1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Compiler.h" 10 #include "ByteCodeEmitter.h" 11 #include "Context.h" 12 #include "FixedPoint.h" 13 #include "Floating.h" 14 #include "Function.h" 15 #include "InterpShared.h" 16 #include "PrimType.h" 17 #include "Program.h" 18 #include "clang/AST/Attr.h" 19 20 using namespace clang; 21 using namespace clang::interp; 22 23 using APSInt = llvm::APSInt; 24 25 namespace clang { 26 namespace interp { 27 28 /// Scope used to handle temporaries in toplevel variable declarations. 29 template <class Emitter> class DeclScope final : public LocalScope<Emitter> { 30 public: 31 DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD) 32 : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD), 33 OldInitializingDecl(Ctx->InitializingDecl) { 34 Ctx->InitializingDecl = VD; 35 Ctx->InitStack.push_back(InitLink::Decl(VD)); 36 } 37 38 void addExtended(const Scope::Local &Local) override { 39 return this->addLocal(Local); 40 } 41 42 ~DeclScope() { 43 this->Ctx->InitializingDecl = OldInitializingDecl; 44 this->Ctx->InitStack.pop_back(); 45 } 46 47 private: 48 Program::DeclScope Scope; 49 const ValueDecl *OldInitializingDecl; 50 }; 51 52 /// Scope used to handle initialization methods. 53 template <class Emitter> class OptionScope final { 54 public: 55 /// Root constructor, compiling or discarding primitives. 56 OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult, 57 bool NewInitializing) 58 : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), 59 OldInitializing(Ctx->Initializing) { 60 Ctx->DiscardResult = NewDiscardResult; 61 Ctx->Initializing = NewInitializing; 62 } 63 64 ~OptionScope() { 65 Ctx->DiscardResult = OldDiscardResult; 66 Ctx->Initializing = OldInitializing; 67 } 68 69 private: 70 /// Parent context. 71 Compiler<Emitter> *Ctx; 72 /// Old discard flag to restore. 73 bool OldDiscardResult; 74 bool OldInitializing; 75 }; 76 77 template <class Emitter> 78 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const { 79 switch (Kind) { 80 case K_This: 81 return Ctx->emitThis(E); 82 case K_Field: 83 // We're assuming there's a base pointer on the stack already. 84 return Ctx->emitGetPtrFieldPop(Offset, E); 85 case K_Temp: 86 return Ctx->emitGetPtrLocal(Offset, E); 87 case K_Decl: 88 return Ctx->visitDeclRef(D, E); 89 case K_Elem: 90 if (!Ctx->emitConstUint32(Offset, E)) 91 return false; 92 return Ctx->emitArrayElemPtrPopUint32(E); 93 default: 94 llvm_unreachable("Unhandled InitLink kind"); 95 } 96 return true; 97 } 98 99 /// Scope managing label targets. 100 template <class Emitter> class LabelScope { 101 public: 102 virtual ~LabelScope() {} 103 104 protected: 105 LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {} 106 /// Compiler instance. 107 Compiler<Emitter> *Ctx; 108 }; 109 110 /// Sets the context for break/continue statements. 111 template <class Emitter> class LoopScope final : public LabelScope<Emitter> { 112 public: 113 using LabelTy = typename Compiler<Emitter>::LabelTy; 114 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 115 116 LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel) 117 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 118 OldContinueLabel(Ctx->ContinueLabel), 119 OldBreakVarScope(Ctx->BreakVarScope), 120 OldContinueVarScope(Ctx->ContinueVarScope) { 121 this->Ctx->BreakLabel = BreakLabel; 122 this->Ctx->ContinueLabel = ContinueLabel; 123 this->Ctx->BreakVarScope = this->Ctx->VarScope; 124 this->Ctx->ContinueVarScope = this->Ctx->VarScope; 125 } 126 127 ~LoopScope() { 128 this->Ctx->BreakLabel = OldBreakLabel; 129 this->Ctx->ContinueLabel = OldContinueLabel; 130 this->Ctx->ContinueVarScope = OldContinueVarScope; 131 this->Ctx->BreakVarScope = OldBreakVarScope; 132 } 133 134 private: 135 OptLabelTy OldBreakLabel; 136 OptLabelTy OldContinueLabel; 137 VariableScope<Emitter> *OldBreakVarScope; 138 VariableScope<Emitter> *OldContinueVarScope; 139 }; 140 141 // Sets the context for a switch scope, mapping labels. 142 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> { 143 public: 144 using LabelTy = typename Compiler<Emitter>::LabelTy; 145 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 146 using CaseMap = typename Compiler<Emitter>::CaseMap; 147 148 SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel, 149 OptLabelTy DefaultLabel) 150 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 151 OldDefaultLabel(this->Ctx->DefaultLabel), 152 OldCaseLabels(std::move(this->Ctx->CaseLabels)), 153 OldLabelVarScope(Ctx->BreakVarScope) { 154 this->Ctx->BreakLabel = BreakLabel; 155 this->Ctx->DefaultLabel = DefaultLabel; 156 this->Ctx->CaseLabels = std::move(CaseLabels); 157 this->Ctx->BreakVarScope = this->Ctx->VarScope; 158 } 159 160 ~SwitchScope() { 161 this->Ctx->BreakLabel = OldBreakLabel; 162 this->Ctx->DefaultLabel = OldDefaultLabel; 163 this->Ctx->CaseLabels = std::move(OldCaseLabels); 164 this->Ctx->BreakVarScope = OldLabelVarScope; 165 } 166 167 private: 168 OptLabelTy OldBreakLabel; 169 OptLabelTy OldDefaultLabel; 170 CaseMap OldCaseLabels; 171 VariableScope<Emitter> *OldLabelVarScope; 172 }; 173 174 template <class Emitter> class StmtExprScope final { 175 public: 176 StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) { 177 Ctx->InStmtExpr = true; 178 } 179 180 ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; } 181 182 private: 183 Compiler<Emitter> *Ctx; 184 bool OldFlag; 185 }; 186 187 } // namespace interp 188 } // namespace clang 189 190 template <class Emitter> 191 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) { 192 const Expr *SubExpr = CE->getSubExpr(); 193 switch (CE->getCastKind()) { 194 195 case CK_LValueToRValue: { 196 if (DiscardResult) 197 return this->discard(SubExpr); 198 199 std::optional<PrimType> SubExprT = classify(SubExpr->getType()); 200 // Prepare storage for the result. 201 if (!Initializing && !SubExprT) { 202 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 203 if (!LocalIndex) 204 return false; 205 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 206 return false; 207 } 208 209 if (!this->visit(SubExpr)) 210 return false; 211 212 if (SubExprT) 213 return this->emitLoadPop(*SubExprT, CE); 214 215 // If the subexpr type is not primitive, we need to perform a copy here. 216 // This happens for example in C when dereferencing a pointer of struct 217 // type. 218 return this->emitMemcpy(CE); 219 } 220 221 case CK_DerivedToBaseMemberPointer: { 222 assert(classifyPrim(CE->getType()) == PT_MemberPtr); 223 assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr); 224 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 225 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 226 227 unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0), 228 QualType(FromMP->getClass(), 0)); 229 230 if (!this->delegate(SubExpr)) 231 return false; 232 233 return this->emitGetMemberPtrBasePop(DerivedOffset, CE); 234 } 235 236 case CK_BaseToDerivedMemberPointer: { 237 assert(classifyPrim(CE) == PT_MemberPtr); 238 assert(classifyPrim(SubExpr) == PT_MemberPtr); 239 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 240 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 241 242 unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0), 243 QualType(ToMP->getClass(), 0)); 244 245 if (!this->delegate(SubExpr)) 246 return false; 247 return this->emitGetMemberPtrBasePop(-DerivedOffset, CE); 248 } 249 250 case CK_UncheckedDerivedToBase: 251 case CK_DerivedToBase: { 252 if (!this->delegate(SubExpr)) 253 return false; 254 255 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 256 if (const auto *PT = dyn_cast<PointerType>(Ty)) 257 return PT->getPointeeType()->getAsCXXRecordDecl(); 258 return Ty->getAsCXXRecordDecl(); 259 }; 260 261 // FIXME: We can express a series of non-virtual casts as a single 262 // GetPtrBasePop op. 263 QualType CurType = SubExpr->getType(); 264 for (const CXXBaseSpecifier *B : CE->path()) { 265 if (B->isVirtual()) { 266 if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE)) 267 return false; 268 CurType = B->getType(); 269 } else { 270 unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType); 271 if (!this->emitGetPtrBasePop(DerivedOffset, CE)) 272 return false; 273 CurType = B->getType(); 274 } 275 } 276 277 return true; 278 } 279 280 case CK_BaseToDerived: { 281 if (!this->delegate(SubExpr)) 282 return false; 283 284 unsigned DerivedOffset = 285 collectBaseOffset(SubExpr->getType(), CE->getType()); 286 287 return this->emitGetPtrDerivedPop(DerivedOffset, CE); 288 } 289 290 case CK_FloatingCast: { 291 // HLSL uses CK_FloatingCast to cast between vectors. 292 if (!SubExpr->getType()->isFloatingType() || 293 !CE->getType()->isFloatingType()) 294 return false; 295 if (DiscardResult) 296 return this->discard(SubExpr); 297 if (!this->visit(SubExpr)) 298 return false; 299 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 300 return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE); 301 } 302 303 case CK_IntegralToFloating: { 304 if (DiscardResult) 305 return this->discard(SubExpr); 306 std::optional<PrimType> FromT = classify(SubExpr->getType()); 307 if (!FromT) 308 return false; 309 310 if (!this->visit(SubExpr)) 311 return false; 312 313 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 314 return this->emitCastIntegralFloating(*FromT, TargetSemantics, 315 getFPOptions(CE), CE); 316 } 317 318 case CK_FloatingToBoolean: 319 case CK_FloatingToIntegral: { 320 if (DiscardResult) 321 return this->discard(SubExpr); 322 323 std::optional<PrimType> ToT = classify(CE->getType()); 324 325 if (!ToT) 326 return false; 327 328 if (!this->visit(SubExpr)) 329 return false; 330 331 if (ToT == PT_IntAP) 332 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()), 333 getFPOptions(CE), CE); 334 if (ToT == PT_IntAPS) 335 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()), 336 getFPOptions(CE), CE); 337 338 return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE); 339 } 340 341 case CK_NullToPointer: 342 case CK_NullToMemberPointer: { 343 if (!this->discard(SubExpr)) 344 return false; 345 if (DiscardResult) 346 return true; 347 348 const Descriptor *Desc = nullptr; 349 const QualType PointeeType = CE->getType()->getPointeeType(); 350 if (!PointeeType.isNull()) { 351 if (std::optional<PrimType> T = classify(PointeeType)) 352 Desc = P.createDescriptor(SubExpr, *T); 353 else 354 Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(), 355 std::nullopt, true, false, 356 /*IsMutable=*/false, nullptr); 357 } 358 return this->emitNull(classifyPrim(CE->getType()), Desc, CE); 359 } 360 361 case CK_PointerToIntegral: { 362 if (DiscardResult) 363 return this->discard(SubExpr); 364 365 if (!this->visit(SubExpr)) 366 return false; 367 368 // If SubExpr doesn't result in a pointer, make it one. 369 if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) { 370 assert(isPtrType(FromT)); 371 if (!this->emitDecayPtr(FromT, PT_Ptr, CE)) 372 return false; 373 } 374 375 PrimType T = classifyPrim(CE->getType()); 376 if (T == PT_IntAP) 377 return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()), 378 CE); 379 if (T == PT_IntAPS) 380 return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()), 381 CE); 382 return this->emitCastPointerIntegral(T, CE); 383 } 384 385 case CK_ArrayToPointerDecay: { 386 if (!this->visit(SubExpr)) 387 return false; 388 if (!this->emitArrayDecay(CE)) 389 return false; 390 if (DiscardResult) 391 return this->emitPopPtr(CE); 392 return true; 393 } 394 395 case CK_IntegralToPointer: { 396 QualType IntType = SubExpr->getType(); 397 assert(IntType->isIntegralOrEnumerationType()); 398 if (!this->visit(SubExpr)) 399 return false; 400 // FIXME: I think the discard is wrong since the int->ptr cast might cause a 401 // diagnostic. 402 PrimType T = classifyPrim(IntType); 403 if (DiscardResult) 404 return this->emitPop(T, CE); 405 406 QualType PtrType = CE->getType(); 407 const Descriptor *Desc; 408 if (std::optional<PrimType> T = classify(PtrType->getPointeeType())) 409 Desc = P.createDescriptor(SubExpr, *T); 410 else if (PtrType->getPointeeType()->isVoidType()) 411 Desc = nullptr; 412 else 413 Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(), 414 Descriptor::InlineDescMD, true, false, 415 /*IsMutable=*/false, nullptr); 416 417 if (!this->emitGetIntPtr(T, Desc, CE)) 418 return false; 419 420 PrimType DestPtrT = classifyPrim(PtrType); 421 if (DestPtrT == PT_Ptr) 422 return true; 423 424 // In case we're converting the integer to a non-Pointer. 425 return this->emitDecayPtr(PT_Ptr, DestPtrT, CE); 426 } 427 428 case CK_AtomicToNonAtomic: 429 case CK_ConstructorConversion: 430 case CK_FunctionToPointerDecay: 431 case CK_NonAtomicToAtomic: 432 case CK_NoOp: 433 case CK_UserDefinedConversion: 434 case CK_AddressSpaceConversion: 435 case CK_CPointerToObjCPointerCast: 436 return this->delegate(SubExpr); 437 438 case CK_BitCast: { 439 // Reject bitcasts to atomic types. 440 if (CE->getType()->isAtomicType()) { 441 if (!this->discard(SubExpr)) 442 return false; 443 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE); 444 } 445 446 if (DiscardResult) 447 return this->discard(SubExpr); 448 449 QualType SubExprTy = SubExpr->getType(); 450 std::optional<PrimType> FromT = classify(SubExprTy); 451 std::optional<PrimType> ToT = classify(CE->getType()); 452 if (!FromT || !ToT) 453 return false; 454 455 assert(isPtrType(*FromT)); 456 assert(isPtrType(*ToT)); 457 if (FromT == ToT) { 458 if (CE->getType()->isVoidPointerType()) 459 return this->delegate(SubExpr); 460 461 if (!this->visit(SubExpr)) 462 return false; 463 if (FromT == PT_Ptr) 464 return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE); 465 return true; 466 } 467 468 if (!this->visit(SubExpr)) 469 return false; 470 return this->emitDecayPtr(*FromT, *ToT, CE); 471 } 472 473 case CK_IntegralToBoolean: 474 case CK_FixedPointToBoolean: 475 case CK_BooleanToSignedIntegral: 476 case CK_IntegralCast: { 477 if (DiscardResult) 478 return this->discard(SubExpr); 479 std::optional<PrimType> FromT = classify(SubExpr->getType()); 480 std::optional<PrimType> ToT = classify(CE->getType()); 481 482 if (!FromT || !ToT) 483 return false; 484 485 if (!this->visit(SubExpr)) 486 return false; 487 488 // Possibly diagnose casts to enum types if the target type does not 489 // have a fixed size. 490 if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) { 491 if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>(); 492 ET && !ET->getDecl()->isFixed()) { 493 if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE)) 494 return false; 495 } 496 } 497 498 auto maybeNegate = [&]() -> bool { 499 if (CE->getCastKind() == CK_BooleanToSignedIntegral) 500 return this->emitNeg(*ToT, CE); 501 return true; 502 }; 503 504 if (ToT == PT_IntAP) 505 return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 506 maybeNegate(); 507 if (ToT == PT_IntAPS) 508 return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 509 maybeNegate(); 510 511 if (FromT == ToT) 512 return true; 513 if (!this->emitCast(*FromT, *ToT, CE)) 514 return false; 515 516 return maybeNegate(); 517 } 518 519 case CK_PointerToBoolean: 520 case CK_MemberPointerToBoolean: { 521 PrimType PtrT = classifyPrim(SubExpr->getType()); 522 523 if (!this->visit(SubExpr)) 524 return false; 525 return this->emitIsNonNull(PtrT, CE); 526 } 527 528 case CK_IntegralComplexToBoolean: 529 case CK_FloatingComplexToBoolean: { 530 if (DiscardResult) 531 return this->discard(SubExpr); 532 if (!this->visit(SubExpr)) 533 return false; 534 return this->emitComplexBoolCast(SubExpr); 535 } 536 537 case CK_IntegralComplexToReal: 538 case CK_FloatingComplexToReal: 539 return this->emitComplexReal(SubExpr); 540 541 case CK_IntegralRealToComplex: 542 case CK_FloatingRealToComplex: { 543 // We're creating a complex value here, so we need to 544 // allocate storage for it. 545 if (!Initializing) { 546 unsigned LocalIndex = allocateTemporary(CE); 547 if (!this->emitGetPtrLocal(LocalIndex, CE)) 548 return false; 549 } 550 551 // Init the complex value to {SubExpr, 0}. 552 if (!this->visitArrayElemInit(0, SubExpr)) 553 return false; 554 // Zero-init the second element. 555 PrimType T = classifyPrim(SubExpr->getType()); 556 if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr)) 557 return false; 558 return this->emitInitElem(T, 1, SubExpr); 559 } 560 561 case CK_IntegralComplexCast: 562 case CK_FloatingComplexCast: 563 case CK_IntegralComplexToFloatingComplex: 564 case CK_FloatingComplexToIntegralComplex: { 565 assert(CE->getType()->isAnyComplexType()); 566 assert(SubExpr->getType()->isAnyComplexType()); 567 if (DiscardResult) 568 return this->discard(SubExpr); 569 570 if (!Initializing) { 571 std::optional<unsigned> LocalIndex = allocateLocal(CE); 572 if (!LocalIndex) 573 return false; 574 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 575 return false; 576 } 577 578 // Location for the SubExpr. 579 // Since SubExpr is of complex type, visiting it results in a pointer 580 // anyway, so we just create a temporary pointer variable. 581 unsigned SubExprOffset = allocateLocalPrimitive( 582 SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 583 if (!this->visit(SubExpr)) 584 return false; 585 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE)) 586 return false; 587 588 PrimType SourceElemT = classifyComplexElementType(SubExpr->getType()); 589 QualType DestElemType = 590 CE->getType()->getAs<ComplexType>()->getElementType(); 591 PrimType DestElemT = classifyPrim(DestElemType); 592 // Cast both elements individually. 593 for (unsigned I = 0; I != 2; ++I) { 594 if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE)) 595 return false; 596 if (!this->emitArrayElemPop(SourceElemT, I, CE)) 597 return false; 598 599 // Do the cast. 600 if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE)) 601 return false; 602 603 // Save the value. 604 if (!this->emitInitElem(DestElemT, I, CE)) 605 return false; 606 } 607 return true; 608 } 609 610 case CK_VectorSplat: { 611 assert(!classify(CE->getType())); 612 assert(classify(SubExpr->getType())); 613 assert(CE->getType()->isVectorType()); 614 615 if (DiscardResult) 616 return this->discard(SubExpr); 617 618 if (!Initializing) { 619 std::optional<unsigned> LocalIndex = allocateLocal(CE); 620 if (!LocalIndex) 621 return false; 622 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 623 return false; 624 } 625 626 const auto *VT = CE->getType()->getAs<VectorType>(); 627 PrimType ElemT = classifyPrim(SubExpr->getType()); 628 unsigned ElemOffset = allocateLocalPrimitive( 629 SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false); 630 631 // Prepare a local variable for the scalar value. 632 if (!this->visit(SubExpr)) 633 return false; 634 if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE)) 635 return false; 636 637 if (!this->emitSetLocal(ElemT, ElemOffset, CE)) 638 return false; 639 640 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 641 if (!this->emitGetLocal(ElemT, ElemOffset, CE)) 642 return false; 643 if (!this->emitInitElem(ElemT, I, CE)) 644 return false; 645 } 646 647 return true; 648 } 649 650 case CK_HLSLVectorTruncation: { 651 assert(SubExpr->getType()->isVectorType()); 652 if (std::optional<PrimType> ResultT = classify(CE)) { 653 assert(!DiscardResult); 654 // Result must be either a float or integer. Take the first element. 655 if (!this->visit(SubExpr)) 656 return false; 657 return this->emitArrayElemPop(*ResultT, 0, CE); 658 } 659 // Otherwise, this truncates from one vector type to another. 660 assert(CE->getType()->isVectorType()); 661 662 if (!Initializing) { 663 unsigned LocalIndex = allocateTemporary(CE); 664 if (!this->emitGetPtrLocal(LocalIndex, CE)) 665 return false; 666 } 667 unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements(); 668 assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize); 669 if (!this->visit(SubExpr)) 670 return false; 671 return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0, 672 ToSize, CE); 673 }; 674 675 case CK_IntegralToFixedPoint: { 676 if (!this->visit(SubExpr)) 677 return false; 678 679 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 680 uint32_t I; 681 std::memcpy(&I, &Sem, sizeof(Sem)); 682 return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), I, 683 CE); 684 } 685 case CK_FloatingToFixedPoint: { 686 if (!this->visit(SubExpr)) 687 return false; 688 689 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 690 uint32_t I; 691 std::memcpy(&I, &Sem, sizeof(Sem)); 692 return this->emitCastFloatingFixedPoint(I, CE); 693 } 694 case CK_FixedPointToFloating: { 695 if (!this->visit(SubExpr)) 696 return false; 697 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 698 return this->emitCastFixedPointFloating(TargetSemantics, CE); 699 } 700 case CK_FixedPointToIntegral: { 701 if (!this->visit(SubExpr)) 702 return false; 703 return this->emitCastFixedPointIntegral(classifyPrim(CE->getType()), CE); 704 } 705 case CK_FixedPointCast: { 706 if (!this->visit(SubExpr)) 707 return false; 708 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 709 uint32_t I; 710 std::memcpy(&I, &Sem, sizeof(Sem)); 711 return this->emitCastFixedPoint(I, CE); 712 } 713 714 case CK_ToVoid: 715 return discard(SubExpr); 716 717 default: 718 return this->emitInvalid(CE); 719 } 720 llvm_unreachable("Unhandled clang::CastKind enum"); 721 } 722 723 template <class Emitter> 724 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) { 725 if (DiscardResult) 726 return true; 727 728 return this->emitConst(LE->getValue(), LE); 729 } 730 731 template <class Emitter> 732 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) { 733 if (DiscardResult) 734 return true; 735 736 return this->emitConstFloat(E->getValue(), E); 737 } 738 739 template <class Emitter> 740 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 741 assert(E->getType()->isAnyComplexType()); 742 if (DiscardResult) 743 return true; 744 745 if (!Initializing) { 746 unsigned LocalIndex = allocateTemporary(E); 747 if (!this->emitGetPtrLocal(LocalIndex, E)) 748 return false; 749 } 750 751 const Expr *SubExpr = E->getSubExpr(); 752 PrimType SubExprT = classifyPrim(SubExpr->getType()); 753 754 if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr)) 755 return false; 756 if (!this->emitInitElem(SubExprT, 0, SubExpr)) 757 return false; 758 return this->visitArrayElemInit(1, SubExpr); 759 } 760 761 template <class Emitter> 762 bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) { 763 assert(E->getType()->isFixedPointType()); 764 assert(classifyPrim(E) == PT_FixedPoint); 765 766 auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 767 APInt Value = E->getValue(); 768 return this->emitConstFixedPoint(FixedPoint(Value, Sem), E); 769 } 770 771 template <class Emitter> 772 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) { 773 return this->delegate(E->getSubExpr()); 774 } 775 776 template <class Emitter> 777 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) { 778 // Need short-circuiting for these. 779 if (BO->isLogicalOp() && !BO->getType()->isVectorType()) 780 return this->VisitLogicalBinOp(BO); 781 782 const Expr *LHS = BO->getLHS(); 783 const Expr *RHS = BO->getRHS(); 784 785 // Handle comma operators. Just discard the LHS 786 // and delegate to RHS. 787 if (BO->isCommaOp()) { 788 if (!this->discard(LHS)) 789 return false; 790 if (RHS->getType()->isVoidType()) 791 return this->discard(RHS); 792 793 return this->delegate(RHS); 794 } 795 796 if (BO->getType()->isAnyComplexType()) 797 return this->VisitComplexBinOp(BO); 798 if (BO->getType()->isVectorType()) 799 return this->VisitVectorBinOp(BO); 800 if ((LHS->getType()->isAnyComplexType() || 801 RHS->getType()->isAnyComplexType()) && 802 BO->isComparisonOp()) 803 return this->emitComplexComparison(LHS, RHS, BO); 804 if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType()) 805 return this->VisitFixedPointBinOp(BO); 806 807 if (BO->isPtrMemOp()) { 808 if (!this->visit(LHS)) 809 return false; 810 811 if (!this->visit(RHS)) 812 return false; 813 814 if (!this->emitToMemberPtr(BO)) 815 return false; 816 817 if (classifyPrim(BO) == PT_MemberPtr) 818 return true; 819 820 if (!this->emitCastMemberPtrPtr(BO)) 821 return false; 822 return DiscardResult ? this->emitPopPtr(BO) : true; 823 } 824 825 // Typecheck the args. 826 std::optional<PrimType> LT = classify(LHS); 827 std::optional<PrimType> RT = classify(RHS); 828 std::optional<PrimType> T = classify(BO->getType()); 829 830 // Special case for C++'s three-way/spaceship operator <=>, which 831 // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't 832 // have a PrimType). 833 if (!T && BO->getOpcode() == BO_Cmp) { 834 if (DiscardResult) 835 return true; 836 const ComparisonCategoryInfo *CmpInfo = 837 Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType()); 838 assert(CmpInfo); 839 840 // We need a temporary variable holding our return value. 841 if (!Initializing) { 842 std::optional<unsigned> ResultIndex = this->allocateLocal(BO); 843 if (!this->emitGetPtrLocal(*ResultIndex, BO)) 844 return false; 845 } 846 847 if (!visit(LHS) || !visit(RHS)) 848 return false; 849 850 return this->emitCMP3(*LT, CmpInfo, BO); 851 } 852 853 if (!LT || !RT || !T) 854 return false; 855 856 // Pointer arithmetic special case. 857 if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) { 858 if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT))) 859 return this->VisitPointerArithBinOp(BO); 860 } 861 862 // Assignmentes require us to evalute the RHS first. 863 if (BO->getOpcode() == BO_Assign) { 864 if (!visit(RHS) || !visit(LHS)) 865 return false; 866 if (!this->emitFlip(*LT, *RT, BO)) 867 return false; 868 } else { 869 if (!visit(LHS) || !visit(RHS)) 870 return false; 871 } 872 873 // For languages such as C, cast the result of one 874 // of our comparision opcodes to T (which is usually int). 875 auto MaybeCastToBool = [this, T, BO](bool Result) { 876 if (!Result) 877 return false; 878 if (DiscardResult) 879 return this->emitPop(*T, BO); 880 if (T != PT_Bool) 881 return this->emitCast(PT_Bool, *T, BO); 882 return true; 883 }; 884 885 auto Discard = [this, T, BO](bool Result) { 886 if (!Result) 887 return false; 888 return DiscardResult ? this->emitPop(*T, BO) : true; 889 }; 890 891 switch (BO->getOpcode()) { 892 case BO_EQ: 893 return MaybeCastToBool(this->emitEQ(*LT, BO)); 894 case BO_NE: 895 return MaybeCastToBool(this->emitNE(*LT, BO)); 896 case BO_LT: 897 return MaybeCastToBool(this->emitLT(*LT, BO)); 898 case BO_LE: 899 return MaybeCastToBool(this->emitLE(*LT, BO)); 900 case BO_GT: 901 return MaybeCastToBool(this->emitGT(*LT, BO)); 902 case BO_GE: 903 return MaybeCastToBool(this->emitGE(*LT, BO)); 904 case BO_Sub: 905 if (BO->getType()->isFloatingType()) 906 return Discard(this->emitSubf(getFPOptions(BO), BO)); 907 return Discard(this->emitSub(*T, BO)); 908 case BO_Add: 909 if (BO->getType()->isFloatingType()) 910 return Discard(this->emitAddf(getFPOptions(BO), BO)); 911 return Discard(this->emitAdd(*T, BO)); 912 case BO_Mul: 913 if (BO->getType()->isFloatingType()) 914 return Discard(this->emitMulf(getFPOptions(BO), BO)); 915 return Discard(this->emitMul(*T, BO)); 916 case BO_Rem: 917 return Discard(this->emitRem(*T, BO)); 918 case BO_Div: 919 if (BO->getType()->isFloatingType()) 920 return Discard(this->emitDivf(getFPOptions(BO), BO)); 921 return Discard(this->emitDiv(*T, BO)); 922 case BO_Assign: 923 if (DiscardResult) 924 return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO) 925 : this->emitStorePop(*T, BO); 926 if (LHS->refersToBitField()) { 927 if (!this->emitStoreBitField(*T, BO)) 928 return false; 929 } else { 930 if (!this->emitStore(*T, BO)) 931 return false; 932 } 933 // Assignments aren't necessarily lvalues in C. 934 // Load from them in that case. 935 if (!BO->isLValue()) 936 return this->emitLoadPop(*T, BO); 937 return true; 938 case BO_And: 939 return Discard(this->emitBitAnd(*T, BO)); 940 case BO_Or: 941 return Discard(this->emitBitOr(*T, BO)); 942 case BO_Shl: 943 return Discard(this->emitShl(*LT, *RT, BO)); 944 case BO_Shr: 945 return Discard(this->emitShr(*LT, *RT, BO)); 946 case BO_Xor: 947 return Discard(this->emitBitXor(*T, BO)); 948 case BO_LOr: 949 case BO_LAnd: 950 llvm_unreachable("Already handled earlier"); 951 default: 952 return false; 953 } 954 955 llvm_unreachable("Unhandled binary op"); 956 } 957 958 /// Perform addition/subtraction of a pointer and an integer or 959 /// subtraction of two pointers. 960 template <class Emitter> 961 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) { 962 BinaryOperatorKind Op = E->getOpcode(); 963 const Expr *LHS = E->getLHS(); 964 const Expr *RHS = E->getRHS(); 965 966 if ((Op != BO_Add && Op != BO_Sub) || 967 (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType())) 968 return false; 969 970 std::optional<PrimType> LT = classify(LHS); 971 std::optional<PrimType> RT = classify(RHS); 972 973 if (!LT || !RT) 974 return false; 975 976 // Visit the given pointer expression and optionally convert to a PT_Ptr. 977 auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool { 978 if (!this->visit(E)) 979 return false; 980 if (T != PT_Ptr) 981 return this->emitDecayPtr(T, PT_Ptr, E); 982 return true; 983 }; 984 985 if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) { 986 if (Op != BO_Sub) 987 return false; 988 989 assert(E->getType()->isIntegerType()); 990 if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT)) 991 return false; 992 993 return this->emitSubPtr(classifyPrim(E->getType()), E); 994 } 995 996 PrimType OffsetType; 997 if (LHS->getType()->isIntegerType()) { 998 if (!visitAsPointer(RHS, *RT)) 999 return false; 1000 if (!this->visit(LHS)) 1001 return false; 1002 OffsetType = *LT; 1003 } else if (RHS->getType()->isIntegerType()) { 1004 if (!visitAsPointer(LHS, *LT)) 1005 return false; 1006 if (!this->visit(RHS)) 1007 return false; 1008 OffsetType = *RT; 1009 } else { 1010 return false; 1011 } 1012 1013 // Do the operation and optionally transform to 1014 // result pointer type. 1015 if (Op == BO_Add) { 1016 if (!this->emitAddOffset(OffsetType, E)) 1017 return false; 1018 1019 if (classifyPrim(E) != PT_Ptr) 1020 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 1021 return true; 1022 } else if (Op == BO_Sub) { 1023 if (!this->emitSubOffset(OffsetType, E)) 1024 return false; 1025 1026 if (classifyPrim(E) != PT_Ptr) 1027 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 1028 return true; 1029 } 1030 1031 return false; 1032 } 1033 1034 template <class Emitter> 1035 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) { 1036 assert(E->isLogicalOp()); 1037 BinaryOperatorKind Op = E->getOpcode(); 1038 const Expr *LHS = E->getLHS(); 1039 const Expr *RHS = E->getRHS(); 1040 std::optional<PrimType> T = classify(E->getType()); 1041 1042 if (Op == BO_LOr) { 1043 // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE. 1044 LabelTy LabelTrue = this->getLabel(); 1045 LabelTy LabelEnd = this->getLabel(); 1046 1047 if (!this->visitBool(LHS)) 1048 return false; 1049 if (!this->jumpTrue(LabelTrue)) 1050 return false; 1051 1052 if (!this->visitBool(RHS)) 1053 return false; 1054 if (!this->jump(LabelEnd)) 1055 return false; 1056 1057 this->emitLabel(LabelTrue); 1058 this->emitConstBool(true, E); 1059 this->fallthrough(LabelEnd); 1060 this->emitLabel(LabelEnd); 1061 1062 } else { 1063 assert(Op == BO_LAnd); 1064 // Logical AND. 1065 // Visit LHS. Only visit RHS if LHS was TRUE. 1066 LabelTy LabelFalse = this->getLabel(); 1067 LabelTy LabelEnd = this->getLabel(); 1068 1069 if (!this->visitBool(LHS)) 1070 return false; 1071 if (!this->jumpFalse(LabelFalse)) 1072 return false; 1073 1074 if (!this->visitBool(RHS)) 1075 return false; 1076 if (!this->jump(LabelEnd)) 1077 return false; 1078 1079 this->emitLabel(LabelFalse); 1080 this->emitConstBool(false, E); 1081 this->fallthrough(LabelEnd); 1082 this->emitLabel(LabelEnd); 1083 } 1084 1085 if (DiscardResult) 1086 return this->emitPopBool(E); 1087 1088 // For C, cast back to integer type. 1089 assert(T); 1090 if (T != PT_Bool) 1091 return this->emitCast(PT_Bool, *T, E); 1092 return true; 1093 } 1094 1095 template <class Emitter> 1096 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) { 1097 // Prepare storage for result. 1098 if (!Initializing) { 1099 unsigned LocalIndex = allocateTemporary(E); 1100 if (!this->emitGetPtrLocal(LocalIndex, E)) 1101 return false; 1102 } 1103 1104 // Both LHS and RHS might _not_ be of complex type, but one of them 1105 // needs to be. 1106 const Expr *LHS = E->getLHS(); 1107 const Expr *RHS = E->getRHS(); 1108 1109 PrimType ResultElemT = this->classifyComplexElementType(E->getType()); 1110 unsigned ResultOffset = ~0u; 1111 if (!DiscardResult) 1112 ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false); 1113 1114 // Save result pointer in ResultOffset 1115 if (!this->DiscardResult) { 1116 if (!this->emitDupPtr(E)) 1117 return false; 1118 if (!this->emitSetLocal(PT_Ptr, ResultOffset, E)) 1119 return false; 1120 } 1121 QualType LHSType = LHS->getType(); 1122 if (const auto *AT = LHSType->getAs<AtomicType>()) 1123 LHSType = AT->getValueType(); 1124 QualType RHSType = RHS->getType(); 1125 if (const auto *AT = RHSType->getAs<AtomicType>()) 1126 RHSType = AT->getValueType(); 1127 1128 bool LHSIsComplex = LHSType->isAnyComplexType(); 1129 unsigned LHSOffset; 1130 bool RHSIsComplex = RHSType->isAnyComplexType(); 1131 1132 // For ComplexComplex Mul, we have special ops to make their implementation 1133 // easier. 1134 BinaryOperatorKind Op = E->getOpcode(); 1135 if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) { 1136 assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) == 1137 classifyPrim(RHSType->getAs<ComplexType>()->getElementType())); 1138 PrimType ElemT = 1139 classifyPrim(LHSType->getAs<ComplexType>()->getElementType()); 1140 if (!this->visit(LHS)) 1141 return false; 1142 if (!this->visit(RHS)) 1143 return false; 1144 return this->emitMulc(ElemT, E); 1145 } 1146 1147 if (Op == BO_Div && RHSIsComplex) { 1148 QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType(); 1149 PrimType ElemT = classifyPrim(ElemQT); 1150 // If the LHS is not complex, we still need to do the full complex 1151 // division, so just stub create a complex value and stub it out with 1152 // the LHS and a zero. 1153 1154 if (!LHSIsComplex) { 1155 // This is using the RHS type for the fake-complex LHS. 1156 LHSOffset = allocateTemporary(RHS); 1157 1158 if (!this->emitGetPtrLocal(LHSOffset, E)) 1159 return false; 1160 1161 if (!this->visit(LHS)) 1162 return false; 1163 // real is LHS 1164 if (!this->emitInitElem(ElemT, 0, E)) 1165 return false; 1166 // imag is zero 1167 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1168 return false; 1169 if (!this->emitInitElem(ElemT, 1, E)) 1170 return false; 1171 } else { 1172 if (!this->visit(LHS)) 1173 return false; 1174 } 1175 1176 if (!this->visit(RHS)) 1177 return false; 1178 return this->emitDivc(ElemT, E); 1179 } 1180 1181 // Evaluate LHS and save value to LHSOffset. 1182 if (LHSType->isAnyComplexType()) { 1183 LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1184 if (!this->visit(LHS)) 1185 return false; 1186 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1187 return false; 1188 } else { 1189 PrimType LHST = classifyPrim(LHSType); 1190 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 1191 if (!this->visit(LHS)) 1192 return false; 1193 if (!this->emitSetLocal(LHST, LHSOffset, E)) 1194 return false; 1195 } 1196 1197 // Same with RHS. 1198 unsigned RHSOffset; 1199 if (RHSType->isAnyComplexType()) { 1200 RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1201 if (!this->visit(RHS)) 1202 return false; 1203 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1204 return false; 1205 } else { 1206 PrimType RHST = classifyPrim(RHSType); 1207 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 1208 if (!this->visit(RHS)) 1209 return false; 1210 if (!this->emitSetLocal(RHST, RHSOffset, E)) 1211 return false; 1212 } 1213 1214 // For both LHS and RHS, either load the value from the complex pointer, or 1215 // directly from the local variable. For index 1 (i.e. the imaginary part), 1216 // just load 0 and do the operation anyway. 1217 auto loadComplexValue = [this](bool IsComplex, bool LoadZero, 1218 unsigned ElemIndex, unsigned Offset, 1219 const Expr *E) -> bool { 1220 if (IsComplex) { 1221 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1222 return false; 1223 return this->emitArrayElemPop(classifyComplexElementType(E->getType()), 1224 ElemIndex, E); 1225 } 1226 if (ElemIndex == 0 || !LoadZero) 1227 return this->emitGetLocal(classifyPrim(E->getType()), Offset, E); 1228 return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(), 1229 E); 1230 }; 1231 1232 // Now we can get pointers to the LHS and RHS from the offsets above. 1233 for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) { 1234 // Result pointer for the store later. 1235 if (!this->DiscardResult) { 1236 if (!this->emitGetLocal(PT_Ptr, ResultOffset, E)) 1237 return false; 1238 } 1239 1240 // The actual operation. 1241 switch (Op) { 1242 case BO_Add: 1243 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1244 return false; 1245 1246 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1247 return false; 1248 if (ResultElemT == PT_Float) { 1249 if (!this->emitAddf(getFPOptions(E), E)) 1250 return false; 1251 } else { 1252 if (!this->emitAdd(ResultElemT, E)) 1253 return false; 1254 } 1255 break; 1256 case BO_Sub: 1257 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1258 return false; 1259 1260 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1261 return false; 1262 if (ResultElemT == PT_Float) { 1263 if (!this->emitSubf(getFPOptions(E), E)) 1264 return false; 1265 } else { 1266 if (!this->emitSub(ResultElemT, E)) 1267 return false; 1268 } 1269 break; 1270 case BO_Mul: 1271 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1272 return false; 1273 1274 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1275 return false; 1276 1277 if (ResultElemT == PT_Float) { 1278 if (!this->emitMulf(getFPOptions(E), E)) 1279 return false; 1280 } else { 1281 if (!this->emitMul(ResultElemT, E)) 1282 return false; 1283 } 1284 break; 1285 case BO_Div: 1286 assert(!RHSIsComplex); 1287 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1288 return false; 1289 1290 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1291 return false; 1292 1293 if (ResultElemT == PT_Float) { 1294 if (!this->emitDivf(getFPOptions(E), E)) 1295 return false; 1296 } else { 1297 if (!this->emitDiv(ResultElemT, E)) 1298 return false; 1299 } 1300 break; 1301 1302 default: 1303 return false; 1304 } 1305 1306 if (!this->DiscardResult) { 1307 // Initialize array element with the value we just computed. 1308 if (!this->emitInitElemPop(ResultElemT, ElemIndex, E)) 1309 return false; 1310 } else { 1311 if (!this->emitPop(ResultElemT, E)) 1312 return false; 1313 } 1314 } 1315 return true; 1316 } 1317 1318 template <class Emitter> 1319 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) { 1320 assert(!E->isCommaOp() && 1321 "Comma op should be handled in VisitBinaryOperator"); 1322 assert(E->getType()->isVectorType()); 1323 assert(E->getLHS()->getType()->isVectorType()); 1324 assert(E->getRHS()->getType()->isVectorType()); 1325 1326 // Prepare storage for result. 1327 if (!Initializing && !E->isCompoundAssignmentOp()) { 1328 unsigned LocalIndex = allocateTemporary(E); 1329 if (!this->emitGetPtrLocal(LocalIndex, E)) 1330 return false; 1331 } 1332 1333 const Expr *LHS = E->getLHS(); 1334 const Expr *RHS = E->getRHS(); 1335 const auto *VecTy = E->getType()->getAs<VectorType>(); 1336 auto Op = E->isCompoundAssignmentOp() 1337 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode()) 1338 : E->getOpcode(); 1339 1340 PrimType ElemT = this->classifyVectorElementType(LHS->getType()); 1341 PrimType RHSElemT = this->classifyVectorElementType(RHS->getType()); 1342 PrimType ResultElemT = this->classifyVectorElementType(E->getType()); 1343 1344 // Evaluate LHS and save value to LHSOffset. 1345 unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1346 if (!this->visit(LHS)) 1347 return false; 1348 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1349 return false; 1350 1351 // Evaluate RHS and save value to RHSOffset. 1352 unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1353 if (!this->visit(RHS)) 1354 return false; 1355 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1356 return false; 1357 1358 if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E)) 1359 return false; 1360 1361 // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the 1362 // integer promotion. 1363 bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp()); 1364 QualType PromotTy = 1365 Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy); 1366 PrimType PromotT = classifyPrim(PromotTy); 1367 PrimType OpT = NeedIntPromot ? PromotT : ElemT; 1368 1369 auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) { 1370 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1371 return false; 1372 if (!this->emitArrayElemPop(ElemT, Index, E)) 1373 return false; 1374 if (E->isLogicalOp()) { 1375 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 1376 return false; 1377 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1378 return false; 1379 } else if (NeedIntPromot) { 1380 if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E)) 1381 return false; 1382 } 1383 return true; 1384 }; 1385 1386 #define EMIT_ARITH_OP(OP) \ 1387 { \ 1388 if (ElemT == PT_Float) { \ 1389 if (!this->emit##OP##f(getFPOptions(E), E)) \ 1390 return false; \ 1391 } else { \ 1392 if (!this->emit##OP(ElemT, E)) \ 1393 return false; \ 1394 } \ 1395 break; \ 1396 } 1397 1398 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 1399 if (!getElem(LHSOffset, ElemT, I)) 1400 return false; 1401 if (!getElem(RHSOffset, RHSElemT, I)) 1402 return false; 1403 switch (Op) { 1404 case BO_Add: 1405 EMIT_ARITH_OP(Add) 1406 case BO_Sub: 1407 EMIT_ARITH_OP(Sub) 1408 case BO_Mul: 1409 EMIT_ARITH_OP(Mul) 1410 case BO_Div: 1411 EMIT_ARITH_OP(Div) 1412 case BO_Rem: 1413 if (!this->emitRem(ElemT, E)) 1414 return false; 1415 break; 1416 case BO_And: 1417 if (!this->emitBitAnd(OpT, E)) 1418 return false; 1419 break; 1420 case BO_Or: 1421 if (!this->emitBitOr(OpT, E)) 1422 return false; 1423 break; 1424 case BO_Xor: 1425 if (!this->emitBitXor(OpT, E)) 1426 return false; 1427 break; 1428 case BO_Shl: 1429 if (!this->emitShl(OpT, RHSElemT, E)) 1430 return false; 1431 break; 1432 case BO_Shr: 1433 if (!this->emitShr(OpT, RHSElemT, E)) 1434 return false; 1435 break; 1436 case BO_EQ: 1437 if (!this->emitEQ(ElemT, E)) 1438 return false; 1439 break; 1440 case BO_NE: 1441 if (!this->emitNE(ElemT, E)) 1442 return false; 1443 break; 1444 case BO_LE: 1445 if (!this->emitLE(ElemT, E)) 1446 return false; 1447 break; 1448 case BO_LT: 1449 if (!this->emitLT(ElemT, E)) 1450 return false; 1451 break; 1452 case BO_GE: 1453 if (!this->emitGE(ElemT, E)) 1454 return false; 1455 break; 1456 case BO_GT: 1457 if (!this->emitGT(ElemT, E)) 1458 return false; 1459 break; 1460 case BO_LAnd: 1461 // a && b is equivalent to a!=0 & b!=0 1462 if (!this->emitBitAnd(ResultElemT, E)) 1463 return false; 1464 break; 1465 case BO_LOr: 1466 // a || b is equivalent to a!=0 | b!=0 1467 if (!this->emitBitOr(ResultElemT, E)) 1468 return false; 1469 break; 1470 default: 1471 return this->emitInvalid(E); 1472 } 1473 1474 // The result of the comparison is a vector of the same width and number 1475 // of elements as the comparison operands with a signed integral element 1476 // type. 1477 // 1478 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 1479 if (E->isComparisonOp()) { 1480 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1481 return false; 1482 if (!this->emitNeg(ResultElemT, E)) 1483 return false; 1484 } 1485 1486 // If we performed an integer promotion, we need to cast the compute result 1487 // into result vector element type. 1488 if (NeedIntPromot && 1489 !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E)) 1490 return false; 1491 1492 // Initialize array element with the value we just computed. 1493 if (!this->emitInitElem(ResultElemT, I, E)) 1494 return false; 1495 } 1496 1497 if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E)) 1498 return false; 1499 return true; 1500 } 1501 1502 template <class Emitter> 1503 bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) { 1504 const Expr *LHS = E->getLHS(); 1505 const Expr *RHS = E->getRHS(); 1506 1507 assert(LHS->getType()->isFixedPointType() || 1508 RHS->getType()->isFixedPointType()); 1509 1510 auto LHSSema = Ctx.getASTContext().getFixedPointSemantics(LHS->getType()); 1511 auto RHSSema = Ctx.getASTContext().getFixedPointSemantics(RHS->getType()); 1512 1513 if (!this->visit(LHS)) 1514 return false; 1515 if (!LHS->getType()->isFixedPointType()) { 1516 uint32_t I; 1517 std::memcpy(&I, &LHSSema, sizeof(llvm::FixedPointSemantics)); 1518 if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()), I, E)) 1519 return false; 1520 } 1521 1522 if (!this->visit(RHS)) 1523 return false; 1524 if (!RHS->getType()->isFixedPointType()) { 1525 uint32_t I; 1526 std::memcpy(&I, &RHSSema, sizeof(llvm::FixedPointSemantics)); 1527 if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()), I, E)) 1528 return false; 1529 } 1530 1531 // Convert the result to the target semantics. 1532 auto ConvertResult = [&](bool R) -> bool { 1533 if (!R) 1534 return false; 1535 auto ResultSema = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 1536 auto CommonSema = LHSSema.getCommonSemantics(RHSSema); 1537 if (ResultSema != CommonSema) { 1538 uint32_t I; 1539 std::memcpy(&I, &ResultSema, sizeof(ResultSema)); 1540 return this->emitCastFixedPoint(I, E); 1541 } 1542 return true; 1543 }; 1544 1545 switch (E->getOpcode()) { 1546 case BO_EQ: 1547 return this->emitEQFixedPoint(E); 1548 case BO_NE: 1549 return this->emitNEFixedPoint(E); 1550 case BO_LT: 1551 return this->emitLTFixedPoint(E); 1552 case BO_LE: 1553 return this->emitLEFixedPoint(E); 1554 case BO_GT: 1555 return this->emitGTFixedPoint(E); 1556 case BO_GE: 1557 return this->emitGEFixedPoint(E); 1558 case BO_Add: 1559 return ConvertResult(this->emitAddFixedPoint(E)); 1560 case BO_Sub: 1561 return ConvertResult(this->emitSubFixedPoint(E)); 1562 case BO_Mul: 1563 return ConvertResult(this->emitMulFixedPoint(E)); 1564 case BO_Div: 1565 return ConvertResult(this->emitDivFixedPoint(E)); 1566 case BO_Shl: 1567 return ConvertResult(this->emitShiftFixedPoint(/*Left=*/true, E)); 1568 case BO_Shr: 1569 return ConvertResult(this->emitShiftFixedPoint(/*Left=*/false, E)); 1570 1571 default: 1572 return this->emitInvalid(E); 1573 } 1574 1575 llvm_unreachable("unhandled binop opcode"); 1576 } 1577 1578 template <class Emitter> 1579 bool Compiler<Emitter>::VisitFixedPointUnaryOperator(const UnaryOperator *E) { 1580 const Expr *SubExpr = E->getSubExpr(); 1581 assert(SubExpr->getType()->isFixedPointType()); 1582 1583 switch (E->getOpcode()) { 1584 case UO_Plus: 1585 return this->delegate(SubExpr); 1586 case UO_Minus: 1587 if (!this->visit(SubExpr)) 1588 return false; 1589 return this->emitNegFixedPoint(E); 1590 default: 1591 return false; 1592 } 1593 1594 llvm_unreachable("Unhandled unary opcode"); 1595 } 1596 1597 template <class Emitter> 1598 bool Compiler<Emitter>::VisitImplicitValueInitExpr( 1599 const ImplicitValueInitExpr *E) { 1600 QualType QT = E->getType(); 1601 1602 if (std::optional<PrimType> T = classify(QT)) 1603 return this->visitZeroInitializer(*T, QT, E); 1604 1605 if (QT->isRecordType()) { 1606 const RecordDecl *RD = QT->getAsRecordDecl(); 1607 assert(RD); 1608 if (RD->isInvalidDecl()) 1609 return false; 1610 1611 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1612 CXXRD && CXXRD->getNumVBases() > 0) { 1613 // TODO: Diagnose. 1614 return false; 1615 } 1616 1617 const Record *R = getRecord(QT); 1618 if (!R) 1619 return false; 1620 1621 assert(Initializing); 1622 return this->visitZeroRecordInitializer(R, E); 1623 } 1624 1625 if (QT->isIncompleteArrayType()) 1626 return true; 1627 1628 if (QT->isArrayType()) { 1629 const ArrayType *AT = QT->getAsArrayTypeUnsafe(); 1630 assert(AT); 1631 const auto *CAT = cast<ConstantArrayType>(AT); 1632 size_t NumElems = CAT->getZExtSize(); 1633 PrimType ElemT = classifyPrim(CAT->getElementType()); 1634 1635 for (size_t I = 0; I != NumElems; ++I) { 1636 if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E)) 1637 return false; 1638 if (!this->emitInitElem(ElemT, I, E)) 1639 return false; 1640 } 1641 1642 return true; 1643 } 1644 1645 if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) { 1646 assert(Initializing); 1647 QualType ElemQT = ComplexTy->getElementType(); 1648 PrimType ElemT = classifyPrim(ElemQT); 1649 for (unsigned I = 0; I < 2; ++I) { 1650 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1651 return false; 1652 if (!this->emitInitElem(ElemT, I, E)) 1653 return false; 1654 } 1655 return true; 1656 } 1657 1658 if (const auto *VecT = E->getType()->getAs<VectorType>()) { 1659 unsigned NumVecElements = VecT->getNumElements(); 1660 QualType ElemQT = VecT->getElementType(); 1661 PrimType ElemT = classifyPrim(ElemQT); 1662 1663 for (unsigned I = 0; I < NumVecElements; ++I) { 1664 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1665 return false; 1666 if (!this->emitInitElem(ElemT, I, E)) 1667 return false; 1668 } 1669 return true; 1670 } 1671 1672 return false; 1673 } 1674 1675 template <class Emitter> 1676 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1677 const Expr *LHS = E->getLHS(); 1678 const Expr *RHS = E->getRHS(); 1679 const Expr *Index = E->getIdx(); 1680 1681 if (DiscardResult) 1682 return this->discard(LHS) && this->discard(RHS); 1683 1684 // C++17's rules require us to evaluate the LHS first, regardless of which 1685 // side is the base. 1686 bool Success = true; 1687 for (const Expr *SubExpr : {LHS, RHS}) { 1688 if (!this->visit(SubExpr)) 1689 Success = false; 1690 } 1691 1692 if (!Success) 1693 return false; 1694 1695 PrimType IndexT = classifyPrim(Index->getType()); 1696 // If the index is first, we need to change that. 1697 if (LHS == Index) { 1698 if (!this->emitFlip(PT_Ptr, IndexT, E)) 1699 return false; 1700 } 1701 1702 return this->emitArrayElemPtrPop(IndexT, E); 1703 } 1704 1705 template <class Emitter> 1706 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits, 1707 const Expr *ArrayFiller, const Expr *E) { 1708 QualType QT = E->getType(); 1709 if (const auto *AT = QT->getAs<AtomicType>()) 1710 QT = AT->getValueType(); 1711 1712 if (QT->isVoidType()) { 1713 if (Inits.size() == 0) 1714 return true; 1715 return this->emitInvalid(E); 1716 } 1717 1718 // Handle discarding first. 1719 if (DiscardResult) { 1720 for (const Expr *Init : Inits) { 1721 if (!this->discard(Init)) 1722 return false; 1723 } 1724 return true; 1725 } 1726 1727 // Primitive values. 1728 if (std::optional<PrimType> T = classify(QT)) { 1729 assert(!DiscardResult); 1730 if (Inits.size() == 0) 1731 return this->visitZeroInitializer(*T, QT, E); 1732 assert(Inits.size() == 1); 1733 return this->delegate(Inits[0]); 1734 } 1735 1736 if (QT->isRecordType()) { 1737 const Record *R = getRecord(QT); 1738 1739 if (Inits.size() == 1 && E->getType() == Inits[0]->getType()) 1740 return this->delegate(Inits[0]); 1741 1742 auto initPrimitiveField = [=](const Record::Field *FieldToInit, 1743 const Expr *Init, PrimType T) -> bool { 1744 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1745 if (!this->visit(Init)) 1746 return false; 1747 1748 if (FieldToInit->isBitField()) 1749 return this->emitInitBitField(T, FieldToInit, E); 1750 return this->emitInitField(T, FieldToInit->Offset, E); 1751 }; 1752 1753 auto initCompositeField = [=](const Record::Field *FieldToInit, 1754 const Expr *Init) -> bool { 1755 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1756 InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset)); 1757 // Non-primitive case. Get a pointer to the field-to-initialize 1758 // on the stack and recurse into visitInitializer(). 1759 if (!this->emitGetPtrField(FieldToInit->Offset, Init)) 1760 return false; 1761 if (!this->visitInitializer(Init)) 1762 return false; 1763 return this->emitPopPtr(E); 1764 }; 1765 1766 if (R->isUnion()) { 1767 if (Inits.size() == 0) { 1768 if (!this->visitZeroRecordInitializer(R, E)) 1769 return false; 1770 } else { 1771 const Expr *Init = Inits[0]; 1772 const FieldDecl *FToInit = nullptr; 1773 if (const auto *ILE = dyn_cast<InitListExpr>(E)) 1774 FToInit = ILE->getInitializedFieldInUnion(); 1775 else 1776 FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion(); 1777 1778 const Record::Field *FieldToInit = R->getField(FToInit); 1779 if (std::optional<PrimType> T = classify(Init)) { 1780 if (!initPrimitiveField(FieldToInit, Init, *T)) 1781 return false; 1782 } else { 1783 if (!initCompositeField(FieldToInit, Init)) 1784 return false; 1785 } 1786 } 1787 return this->emitFinishInit(E); 1788 } 1789 1790 assert(!R->isUnion()); 1791 unsigned InitIndex = 0; 1792 for (const Expr *Init : Inits) { 1793 // Skip unnamed bitfields. 1794 while (InitIndex < R->getNumFields() && 1795 R->getField(InitIndex)->Decl->isUnnamedBitField()) 1796 ++InitIndex; 1797 1798 if (std::optional<PrimType> T = classify(Init)) { 1799 const Record::Field *FieldToInit = R->getField(InitIndex); 1800 if (!initPrimitiveField(FieldToInit, Init, *T)) 1801 return false; 1802 ++InitIndex; 1803 } else { 1804 // Initializer for a direct base class. 1805 if (const Record::Base *B = R->getBase(Init->getType())) { 1806 if (!this->emitGetPtrBase(B->Offset, Init)) 1807 return false; 1808 1809 if (!this->visitInitializer(Init)) 1810 return false; 1811 1812 if (!this->emitFinishInitPop(E)) 1813 return false; 1814 // Base initializers don't increase InitIndex, since they don't count 1815 // into the Record's fields. 1816 } else { 1817 const Record::Field *FieldToInit = R->getField(InitIndex); 1818 if (!initCompositeField(FieldToInit, Init)) 1819 return false; 1820 ++InitIndex; 1821 } 1822 } 1823 } 1824 return this->emitFinishInit(E); 1825 } 1826 1827 if (QT->isArrayType()) { 1828 if (Inits.size() == 1 && QT == Inits[0]->getType()) 1829 return this->delegate(Inits[0]); 1830 1831 unsigned ElementIndex = 0; 1832 for (const Expr *Init : Inits) { 1833 if (const auto *EmbedS = 1834 dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 1835 PrimType TargetT = classifyPrim(Init->getType()); 1836 1837 auto Eval = [&](const Expr *Init, unsigned ElemIndex) { 1838 PrimType InitT = classifyPrim(Init->getType()); 1839 if (!this->visit(Init)) 1840 return false; 1841 if (InitT != TargetT) { 1842 if (!this->emitCast(InitT, TargetT, E)) 1843 return false; 1844 } 1845 return this->emitInitElem(TargetT, ElemIndex, Init); 1846 }; 1847 if (!EmbedS->doForEachDataElement(Eval, ElementIndex)) 1848 return false; 1849 } else { 1850 if (!this->visitArrayElemInit(ElementIndex, Init)) 1851 return false; 1852 ++ElementIndex; 1853 } 1854 } 1855 1856 // Expand the filler expression. 1857 // FIXME: This should go away. 1858 if (ArrayFiller) { 1859 const ConstantArrayType *CAT = 1860 Ctx.getASTContext().getAsConstantArrayType(QT); 1861 uint64_t NumElems = CAT->getZExtSize(); 1862 1863 for (; ElementIndex != NumElems; ++ElementIndex) { 1864 if (!this->visitArrayElemInit(ElementIndex, ArrayFiller)) 1865 return false; 1866 } 1867 } 1868 1869 return this->emitFinishInit(E); 1870 } 1871 1872 if (const auto *ComplexTy = QT->getAs<ComplexType>()) { 1873 unsigned NumInits = Inits.size(); 1874 1875 if (NumInits == 1) 1876 return this->delegate(Inits[0]); 1877 1878 QualType ElemQT = ComplexTy->getElementType(); 1879 PrimType ElemT = classifyPrim(ElemQT); 1880 if (NumInits == 0) { 1881 // Zero-initialize both elements. 1882 for (unsigned I = 0; I < 2; ++I) { 1883 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1884 return false; 1885 if (!this->emitInitElem(ElemT, I, E)) 1886 return false; 1887 } 1888 } else if (NumInits == 2) { 1889 unsigned InitIndex = 0; 1890 for (const Expr *Init : Inits) { 1891 if (!this->visit(Init)) 1892 return false; 1893 1894 if (!this->emitInitElem(ElemT, InitIndex, E)) 1895 return false; 1896 ++InitIndex; 1897 } 1898 } 1899 return true; 1900 } 1901 1902 if (const auto *VecT = QT->getAs<VectorType>()) { 1903 unsigned NumVecElements = VecT->getNumElements(); 1904 assert(NumVecElements >= Inits.size()); 1905 1906 QualType ElemQT = VecT->getElementType(); 1907 PrimType ElemT = classifyPrim(ElemQT); 1908 1909 // All initializer elements. 1910 unsigned InitIndex = 0; 1911 for (const Expr *Init : Inits) { 1912 if (!this->visit(Init)) 1913 return false; 1914 1915 // If the initializer is of vector type itself, we have to deconstruct 1916 // that and initialize all the target fields from the initializer fields. 1917 if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) { 1918 if (!this->emitCopyArray(ElemT, 0, InitIndex, 1919 InitVecT->getNumElements(), E)) 1920 return false; 1921 InitIndex += InitVecT->getNumElements(); 1922 } else { 1923 if (!this->emitInitElem(ElemT, InitIndex, E)) 1924 return false; 1925 ++InitIndex; 1926 } 1927 } 1928 1929 assert(InitIndex <= NumVecElements); 1930 1931 // Fill the rest with zeroes. 1932 for (; InitIndex != NumVecElements; ++InitIndex) { 1933 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1934 return false; 1935 if (!this->emitInitElem(ElemT, InitIndex, E)) 1936 return false; 1937 } 1938 return true; 1939 } 1940 1941 return false; 1942 } 1943 1944 /// Pointer to the array(not the element!) must be on the stack when calling 1945 /// this. 1946 template <class Emitter> 1947 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex, 1948 const Expr *Init) { 1949 if (std::optional<PrimType> T = classify(Init->getType())) { 1950 // Visit the primitive element like normal. 1951 if (!this->visit(Init)) 1952 return false; 1953 return this->emitInitElem(*T, ElemIndex, Init); 1954 } 1955 1956 InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex)); 1957 // Advance the pointer currently on the stack to the given 1958 // dimension. 1959 if (!this->emitConstUint32(ElemIndex, Init)) 1960 return false; 1961 if (!this->emitArrayElemPtrUint32(Init)) 1962 return false; 1963 if (!this->visitInitializer(Init)) 1964 return false; 1965 return this->emitFinishInitPop(Init); 1966 } 1967 1968 template <class Emitter> 1969 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) { 1970 return this->visitInitList(E->inits(), E->getArrayFiller(), E); 1971 } 1972 1973 template <class Emitter> 1974 bool Compiler<Emitter>::VisitCXXParenListInitExpr( 1975 const CXXParenListInitExpr *E) { 1976 return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E); 1977 } 1978 1979 template <class Emitter> 1980 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr( 1981 const SubstNonTypeTemplateParmExpr *E) { 1982 return this->delegate(E->getReplacement()); 1983 } 1984 1985 template <class Emitter> 1986 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) { 1987 std::optional<PrimType> T = classify(E->getType()); 1988 if (T && E->hasAPValueResult()) { 1989 // Try to emit the APValue directly, without visiting the subexpr. 1990 // This will only fail if we can't emit the APValue, so won't emit any 1991 // diagnostics or any double values. 1992 if (DiscardResult) 1993 return true; 1994 1995 if (this->visitAPValue(E->getAPValueResult(), *T, E)) 1996 return true; 1997 } 1998 return this->delegate(E->getSubExpr()); 1999 } 2000 2001 template <class Emitter> 2002 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) { 2003 auto It = E->begin(); 2004 return this->visit(*It); 2005 } 2006 2007 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx, 2008 UnaryExprOrTypeTrait Kind) { 2009 bool AlignOfReturnsPreferred = 2010 ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 2011 2012 // C++ [expr.alignof]p3: 2013 // When alignof is applied to a reference type, the result is the 2014 // alignment of the referenced type. 2015 if (const auto *Ref = T->getAs<ReferenceType>()) 2016 T = Ref->getPointeeType(); 2017 2018 if (T.getQualifiers().hasUnaligned()) 2019 return CharUnits::One(); 2020 2021 // __alignof is defined to return the preferred alignment. 2022 // Before 8, clang returned the preferred alignment for alignof and 2023 // _Alignof as well. 2024 if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 2025 return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T)); 2026 2027 return ASTCtx.getTypeAlignInChars(T); 2028 } 2029 2030 template <class Emitter> 2031 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr( 2032 const UnaryExprOrTypeTraitExpr *E) { 2033 UnaryExprOrTypeTrait Kind = E->getKind(); 2034 const ASTContext &ASTCtx = Ctx.getASTContext(); 2035 2036 if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) { 2037 QualType ArgType = E->getTypeOfArgument(); 2038 2039 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 2040 // the result is the size of the referenced type." 2041 if (const auto *Ref = ArgType->getAs<ReferenceType>()) 2042 ArgType = Ref->getPointeeType(); 2043 2044 CharUnits Size; 2045 if (ArgType->isVoidType() || ArgType->isFunctionType()) 2046 Size = CharUnits::One(); 2047 else { 2048 if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) 2049 return false; 2050 2051 if (Kind == UETT_SizeOf) 2052 Size = ASTCtx.getTypeSizeInChars(ArgType); 2053 else 2054 Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width; 2055 } 2056 2057 if (DiscardResult) 2058 return true; 2059 2060 return this->emitConst(Size.getQuantity(), E); 2061 } 2062 2063 if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) { 2064 CharUnits Size; 2065 2066 if (E->isArgumentType()) { 2067 QualType ArgType = E->getTypeOfArgument(); 2068 2069 Size = AlignOfType(ArgType, ASTCtx, Kind); 2070 } else { 2071 // Argument is an expression, not a type. 2072 const Expr *Arg = E->getArgumentExpr()->IgnoreParens(); 2073 2074 // The kinds of expressions that we have special-case logic here for 2075 // should be kept up to date with the special checks for those 2076 // expressions in Sema. 2077 2078 // alignof decl is always accepted, even if it doesn't make sense: we 2079 // default to 1 in those cases. 2080 if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg)) 2081 Size = ASTCtx.getDeclAlign(DRE->getDecl(), 2082 /*RefAsPointee*/ true); 2083 else if (const auto *ME = dyn_cast<MemberExpr>(Arg)) 2084 Size = ASTCtx.getDeclAlign(ME->getMemberDecl(), 2085 /*RefAsPointee*/ true); 2086 else 2087 Size = AlignOfType(Arg->getType(), ASTCtx, Kind); 2088 } 2089 2090 if (DiscardResult) 2091 return true; 2092 2093 return this->emitConst(Size.getQuantity(), E); 2094 } 2095 2096 if (Kind == UETT_VectorElements) { 2097 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) 2098 return this->emitConst(VT->getNumElements(), E); 2099 assert(E->getTypeOfArgument()->isSizelessVectorType()); 2100 return this->emitSizelessVectorElementSize(E); 2101 } 2102 2103 if (Kind == UETT_VecStep) { 2104 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) { 2105 unsigned N = VT->getNumElements(); 2106 2107 // The vec_step built-in functions that take a 3-component 2108 // vector return 4. (OpenCL 1.1 spec 6.11.12) 2109 if (N == 3) 2110 N = 4; 2111 2112 return this->emitConst(N, E); 2113 } 2114 return this->emitConst(1, E); 2115 } 2116 2117 return false; 2118 } 2119 2120 template <class Emitter> 2121 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) { 2122 // 'Base.Member' 2123 const Expr *Base = E->getBase(); 2124 const ValueDecl *Member = E->getMemberDecl(); 2125 2126 if (DiscardResult) 2127 return this->discard(Base); 2128 2129 // MemberExprs are almost always lvalues, in which case we don't need to 2130 // do the load. But sometimes they aren't. 2131 const auto maybeLoadValue = [&]() -> bool { 2132 if (E->isGLValue()) 2133 return true; 2134 if (std::optional<PrimType> T = classify(E)) 2135 return this->emitLoadPop(*T, E); 2136 return false; 2137 }; 2138 2139 if (const auto *VD = dyn_cast<VarDecl>(Member)) { 2140 // I am almost confident in saying that a var decl must be static 2141 // and therefore registered as a global variable. But this will probably 2142 // turn out to be wrong some time in the future, as always. 2143 if (auto GlobalIndex = P.getGlobal(VD)) 2144 return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue(); 2145 return false; 2146 } 2147 2148 if (!isa<FieldDecl>(Member)) { 2149 if (!this->discard(Base) && !this->emitSideEffect(E)) 2150 return false; 2151 2152 return this->visitDeclRef(Member, E); 2153 } 2154 2155 if (Initializing) { 2156 if (!this->delegate(Base)) 2157 return false; 2158 } else { 2159 if (!this->visit(Base)) 2160 return false; 2161 } 2162 2163 // Base above gives us a pointer on the stack. 2164 const auto *FD = cast<FieldDecl>(Member); 2165 const RecordDecl *RD = FD->getParent(); 2166 const Record *R = getRecord(RD); 2167 if (!R) 2168 return false; 2169 const Record::Field *F = R->getField(FD); 2170 // Leave a pointer to the field on the stack. 2171 if (F->Decl->getType()->isReferenceType()) 2172 return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue(); 2173 return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue(); 2174 } 2175 2176 template <class Emitter> 2177 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 2178 // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated 2179 // stand-alone, e.g. via EvaluateAsInt(). 2180 if (!ArrayIndex) 2181 return false; 2182 return this->emitConst(*ArrayIndex, E); 2183 } 2184 2185 template <class Emitter> 2186 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 2187 assert(Initializing); 2188 assert(!DiscardResult); 2189 2190 // We visit the common opaque expression here once so we have its value 2191 // cached. 2192 if (!this->discard(E->getCommonExpr())) 2193 return false; 2194 2195 // TODO: This compiles to quite a lot of bytecode if the array is larger. 2196 // Investigate compiling this to a loop. 2197 const Expr *SubExpr = E->getSubExpr(); 2198 size_t Size = E->getArraySize().getZExtValue(); 2199 2200 // So, every iteration, we execute an assignment here 2201 // where the LHS is on the stack (the target array) 2202 // and the RHS is our SubExpr. 2203 for (size_t I = 0; I != Size; ++I) { 2204 ArrayIndexScope<Emitter> IndexScope(this, I); 2205 BlockScope<Emitter> BS(this); 2206 2207 if (!this->visitArrayElemInit(I, SubExpr)) 2208 return false; 2209 if (!BS.destroyLocals()) 2210 return false; 2211 } 2212 return true; 2213 } 2214 2215 template <class Emitter> 2216 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 2217 const Expr *SourceExpr = E->getSourceExpr(); 2218 if (!SourceExpr) 2219 return false; 2220 2221 if (Initializing) 2222 return this->visitInitializer(SourceExpr); 2223 2224 PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr); 2225 if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end()) 2226 return this->emitGetLocal(SubExprT, It->second, E); 2227 2228 if (!this->visit(SourceExpr)) 2229 return false; 2230 2231 // At this point we either have the evaluated source expression or a pointer 2232 // to an object on the stack. We want to create a local variable that stores 2233 // this value. 2234 unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true); 2235 if (!this->emitSetLocal(SubExprT, LocalIndex, E)) 2236 return false; 2237 2238 // Here the local variable is created but the value is removed from the stack, 2239 // so we put it back if the caller needs it. 2240 if (!DiscardResult) { 2241 if (!this->emitGetLocal(SubExprT, LocalIndex, E)) 2242 return false; 2243 } 2244 2245 // This is cleaned up when the local variable is destroyed. 2246 OpaqueExprs.insert({E, LocalIndex}); 2247 2248 return true; 2249 } 2250 2251 template <class Emitter> 2252 bool Compiler<Emitter>::VisitAbstractConditionalOperator( 2253 const AbstractConditionalOperator *E) { 2254 const Expr *Condition = E->getCond(); 2255 const Expr *TrueExpr = E->getTrueExpr(); 2256 const Expr *FalseExpr = E->getFalseExpr(); 2257 2258 LabelTy LabelEnd = this->getLabel(); // Label after the operator. 2259 LabelTy LabelFalse = this->getLabel(); // Label for the false expr. 2260 2261 if (!this->visitBool(Condition)) 2262 return false; 2263 2264 if (!this->jumpFalse(LabelFalse)) 2265 return false; 2266 2267 { 2268 LocalScope<Emitter> S(this); 2269 if (!this->delegate(TrueExpr)) 2270 return false; 2271 if (!S.destroyLocals()) 2272 return false; 2273 } 2274 2275 if (!this->jump(LabelEnd)) 2276 return false; 2277 2278 this->emitLabel(LabelFalse); 2279 2280 { 2281 LocalScope<Emitter> S(this); 2282 if (!this->delegate(FalseExpr)) 2283 return false; 2284 if (!S.destroyLocals()) 2285 return false; 2286 } 2287 2288 this->fallthrough(LabelEnd); 2289 this->emitLabel(LabelEnd); 2290 2291 return true; 2292 } 2293 2294 template <class Emitter> 2295 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) { 2296 if (DiscardResult) 2297 return true; 2298 2299 if (!Initializing) { 2300 unsigned StringIndex = P.createGlobalString(E); 2301 return this->emitGetPtrGlobal(StringIndex, E); 2302 } 2303 2304 // We are initializing an array on the stack. 2305 const ConstantArrayType *CAT = 2306 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 2307 assert(CAT && "a string literal that's not a constant array?"); 2308 2309 // If the initializer string is too long, a diagnostic has already been 2310 // emitted. Read only the array length from the string literal. 2311 unsigned ArraySize = CAT->getZExtSize(); 2312 unsigned N = std::min(ArraySize, E->getLength()); 2313 size_t CharWidth = E->getCharByteWidth(); 2314 2315 for (unsigned I = 0; I != N; ++I) { 2316 uint32_t CodeUnit = E->getCodeUnit(I); 2317 2318 if (CharWidth == 1) { 2319 this->emitConstSint8(CodeUnit, E); 2320 this->emitInitElemSint8(I, E); 2321 } else if (CharWidth == 2) { 2322 this->emitConstUint16(CodeUnit, E); 2323 this->emitInitElemUint16(I, E); 2324 } else if (CharWidth == 4) { 2325 this->emitConstUint32(CodeUnit, E); 2326 this->emitInitElemUint32(I, E); 2327 } else { 2328 llvm_unreachable("unsupported character width"); 2329 } 2330 } 2331 2332 // Fill up the rest of the char array with NUL bytes. 2333 for (unsigned I = N; I != ArraySize; ++I) { 2334 if (CharWidth == 1) { 2335 this->emitConstSint8(0, E); 2336 this->emitInitElemSint8(I, E); 2337 } else if (CharWidth == 2) { 2338 this->emitConstUint16(0, E); 2339 this->emitInitElemUint16(I, E); 2340 } else if (CharWidth == 4) { 2341 this->emitConstUint32(0, E); 2342 this->emitInitElemUint32(I, E); 2343 } else { 2344 llvm_unreachable("unsupported character width"); 2345 } 2346 } 2347 2348 return true; 2349 } 2350 2351 template <class Emitter> 2352 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 2353 if (std::optional<unsigned> I = P.getOrCreateDummy(E)) 2354 return this->emitGetPtrGlobal(*I, E); 2355 return false; 2356 } 2357 2358 template <class Emitter> 2359 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 2360 auto &A = Ctx.getASTContext(); 2361 std::string Str; 2362 A.getObjCEncodingForType(E->getEncodedType(), Str); 2363 StringLiteral *SL = 2364 StringLiteral::Create(A, Str, StringLiteralKind::Ordinary, 2365 /*Pascal=*/false, E->getType(), E->getAtLoc()); 2366 return this->delegate(SL); 2367 } 2368 2369 template <class Emitter> 2370 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr( 2371 const SYCLUniqueStableNameExpr *E) { 2372 if (DiscardResult) 2373 return true; 2374 2375 assert(!Initializing); 2376 2377 auto &A = Ctx.getASTContext(); 2378 std::string ResultStr = E->ComputeName(A); 2379 2380 QualType CharTy = A.CharTy.withConst(); 2381 APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1); 2382 QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr, 2383 ArraySizeModifier::Normal, 0); 2384 2385 StringLiteral *SL = 2386 StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary, 2387 /*Pascal=*/false, ArrayTy, E->getLocation()); 2388 2389 unsigned StringIndex = P.createGlobalString(SL); 2390 return this->emitGetPtrGlobal(StringIndex, E); 2391 } 2392 2393 template <class Emitter> 2394 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) { 2395 if (DiscardResult) 2396 return true; 2397 return this->emitConst(E->getValue(), E); 2398 } 2399 2400 template <class Emitter> 2401 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator( 2402 const CompoundAssignOperator *E) { 2403 2404 const Expr *LHS = E->getLHS(); 2405 const Expr *RHS = E->getRHS(); 2406 QualType LHSType = LHS->getType(); 2407 QualType LHSComputationType = E->getComputationLHSType(); 2408 QualType ResultType = E->getComputationResultType(); 2409 std::optional<PrimType> LT = classify(LHSComputationType); 2410 std::optional<PrimType> RT = classify(ResultType); 2411 2412 assert(ResultType->isFloatingType()); 2413 2414 if (!LT || !RT) 2415 return false; 2416 2417 PrimType LHST = classifyPrim(LHSType); 2418 2419 // C++17 onwards require that we evaluate the RHS first. 2420 // Compute RHS and save it in a temporary variable so we can 2421 // load it again later. 2422 if (!visit(RHS)) 2423 return false; 2424 2425 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2426 if (!this->emitSetLocal(*RT, TempOffset, E)) 2427 return false; 2428 2429 // First, visit LHS. 2430 if (!visit(LHS)) 2431 return false; 2432 if (!this->emitLoad(LHST, E)) 2433 return false; 2434 2435 // If necessary, convert LHS to its computation type. 2436 if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType), 2437 LHSComputationType, E)) 2438 return false; 2439 2440 // Now load RHS. 2441 if (!this->emitGetLocal(*RT, TempOffset, E)) 2442 return false; 2443 2444 switch (E->getOpcode()) { 2445 case BO_AddAssign: 2446 if (!this->emitAddf(getFPOptions(E), E)) 2447 return false; 2448 break; 2449 case BO_SubAssign: 2450 if (!this->emitSubf(getFPOptions(E), E)) 2451 return false; 2452 break; 2453 case BO_MulAssign: 2454 if (!this->emitMulf(getFPOptions(E), E)) 2455 return false; 2456 break; 2457 case BO_DivAssign: 2458 if (!this->emitDivf(getFPOptions(E), E)) 2459 return false; 2460 break; 2461 default: 2462 return false; 2463 } 2464 2465 if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E)) 2466 return false; 2467 2468 if (DiscardResult) 2469 return this->emitStorePop(LHST, E); 2470 return this->emitStore(LHST, E); 2471 } 2472 2473 template <class Emitter> 2474 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator( 2475 const CompoundAssignOperator *E) { 2476 BinaryOperatorKind Op = E->getOpcode(); 2477 const Expr *LHS = E->getLHS(); 2478 const Expr *RHS = E->getRHS(); 2479 std::optional<PrimType> LT = classify(LHS->getType()); 2480 std::optional<PrimType> RT = classify(RHS->getType()); 2481 2482 if (Op != BO_AddAssign && Op != BO_SubAssign) 2483 return false; 2484 2485 if (!LT || !RT) 2486 return false; 2487 2488 if (!visit(LHS)) 2489 return false; 2490 2491 if (!this->emitLoad(*LT, LHS)) 2492 return false; 2493 2494 if (!visit(RHS)) 2495 return false; 2496 2497 if (Op == BO_AddAssign) { 2498 if (!this->emitAddOffset(*RT, E)) 2499 return false; 2500 } else { 2501 if (!this->emitSubOffset(*RT, E)) 2502 return false; 2503 } 2504 2505 if (DiscardResult) 2506 return this->emitStorePopPtr(E); 2507 return this->emitStorePtr(E); 2508 } 2509 2510 template <class Emitter> 2511 bool Compiler<Emitter>::VisitCompoundAssignOperator( 2512 const CompoundAssignOperator *E) { 2513 if (E->getType()->isVectorType()) 2514 return VisitVectorBinOp(E); 2515 2516 const Expr *LHS = E->getLHS(); 2517 const Expr *RHS = E->getRHS(); 2518 std::optional<PrimType> LHSComputationT = 2519 classify(E->getComputationLHSType()); 2520 std::optional<PrimType> LT = classify(LHS->getType()); 2521 std::optional<PrimType> RT = classify(RHS->getType()); 2522 std::optional<PrimType> ResultT = classify(E->getType()); 2523 2524 if (!Ctx.getLangOpts().CPlusPlus14) 2525 return this->visit(RHS) && this->visit(LHS) && this->emitError(E); 2526 2527 if (!LT || !RT || !ResultT || !LHSComputationT) 2528 return false; 2529 2530 // Handle floating point operations separately here, since they 2531 // require special care. 2532 2533 if (ResultT == PT_Float || RT == PT_Float) 2534 return VisitFloatCompoundAssignOperator(E); 2535 2536 if (E->getType()->isPointerType()) 2537 return VisitPointerCompoundAssignOperator(E); 2538 2539 assert(!E->getType()->isPointerType() && "Handled above"); 2540 assert(!E->getType()->isFloatingType() && "Handled above"); 2541 2542 // C++17 onwards require that we evaluate the RHS first. 2543 // Compute RHS and save it in a temporary variable so we can 2544 // load it again later. 2545 // FIXME: Compound assignments are unsequenced in C, so we might 2546 // have to figure out how to reject them. 2547 if (!visit(RHS)) 2548 return false; 2549 2550 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2551 2552 if (!this->emitSetLocal(*RT, TempOffset, E)) 2553 return false; 2554 2555 // Get LHS pointer, load its value and cast it to the 2556 // computation type if necessary. 2557 if (!visit(LHS)) 2558 return false; 2559 if (!this->emitLoad(*LT, E)) 2560 return false; 2561 if (LT != LHSComputationT) { 2562 if (!this->emitCast(*LT, *LHSComputationT, E)) 2563 return false; 2564 } 2565 2566 // Get the RHS value on the stack. 2567 if (!this->emitGetLocal(*RT, TempOffset, E)) 2568 return false; 2569 2570 // Perform operation. 2571 switch (E->getOpcode()) { 2572 case BO_AddAssign: 2573 if (!this->emitAdd(*LHSComputationT, E)) 2574 return false; 2575 break; 2576 case BO_SubAssign: 2577 if (!this->emitSub(*LHSComputationT, E)) 2578 return false; 2579 break; 2580 case BO_MulAssign: 2581 if (!this->emitMul(*LHSComputationT, E)) 2582 return false; 2583 break; 2584 case BO_DivAssign: 2585 if (!this->emitDiv(*LHSComputationT, E)) 2586 return false; 2587 break; 2588 case BO_RemAssign: 2589 if (!this->emitRem(*LHSComputationT, E)) 2590 return false; 2591 break; 2592 case BO_ShlAssign: 2593 if (!this->emitShl(*LHSComputationT, *RT, E)) 2594 return false; 2595 break; 2596 case BO_ShrAssign: 2597 if (!this->emitShr(*LHSComputationT, *RT, E)) 2598 return false; 2599 break; 2600 case BO_AndAssign: 2601 if (!this->emitBitAnd(*LHSComputationT, E)) 2602 return false; 2603 break; 2604 case BO_XorAssign: 2605 if (!this->emitBitXor(*LHSComputationT, E)) 2606 return false; 2607 break; 2608 case BO_OrAssign: 2609 if (!this->emitBitOr(*LHSComputationT, E)) 2610 return false; 2611 break; 2612 default: 2613 llvm_unreachable("Unimplemented compound assign operator"); 2614 } 2615 2616 // And now cast from LHSComputationT to ResultT. 2617 if (ResultT != LHSComputationT) { 2618 if (!this->emitCast(*LHSComputationT, *ResultT, E)) 2619 return false; 2620 } 2621 2622 // And store the result in LHS. 2623 if (DiscardResult) { 2624 if (LHS->refersToBitField()) 2625 return this->emitStoreBitFieldPop(*ResultT, E); 2626 return this->emitStorePop(*ResultT, E); 2627 } 2628 if (LHS->refersToBitField()) 2629 return this->emitStoreBitField(*ResultT, E); 2630 return this->emitStore(*ResultT, E); 2631 } 2632 2633 template <class Emitter> 2634 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) { 2635 LocalScope<Emitter> ES(this); 2636 const Expr *SubExpr = E->getSubExpr(); 2637 2638 return this->delegate(SubExpr) && ES.destroyLocals(E); 2639 } 2640 2641 template <class Emitter> 2642 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr( 2643 const MaterializeTemporaryExpr *E) { 2644 const Expr *SubExpr = E->getSubExpr(); 2645 2646 if (Initializing) { 2647 // We already have a value, just initialize that. 2648 return this->delegate(SubExpr); 2649 } 2650 // If we don't end up using the materialized temporary anyway, don't 2651 // bother creating it. 2652 if (DiscardResult) 2653 return this->discard(SubExpr); 2654 2655 // When we're initializing a global variable *or* the storage duration of 2656 // the temporary is explicitly static, create a global variable. 2657 std::optional<PrimType> SubExprT = classify(SubExpr); 2658 bool IsStatic = E->getStorageDuration() == SD_Static; 2659 if (IsStatic) { 2660 std::optional<unsigned> GlobalIndex = P.createGlobal(E); 2661 if (!GlobalIndex) 2662 return false; 2663 2664 const LifetimeExtendedTemporaryDecl *TempDecl = 2665 E->getLifetimeExtendedTemporaryDecl(); 2666 if (IsStatic) 2667 assert(TempDecl); 2668 2669 if (SubExprT) { 2670 if (!this->visit(SubExpr)) 2671 return false; 2672 if (IsStatic) { 2673 if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E)) 2674 return false; 2675 } else { 2676 if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E)) 2677 return false; 2678 } 2679 return this->emitGetPtrGlobal(*GlobalIndex, E); 2680 } 2681 2682 if (!this->checkLiteralType(SubExpr)) 2683 return false; 2684 // Non-primitive values. 2685 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2686 return false; 2687 if (!this->visitInitializer(SubExpr)) 2688 return false; 2689 if (IsStatic) 2690 return this->emitInitGlobalTempComp(TempDecl, E); 2691 return true; 2692 } 2693 2694 // For everyhing else, use local variables. 2695 if (SubExprT) { 2696 unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true, 2697 /*IsExtended=*/true); 2698 if (!this->visit(SubExpr)) 2699 return false; 2700 if (!this->emitSetLocal(*SubExprT, LocalIndex, E)) 2701 return false; 2702 return this->emitGetPtrLocal(LocalIndex, E); 2703 } else { 2704 2705 if (!this->checkLiteralType(SubExpr)) 2706 return false; 2707 2708 const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); 2709 if (std::optional<unsigned> LocalIndex = 2710 allocateLocal(Inner, E->getExtendingDecl())) { 2711 InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); 2712 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2713 return false; 2714 return this->visitInitializer(SubExpr); 2715 } 2716 } 2717 return false; 2718 } 2719 2720 template <class Emitter> 2721 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr( 2722 const CXXBindTemporaryExpr *E) { 2723 return this->delegate(E->getSubExpr()); 2724 } 2725 2726 template <class Emitter> 2727 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 2728 const Expr *Init = E->getInitializer(); 2729 if (DiscardResult) 2730 return this->discard(Init); 2731 2732 if (Initializing) { 2733 // We already have a value, just initialize that. 2734 return this->visitInitializer(Init) && this->emitFinishInit(E); 2735 } 2736 2737 std::optional<PrimType> T = classify(E->getType()); 2738 if (E->isFileScope()) { 2739 // Avoid creating a variable if this is a primitive RValue anyway. 2740 if (T && !E->isLValue()) 2741 return this->delegate(Init); 2742 2743 if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) { 2744 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2745 return false; 2746 2747 if (T) { 2748 if (!this->visit(Init)) 2749 return false; 2750 return this->emitInitGlobal(*T, *GlobalIndex, E); 2751 } 2752 2753 return this->visitInitializer(Init) && this->emitFinishInit(E); 2754 } 2755 2756 return false; 2757 } 2758 2759 // Otherwise, use a local variable. 2760 if (T && !E->isLValue()) { 2761 // For primitive types, we just visit the initializer. 2762 return this->delegate(Init); 2763 } else { 2764 unsigned LocalIndex; 2765 2766 if (T) 2767 LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false); 2768 else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init)) 2769 LocalIndex = *MaybeIndex; 2770 else 2771 return false; 2772 2773 if (!this->emitGetPtrLocal(LocalIndex, E)) 2774 return false; 2775 2776 if (T) { 2777 if (!this->visit(Init)) { 2778 return false; 2779 } 2780 return this->emitInit(*T, E); 2781 } else { 2782 if (!this->visitInitializer(Init) || !this->emitFinishInit(E)) 2783 return false; 2784 } 2785 return true; 2786 } 2787 2788 return false; 2789 } 2790 2791 template <class Emitter> 2792 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) { 2793 if (DiscardResult) 2794 return true; 2795 if (E->getType()->isBooleanType()) 2796 return this->emitConstBool(E->getValue(), E); 2797 return this->emitConst(E->getValue(), E); 2798 } 2799 2800 template <class Emitter> 2801 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 2802 if (DiscardResult) 2803 return true; 2804 return this->emitConst(E->getValue(), E); 2805 } 2806 2807 template <class Emitter> 2808 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) { 2809 if (DiscardResult) 2810 return true; 2811 2812 assert(Initializing); 2813 const Record *R = P.getOrCreateRecord(E->getLambdaClass()); 2814 2815 auto *CaptureInitIt = E->capture_init_begin(); 2816 // Initialize all fields (which represent lambda captures) of the 2817 // record with their initializers. 2818 for (const Record::Field &F : R->fields()) { 2819 const Expr *Init = *CaptureInitIt; 2820 ++CaptureInitIt; 2821 2822 if (!Init) 2823 continue; 2824 2825 if (std::optional<PrimType> T = classify(Init)) { 2826 if (!this->visit(Init)) 2827 return false; 2828 2829 if (!this->emitInitField(*T, F.Offset, E)) 2830 return false; 2831 } else { 2832 if (!this->emitGetPtrField(F.Offset, E)) 2833 return false; 2834 2835 if (!this->visitInitializer(Init)) 2836 return false; 2837 2838 if (!this->emitPopPtr(E)) 2839 return false; 2840 } 2841 } 2842 2843 return true; 2844 } 2845 2846 template <class Emitter> 2847 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) { 2848 if (DiscardResult) 2849 return true; 2850 2851 return this->delegate(E->getFunctionName()); 2852 } 2853 2854 template <class Emitter> 2855 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) { 2856 if (E->getSubExpr() && !this->discard(E->getSubExpr())) 2857 return false; 2858 2859 return this->emitInvalid(E); 2860 } 2861 2862 template <class Emitter> 2863 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr( 2864 const CXXReinterpretCastExpr *E) { 2865 const Expr *SubExpr = E->getSubExpr(); 2866 2867 std::optional<PrimType> FromT = classify(SubExpr); 2868 std::optional<PrimType> ToT = classify(E); 2869 2870 if (!FromT || !ToT) 2871 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E); 2872 2873 if (FromT == PT_Ptr || ToT == PT_Ptr) { 2874 // Both types could be PT_Ptr because their expressions are glvalues. 2875 std::optional<PrimType> PointeeFromT; 2876 if (SubExpr->getType()->isPointerOrReferenceType()) 2877 PointeeFromT = classify(SubExpr->getType()->getPointeeType()); 2878 else 2879 PointeeFromT = classify(SubExpr->getType()); 2880 2881 std::optional<PrimType> PointeeToT; 2882 if (E->getType()->isPointerOrReferenceType()) 2883 PointeeToT = classify(E->getType()->getPointeeType()); 2884 else 2885 PointeeToT = classify(E->getType()); 2886 2887 bool Fatal = true; 2888 if (PointeeToT && PointeeFromT) { 2889 if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT)) 2890 Fatal = false; 2891 } 2892 2893 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2894 return false; 2895 2896 if (E->getCastKind() == CK_LValueBitCast) 2897 return this->delegate(SubExpr); 2898 return this->VisitCastExpr(E); 2899 } 2900 2901 // Try to actually do the cast. 2902 bool Fatal = (ToT != FromT); 2903 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2904 return false; 2905 2906 return this->VisitCastExpr(E); 2907 } 2908 2909 template <class Emitter> 2910 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 2911 assert(E->getType()->isBooleanType()); 2912 2913 if (DiscardResult) 2914 return true; 2915 return this->emitConstBool(E->getValue(), E); 2916 } 2917 2918 template <class Emitter> 2919 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) { 2920 QualType T = E->getType(); 2921 assert(!classify(T)); 2922 2923 if (T->isRecordType()) { 2924 const CXXConstructorDecl *Ctor = E->getConstructor(); 2925 2926 // Trivial copy/move constructor. Avoid copy. 2927 if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() && 2928 Ctor->isTrivial() && 2929 E->getArg(0)->isTemporaryObject(Ctx.getASTContext(), 2930 T->getAsCXXRecordDecl())) 2931 return this->visitInitializer(E->getArg(0)); 2932 2933 // If we're discarding a construct expression, we still need 2934 // to allocate a variable and call the constructor and destructor. 2935 if (DiscardResult) { 2936 if (Ctor->isTrivial()) 2937 return true; 2938 assert(!Initializing); 2939 std::optional<unsigned> LocalIndex = allocateLocal(E); 2940 2941 if (!LocalIndex) 2942 return false; 2943 2944 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2945 return false; 2946 } 2947 2948 // Zero initialization. 2949 if (E->requiresZeroInitialization()) { 2950 const Record *R = getRecord(E->getType()); 2951 2952 if (!this->visitZeroRecordInitializer(R, E)) 2953 return false; 2954 2955 // If the constructor is trivial anyway, we're done. 2956 if (Ctor->isTrivial()) 2957 return true; 2958 } 2959 2960 const Function *Func = getFunction(Ctor); 2961 2962 if (!Func) 2963 return false; 2964 2965 assert(Func->hasThisPointer()); 2966 assert(!Func->hasRVO()); 2967 2968 // The This pointer is already on the stack because this is an initializer, 2969 // but we need to dup() so the call() below has its own copy. 2970 if (!this->emitDupPtr(E)) 2971 return false; 2972 2973 // Constructor arguments. 2974 for (const auto *Arg : E->arguments()) { 2975 if (!this->visit(Arg)) 2976 return false; 2977 } 2978 2979 if (Func->isVariadic()) { 2980 uint32_t VarArgSize = 0; 2981 unsigned NumParams = Func->getNumWrittenParams(); 2982 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) { 2983 VarArgSize += 2984 align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr))); 2985 } 2986 if (!this->emitCallVar(Func, VarArgSize, E)) 2987 return false; 2988 } else { 2989 if (!this->emitCall(Func, 0, E)) { 2990 // When discarding, we don't need the result anyway, so clean up 2991 // the instance dup we did earlier in case surrounding code wants 2992 // to keep evaluating. 2993 if (DiscardResult) 2994 (void)this->emitPopPtr(E); 2995 return false; 2996 } 2997 } 2998 2999 if (DiscardResult) 3000 return this->emitPopPtr(E); 3001 return this->emitFinishInit(E); 3002 } 3003 3004 if (T->isArrayType()) { 3005 const ConstantArrayType *CAT = 3006 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 3007 if (!CAT) 3008 return false; 3009 3010 size_t NumElems = CAT->getZExtSize(); 3011 const Function *Func = getFunction(E->getConstructor()); 3012 if (!Func || !Func->isConstexpr()) 3013 return false; 3014 3015 // FIXME(perf): We're calling the constructor once per array element here, 3016 // in the old intepreter we had a special-case for trivial constructors. 3017 for (size_t I = 0; I != NumElems; ++I) { 3018 if (!this->emitConstUint64(I, E)) 3019 return false; 3020 if (!this->emitArrayElemPtrUint64(E)) 3021 return false; 3022 3023 // Constructor arguments. 3024 for (const auto *Arg : E->arguments()) { 3025 if (!this->visit(Arg)) 3026 return false; 3027 } 3028 3029 if (!this->emitCall(Func, 0, E)) 3030 return false; 3031 } 3032 return true; 3033 } 3034 3035 return false; 3036 } 3037 3038 template <class Emitter> 3039 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) { 3040 if (DiscardResult) 3041 return true; 3042 3043 const APValue Val = 3044 E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr); 3045 3046 // Things like __builtin_LINE(). 3047 if (E->getType()->isIntegerType()) { 3048 assert(Val.isInt()); 3049 const APSInt &I = Val.getInt(); 3050 return this->emitConst(I, E); 3051 } 3052 // Otherwise, the APValue is an LValue, with only one element. 3053 // Theoretically, we don't need the APValue at all of course. 3054 assert(E->getType()->isPointerType()); 3055 assert(Val.isLValue()); 3056 const APValue::LValueBase &Base = Val.getLValueBase(); 3057 if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>()) 3058 return this->visit(LValueExpr); 3059 3060 // Otherwise, we have a decl (which is the case for 3061 // __builtin_source_location). 3062 assert(Base.is<const ValueDecl *>()); 3063 assert(Val.getLValuePath().size() == 0); 3064 const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>(); 3065 assert(BaseDecl); 3066 3067 auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl); 3068 3069 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD); 3070 if (!GlobalIndex) 3071 return false; 3072 3073 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 3074 return false; 3075 3076 const Record *R = getRecord(E->getType()); 3077 const APValue &V = UGCD->getValue(); 3078 for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) { 3079 const Record::Field *F = R->getField(I); 3080 const APValue &FieldValue = V.getStructField(I); 3081 3082 PrimType FieldT = classifyPrim(F->Decl->getType()); 3083 3084 if (!this->visitAPValue(FieldValue, FieldT, E)) 3085 return false; 3086 if (!this->emitInitField(FieldT, F->Offset, E)) 3087 return false; 3088 } 3089 3090 // Leave the pointer to the global on the stack. 3091 return true; 3092 } 3093 3094 template <class Emitter> 3095 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) { 3096 unsigned N = E->getNumComponents(); 3097 if (N == 0) 3098 return false; 3099 3100 for (unsigned I = 0; I != N; ++I) { 3101 const OffsetOfNode &Node = E->getComponent(I); 3102 if (Node.getKind() == OffsetOfNode::Array) { 3103 const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex()); 3104 PrimType IndexT = classifyPrim(ArrayIndexExpr->getType()); 3105 3106 if (DiscardResult) { 3107 if (!this->discard(ArrayIndexExpr)) 3108 return false; 3109 continue; 3110 } 3111 3112 if (!this->visit(ArrayIndexExpr)) 3113 return false; 3114 // Cast to Sint64. 3115 if (IndexT != PT_Sint64) { 3116 if (!this->emitCast(IndexT, PT_Sint64, E)) 3117 return false; 3118 } 3119 } 3120 } 3121 3122 if (DiscardResult) 3123 return true; 3124 3125 PrimType T = classifyPrim(E->getType()); 3126 return this->emitOffsetOf(T, E, E); 3127 } 3128 3129 template <class Emitter> 3130 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr( 3131 const CXXScalarValueInitExpr *E) { 3132 QualType Ty = E->getType(); 3133 3134 if (DiscardResult || Ty->isVoidType()) 3135 return true; 3136 3137 if (std::optional<PrimType> T = classify(Ty)) 3138 return this->visitZeroInitializer(*T, Ty, E); 3139 3140 if (const auto *CT = Ty->getAs<ComplexType>()) { 3141 if (!Initializing) { 3142 std::optional<unsigned> LocalIndex = allocateLocal(E); 3143 if (!LocalIndex) 3144 return false; 3145 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3146 return false; 3147 } 3148 3149 // Initialize both fields to 0. 3150 QualType ElemQT = CT->getElementType(); 3151 PrimType ElemT = classifyPrim(ElemQT); 3152 3153 for (unsigned I = 0; I != 2; ++I) { 3154 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 3155 return false; 3156 if (!this->emitInitElem(ElemT, I, E)) 3157 return false; 3158 } 3159 return true; 3160 } 3161 3162 if (const auto *VT = Ty->getAs<VectorType>()) { 3163 // FIXME: Code duplication with the _Complex case above. 3164 if (!Initializing) { 3165 std::optional<unsigned> LocalIndex = allocateLocal(E); 3166 if (!LocalIndex) 3167 return false; 3168 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3169 return false; 3170 } 3171 3172 // Initialize all fields to 0. 3173 QualType ElemQT = VT->getElementType(); 3174 PrimType ElemT = classifyPrim(ElemQT); 3175 3176 for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) { 3177 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 3178 return false; 3179 if (!this->emitInitElem(ElemT, I, E)) 3180 return false; 3181 } 3182 return true; 3183 } 3184 3185 return false; 3186 } 3187 3188 template <class Emitter> 3189 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 3190 return this->emitConst(E->getPackLength(), E); 3191 } 3192 3193 template <class Emitter> 3194 bool Compiler<Emitter>::VisitGenericSelectionExpr( 3195 const GenericSelectionExpr *E) { 3196 return this->delegate(E->getResultExpr()); 3197 } 3198 3199 template <class Emitter> 3200 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) { 3201 return this->delegate(E->getChosenSubExpr()); 3202 } 3203 3204 template <class Emitter> 3205 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 3206 if (DiscardResult) 3207 return true; 3208 3209 return this->emitConst(E->getValue(), E); 3210 } 3211 3212 template <class Emitter> 3213 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr( 3214 const CXXInheritedCtorInitExpr *E) { 3215 const CXXConstructorDecl *Ctor = E->getConstructor(); 3216 assert(!Ctor->isTrivial() && 3217 "Trivial CXXInheritedCtorInitExpr, implement. (possible?)"); 3218 const Function *F = this->getFunction(Ctor); 3219 assert(F); 3220 assert(!F->hasRVO()); 3221 assert(F->hasThisPointer()); 3222 3223 if (!this->emitDupPtr(SourceInfo{})) 3224 return false; 3225 3226 // Forward all arguments of the current function (which should be a 3227 // constructor itself) to the inherited ctor. 3228 // This is necessary because the calling code has pushed the pointer 3229 // of the correct base for us already, but the arguments need 3230 // to come after. 3231 unsigned Offset = align(primSize(PT_Ptr)); // instance pointer. 3232 for (const ParmVarDecl *PD : Ctor->parameters()) { 3233 PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr); 3234 3235 if (!this->emitGetParam(PT, Offset, E)) 3236 return false; 3237 Offset += align(primSize(PT)); 3238 } 3239 3240 return this->emitCall(F, 0, E); 3241 } 3242 3243 template <class Emitter> 3244 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) { 3245 assert(classifyPrim(E->getType()) == PT_Ptr); 3246 const Expr *Init = E->getInitializer(); 3247 QualType ElementType = E->getAllocatedType(); 3248 std::optional<PrimType> ElemT = classify(ElementType); 3249 unsigned PlacementArgs = E->getNumPlacementArgs(); 3250 const FunctionDecl *OperatorNew = E->getOperatorNew(); 3251 const Expr *PlacementDest = nullptr; 3252 bool IsNoThrow = false; 3253 3254 if (PlacementArgs != 0) { 3255 // FIXME: There is no restriction on this, but it's not clear that any 3256 // other form makes any sense. We get here for cases such as: 3257 // 3258 // new (std::align_val_t{N}) X(int) 3259 // 3260 // (which should presumably be valid only if N is a multiple of 3261 // alignof(int), and in any case can't be deallocated unless N is 3262 // alignof(X) and X has new-extended alignment). 3263 if (PlacementArgs == 1) { 3264 const Expr *Arg1 = E->getPlacementArg(0); 3265 if (Arg1->getType()->isNothrowT()) { 3266 if (!this->discard(Arg1)) 3267 return false; 3268 IsNoThrow = true; 3269 } else { 3270 // Invalid unless we have C++26 or are in a std:: function. 3271 if (!this->emitInvalidNewDeleteExpr(E, E)) 3272 return false; 3273 3274 // If we have a placement-new destination, we'll later use that instead 3275 // of allocating. 3276 if (OperatorNew->isReservedGlobalPlacementOperator()) 3277 PlacementDest = Arg1; 3278 } 3279 } else { 3280 // Always invalid. 3281 return this->emitInvalid(E); 3282 } 3283 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) 3284 return this->emitInvalidNewDeleteExpr(E, E); 3285 3286 const Descriptor *Desc; 3287 if (!PlacementDest) { 3288 if (ElemT) { 3289 if (E->isArray()) 3290 Desc = nullptr; // We're not going to use it in this case. 3291 else 3292 Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD, 3293 /*IsConst=*/false, /*IsTemporary=*/false, 3294 /*IsMutable=*/false); 3295 } else { 3296 Desc = P.createDescriptor( 3297 E, ElementType.getTypePtr(), 3298 E->isArray() ? std::nullopt : Descriptor::InlineDescMD, 3299 /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init); 3300 } 3301 } 3302 3303 if (E->isArray()) { 3304 std::optional<const Expr *> ArraySizeExpr = E->getArraySize(); 3305 if (!ArraySizeExpr) 3306 return false; 3307 3308 const Expr *Stripped = *ArraySizeExpr; 3309 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 3310 Stripped = ICE->getSubExpr()) 3311 if (ICE->getCastKind() != CK_NoOp && 3312 ICE->getCastKind() != CK_IntegralCast) 3313 break; 3314 3315 PrimType SizeT = classifyPrim(Stripped->getType()); 3316 3317 if (PlacementDest) { 3318 if (!this->visit(PlacementDest)) 3319 return false; 3320 if (!this->visit(Stripped)) 3321 return false; 3322 if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E)) 3323 return false; 3324 } else { 3325 if (!this->visit(Stripped)) 3326 return false; 3327 3328 if (ElemT) { 3329 // N primitive elements. 3330 if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E)) 3331 return false; 3332 } else { 3333 // N Composite elements. 3334 if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E)) 3335 return false; 3336 } 3337 } 3338 3339 if (Init && !this->visitInitializer(Init)) 3340 return false; 3341 3342 } else { 3343 if (PlacementDest) { 3344 if (!this->visit(PlacementDest)) 3345 return false; 3346 if (!this->emitCheckNewTypeMismatch(E, E)) 3347 return false; 3348 } else { 3349 // Allocate just one element. 3350 if (!this->emitAlloc(Desc, E)) 3351 return false; 3352 } 3353 3354 if (Init) { 3355 if (ElemT) { 3356 if (!this->visit(Init)) 3357 return false; 3358 3359 if (!this->emitInit(*ElemT, E)) 3360 return false; 3361 } else { 3362 // Composite. 3363 if (!this->visitInitializer(Init)) 3364 return false; 3365 } 3366 } 3367 } 3368 3369 if (DiscardResult) 3370 return this->emitPopPtr(E); 3371 3372 return true; 3373 } 3374 3375 template <class Emitter> 3376 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 3377 const Expr *Arg = E->getArgument(); 3378 3379 const FunctionDecl *OperatorDelete = E->getOperatorDelete(); 3380 3381 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) 3382 return this->emitInvalidNewDeleteExpr(E, E); 3383 3384 // Arg must be an lvalue. 3385 if (!this->visit(Arg)) 3386 return false; 3387 3388 return this->emitFree(E->isArrayForm(), E); 3389 } 3390 3391 template <class Emitter> 3392 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) { 3393 const Function *Func = nullptr; 3394 if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E)) 3395 Func = F; 3396 3397 if (!Func) 3398 return false; 3399 return this->emitGetFnPtr(Func, E); 3400 } 3401 3402 template <class Emitter> 3403 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 3404 assert(Ctx.getLangOpts().CPlusPlus); 3405 return this->emitConstBool(E->getValue(), E); 3406 } 3407 3408 template <class Emitter> 3409 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 3410 if (DiscardResult) 3411 return true; 3412 assert(!Initializing); 3413 3414 const MSGuidDecl *GuidDecl = E->getGuidDecl(); 3415 const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl(); 3416 assert(RD); 3417 // If the definiton of the result type is incomplete, just return a dummy. 3418 // If (and when) that is read from, we will fail, but not now. 3419 if (!RD->isCompleteDefinition()) { 3420 if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl)) 3421 return this->emitGetPtrGlobal(*I, E); 3422 return false; 3423 } 3424 3425 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl); 3426 if (!GlobalIndex) 3427 return false; 3428 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 3429 return false; 3430 3431 assert(this->getRecord(E->getType())); 3432 3433 const APValue &V = GuidDecl->getAsAPValue(); 3434 if (V.getKind() == APValue::None) 3435 return true; 3436 3437 assert(V.isStruct()); 3438 assert(V.getStructNumBases() == 0); 3439 if (!this->visitAPValueInitializer(V, E)) 3440 return false; 3441 3442 return this->emitFinishInit(E); 3443 } 3444 3445 template <class Emitter> 3446 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) { 3447 assert(classifyPrim(E->getType()) == PT_Bool); 3448 if (DiscardResult) 3449 return true; 3450 return this->emitConstBool(E->isSatisfied(), E); 3451 } 3452 3453 template <class Emitter> 3454 bool Compiler<Emitter>::VisitConceptSpecializationExpr( 3455 const ConceptSpecializationExpr *E) { 3456 assert(classifyPrim(E->getType()) == PT_Bool); 3457 if (DiscardResult) 3458 return true; 3459 return this->emitConstBool(E->isSatisfied(), E); 3460 } 3461 3462 template <class Emitter> 3463 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator( 3464 const CXXRewrittenBinaryOperator *E) { 3465 return this->delegate(E->getSemanticForm()); 3466 } 3467 3468 template <class Emitter> 3469 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) { 3470 3471 for (const Expr *SemE : E->semantics()) { 3472 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { 3473 if (SemE == E->getResultExpr()) 3474 return false; 3475 3476 if (OVE->isUnique()) 3477 continue; 3478 3479 if (!this->discard(OVE)) 3480 return false; 3481 } else if (SemE == E->getResultExpr()) { 3482 if (!this->delegate(SemE)) 3483 return false; 3484 } else { 3485 if (!this->discard(SemE)) 3486 return false; 3487 } 3488 } 3489 return true; 3490 } 3491 3492 template <class Emitter> 3493 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) { 3494 return this->delegate(E->getSelectedExpr()); 3495 } 3496 3497 template <class Emitter> 3498 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) { 3499 return this->emitError(E); 3500 } 3501 3502 template <class Emitter> 3503 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) { 3504 assert(E->getType()->isVoidPointerType()); 3505 3506 unsigned Offset = allocateLocalPrimitive( 3507 E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3508 3509 return this->emitGetLocal(PT_Ptr, Offset, E); 3510 } 3511 3512 template <class Emitter> 3513 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) { 3514 assert(Initializing); 3515 const auto *VT = E->getType()->castAs<VectorType>(); 3516 QualType ElemType = VT->getElementType(); 3517 PrimType ElemT = classifyPrim(ElemType); 3518 const Expr *Src = E->getSrcExpr(); 3519 PrimType SrcElemT = 3520 classifyPrim(Src->getType()->castAs<VectorType>()->getElementType()); 3521 3522 unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false); 3523 if (!this->visit(Src)) 3524 return false; 3525 if (!this->emitSetLocal(PT_Ptr, SrcOffset, E)) 3526 return false; 3527 3528 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 3529 if (!this->emitGetLocal(PT_Ptr, SrcOffset, E)) 3530 return false; 3531 if (!this->emitArrayElemPop(SrcElemT, I, E)) 3532 return false; 3533 if (SrcElemT != ElemT) { 3534 if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E)) 3535 return false; 3536 } 3537 if (!this->emitInitElem(ElemT, I, E)) 3538 return false; 3539 } 3540 3541 return true; 3542 } 3543 3544 template <class Emitter> 3545 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { 3546 assert(Initializing); 3547 assert(E->getNumSubExprs() > 2); 3548 3549 const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)}; 3550 const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>(); 3551 PrimType ElemT = classifyPrim(VT->getElementType()); 3552 unsigned NumInputElems = VT->getNumElements(); 3553 unsigned NumOutputElems = E->getNumSubExprs() - 2; 3554 assert(NumOutputElems > 0); 3555 3556 // Save both input vectors to a local variable. 3557 unsigned VectorOffsets[2]; 3558 for (unsigned I = 0; I != 2; ++I) { 3559 VectorOffsets[I] = this->allocateLocalPrimitive( 3560 Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3561 if (!this->visit(Vecs[I])) 3562 return false; 3563 if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E)) 3564 return false; 3565 } 3566 for (unsigned I = 0; I != NumOutputElems; ++I) { 3567 APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I); 3568 if (ShuffleIndex == -1) 3569 return this->emitInvalid(E); // FIXME: Better diagnostic. 3570 3571 assert(ShuffleIndex < (NumInputElems * 2)); 3572 if (!this->emitGetLocal(PT_Ptr, 3573 VectorOffsets[ShuffleIndex >= NumInputElems], E)) 3574 return false; 3575 unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems; 3576 if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E)) 3577 return false; 3578 3579 if (!this->emitInitElem(ElemT, I, E)) 3580 return false; 3581 } 3582 3583 return true; 3584 } 3585 3586 template <class Emitter> 3587 bool Compiler<Emitter>::VisitExtVectorElementExpr( 3588 const ExtVectorElementExpr *E) { 3589 const Expr *Base = E->getBase(); 3590 assert( 3591 Base->getType()->isVectorType() || 3592 Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType()); 3593 3594 SmallVector<uint32_t, 4> Indices; 3595 E->getEncodedElementAccess(Indices); 3596 3597 if (Indices.size() == 1) { 3598 if (!this->visit(Base)) 3599 return false; 3600 3601 if (E->isGLValue()) { 3602 if (!this->emitConstUint32(Indices[0], E)) 3603 return false; 3604 return this->emitArrayElemPtrPop(PT_Uint32, E); 3605 } 3606 // Else, also load the value. 3607 return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E); 3608 } 3609 3610 // Create a local variable for the base. 3611 unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true, 3612 /*IsExtended=*/false); 3613 if (!this->visit(Base)) 3614 return false; 3615 if (!this->emitSetLocal(PT_Ptr, BaseOffset, E)) 3616 return false; 3617 3618 // Now the vector variable for the return value. 3619 if (!Initializing) { 3620 std::optional<unsigned> ResultIndex; 3621 ResultIndex = allocateLocal(E); 3622 if (!ResultIndex) 3623 return false; 3624 if (!this->emitGetPtrLocal(*ResultIndex, E)) 3625 return false; 3626 } 3627 3628 assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements()); 3629 3630 PrimType ElemT = 3631 classifyPrim(E->getType()->getAs<VectorType>()->getElementType()); 3632 uint32_t DstIndex = 0; 3633 for (uint32_t I : Indices) { 3634 if (!this->emitGetLocal(PT_Ptr, BaseOffset, E)) 3635 return false; 3636 if (!this->emitArrayElemPop(ElemT, I, E)) 3637 return false; 3638 if (!this->emitInitElem(ElemT, DstIndex, E)) 3639 return false; 3640 ++DstIndex; 3641 } 3642 3643 // Leave the result pointer on the stack. 3644 assert(!DiscardResult); 3645 return true; 3646 } 3647 3648 template <class Emitter> 3649 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 3650 const Expr *SubExpr = E->getSubExpr(); 3651 if (!E->isExpressibleAsConstantInitializer()) 3652 return this->discard(SubExpr) && this->emitInvalid(E); 3653 3654 assert(classifyPrim(E) == PT_Ptr); 3655 if (std::optional<unsigned> I = P.getOrCreateDummy(E)) 3656 return this->emitGetPtrGlobal(*I, E); 3657 3658 return false; 3659 } 3660 3661 template <class Emitter> 3662 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr( 3663 const CXXStdInitializerListExpr *E) { 3664 const Expr *SubExpr = E->getSubExpr(); 3665 const ConstantArrayType *ArrayType = 3666 Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType()); 3667 const Record *R = getRecord(E->getType()); 3668 assert(Initializing); 3669 assert(SubExpr->isGLValue()); 3670 3671 if (!this->visit(SubExpr)) 3672 return false; 3673 if (!this->emitConstUint8(0, E)) 3674 return false; 3675 if (!this->emitArrayElemPtrPopUint8(E)) 3676 return false; 3677 if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E)) 3678 return false; 3679 3680 PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType()); 3681 if (isIntegralType(SecondFieldT)) { 3682 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), 3683 SecondFieldT, E)) 3684 return false; 3685 return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E); 3686 } 3687 assert(SecondFieldT == PT_Ptr); 3688 3689 if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E)) 3690 return false; 3691 if (!this->emitExpandPtr(E)) 3692 return false; 3693 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E)) 3694 return false; 3695 if (!this->emitArrayElemPtrPop(PT_Uint64, E)) 3696 return false; 3697 return this->emitInitFieldPtr(R->getField(1u)->Offset, E); 3698 } 3699 3700 template <class Emitter> 3701 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) { 3702 BlockScope<Emitter> BS(this); 3703 StmtExprScope<Emitter> SS(this); 3704 3705 const CompoundStmt *CS = E->getSubStmt(); 3706 const Stmt *Result = CS->getStmtExprResult(); 3707 for (const Stmt *S : CS->body()) { 3708 if (S != Result) { 3709 if (!this->visitStmt(S)) 3710 return false; 3711 continue; 3712 } 3713 3714 assert(S == Result); 3715 if (const Expr *ResultExpr = dyn_cast<Expr>(S)) 3716 return this->delegate(ResultExpr); 3717 return this->emitUnsupported(E); 3718 } 3719 3720 return BS.destroyLocals(); 3721 } 3722 3723 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) { 3724 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true, 3725 /*NewInitializing=*/false); 3726 return this->Visit(E); 3727 } 3728 3729 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) { 3730 // We're basically doing: 3731 // OptionScope<Emitter> Scope(this, DicardResult, Initializing); 3732 // but that's unnecessary of course. 3733 return this->Visit(E); 3734 } 3735 3736 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) { 3737 if (E->getType().isNull()) 3738 return false; 3739 3740 if (E->getType()->isVoidType()) 3741 return this->discard(E); 3742 3743 // Create local variable to hold the return value. 3744 if (!E->isGLValue() && !E->getType()->isAnyComplexType() && 3745 !classify(E->getType())) { 3746 std::optional<unsigned> LocalIndex = allocateLocal(E); 3747 if (!LocalIndex) 3748 return false; 3749 3750 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3751 return false; 3752 return this->visitInitializer(E); 3753 } 3754 3755 // Otherwise,we have a primitive return value, produce the value directly 3756 // and push it on the stack. 3757 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3758 /*NewInitializing=*/false); 3759 return this->Visit(E); 3760 } 3761 3762 template <class Emitter> 3763 bool Compiler<Emitter>::visitInitializer(const Expr *E) { 3764 assert(!classify(E->getType())); 3765 3766 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3767 /*NewInitializing=*/true); 3768 return this->Visit(E); 3769 } 3770 3771 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) { 3772 std::optional<PrimType> T = classify(E->getType()); 3773 if (!T) { 3774 // Convert complex values to bool. 3775 if (E->getType()->isAnyComplexType()) { 3776 if (!this->visit(E)) 3777 return false; 3778 return this->emitComplexBoolCast(E); 3779 } 3780 return false; 3781 } 3782 3783 if (!this->visit(E)) 3784 return false; 3785 3786 if (T == PT_Bool) 3787 return true; 3788 3789 // Convert pointers to bool. 3790 if (T == PT_Ptr || T == PT_FnPtr) { 3791 if (!this->emitNull(*T, nullptr, E)) 3792 return false; 3793 return this->emitNE(*T, E); 3794 } 3795 3796 // Or Floats. 3797 if (T == PT_Float) 3798 return this->emitCastFloatingIntegralBool(getFPOptions(E), E); 3799 3800 // Or anything else we can. 3801 return this->emitCast(*T, PT_Bool, E); 3802 } 3803 3804 template <class Emitter> 3805 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT, 3806 const Expr *E) { 3807 switch (T) { 3808 case PT_Bool: 3809 return this->emitZeroBool(E); 3810 case PT_Sint8: 3811 return this->emitZeroSint8(E); 3812 case PT_Uint8: 3813 return this->emitZeroUint8(E); 3814 case PT_Sint16: 3815 return this->emitZeroSint16(E); 3816 case PT_Uint16: 3817 return this->emitZeroUint16(E); 3818 case PT_Sint32: 3819 return this->emitZeroSint32(E); 3820 case PT_Uint32: 3821 return this->emitZeroUint32(E); 3822 case PT_Sint64: 3823 return this->emitZeroSint64(E); 3824 case PT_Uint64: 3825 return this->emitZeroUint64(E); 3826 case PT_IntAP: 3827 return this->emitZeroIntAP(Ctx.getBitWidth(QT), E); 3828 case PT_IntAPS: 3829 return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E); 3830 case PT_Ptr: 3831 return this->emitNullPtr(nullptr, E); 3832 case PT_FnPtr: 3833 return this->emitNullFnPtr(nullptr, E); 3834 case PT_MemberPtr: 3835 return this->emitNullMemberPtr(nullptr, E); 3836 case PT_Float: 3837 return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E); 3838 case PT_FixedPoint: { 3839 auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 3840 return this->emitConstFixedPoint(FixedPoint::zero(Sem), E); 3841 } 3842 llvm_unreachable("Implement"); 3843 } 3844 llvm_unreachable("unknown primitive type"); 3845 } 3846 3847 template <class Emitter> 3848 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R, 3849 const Expr *E) { 3850 assert(E); 3851 assert(R); 3852 // Fields 3853 for (const Record::Field &Field : R->fields()) { 3854 if (Field.Decl->isUnnamedBitField()) 3855 continue; 3856 3857 const Descriptor *D = Field.Desc; 3858 if (D->isPrimitive()) { 3859 QualType QT = D->getType(); 3860 PrimType T = classifyPrim(D->getType()); 3861 if (!this->visitZeroInitializer(T, QT, E)) 3862 return false; 3863 if (!this->emitInitField(T, Field.Offset, E)) 3864 return false; 3865 if (R->isUnion()) 3866 break; 3867 continue; 3868 } 3869 3870 if (!this->emitGetPtrField(Field.Offset, E)) 3871 return false; 3872 3873 if (D->isPrimitiveArray()) { 3874 QualType ET = D->getElemQualType(); 3875 PrimType T = classifyPrim(ET); 3876 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3877 if (!this->visitZeroInitializer(T, ET, E)) 3878 return false; 3879 if (!this->emitInitElem(T, I, E)) 3880 return false; 3881 } 3882 } else if (D->isCompositeArray()) { 3883 const Record *ElemRecord = D->ElemDesc->ElemRecord; 3884 assert(D->ElemDesc->ElemRecord); 3885 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3886 if (!this->emitConstUint32(I, E)) 3887 return false; 3888 if (!this->emitArrayElemPtr(PT_Uint32, E)) 3889 return false; 3890 if (!this->visitZeroRecordInitializer(ElemRecord, E)) 3891 return false; 3892 if (!this->emitPopPtr(E)) 3893 return false; 3894 } 3895 } else if (D->isRecord()) { 3896 if (!this->visitZeroRecordInitializer(D->ElemRecord, E)) 3897 return false; 3898 } else { 3899 assert(false); 3900 } 3901 3902 if (!this->emitFinishInitPop(E)) 3903 return false; 3904 3905 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 3906 // object's first non-static named data member is zero-initialized 3907 if (R->isUnion()) 3908 break; 3909 } 3910 3911 for (const Record::Base &B : R->bases()) { 3912 if (!this->emitGetPtrBase(B.Offset, E)) 3913 return false; 3914 if (!this->visitZeroRecordInitializer(B.R, E)) 3915 return false; 3916 if (!this->emitFinishInitPop(E)) 3917 return false; 3918 } 3919 3920 // FIXME: Virtual bases. 3921 3922 return true; 3923 } 3924 3925 template <class Emitter> 3926 template <typename T> 3927 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) { 3928 switch (Ty) { 3929 case PT_Sint8: 3930 return this->emitConstSint8(Value, E); 3931 case PT_Uint8: 3932 return this->emitConstUint8(Value, E); 3933 case PT_Sint16: 3934 return this->emitConstSint16(Value, E); 3935 case PT_Uint16: 3936 return this->emitConstUint16(Value, E); 3937 case PT_Sint32: 3938 return this->emitConstSint32(Value, E); 3939 case PT_Uint32: 3940 return this->emitConstUint32(Value, E); 3941 case PT_Sint64: 3942 return this->emitConstSint64(Value, E); 3943 case PT_Uint64: 3944 return this->emitConstUint64(Value, E); 3945 case PT_Bool: 3946 return this->emitConstBool(Value, E); 3947 case PT_Ptr: 3948 case PT_FnPtr: 3949 case PT_MemberPtr: 3950 case PT_Float: 3951 case PT_IntAP: 3952 case PT_IntAPS: 3953 case PT_FixedPoint: 3954 llvm_unreachable("Invalid integral type"); 3955 break; 3956 } 3957 llvm_unreachable("unknown primitive type"); 3958 } 3959 3960 template <class Emitter> 3961 template <typename T> 3962 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) { 3963 return this->emitConst(Value, classifyPrim(E->getType()), E); 3964 } 3965 3966 template <class Emitter> 3967 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty, 3968 const Expr *E) { 3969 if (Ty == PT_IntAPS) 3970 return this->emitConstIntAPS(Value, E); 3971 if (Ty == PT_IntAP) 3972 return this->emitConstIntAP(Value, E); 3973 3974 if (Value.isSigned()) 3975 return this->emitConst(Value.getSExtValue(), Ty, E); 3976 return this->emitConst(Value.getZExtValue(), Ty, E); 3977 } 3978 3979 template <class Emitter> 3980 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) { 3981 return this->emitConst(Value, classifyPrim(E->getType()), E); 3982 } 3983 3984 template <class Emitter> 3985 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty, 3986 bool IsConst, 3987 bool IsExtended) { 3988 // Make sure we don't accidentally register the same decl twice. 3989 if (const auto *VD = 3990 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3991 assert(!P.getGlobal(VD)); 3992 assert(!Locals.contains(VD)); 3993 (void)VD; 3994 } 3995 3996 // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g. 3997 // (int){12} in C. Consider using Expr::isTemporaryObject() instead 3998 // or isa<MaterializeTemporaryExpr>(). 3999 Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst, 4000 Src.is<const Expr *>()); 4001 Scope::Local Local = this->createLocal(D); 4002 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) 4003 Locals.insert({VD, Local}); 4004 VarScope->add(Local, IsExtended); 4005 return Local.Offset; 4006 } 4007 4008 template <class Emitter> 4009 std::optional<unsigned> 4010 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) { 4011 // Make sure we don't accidentally register the same decl twice. 4012 if ([[maybe_unused]] const auto *VD = 4013 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 4014 assert(!P.getGlobal(VD)); 4015 assert(!Locals.contains(VD)); 4016 } 4017 4018 QualType Ty; 4019 const ValueDecl *Key = nullptr; 4020 const Expr *Init = nullptr; 4021 bool IsTemporary = false; 4022 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 4023 Key = VD; 4024 Ty = VD->getType(); 4025 4026 if (const auto *VarD = dyn_cast<VarDecl>(VD)) 4027 Init = VarD->getInit(); 4028 } 4029 if (auto *E = Src.dyn_cast<const Expr *>()) { 4030 IsTemporary = true; 4031 Ty = E->getType(); 4032 } 4033 4034 Descriptor *D = P.createDescriptor( 4035 Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 4036 IsTemporary, /*IsMutable=*/false, Init); 4037 if (!D) 4038 return std::nullopt; 4039 4040 Scope::Local Local = this->createLocal(D); 4041 if (Key) 4042 Locals.insert({Key, Local}); 4043 if (ExtendingDecl) 4044 VarScope->addExtended(Local, ExtendingDecl); 4045 else 4046 VarScope->add(Local, false); 4047 return Local.Offset; 4048 } 4049 4050 template <class Emitter> 4051 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) { 4052 QualType Ty = E->getType(); 4053 assert(!Ty->isRecordType()); 4054 4055 Descriptor *D = P.createDescriptor( 4056 E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 4057 /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr); 4058 assert(D); 4059 4060 Scope::Local Local = this->createLocal(D); 4061 VariableScope<Emitter> *S = VarScope; 4062 assert(S); 4063 // Attach to topmost scope. 4064 while (S->getParent()) 4065 S = S->getParent(); 4066 assert(S && !S->getParent()); 4067 S->addLocal(Local); 4068 return Local.Offset; 4069 } 4070 4071 template <class Emitter> 4072 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) { 4073 if (const PointerType *PT = dyn_cast<PointerType>(Ty)) 4074 return PT->getPointeeType()->getAs<RecordType>(); 4075 return Ty->getAs<RecordType>(); 4076 } 4077 4078 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) { 4079 if (const auto *RecordTy = getRecordTy(Ty)) 4080 return getRecord(RecordTy->getDecl()); 4081 return nullptr; 4082 } 4083 4084 template <class Emitter> 4085 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) { 4086 return P.getOrCreateRecord(RD); 4087 } 4088 4089 template <class Emitter> 4090 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) { 4091 return Ctx.getOrCreateFunction(FD); 4092 } 4093 4094 template <class Emitter> 4095 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) { 4096 LocalScope<Emitter> RootScope(this); 4097 4098 auto maybeDestroyLocals = [&]() -> bool { 4099 if (DestroyToplevelScope) 4100 return RootScope.destroyLocals(); 4101 return true; 4102 }; 4103 4104 // Void expressions. 4105 if (E->getType()->isVoidType()) { 4106 if (!visit(E)) 4107 return false; 4108 return this->emitRetVoid(E) && maybeDestroyLocals(); 4109 } 4110 4111 // Expressions with a primitive return type. 4112 if (std::optional<PrimType> T = classify(E)) { 4113 if (!visit(E)) 4114 return false; 4115 4116 return this->emitRet(*T, E) && maybeDestroyLocals(); 4117 } 4118 4119 // Expressions with a composite return type. 4120 // For us, that means everything we don't 4121 // have a PrimType for. 4122 if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) { 4123 if (!this->emitGetPtrLocal(*LocalOffset, E)) 4124 return false; 4125 4126 if (!visitInitializer(E)) 4127 return false; 4128 4129 if (!this->emitFinishInit(E)) 4130 return false; 4131 // We are destroying the locals AFTER the Ret op. 4132 // The Ret op needs to copy the (alive) values, but the 4133 // destructors may still turn the entire expression invalid. 4134 return this->emitRetValue(E) && maybeDestroyLocals(); 4135 } 4136 4137 (void)maybeDestroyLocals(); 4138 return false; 4139 } 4140 4141 template <class Emitter> 4142 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) { 4143 4144 auto R = this->visitVarDecl(VD, /*Toplevel=*/true); 4145 4146 if (R.notCreated()) 4147 return R; 4148 4149 if (R) 4150 return true; 4151 4152 if (!R && Context::shouldBeGloballyIndexed(VD)) { 4153 if (auto GlobalIndex = P.getGlobal(VD)) { 4154 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 4155 GlobalInlineDescriptor &GD = 4156 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 4157 4158 GD.InitState = GlobalInitState::InitializerFailed; 4159 GlobalBlock->invokeDtor(); 4160 } 4161 } 4162 4163 return R; 4164 } 4165 4166 /// Toplevel visitDeclAndReturn(). 4167 /// We get here from evaluateAsInitializer(). 4168 /// We need to evaluate the initializer and return its value. 4169 template <class Emitter> 4170 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD, 4171 bool ConstantContext) { 4172 std::optional<PrimType> VarT = classify(VD->getType()); 4173 4174 // We only create variables if we're evaluating in a constant context. 4175 // Otherwise, just evaluate the initializer and return it. 4176 if (!ConstantContext) { 4177 DeclScope<Emitter> LS(this, VD); 4178 if (!this->visit(VD->getAnyInitializer())) 4179 return false; 4180 return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals(); 4181 } 4182 4183 LocalScope<Emitter> VDScope(this, VD); 4184 if (!this->visitVarDecl(VD, /*Toplevel=*/true)) 4185 return false; 4186 4187 if (Context::shouldBeGloballyIndexed(VD)) { 4188 auto GlobalIndex = P.getGlobal(VD); 4189 assert(GlobalIndex); // visitVarDecl() didn't return false. 4190 if (VarT) { 4191 if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD)) 4192 return false; 4193 } else { 4194 if (!this->emitGetPtrGlobal(*GlobalIndex, VD)) 4195 return false; 4196 } 4197 } else { 4198 auto Local = Locals.find(VD); 4199 assert(Local != Locals.end()); // Same here. 4200 if (VarT) { 4201 if (!this->emitGetLocal(*VarT, Local->second.Offset, VD)) 4202 return false; 4203 } else { 4204 if (!this->emitGetPtrLocal(Local->second.Offset, VD)) 4205 return false; 4206 } 4207 } 4208 4209 // Return the value. 4210 if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) { 4211 // If the Ret above failed and this is a global variable, mark it as 4212 // uninitialized, even everything else succeeded. 4213 if (Context::shouldBeGloballyIndexed(VD)) { 4214 auto GlobalIndex = P.getGlobal(VD); 4215 assert(GlobalIndex); 4216 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 4217 GlobalInlineDescriptor &GD = 4218 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 4219 4220 GD.InitState = GlobalInitState::InitializerFailed; 4221 GlobalBlock->invokeDtor(); 4222 } 4223 return false; 4224 } 4225 4226 return VDScope.destroyLocals(); 4227 } 4228 4229 template <class Emitter> 4230 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD, 4231 bool Toplevel) { 4232 // We don't know what to do with these, so just return false. 4233 if (VD->getType().isNull()) 4234 return false; 4235 4236 // This case is EvalEmitter-only. If we won't create any instructions for the 4237 // initializer anyway, don't bother creating the variable in the first place. 4238 if (!this->isActive()) 4239 return VarCreationState::NotCreated(); 4240 4241 const Expr *Init = VD->getInit(); 4242 std::optional<PrimType> VarT = classify(VD->getType()); 4243 4244 if (Init && Init->isValueDependent()) 4245 return false; 4246 4247 if (Context::shouldBeGloballyIndexed(VD)) { 4248 auto checkDecl = [&]() -> bool { 4249 bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal(); 4250 return !NeedsOp || this->emitCheckDecl(VD, VD); 4251 }; 4252 4253 auto initGlobal = [&](unsigned GlobalIndex) -> bool { 4254 assert(Init); 4255 4256 if (VarT) { 4257 if (!this->visit(Init)) 4258 return checkDecl() && false; 4259 4260 return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD); 4261 } 4262 4263 if (!checkDecl()) 4264 return false; 4265 4266 if (!this->emitGetPtrGlobal(GlobalIndex, Init)) 4267 return false; 4268 4269 if (!visitInitializer(Init)) 4270 return false; 4271 4272 if (!this->emitFinishInit(Init)) 4273 return false; 4274 4275 return this->emitPopPtr(Init); 4276 }; 4277 4278 DeclScope<Emitter> LocalScope(this, VD); 4279 4280 // We've already seen and initialized this global. 4281 if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) { 4282 if (P.getPtrGlobal(*GlobalIndex).isInitialized()) 4283 return checkDecl(); 4284 4285 // The previous attempt at initialization might've been unsuccessful, 4286 // so let's try this one. 4287 return Init && checkDecl() && initGlobal(*GlobalIndex); 4288 } 4289 4290 std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init); 4291 4292 if (!GlobalIndex) 4293 return false; 4294 4295 return !Init || (checkDecl() && initGlobal(*GlobalIndex)); 4296 } else { 4297 InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD)); 4298 4299 if (VarT) { 4300 unsigned Offset = this->allocateLocalPrimitive( 4301 VD, *VarT, VD->getType().isConstQualified()); 4302 if (Init) { 4303 // If this is a toplevel declaration, create a scope for the 4304 // initializer. 4305 if (Toplevel) { 4306 LocalScope<Emitter> Scope(this); 4307 if (!this->visit(Init)) 4308 return false; 4309 return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals(); 4310 } else { 4311 if (!this->visit(Init)) 4312 return false; 4313 return this->emitSetLocal(*VarT, Offset, VD); 4314 } 4315 } 4316 } else { 4317 if (std::optional<unsigned> Offset = this->allocateLocal(VD)) { 4318 if (!Init) 4319 return true; 4320 4321 if (!this->emitGetPtrLocal(*Offset, Init)) 4322 return false; 4323 4324 if (!visitInitializer(Init)) 4325 return false; 4326 4327 if (!this->emitFinishInit(Init)) 4328 return false; 4329 4330 return this->emitPopPtr(Init); 4331 } 4332 return false; 4333 } 4334 return true; 4335 } 4336 4337 return false; 4338 } 4339 4340 template <class Emitter> 4341 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType, 4342 const Expr *E) { 4343 assert(!DiscardResult); 4344 if (Val.isInt()) 4345 return this->emitConst(Val.getInt(), ValType, E); 4346 else if (Val.isFloat()) 4347 return this->emitConstFloat(Val.getFloat(), E); 4348 4349 if (Val.isLValue()) { 4350 if (Val.isNullPointer()) 4351 return this->emitNull(ValType, nullptr, E); 4352 APValue::LValueBase Base = Val.getLValueBase(); 4353 if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>()) 4354 return this->visit(BaseExpr); 4355 else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) { 4356 return this->visitDeclRef(VD, E); 4357 } 4358 } else if (Val.isMemberPointer()) { 4359 if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl()) 4360 return this->emitGetMemberPtr(MemberDecl, E); 4361 return this->emitNullMemberPtr(nullptr, E); 4362 } 4363 4364 return false; 4365 } 4366 4367 template <class Emitter> 4368 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val, 4369 const Expr *E) { 4370 4371 if (Val.isStruct()) { 4372 const Record *R = this->getRecord(E->getType()); 4373 assert(R); 4374 for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) { 4375 const APValue &F = Val.getStructField(I); 4376 const Record::Field *RF = R->getField(I); 4377 4378 if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) { 4379 PrimType T = classifyPrim(RF->Decl->getType()); 4380 if (!this->visitAPValue(F, T, E)) 4381 return false; 4382 if (!this->emitInitField(T, RF->Offset, E)) 4383 return false; 4384 } else if (F.isArray()) { 4385 assert(RF->Desc->isPrimitiveArray()); 4386 const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe(); 4387 PrimType ElemT = classifyPrim(ArrType->getElementType()); 4388 assert(ArrType); 4389 4390 if (!this->emitGetPtrField(RF->Offset, E)) 4391 return false; 4392 4393 for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) { 4394 if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E)) 4395 return false; 4396 if (!this->emitInitElem(ElemT, A, E)) 4397 return false; 4398 } 4399 4400 if (!this->emitPopPtr(E)) 4401 return false; 4402 } else if (F.isStruct() || F.isUnion()) { 4403 if (!this->emitGetPtrField(RF->Offset, E)) 4404 return false; 4405 if (!this->visitAPValueInitializer(F, E)) 4406 return false; 4407 if (!this->emitPopPtr(E)) 4408 return false; 4409 } else { 4410 assert(false && "I don't think this should be possible"); 4411 } 4412 } 4413 return true; 4414 } else if (Val.isUnion()) { 4415 const FieldDecl *UnionField = Val.getUnionField(); 4416 const Record *R = this->getRecord(UnionField->getParent()); 4417 assert(R); 4418 const APValue &F = Val.getUnionValue(); 4419 const Record::Field *RF = R->getField(UnionField); 4420 PrimType T = classifyPrim(RF->Decl->getType()); 4421 if (!this->visitAPValue(F, T, E)) 4422 return false; 4423 return this->emitInitField(T, RF->Offset, E); 4424 } 4425 // TODO: Other types. 4426 4427 return false; 4428 } 4429 4430 template <class Emitter> 4431 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E, 4432 unsigned BuiltinID) { 4433 const Function *Func = getFunction(E->getDirectCallee()); 4434 if (!Func) 4435 return false; 4436 4437 // For these, we're expected to ultimately return an APValue pointing 4438 // to the CallExpr. This is needed to get the correct codegen. 4439 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 4440 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString || 4441 BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant || 4442 BuiltinID == Builtin::BI__builtin_function_start) { 4443 if (std::optional<unsigned> GlobalOffset = P.getOrCreateDummy(E)) { 4444 if (!this->emitGetPtrGlobal(*GlobalOffset, E)) 4445 return false; 4446 4447 if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT)) 4448 return this->emitDecayPtr(PT_Ptr, PT, E); 4449 return true; 4450 } 4451 return false; 4452 } 4453 4454 QualType ReturnType = E->getType(); 4455 std::optional<PrimType> ReturnT = classify(E); 4456 4457 // Non-primitive return type. Prepare storage. 4458 if (!Initializing && !ReturnT && !ReturnType->isVoidType()) { 4459 std::optional<unsigned> LocalIndex = allocateLocal(E); 4460 if (!LocalIndex) 4461 return false; 4462 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4463 return false; 4464 } 4465 4466 if (!Func->isUnevaluatedBuiltin()) { 4467 // Put arguments on the stack. 4468 for (const auto *Arg : E->arguments()) { 4469 if (!this->visit(Arg)) 4470 return false; 4471 } 4472 } 4473 4474 if (!this->emitCallBI(Func, E, BuiltinID, E)) 4475 return false; 4476 4477 if (DiscardResult && !ReturnType->isVoidType()) { 4478 assert(ReturnT); 4479 return this->emitPop(*ReturnT, E); 4480 } 4481 4482 return true; 4483 } 4484 4485 template <class Emitter> 4486 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) { 4487 if (unsigned BuiltinID = E->getBuiltinCallee()) 4488 return VisitBuiltinCallExpr(E, BuiltinID); 4489 4490 const FunctionDecl *FuncDecl = E->getDirectCallee(); 4491 // Calls to replaceable operator new/operator delete. 4492 if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) { 4493 if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New || 4494 FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { 4495 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new); 4496 } else { 4497 assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete); 4498 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete); 4499 } 4500 } 4501 4502 QualType ReturnType = E->getCallReturnType(Ctx.getASTContext()); 4503 std::optional<PrimType> T = classify(ReturnType); 4504 bool HasRVO = !ReturnType->isVoidType() && !T; 4505 4506 if (HasRVO) { 4507 if (DiscardResult) { 4508 // If we need to discard the return value but the function returns its 4509 // value via an RVO pointer, we need to create one such pointer just 4510 // for this call. 4511 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4512 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4513 return false; 4514 } 4515 } else { 4516 // We need the result. Prepare a pointer to return or 4517 // dup the current one. 4518 if (!Initializing) { 4519 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4520 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4521 return false; 4522 } 4523 } 4524 if (!this->emitDupPtr(E)) 4525 return false; 4526 } 4527 } 4528 4529 SmallVector<const Expr *, 8> Args( 4530 llvm::ArrayRef(E->getArgs(), E->getNumArgs())); 4531 4532 bool IsAssignmentOperatorCall = false; 4533 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); 4534 OCE && OCE->isAssignmentOp()) { 4535 // Just like with regular assignments, we need to special-case assignment 4536 // operators here and evaluate the RHS (the second arg) before the LHS (the 4537 // first arg. We fix this by using a Flip op later. 4538 assert(Args.size() == 2); 4539 IsAssignmentOperatorCall = true; 4540 std::reverse(Args.begin(), Args.end()); 4541 } 4542 // Calling a static operator will still 4543 // pass the instance, but we don't need it. 4544 // Discard it here. 4545 if (isa<CXXOperatorCallExpr>(E)) { 4546 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl); 4547 MD && MD->isStatic()) { 4548 if (!this->discard(E->getArg(0))) 4549 return false; 4550 // Drop first arg. 4551 Args.erase(Args.begin()); 4552 } 4553 } 4554 4555 std::optional<unsigned> CalleeOffset; 4556 // Add the (optional, implicit) This pointer. 4557 if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) { 4558 if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) { 4559 // If we end up creating a CallPtr op for this, we need the base of the 4560 // member pointer as the instance pointer, and later extract the function 4561 // decl as the function pointer. 4562 const Expr *Callee = E->getCallee(); 4563 CalleeOffset = 4564 this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false); 4565 if (!this->visit(Callee)) 4566 return false; 4567 if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E)) 4568 return false; 4569 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4570 return false; 4571 if (!this->emitGetMemberPtrBase(E)) 4572 return false; 4573 } else if (!this->visit(MC->getImplicitObjectArgument())) { 4574 return false; 4575 } 4576 } else if (!FuncDecl) { 4577 const Expr *Callee = E->getCallee(); 4578 CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false); 4579 if (!this->visit(Callee)) 4580 return false; 4581 if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E)) 4582 return false; 4583 } 4584 4585 llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args); 4586 // Put arguments on the stack. 4587 unsigned ArgIndex = 0; 4588 for (const auto *Arg : Args) { 4589 if (!this->visit(Arg)) 4590 return false; 4591 4592 // If we know the callee already, check the known parametrs for nullability. 4593 if (FuncDecl && NonNullArgs[ArgIndex]) { 4594 PrimType ArgT = classify(Arg).value_or(PT_Ptr); 4595 if (ArgT == PT_Ptr || ArgT == PT_FnPtr) { 4596 if (!this->emitCheckNonNullArg(ArgT, Arg)) 4597 return false; 4598 } 4599 } 4600 ++ArgIndex; 4601 } 4602 4603 // Undo the argument reversal we did earlier. 4604 if (IsAssignmentOperatorCall) { 4605 assert(Args.size() == 2); 4606 PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr); 4607 PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr); 4608 if (!this->emitFlip(Arg2T, Arg1T, E)) 4609 return false; 4610 } 4611 4612 if (FuncDecl) { 4613 const Function *Func = getFunction(FuncDecl); 4614 if (!Func) 4615 return false; 4616 assert(HasRVO == Func->hasRVO()); 4617 4618 bool HasQualifier = false; 4619 if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee())) 4620 HasQualifier = ME->hasQualifier(); 4621 4622 bool IsVirtual = false; 4623 if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) 4624 IsVirtual = MD->isVirtual(); 4625 4626 // In any case call the function. The return value will end up on the stack 4627 // and if the function has RVO, we already have the pointer on the stack to 4628 // write the result into. 4629 if (IsVirtual && !HasQualifier) { 4630 uint32_t VarArgSize = 0; 4631 unsigned NumParams = 4632 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4633 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4634 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4635 4636 if (!this->emitCallVirt(Func, VarArgSize, E)) 4637 return false; 4638 } else if (Func->isVariadic()) { 4639 uint32_t VarArgSize = 0; 4640 unsigned NumParams = 4641 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4642 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4643 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4644 if (!this->emitCallVar(Func, VarArgSize, E)) 4645 return false; 4646 } else { 4647 if (!this->emitCall(Func, 0, E)) 4648 return false; 4649 } 4650 } else { 4651 // Indirect call. Visit the callee, which will leave a FunctionPointer on 4652 // the stack. Cleanup of the returned value if necessary will be done after 4653 // the function call completed. 4654 4655 // Sum the size of all args from the call expr. 4656 uint32_t ArgSize = 0; 4657 for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) 4658 ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4659 4660 // Get the callee, either from a member pointer or function pointer saved in 4661 // CalleeOffset. 4662 if (isa<CXXMemberCallExpr>(E) && CalleeOffset) { 4663 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4664 return false; 4665 if (!this->emitGetMemberPtrDecl(E)) 4666 return false; 4667 } else { 4668 if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E)) 4669 return false; 4670 } 4671 if (!this->emitCallPtr(ArgSize, E, E)) 4672 return false; 4673 } 4674 4675 // Cleanup for discarded return values. 4676 if (DiscardResult && !ReturnType->isVoidType() && T) 4677 return this->emitPop(*T, E); 4678 4679 return true; 4680 } 4681 4682 template <class Emitter> 4683 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 4684 SourceLocScope<Emitter> SLS(this, E); 4685 4686 return this->delegate(E->getExpr()); 4687 } 4688 4689 template <class Emitter> 4690 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 4691 SourceLocScope<Emitter> SLS(this, E); 4692 4693 const Expr *SubExpr = E->getExpr(); 4694 if (std::optional<PrimType> T = classify(E->getExpr())) 4695 return this->visit(SubExpr); 4696 4697 assert(Initializing); 4698 return this->visitInitializer(SubExpr); 4699 } 4700 4701 template <class Emitter> 4702 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 4703 if (DiscardResult) 4704 return true; 4705 4706 return this->emitConstBool(E->getValue(), E); 4707 } 4708 4709 template <class Emitter> 4710 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr( 4711 const CXXNullPtrLiteralExpr *E) { 4712 if (DiscardResult) 4713 return true; 4714 4715 return this->emitNullPtr(nullptr, E); 4716 } 4717 4718 template <class Emitter> 4719 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) { 4720 if (DiscardResult) 4721 return true; 4722 4723 assert(E->getType()->isIntegerType()); 4724 4725 PrimType T = classifyPrim(E->getType()); 4726 return this->emitZero(T, E); 4727 } 4728 4729 template <class Emitter> 4730 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) { 4731 if (DiscardResult) 4732 return true; 4733 4734 if (this->LambdaThisCapture.Offset > 0) { 4735 if (this->LambdaThisCapture.IsPtr) 4736 return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E); 4737 return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E); 4738 } 4739 4740 // In some circumstances, the 'this' pointer does not actually refer to the 4741 // instance pointer of the current function frame, but e.g. to the declaration 4742 // currently being initialized. Here we emit the necessary instruction(s) for 4743 // this scenario. 4744 if (!InitStackActive || !E->isImplicit()) 4745 return this->emitThis(E); 4746 4747 if (InitStackActive && !InitStack.empty()) { 4748 unsigned StartIndex = 0; 4749 for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) { 4750 if (InitStack[StartIndex].Kind != InitLink::K_Field && 4751 InitStack[StartIndex].Kind != InitLink::K_Elem) 4752 break; 4753 } 4754 4755 for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) { 4756 if (!InitStack[I].template emit<Emitter>(this, E)) 4757 return false; 4758 } 4759 return true; 4760 } 4761 return this->emitThis(E); 4762 } 4763 4764 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) { 4765 switch (S->getStmtClass()) { 4766 case Stmt::CompoundStmtClass: 4767 return visitCompoundStmt(cast<CompoundStmt>(S)); 4768 case Stmt::DeclStmtClass: 4769 return visitDeclStmt(cast<DeclStmt>(S)); 4770 case Stmt::ReturnStmtClass: 4771 return visitReturnStmt(cast<ReturnStmt>(S)); 4772 case Stmt::IfStmtClass: 4773 return visitIfStmt(cast<IfStmt>(S)); 4774 case Stmt::WhileStmtClass: 4775 return visitWhileStmt(cast<WhileStmt>(S)); 4776 case Stmt::DoStmtClass: 4777 return visitDoStmt(cast<DoStmt>(S)); 4778 case Stmt::ForStmtClass: 4779 return visitForStmt(cast<ForStmt>(S)); 4780 case Stmt::CXXForRangeStmtClass: 4781 return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); 4782 case Stmt::BreakStmtClass: 4783 return visitBreakStmt(cast<BreakStmt>(S)); 4784 case Stmt::ContinueStmtClass: 4785 return visitContinueStmt(cast<ContinueStmt>(S)); 4786 case Stmt::SwitchStmtClass: 4787 return visitSwitchStmt(cast<SwitchStmt>(S)); 4788 case Stmt::CaseStmtClass: 4789 return visitCaseStmt(cast<CaseStmt>(S)); 4790 case Stmt::DefaultStmtClass: 4791 return visitDefaultStmt(cast<DefaultStmt>(S)); 4792 case Stmt::AttributedStmtClass: 4793 return visitAttributedStmt(cast<AttributedStmt>(S)); 4794 case Stmt::CXXTryStmtClass: 4795 return visitCXXTryStmt(cast<CXXTryStmt>(S)); 4796 case Stmt::NullStmtClass: 4797 return true; 4798 // Always invalid statements. 4799 case Stmt::GCCAsmStmtClass: 4800 case Stmt::MSAsmStmtClass: 4801 case Stmt::GotoStmtClass: 4802 return this->emitInvalid(S); 4803 case Stmt::LabelStmtClass: 4804 return this->visitStmt(cast<LabelStmt>(S)->getSubStmt()); 4805 default: { 4806 if (const auto *E = dyn_cast<Expr>(S)) 4807 return this->discard(E); 4808 return false; 4809 } 4810 } 4811 } 4812 4813 template <class Emitter> 4814 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) { 4815 BlockScope<Emitter> Scope(this); 4816 for (const auto *InnerStmt : S->body()) 4817 if (!visitStmt(InnerStmt)) 4818 return false; 4819 return Scope.destroyLocals(); 4820 } 4821 4822 template <class Emitter> 4823 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) { 4824 for (const auto *D : DS->decls()) { 4825 if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl, 4826 FunctionDecl>(D)) 4827 continue; 4828 4829 const auto *VD = dyn_cast<VarDecl>(D); 4830 if (!VD) 4831 return false; 4832 if (!this->visitVarDecl(VD)) 4833 return false; 4834 } 4835 4836 return true; 4837 } 4838 4839 template <class Emitter> 4840 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) { 4841 if (this->InStmtExpr) 4842 return this->emitUnsupported(RS); 4843 4844 if (const Expr *RE = RS->getRetValue()) { 4845 LocalScope<Emitter> RetScope(this); 4846 if (ReturnType) { 4847 // Primitive types are simply returned. 4848 if (!this->visit(RE)) 4849 return false; 4850 this->emitCleanup(); 4851 return this->emitRet(*ReturnType, RS); 4852 } else if (RE->getType()->isVoidType()) { 4853 if (!this->visit(RE)) 4854 return false; 4855 } else { 4856 // RVO - construct the value in the return location. 4857 if (!this->emitRVOPtr(RE)) 4858 return false; 4859 if (!this->visitInitializer(RE)) 4860 return false; 4861 if (!this->emitPopPtr(RE)) 4862 return false; 4863 4864 this->emitCleanup(); 4865 return this->emitRetVoid(RS); 4866 } 4867 } 4868 4869 // Void return. 4870 this->emitCleanup(); 4871 return this->emitRetVoid(RS); 4872 } 4873 4874 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) { 4875 if (auto *CondInit = IS->getInit()) 4876 if (!visitStmt(CondInit)) 4877 return false; 4878 4879 if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt()) 4880 if (!visitDeclStmt(CondDecl)) 4881 return false; 4882 4883 // Compile condition. 4884 if (IS->isNonNegatedConsteval()) { 4885 if (!this->emitIsConstantContext(IS)) 4886 return false; 4887 } else if (IS->isNegatedConsteval()) { 4888 if (!this->emitIsConstantContext(IS)) 4889 return false; 4890 if (!this->emitInv(IS)) 4891 return false; 4892 } else { 4893 if (!this->visitBool(IS->getCond())) 4894 return false; 4895 } 4896 4897 if (const Stmt *Else = IS->getElse()) { 4898 LabelTy LabelElse = this->getLabel(); 4899 LabelTy LabelEnd = this->getLabel(); 4900 if (!this->jumpFalse(LabelElse)) 4901 return false; 4902 if (!visitStmt(IS->getThen())) 4903 return false; 4904 if (!this->jump(LabelEnd)) 4905 return false; 4906 this->emitLabel(LabelElse); 4907 if (!visitStmt(Else)) 4908 return false; 4909 this->emitLabel(LabelEnd); 4910 } else { 4911 LabelTy LabelEnd = this->getLabel(); 4912 if (!this->jumpFalse(LabelEnd)) 4913 return false; 4914 if (!visitStmt(IS->getThen())) 4915 return false; 4916 this->emitLabel(LabelEnd); 4917 } 4918 4919 return true; 4920 } 4921 4922 template <class Emitter> 4923 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) { 4924 const Expr *Cond = S->getCond(); 4925 const Stmt *Body = S->getBody(); 4926 4927 LabelTy CondLabel = this->getLabel(); // Label before the condition. 4928 LabelTy EndLabel = this->getLabel(); // Label after the loop. 4929 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4930 4931 this->fallthrough(CondLabel); 4932 this->emitLabel(CondLabel); 4933 4934 { 4935 LocalScope<Emitter> CondScope(this); 4936 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4937 if (!visitDeclStmt(CondDecl)) 4938 return false; 4939 4940 if (!this->visitBool(Cond)) 4941 return false; 4942 if (!this->jumpFalse(EndLabel)) 4943 return false; 4944 4945 if (!this->visitStmt(Body)) 4946 return false; 4947 4948 if (!CondScope.destroyLocals()) 4949 return false; 4950 } 4951 if (!this->jump(CondLabel)) 4952 return false; 4953 this->fallthrough(EndLabel); 4954 this->emitLabel(EndLabel); 4955 4956 return true; 4957 } 4958 4959 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) { 4960 const Expr *Cond = S->getCond(); 4961 const Stmt *Body = S->getBody(); 4962 4963 LabelTy StartLabel = this->getLabel(); 4964 LabelTy EndLabel = this->getLabel(); 4965 LabelTy CondLabel = this->getLabel(); 4966 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4967 4968 this->fallthrough(StartLabel); 4969 this->emitLabel(StartLabel); 4970 4971 { 4972 LocalScope<Emitter> CondScope(this); 4973 if (!this->visitStmt(Body)) 4974 return false; 4975 this->fallthrough(CondLabel); 4976 this->emitLabel(CondLabel); 4977 if (!this->visitBool(Cond)) 4978 return false; 4979 4980 if (!CondScope.destroyLocals()) 4981 return false; 4982 } 4983 if (!this->jumpTrue(StartLabel)) 4984 return false; 4985 4986 this->fallthrough(EndLabel); 4987 this->emitLabel(EndLabel); 4988 return true; 4989 } 4990 4991 template <class Emitter> 4992 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) { 4993 // for (Init; Cond; Inc) { Body } 4994 const Stmt *Init = S->getInit(); 4995 const Expr *Cond = S->getCond(); 4996 const Expr *Inc = S->getInc(); 4997 const Stmt *Body = S->getBody(); 4998 4999 LabelTy EndLabel = this->getLabel(); 5000 LabelTy CondLabel = this->getLabel(); 5001 LabelTy IncLabel = this->getLabel(); 5002 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 5003 5004 if (Init && !this->visitStmt(Init)) 5005 return false; 5006 5007 this->fallthrough(CondLabel); 5008 this->emitLabel(CondLabel); 5009 5010 { 5011 LocalScope<Emitter> CondScope(this); 5012 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 5013 if (!visitDeclStmt(CondDecl)) 5014 return false; 5015 5016 if (Cond) { 5017 if (!this->visitBool(Cond)) 5018 return false; 5019 if (!this->jumpFalse(EndLabel)) 5020 return false; 5021 } 5022 5023 if (Body && !this->visitStmt(Body)) 5024 return false; 5025 5026 this->fallthrough(IncLabel); 5027 this->emitLabel(IncLabel); 5028 if (Inc && !this->discard(Inc)) 5029 return false; 5030 5031 if (!CondScope.destroyLocals()) 5032 return false; 5033 } 5034 if (!this->jump(CondLabel)) 5035 return false; 5036 5037 this->fallthrough(EndLabel); 5038 this->emitLabel(EndLabel); 5039 return true; 5040 } 5041 5042 template <class Emitter> 5043 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) { 5044 const Stmt *Init = S->getInit(); 5045 const Expr *Cond = S->getCond(); 5046 const Expr *Inc = S->getInc(); 5047 const Stmt *Body = S->getBody(); 5048 const Stmt *BeginStmt = S->getBeginStmt(); 5049 const Stmt *RangeStmt = S->getRangeStmt(); 5050 const Stmt *EndStmt = S->getEndStmt(); 5051 const VarDecl *LoopVar = S->getLoopVariable(); 5052 5053 LabelTy EndLabel = this->getLabel(); 5054 LabelTy CondLabel = this->getLabel(); 5055 LabelTy IncLabel = this->getLabel(); 5056 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 5057 5058 // Emit declarations needed in the loop. 5059 if (Init && !this->visitStmt(Init)) 5060 return false; 5061 if (!this->visitStmt(RangeStmt)) 5062 return false; 5063 if (!this->visitStmt(BeginStmt)) 5064 return false; 5065 if (!this->visitStmt(EndStmt)) 5066 return false; 5067 5068 // Now the condition as well as the loop variable assignment. 5069 this->fallthrough(CondLabel); 5070 this->emitLabel(CondLabel); 5071 if (!this->visitBool(Cond)) 5072 return false; 5073 if (!this->jumpFalse(EndLabel)) 5074 return false; 5075 5076 if (!this->visitVarDecl(LoopVar)) 5077 return false; 5078 5079 // Body. 5080 { 5081 if (!this->visitStmt(Body)) 5082 return false; 5083 5084 this->fallthrough(IncLabel); 5085 this->emitLabel(IncLabel); 5086 if (!this->discard(Inc)) 5087 return false; 5088 } 5089 5090 if (!this->jump(CondLabel)) 5091 return false; 5092 5093 this->fallthrough(EndLabel); 5094 this->emitLabel(EndLabel); 5095 return true; 5096 } 5097 5098 template <class Emitter> 5099 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) { 5100 if (!BreakLabel) 5101 return false; 5102 5103 for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope; 5104 C = C->getParent()) 5105 C->emitDestruction(); 5106 return this->jump(*BreakLabel); 5107 } 5108 5109 template <class Emitter> 5110 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) { 5111 if (!ContinueLabel) 5112 return false; 5113 5114 for (VariableScope<Emitter> *C = VarScope; 5115 C && C->getParent() != ContinueVarScope; C = C->getParent()) 5116 C->emitDestruction(); 5117 return this->jump(*ContinueLabel); 5118 } 5119 5120 template <class Emitter> 5121 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) { 5122 const Expr *Cond = S->getCond(); 5123 PrimType CondT = this->classifyPrim(Cond->getType()); 5124 LocalScope<Emitter> LS(this); 5125 5126 LabelTy EndLabel = this->getLabel(); 5127 OptLabelTy DefaultLabel = std::nullopt; 5128 unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false); 5129 5130 if (const auto *CondInit = S->getInit()) 5131 if (!visitStmt(CondInit)) 5132 return false; 5133 5134 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 5135 if (!visitDeclStmt(CondDecl)) 5136 return false; 5137 5138 // Initialize condition variable. 5139 if (!this->visit(Cond)) 5140 return false; 5141 if (!this->emitSetLocal(CondT, CondVar, S)) 5142 return false; 5143 5144 CaseMap CaseLabels; 5145 // Create labels and comparison ops for all case statements. 5146 for (const SwitchCase *SC = S->getSwitchCaseList(); SC; 5147 SC = SC->getNextSwitchCase()) { 5148 if (const auto *CS = dyn_cast<CaseStmt>(SC)) { 5149 // FIXME: Implement ranges. 5150 if (CS->caseStmtIsGNURange()) 5151 return false; 5152 CaseLabels[SC] = this->getLabel(); 5153 5154 const Expr *Value = CS->getLHS(); 5155 PrimType ValueT = this->classifyPrim(Value->getType()); 5156 5157 // Compare the case statement's value to the switch condition. 5158 if (!this->emitGetLocal(CondT, CondVar, CS)) 5159 return false; 5160 if (!this->visit(Value)) 5161 return false; 5162 5163 // Compare and jump to the case label. 5164 if (!this->emitEQ(ValueT, S)) 5165 return false; 5166 if (!this->jumpTrue(CaseLabels[CS])) 5167 return false; 5168 } else { 5169 assert(!DefaultLabel); 5170 DefaultLabel = this->getLabel(); 5171 } 5172 } 5173 5174 // If none of the conditions above were true, fall through to the default 5175 // statement or jump after the switch statement. 5176 if (DefaultLabel) { 5177 if (!this->jump(*DefaultLabel)) 5178 return false; 5179 } else { 5180 if (!this->jump(EndLabel)) 5181 return false; 5182 } 5183 5184 SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel); 5185 if (!this->visitStmt(S->getBody())) 5186 return false; 5187 this->emitLabel(EndLabel); 5188 5189 return LS.destroyLocals(); 5190 } 5191 5192 template <class Emitter> 5193 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) { 5194 this->emitLabel(CaseLabels[S]); 5195 return this->visitStmt(S->getSubStmt()); 5196 } 5197 5198 template <class Emitter> 5199 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) { 5200 this->emitLabel(*DefaultLabel); 5201 return this->visitStmt(S->getSubStmt()); 5202 } 5203 5204 template <class Emitter> 5205 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) { 5206 if (this->Ctx.getLangOpts().CXXAssumptions && 5207 !this->Ctx.getLangOpts().MSVCCompat) { 5208 for (const Attr *A : S->getAttrs()) { 5209 auto *AA = dyn_cast<CXXAssumeAttr>(A); 5210 if (!AA) 5211 continue; 5212 5213 assert(isa<NullStmt>(S->getSubStmt())); 5214 5215 const Expr *Assumption = AA->getAssumption(); 5216 if (Assumption->isValueDependent()) 5217 return false; 5218 5219 if (Assumption->HasSideEffects(this->Ctx.getASTContext())) 5220 continue; 5221 5222 // Evaluate assumption. 5223 if (!this->visitBool(Assumption)) 5224 return false; 5225 5226 if (!this->emitAssume(Assumption)) 5227 return false; 5228 } 5229 } 5230 5231 // Ignore other attributes. 5232 return this->visitStmt(S->getSubStmt()); 5233 } 5234 5235 template <class Emitter> 5236 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) { 5237 // Ignore all handlers. 5238 return this->visitStmt(S->getTryBlock()); 5239 } 5240 5241 template <class Emitter> 5242 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) { 5243 assert(MD->isLambdaStaticInvoker()); 5244 assert(MD->hasBody()); 5245 assert(cast<CompoundStmt>(MD->getBody())->body_empty()); 5246 5247 const CXXRecordDecl *ClosureClass = MD->getParent(); 5248 const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); 5249 assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); 5250 const Function *Func = this->getFunction(LambdaCallOp); 5251 if (!Func) 5252 return false; 5253 assert(Func->hasThisPointer()); 5254 assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO())); 5255 5256 if (Func->hasRVO()) { 5257 if (!this->emitRVOPtr(MD)) 5258 return false; 5259 } 5260 5261 // The lambda call operator needs an instance pointer, but we don't have 5262 // one here, and we don't need one either because the lambda cannot have 5263 // any captures, as verified above. Emit a null pointer. This is then 5264 // special-cased when interpreting to not emit any misleading diagnostics. 5265 if (!this->emitNullPtr(nullptr, MD)) 5266 return false; 5267 5268 // Forward all arguments from the static invoker to the lambda call operator. 5269 for (const ParmVarDecl *PVD : MD->parameters()) { 5270 auto It = this->Params.find(PVD); 5271 assert(It != this->Params.end()); 5272 5273 // We do the lvalue-to-rvalue conversion manually here, so no need 5274 // to care about references. 5275 PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr); 5276 if (!this->emitGetParam(ParamType, It->second.Offset, MD)) 5277 return false; 5278 } 5279 5280 if (!this->emitCall(Func, 0, LambdaCallOp)) 5281 return false; 5282 5283 this->emitCleanup(); 5284 if (ReturnType) 5285 return this->emitRet(*ReturnType, MD); 5286 5287 // Nothing to do, since we emitted the RVO pointer above. 5288 return this->emitRetVoid(MD); 5289 } 5290 5291 template <class Emitter> 5292 bool Compiler<Emitter>::checkLiteralType(const Expr *E) { 5293 if (Ctx.getLangOpts().CPlusPlus23) 5294 return true; 5295 5296 if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext())) 5297 return true; 5298 5299 return this->emitCheckLiteralType(E->getType().getTypePtr(), E); 5300 } 5301 5302 template <class Emitter> 5303 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) { 5304 assert(!ReturnType); 5305 5306 auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset, 5307 const Expr *InitExpr) -> bool { 5308 // We don't know what to do with these, so just return false. 5309 if (InitExpr->getType().isNull()) 5310 return false; 5311 5312 if (std::optional<PrimType> T = this->classify(InitExpr)) { 5313 if (!this->visit(InitExpr)) 5314 return false; 5315 5316 if (F->isBitField()) 5317 return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr); 5318 return this->emitInitThisField(*T, FieldOffset, InitExpr); 5319 } 5320 // Non-primitive case. Get a pointer to the field-to-initialize 5321 // on the stack and call visitInitialzer() for it. 5322 InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset)); 5323 if (!this->emitGetPtrThisField(FieldOffset, InitExpr)) 5324 return false; 5325 5326 if (!this->visitInitializer(InitExpr)) 5327 return false; 5328 5329 return this->emitFinishInitPop(InitExpr); 5330 }; 5331 5332 const RecordDecl *RD = Ctor->getParent(); 5333 const Record *R = this->getRecord(RD); 5334 if (!R) 5335 return false; 5336 5337 if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) { 5338 // union copy and move ctors are special. 5339 assert(cast<CompoundStmt>(Ctor->getBody())->body_empty()); 5340 if (!this->emitThis(Ctor)) 5341 return false; 5342 5343 auto PVD = Ctor->getParamDecl(0); 5344 ParamOffset PO = this->Params[PVD]; // Must exist. 5345 5346 if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor)) 5347 return false; 5348 5349 return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) && 5350 this->emitRetVoid(Ctor); 5351 } 5352 5353 InitLinkScope<Emitter> InitScope(this, InitLink::This()); 5354 for (const auto *Init : Ctor->inits()) { 5355 // Scope needed for the initializers. 5356 BlockScope<Emitter> Scope(this); 5357 5358 const Expr *InitExpr = Init->getInit(); 5359 if (const FieldDecl *Member = Init->getMember()) { 5360 const Record::Field *F = R->getField(Member); 5361 5362 if (!emitFieldInitializer(F, F->Offset, InitExpr)) 5363 return false; 5364 } else if (const Type *Base = Init->getBaseClass()) { 5365 const auto *BaseDecl = Base->getAsCXXRecordDecl(); 5366 assert(BaseDecl); 5367 5368 if (Init->isBaseVirtual()) { 5369 assert(R->getVirtualBase(BaseDecl)); 5370 if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr)) 5371 return false; 5372 5373 } else { 5374 // Base class initializer. 5375 // Get This Base and call initializer on it. 5376 const Record::Base *B = R->getBase(BaseDecl); 5377 assert(B); 5378 if (!this->emitGetPtrThisBase(B->Offset, InitExpr)) 5379 return false; 5380 } 5381 5382 if (!this->visitInitializer(InitExpr)) 5383 return false; 5384 if (!this->emitFinishInitPop(InitExpr)) 5385 return false; 5386 } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) { 5387 assert(IFD->getChainingSize() >= 2); 5388 5389 unsigned NestedFieldOffset = 0; 5390 const Record::Field *NestedField = nullptr; 5391 for (const NamedDecl *ND : IFD->chain()) { 5392 const auto *FD = cast<FieldDecl>(ND); 5393 const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); 5394 assert(FieldRecord); 5395 5396 NestedField = FieldRecord->getField(FD); 5397 assert(NestedField); 5398 5399 NestedFieldOffset += NestedField->Offset; 5400 } 5401 assert(NestedField); 5402 5403 if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr)) 5404 return false; 5405 } else { 5406 assert(Init->isDelegatingInitializer()); 5407 if (!this->emitThis(InitExpr)) 5408 return false; 5409 if (!this->visitInitializer(Init->getInit())) 5410 return false; 5411 if (!this->emitPopPtr(InitExpr)) 5412 return false; 5413 } 5414 5415 if (!Scope.destroyLocals()) 5416 return false; 5417 } 5418 5419 if (const auto *Body = Ctor->getBody()) 5420 if (!visitStmt(Body)) 5421 return false; 5422 5423 return this->emitRetVoid(SourceInfo{}); 5424 } 5425 5426 template <class Emitter> 5427 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) { 5428 const RecordDecl *RD = Dtor->getParent(); 5429 const Record *R = this->getRecord(RD); 5430 if (!R) 5431 return false; 5432 5433 if (!Dtor->isTrivial() && Dtor->getBody()) { 5434 if (!this->visitStmt(Dtor->getBody())) 5435 return false; 5436 } 5437 5438 if (!this->emitThis(Dtor)) 5439 return false; 5440 5441 assert(R); 5442 if (!R->isUnion()) { 5443 // First, destroy all fields. 5444 for (const Record::Field &Field : llvm::reverse(R->fields())) { 5445 const Descriptor *D = Field.Desc; 5446 if (!D->isPrimitive() && !D->isPrimitiveArray()) { 5447 if (!this->emitGetPtrField(Field.Offset, SourceInfo{})) 5448 return false; 5449 if (!this->emitDestruction(D, SourceInfo{})) 5450 return false; 5451 if (!this->emitPopPtr(SourceInfo{})) 5452 return false; 5453 } 5454 } 5455 } 5456 5457 for (const Record::Base &Base : llvm::reverse(R->bases())) { 5458 if (Base.R->isAnonymousUnion()) 5459 continue; 5460 5461 if (!this->emitGetPtrBase(Base.Offset, SourceInfo{})) 5462 return false; 5463 if (!this->emitRecordDestruction(Base.R, {})) 5464 return false; 5465 if (!this->emitPopPtr(SourceInfo{})) 5466 return false; 5467 } 5468 5469 // FIXME: Virtual bases. 5470 return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor); 5471 } 5472 5473 template <class Emitter> 5474 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) { 5475 // Classify the return type. 5476 ReturnType = this->classify(F->getReturnType()); 5477 5478 if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F)) 5479 return this->compileConstructor(Ctor); 5480 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F)) 5481 return this->compileDestructor(Dtor); 5482 5483 // Emit custom code if this is a lambda static invoker. 5484 if (const auto *MD = dyn_cast<CXXMethodDecl>(F); 5485 MD && MD->isLambdaStaticInvoker()) 5486 return this->emitLambdaStaticInvokerBody(MD); 5487 5488 // Regular functions. 5489 if (const auto *Body = F->getBody()) 5490 if (!visitStmt(Body)) 5491 return false; 5492 5493 // Emit a guard return to protect against a code path missing one. 5494 if (F->getReturnType()->isVoidType()) 5495 return this->emitRetVoid(SourceInfo{}); 5496 return this->emitNoRet(SourceInfo{}); 5497 } 5498 5499 template <class Emitter> 5500 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) { 5501 const Expr *SubExpr = E->getSubExpr(); 5502 if (SubExpr->getType()->isAnyComplexType()) 5503 return this->VisitComplexUnaryOperator(E); 5504 if (SubExpr->getType()->isVectorType()) 5505 return this->VisitVectorUnaryOperator(E); 5506 if (SubExpr->getType()->isFixedPointType()) 5507 return this->VisitFixedPointUnaryOperator(E); 5508 std::optional<PrimType> T = classify(SubExpr->getType()); 5509 5510 switch (E->getOpcode()) { 5511 case UO_PostInc: { // x++ 5512 if (!Ctx.getLangOpts().CPlusPlus14) 5513 return this->emitInvalid(E); 5514 if (!T) 5515 return this->emitError(E); 5516 5517 if (!this->visit(SubExpr)) 5518 return false; 5519 5520 if (T == PT_Ptr || T == PT_FnPtr) { 5521 if (!this->emitIncPtr(E)) 5522 return false; 5523 5524 return DiscardResult ? this->emitPopPtr(E) : true; 5525 } 5526 5527 if (T == PT_Float) { 5528 return DiscardResult ? this->emitIncfPop(getFPOptions(E), E) 5529 : this->emitIncf(getFPOptions(E), E); 5530 } 5531 5532 return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E); 5533 } 5534 case UO_PostDec: { // x-- 5535 if (!Ctx.getLangOpts().CPlusPlus14) 5536 return this->emitInvalid(E); 5537 if (!T) 5538 return this->emitError(E); 5539 5540 if (!this->visit(SubExpr)) 5541 return false; 5542 5543 if (T == PT_Ptr || T == PT_FnPtr) { 5544 if (!this->emitDecPtr(E)) 5545 return false; 5546 5547 return DiscardResult ? this->emitPopPtr(E) : true; 5548 } 5549 5550 if (T == PT_Float) { 5551 return DiscardResult ? this->emitDecfPop(getFPOptions(E), E) 5552 : this->emitDecf(getFPOptions(E), E); 5553 } 5554 5555 return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E); 5556 } 5557 case UO_PreInc: { // ++x 5558 if (!Ctx.getLangOpts().CPlusPlus14) 5559 return this->emitInvalid(E); 5560 if (!T) 5561 return this->emitError(E); 5562 5563 if (!this->visit(SubExpr)) 5564 return false; 5565 5566 if (T == PT_Ptr || T == PT_FnPtr) { 5567 if (!this->emitLoadPtr(E)) 5568 return false; 5569 if (!this->emitConstUint8(1, E)) 5570 return false; 5571 if (!this->emitAddOffsetUint8(E)) 5572 return false; 5573 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5574 } 5575 5576 // Post-inc and pre-inc are the same if the value is to be discarded. 5577 if (DiscardResult) { 5578 if (T == PT_Float) 5579 return this->emitIncfPop(getFPOptions(E), E); 5580 return this->emitIncPop(*T, E); 5581 } 5582 5583 if (T == PT_Float) { 5584 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5585 if (!this->emitLoadFloat(E)) 5586 return false; 5587 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5588 return false; 5589 if (!this->emitAddf(getFPOptions(E), E)) 5590 return false; 5591 if (!this->emitStoreFloat(E)) 5592 return false; 5593 } else { 5594 assert(isIntegralType(*T)); 5595 if (!this->emitLoad(*T, E)) 5596 return false; 5597 if (!this->emitConst(1, E)) 5598 return false; 5599 if (!this->emitAdd(*T, E)) 5600 return false; 5601 if (!this->emitStore(*T, E)) 5602 return false; 5603 } 5604 return E->isGLValue() || this->emitLoadPop(*T, E); 5605 } 5606 case UO_PreDec: { // --x 5607 if (!Ctx.getLangOpts().CPlusPlus14) 5608 return this->emitInvalid(E); 5609 if (!T) 5610 return this->emitError(E); 5611 5612 if (!this->visit(SubExpr)) 5613 return false; 5614 5615 if (T == PT_Ptr || T == PT_FnPtr) { 5616 if (!this->emitLoadPtr(E)) 5617 return false; 5618 if (!this->emitConstUint8(1, E)) 5619 return false; 5620 if (!this->emitSubOffsetUint8(E)) 5621 return false; 5622 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5623 } 5624 5625 // Post-dec and pre-dec are the same if the value is to be discarded. 5626 if (DiscardResult) { 5627 if (T == PT_Float) 5628 return this->emitDecfPop(getFPOptions(E), E); 5629 return this->emitDecPop(*T, E); 5630 } 5631 5632 if (T == PT_Float) { 5633 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5634 if (!this->emitLoadFloat(E)) 5635 return false; 5636 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5637 return false; 5638 if (!this->emitSubf(getFPOptions(E), E)) 5639 return false; 5640 if (!this->emitStoreFloat(E)) 5641 return false; 5642 } else { 5643 assert(isIntegralType(*T)); 5644 if (!this->emitLoad(*T, E)) 5645 return false; 5646 if (!this->emitConst(1, E)) 5647 return false; 5648 if (!this->emitSub(*T, E)) 5649 return false; 5650 if (!this->emitStore(*T, E)) 5651 return false; 5652 } 5653 return E->isGLValue() || this->emitLoadPop(*T, E); 5654 } 5655 case UO_LNot: // !x 5656 if (!T) 5657 return this->emitError(E); 5658 5659 if (DiscardResult) 5660 return this->discard(SubExpr); 5661 5662 if (!this->visitBool(SubExpr)) 5663 return false; 5664 5665 if (!this->emitInv(E)) 5666 return false; 5667 5668 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5669 return this->emitCast(PT_Bool, ET, E); 5670 return true; 5671 case UO_Minus: // -x 5672 if (!T) 5673 return this->emitError(E); 5674 5675 if (!this->visit(SubExpr)) 5676 return false; 5677 return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E); 5678 case UO_Plus: // +x 5679 if (!T) 5680 return this->emitError(E); 5681 5682 if (!this->visit(SubExpr)) // noop 5683 return false; 5684 return DiscardResult ? this->emitPop(*T, E) : true; 5685 case UO_AddrOf: // &x 5686 if (E->getType()->isMemberPointerType()) { 5687 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 5688 // member can be formed. 5689 return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E); 5690 } 5691 // We should already have a pointer when we get here. 5692 return this->delegate(SubExpr); 5693 case UO_Deref: // *x 5694 if (DiscardResult) 5695 return this->discard(SubExpr); 5696 return this->visit(SubExpr); 5697 case UO_Not: // ~x 5698 if (!T) 5699 return this->emitError(E); 5700 5701 if (!this->visit(SubExpr)) 5702 return false; 5703 return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E); 5704 case UO_Real: // __real x 5705 assert(T); 5706 return this->delegate(SubExpr); 5707 case UO_Imag: { // __imag x 5708 assert(T); 5709 if (!this->discard(SubExpr)) 5710 return false; 5711 return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr); 5712 } 5713 case UO_Extension: 5714 return this->delegate(SubExpr); 5715 case UO_Coawait: 5716 assert(false && "Unhandled opcode"); 5717 } 5718 5719 return false; 5720 } 5721 5722 template <class Emitter> 5723 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) { 5724 const Expr *SubExpr = E->getSubExpr(); 5725 assert(SubExpr->getType()->isAnyComplexType()); 5726 5727 if (DiscardResult) 5728 return this->discard(SubExpr); 5729 5730 std::optional<PrimType> ResT = classify(E); 5731 auto prepareResult = [=]() -> bool { 5732 if (!ResT && !Initializing) { 5733 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5734 if (!LocalIndex) 5735 return false; 5736 return this->emitGetPtrLocal(*LocalIndex, E); 5737 } 5738 5739 return true; 5740 }; 5741 5742 // The offset of the temporary, if we created one. 5743 unsigned SubExprOffset = ~0u; 5744 auto createTemp = [=, &SubExprOffset]() -> bool { 5745 SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5746 if (!this->visit(SubExpr)) 5747 return false; 5748 return this->emitSetLocal(PT_Ptr, SubExprOffset, E); 5749 }; 5750 5751 PrimType ElemT = classifyComplexElementType(SubExpr->getType()); 5752 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5753 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5754 return false; 5755 return this->emitArrayElemPop(ElemT, Index, E); 5756 }; 5757 5758 switch (E->getOpcode()) { 5759 case UO_Minus: 5760 if (!prepareResult()) 5761 return false; 5762 if (!createTemp()) 5763 return false; 5764 for (unsigned I = 0; I != 2; ++I) { 5765 if (!getElem(SubExprOffset, I)) 5766 return false; 5767 if (!this->emitNeg(ElemT, E)) 5768 return false; 5769 if (!this->emitInitElem(ElemT, I, E)) 5770 return false; 5771 } 5772 break; 5773 5774 case UO_Plus: // +x 5775 case UO_AddrOf: // &x 5776 case UO_Deref: // *x 5777 return this->delegate(SubExpr); 5778 5779 case UO_LNot: 5780 if (!this->visit(SubExpr)) 5781 return false; 5782 if (!this->emitComplexBoolCast(SubExpr)) 5783 return false; 5784 if (!this->emitInv(E)) 5785 return false; 5786 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5787 return this->emitCast(PT_Bool, ET, E); 5788 return true; 5789 5790 case UO_Real: 5791 return this->emitComplexReal(SubExpr); 5792 5793 case UO_Imag: 5794 if (!this->visit(SubExpr)) 5795 return false; 5796 5797 if (SubExpr->isLValue()) { 5798 if (!this->emitConstUint8(1, E)) 5799 return false; 5800 return this->emitArrayElemPtrPopUint8(E); 5801 } 5802 5803 // Since our _Complex implementation does not map to a primitive type, 5804 // we sometimes have to do the lvalue-to-rvalue conversion here manually. 5805 return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E); 5806 5807 case UO_Not: // ~x 5808 if (!this->visit(SubExpr)) 5809 return false; 5810 // Negate the imaginary component. 5811 if (!this->emitArrayElem(ElemT, 1, E)) 5812 return false; 5813 if (!this->emitNeg(ElemT, E)) 5814 return false; 5815 if (!this->emitInitElem(ElemT, 1, E)) 5816 return false; 5817 return DiscardResult ? this->emitPopPtr(E) : true; 5818 5819 case UO_Extension: 5820 return this->delegate(SubExpr); 5821 5822 default: 5823 return this->emitInvalid(E); 5824 } 5825 5826 return true; 5827 } 5828 5829 template <class Emitter> 5830 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) { 5831 const Expr *SubExpr = E->getSubExpr(); 5832 assert(SubExpr->getType()->isVectorType()); 5833 5834 if (DiscardResult) 5835 return this->discard(SubExpr); 5836 5837 auto UnaryOp = E->getOpcode(); 5838 if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot && 5839 UnaryOp != UO_Not && UnaryOp != UO_AddrOf) 5840 return this->emitInvalid(E); 5841 5842 // Nothing to do here. 5843 if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf) 5844 return this->delegate(SubExpr); 5845 5846 if (!Initializing) { 5847 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5848 if (!LocalIndex) 5849 return false; 5850 if (!this->emitGetPtrLocal(*LocalIndex, E)) 5851 return false; 5852 } 5853 5854 // The offset of the temporary, if we created one. 5855 unsigned SubExprOffset = 5856 this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5857 if (!this->visit(SubExpr)) 5858 return false; 5859 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E)) 5860 return false; 5861 5862 const auto *VecTy = SubExpr->getType()->getAs<VectorType>(); 5863 PrimType ElemT = classifyVectorElementType(SubExpr->getType()); 5864 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5865 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5866 return false; 5867 return this->emitArrayElemPop(ElemT, Index, E); 5868 }; 5869 5870 switch (UnaryOp) { 5871 case UO_Minus: 5872 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5873 if (!getElem(SubExprOffset, I)) 5874 return false; 5875 if (!this->emitNeg(ElemT, E)) 5876 return false; 5877 if (!this->emitInitElem(ElemT, I, E)) 5878 return false; 5879 } 5880 break; 5881 case UO_LNot: { // !x 5882 // In C++, the logic operators !, &&, || are available for vectors. !v is 5883 // equivalent to v == 0. 5884 // 5885 // The result of the comparison is a vector of the same width and number of 5886 // elements as the comparison operands with a signed integral element type. 5887 // 5888 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 5889 QualType ResultVecTy = E->getType(); 5890 PrimType ResultVecElemT = 5891 classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType()); 5892 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5893 if (!getElem(SubExprOffset, I)) 5894 return false; 5895 // operator ! on vectors returns -1 for 'truth', so negate it. 5896 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 5897 return false; 5898 if (!this->emitInv(E)) 5899 return false; 5900 if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E)) 5901 return false; 5902 if (!this->emitNeg(ElemT, E)) 5903 return false; 5904 if (ElemT != ResultVecElemT && 5905 !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E)) 5906 return false; 5907 if (!this->emitInitElem(ResultVecElemT, I, E)) 5908 return false; 5909 } 5910 break; 5911 } 5912 case UO_Not: // ~x 5913 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5914 if (!getElem(SubExprOffset, I)) 5915 return false; 5916 if (ElemT == PT_Bool) { 5917 if (!this->emitInv(E)) 5918 return false; 5919 } else { 5920 if (!this->emitComp(ElemT, E)) 5921 return false; 5922 } 5923 if (!this->emitInitElem(ElemT, I, E)) 5924 return false; 5925 } 5926 break; 5927 default: 5928 llvm_unreachable("Unsupported unary operators should be handled up front"); 5929 } 5930 return true; 5931 } 5932 5933 template <class Emitter> 5934 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) { 5935 if (DiscardResult) 5936 return true; 5937 5938 if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) { 5939 return this->emitConst(ECD->getInitVal(), E); 5940 } else if (const auto *BD = dyn_cast<BindingDecl>(D)) { 5941 return this->visit(BD->getBinding()); 5942 } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) { 5943 const Function *F = getFunction(FuncDecl); 5944 return F && this->emitGetFnPtr(F, E); 5945 } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) { 5946 if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) { 5947 if (!this->emitGetPtrGlobal(*Index, E)) 5948 return false; 5949 if (std::optional<PrimType> T = classify(E->getType())) { 5950 if (!this->visitAPValue(TPOD->getValue(), *T, E)) 5951 return false; 5952 return this->emitInitGlobal(*T, *Index, E); 5953 } 5954 return this->visitAPValueInitializer(TPOD->getValue(), E); 5955 } 5956 return false; 5957 } 5958 5959 // References are implemented via pointers, so when we see a DeclRefExpr 5960 // pointing to a reference, we need to get its value directly (i.e. the 5961 // pointer to the actual value) instead of a pointer to the pointer to the 5962 // value. 5963 bool IsReference = D->getType()->isReferenceType(); 5964 5965 // Check for local/global variables and parameters. 5966 if (auto It = Locals.find(D); It != Locals.end()) { 5967 const unsigned Offset = It->second.Offset; 5968 if (IsReference) 5969 return this->emitGetLocal(PT_Ptr, Offset, E); 5970 return this->emitGetPtrLocal(Offset, E); 5971 } else if (auto GlobalIndex = P.getGlobal(D)) { 5972 if (IsReference) { 5973 if (!Ctx.getLangOpts().CPlusPlus11) 5974 return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E); 5975 return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E); 5976 } 5977 5978 return this->emitGetPtrGlobal(*GlobalIndex, E); 5979 } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { 5980 if (auto It = this->Params.find(PVD); It != this->Params.end()) { 5981 if (IsReference || !It->second.IsPtr) 5982 return this->emitGetParam(classifyPrim(E), It->second.Offset, E); 5983 5984 return this->emitGetPtrParam(It->second.Offset, E); 5985 } 5986 } 5987 5988 // In case we need to re-visit a declaration. 5989 auto revisit = [&](const VarDecl *VD) -> bool { 5990 auto VarState = this->visitDecl(VD); 5991 5992 if (VarState.notCreated()) 5993 return true; 5994 if (!VarState) 5995 return false; 5996 // Retry. 5997 return this->visitDeclRef(D, E); 5998 }; 5999 6000 // Handle lambda captures. 6001 if (auto It = this->LambdaCaptures.find(D); 6002 It != this->LambdaCaptures.end()) { 6003 auto [Offset, IsPtr] = It->second; 6004 6005 if (IsPtr) 6006 return this->emitGetThisFieldPtr(Offset, E); 6007 return this->emitGetPtrThisField(Offset, E); 6008 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E); 6009 DRE && DRE->refersToEnclosingVariableOrCapture()) { 6010 if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture()) 6011 return revisit(VD); 6012 } 6013 6014 if (D != InitializingDecl) { 6015 // Try to lazily visit (or emit dummy pointers for) declarations 6016 // we haven't seen yet. 6017 if (Ctx.getLangOpts().CPlusPlus) { 6018 if (const auto *VD = dyn_cast<VarDecl>(D)) { 6019 const auto typeShouldBeVisited = [&](QualType T) -> bool { 6020 if (T.isConstant(Ctx.getASTContext())) 6021 return true; 6022 if (const auto *RT = T->getAs<ReferenceType>()) 6023 return RT->getPointeeType().isConstQualified(); 6024 return false; 6025 }; 6026 6027 // DecompositionDecls are just proxies for us. 6028 if (isa<DecompositionDecl>(VD)) 6029 return revisit(VD); 6030 6031 if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) && 6032 typeShouldBeVisited(VD->getType())) 6033 return revisit(VD); 6034 6035 // FIXME: The evaluateValue() check here is a little ridiculous, since 6036 // it will ultimately call into Context::evaluateAsInitializer(). In 6037 // other words, we're evaluating the initializer, just to know if we can 6038 // evaluate the initializer. 6039 if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) && 6040 VD->getInit() && !VD->getInit()->isValueDependent() && 6041 VD->evaluateValue()) 6042 return revisit(VD); 6043 } 6044 } else { 6045 if (const auto *VD = dyn_cast<VarDecl>(D); 6046 VD && VD->getAnyInitializer() && 6047 VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak()) 6048 return revisit(VD); 6049 } 6050 } 6051 6052 if (std::optional<unsigned> I = P.getOrCreateDummy(D)) { 6053 if (!this->emitGetPtrGlobal(*I, E)) 6054 return false; 6055 if (E->getType()->isVoidType()) 6056 return true; 6057 // Convert the dummy pointer to another pointer type if we have to. 6058 if (PrimType PT = classifyPrim(E); PT != PT_Ptr) { 6059 if (isPtrType(PT)) 6060 return this->emitDecayPtr(PT_Ptr, PT, E); 6061 return false; 6062 } 6063 return true; 6064 } 6065 6066 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 6067 return this->emitInvalidDeclRef(DRE, E); 6068 return false; 6069 } 6070 6071 template <class Emitter> 6072 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) { 6073 const auto *D = E->getDecl(); 6074 return this->visitDeclRef(D, E); 6075 } 6076 6077 template <class Emitter> void Compiler<Emitter>::emitCleanup() { 6078 for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent()) 6079 C->emitDestruction(); 6080 } 6081 6082 template <class Emitter> 6083 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType, 6084 const QualType DerivedType) { 6085 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 6086 if (const auto *R = Ty->getPointeeCXXRecordDecl()) 6087 return R; 6088 return Ty->getAsCXXRecordDecl(); 6089 }; 6090 const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType); 6091 const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType); 6092 6093 return Ctx.collectBaseOffset(BaseDecl, DerivedDecl); 6094 } 6095 6096 /// Emit casts from a PrimType to another PrimType. 6097 template <class Emitter> 6098 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT, 6099 QualType ToQT, const Expr *E) { 6100 6101 if (FromT == PT_Float) { 6102 // Floating to floating. 6103 if (ToT == PT_Float) { 6104 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 6105 return this->emitCastFP(ToSem, getRoundingMode(E), E); 6106 } 6107 6108 if (ToT == PT_IntAP) 6109 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), 6110 getFPOptions(E), E); 6111 if (ToT == PT_IntAPS) 6112 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), 6113 getFPOptions(E), E); 6114 6115 // Float to integral. 6116 if (isIntegralType(ToT) || ToT == PT_Bool) 6117 return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E); 6118 } 6119 6120 if (isIntegralType(FromT) || FromT == PT_Bool) { 6121 if (ToT == PT_IntAP) 6122 return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E); 6123 if (ToT == PT_IntAPS) 6124 return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E); 6125 6126 // Integral to integral. 6127 if (isIntegralType(ToT) || ToT == PT_Bool) 6128 return FromT != ToT ? this->emitCast(FromT, ToT, E) : true; 6129 6130 if (ToT == PT_Float) { 6131 // Integral to floating. 6132 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 6133 return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E); 6134 } 6135 } 6136 6137 return false; 6138 } 6139 6140 /// Emits __real(SubExpr) 6141 template <class Emitter> 6142 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) { 6143 assert(SubExpr->getType()->isAnyComplexType()); 6144 6145 if (DiscardResult) 6146 return this->discard(SubExpr); 6147 6148 if (!this->visit(SubExpr)) 6149 return false; 6150 if (SubExpr->isLValue()) { 6151 if (!this->emitConstUint8(0, SubExpr)) 6152 return false; 6153 return this->emitArrayElemPtrPopUint8(SubExpr); 6154 } 6155 6156 // Rvalue, load the actual element. 6157 return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()), 6158 0, SubExpr); 6159 } 6160 6161 template <class Emitter> 6162 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) { 6163 assert(!DiscardResult); 6164 PrimType ElemT = classifyComplexElementType(E->getType()); 6165 // We emit the expression (__real(E) != 0 || __imag(E) != 0) 6166 // for us, that means (bool)E[0] || (bool)E[1] 6167 if (!this->emitArrayElem(ElemT, 0, E)) 6168 return false; 6169 if (ElemT == PT_Float) { 6170 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 6171 return false; 6172 } else { 6173 if (!this->emitCast(ElemT, PT_Bool, E)) 6174 return false; 6175 } 6176 6177 // We now have the bool value of E[0] on the stack. 6178 LabelTy LabelTrue = this->getLabel(); 6179 if (!this->jumpTrue(LabelTrue)) 6180 return false; 6181 6182 if (!this->emitArrayElemPop(ElemT, 1, E)) 6183 return false; 6184 if (ElemT == PT_Float) { 6185 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 6186 return false; 6187 } else { 6188 if (!this->emitCast(ElemT, PT_Bool, E)) 6189 return false; 6190 } 6191 // Leave the boolean value of E[1] on the stack. 6192 LabelTy EndLabel = this->getLabel(); 6193 this->jump(EndLabel); 6194 6195 this->emitLabel(LabelTrue); 6196 if (!this->emitPopPtr(E)) 6197 return false; 6198 if (!this->emitConstBool(true, E)) 6199 return false; 6200 6201 this->fallthrough(EndLabel); 6202 this->emitLabel(EndLabel); 6203 6204 return true; 6205 } 6206 6207 template <class Emitter> 6208 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS, 6209 const BinaryOperator *E) { 6210 assert(E->isComparisonOp()); 6211 assert(!Initializing); 6212 assert(!DiscardResult); 6213 6214 PrimType ElemT; 6215 bool LHSIsComplex; 6216 unsigned LHSOffset; 6217 if (LHS->getType()->isAnyComplexType()) { 6218 LHSIsComplex = true; 6219 ElemT = classifyComplexElementType(LHS->getType()); 6220 LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true, 6221 /*IsExtended=*/false); 6222 if (!this->visit(LHS)) 6223 return false; 6224 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 6225 return false; 6226 } else { 6227 LHSIsComplex = false; 6228 PrimType LHST = classifyPrim(LHS->getType()); 6229 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 6230 if (!this->visit(LHS)) 6231 return false; 6232 if (!this->emitSetLocal(LHST, LHSOffset, E)) 6233 return false; 6234 } 6235 6236 bool RHSIsComplex; 6237 unsigned RHSOffset; 6238 if (RHS->getType()->isAnyComplexType()) { 6239 RHSIsComplex = true; 6240 ElemT = classifyComplexElementType(RHS->getType()); 6241 RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true, 6242 /*IsExtended=*/false); 6243 if (!this->visit(RHS)) 6244 return false; 6245 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 6246 return false; 6247 } else { 6248 RHSIsComplex = false; 6249 PrimType RHST = classifyPrim(RHS->getType()); 6250 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 6251 if (!this->visit(RHS)) 6252 return false; 6253 if (!this->emitSetLocal(RHST, RHSOffset, E)) 6254 return false; 6255 } 6256 6257 auto getElem = [&](unsigned LocalOffset, unsigned Index, 6258 bool IsComplex) -> bool { 6259 if (IsComplex) { 6260 if (!this->emitGetLocal(PT_Ptr, LocalOffset, E)) 6261 return false; 6262 return this->emitArrayElemPop(ElemT, Index, E); 6263 } 6264 return this->emitGetLocal(ElemT, LocalOffset, E); 6265 }; 6266 6267 for (unsigned I = 0; I != 2; ++I) { 6268 // Get both values. 6269 if (!getElem(LHSOffset, I, LHSIsComplex)) 6270 return false; 6271 if (!getElem(RHSOffset, I, RHSIsComplex)) 6272 return false; 6273 // And compare them. 6274 if (!this->emitEQ(ElemT, E)) 6275 return false; 6276 6277 if (!this->emitCastBoolUint8(E)) 6278 return false; 6279 } 6280 6281 // We now have two bool values on the stack. Compare those. 6282 if (!this->emitAddUint8(E)) 6283 return false; 6284 if (!this->emitConstUint8(2, E)) 6285 return false; 6286 6287 if (E->getOpcode() == BO_EQ) { 6288 if (!this->emitEQUint8(E)) 6289 return false; 6290 } else if (E->getOpcode() == BO_NE) { 6291 if (!this->emitNEUint8(E)) 6292 return false; 6293 } else 6294 return false; 6295 6296 // In C, this returns an int. 6297 if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool) 6298 return this->emitCast(PT_Bool, ResT, E); 6299 return true; 6300 } 6301 6302 /// When calling this, we have a pointer of the local-to-destroy 6303 /// on the stack. 6304 /// Emit destruction of record types (or arrays of record types). 6305 template <class Emitter> 6306 bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) { 6307 assert(R); 6308 assert(!R->isAnonymousUnion()); 6309 const CXXDestructorDecl *Dtor = R->getDestructor(); 6310 if (!Dtor || Dtor->isTrivial()) 6311 return true; 6312 6313 assert(Dtor); 6314 const Function *DtorFunc = getFunction(Dtor); 6315 if (!DtorFunc) 6316 return false; 6317 assert(DtorFunc->hasThisPointer()); 6318 assert(DtorFunc->getNumParams() == 1); 6319 if (!this->emitDupPtr(Loc)) 6320 return false; 6321 return this->emitCall(DtorFunc, 0, Loc); 6322 } 6323 /// When calling this, we have a pointer of the local-to-destroy 6324 /// on the stack. 6325 /// Emit destruction of record types (or arrays of record types). 6326 template <class Emitter> 6327 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc, 6328 SourceInfo Loc) { 6329 assert(Desc); 6330 assert(!Desc->isPrimitive()); 6331 assert(!Desc->isPrimitiveArray()); 6332 6333 // Arrays. 6334 if (Desc->isArray()) { 6335 const Descriptor *ElemDesc = Desc->ElemDesc; 6336 assert(ElemDesc); 6337 6338 // Don't need to do anything for these. 6339 if (ElemDesc->isPrimitiveArray()) 6340 return true; 6341 6342 // If this is an array of record types, check if we need 6343 // to call the element destructors at all. If not, try 6344 // to save the work. 6345 if (const Record *ElemRecord = ElemDesc->ElemRecord) { 6346 if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor(); 6347 !Dtor || Dtor->isTrivial()) 6348 return true; 6349 } 6350 6351 for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) { 6352 if (!this->emitConstUint64(I, Loc)) 6353 return false; 6354 if (!this->emitArrayElemPtrUint64(Loc)) 6355 return false; 6356 if (!this->emitDestruction(ElemDesc, Loc)) 6357 return false; 6358 if (!this->emitPopPtr(Loc)) 6359 return false; 6360 } 6361 return true; 6362 } 6363 6364 assert(Desc->ElemRecord); 6365 if (Desc->ElemRecord->isAnonymousUnion()) 6366 return true; 6367 6368 return this->emitRecordDestruction(Desc->ElemRecord, Loc); 6369 } 6370 6371 namespace clang { 6372 namespace interp { 6373 6374 template class Compiler<ByteCodeEmitter>; 6375 template class Compiler<EvalEmitter>; 6376 6377 } // namespace interp 6378 } // namespace clang 6379