 3222 } 3223 3224 template <class Emitter> 3225 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { 3226 assert(Initializing); 3227 assert(E->getNumSubExprs() > 2); 3228 3229 const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)}; 3230 const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>(); 3231 PrimType ElemT = classifyPrim(VT->getElementType()); 3232 unsigned NumInputElems = VT->getNumElements(); 3233 unsigned NumOutputElems = E->getNumSubExprs() - 2; 3234 assert(NumOutputElems > 0); 3235 3236 // Save both input vectors to a local variable. 3237 unsigned VectorOffsets[2]; 3238 for (unsigned I = 0; I != 2; ++I) { 3239 VectorOffsets[I] = this->allocateLocalPrimitive( 3240 Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3241 if (!this->visit(Vecs[I])) 3242 return false; 3243 if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E)) 3244 return false; 3245 } 3246 for (unsigned I = 0; I != NumOutputElems; ++I) { 3247 APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I); 3248 if (ShuffleIndex == -1) 3249 return this->emitInvalid(E); // FIXME: Better diagnostic. 3250 3251 assert(ShuffleIndex < (NumInputElems * 2)); 3252 if (!this->emitGetLocal(PT_Ptr, 3253 VectorOffsets[ShuffleIndex >= NumInputElems], E)) 3254 return false; 3255 unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems; 3256 if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E)) 3257 return false; 3258 3259 if (!this->emitInitElem(ElemT, I, E)) 3260 return false; 3261 } 3262 3263 return true; 3264 } 3265 3266 template <class Emitter> 3267 bool Compiler<Emitter>::VisitExtVectorElementExpr( 3268 const ExtVectorElementExpr *E) { 3269 const Expr *Base = E->getBase(); 3270 assert( 3271 Base->getType()->isVectorType() || 3272 Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType()); 3273 3274 SmallVector<uint32_t, 4> Indices; 3275 E->getEncodedElementAccess(Indices); 3276 3277 if (Indices.size() == 1) { 3278 if (!this->visit(Base)) 3279 return false; 3280 3281 if (E->isGLValue()) { 3282 if (!this->emitConstUint32(Indices[0], E)) 3283 return false; 3284 return this->emitArrayElemPtrPop(PT_Uint32, E); 3285 } 3286 // Else, also load the value. 3287 return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E); 3288 } 3289 3290 // Create a local variable for the base. 3291 unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true, 3292 /*IsExtended=*/false); 3293 if (!this->visit(Base)) 3294 return false; 3295 if (!this->emitSetLocal(PT_Ptr, BaseOffset, E)) 3296 return false; 3297 3298 // Now the vector variable for the return value. 3299 if (!Initializing) { 3300 std::optional<unsigned> ResultIndex; 3301 ResultIndex = allocateLocal(E); 3302 if (!ResultIndex) 3303 return false; 3304 if (!this->emitGetPtrLocal(*ResultIndex, E)) 3305 return false; 3306 } 3307 3308 assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements()); 3309 3310 PrimType ElemT = 3311 classifyPrim(E->getType()->getAs<VectorType>()->getElementType()); 3312 uint32_t DstIndex = 0; 3313 for (uint32_t I : Indices) { 3314 if (!this->emitGetLocal(PT_Ptr, BaseOffset, E)) 3315 return false; 3316 if (!this->emitArrayElemPop(ElemT, I, E)) 3317 return false; 3318 if (!this->emitInitElem(ElemT, DstIndex, E)) 3319 return false; 3320 ++DstIndex; 3321 } 3322 3323 // Leave the result pointer on the stack. 3324 assert(!DiscardResult); 3325 return true; 3326 } 3327 3328 template <class Emitter> 3329 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 3330 const Expr *SubExpr = E->getSubExpr(); 3331 if (!E->isExpressibleAsConstantInitializer()) 3332 return this->discard(SubExpr) && this->emitInvalid(E); 3333 3334 return this->delegate(SubExpr); 3335 } 3336 3337 template <class Emitter> 3338 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr( 3339 const CXXStdInitializerListExpr *E) { 3340 const Expr *SubExpr = E->getSubExpr(); 3341 const ConstantArrayType *ArrayType = 3342 Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType()); 3343 const Record *R = getRecord(E->getType()); 3344 assert(Initializing); 3345 assert(SubExpr->isGLValue()); 3346 3347 if (!this->visit(SubExpr)) 3348 return false; 3349 if (!this->emitConstUint8(0, E)) 3350 return false; 3351 if (!this->emitArrayElemPtrPopUint8(E)) 3352 return false; 3353 if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E)) 3354 return false; 3355 3356 PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType()); 3357 if (isIntegralType(SecondFieldT)) { 3358 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), 3359 SecondFieldT, E)) 3360 return false; 3361 return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E); 3362 } 3363 assert(SecondFieldT == PT_Ptr); 3364 3365 if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E)) 3366 return false; 3367 if (!this->emitExpandPtr(E)) 3368 return false; 3369 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E)) 3370 return false; 3371 if (!this->emitArrayElemPtrPop(PT_Uint64, E)) 3372 return false; 3373 return this->emitInitFieldPtr(R->getField(1u)->Offset, E); 3374 } 3375 3376 template <class Emitter> 3377 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) { 3378 BlockScope<Emitter> BS(this); 3379 StmtExprScope<Emitter> SS(this); 3380 3381 const CompoundStmt *CS = E->getSubStmt(); 3382 const Stmt *Result = CS->getStmtExprResult(); 3383 for (const Stmt *S : CS->body()) { 3384 if (S != Result) { 3385 if (!this->visitStmt(S)) 3386 return false; 3387 continue; 3388 } 3389 3390 assert(S == Result); 3391 if (const Expr *ResultExpr = dyn_cast<Expr>(S)) 3392 return this->delegate(ResultExpr); 3393 return this->emitUnsupported(E); 3394 } 3395 3396 return BS.destroyLocals(); 3397 } 3398 3399 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) { 3400 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true, 3401 /*NewInitializing=*/false); 3402 return this->Visit(E); 3403 } 3404 3405 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) { 3406 // We're basically doing: 3407 // OptionScope<Emitter> Scope(this, DicardResult, Initializing); 3408 // but that's unnecessary of course. 3409 return this->Visit(E); 3410 } 3411 3412 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) { 3413 if (E->getType().isNull()) 3414 return false; 3415 3416 if (E->getType()->isVoidType()) 3417 return this->discard(E); 3418 3419 // Create local variable to hold the return value. 3420 if (!E->isGLValue() && !E->getType()->isAnyComplexType() && 3421 !classify(E->getType())) { 3422 std::optional<unsigned> LocalIndex = allocateLocal(E); 3423 if (!LocalIndex) 3424 return false; 3425 3426 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3427 return false; 3428 return this->visitInitializer(E); 3429 } 3430 3431 // Otherwise,we have a primitive return value, produce the value directly 3432 // and push it on the stack. 3433 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3434 /*NewInitializing=*/false); 3435 return this->Visit(E); 3436 } 3437 3438 template <class Emitter> 3439 bool Compiler<Emitter>::visitInitializer(const Expr *E) { 3440 assert(!classify(E->getType())); 3441 3442 if (!this->checkLiteralType(E)) 3443 return false; 3444 3445 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3446 /*NewInitializing=*/true); 3447 return this->Visit(E); 3448 } 3449 3450 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) { 3451 std::optional<PrimType> T = classify(E->getType()); 3452 if (!T) { 3453 // Convert complex values to bool. 3454 if (E->getType()->isAnyComplexType()) { 3455 if (!this->visit(E)) 3456 return false; 3457 return this->emitComplexBoolCast(E); 3458 } 3459 return false; 3460 } 3461 3462 if (!this->visit(E)) 3463 return false; 3464 3465 if (T == PT_Bool) 3466 return true; 3467 3468 // Convert pointers to bool. 3469 if (T == PT_Ptr || T == PT_FnPtr) { 3470 if (!this->emitNull(*T, nullptr, E)) 3471 return false; 3472 return this->emitNE(*T, E); 3473 } 3474 3475 // Or Floats. 3476 if (T == PT_Float) 3477 return this->emitCastFloatingIntegralBool(getFPOptions(E), E); 3478 3479 // Or anything else we can. 3480 return this->emitCast(*T, PT_Bool, E); 3481 } 3482 3483 template <class Emitter> 3484 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT, 3485 const Expr *E) { 3486 switch (T) { 3487 case PT_Bool: 3488 return this->emitZeroBool(E); 3489 case PT_Sint8: 3490 return this->emitZeroSint8(E); 3491 case PT_Uint8: 3492 return this->emitZeroUint8(E); 3493 case PT_Sint16: 3494 return this->emitZeroSint16(E); 3495 case PT_Uint16: 3496 return this->emitZeroUint16(E); 3497 case PT_Sint32: 3498 return this->emitZeroSint32(E); 3499 case PT_Uint32: 3500 return this->emitZeroUint32(E); 3501 case PT_Sint64: 3502 return this->emitZeroSint64(E); 3503 case PT_Uint64: 3504 return this->emitZeroUint64(E); 3505 case PT_IntAP: 3506 return this->emitZeroIntAP(Ctx.getBitWidth(QT), E); 3507 case PT_IntAPS: 3508 return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E); 3509 case PT_Ptr: 3510 return this->emitNullPtr(nullptr, E); 3511 case PT_FnPtr: 3512 return this->emitNullFnPtr(nullptr, E); 3513 case PT_MemberPtr: 3514 return this->emitNullMemberPtr(nullptr, E); 3515 case PT_Float: { 3516 return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E); 3517 } 3518 } 3519 llvm_unreachable("unknown primitive type"); 3520 } 3521 3522 template <class Emitter> 3523 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R, 3524 const Expr *E) { 3525 assert(E); 3526 assert(R); 3527 // Fields 3528 for (const Record::Field &Field : R->fields()) { 3529 if (Field.Decl->isUnnamedBitField()) 3530 continue; 3531 3532 const Descriptor *D = Field.Desc; 3533 if (D->isPrimitive()) { 3534 QualType QT = D->getType(); 3535 PrimType T = classifyPrim(D->getType()); 3536 if (!this->visitZeroInitializer(T, QT, E)) 3537 return false; 3538 if (!this->emitInitField(T, Field.Offset, E)) 3539 return false; 3540 if (R->isUnion()) 3541 break; 3542 continue; 3543 } 3544 3545 if (!this->emitGetPtrField(Field.Offset, E)) 3546 return false; 3547 3548 if (D->isPrimitiveArray()) { 3549 QualType ET = D->getElemQualType(); 3550 PrimType T = classifyPrim(ET); 3551 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3552 if (!this->visitZeroInitializer(T, ET, E)) 3553 return false; 3554 if (!this->emitInitElem(T, I, E)) 3555 return false; 3556 } 3557 } else if (D->isCompositeArray()) { 3558 const Record *ElemRecord = D->ElemDesc->ElemRecord; 3559 assert(D->ElemDesc->ElemRecord); 3560 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3561 if (!this->emitConstUint32(I, E)) 3562 return false; 3563 if (!this->emitArrayElemPtr(PT_Uint32, E)) 3564 return false; 3565 if (!this->visitZeroRecordInitializer(ElemRecord, E)) 3566 return false; 3567 if (!this->emitPopPtr(E)) 3568 return false; 3569 } 3570 } else if (D->isRecord()) { 3571 if (!this->visitZeroRecordInitializer(D->ElemRecord, E)) 3572 return false; 3573 } else { 3574 assert(false); 3575 } 3576 3577 if (!this->emitFinishInitPop(E)) 3578 return false; 3579 3580 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 3581 // object's first non-static named data member is zero-initialized 3582 if (R->isUnion()) 3583 break; 3584 } 3585 3586 for (const Record::Base &B : R->bases()) { 3587 if (!this->emitGetPtrBase(B.Offset, E)) 3588 return false; 3589 if (!this->visitZeroRecordInitializer(B.R, E)) 3590 return false; 3591 if (!this->emitFinishInitPop(E)) 3592 return false; 3593 } 3594 3595 // FIXME: Virtual bases. 3596 3597 return true; 3598 } 3599 3600 template <class Emitter> 3601 template <typename T> 3602 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) { 3603 switch (Ty) { 3604 case PT_Sint8: 3605 return this->emitConstSint8(Value, E); 3606 case PT_Uint8: 3607 return this->emitConstUint8(Value, E); 3608 case PT_Sint16: 3609 return this->emitConstSint16(Value, E); 3610 case PT_Uint16: 3611 return this->emitConstUint16(Value, E); 3612 case PT_Sint32: 3613 return this->emitConstSint32(Value, E); 3614 case PT_Uint32: 3615 return this->emitConstUint32(Value, E); 3616 case PT_Sint64: 3617 return this->emitConstSint64(Value, E); 3618 case PT_Uint64: 3619 return this->emitConstUint64(Value, E); 3620 case PT_Bool: 3621 return this->emitConstBool(Value, E); 3622 case PT_Ptr: 3623 case PT_FnPtr: 3624 case PT_MemberPtr: 3625 case PT_Float: 3626 case PT_IntAP: 3627 case PT_IntAPS: 3628 llvm_unreachable("Invalid integral type"); 3629 break; 3630 } 3631 llvm_unreachable("unknown primitive type"); 3632 } 3633 3634 template <class Emitter> 3635 template <typename T> 3636 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) { 3637 return this->emitConst(Value, classifyPrim(E->getType()), E); 3638 } 3639 3640 template <class Emitter> 3641 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty, 3642 const Expr *E) { 3643 if (Ty == PT_IntAPS) 3644 return this->emitConstIntAPS(Value, E); 3645 if (Ty == PT_IntAP) 3646 return this->emitConstIntAP(Value, E); 3647 3648 if (Value.isSigned()) 3649 return this->emitConst(Value.getSExtValue(), Ty, E); 3650 return this->emitConst(Value.getZExtValue(), Ty, E); 3651 } 3652 3653 template <class Emitter> 3654 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) { 3655 return this->emitConst(Value, classifyPrim(E->getType()), E); 3656 } 3657 3658 template <class Emitter> 3659 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty, 3660 bool IsConst, 3661 bool IsExtended) { 3662 // Make sure we don't accidentally register the same decl twice. 3663 if (const auto *VD = 3664 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3665 assert(!P.getGlobal(VD)); 3666 assert(!Locals.contains(VD)); 3667 (void)VD; 3668 } 3669 3670 // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g. 3671 // (int){12} in C. Consider using Expr::isTemporaryObject() instead 3672 // or isa<MaterializeTemporaryExpr>(). 3673 Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst, 3674 Src.is<const Expr *>()); 3675 Scope::Local Local = this->createLocal(D); 3676 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) 3677 Locals.insert({VD, Local}); 3678 VarScope->add(Local, IsExtended); 3679 return Local.Offset; 3680 } 3681 3682 template <class Emitter> 3683 std::optional<unsigned> 3684 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) { 3685 // Make sure we don't accidentally register the same decl twice. 3686 if ([[maybe_unused]] const auto *VD = 3687 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3688 assert(!P.getGlobal(VD)); 3689 assert(!Locals.contains(VD)); 3690 } 3691 3692 QualType Ty; 3693 const ValueDecl *Key = nullptr; 3694 const Expr *Init = nullptr; 3695 bool IsTemporary = false; 3696 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3697 Key = VD; 3698 Ty = VD->getType(); 3699 3700 if (const auto *VarD = dyn_cast<VarDecl>(VD)) 3701 Init = VarD->getInit(); 3702 } 3703 if (auto *E = Src.dyn_cast<const Expr *>()) { 3704 IsTemporary = true; 3705 Ty = E->getType(); 3706 } 3707 3708 Descriptor *D = P.createDescriptor( 3709 Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 3710 IsTemporary, /*IsMutable=*/false, Init); 3711 if (!D) 3712 return std::nullopt; 3713 3714 Scope::Local Local = this->createLocal(D); 3715 if (Key) 3716 Locals.insert({Key, Local}); 3717 if (ExtendingDecl) 3718 VarScope->addExtended(Local, ExtendingDecl); 3719 else 3720 VarScope->add(Local, false); 3721 return Local.Offset; 3722 } 3723 3724 template <class Emitter> 3725 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) { 3726 QualType Ty = E->getType(); 3727 assert(!Ty->isRecordType()); 3728 3729 Descriptor *D = P.createDescriptor( 3730 E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 3731 /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr); 3732 assert(D); 3733 3734 Scope::Local Local = this->createLocal(D); 3735 VariableScope<Emitter> *S = VarScope; 3736 assert(S); 3737 // Attach to topmost scope. 3738 while (S->getParent()) 3739 S = S->getParent(); 3740 assert(S && !S->getParent()); 3741 S->addLocal(Local); 3742 return Local.Offset; 3743 } 3744 3745 template <class Emitter> 3746 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) { 3747 if (const PointerType *PT = dyn_cast<PointerType>(Ty)) 3748 return PT->getPointeeType()->getAs<RecordType>(); 3749 return Ty->getAs<RecordType>(); 3750 } 3751 3752 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) { 3753 if (const auto *RecordTy = getRecordTy(Ty)) 3754 return getRecord(RecordTy->getDecl()); 3755 return nullptr; 3756 } 3757 3758 template <class Emitter> 3759 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) { 3760 return P.getOrCreateRecord(RD); 3761 } 3762 3763 template <class Emitter> 3764 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) { 3765 return Ctx.getOrCreateFunction(FD); 3766 } 3767 3768 template <class Emitter> 3769 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) { 3770 LocalScope<Emitter> RootScope(this); 3771 3772 auto maybeDestroyLocals = [&]() -> bool { 3773 if (DestroyToplevelScope) 3774 return RootScope.destroyLocals(); 3775 return true; 3776 }; 3777 3778 // Void expressions. 3779 if (E->getType()->isVoidType()) { 3780 if (!visit(E)) 3781 return false; 3782 return this->emitRetVoid(E) && maybeDestroyLocals(); 3783 } 3784 3785 // Expressions with a primitive return type. 3786 if (std::optional<PrimType> T = classify(E)) { 3787 if (!visit(E)) 3788 return false; 3789 3790 return this->emitRet(*T, E) && maybeDestroyLocals(); 3791 } 3792 3793 // Expressions with a composite return type. 3794 // For us, that means everything we don't 3795 // have a PrimType for. 3796 if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) { 3797 if (!this->emitGetPtrLocal(*LocalOffset, E)) 3798 return false; 3799 3800 if (!visitInitializer(E)) 3801 return false; 3802 3803 if (!this->emitFinishInit(E)) 3804 return false; 3805 // We are destroying the locals AFTER the Ret op. 3806 // The Ret op needs to copy the (alive) values, but the 3807 // destructors may still turn the entire expression invalid. 3808 return this->emitRetValue(E) && maybeDestroyLocals(); 3809 } 3810 3811 (void)maybeDestroyLocals(); 3812 return false; 3813 } 3814 3815 template <class Emitter> 3816 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) { 3817 3818 auto R = this->visitVarDecl(VD, /*Toplevel=*/true); 3819 3820 if (R.notCreated()) 3821 return R; 3822 3823 if (R) 3824 return true; 3825 3826 if (!R && Context::shouldBeGloballyIndexed(VD)) { 3827 if (auto GlobalIndex = P.getGlobal(VD)) { 3828 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 3829 GlobalInlineDescriptor &GD = 3830 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 3831 3832 GD.InitState = GlobalInitState::InitializerFailed; 3833 GlobalBlock->invokeDtor(); 3834 } 3835 } 3836 3837 return R; 3838 } 3839 3840 /// Toplevel visitDeclAndReturn(). 3841 /// We get here from evaluateAsInitializer(). 3842 /// We need to evaluate the initializer and return its value. 3843 template <class Emitter> 3844 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD, 3845 bool ConstantContext) { 3846 std::optional<PrimType> VarT = classify(VD->getType()); 3847 3848 // We only create variables if we're evaluating in a constant context. 3849 // Otherwise, just evaluate the initializer and return it. 3850 if (!ConstantContext) { 3851 DeclScope<Emitter> LS(this, VD); 3852 if (!this->visit(VD->getAnyInitializer())) 3853 return false; 3854 return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals(); 3855 } 3856 3857 LocalScope<Emitter> VDScope(this, VD); 3858 if (!this->visitVarDecl(VD, /*Toplevel=*/true)) 3859 return false; 3860 3861 if (Context::shouldBeGloballyIndexed(VD)) { 3862 auto GlobalIndex = P.getGlobal(VD); 3863 assert(GlobalIndex); // visitVarDecl() didn't return false. 3864 if (VarT) { 3865 if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD)) 3866 return false; 3867 } else { 3868 if (!this->emitGetPtrGlobal(*GlobalIndex, VD)) 3869 return false; 3870 } 3871 } else { 3872 auto Local = Locals.find(VD); 3873 assert(Local != Locals.end()); // Same here. 3874 if (VarT) { 3875 if (!this->emitGetLocal(*VarT, Local->second.Offset, VD)) 3876 return false; 3877 } else { 3878 if (!this->emitGetPtrLocal(Local->second.Offset, VD)) 3879 return false; 3880 } 3881 } 3882 3883 // Return the value. 3884 if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) { 3885 // If the Ret above failed and this is a global variable, mark it as 3886 // uninitialized, even everything else succeeded. 3887 if (Context::shouldBeGloballyIndexed(VD)) { 3888 auto GlobalIndex = P.getGlobal(VD); 3889 assert(GlobalIndex); 3890 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 3891 GlobalInlineDescriptor &GD = 3892 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 3893 3894 GD.InitState = GlobalInitState::InitializerFailed; 3895 GlobalBlock->invokeDtor(); 3896 } 3897 return false; 3898 } 3899 3900 return VDScope.destroyLocals(); 3901 } 3902 3903 template <class Emitter> 3904 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD, 3905 bool Toplevel) { 3906 // We don't know what to do with these, so just return false. 3907 if (VD->getType().isNull()) 3908 return false; 3909 3910 // This case is EvalEmitter-only. If we won't create any instructions for the 3911 // initializer anyway, don't bother creating the variable in the first place. 3912 if (!this->isActive()) 3913 return VarCreationState::NotCreated(); 3914 3915 const Expr *Init = VD->getInit(); 3916 std::optional<PrimType> VarT = classify(VD->getType()); 3917 3918 if (Init && Init->isValueDependent()) 3919 return false; 3920 3921 if (Context::shouldBeGloballyIndexed(VD)) { 3922 auto checkDecl = [&]() -> bool { 3923 bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal(); 3924 return !NeedsOp || this->emitCheckDecl(VD, VD); 3925 }; 3926 3927 auto initGlobal = [&](unsigned GlobalIndex) -> bool { 3928 assert(Init); 3929 3930 if (VarT) { 3931 if (!this->visit(Init)) 3932 return checkDecl() && false; 3933 3934 return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD); 3935 } 3936 3937 if (!checkDecl()) 3938 return false; 3939 3940 if (!this->emitGetPtrGlobal(GlobalIndex, Init)) 3941 return false; 3942 3943 if (!visitInitializer(Init)) 3944 return false; 3945 3946 if (!this->emitFinishInit(Init)) 3947 return false; 3948 3949 return this->emitPopPtr(Init); 3950 }; 3951 3952 DeclScope<Emitter> LocalScope(this, VD); 3953 3954 // We've already seen and initialized this global. 3955 if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) { 3956 if (P.getPtrGlobal(*GlobalIndex).isInitialized()) 3957 return checkDecl(); 3958 3959 // The previous attempt at initialization might've been unsuccessful, 3960 // so let's try this one. 3961 return Init && checkDecl() && initGlobal(*GlobalIndex); 3962 } 3963 3964 std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init); 3965 3966 if (!GlobalIndex) 3967 return false; 3968 3969 return !Init || (checkDecl() && initGlobal(*GlobalIndex)); 3970 } else { 3971 InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD)); 3972 3973 if (VarT) { 3974 unsigned Offset = this->allocateLocalPrimitive( 3975 VD, *VarT, VD->getType().isConstQualified()); 3976 if (Init) { 3977 // If this is a toplevel declaration, create a scope for the 3978 // initializer. 3979 if (Toplevel) { 3980 LocalScope<Emitter> Scope(this); 3981 if (!this->visit(Init)) 3982 return false; 3983 return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals(); 3984 } else { 3985 if (!this->visit(Init)) 3986 return false; 3987 return this->emitSetLocal(*VarT, Offset, VD); 3988 } 3989 } 3990 } else { 3991 if (std::optional<unsigned> Offset = this->allocateLocal(VD)) { 3992 if (!Init) 3993 return true; 3994 3995 if (!this->emitGetPtrLocal(*Offset, Init)) 3996 return false; 3997 3998 if (!visitInitializer(Init)) 3999 return false; 4000 4001 if (!this->emitFinishInit(Init)) 4002 return false; 4003 4004 return this->emitPopPtr(Init); 4005 } 4006 return false; 4007 } 4008 return true; 4009 } 4010 4011 return false; 4012 } 4013 4014 template <class Emitter> 4015 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType, 4016 const Expr *E) { 4017 assert(!DiscardResult); 4018 if (Val.isInt()) 4019 return this->emitConst(Val.getInt(), ValType, E); 4020 else if (Val.isFloat()) 4021 return this->emitConstFloat(Val.getFloat(), E); 4022 4023 if (Val.isLValue()) { 4024 if (Val.isNullPointer()) 4025 return this->emitNull(ValType, nullptr, E); 4026 APValue::LValueBase Base = Val.getLValueBase(); 4027 if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>()) 4028 return this->visit(BaseExpr); 4029 else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) { 4030 return this->visitDeclRef(VD, E); 4031 } 4032 } else if (Val.isMemberPointer()) { 4033 if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl()) 4034 return this->emitGetMemberPtr(MemberDecl, E); 4035 return this->emitNullMemberPtr(nullptr, E); 4036 } 4037 4038 return false; 4039 } 4040 4041 template <class Emitter> 4042 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val, 4043 const Expr *E) { 4044 4045 if (Val.isStruct()) { 4046 const Record *R = this->getRecord(E->getType()); 4047 assert(R); 4048 for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) { 4049 const APValue &F = Val.getStructField(I); 4050 const Record::Field *RF = R->getField(I); 4051 4052 if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) { 4053 PrimType T = classifyPrim(RF->Decl->getType()); 4054 if (!this->visitAPValue(F, T, E)) 4055 return false; 4056 if (!this->emitInitField(T, RF->Offset, E)) 4057 return false; 4058 } else if (F.isArray()) { 4059 assert(RF->Desc->isPrimitiveArray()); 4060 const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe(); 4061 PrimType ElemT = classifyPrim(ArrType->getElementType()); 4062 assert(ArrType); 4063 4064 if (!this->emitGetPtrField(RF->Offset, E)) 4065 return false; 4066 4067 for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) { 4068 if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E)) 4069 return false; 4070 if (!this->emitInitElem(ElemT, A, E)) 4071 return false; 4072 } 4073 4074 if (!this->emitPopPtr(E)) 4075 return false; 4076 } else if (F.isStruct() || F.isUnion()) { 4077 if (!this->emitGetPtrField(RF->Offset, E)) 4078 return false; 4079 if (!this->visitAPValueInitializer(F, E)) 4080 return false; 4081 if (!this->emitPopPtr(E)) 4082 return false; 4083 } else { 4084 assert(false && "I don't think this should be possible"); 4085 } 4086 } 4087 return true; 4088 } else if (Val.isUnion()) { 4089 const FieldDecl *UnionField = Val.getUnionField(); 4090 const Record *R = this->getRecord(UnionField->getParent()); 4091 assert(R); 4092 const APValue &F = Val.getUnionValue(); 4093 const Record::Field *RF = R->getField(UnionField); 4094 PrimType T = classifyPrim(RF->Decl->getType()); 4095 if (!this->visitAPValue(F, T, E)) 4096 return false; 4097 return this->emitInitField(T, RF->Offset, E); 4098 } 4099 // TODO: Other types. 4100 4101 return false; 4102 } 4103 4104 template <class Emitter> 4105 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E, 4106 unsigned BuiltinID) { 4107 const Function *Func = getFunction(E->getDirectCallee()); 4108 if (!Func) 4109 return false; 4110 4111 // For these, we're expected to ultimately return an APValue pointing 4112 // to the CallExpr. This is needed to get the correct codegen. 4113 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 4114 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString || 4115 BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant || 4116 BuiltinID == Builtin::BI__builtin_function_start) { 4117 if (std::optional<unsigned> GlobalOffset = P.createGlobal(E)) { 4118 if (!this->emitGetPtrGlobal(*GlobalOffset, E)) 4119 return false; 4120 4121 if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT)) 4122 return this->emitDecayPtr(PT_Ptr, PT, E); 4123 return true; 4124 } 4125 return false; 4126 } 4127 4128 QualType ReturnType = E->getType(); 4129 std::optional<PrimType> ReturnT = classify(E); 4130 4131 // Non-primitive return type. Prepare storage. 4132 if (!Initializing && !ReturnT && !ReturnType->isVoidType()) { 4133 std::optional<unsigned> LocalIndex = allocateLocal(E); 4134 if (!LocalIndex) 4135 return false; 4136 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4137 return false; 4138 } 4139 4140 if (!Func->isUnevaluatedBuiltin()) { 4141 // Put arguments on the stack. 4142 for (const auto *Arg : E->arguments()) { 4143 if (!this->visit(Arg)) 4144 return false; 4145 } 4146 } 4147 4148 if (!this->emitCallBI(Func, E, BuiltinID, E)) 4149 return false; 4150 4151 if (DiscardResult && !ReturnType->isVoidType()) { 4152 assert(ReturnT); 4153 return this->emitPop(*ReturnT, E); 4154 } 4155 4156 return true; 4157 } 4158 4159 template <class Emitter> 4160 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) { 4161 if (unsigned BuiltinID = E->getBuiltinCallee()) 4162 return VisitBuiltinCallExpr(E, BuiltinID); 4163 4164 const FunctionDecl *FuncDecl = E->getDirectCallee(); 4165 // Calls to replaceable operator new/operator delete. 4166 if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) { 4167 if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New || 4168 FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { 4169 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new); 4170 } else { 4171 assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete); 4172 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete); 4173 } 4174 } 4175 4176 QualType ReturnType = E->getCallReturnType(Ctx.getASTContext()); 4177 std::optional<PrimType> T = classify(ReturnType); 4178 bool HasRVO = !ReturnType->isVoidType() && !T; 4179 4180 if (HasRVO) { 4181 if (DiscardResult) { 4182 // If we need to discard the return value but the function returns its 4183 // value via an RVO pointer, we need to create one such pointer just 4184 // for this call. 4185 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4186 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4187 return false; 4188 } 4189 } else { 4190 // We need the result. Prepare a pointer to return or 4191 // dup the current one. 4192 if (!Initializing) { 4193 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4194 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4195 return false; 4196 } 4197 } 4198 if (!this->emitDupPtr(E)) 4199 return false; 4200 } 4201 } 4202 4203 SmallVector<const Expr *, 8> Args( 4204 llvm::ArrayRef(E->getArgs(), E->getNumArgs())); 4205 4206 bool IsAssignmentOperatorCall = false; 4207 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); 4208 OCE && OCE->isAssignmentOp()) { 4209 // Just like with regular assignments, we need to special-case assignment 4210 // operators here and evaluate the RHS (the second arg) before the LHS (the 4211 // first arg. We fix this by using a Flip op later. 4212 assert(Args.size() == 2); 4213 IsAssignmentOperatorCall = true; 4214 std::reverse(Args.begin(), Args.end()); 4215 } 4216 // Calling a static operator will still 4217 // pass the instance, but we don't need it. 4218 // Discard it here. 4219 if (isa<CXXOperatorCallExpr>(E)) { 4220 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl); 4221 MD && MD->isStatic()) { 4222 if (!this->discard(E->getArg(0))) 4223 return false; 4224 // Drop first arg. 4225 Args.erase(Args.begin()); 4226 } 4227 } 4228 4229 std::optional<unsigned> CalleeOffset; 4230 // Add the (optional, implicit) This pointer. 4231 if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) { 4232 if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) { 4233 // If we end up creating a CallPtr op for this, we need the base of the 4234 // member pointer as the instance pointer, and later extract the function 4235 // decl as the function pointer. 4236 const Expr *Callee = E->getCallee(); 4237 CalleeOffset = 4238 this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false); 4239 if (!this->visit(Callee)) 4240 return false; 4241 if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E)) 4242 return false; 4243 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4244 return false; 4245 if (!this->emitGetMemberPtrBase(E)) 4246 return false; 4247 } else if (!this->visit(MC->getImplicitObjectArgument())) { 4248 return false; 4249 } 4250 } else if (!FuncDecl) { 4251 const Expr *Callee = E->getCallee(); 4252 CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false); 4253 if (!this->visit(Callee)) 4254 return false; 4255 if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E)) 4256 return false; 4257 } 4258 4259 llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args); 4260 // Put arguments on the stack. 4261 unsigned ArgIndex = 0; 4262 for (const auto *Arg : Args) { 4263 if (!this->visit(Arg)) 4264 return false; 4265 4266 // If we know the callee already, check the known parametrs for nullability. 4267 if (FuncDecl && NonNullArgs[ArgIndex]) { 4268 PrimType ArgT = classify(Arg).value_or(PT_Ptr); 4269 if (ArgT == PT_Ptr || ArgT == PT_FnPtr) { 4270 if (!this->emitCheckNonNullArg(ArgT, Arg)) 4271 return false; 4272 } 4273 } 4274 ++ArgIndex; 4275 } 4276 4277 // Undo the argument reversal we did earlier. 4278 if (IsAssignmentOperatorCall) { 4279 assert(Args.size() == 2); 4280 PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr); 4281 PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr); 4282 if (!this->emitFlip(Arg2T, Arg1T, E)) 4283 return false; 4284 } 4285 4286 if (FuncDecl) { 4287 const Function *Func = getFunction(FuncDecl); 4288 if (!Func) 4289 return false; 4290 assert(HasRVO == Func->hasRVO()); 4291 4292 bool HasQualifier = false; 4293 if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee())) 4294 HasQualifier = ME->hasQualifier(); 4295 4296 bool IsVirtual = false; 4297 if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) 4298 IsVirtual = MD->isVirtual(); 4299 4300 // In any case call the function. The return value will end up on the stack 4301 // and if the function has RVO, we already have the pointer on the stack to 4302 // write the result into. 4303 if (IsVirtual && !HasQualifier) { 4304 uint32_t VarArgSize = 0; 4305 unsigned NumParams = 4306 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4307 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4308 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4309 4310 if (!this->emitCallVirt(Func, VarArgSize, E)) 4311 return false; 4312 } else if (Func->isVariadic()) { 4313 uint32_t VarArgSize = 0; 4314 unsigned NumParams = 4315 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4316 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4317 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4318 if (!this->emitCallVar(Func, VarArgSize, E)) 4319 return false; 4320 } else { 4321 if (!this->emitCall(Func, 0, E)) 4322 return false; 4323 } 4324 } else { 4325 // Indirect call. Visit the callee, which will leave a FunctionPointer on 4326 // the stack. Cleanup of the returned value if necessary will be done after 4327 // the function call completed. 4328 4329 // Sum the size of all args from the call expr. 4330 uint32_t ArgSize = 0; 4331 for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) 4332 ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4333 4334 // Get the callee, either from a member pointer or function pointer saved in 4335 // CalleeOffset. 4336 if (isa<CXXMemberCallExpr>(E) && CalleeOffset) { 4337 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4338 return false; 4339 if (!this->emitGetMemberPtrDecl(E)) 4340 return false; 4341 } else { 4342 if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E)) 4343 return false; 4344 } 4345 if (!this->emitCallPtr(ArgSize, E, E)) 4346 return false; 4347 } 4348 4349 // Cleanup for discarded return values. 4350 if (DiscardResult && !ReturnType->isVoidType() && T) 4351 return this->emitPop(*T, E); 4352 4353 return true; 4354 } 4355 4356 template <class Emitter> 4357 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 4358 SourceLocScope<Emitter> SLS(this, E); 4359 4360 return this->delegate(E->getExpr()); 4361 } 4362 4363 template <class Emitter> 4364 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 4365 SourceLocScope<Emitter> SLS(this, E); 4366 4367 const Expr *SubExpr = E->getExpr(); 4368 if (std::optional<PrimType> T = classify(E->getExpr())) 4369 return this->visit(SubExpr); 4370 4371 assert(Initializing); 4372 return this->visitInitializer(SubExpr); 4373 } 4374 4375 template <class Emitter> 4376 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 4377 if (DiscardResult) 4378 return true; 4379 4380 return this->emitConstBool(E->getValue(), E); 4381 } 4382 4383 template <class Emitter> 4384 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr( 4385 const CXXNullPtrLiteralExpr *E) { 4386 if (DiscardResult) 4387 return true; 4388 4389 return this->emitNullPtr(nullptr, E); 4390 } 4391 4392 template <class Emitter> 4393 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) { 4394 if (DiscardResult) 4395 return true; 4396 4397 assert(E->getType()->isIntegerType()); 4398 4399 PrimType T = classifyPrim(E->getType()); 4400 return this->emitZero(T, E); 4401 } 4402 4403 template <class Emitter> 4404 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) { 4405 if (DiscardResult) 4406 return true; 4407 4408 if (this->LambdaThisCapture.Offset > 0) { 4409 if (this->LambdaThisCapture.IsPtr) 4410 return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E); 4411 return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E); 4412 } 4413 4414 // In some circumstances, the 'this' pointer does not actually refer to the 4415 // instance pointer of the current function frame, but e.g. to the declaration 4416 // currently being initialized. Here we emit the necessary instruction(s) for 4417 // this scenario. 4418 if (!InitStackActive || !E->isImplicit()) 4419 return this->emitThis(E); 4420 4421 if (InitStackActive && !InitStack.empty()) { 4422 unsigned StartIndex = 0; 4423 for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) { 4424 if (InitStack[StartIndex].Kind != InitLink::K_Field && 4425 InitStack[StartIndex].Kind != InitLink::K_Elem) 4426 break; 4427 } 4428 4429 for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) { 4430 if (!InitStack[I].template emit<Emitter>(this, E)) 4431 return false; 4432 } 4433 return true; 4434 } 4435 return this->emitThis(E); 4436 } 4437 4438 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) { 4439 switch (S->getStmtClass()) { 4440 case Stmt::CompoundStmtClass: 4441 return visitCompoundStmt(cast<CompoundStmt>(S)); 4442 case Stmt::DeclStmtClass: 4443 return visitDeclStmt(cast<DeclStmt>(S)); 4444 case Stmt::ReturnStmtClass: 4445 return visitReturnStmt(cast<ReturnStmt>(S)); 4446 case Stmt::IfStmtClass: 4447 return visitIfStmt(cast<IfStmt>(S)); 4448 case Stmt::WhileStmtClass: 4449 return visitWhileStmt(cast<WhileStmt>(S)); 4450 case Stmt::DoStmtClass: 4451 return visitDoStmt(cast<DoStmt>(S)); 4452 case Stmt::ForStmtClass: 4453 return visitForStmt(cast<ForStmt>(S)); 4454 case Stmt::CXXForRangeStmtClass: 4455 return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); 4456 case Stmt::BreakStmtClass: 4457 return visitBreakStmt(cast<BreakStmt>(S)); 4458 case Stmt::ContinueStmtClass: 4459 return visitContinueStmt(cast<ContinueStmt>(S)); 4460 case Stmt::SwitchStmtClass: 4461 return visitSwitchStmt(cast<SwitchStmt>(S)); 4462 case Stmt::CaseStmtClass: 4463 return visitCaseStmt(cast<CaseStmt>(S)); 4464 case Stmt::DefaultStmtClass: 4465 return visitDefaultStmt(cast<DefaultStmt>(S)); 4466 case Stmt::AttributedStmtClass: 4467 return visitAttributedStmt(cast<AttributedStmt>(S)); 4468 case Stmt::CXXTryStmtClass: 4469 return visitCXXTryStmt(cast<CXXTryStmt>(S)); 4470 case Stmt::NullStmtClass: 4471 return true; 4472 // Always invalid statements. 4473 case Stmt::GCCAsmStmtClass: 4474 case Stmt::MSAsmStmtClass: 4475 case Stmt::GotoStmtClass: 4476 return this->emitInvalid(S); 4477 case Stmt::LabelStmtClass: 4478 return this->visitStmt(cast<LabelStmt>(S)->getSubStmt()); 4479 default: { 4480 if (const auto *E = dyn_cast<Expr>(S)) 4481 return this->discard(E); 4482 return false; 4483 } 4484 } 4485 } 4486 4487 template <class Emitter> 4488 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) { 4489 BlockScope<Emitter> Scope(this); 4490 for (const auto *InnerStmt : S->body()) 4491 if (!visitStmt(InnerStmt)) 4492 return false; 4493 return Scope.destroyLocals(); 4494 } 4495 4496 template <class Emitter> 4497 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) { 4498 for (const auto *D : DS->decls()) { 4499 if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl, 4500 FunctionDecl>(D)) 4501 continue; 4502 4503 const auto *VD = dyn_cast<VarDecl>(D); 4504 if (!VD) 4505 return false; 4506 if (!this->visitVarDecl(VD)) 4507 return false; 4508 } 4509 4510 return true; 4511 } 4512 4513 template <class Emitter> 4514 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) { 4515 if (this->InStmtExpr) 4516 return this->emitUnsupported(RS); 4517 4518 if (const Expr *RE = RS->getRetValue()) { 4519 LocalScope<Emitter> RetScope(this); 4520 if (ReturnType) { 4521 // Primitive types are simply returned. 4522 if (!this->visit(RE)) 4523 return false; 4524 this->emitCleanup(); 4525 return this->emitRet(*ReturnType, RS); 4526 } else if (RE->getType()->isVoidType()) { 4527 if (!this->visit(RE)) 4528 return false; 4529 } else { 4530 // RVO - construct the value in the return location. 4531 if (!this->emitRVOPtr(RE)) 4532 return false; 4533 if (!this->visitInitializer(RE)) 4534 return false; 4535 if (!this->emitPopPtr(RE)) 4536 return false; 4537 4538 this->emitCleanup(); 4539 return this->emitRetVoid(RS); 4540 } 4541 } 4542 4543 // Void return. 4544 this->emitCleanup(); 4545 return this->emitRetVoid(RS); 4546 } 4547 4548 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) { 4549 if (auto *CondInit = IS->getInit()) 4550 if (!visitStmt(CondInit)) 4551 return false; 4552 4553 if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt()) 4554 if (!visitDeclStmt(CondDecl)) 4555 return false; 4556 4557 // Compile condition. 4558 if (IS->isNonNegatedConsteval()) { 4559 if (!this->emitIsConstantContext(IS)) 4560 return false; 4561 } else if (IS->isNegatedConsteval()) { 4562 if (!this->emitIsConstantContext(IS)) 4563 return false; 4564 if (!this->emitInv(IS)) 4565 return false; 4566 } else { 4567 if (!this->visitBool(IS->getCond())) 4568 return false; 4569 } 4570 4571 if (const Stmt *Else = IS->getElse()) { 4572 LabelTy LabelElse = this->getLabel(); 4573 LabelTy LabelEnd = this->getLabel(); 4574 if (!this->jumpFalse(LabelElse)) 4575 return false; 4576 if (!visitStmt(IS->getThen())) 4577 return false; 4578 if (!this->jump(LabelEnd)) 4579 return false; 4580 this->emitLabel(LabelElse); 4581 if (!visitStmt(Else)) 4582 return false; 4583 this->emitLabel(LabelEnd); 4584 } else { 4585 LabelTy LabelEnd = this->getLabel(); 4586 if (!this->jumpFalse(LabelEnd)) 4587 return false; 4588 if (!visitStmt(IS->getThen())) 4589 return false; 4590 this->emitLabel(LabelEnd); 4591 } 4592 4593 return true; 4594 } 4595 4596 template <class Emitter> 4597 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) { 4598 const Expr *Cond = S->getCond(); 4599 const Stmt *Body = S->getBody(); 4600 4601 LabelTy CondLabel = this->getLabel(); // Label before the condition. 4602 LabelTy EndLabel = this->getLabel(); // Label after the loop. 4603 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4604 4605 this->fallthrough(CondLabel); 4606 this->emitLabel(CondLabel); 4607 4608 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4609 if (!visitDeclStmt(CondDecl)) 4610 return false; 4611 4612 if (!this->visitBool(Cond)) 4613 return false; 4614 if (!this->jumpFalse(EndLabel)) 4615 return false; 4616 4617 if (!this->visitStmt(Body)) 4618 return false; 4619 4620 if (!this->jump(CondLabel)) 4621 return false; 4622 this->fallthrough(EndLabel); 4623 this->emitLabel(EndLabel); 4624 4625 return true; 4626 } 4627 4628 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) { 4629 const Expr *Cond = S->getCond(); 4630 const Stmt *Body = S->getBody(); 4631 4632 LabelTy StartLabel = this->getLabel(); 4633 LabelTy EndLabel = this->getLabel(); 4634 LabelTy CondLabel = this->getLabel(); 4635 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4636 4637 this->fallthrough(StartLabel); 4638 this->emitLabel(StartLabel); 4639 { 4640 if (!this->visitStmt(Body)) 4641 return false; 4642 this->fallthrough(CondLabel); 4643 this->emitLabel(CondLabel); 4644 if (!this->visitBool(Cond)) 4645 return false; 4646 } 4647 if (!this->jumpTrue(StartLabel)) 4648 return false; 4649 4650 this->fallthrough(EndLabel); 4651 this->emitLabel(EndLabel); 4652 return true; 4653 } 4654 4655 template <class Emitter> 4656 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) { 4657 // for (Init; Cond; Inc) { Body } 4658 const Stmt *Init = S->getInit(); 4659 const Expr *Cond = S->getCond(); 4660 const Expr *Inc = S->getInc(); 4661 const Stmt *Body = S->getBody(); 4662 4663 LabelTy EndLabel = this->getLabel(); 4664 LabelTy CondLabel = this->getLabel(); 4665 LabelTy IncLabel = this->getLabel(); 4666 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 4667 4668 if (Init && !this->visitStmt(Init)) 4669 return false; 4670 4671 this->fallthrough(CondLabel); 4672 this->emitLabel(CondLabel); 4673 4674 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4675 if (!visitDeclStmt(CondDecl)) 4676 return false; 4677 4678 if (Cond) { 4679 if (!this->visitBool(Cond)) 4680 return false; 4681 if (!this->jumpFalse(EndLabel)) 4682 return false; 4683 } 4684 4685 { 4686 if (Body && !this->visitStmt(Body)) 4687 return false; 4688 4689 this->fallthrough(IncLabel); 4690 this->emitLabel(IncLabel); 4691 if (Inc && !this->discard(Inc)) 4692 return false; 4693 } 4694 4695 if (!this->jump(CondLabel)) 4696 return false; 4697 this->fallthrough(EndLabel); 4698 this->emitLabel(EndLabel); 4699 return true; 4700 } 4701 4702 template <class Emitter> 4703 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) { 4704 const Stmt *Init = S->getInit(); 4705 const Expr *Cond = S->getCond(); 4706 const Expr *Inc = S->getInc(); 4707 const Stmt *Body = S->getBody(); 4708 const Stmt *BeginStmt = S->getBeginStmt(); 4709 const Stmt *RangeStmt = S->getRangeStmt(); 4710 const Stmt *EndStmt = S->getEndStmt(); 4711 const VarDecl *LoopVar = S->getLoopVariable(); 4712 4713 LabelTy EndLabel = this->getLabel(); 4714 LabelTy CondLabel = this->getLabel(); 4715 LabelTy IncLabel = this->getLabel(); 4716 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 4717 4718 // Emit declarations needed in the loop. 4719 if (Init && !this->visitStmt(Init)) 4720 return false; 4721 if (!this->visitStmt(RangeStmt)) 4722 return false; 4723 if (!this->visitStmt(BeginStmt)) 4724 return false; 4725 if (!this->visitStmt(EndStmt)) 4726 return false; 4727 4728 // Now the condition as well as the loop variable assignment. 4729 this->fallthrough(CondLabel); 4730 this->emitLabel(CondLabel); 4731 if (!this->visitBool(Cond)) 4732 return false; 4733 if (!this->jumpFalse(EndLabel)) 4734 return false; 4735 4736 if (!this->visitVarDecl(LoopVar)) 4737 return false; 4738 4739 // Body. 4740 { 4741 if (!this->visitStmt(Body)) 4742 return false; 4743 4744 this->fallthrough(IncLabel); 4745 this->emitLabel(IncLabel); 4746 if (!this->discard(Inc)) 4747 return false; 4748 } 4749 4750 if (!this->jump(CondLabel)) 4751 return false; 4752 4753 this->fallthrough(EndLabel); 4754 this->emitLabel(EndLabel); 4755 return true; 4756 } 4757 4758 template <class Emitter> 4759 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) { 4760 if (!BreakLabel) 4761 return false; 4762 4763 for (VariableScope<Emitter> *C = VarScope; C != LabelVarScope; 4764 C = C->getParent()) 4765 C->emitDestruction(); 4766 return this->jump(*BreakLabel); 4767 } 4768 4769 template <class Emitter> 4770 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) { 4771 if (!ContinueLabel) 4772 return false; 4773 4774 for (VariableScope<Emitter> *C = VarScope; C != LabelVarScope; 4775 C = C->getParent()) 4776 C->emitDestruction(); 4777 return this->jump(*ContinueLabel); 4778 } 4779 4780 template <class Emitter> 4781 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) { 4782 const Expr *Cond = S->getCond(); 4783 PrimType CondT = this->classifyPrim(Cond->getType()); 4784 4785 LabelTy EndLabel = this->getLabel(); 4786 OptLabelTy DefaultLabel = std::nullopt; 4787 unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false); 4788 4789 if (const auto *CondInit = S->getInit()) 4790 if (!visitStmt(CondInit)) 4791 return false; 4792 4793 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4794 if (!visitDeclStmt(CondDecl)) 4795 return false; 4796 4797 // Initialize condition variable. 4798 if (!this->visit(Cond)) 4799 return false; 4800 if (!this->emitSetLocal(CondT, CondVar, S)) 4801 return false; 4802 4803 CaseMap CaseLabels; 4804 // Create labels and comparison ops for all case statements. 4805 for (const SwitchCase *SC = S->getSwitchCaseList(); SC; 4806 SC = SC->getNextSwitchCase()) { 4807 if (const auto *CS = dyn_cast<CaseStmt>(SC)) { 4808 // FIXME: Implement ranges. 4809 if (CS->caseStmtIsGNURange()) 4810 return false; 4811 CaseLabels[SC] = this->getLabel(); 4812 4813 const Expr *Value = CS->getLHS(); 4814 PrimType ValueT = this->classifyPrim(Value->getType()); 4815 4816 // Compare the case statement's value to the switch condition. 4817 if (!this->emitGetLocal(CondT, CondVar, CS)) 4818 return false; 4819 if (!this->visit(Value)) 4820 return false; 4821 4822 // Compare and jump to the case label. 4823 if (!this->emitEQ(ValueT, S)) 4824 return false; 4825 if (!this->jumpTrue(CaseLabels[CS])) 4826 return false; 4827 } else { 4828 assert(!DefaultLabel); 4829 DefaultLabel = this->getLabel(); 4830 } 4831 } 4832 4833 // If none of the conditions above were true, fall through to the default 4834 // statement or jump after the switch statement. 4835 if (DefaultLabel) { 4836 if (!this->jump(*DefaultLabel)) 4837 return false; 4838 } else { 4839 if (!this->jump(EndLabel)) 4840 return false; 4841 } 4842 4843 SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel); 4844 if (!this->visitStmt(S->getBody())) 4845 return false; 4846 this->emitLabel(EndLabel); 4847 return true; 4848 } 4849 4850 template <class Emitter> 4851 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) { 4852 this->emitLabel(CaseLabels[S]); 4853 return this->visitStmt(S->getSubStmt()); 4854 } 4855 4856 template <class Emitter> 4857 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) { 4858 this->emitLabel(*DefaultLabel); 4859 return this->visitStmt(S->getSubStmt()); 4860 } 4861 4862 template <class Emitter> 4863 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) { 4864 if (this->Ctx.getLangOpts().CXXAssumptions && 4865 !this->Ctx.getLangOpts().MSVCCompat) { 4866 for (const Attr *A : S->getAttrs()) { 4867 auto *AA = dyn_cast<CXXAssumeAttr>(A); 4868 if (!AA) 4869 continue; 4870 4871 assert(isa<NullStmt>(S->getSubStmt())); 4872 4873 const Expr *Assumption = AA->getAssumption(); 4874 if (Assumption->isValueDependent()) 4875 return false; 4876 4877 if (Assumption->HasSideEffects(this->Ctx.getASTContext())) 4878 continue; 4879 4880 // Evaluate assumption. 4881 if (!this->visitBool(Assumption)) 4882 return false; 4883 4884 if (!this->emitAssume(Assumption)) 4885 return false; 4886 } 4887 } 4888 4889 // Ignore other attributes. 4890 return this->visitStmt(S->getSubStmt()); 4891 } 4892 4893 template <class Emitter> 4894 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) { 4895 // Ignore all handlers. 4896 return this->visitStmt(S->getTryBlock()); 4897 } 4898 4899 template <class Emitter> 4900 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) { 4901 assert(MD->isLambdaStaticInvoker()); 4902 assert(MD->hasBody()); 4903 assert(cast<CompoundStmt>(MD->getBody())->body_empty()); 4904 4905 const CXXRecordDecl *ClosureClass = MD->getParent(); 4906 const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); 4907 assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); 4908 const Function *Func = this->getFunction(LambdaCallOp); 4909 if (!Func) 4910 return false; 4911 assert(Func->hasThisPointer()); 4912 assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO())); 4913 4914 if (Func->hasRVO()) { 4915 if (!this->emitRVOPtr(MD)) 4916 return false; 4917 } 4918 4919 // The lambda call operator needs an instance pointer, but we don't have 4920 // one here, and we don't need one either because the lambda cannot have 4921 // any captures, as verified above. Emit a null pointer. This is then 4922 // special-cased when interpreting to not emit any misleading diagnostics. 4923 if (!this->emitNullPtr(nullptr, MD)) 4924 return false; 4925 4926 // Forward all arguments from the static invoker to the lambda call operator. 4927 for (const ParmVarDecl *PVD : MD->parameters()) { 4928 auto It = this->Params.find(PVD); 4929 assert(It != this->Params.end()); 4930 4931 // We do the lvalue-to-rvalue conversion manually here, so no need 4932 // to care about references. 4933 PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr); 4934 if (!this->emitGetParam(ParamType, It->second.Offset, MD)) 4935 return false; 4936 } 4937 4938 if (!this->emitCall(Func, 0, LambdaCallOp)) 4939 return false; 4940 4941 this->emitCleanup(); 4942 if (ReturnType) 4943 return this->emitRet(*ReturnType, MD); 4944 4945 // Nothing to do, since we emitted the RVO pointer above. 4946 return this->emitRetVoid(MD); 4947 } 4948 4949 template <class Emitter> 4950 bool Compiler<Emitter>::checkLiteralType(const Expr *E) { 4951 if (Ctx.getLangOpts().CPlusPlus23) 4952 return true; 4953 4954 if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext())) 4955 return true; 4956 4957 return this->emitCheckLiteralType(E->getType().getTypePtr(), E); 4958 } 4959 4960 template <class Emitter> 4961 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) { 4962 assert(!ReturnType); 4963 4964 auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset, 4965 const Expr *InitExpr) -> bool { 4966 // We don't know what to do with these, so just return false. 4967 if (InitExpr->getType().isNull()) 4968 return false; 4969 4970 if (std::optional<PrimType> T = this->classify(InitExpr)) { 4971 if (!this->visit(InitExpr)) 4972 return false; 4973 4974 if (F->isBitField()) 4975 return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr); 4976 return this->emitInitThisField(*T, FieldOffset, InitExpr); 4977 } 4978 // Non-primitive case. Get a pointer to the field-to-initialize 4979 // on the stack and call visitInitialzer() for it. 4980 InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset)); 4981 if (!this->emitGetPtrThisField(FieldOffset, InitExpr)) 4982 return false; 4983 4984 if (!this->visitInitializer(InitExpr)) 4985 return false; 4986 4987 return this->emitFinishInitPop(InitExpr); 4988 }; 4989 4990 const RecordDecl *RD = Ctor->getParent(); 4991 const Record *R = this->getRecord(RD); 4992 if (!R) 4993 return false; 4994 4995 if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) { 4996 // union copy and move ctors are special. 4997 assert(cast<CompoundStmt>(Ctor->getBody())->body_empty()); 4998 if (!this->emitThis(Ctor)) 4999 return false; 5000 5001 auto PVD = Ctor->getParamDecl(0); 5002 ParamOffset PO = this->Params[PVD]; // Must exist. 5003 5004 if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor)) 5005 return false; 5006 5007 return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) && 5008 this->emitRetVoid(Ctor); 5009 } 5010 5011 InitLinkScope<Emitter> InitScope(this, InitLink::This()); 5012 for (const auto *Init : Ctor->inits()) { 5013 // Scope needed for the initializers. 5014 BlockScope<Emitter> Scope(this); 5015 5016 const Expr *InitExpr = Init->getInit(); 5017 if (const FieldDecl *Member = Init->getMember()) { 5018 const Record::Field *F = R->getField(Member); 5019 5020 if (!emitFieldInitializer(F, F->Offset, InitExpr)) 5021 return false; 5022 } else if (const Type *Base = Init->getBaseClass()) { 5023 const auto *BaseDecl = Base->getAsCXXRecordDecl(); 5024 assert(BaseDecl); 5025 5026 if (Init->isBaseVirtual()) { 5027 assert(R->getVirtualBase(BaseDecl)); 5028 if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr)) 5029 return false; 5030 5031 } else { 5032 // Base class initializer. 5033 // Get This Base and call initializer on it. 5034 const Record::Base *B = R->getBase(BaseDecl); 5035 assert(B); 5036 if (!this->emitGetPtrThisBase(B->Offset, InitExpr)) 5037 return false; 5038 } 5039 5040 if (!this->visitInitializer(InitExpr)) 5041 return false; 5042 if (!this->emitFinishInitPop(InitExpr)) 5043 return false; 5044 } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) { 5045 assert(IFD->getChainingSize() >= 2); 5046 5047 unsigned NestedFieldOffset = 0; 5048 const Record::Field *NestedField = nullptr; 5049 for (const NamedDecl *ND : IFD->chain()) { 5050 const auto *FD = cast<FieldDecl>(ND); 5051 const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); 5052 assert(FieldRecord); 5053 5054 NestedField = FieldRecord->getField(FD); 5055 assert(NestedField); 5056 5057 NestedFieldOffset += NestedField->Offset; 5058 } 5059 assert(NestedField); 5060 5061 if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr)) 5062 return false; 5063 } else { 5064 assert(Init->isDelegatingInitializer()); 5065 if (!this->emitThis(InitExpr)) 5066 return false; 5067 if (!this->visitInitializer(Init->getInit())) 5068 return false; 5069 if (!this->emitPopPtr(InitExpr)) 5070 return false; 5071 } 5072 5073 if (!Scope.destroyLocals()) 5074 return false; 5075 } 5076 5077 if (const auto *Body = Ctor->getBody()) 5078 if (!visitStmt(Body)) 5079 return false; 5080 5081 return this->emitRetVoid(SourceInfo{}); 5082 } 5083 5084 template <class Emitter> 5085 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) { 5086 const RecordDecl *RD = Dtor->getParent(); 5087 const Record *R = this->getRecord(RD); 5088 if (!R) 5089 return false; 5090 5091 if (!Dtor->isTrivial() && Dtor->getBody()) { 5092 if (!this->visitStmt(Dtor->getBody())) 5093 return false; 5094 } 5095 5096 if (!this->emitThis(Dtor)) 5097 return false; 5098 5099 assert(R); 5100 if (!R->isUnion()) { 5101 // First, destroy all fields. 5102 for (const Record::Field &Field : llvm::reverse(R->fields())) { 5103 const Descriptor *D = Field.Desc; 5104 if (!D->isPrimitive() && !D->isPrimitiveArray()) { 5105 if (!this->emitGetPtrField(Field.Offset, SourceInfo{})) 5106 return false; 5107 if (!this->emitDestruction(D)) 5108 return false; 5109 if (!this->emitPopPtr(SourceInfo{})) 5110 return false; 5111 } 5112 } 5113 } 5114 5115 for (const Record::Base &Base : llvm::reverse(R->bases())) { 5116 if (!this->emitGetPtrBase(Base.Offset, SourceInfo{})) 5117 return false; 5118 if (!this->emitRecordDestruction(Base.R)) 5119 return false; 5120 if (!this->emitPopPtr(SourceInfo{})) 5121 return false; 5122 } 5123 5124 // FIXME: Virtual bases. 5125 return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor); 5126 } 5127 5128 template <class Emitter> 5129 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) { 5130 // Classify the return type. 5131 ReturnType = this->classify(F->getReturnType()); 5132 5133 if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F)) 5134 return this->compileConstructor(Ctor); 5135 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F)) 5136 return this->compileDestructor(Dtor); 5137 5138 // Emit custom code if this is a lambda static invoker. 5139 if (const auto *MD = dyn_cast<CXXMethodDecl>(F); 5140 MD && MD->isLambdaStaticInvoker()) 5141 return this->emitLambdaStaticInvokerBody(MD); 5142 5143 // Regular functions. 5144 if (const auto *Body = F->getBody()) 5145 if (!visitStmt(Body)) 5146 return false; 5147 5148 // Emit a guard return to protect against a code path missing one. 5149 if (F->getReturnType()->isVoidType()) 5150 return this->emitRetVoid(SourceInfo{}); 5151 return this->emitNoRet(SourceInfo{}); 5152 } 5153 5154 template <class Emitter> 5155 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) { 5156 const Expr *SubExpr = E->getSubExpr(); 5157 if (SubExpr->getType()->isAnyComplexType()) 5158 return this->VisitComplexUnaryOperator(E); 5159 if (SubExpr->getType()->isVectorType()) 5160 return this->VisitVectorUnaryOperator(E); 5161 std::optional<PrimType> T = classify(SubExpr->getType()); 5162 5163 switch (E->getOpcode()) { 5164 case UO_PostInc: { // x++ 5165 if (!Ctx.getLangOpts().CPlusPlus14) 5166 return this->emitInvalid(E); 5167 if (!T) 5168 return this->emitError(E); 5169 5170 if (!this->visit(SubExpr)) 5171 return false; 5172 5173 if (T == PT_Ptr || T == PT_FnPtr) { 5174 if (!this->emitIncPtr(E)) 5175 return false; 5176 5177 return DiscardResult ? this->emitPopPtr(E) : true; 5178 } 5179 5180 if (T == PT_Float) { 5181 return DiscardResult ? this->emitIncfPop(getFPOptions(E), E) 5182 : this->emitIncf(getFPOptions(E), E); 5183 } 5184 5185 return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E); 5186 } 5187 case UO_PostDec: { // x-- 5188 if (!Ctx.getLangOpts().CPlusPlus14) 5189 return this->emitInvalid(E); 5190 if (!T) 5191 return this->emitError(E); 5192 5193 if (!this->visit(SubExpr)) 5194 return false; 5195 5196 if (T == PT_Ptr || T == PT_FnPtr) { 5197 if (!this->emitDecPtr(E)) 5198 return false; 5199 5200 return DiscardResult ? this->emitPopPtr(E) : true; 5201 } 5202 5203 if (T == PT_Float) { 5204 return DiscardResult ? this->emitDecfPop(getFPOptions(E), E) 5205 : this->emitDecf(getFPOptions(E), E); 5206 } 5207 5208 return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E); 5209 } 5210 case UO_PreInc: { // ++x 5211 if (!Ctx.getLangOpts().CPlusPlus14) 5212 return this->emitInvalid(E); 5213 if (!T) 5214 return this->emitError(E); 5215 5216 if (!this->visit(SubExpr)) 5217 return false; 5218 5219 if (T == PT_Ptr || T == PT_FnPtr) { 5220 if (!this->emitLoadPtr(E)) 5221 return false; 5222 if (!this->emitConstUint8(1, E)) 5223 return false; 5224 if (!this->emitAddOffsetUint8(E)) 5225 return false; 5226 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5227 } 5228 5229 // Post-inc and pre-inc are the same if the value is to be discarded. 5230 if (DiscardResult) { 5231 if (T == PT_Float) 5232 return this->emitIncfPop(getFPOptions(E), E); 5233 return this->emitIncPop(*T, E); 5234 } 5235 5236 if (T == PT_Float) { 5237 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5238 if (!this->emitLoadFloat(E)) 5239 return false; 5240 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5241 return false; 5242 if (!this->emitAddf(getFPOptions(E), E)) 5243 return false; 5244 if (!this->emitStoreFloat(E)) 5245 return false; 5246 } else { 5247 assert(isIntegralType(*T)); 5248 if (!this->emitLoad(*T, E)) 5249 return false; 5250 if (!this->emitConst(1, E)) 5251 return false; 5252 if (!this->emitAdd(*T, E)) 5253 return false; 5254 if (!this->emitStore(*T, E)) 5255 return false; 5256 } 5257 return E->isGLValue() || this->emitLoadPop(*T, E); 5258 } 5259 case UO_PreDec: { // --x 5260 if (!Ctx.getLangOpts().CPlusPlus14) 5261 return this->emitInvalid(E); 5262 if (!T) 5263 return this->emitError(E); 5264 5265 if (!this->visit(SubExpr)) 5266 return false; 5267 5268 if (T == PT_Ptr || T == PT_FnPtr) { 5269 if (!this->emitLoadPtr(E)) 5270 return false; 5271 if (!this->emitConstUint8(1, E)) 5272 return false; 5273 if (!this->emitSubOffsetUint8(E)) 5274 return false; 5275 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5276 } 5277 5278 // Post-dec and pre-dec are the same if the value is to be discarded. 5279 if (DiscardResult) { 5280 if (T == PT_Float) 5281 return this->emitDecfPop(getFPOptions(E), E); 5282 return this->emitDecPop(*T, E); 5283 } 5284 5285 if (T == PT_Float) { 5286 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5287 if (!this->emitLoadFloat(E)) 5288 return false; 5289 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5290 return false; 5291 if (!this->emitSubf(getFPOptions(E), E)) 5292 return false; 5293 if (!this->emitStoreFloat(E)) 5294 return false; 5295 } else { 5296 assert(isIntegralType(*T)); 5297 if (!this->emitLoad(*T, E)) 5298 return false; 5299 if (!this->emitConst(1, E)) 5300 return false; 5301 if (!this->emitSub(*T, E)) 5302 return false; 5303 if (!this->emitStore(*T, E)) 5304 return false; 5305 } 5306 return E->isGLValue() || this->emitLoadPop(*T, E); 5307 } 5308 case UO_LNot: // !x 5309 if (!T) 5310 return this->emitError(E); 5311 5312 if (DiscardResult) 5313 return this->discard(SubExpr); 5314 5315 if (!this->visitBool(SubExpr)) 5316 return false; 5317 5318 if (!this->emitInv(E)) 5319 return false; 5320 5321 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5322 return this->emitCast(PT_Bool, ET, E); 5323 return true; 5324 case UO_Minus: // -x 5325 if (!T) 5326 return this->emitError(E); 5327 5328 if (!this->visit(SubExpr)) 5329 return false; 5330 return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E); 5331 case UO_Plus: // +x 5332 if (!T) 5333 return this->emitError(E); 5334 5335 if (!this->visit(SubExpr)) // noop 5336 return false; 5337 return DiscardResult ? this->emitPop(*T, E) : true; 5338 case UO_AddrOf: // &x 5339 if (E->getType()->isMemberPointerType()) { 5340 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 5341 // member can be formed. 5342 return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E); 5343 } 5344 // We should already have a pointer when we get here. 5345 return this->delegate(SubExpr); 5346 case UO_Deref: // *x 5347 if (DiscardResult) 5348 return this->discard(SubExpr); 5349 return this->visit(SubExpr); 5350 case UO_Not: // ~x 5351 if (!T) 5352 return this->emitError(E); 5353 5354 if (!this->visit(SubExpr)) 5355 return false; 5356 return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E); 5357 case UO_Real: // __real x 5358 assert(T); 5359 return this->delegate(SubExpr); 5360 case UO_Imag: { // __imag x 5361 assert(T); 5362 if (!this->discard(SubExpr)) 5363 return false; 5364 return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr); 5365 } 5366 case UO_Extension: 5367 return this->delegate(SubExpr); 5368 case UO_Coawait: 5369 assert(false && "Unhandled opcode"); 5370 } 5371 5372 return false; 5373 } 5374 5375 template <class Emitter> 5376 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) { 5377 const Expr *SubExpr = E->getSubExpr(); 5378 assert(SubExpr->getType()->isAnyComplexType()); 5379 5380 if (DiscardResult) 5381 return this->discard(SubExpr); 5382 5383 std::optional<PrimType> ResT = classify(E); 5384 auto prepareResult = [=]() -> bool { 5385 if (!ResT && !Initializing) { 5386 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5387 if (!LocalIndex) 5388 return false; 5389 return this->emitGetPtrLocal(*LocalIndex, E); 5390 } 5391 5392 return true; 5393 }; 5394 5395 // The offset of the temporary, if we created one. 5396 unsigned SubExprOffset = ~0u; 5397 auto createTemp = [=, &SubExprOffset]() -> bool { 5398 SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5399 if (!this->visit(SubExpr)) 5400 return false; 5401 return this->emitSetLocal(PT_Ptr, SubExprOffset, E); 5402 }; 5403 5404 PrimType ElemT = classifyComplexElementType(SubExpr->getType()); 5405 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5406 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5407 return false; 5408 return this->emitArrayElemPop(ElemT, Index, E); 5409 }; 5410 5411 switch (E->getOpcode()) { 5412 case UO_Minus: 5413 if (!prepareResult()) 5414 return false; 5415 if (!createTemp()) 5416 return false; 5417 for (unsigned I = 0; I != 2; ++I) { 5418 if (!getElem(SubExprOffset, I)) 5419 return false; 5420 if (!this->emitNeg(ElemT, E)) 5421 return false; 5422 if (!this->emitInitElem(ElemT, I, E)) 5423 return false; 5424 } 5425 break; 5426 5427 case UO_Plus: // +x 5428 case UO_AddrOf: // &x 5429 case UO_Deref: // *x 5430 return this->delegate(SubExpr); 5431 5432 case UO_LNot: 5433 if (!this->visit(SubExpr)) 5434 return false; 5435 if (!this->emitComplexBoolCast(SubExpr)) 5436 return false; 5437 if (!this->emitInv(E)) 5438 return false; 5439 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5440 return this->emitCast(PT_Bool, ET, E); 5441 return true; 5442 5443 case UO_Real: 5444 return this->emitComplexReal(SubExpr); 5445 5446 case UO_Imag: 5447 if (!this->visit(SubExpr)) 5448 return false; 5449 5450 if (SubExpr->isLValue()) { 5451 if (!this->emitConstUint8(1, E)) 5452 return false; 5453 return this->emitArrayElemPtrPopUint8(E); 5454 } 5455 5456 // Since our _Complex implementation does not map to a primitive type, 5457 // we sometimes have to do the lvalue-to-rvalue conversion here manually. 5458 return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E); 5459 5460 case UO_Not: // ~x 5461 if (!this->visit(SubExpr)) 5462 return false; 5463 // Negate the imaginary component. 5464 if (!this->emitArrayElem(ElemT, 1, E)) 5465 return false; 5466 if (!this->emitNeg(ElemT, E)) 5467 return false; 5468 if (!this->emitInitElem(ElemT, 1, E)) 5469 return false; 5470 return DiscardResult ? this->emitPopPtr(E) : true; 5471 5472 case UO_Extension: 5473 return this->delegate(SubExpr); 5474 5475 default: 5476 return this->emitInvalid(E); 5477 } 5478 5479 return true; 5480 } 5481 5482 template <class Emitter> 5483 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) { 5484 const Expr *SubExpr = E->getSubExpr(); 5485 assert(SubExpr->getType()->isVectorType()); 5486 5487 if (DiscardResult) 5488 return this->discard(SubExpr); 5489 5490 auto UnaryOp = E->getOpcode(); 5491 if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot && 5492 UnaryOp != UO_Not && UnaryOp != UO_AddrOf) 5493 return this->emitInvalid(E); 5494 5495 // Nothing to do here. 5496 if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf) 5497 return this->delegate(SubExpr); 5498 5499 if (!Initializing) { 5500 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5501 if (!LocalIndex) 5502 return false; 5503 if (!this->emitGetPtrLocal(*LocalIndex, E)) 5504 return false; 5505 } 5506 5507 // The offset of the temporary, if we created one. 5508 unsigned SubExprOffset = 5509 this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5510 if (!this->visit(SubExpr)) 5511 return false; 5512 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E)) 5513 return false; 5514 5515 const auto *VecTy = SubExpr->getType()->getAs<VectorType>(); 5516 PrimType ElemT = classifyVectorElementType(SubExpr->getType()); 5517 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5518 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5519 return false; 5520 return this->emitArrayElemPop(ElemT, Index, E); 5521 }; 5522 5523 switch (UnaryOp) { 5524 case UO_Minus: 5525 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5526 if (!getElem(SubExprOffset, I)) 5527 return false; 5528 if (!this->emitNeg(ElemT, E)) 5529 return false; 5530 if (!this->emitInitElem(ElemT, I, E)) 5531 return false; 5532 } 5533 break; 5534 case UO_LNot: { // !x 5535 // In C++, the logic operators !, &&, || are available for vectors. !v is 5536 // equivalent to v == 0. 5537 // 5538 // The result of the comparison is a vector of the same width and number of 5539 // elements as the comparison operands with a signed integral element type. 5540 // 5541 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 5542 QualType ResultVecTy = E->getType(); 5543 PrimType ResultVecElemT = 5544 classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType()); 5545 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5546 if (!getElem(SubExprOffset, I)) 5547 return false; 5548 // operator ! on vectors returns -1 for 'truth', so negate it. 5549 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 5550 return false; 5551 if (!this->emitInv(E)) 5552 return false; 5553 if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E)) 5554 return false; 5555 if (!this->emitNeg(ElemT, E)) 5556 return false; 5557 if (ElemT != ResultVecElemT && 5558 !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E)) 5559 return false; 5560 if (!this->emitInitElem(ResultVecElemT, I, E)) 5561 return false; 5562 } 5563 break; 5564 } 5565 case UO_Not: // ~x 5566 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5567 if (!getElem(SubExprOffset, I)) 5568 return false; 5569 if (ElemT == PT_Bool) { 5570 if (!this->emitInv(E)) 5571 return false; 5572 } else { 5573 if (!this->emitComp(ElemT, E)) 5574 return false; 5575 } 5576 if (!this->emitInitElem(ElemT, I, E)) 5577 return false; 5578 } 5579 break; 5580 default: 5581 llvm_unreachable("Unsupported unary operators should be handled up front"); 5582 } 5583 return true; 5584 } 5585 5586 template <class Emitter> 5587 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) { 5588 if (DiscardResult) 5589 return true; 5590 5591 if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) { 5592 return this->emitConst(ECD->getInitVal(), E); 5593 } else if (const auto *BD = dyn_cast<BindingDecl>(D)) { 5594 return this->visit(BD->getBinding()); 5595 } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) { 5596 const Function *F = getFunction(FuncDecl); 5597 return F && this->emitGetFnPtr(F, E); 5598 } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) { 5599 if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) { 5600 if (!this->emitGetPtrGlobal(*Index, E)) 5601 return false; 5602 if (std::optional<PrimType> T = classify(E->getType())) { 5603 if (!this->visitAPValue(TPOD->getValue(), *T, E)) 5604 return false; 5605 return this->emitInitGlobal(*T, *Index, E); 5606 } 5607 return this->visitAPValueInitializer(TPOD->getValue(), E); 5608 } 5609 return false; 5610 } 5611 5612 // References are implemented via pointers, so when we see a DeclRefExpr 5613 // pointing to a reference, we need to get its value directly (i.e. the 5614 // pointer to the actual value) instead of a pointer to the pointer to the 5615 // value. 5616 bool IsReference = D->getType()->isReferenceType(); 5617 5618 // Check for local/global variables and parameters. 5619 if (auto It = Locals.find(D); It != Locals.end()) { 5620 const unsigned Offset = It->second.Offset; 5621 if (IsReference) 5622 return this->emitGetLocal(PT_Ptr, Offset, E); 5623 return this->emitGetPtrLocal(Offset, E); 5624 } else if (auto GlobalIndex = P.getGlobal(D)) { 5625 if (IsReference) { 5626 if (!Ctx.getLangOpts().CPlusPlus11) 5627 return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E); 5628 return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E); 5629 } 5630 5631 return this->emitGetPtrGlobal(*GlobalIndex, E); 5632 } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { 5633 if (auto It = this->Params.find(PVD); It != this->Params.end()) { 5634 if (IsReference || !It->second.IsPtr) 5635 return this->emitGetParam(classifyPrim(E), It->second.Offset, E); 5636 5637 return this->emitGetPtrParam(It->second.Offset, E); 5638 } 5639 } 5640 5641 // In case we need to re-visit a declaration. 5642 auto revisit = [&](const VarDecl *VD) -> bool { 5643 auto VarState = this->visitDecl(VD); 5644 5645 if (VarState.notCreated()) 5646 return true; 5647 if (!VarState) 5648 return false; 5649 // Retry. 5650 return this->visitDeclRef(D, E); 5651 }; 5652 5653 // Handle lambda captures. 5654 if (auto It = this->LambdaCaptures.find(D); 5655 It != this->LambdaCaptures.end()) { 5656 auto [Offset, IsPtr] = It->second; 5657 5658 if (IsPtr) 5659 return this->emitGetThisFieldPtr(Offset, E); 5660 return this->emitGetPtrThisField(Offset, E); 5661 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E); 5662 DRE && DRE->refersToEnclosingVariableOrCapture()) { 5663 if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture()) 5664 return revisit(VD); 5665 } 5666 5667 if (D != InitializingDecl) { 5668 // Try to lazily visit (or emit dummy pointers for) declarations 5669 // we haven't seen yet. 5670 if (Ctx.getLangOpts().CPlusPlus) { 5671 if (const auto *VD = dyn_cast<VarDecl>(D)) { 5672 const auto typeShouldBeVisited = [&](QualType T) -> bool { 5673 if (T.isConstant(Ctx.getASTContext())) 5674 return true; 5675 if (const auto *RT = T->getAs<ReferenceType>()) 5676 return RT->getPointeeType().isConstQualified(); 5677 return false; 5678 }; 5679 5680 // DecompositionDecls are just proxies for us. 5681 if (isa<DecompositionDecl>(VD)) 5682 return revisit(VD); 5683 5684 if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) && 5685 typeShouldBeVisited(VD->getType())) 5686 return revisit(VD); 5687 5688 // FIXME: The evaluateValue() check here is a little ridiculous, since 5689 // it will ultimately call into Context::evaluateAsInitializer(). In 5690 // other words, we're evaluating the initializer, just to know if we can 5691 // evaluate the initializer. 5692 if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) && 5693 VD->getInit() && !VD->getInit()->isValueDependent() && 5694 VD->evaluateValue()) 5695 return revisit(VD); 5696 } 5697 } else { 5698 if (const auto *VD = dyn_cast<VarDecl>(D); 5699 VD && VD->getAnyInitializer() && 5700 VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak()) 5701 return revisit(VD); 5702 } 5703 } 5704 5705 if (std::optional<unsigned> I = P.getOrCreateDummy(D)) { 5706 if (!this->emitGetPtrGlobal(*I, E)) 5707 return false; 5708 if (E->getType()->isVoidType()) 5709 return true; 5710 // Convert the dummy pointer to another pointer type if we have to. 5711 if (PrimType PT = classifyPrim(E); PT != PT_Ptr) { 5712 if (isPtrType(PT)) 5713 return this->emitDecayPtr(PT_Ptr, PT, E); 5714 return false; 5715 } 5716 return true; 5717 } 5718 5719 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 5720 return this->emitInvalidDeclRef(DRE, E); 5721 return false; 5722 } 5723 5724 template <class Emitter> 5725 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) { 5726 const auto *D = E->getDecl(); 5727 return this->visitDeclRef(D, E); 5728 } 5729 5730 template <class Emitter> void Compiler<Emitter>::emitCleanup() { 5731 for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent()) 5732 C->emitDestruction(); 5733 } 5734 5735 template <class Emitter> 5736 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType, 5737 const QualType DerivedType) { 5738 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 5739 if (const auto *R = Ty->getPointeeCXXRecordDecl()) 5740 return R; 5741 return Ty->getAsCXXRecordDecl(); 5742 }; 5743 const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType); 5744 const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType); 5745 5746 return Ctx.collectBaseOffset(BaseDecl, DerivedDecl); 5747 } 5748 5749 /// Emit casts from a PrimType to another PrimType. 5750 template <class Emitter> 5751 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT, 5752 QualType ToQT, const Expr *E) { 5753 5754 if (FromT == PT_Float) { 5755 // Floating to floating. 5756 if (ToT == PT_Float) { 5757 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 5758 return this->emitCastFP(ToSem, getRoundingMode(E), E); 5759 } 5760 5761 if (ToT == PT_IntAP) 5762 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), 5763 getFPOptions(E), E); 5764 if (ToT == PT_IntAPS) 5765 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), 5766 getFPOptions(E), E); 5767 5768 // Float to integral. 5769 if (isIntegralType(ToT) || ToT == PT_Bool) 5770 return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E); 5771 } 5772 5773 if (isIntegralType(FromT) || FromT == PT_Bool) { 5774 if (ToT == PT_IntAP) 5775 return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E); 5776 if (ToT == PT_IntAPS) 5777 return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E); 5778 5779 // Integral to integral. 5780 if (isIntegralType(ToT) || ToT == PT_Bool) 5781 return FromT != ToT ? this->emitCast(FromT, ToT, E) : true; 5782 5783 if (ToT == PT_Float) { 5784 // Integral to floating. 5785 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 5786 return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E); 5787 } 5788 } 5789 5790 return false; 5791 } 5792 5793 /// Emits __real(SubExpr) 5794 template <class Emitter> 5795 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) { 5796 assert(SubExpr->getType()->isAnyComplexType()); 5797 5798 if (DiscardResult) 5799 return this->discard(SubExpr); 5800 5801 if (!this->visit(SubExpr)) 5802 return false; 5803 if (SubExpr->isLValue()) { 5804 if (!this->emitConstUint8(0, SubExpr)) 5805 return false; 5806 return this->emitArrayElemPtrPopUint8(SubExpr); 5807 } 5808 5809 // Rvalue, load the actual element. 5810 return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()), 5811 0, SubExpr); 5812 } 5813 5814 template <class Emitter> 5815 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) { 5816 assert(!DiscardResult); 5817 PrimType ElemT = classifyComplexElementType(E->getType()); 5818 // We emit the expression (__real(E) != 0 || __imag(E) != 0) 5819 // for us, that means (bool)E[0] || (bool)E[1] 5820 if (!this->emitArrayElem(ElemT, 0, E)) 5821 return false; 5822 if (ElemT == PT_Float) { 5823 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 5824 return false; 5825 } else { 5826 if (!this->emitCast(ElemT, PT_Bool, E)) 5827 return false; 5828 } 5829 5830 // We now have the bool value of E[0] on the stack. 5831 LabelTy LabelTrue = this->getLabel(); 5832 if (!this->jumpTrue(LabelTrue)) 5833 return false; 5834 5835 if (!this->emitArrayElemPop(ElemT, 1, E)) 5836 return false; 5837 if (ElemT == PT_Float) { 5838 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 5839 return false; 5840 } else { 5841 if (!this->emitCast(ElemT, PT_Bool, E)) 5842 return false; 5843 } 5844 // Leave the boolean value of E[1] on the stack. 5845 LabelTy EndLabel = this->getLabel(); 5846 this->jump(EndLabel); 5847 5848 this->emitLabel(LabelTrue); 5849 if (!this->emitPopPtr(E)) 5850 return false; 5851 if (!this->emitConstBool(true, E)) 5852 return false; 5853 5854 this->fallthrough(EndLabel); 5855 this->emitLabel(EndLabel); 5856 5857 return true; 5858 } 5859 5860 template <class Emitter> 5861 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS, 5862 const BinaryOperator *E) { 5863 assert(E->isComparisonOp()); 5864 assert(!Initializing); 5865 assert(!DiscardResult); 5866 5867 PrimType ElemT; 5868 bool LHSIsComplex; 5869 unsigned LHSOffset; 5870 if (LHS->getType()->isAnyComplexType()) { 5871 LHSIsComplex = true; 5872 ElemT = classifyComplexElementType(LHS->getType()); 5873 LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true, 5874 /*IsExtended=*/false); 5875 if (!this->visit(LHS)) 5876 return false; 5877 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 5878 return false; 5879 } else { 5880 LHSIsComplex = false; 5881 PrimType LHST = classifyPrim(LHS->getType()); 5882 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 5883 if (!this->visit(LHS)) 5884 return false; 5885 if (!this->emitSetLocal(LHST, LHSOffset, E)) 5886 return false; 5887 } 5888 5889 bool RHSIsComplex; 5890 unsigned RHSOffset; 5891 if (RHS->getType()->isAnyComplexType()) { 5892 RHSIsComplex = true; 5893 ElemT = classifyComplexElementType(RHS->getType()); 5894 RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true, 5895 /*IsExtended=*/false); 5896 if (!this->visit(RHS)) 5897 return false; 5898 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 5899 return false; 5900 } else { 5901 RHSIsComplex = false; 5902 PrimType RHST = classifyPrim(RHS->getType()); 5903 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 5904 if (!this->visit(RHS)) 5905 return false; 5906 if (!this->emitSetLocal(RHST, RHSOffset, E)) 5907 return false; 5908 } 5909 5910 auto getElem = [&](unsigned LocalOffset, unsigned Index, 5911 bool IsComplex) -> bool { 5912 if (IsComplex) { 5913 if (!this->emitGetLocal(PT_Ptr, LocalOffset, E)) 5914 return false; 5915 return this->emitArrayElemPop(ElemT, Index, E); 5916 } 5917 return this->emitGetLocal(ElemT, LocalOffset, E); 5918 }; 5919 5920 for (unsigned I = 0; I != 2; ++I) { 5921 // Get both values. 5922 if (!getElem(LHSOffset, I, LHSIsComplex)) 5923 return false; 5924 if (!getElem(RHSOffset, I, RHSIsComplex)) 5925 return false; 5926 // And compare them. 5927 if (!this->emitEQ(ElemT, E)) 5928 return false; 5929 5930 if (!this->emitCastBoolUint8(E)) 5931 return false; 5932 } 5933 5934 // We now have two bool values on the stack. Compare those. 5935 if (!this->emitAddUint8(E)) 5936 return false; 5937 if (!this->emitConstUint8(2, E)) 5938 return false; 5939 5940 if (E->getOpcode() == BO_EQ) { 5941 if (!this->emitEQUint8(E)) 5942 return false; 5943 } else if (E->getOpcode() == BO_NE) { 5944 if (!this->emitNEUint8(E)) 5945 return false; 5946 } else 5947 return false; 5948 5949 // In C, this returns an int. 5950 if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool) 5951 return this->emitCast(PT_Bool, ResT, E); 5952 return true; 5953 } 5954 5955 /// When calling this, we have a pointer of the local-to-destroy 5956 /// on the stack. 5957 /// Emit destruction of record types (or arrays of record types). 5958 template <class Emitter> 5959 bool Compiler<Emitter>::emitRecordDestruction(const Record *R) { 5960 assert(R); 5961 const CXXDestructorDecl *Dtor = R->getDestructor(); 5962 if (!Dtor || Dtor->isTrivial()) 5963 return true; 5964 5965 assert(Dtor); 5966 const Function *DtorFunc = getFunction(Dtor); 5967 if (!DtorFunc) 5968 return false; 5969 assert(DtorFunc->hasThisPointer()); 5970 assert(DtorFunc->getNumParams() == 1); 5971 if (!this->emitDupPtr(SourceInfo{})) 5972 return false; 5973 return this->emitCall(DtorFunc, 0, SourceInfo{}); 5974 } 5975 /// When calling this, we have a pointer of the local-to-destroy 5976 /// on the stack. 5977 /// Emit destruction of record types (or arrays of record types). 5978 template <class Emitter> 5979 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc) { 5980 assert(Desc); 5981 assert(!Desc->isPrimitive()); 5982 assert(!Desc->isPrimitiveArray()); 5983 5984 // Arrays. 5985 if (Desc->isArray()) { 5986 const Descriptor *ElemDesc = Desc->ElemDesc; 5987 assert(ElemDesc); 5988 5989 // Don't need to do anything for these. 5990 if (ElemDesc->isPrimitiveArray()) 5991 return true; 5992 5993 // If this is an array of record types, check if we need 5994 // to call the element destructors at all. If not, try 5995 // to save the work. 5996 if (const Record *ElemRecord = ElemDesc->ElemRecord) { 5997 if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor(); 5998 !Dtor || Dtor->isTrivial()) 5999 return true; 6000 } 6001 6002 for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) { 6003 if (!this->emitConstUint64(I, SourceInfo{})) 6004 return false; 6005 if (!this->emitArrayElemPtrUint64(SourceInfo{})) 6006 return false; 6007 if (!this->emitDestruction(ElemDesc)) 6008 return false; 6009 if (!this->emitPopPtr(SourceInfo{})) 6010 return false; 6011 } 6012 return true; 6013 } 6014 6015 assert(Desc->ElemRecord); 6016 return this->emitRecordDestruction(Desc->ElemRecord); 6017 } 6018 6019 namespace clang { 6020 namespace interp { 6021 6022 template class Compiler<ByteCodeEmitter>; 6023 template class Compiler<EvalEmitter>; 6024 6025 } // namespace interp 6026 } // namespace clang 6027