1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Compiler.h" 10 #include "ByteCodeEmitter.h" 11 #include "Context.h" 12 #include "FixedPoint.h" 13 #include "Floating.h" 14 #include "Function.h" 15 #include "InterpShared.h" 16 #include "PrimType.h" 17 #include "Program.h" 18 #include "clang/AST/Attr.h" 19 20 using namespace clang; 21 using namespace clang::interp; 22 23 using APSInt = llvm::APSInt; 24 25 namespace clang { 26 namespace interp { 27 28 /// Scope used to handle temporaries in toplevel variable declarations. 29 template <class Emitter> class DeclScope final : public LocalScope<Emitter> { 30 public: 31 DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD) 32 : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD), 33 OldInitializingDecl(Ctx->InitializingDecl) { 34 Ctx->InitializingDecl = VD; 35 Ctx->InitStack.push_back(InitLink::Decl(VD)); 36 } 37 38 void addExtended(const Scope::Local &Local) override { 39 return this->addLocal(Local); 40 } 41 42 ~DeclScope() { 43 this->Ctx->InitializingDecl = OldInitializingDecl; 44 this->Ctx->InitStack.pop_back(); 45 } 46 47 private: 48 Program::DeclScope Scope; 49 const ValueDecl *OldInitializingDecl; 50 }; 51 52 /// Scope used to handle initialization methods. 53 template <class Emitter> class OptionScope final { 54 public: 55 /// Root constructor, compiling or discarding primitives. 56 OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult, 57 bool NewInitializing) 58 : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), 59 OldInitializing(Ctx->Initializing) { 60 Ctx->DiscardResult = NewDiscardResult; 61 Ctx->Initializing = NewInitializing; 62 } 63 64 ~OptionScope() { 65 Ctx->DiscardResult = OldDiscardResult; 66 Ctx->Initializing = OldInitializing; 67 } 68 69 private: 70 /// Parent context. 71 Compiler<Emitter> *Ctx; 72 /// Old discard flag to restore. 73 bool OldDiscardResult; 74 bool OldInitializing; 75 }; 76 77 template <class Emitter> 78 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const { 79 switch (Kind) { 80 case K_This: 81 return Ctx->emitThis(E); 82 case K_Field: 83 // We're assuming there's a base pointer on the stack already. 84 return Ctx->emitGetPtrFieldPop(Offset, E); 85 case K_Temp: 86 return Ctx->emitGetPtrLocal(Offset, E); 87 case K_Decl: 88 return Ctx->visitDeclRef(D, E); 89 case K_Elem: 90 if (!Ctx->emitConstUint32(Offset, E)) 91 return false; 92 return Ctx->emitArrayElemPtrPopUint32(E); 93 default: 94 llvm_unreachable("Unhandled InitLink kind"); 95 } 96 return true; 97 } 98 99 /// Scope managing label targets. 100 template <class Emitter> class LabelScope { 101 public: 102 virtual ~LabelScope() {} 103 104 protected: 105 LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {} 106 /// Compiler instance. 107 Compiler<Emitter> *Ctx; 108 }; 109 110 /// Sets the context for break/continue statements. 111 template <class Emitter> class LoopScope final : public LabelScope<Emitter> { 112 public: 113 using LabelTy = typename Compiler<Emitter>::LabelTy; 114 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 115 116 LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel) 117 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 118 OldContinueLabel(Ctx->ContinueLabel), 119 OldBreakVarScope(Ctx->BreakVarScope), 120 OldContinueVarScope(Ctx->ContinueVarScope) { 121 this->Ctx->BreakLabel = BreakLabel; 122 this->Ctx->ContinueLabel = ContinueLabel; 123 this->Ctx->BreakVarScope = this->Ctx->VarScope; 124 this->Ctx->ContinueVarScope = this->Ctx->VarScope; 125 } 126 127 ~LoopScope() { 128 this->Ctx->BreakLabel = OldBreakLabel; 129 this->Ctx->ContinueLabel = OldContinueLabel; 130 this->Ctx->ContinueVarScope = OldContinueVarScope; 131 this->Ctx->BreakVarScope = OldBreakVarScope; 132 } 133 134 private: 135 OptLabelTy OldBreakLabel; 136 OptLabelTy OldContinueLabel; 137 VariableScope<Emitter> *OldBreakVarScope; 138 VariableScope<Emitter> *OldContinueVarScope; 139 }; 140 141 // Sets the context for a switch scope, mapping labels. 142 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> { 143 public: 144 using LabelTy = typename Compiler<Emitter>::LabelTy; 145 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 146 using CaseMap = typename Compiler<Emitter>::CaseMap; 147 148 SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel, 149 OptLabelTy DefaultLabel) 150 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 151 OldDefaultLabel(this->Ctx->DefaultLabel), 152 OldCaseLabels(std::move(this->Ctx->CaseLabels)), 153 OldLabelVarScope(Ctx->BreakVarScope) { 154 this->Ctx->BreakLabel = BreakLabel; 155 this->Ctx->DefaultLabel = DefaultLabel; 156 this->Ctx->CaseLabels = std::move(CaseLabels); 157 this->Ctx->BreakVarScope = this->Ctx->VarScope; 158 } 159 160 ~SwitchScope() { 161 this->Ctx->BreakLabel = OldBreakLabel; 162 this->Ctx->DefaultLabel = OldDefaultLabel; 163 this->Ctx->CaseLabels = std::move(OldCaseLabels); 164 this->Ctx->BreakVarScope = OldLabelVarScope; 165 } 166 167 private: 168 OptLabelTy OldBreakLabel; 169 OptLabelTy OldDefaultLabel; 170 CaseMap OldCaseLabels; 171 VariableScope<Emitter> *OldLabelVarScope; 172 }; 173 174 template <class Emitter> class StmtExprScope final { 175 public: 176 StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) { 177 Ctx->InStmtExpr = true; 178 } 179 180 ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; } 181 182 private: 183 Compiler<Emitter> *Ctx; 184 bool OldFlag; 185 }; 186 187 } // namespace interp 188 } // namespace clang 189 190 template <class Emitter> 191 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) { 192 const Expr *SubExpr = CE->getSubExpr(); 193 switch (CE->getCastKind()) { 194 195 case CK_LValueToRValue: { 196 if (DiscardResult) 197 return this->discard(SubExpr); 198 199 std::optional<PrimType> SubExprT = classify(SubExpr->getType()); 200 // Prepare storage for the result. 201 if (!Initializing && !SubExprT) { 202 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 203 if (!LocalIndex) 204 return false; 205 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 206 return false; 207 } 208 209 if (!this->visit(SubExpr)) 210 return false; 211 212 if (SubExprT) 213 return this->emitLoadPop(*SubExprT, CE); 214 215 // If the subexpr type is not primitive, we need to perform a copy here. 216 // This happens for example in C when dereferencing a pointer of struct 217 // type. 218 return this->emitMemcpy(CE); 219 } 220 221 case CK_DerivedToBaseMemberPointer: { 222 assert(classifyPrim(CE->getType()) == PT_MemberPtr); 223 assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr); 224 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 225 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 226 227 unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0), 228 QualType(FromMP->getClass(), 0)); 229 230 if (!this->delegate(SubExpr)) 231 return false; 232 233 return this->emitGetMemberPtrBasePop(DerivedOffset, CE); 234 } 235 236 case CK_BaseToDerivedMemberPointer: { 237 assert(classifyPrim(CE) == PT_MemberPtr); 238 assert(classifyPrim(SubExpr) == PT_MemberPtr); 239 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 240 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 241 242 unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0), 243 QualType(ToMP->getClass(), 0)); 244 245 if (!this->delegate(SubExpr)) 246 return false; 247 return this->emitGetMemberPtrBasePop(-DerivedOffset, CE); 248 } 249 250 case CK_UncheckedDerivedToBase: 251 case CK_DerivedToBase: { 252 if (!this->delegate(SubExpr)) 253 return false; 254 255 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 256 if (const auto *PT = dyn_cast<PointerType>(Ty)) 257 return PT->getPointeeType()->getAsCXXRecordDecl(); 258 return Ty->getAsCXXRecordDecl(); 259 }; 260 261 // FIXME: We can express a series of non-virtual casts as a single 262 // GetPtrBasePop op. 263 QualType CurType = SubExpr->getType(); 264 for (const CXXBaseSpecifier *B : CE->path()) { 265 if (B->isVirtual()) { 266 if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE)) 267 return false; 268 CurType = B->getType(); 269 } else { 270 unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType); 271 if (!this->emitGetPtrBasePop(DerivedOffset, CE)) 272 return false; 273 CurType = B->getType(); 274 } 275 } 276 277 return true; 278 } 279 280 case CK_BaseToDerived: { 281 if (!this->delegate(SubExpr)) 282 return false; 283 284 unsigned DerivedOffset = 285 collectBaseOffset(SubExpr->getType(), CE->getType()); 286 287 return this->emitGetPtrDerivedPop(DerivedOffset, CE); 288 } 289 290 case CK_FloatingCast: { 291 // HLSL uses CK_FloatingCast to cast between vectors. 292 if (!SubExpr->getType()->isFloatingType() || 293 !CE->getType()->isFloatingType()) 294 return false; 295 if (DiscardResult) 296 return this->discard(SubExpr); 297 if (!this->visit(SubExpr)) 298 return false; 299 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 300 return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE); 301 } 302 303 case CK_IntegralToFloating: { 304 if (DiscardResult) 305 return this->discard(SubExpr); 306 std::optional<PrimType> FromT = classify(SubExpr->getType()); 307 if (!FromT) 308 return false; 309 310 if (!this->visit(SubExpr)) 311 return false; 312 313 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 314 return this->emitCastIntegralFloating(*FromT, TargetSemantics, 315 getFPOptions(CE), CE); 316 } 317 318 case CK_FloatingToBoolean: 319 case CK_FloatingToIntegral: { 320 if (DiscardResult) 321 return this->discard(SubExpr); 322 323 std::optional<PrimType> ToT = classify(CE->getType()); 324 325 if (!ToT) 326 return false; 327 328 if (!this->visit(SubExpr)) 329 return false; 330 331 if (ToT == PT_IntAP) 332 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()), 333 getFPOptions(CE), CE); 334 if (ToT == PT_IntAPS) 335 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()), 336 getFPOptions(CE), CE); 337 338 return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE); 339 } 340 341 case CK_NullToPointer: 342 case CK_NullToMemberPointer: { 343 if (!this->discard(SubExpr)) 344 return false; 345 if (DiscardResult) 346 return true; 347 348 const Descriptor *Desc = nullptr; 349 const QualType PointeeType = CE->getType()->getPointeeType(); 350 if (!PointeeType.isNull()) { 351 if (std::optional<PrimType> T = classify(PointeeType)) 352 Desc = P.createDescriptor(SubExpr, *T); 353 else 354 Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(), 355 std::nullopt, true, false, 356 /*IsMutable=*/false, nullptr); 357 } 358 return this->emitNull(classifyPrim(CE->getType()), Desc, CE); 359 } 360 361 case CK_PointerToIntegral: { 362 if (DiscardResult) 363 return this->discard(SubExpr); 364 365 if (!this->visit(SubExpr)) 366 return false; 367 368 // If SubExpr doesn't result in a pointer, make it one. 369 if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) { 370 assert(isPtrType(FromT)); 371 if (!this->emitDecayPtr(FromT, PT_Ptr, CE)) 372 return false; 373 } 374 375 PrimType T = classifyPrim(CE->getType()); 376 if (T == PT_IntAP) 377 return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()), 378 CE); 379 if (T == PT_IntAPS) 380 return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()), 381 CE); 382 return this->emitCastPointerIntegral(T, CE); 383 } 384 385 case CK_ArrayToPointerDecay: { 386 if (!this->visit(SubExpr)) 387 return false; 388 if (!this->emitArrayDecay(CE)) 389 return false; 390 if (DiscardResult) 391 return this->emitPopPtr(CE); 392 return true; 393 } 394 395 case CK_IntegralToPointer: { 396 QualType IntType = SubExpr->getType(); 397 assert(IntType->isIntegralOrEnumerationType()); 398 if (!this->visit(SubExpr)) 399 return false; 400 // FIXME: I think the discard is wrong since the int->ptr cast might cause a 401 // diagnostic. 402 PrimType T = classifyPrim(IntType); 403 if (DiscardResult) 404 return this->emitPop(T, CE); 405 406 QualType PtrType = CE->getType(); 407 const Descriptor *Desc; 408 if (std::optional<PrimType> T = classify(PtrType->getPointeeType())) 409 Desc = P.createDescriptor(SubExpr, *T); 410 else if (PtrType->getPointeeType()->isVoidType()) 411 Desc = nullptr; 412 else 413 Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(), 414 Descriptor::InlineDescMD, true, false, 415 /*IsMutable=*/false, nullptr); 416 417 if (!this->emitGetIntPtr(T, Desc, CE)) 418 return false; 419 420 PrimType DestPtrT = classifyPrim(PtrType); 421 if (DestPtrT == PT_Ptr) 422 return true; 423 424 // In case we're converting the integer to a non-Pointer. 425 return this->emitDecayPtr(PT_Ptr, DestPtrT, CE); 426 } 427 428 case CK_AtomicToNonAtomic: 429 case CK_ConstructorConversion: 430 case CK_FunctionToPointerDecay: 431 case CK_NonAtomicToAtomic: 432 case CK_NoOp: 433 case CK_UserDefinedConversion: 434 case CK_AddressSpaceConversion: 435 case CK_CPointerToObjCPointerCast: 436 return this->delegate(SubExpr); 437 438 case CK_BitCast: { 439 // Reject bitcasts to atomic types. 440 if (CE->getType()->isAtomicType()) { 441 if (!this->discard(SubExpr)) 442 return false; 443 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE); 444 } 445 446 if (DiscardResult) 447 return this->discard(SubExpr); 448 449 QualType SubExprTy = SubExpr->getType(); 450 std::optional<PrimType> FromT = classify(SubExprTy); 451 std::optional<PrimType> ToT = classify(CE->getType()); 452 if (!FromT || !ToT) 453 return false; 454 455 assert(isPtrType(*FromT)); 456 assert(isPtrType(*ToT)); 457 if (FromT == ToT) { 458 if (CE->getType()->isVoidPointerType()) 459 return this->delegate(SubExpr); 460 461 if (!this->visit(SubExpr)) 462 return false; 463 if (FromT == PT_Ptr) 464 return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE); 465 return true; 466 } 467 468 if (!this->visit(SubExpr)) 469 return false; 470 return this->emitDecayPtr(*FromT, *ToT, CE); 471 } 472 473 case CK_IntegralToBoolean: 474 case CK_FixedPointToBoolean: 475 case CK_BooleanToSignedIntegral: 476 case CK_IntegralCast: { 477 if (DiscardResult) 478 return this->discard(SubExpr); 479 std::optional<PrimType> FromT = classify(SubExpr->getType()); 480 std::optional<PrimType> ToT = classify(CE->getType()); 481 482 if (!FromT || !ToT) 483 return false; 484 485 if (!this->visit(SubExpr)) 486 return false; 487 488 // Possibly diagnose casts to enum types if the target type does not 489 // have a fixed size. 490 if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) { 491 if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>(); 492 ET && !ET->getDecl()->isFixed()) { 493 if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE)) 494 return false; 495 } 496 } 497 498 auto maybeNegate = [&]() -> bool { 499 if (CE->getCastKind() == CK_BooleanToSignedIntegral) 500 return this->emitNeg(*ToT, CE); 501 return true; 502 }; 503 504 if (ToT == PT_IntAP) 505 return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 506 maybeNegate(); 507 if (ToT == PT_IntAPS) 508 return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 509 maybeNegate(); 510 511 if (FromT == ToT) 512 return true; 513 if (!this->emitCast(*FromT, *ToT, CE)) 514 return false; 515 516 return maybeNegate(); 517 } 518 519 case CK_PointerToBoolean: 520 case CK_MemberPointerToBoolean: { 521 PrimType PtrT = classifyPrim(SubExpr->getType()); 522 523 if (!this->visit(SubExpr)) 524 return false; 525 return this->emitIsNonNull(PtrT, CE); 526 } 527 528 case CK_IntegralComplexToBoolean: 529 case CK_FloatingComplexToBoolean: { 530 if (DiscardResult) 531 return this->discard(SubExpr); 532 if (!this->visit(SubExpr)) 533 return false; 534 return this->emitComplexBoolCast(SubExpr); 535 } 536 537 case CK_IntegralComplexToReal: 538 case CK_FloatingComplexToReal: 539 return this->emitComplexReal(SubExpr); 540 541 case CK_IntegralRealToComplex: 542 case CK_FloatingRealToComplex: { 543 // We're creating a complex value here, so we need to 544 // allocate storage for it. 545 if (!Initializing) { 546 unsigned LocalIndex = allocateTemporary(CE); 547 if (!this->emitGetPtrLocal(LocalIndex, CE)) 548 return false; 549 } 550 551 // Init the complex value to {SubExpr, 0}. 552 if (!this->visitArrayElemInit(0, SubExpr)) 553 return false; 554 // Zero-init the second element. 555 PrimType T = classifyPrim(SubExpr->getType()); 556 if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr)) 557 return false; 558 return this->emitInitElem(T, 1, SubExpr); 559 } 560 561 case CK_IntegralComplexCast: 562 case CK_FloatingComplexCast: 563 case CK_IntegralComplexToFloatingComplex: 564 case CK_FloatingComplexToIntegralComplex: { 565 assert(CE->getType()->isAnyComplexType()); 566 assert(SubExpr->getType()->isAnyComplexType()); 567 if (DiscardResult) 568 return this->discard(SubExpr); 569 570 if (!Initializing) { 571 std::optional<unsigned> LocalIndex = allocateLocal(CE); 572 if (!LocalIndex) 573 return false; 574 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 575 return false; 576 } 577 578 // Location for the SubExpr. 579 // Since SubExpr is of complex type, visiting it results in a pointer 580 // anyway, so we just create a temporary pointer variable. 581 unsigned SubExprOffset = allocateLocalPrimitive( 582 SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 583 if (!this->visit(SubExpr)) 584 return false; 585 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE)) 586 return false; 587 588 PrimType SourceElemT = classifyComplexElementType(SubExpr->getType()); 589 QualType DestElemType = 590 CE->getType()->getAs<ComplexType>()->getElementType(); 591 PrimType DestElemT = classifyPrim(DestElemType); 592 // Cast both elements individually. 593 for (unsigned I = 0; I != 2; ++I) { 594 if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE)) 595 return false; 596 if (!this->emitArrayElemPop(SourceElemT, I, CE)) 597 return false; 598 599 // Do the cast. 600 if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE)) 601 return false; 602 603 // Save the value. 604 if (!this->emitInitElem(DestElemT, I, CE)) 605 return false; 606 } 607 return true; 608 } 609 610 case CK_VectorSplat: { 611 assert(!classify(CE->getType())); 612 assert(classify(SubExpr->getType())); 613 assert(CE->getType()->isVectorType()); 614 615 if (DiscardResult) 616 return this->discard(SubExpr); 617 618 if (!Initializing) { 619 std::optional<unsigned> LocalIndex = allocateLocal(CE); 620 if (!LocalIndex) 621 return false; 622 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 623 return false; 624 } 625 626 const auto *VT = CE->getType()->getAs<VectorType>(); 627 PrimType ElemT = classifyPrim(SubExpr->getType()); 628 unsigned ElemOffset = allocateLocalPrimitive( 629 SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false); 630 631 // Prepare a local variable for the scalar value. 632 if (!this->visit(SubExpr)) 633 return false; 634 if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE)) 635 return false; 636 637 if (!this->emitSetLocal(ElemT, ElemOffset, CE)) 638 return false; 639 640 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 641 if (!this->emitGetLocal(ElemT, ElemOffset, CE)) 642 return false; 643 if (!this->emitInitElem(ElemT, I, CE)) 644 return false; 645 } 646 647 return true; 648 } 649 650 case CK_HLSLVectorTruncation: { 651 assert(SubExpr->getType()->isVectorType()); 652 if (std::optional<PrimType> ResultT = classify(CE)) { 653 assert(!DiscardResult); 654 // Result must be either a float or integer. Take the first element. 655 if (!this->visit(SubExpr)) 656 return false; 657 return this->emitArrayElemPop(*ResultT, 0, CE); 658 } 659 // Otherwise, this truncates from one vector type to another. 660 assert(CE->getType()->isVectorType()); 661 662 if (!Initializing) { 663 unsigned LocalIndex = allocateTemporary(CE); 664 if (!this->emitGetPtrLocal(LocalIndex, CE)) 665 return false; 666 } 667 unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements(); 668 assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize); 669 if (!this->visit(SubExpr)) 670 return false; 671 return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0, 672 ToSize, CE); 673 }; 674 675 case CK_IntegralToFixedPoint: { 676 if (!this->visit(SubExpr)) 677 return false; 678 679 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 680 uint32_t I; 681 std::memcpy(&I, &Sem, sizeof(Sem)); 682 return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), I, 683 CE); 684 } 685 case CK_FloatingToFixedPoint: { 686 if (!this->visit(SubExpr)) 687 return false; 688 689 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 690 uint32_t I; 691 std::memcpy(&I, &Sem, sizeof(Sem)); 692 return this->emitCastFloatingFixedPoint(I, CE); 693 } 694 695 case CK_ToVoid: 696 return discard(SubExpr); 697 698 default: 699 return this->emitInvalid(CE); 700 } 701 llvm_unreachable("Unhandled clang::CastKind enum"); 702 } 703 704 template <class Emitter> 705 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) { 706 if (DiscardResult) 707 return true; 708 709 return this->emitConst(LE->getValue(), LE); 710 } 711 712 template <class Emitter> 713 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) { 714 if (DiscardResult) 715 return true; 716 717 return this->emitConstFloat(E->getValue(), E); 718 } 719 720 template <class Emitter> 721 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 722 assert(E->getType()->isAnyComplexType()); 723 if (DiscardResult) 724 return true; 725 726 if (!Initializing) { 727 unsigned LocalIndex = allocateTemporary(E); 728 if (!this->emitGetPtrLocal(LocalIndex, E)) 729 return false; 730 } 731 732 const Expr *SubExpr = E->getSubExpr(); 733 PrimType SubExprT = classifyPrim(SubExpr->getType()); 734 735 if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr)) 736 return false; 737 if (!this->emitInitElem(SubExprT, 0, SubExpr)) 738 return false; 739 return this->visitArrayElemInit(1, SubExpr); 740 } 741 742 template <class Emitter> 743 bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) { 744 assert(E->getType()->isFixedPointType()); 745 assert(classifyPrim(E) == PT_FixedPoint); 746 747 auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 748 APInt Value = E->getValue(); 749 return this->emitConstFixedPoint(FixedPoint(Value, Sem), E); 750 } 751 752 template <class Emitter> 753 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) { 754 return this->delegate(E->getSubExpr()); 755 } 756 757 template <class Emitter> 758 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) { 759 // Need short-circuiting for these. 760 if (BO->isLogicalOp() && !BO->getType()->isVectorType()) 761 return this->VisitLogicalBinOp(BO); 762 763 const Expr *LHS = BO->getLHS(); 764 const Expr *RHS = BO->getRHS(); 765 766 // Handle comma operators. Just discard the LHS 767 // and delegate to RHS. 768 if (BO->isCommaOp()) { 769 if (!this->discard(LHS)) 770 return false; 771 if (RHS->getType()->isVoidType()) 772 return this->discard(RHS); 773 774 return this->delegate(RHS); 775 } 776 777 if (BO->getType()->isAnyComplexType()) 778 return this->VisitComplexBinOp(BO); 779 if (BO->getType()->isVectorType()) 780 return this->VisitVectorBinOp(BO); 781 if ((LHS->getType()->isAnyComplexType() || 782 RHS->getType()->isAnyComplexType()) && 783 BO->isComparisonOp()) 784 return this->emitComplexComparison(LHS, RHS, BO); 785 if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType()) 786 return this->VisitFixedPointBinOp(BO); 787 788 if (BO->isPtrMemOp()) { 789 if (!this->visit(LHS)) 790 return false; 791 792 if (!this->visit(RHS)) 793 return false; 794 795 if (!this->emitToMemberPtr(BO)) 796 return false; 797 798 if (classifyPrim(BO) == PT_MemberPtr) 799 return true; 800 801 if (!this->emitCastMemberPtrPtr(BO)) 802 return false; 803 return DiscardResult ? this->emitPopPtr(BO) : true; 804 } 805 806 // Typecheck the args. 807 std::optional<PrimType> LT = classify(LHS); 808 std::optional<PrimType> RT = classify(RHS); 809 std::optional<PrimType> T = classify(BO->getType()); 810 811 // Special case for C++'s three-way/spaceship operator <=>, which 812 // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't 813 // have a PrimType). 814 if (!T && BO->getOpcode() == BO_Cmp) { 815 if (DiscardResult) 816 return true; 817 const ComparisonCategoryInfo *CmpInfo = 818 Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType()); 819 assert(CmpInfo); 820 821 // We need a temporary variable holding our return value. 822 if (!Initializing) { 823 std::optional<unsigned> ResultIndex = this->allocateLocal(BO); 824 if (!this->emitGetPtrLocal(*ResultIndex, BO)) 825 return false; 826 } 827 828 if (!visit(LHS) || !visit(RHS)) 829 return false; 830 831 return this->emitCMP3(*LT, CmpInfo, BO); 832 } 833 834 if (!LT || !RT || !T) 835 return false; 836 837 // Pointer arithmetic special case. 838 if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) { 839 if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT))) 840 return this->VisitPointerArithBinOp(BO); 841 } 842 843 // Assignmentes require us to evalute the RHS first. 844 if (BO->getOpcode() == BO_Assign) { 845 if (!visit(RHS) || !visit(LHS)) 846 return false; 847 if (!this->emitFlip(*LT, *RT, BO)) 848 return false; 849 } else { 850 if (!visit(LHS) || !visit(RHS)) 851 return false; 852 } 853 854 // For languages such as C, cast the result of one 855 // of our comparision opcodes to T (which is usually int). 856 auto MaybeCastToBool = [this, T, BO](bool Result) { 857 if (!Result) 858 return false; 859 if (DiscardResult) 860 return this->emitPop(*T, BO); 861 if (T != PT_Bool) 862 return this->emitCast(PT_Bool, *T, BO); 863 return true; 864 }; 865 866 auto Discard = [this, T, BO](bool Result) { 867 if (!Result) 868 return false; 869 return DiscardResult ? this->emitPop(*T, BO) : true; 870 }; 871 872 switch (BO->getOpcode()) { 873 case BO_EQ: 874 return MaybeCastToBool(this->emitEQ(*LT, BO)); 875 case BO_NE: 876 return MaybeCastToBool(this->emitNE(*LT, BO)); 877 case BO_LT: 878 return MaybeCastToBool(this->emitLT(*LT, BO)); 879 case BO_LE: 880 return MaybeCastToBool(this->emitLE(*LT, BO)); 881 case BO_GT: 882 return MaybeCastToBool(this->emitGT(*LT, BO)); 883 case BO_GE: 884 return MaybeCastToBool(this->emitGE(*LT, BO)); 885 case BO_Sub: 886 if (BO->getType()->isFloatingType()) 887 return Discard(this->emitSubf(getFPOptions(BO), BO)); 888 return Discard(this->emitSub(*T, BO)); 889 case BO_Add: 890 if (BO->getType()->isFloatingType()) 891 return Discard(this->emitAddf(getFPOptions(BO), BO)); 892 return Discard(this->emitAdd(*T, BO)); 893 case BO_Mul: 894 if (BO->getType()->isFloatingType()) 895 return Discard(this->emitMulf(getFPOptions(BO), BO)); 896 return Discard(this->emitMul(*T, BO)); 897 case BO_Rem: 898 return Discard(this->emitRem(*T, BO)); 899 case BO_Div: 900 if (BO->getType()->isFloatingType()) 901 return Discard(this->emitDivf(getFPOptions(BO), BO)); 902 return Discard(this->emitDiv(*T, BO)); 903 case BO_Assign: 904 if (DiscardResult) 905 return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO) 906 : this->emitStorePop(*T, BO); 907 if (LHS->refersToBitField()) { 908 if (!this->emitStoreBitField(*T, BO)) 909 return false; 910 } else { 911 if (!this->emitStore(*T, BO)) 912 return false; 913 } 914 // Assignments aren't necessarily lvalues in C. 915 // Load from them in that case. 916 if (!BO->isLValue()) 917 return this->emitLoadPop(*T, BO); 918 return true; 919 case BO_And: 920 return Discard(this->emitBitAnd(*T, BO)); 921 case BO_Or: 922 return Discard(this->emitBitOr(*T, BO)); 923 case BO_Shl: 924 return Discard(this->emitShl(*LT, *RT, BO)); 925 case BO_Shr: 926 return Discard(this->emitShr(*LT, *RT, BO)); 927 case BO_Xor: 928 return Discard(this->emitBitXor(*T, BO)); 929 case BO_LOr: 930 case BO_LAnd: 931 llvm_unreachable("Already handled earlier"); 932 default: 933 return false; 934 } 935 936 llvm_unreachable("Unhandled binary op"); 937 } 938 939 /// Perform addition/subtraction of a pointer and an integer or 940 /// subtraction of two pointers. 941 template <class Emitter> 942 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) { 943 BinaryOperatorKind Op = E->getOpcode(); 944 const Expr *LHS = E->getLHS(); 945 const Expr *RHS = E->getRHS(); 946 947 if ((Op != BO_Add && Op != BO_Sub) || 948 (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType())) 949 return false; 950 951 std::optional<PrimType> LT = classify(LHS); 952 std::optional<PrimType> RT = classify(RHS); 953 954 if (!LT || !RT) 955 return false; 956 957 // Visit the given pointer expression and optionally convert to a PT_Ptr. 958 auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool { 959 if (!this->visit(E)) 960 return false; 961 if (T != PT_Ptr) 962 return this->emitDecayPtr(T, PT_Ptr, E); 963 return true; 964 }; 965 966 if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) { 967 if (Op != BO_Sub) 968 return false; 969 970 assert(E->getType()->isIntegerType()); 971 if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT)) 972 return false; 973 974 return this->emitSubPtr(classifyPrim(E->getType()), E); 975 } 976 977 PrimType OffsetType; 978 if (LHS->getType()->isIntegerType()) { 979 if (!visitAsPointer(RHS, *RT)) 980 return false; 981 if (!this->visit(LHS)) 982 return false; 983 OffsetType = *LT; 984 } else if (RHS->getType()->isIntegerType()) { 985 if (!visitAsPointer(LHS, *LT)) 986 return false; 987 if (!this->visit(RHS)) 988 return false; 989 OffsetType = *RT; 990 } else { 991 return false; 992 } 993 994 // Do the operation and optionally transform to 995 // result pointer type. 996 if (Op == BO_Add) { 997 if (!this->emitAddOffset(OffsetType, E)) 998 return false; 999 1000 if (classifyPrim(E) != PT_Ptr) 1001 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 1002 return true; 1003 } else if (Op == BO_Sub) { 1004 if (!this->emitSubOffset(OffsetType, E)) 1005 return false; 1006 1007 if (classifyPrim(E) != PT_Ptr) 1008 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 1009 return true; 1010 } 1011 1012 return false; 1013 } 1014 1015 template <class Emitter> 1016 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) { 1017 assert(E->isLogicalOp()); 1018 BinaryOperatorKind Op = E->getOpcode(); 1019 const Expr *LHS = E->getLHS(); 1020 const Expr *RHS = E->getRHS(); 1021 std::optional<PrimType> T = classify(E->getType()); 1022 1023 if (Op == BO_LOr) { 1024 // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE. 1025 LabelTy LabelTrue = this->getLabel(); 1026 LabelTy LabelEnd = this->getLabel(); 1027 1028 if (!this->visitBool(LHS)) 1029 return false; 1030 if (!this->jumpTrue(LabelTrue)) 1031 return false; 1032 1033 if (!this->visitBool(RHS)) 1034 return false; 1035 if (!this->jump(LabelEnd)) 1036 return false; 1037 1038 this->emitLabel(LabelTrue); 1039 this->emitConstBool(true, E); 1040 this->fallthrough(LabelEnd); 1041 this->emitLabel(LabelEnd); 1042 1043 } else { 1044 assert(Op == BO_LAnd); 1045 // Logical AND. 1046 // Visit LHS. Only visit RHS if LHS was TRUE. 1047 LabelTy LabelFalse = this->getLabel(); 1048 LabelTy LabelEnd = this->getLabel(); 1049 1050 if (!this->visitBool(LHS)) 1051 return false; 1052 if (!this->jumpFalse(LabelFalse)) 1053 return false; 1054 1055 if (!this->visitBool(RHS)) 1056 return false; 1057 if (!this->jump(LabelEnd)) 1058 return false; 1059 1060 this->emitLabel(LabelFalse); 1061 this->emitConstBool(false, E); 1062 this->fallthrough(LabelEnd); 1063 this->emitLabel(LabelEnd); 1064 } 1065 1066 if (DiscardResult) 1067 return this->emitPopBool(E); 1068 1069 // For C, cast back to integer type. 1070 assert(T); 1071 if (T != PT_Bool) 1072 return this->emitCast(PT_Bool, *T, E); 1073 return true; 1074 } 1075 1076 template <class Emitter> 1077 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) { 1078 // Prepare storage for result. 1079 if (!Initializing) { 1080 unsigned LocalIndex = allocateTemporary(E); 1081 if (!this->emitGetPtrLocal(LocalIndex, E)) 1082 return false; 1083 } 1084 1085 // Both LHS and RHS might _not_ be of complex type, but one of them 1086 // needs to be. 1087 const Expr *LHS = E->getLHS(); 1088 const Expr *RHS = E->getRHS(); 1089 1090 PrimType ResultElemT = this->classifyComplexElementType(E->getType()); 1091 unsigned ResultOffset = ~0u; 1092 if (!DiscardResult) 1093 ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false); 1094 1095 // Save result pointer in ResultOffset 1096 if (!this->DiscardResult) { 1097 if (!this->emitDupPtr(E)) 1098 return false; 1099 if (!this->emitSetLocal(PT_Ptr, ResultOffset, E)) 1100 return false; 1101 } 1102 QualType LHSType = LHS->getType(); 1103 if (const auto *AT = LHSType->getAs<AtomicType>()) 1104 LHSType = AT->getValueType(); 1105 QualType RHSType = RHS->getType(); 1106 if (const auto *AT = RHSType->getAs<AtomicType>()) 1107 RHSType = AT->getValueType(); 1108 1109 bool LHSIsComplex = LHSType->isAnyComplexType(); 1110 unsigned LHSOffset; 1111 bool RHSIsComplex = RHSType->isAnyComplexType(); 1112 1113 // For ComplexComplex Mul, we have special ops to make their implementation 1114 // easier. 1115 BinaryOperatorKind Op = E->getOpcode(); 1116 if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) { 1117 assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) == 1118 classifyPrim(RHSType->getAs<ComplexType>()->getElementType())); 1119 PrimType ElemT = 1120 classifyPrim(LHSType->getAs<ComplexType>()->getElementType()); 1121 if (!this->visit(LHS)) 1122 return false; 1123 if (!this->visit(RHS)) 1124 return false; 1125 return this->emitMulc(ElemT, E); 1126 } 1127 1128 if (Op == BO_Div && RHSIsComplex) { 1129 QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType(); 1130 PrimType ElemT = classifyPrim(ElemQT); 1131 // If the LHS is not complex, we still need to do the full complex 1132 // division, so just stub create a complex value and stub it out with 1133 // the LHS and a zero. 1134 1135 if (!LHSIsComplex) { 1136 // This is using the RHS type for the fake-complex LHS. 1137 LHSOffset = allocateTemporary(RHS); 1138 1139 if (!this->emitGetPtrLocal(LHSOffset, E)) 1140 return false; 1141 1142 if (!this->visit(LHS)) 1143 return false; 1144 // real is LHS 1145 if (!this->emitInitElem(ElemT, 0, E)) 1146 return false; 1147 // imag is zero 1148 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1149 return false; 1150 if (!this->emitInitElem(ElemT, 1, E)) 1151 return false; 1152 } else { 1153 if (!this->visit(LHS)) 1154 return false; 1155 } 1156 1157 if (!this->visit(RHS)) 1158 return false; 1159 return this->emitDivc(ElemT, E); 1160 } 1161 1162 // Evaluate LHS and save value to LHSOffset. 1163 if (LHSType->isAnyComplexType()) { 1164 LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1165 if (!this->visit(LHS)) 1166 return false; 1167 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1168 return false; 1169 } else { 1170 PrimType LHST = classifyPrim(LHSType); 1171 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 1172 if (!this->visit(LHS)) 1173 return false; 1174 if (!this->emitSetLocal(LHST, LHSOffset, E)) 1175 return false; 1176 } 1177 1178 // Same with RHS. 1179 unsigned RHSOffset; 1180 if (RHSType->isAnyComplexType()) { 1181 RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1182 if (!this->visit(RHS)) 1183 return false; 1184 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1185 return false; 1186 } else { 1187 PrimType RHST = classifyPrim(RHSType); 1188 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 1189 if (!this->visit(RHS)) 1190 return false; 1191 if (!this->emitSetLocal(RHST, RHSOffset, E)) 1192 return false; 1193 } 1194 1195 // For both LHS and RHS, either load the value from the complex pointer, or 1196 // directly from the local variable. For index 1 (i.e. the imaginary part), 1197 // just load 0 and do the operation anyway. 1198 auto loadComplexValue = [this](bool IsComplex, bool LoadZero, 1199 unsigned ElemIndex, unsigned Offset, 1200 const Expr *E) -> bool { 1201 if (IsComplex) { 1202 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1203 return false; 1204 return this->emitArrayElemPop(classifyComplexElementType(E->getType()), 1205 ElemIndex, E); 1206 } 1207 if (ElemIndex == 0 || !LoadZero) 1208 return this->emitGetLocal(classifyPrim(E->getType()), Offset, E); 1209 return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(), 1210 E); 1211 }; 1212 1213 // Now we can get pointers to the LHS and RHS from the offsets above. 1214 for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) { 1215 // Result pointer for the store later. 1216 if (!this->DiscardResult) { 1217 if (!this->emitGetLocal(PT_Ptr, ResultOffset, E)) 1218 return false; 1219 } 1220 1221 // The actual operation. 1222 switch (Op) { 1223 case BO_Add: 1224 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1225 return false; 1226 1227 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1228 return false; 1229 if (ResultElemT == PT_Float) { 1230 if (!this->emitAddf(getFPOptions(E), E)) 1231 return false; 1232 } else { 1233 if (!this->emitAdd(ResultElemT, E)) 1234 return false; 1235 } 1236 break; 1237 case BO_Sub: 1238 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1239 return false; 1240 1241 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1242 return false; 1243 if (ResultElemT == PT_Float) { 1244 if (!this->emitSubf(getFPOptions(E), E)) 1245 return false; 1246 } else { 1247 if (!this->emitSub(ResultElemT, E)) 1248 return false; 1249 } 1250 break; 1251 case BO_Mul: 1252 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1253 return false; 1254 1255 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1256 return false; 1257 1258 if (ResultElemT == PT_Float) { 1259 if (!this->emitMulf(getFPOptions(E), E)) 1260 return false; 1261 } else { 1262 if (!this->emitMul(ResultElemT, E)) 1263 return false; 1264 } 1265 break; 1266 case BO_Div: 1267 assert(!RHSIsComplex); 1268 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1269 return false; 1270 1271 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1272 return false; 1273 1274 if (ResultElemT == PT_Float) { 1275 if (!this->emitDivf(getFPOptions(E), E)) 1276 return false; 1277 } else { 1278 if (!this->emitDiv(ResultElemT, E)) 1279 return false; 1280 } 1281 break; 1282 1283 default: 1284 return false; 1285 } 1286 1287 if (!this->DiscardResult) { 1288 // Initialize array element with the value we just computed. 1289 if (!this->emitInitElemPop(ResultElemT, ElemIndex, E)) 1290 return false; 1291 } else { 1292 if (!this->emitPop(ResultElemT, E)) 1293 return false; 1294 } 1295 } 1296 return true; 1297 } 1298 1299 template <class Emitter> 1300 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) { 1301 assert(!E->isCommaOp() && 1302 "Comma op should be handled in VisitBinaryOperator"); 1303 assert(E->getType()->isVectorType()); 1304 assert(E->getLHS()->getType()->isVectorType()); 1305 assert(E->getRHS()->getType()->isVectorType()); 1306 1307 // Prepare storage for result. 1308 if (!Initializing && !E->isCompoundAssignmentOp()) { 1309 unsigned LocalIndex = allocateTemporary(E); 1310 if (!this->emitGetPtrLocal(LocalIndex, E)) 1311 return false; 1312 } 1313 1314 const Expr *LHS = E->getLHS(); 1315 const Expr *RHS = E->getRHS(); 1316 const auto *VecTy = E->getType()->getAs<VectorType>(); 1317 auto Op = E->isCompoundAssignmentOp() 1318 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode()) 1319 : E->getOpcode(); 1320 1321 PrimType ElemT = this->classifyVectorElementType(LHS->getType()); 1322 PrimType RHSElemT = this->classifyVectorElementType(RHS->getType()); 1323 PrimType ResultElemT = this->classifyVectorElementType(E->getType()); 1324 1325 // Evaluate LHS and save value to LHSOffset. 1326 unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1327 if (!this->visit(LHS)) 1328 return false; 1329 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1330 return false; 1331 1332 // Evaluate RHS and save value to RHSOffset. 1333 unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1334 if (!this->visit(RHS)) 1335 return false; 1336 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1337 return false; 1338 1339 if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E)) 1340 return false; 1341 1342 // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the 1343 // integer promotion. 1344 bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp()); 1345 QualType PromotTy = 1346 Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy); 1347 PrimType PromotT = classifyPrim(PromotTy); 1348 PrimType OpT = NeedIntPromot ? PromotT : ElemT; 1349 1350 auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) { 1351 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1352 return false; 1353 if (!this->emitArrayElemPop(ElemT, Index, E)) 1354 return false; 1355 if (E->isLogicalOp()) { 1356 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 1357 return false; 1358 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1359 return false; 1360 } else if (NeedIntPromot) { 1361 if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E)) 1362 return false; 1363 } 1364 return true; 1365 }; 1366 1367 #define EMIT_ARITH_OP(OP) \ 1368 { \ 1369 if (ElemT == PT_Float) { \ 1370 if (!this->emit##OP##f(getFPOptions(E), E)) \ 1371 return false; \ 1372 } else { \ 1373 if (!this->emit##OP(ElemT, E)) \ 1374 return false; \ 1375 } \ 1376 break; \ 1377 } 1378 1379 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 1380 if (!getElem(LHSOffset, ElemT, I)) 1381 return false; 1382 if (!getElem(RHSOffset, RHSElemT, I)) 1383 return false; 1384 switch (Op) { 1385 case BO_Add: 1386 EMIT_ARITH_OP(Add) 1387 case BO_Sub: 1388 EMIT_ARITH_OP(Sub) 1389 case BO_Mul: 1390 EMIT_ARITH_OP(Mul) 1391 case BO_Div: 1392 EMIT_ARITH_OP(Div) 1393 case BO_Rem: 1394 if (!this->emitRem(ElemT, E)) 1395 return false; 1396 break; 1397 case BO_And: 1398 if (!this->emitBitAnd(OpT, E)) 1399 return false; 1400 break; 1401 case BO_Or: 1402 if (!this->emitBitOr(OpT, E)) 1403 return false; 1404 break; 1405 case BO_Xor: 1406 if (!this->emitBitXor(OpT, E)) 1407 return false; 1408 break; 1409 case BO_Shl: 1410 if (!this->emitShl(OpT, RHSElemT, E)) 1411 return false; 1412 break; 1413 case BO_Shr: 1414 if (!this->emitShr(OpT, RHSElemT, E)) 1415 return false; 1416 break; 1417 case BO_EQ: 1418 if (!this->emitEQ(ElemT, E)) 1419 return false; 1420 break; 1421 case BO_NE: 1422 if (!this->emitNE(ElemT, E)) 1423 return false; 1424 break; 1425 case BO_LE: 1426 if (!this->emitLE(ElemT, E)) 1427 return false; 1428 break; 1429 case BO_LT: 1430 if (!this->emitLT(ElemT, E)) 1431 return false; 1432 break; 1433 case BO_GE: 1434 if (!this->emitGE(ElemT, E)) 1435 return false; 1436 break; 1437 case BO_GT: 1438 if (!this->emitGT(ElemT, E)) 1439 return false; 1440 break; 1441 case BO_LAnd: 1442 // a && b is equivalent to a!=0 & b!=0 1443 if (!this->emitBitAnd(ResultElemT, E)) 1444 return false; 1445 break; 1446 case BO_LOr: 1447 // a || b is equivalent to a!=0 | b!=0 1448 if (!this->emitBitOr(ResultElemT, E)) 1449 return false; 1450 break; 1451 default: 1452 return this->emitInvalid(E); 1453 } 1454 1455 // The result of the comparison is a vector of the same width and number 1456 // of elements as the comparison operands with a signed integral element 1457 // type. 1458 // 1459 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 1460 if (E->isComparisonOp()) { 1461 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1462 return false; 1463 if (!this->emitNeg(ResultElemT, E)) 1464 return false; 1465 } 1466 1467 // If we performed an integer promotion, we need to cast the compute result 1468 // into result vector element type. 1469 if (NeedIntPromot && 1470 !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E)) 1471 return false; 1472 1473 // Initialize array element with the value we just computed. 1474 if (!this->emitInitElem(ResultElemT, I, E)) 1475 return false; 1476 } 1477 1478 if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E)) 1479 return false; 1480 return true; 1481 } 1482 1483 template <class Emitter> 1484 bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) { 1485 const Expr *LHS = E->getLHS(); 1486 const Expr *RHS = E->getRHS(); 1487 1488 assert(LHS->getType()->isFixedPointType() || 1489 RHS->getType()->isFixedPointType()); 1490 1491 if (!this->visit(LHS)) 1492 return false; 1493 if (!LHS->getType()->isFixedPointType()) { 1494 auto Sem = Ctx.getASTContext().getFixedPointSemantics(LHS->getType()); 1495 uint32_t I; 1496 std::memcpy(&I, &Sem, sizeof(Sem)); 1497 if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()), I, E)) 1498 return false; 1499 } 1500 if (!this->visit(RHS)) 1501 return false; 1502 if (!RHS->getType()->isFixedPointType()) { 1503 auto Sem = Ctx.getASTContext().getFixedPointSemantics(RHS->getType()); 1504 uint32_t I; 1505 std::memcpy(&I, &Sem, sizeof(Sem)); 1506 if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()), I, E)) 1507 return false; 1508 } 1509 1510 switch (E->getOpcode()) { 1511 case BO_EQ: 1512 return this->emitEQFixedPoint(E); 1513 case BO_NE: 1514 return this->emitNEFixedPoint(E); 1515 #if 0 1516 case BO_LT: 1517 return this->emitLTFixedPoint(E); 1518 case BO_LE: 1519 return this->emitLEFixedPoint(E); 1520 case BO_GT: 1521 return this->emitGTFixedPoint(E); 1522 case BO_GE: 1523 return this->emitGEFixedPoint(E); 1524 #endif 1525 default: 1526 return this->emitInvalid(E); 1527 } 1528 1529 llvm_unreachable("unhandled binop opcode"); 1530 } 1531 1532 template <class Emitter> 1533 bool Compiler<Emitter>::VisitImplicitValueInitExpr( 1534 const ImplicitValueInitExpr *E) { 1535 QualType QT = E->getType(); 1536 1537 if (std::optional<PrimType> T = classify(QT)) 1538 return this->visitZeroInitializer(*T, QT, E); 1539 1540 if (QT->isRecordType()) { 1541 const RecordDecl *RD = QT->getAsRecordDecl(); 1542 assert(RD); 1543 if (RD->isInvalidDecl()) 1544 return false; 1545 1546 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1547 CXXRD && CXXRD->getNumVBases() > 0) { 1548 // TODO: Diagnose. 1549 return false; 1550 } 1551 1552 const Record *R = getRecord(QT); 1553 if (!R) 1554 return false; 1555 1556 assert(Initializing); 1557 return this->visitZeroRecordInitializer(R, E); 1558 } 1559 1560 if (QT->isIncompleteArrayType()) 1561 return true; 1562 1563 if (QT->isArrayType()) { 1564 const ArrayType *AT = QT->getAsArrayTypeUnsafe(); 1565 assert(AT); 1566 const auto *CAT = cast<ConstantArrayType>(AT); 1567 size_t NumElems = CAT->getZExtSize(); 1568 PrimType ElemT = classifyPrim(CAT->getElementType()); 1569 1570 for (size_t I = 0; I != NumElems; ++I) { 1571 if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E)) 1572 return false; 1573 if (!this->emitInitElem(ElemT, I, E)) 1574 return false; 1575 } 1576 1577 return true; 1578 } 1579 1580 if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) { 1581 assert(Initializing); 1582 QualType ElemQT = ComplexTy->getElementType(); 1583 PrimType ElemT = classifyPrim(ElemQT); 1584 for (unsigned I = 0; I < 2; ++I) { 1585 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1586 return false; 1587 if (!this->emitInitElem(ElemT, I, E)) 1588 return false; 1589 } 1590 return true; 1591 } 1592 1593 if (const auto *VecT = E->getType()->getAs<VectorType>()) { 1594 unsigned NumVecElements = VecT->getNumElements(); 1595 QualType ElemQT = VecT->getElementType(); 1596 PrimType ElemT = classifyPrim(ElemQT); 1597 1598 for (unsigned I = 0; I < NumVecElements; ++I) { 1599 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1600 return false; 1601 if (!this->emitInitElem(ElemT, I, E)) 1602 return false; 1603 } 1604 return true; 1605 } 1606 1607 return false; 1608 } 1609 1610 template <class Emitter> 1611 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1612 const Expr *LHS = E->getLHS(); 1613 const Expr *RHS = E->getRHS(); 1614 const Expr *Index = E->getIdx(); 1615 1616 if (DiscardResult) 1617 return this->discard(LHS) && this->discard(RHS); 1618 1619 // C++17's rules require us to evaluate the LHS first, regardless of which 1620 // side is the base. 1621 bool Success = true; 1622 for (const Expr *SubExpr : {LHS, RHS}) { 1623 if (!this->visit(SubExpr)) 1624 Success = false; 1625 } 1626 1627 if (!Success) 1628 return false; 1629 1630 PrimType IndexT = classifyPrim(Index->getType()); 1631 // If the index is first, we need to change that. 1632 if (LHS == Index) { 1633 if (!this->emitFlip(PT_Ptr, IndexT, E)) 1634 return false; 1635 } 1636 1637 return this->emitArrayElemPtrPop(IndexT, E); 1638 } 1639 1640 template <class Emitter> 1641 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits, 1642 const Expr *ArrayFiller, const Expr *E) { 1643 QualType QT = E->getType(); 1644 if (const auto *AT = QT->getAs<AtomicType>()) 1645 QT = AT->getValueType(); 1646 1647 if (QT->isVoidType()) { 1648 if (Inits.size() == 0) 1649 return true; 1650 return this->emitInvalid(E); 1651 } 1652 1653 // Handle discarding first. 1654 if (DiscardResult) { 1655 for (const Expr *Init : Inits) { 1656 if (!this->discard(Init)) 1657 return false; 1658 } 1659 return true; 1660 } 1661 1662 // Primitive values. 1663 if (std::optional<PrimType> T = classify(QT)) { 1664 assert(!DiscardResult); 1665 if (Inits.size() == 0) 1666 return this->visitZeroInitializer(*T, QT, E); 1667 assert(Inits.size() == 1); 1668 return this->delegate(Inits[0]); 1669 } 1670 1671 if (QT->isRecordType()) { 1672 const Record *R = getRecord(QT); 1673 1674 if (Inits.size() == 1 && E->getType() == Inits[0]->getType()) 1675 return this->delegate(Inits[0]); 1676 1677 auto initPrimitiveField = [=](const Record::Field *FieldToInit, 1678 const Expr *Init, PrimType T) -> bool { 1679 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1680 if (!this->visit(Init)) 1681 return false; 1682 1683 if (FieldToInit->isBitField()) 1684 return this->emitInitBitField(T, FieldToInit, E); 1685 return this->emitInitField(T, FieldToInit->Offset, E); 1686 }; 1687 1688 auto initCompositeField = [=](const Record::Field *FieldToInit, 1689 const Expr *Init) -> bool { 1690 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1691 InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset)); 1692 // Non-primitive case. Get a pointer to the field-to-initialize 1693 // on the stack and recurse into visitInitializer(). 1694 if (!this->emitGetPtrField(FieldToInit->Offset, Init)) 1695 return false; 1696 if (!this->visitInitializer(Init)) 1697 return false; 1698 return this->emitPopPtr(E); 1699 }; 1700 1701 if (R->isUnion()) { 1702 if (Inits.size() == 0) { 1703 if (!this->visitZeroRecordInitializer(R, E)) 1704 return false; 1705 } else { 1706 const Expr *Init = Inits[0]; 1707 const FieldDecl *FToInit = nullptr; 1708 if (const auto *ILE = dyn_cast<InitListExpr>(E)) 1709 FToInit = ILE->getInitializedFieldInUnion(); 1710 else 1711 FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion(); 1712 1713 const Record::Field *FieldToInit = R->getField(FToInit); 1714 if (std::optional<PrimType> T = classify(Init)) { 1715 if (!initPrimitiveField(FieldToInit, Init, *T)) 1716 return false; 1717 } else { 1718 if (!initCompositeField(FieldToInit, Init)) 1719 return false; 1720 } 1721 } 1722 return this->emitFinishInit(E); 1723 } 1724 1725 assert(!R->isUnion()); 1726 unsigned InitIndex = 0; 1727 for (const Expr *Init : Inits) { 1728 // Skip unnamed bitfields. 1729 while (InitIndex < R->getNumFields() && 1730 R->getField(InitIndex)->Decl->isUnnamedBitField()) 1731 ++InitIndex; 1732 1733 if (std::optional<PrimType> T = classify(Init)) { 1734 const Record::Field *FieldToInit = R->getField(InitIndex); 1735 if (!initPrimitiveField(FieldToInit, Init, *T)) 1736 return false; 1737 ++InitIndex; 1738 } else { 1739 // Initializer for a direct base class. 1740 if (const Record::Base *B = R->getBase(Init->getType())) { 1741 if (!this->emitGetPtrBase(B->Offset, Init)) 1742 return false; 1743 1744 if (!this->visitInitializer(Init)) 1745 return false; 1746 1747 if (!this->emitFinishInitPop(E)) 1748 return false; 1749 // Base initializers don't increase InitIndex, since they don't count 1750 // into the Record's fields. 1751 } else { 1752 const Record::Field *FieldToInit = R->getField(InitIndex); 1753 if (!initCompositeField(FieldToInit, Init)) 1754 return false; 1755 ++InitIndex; 1756 } 1757 } 1758 } 1759 return this->emitFinishInit(E); 1760 } 1761 1762 if (QT->isArrayType()) { 1763 if (Inits.size() == 1 && QT == Inits[0]->getType()) 1764 return this->delegate(Inits[0]); 1765 1766 unsigned ElementIndex = 0; 1767 for (const Expr *Init : Inits) { 1768 if (const auto *EmbedS = 1769 dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 1770 PrimType TargetT = classifyPrim(Init->getType()); 1771 1772 auto Eval = [&](const Expr *Init, unsigned ElemIndex) { 1773 PrimType InitT = classifyPrim(Init->getType()); 1774 if (!this->visit(Init)) 1775 return false; 1776 if (InitT != TargetT) { 1777 if (!this->emitCast(InitT, TargetT, E)) 1778 return false; 1779 } 1780 return this->emitInitElem(TargetT, ElemIndex, Init); 1781 }; 1782 if (!EmbedS->doForEachDataElement(Eval, ElementIndex)) 1783 return false; 1784 } else { 1785 if (!this->visitArrayElemInit(ElementIndex, Init)) 1786 return false; 1787 ++ElementIndex; 1788 } 1789 } 1790 1791 // Expand the filler expression. 1792 // FIXME: This should go away. 1793 if (ArrayFiller) { 1794 const ConstantArrayType *CAT = 1795 Ctx.getASTContext().getAsConstantArrayType(QT); 1796 uint64_t NumElems = CAT->getZExtSize(); 1797 1798 for (; ElementIndex != NumElems; ++ElementIndex) { 1799 if (!this->visitArrayElemInit(ElementIndex, ArrayFiller)) 1800 return false; 1801 } 1802 } 1803 1804 return this->emitFinishInit(E); 1805 } 1806 1807 if (const auto *ComplexTy = QT->getAs<ComplexType>()) { 1808 unsigned NumInits = Inits.size(); 1809 1810 if (NumInits == 1) 1811 return this->delegate(Inits[0]); 1812 1813 QualType ElemQT = ComplexTy->getElementType(); 1814 PrimType ElemT = classifyPrim(ElemQT); 1815 if (NumInits == 0) { 1816 // Zero-initialize both elements. 1817 for (unsigned I = 0; I < 2; ++I) { 1818 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1819 return false; 1820 if (!this->emitInitElem(ElemT, I, E)) 1821 return false; 1822 } 1823 } else if (NumInits == 2) { 1824 unsigned InitIndex = 0; 1825 for (const Expr *Init : Inits) { 1826 if (!this->visit(Init)) 1827 return false; 1828 1829 if (!this->emitInitElem(ElemT, InitIndex, E)) 1830 return false; 1831 ++InitIndex; 1832 } 1833 } 1834 return true; 1835 } 1836 1837 if (const auto *VecT = QT->getAs<VectorType>()) { 1838 unsigned NumVecElements = VecT->getNumElements(); 1839 assert(NumVecElements >= Inits.size()); 1840 1841 QualType ElemQT = VecT->getElementType(); 1842 PrimType ElemT = classifyPrim(ElemQT); 1843 1844 // All initializer elements. 1845 unsigned InitIndex = 0; 1846 for (const Expr *Init : Inits) { 1847 if (!this->visit(Init)) 1848 return false; 1849 1850 // If the initializer is of vector type itself, we have to deconstruct 1851 // that and initialize all the target fields from the initializer fields. 1852 if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) { 1853 if (!this->emitCopyArray(ElemT, 0, InitIndex, 1854 InitVecT->getNumElements(), E)) 1855 return false; 1856 InitIndex += InitVecT->getNumElements(); 1857 } else { 1858 if (!this->emitInitElem(ElemT, InitIndex, E)) 1859 return false; 1860 ++InitIndex; 1861 } 1862 } 1863 1864 assert(InitIndex <= NumVecElements); 1865 1866 // Fill the rest with zeroes. 1867 for (; InitIndex != NumVecElements; ++InitIndex) { 1868 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1869 return false; 1870 if (!this->emitInitElem(ElemT, InitIndex, E)) 1871 return false; 1872 } 1873 return true; 1874 } 1875 1876 return false; 1877 } 1878 1879 /// Pointer to the array(not the element!) must be on the stack when calling 1880 /// this. 1881 template <class Emitter> 1882 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex, 1883 const Expr *Init) { 1884 if (std::optional<PrimType> T = classify(Init->getType())) { 1885 // Visit the primitive element like normal. 1886 if (!this->visit(Init)) 1887 return false; 1888 return this->emitInitElem(*T, ElemIndex, Init); 1889 } 1890 1891 InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex)); 1892 // Advance the pointer currently on the stack to the given 1893 // dimension. 1894 if (!this->emitConstUint32(ElemIndex, Init)) 1895 return false; 1896 if (!this->emitArrayElemPtrUint32(Init)) 1897 return false; 1898 if (!this->visitInitializer(Init)) 1899 return false; 1900 return this->emitFinishInitPop(Init); 1901 } 1902 1903 template <class Emitter> 1904 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) { 1905 return this->visitInitList(E->inits(), E->getArrayFiller(), E); 1906 } 1907 1908 template <class Emitter> 1909 bool Compiler<Emitter>::VisitCXXParenListInitExpr( 1910 const CXXParenListInitExpr *E) { 1911 return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E); 1912 } 1913 1914 template <class Emitter> 1915 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr( 1916 const SubstNonTypeTemplateParmExpr *E) { 1917 return this->delegate(E->getReplacement()); 1918 } 1919 1920 template <class Emitter> 1921 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) { 1922 std::optional<PrimType> T = classify(E->getType()); 1923 if (T && E->hasAPValueResult()) { 1924 // Try to emit the APValue directly, without visiting the subexpr. 1925 // This will only fail if we can't emit the APValue, so won't emit any 1926 // diagnostics or any double values. 1927 if (DiscardResult) 1928 return true; 1929 1930 if (this->visitAPValue(E->getAPValueResult(), *T, E)) 1931 return true; 1932 } 1933 return this->delegate(E->getSubExpr()); 1934 } 1935 1936 template <class Emitter> 1937 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) { 1938 auto It = E->begin(); 1939 return this->visit(*It); 1940 } 1941 1942 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx, 1943 UnaryExprOrTypeTrait Kind) { 1944 bool AlignOfReturnsPreferred = 1945 ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 1946 1947 // C++ [expr.alignof]p3: 1948 // When alignof is applied to a reference type, the result is the 1949 // alignment of the referenced type. 1950 if (const auto *Ref = T->getAs<ReferenceType>()) 1951 T = Ref->getPointeeType(); 1952 1953 if (T.getQualifiers().hasUnaligned()) 1954 return CharUnits::One(); 1955 1956 // __alignof is defined to return the preferred alignment. 1957 // Before 8, clang returned the preferred alignment for alignof and 1958 // _Alignof as well. 1959 if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 1960 return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T)); 1961 1962 return ASTCtx.getTypeAlignInChars(T); 1963 } 1964 1965 template <class Emitter> 1966 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr( 1967 const UnaryExprOrTypeTraitExpr *E) { 1968 UnaryExprOrTypeTrait Kind = E->getKind(); 1969 const ASTContext &ASTCtx = Ctx.getASTContext(); 1970 1971 if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) { 1972 QualType ArgType = E->getTypeOfArgument(); 1973 1974 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 1975 // the result is the size of the referenced type." 1976 if (const auto *Ref = ArgType->getAs<ReferenceType>()) 1977 ArgType = Ref->getPointeeType(); 1978 1979 CharUnits Size; 1980 if (ArgType->isVoidType() || ArgType->isFunctionType()) 1981 Size = CharUnits::One(); 1982 else { 1983 if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) 1984 return false; 1985 1986 if (Kind == UETT_SizeOf) 1987 Size = ASTCtx.getTypeSizeInChars(ArgType); 1988 else 1989 Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width; 1990 } 1991 1992 if (DiscardResult) 1993 return true; 1994 1995 return this->emitConst(Size.getQuantity(), E); 1996 } 1997 1998 if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) { 1999 CharUnits Size; 2000 2001 if (E->isArgumentType()) { 2002 QualType ArgType = E->getTypeOfArgument(); 2003 2004 Size = AlignOfType(ArgType, ASTCtx, Kind); 2005 } else { 2006 // Argument is an expression, not a type. 2007 const Expr *Arg = E->getArgumentExpr()->IgnoreParens(); 2008 2009 // The kinds of expressions that we have special-case logic here for 2010 // should be kept up to date with the special checks for those 2011 // expressions in Sema. 2012 2013 // alignof decl is always accepted, even if it doesn't make sense: we 2014 // default to 1 in those cases. 2015 if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg)) 2016 Size = ASTCtx.getDeclAlign(DRE->getDecl(), 2017 /*RefAsPointee*/ true); 2018 else if (const auto *ME = dyn_cast<MemberExpr>(Arg)) 2019 Size = ASTCtx.getDeclAlign(ME->getMemberDecl(), 2020 /*RefAsPointee*/ true); 2021 else 2022 Size = AlignOfType(Arg->getType(), ASTCtx, Kind); 2023 } 2024 2025 if (DiscardResult) 2026 return true; 2027 2028 return this->emitConst(Size.getQuantity(), E); 2029 } 2030 2031 if (Kind == UETT_VectorElements) { 2032 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) 2033 return this->emitConst(VT->getNumElements(), E); 2034 assert(E->getTypeOfArgument()->isSizelessVectorType()); 2035 return this->emitSizelessVectorElementSize(E); 2036 } 2037 2038 if (Kind == UETT_VecStep) { 2039 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) { 2040 unsigned N = VT->getNumElements(); 2041 2042 // The vec_step built-in functions that take a 3-component 2043 // vector return 4. (OpenCL 1.1 spec 6.11.12) 2044 if (N == 3) 2045 N = 4; 2046 2047 return this->emitConst(N, E); 2048 } 2049 return this->emitConst(1, E); 2050 } 2051 2052 return false; 2053 } 2054 2055 template <class Emitter> 2056 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) { 2057 // 'Base.Member' 2058 const Expr *Base = E->getBase(); 2059 const ValueDecl *Member = E->getMemberDecl(); 2060 2061 if (DiscardResult) 2062 return this->discard(Base); 2063 2064 // MemberExprs are almost always lvalues, in which case we don't need to 2065 // do the load. But sometimes they aren't. 2066 const auto maybeLoadValue = [&]() -> bool { 2067 if (E->isGLValue()) 2068 return true; 2069 if (std::optional<PrimType> T = classify(E)) 2070 return this->emitLoadPop(*T, E); 2071 return false; 2072 }; 2073 2074 if (const auto *VD = dyn_cast<VarDecl>(Member)) { 2075 // I am almost confident in saying that a var decl must be static 2076 // and therefore registered as a global variable. But this will probably 2077 // turn out to be wrong some time in the future, as always. 2078 if (auto GlobalIndex = P.getGlobal(VD)) 2079 return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue(); 2080 return false; 2081 } 2082 2083 if (!isa<FieldDecl>(Member)) { 2084 if (!this->discard(Base) && !this->emitSideEffect(E)) 2085 return false; 2086 2087 return this->visitDeclRef(Member, E); 2088 } 2089 2090 if (Initializing) { 2091 if (!this->delegate(Base)) 2092 return false; 2093 } else { 2094 if (!this->visit(Base)) 2095 return false; 2096 } 2097 2098 // Base above gives us a pointer on the stack. 2099 const auto *FD = cast<FieldDecl>(Member); 2100 const RecordDecl *RD = FD->getParent(); 2101 const Record *R = getRecord(RD); 2102 if (!R) 2103 return false; 2104 const Record::Field *F = R->getField(FD); 2105 // Leave a pointer to the field on the stack. 2106 if (F->Decl->getType()->isReferenceType()) 2107 return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue(); 2108 return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue(); 2109 } 2110 2111 template <class Emitter> 2112 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 2113 // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated 2114 // stand-alone, e.g. via EvaluateAsInt(). 2115 if (!ArrayIndex) 2116 return false; 2117 return this->emitConst(*ArrayIndex, E); 2118 } 2119 2120 template <class Emitter> 2121 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 2122 assert(Initializing); 2123 assert(!DiscardResult); 2124 2125 // We visit the common opaque expression here once so we have its value 2126 // cached. 2127 if (!this->discard(E->getCommonExpr())) 2128 return false; 2129 2130 // TODO: This compiles to quite a lot of bytecode if the array is larger. 2131 // Investigate compiling this to a loop. 2132 const Expr *SubExpr = E->getSubExpr(); 2133 size_t Size = E->getArraySize().getZExtValue(); 2134 2135 // So, every iteration, we execute an assignment here 2136 // where the LHS is on the stack (the target array) 2137 // and the RHS is our SubExpr. 2138 for (size_t I = 0; I != Size; ++I) { 2139 ArrayIndexScope<Emitter> IndexScope(this, I); 2140 BlockScope<Emitter> BS(this); 2141 2142 if (!this->visitArrayElemInit(I, SubExpr)) 2143 return false; 2144 if (!BS.destroyLocals()) 2145 return false; 2146 } 2147 return true; 2148 } 2149 2150 template <class Emitter> 2151 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 2152 const Expr *SourceExpr = E->getSourceExpr(); 2153 if (!SourceExpr) 2154 return false; 2155 2156 if (Initializing) 2157 return this->visitInitializer(SourceExpr); 2158 2159 PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr); 2160 if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end()) 2161 return this->emitGetLocal(SubExprT, It->second, E); 2162 2163 if (!this->visit(SourceExpr)) 2164 return false; 2165 2166 // At this point we either have the evaluated source expression or a pointer 2167 // to an object on the stack. We want to create a local variable that stores 2168 // this value. 2169 unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true); 2170 if (!this->emitSetLocal(SubExprT, LocalIndex, E)) 2171 return false; 2172 2173 // Here the local variable is created but the value is removed from the stack, 2174 // so we put it back if the caller needs it. 2175 if (!DiscardResult) { 2176 if (!this->emitGetLocal(SubExprT, LocalIndex, E)) 2177 return false; 2178 } 2179 2180 // This is cleaned up when the local variable is destroyed. 2181 OpaqueExprs.insert({E, LocalIndex}); 2182 2183 return true; 2184 } 2185 2186 template <class Emitter> 2187 bool Compiler<Emitter>::VisitAbstractConditionalOperator( 2188 const AbstractConditionalOperator *E) { 2189 const Expr *Condition = E->getCond(); 2190 const Expr *TrueExpr = E->getTrueExpr(); 2191 const Expr *FalseExpr = E->getFalseExpr(); 2192 2193 LabelTy LabelEnd = this->getLabel(); // Label after the operator. 2194 LabelTy LabelFalse = this->getLabel(); // Label for the false expr. 2195 2196 if (!this->visitBool(Condition)) 2197 return false; 2198 2199 if (!this->jumpFalse(LabelFalse)) 2200 return false; 2201 2202 { 2203 LocalScope<Emitter> S(this); 2204 if (!this->delegate(TrueExpr)) 2205 return false; 2206 if (!S.destroyLocals()) 2207 return false; 2208 } 2209 2210 if (!this->jump(LabelEnd)) 2211 return false; 2212 2213 this->emitLabel(LabelFalse); 2214 2215 { 2216 LocalScope<Emitter> S(this); 2217 if (!this->delegate(FalseExpr)) 2218 return false; 2219 if (!S.destroyLocals()) 2220 return false; 2221 } 2222 2223 this->fallthrough(LabelEnd); 2224 this->emitLabel(LabelEnd); 2225 2226 return true; 2227 } 2228 2229 template <class Emitter> 2230 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) { 2231 if (DiscardResult) 2232 return true; 2233 2234 if (!Initializing) { 2235 unsigned StringIndex = P.createGlobalString(E); 2236 return this->emitGetPtrGlobal(StringIndex, E); 2237 } 2238 2239 // We are initializing an array on the stack. 2240 const ConstantArrayType *CAT = 2241 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 2242 assert(CAT && "a string literal that's not a constant array?"); 2243 2244 // If the initializer string is too long, a diagnostic has already been 2245 // emitted. Read only the array length from the string literal. 2246 unsigned ArraySize = CAT->getZExtSize(); 2247 unsigned N = std::min(ArraySize, E->getLength()); 2248 size_t CharWidth = E->getCharByteWidth(); 2249 2250 for (unsigned I = 0; I != N; ++I) { 2251 uint32_t CodeUnit = E->getCodeUnit(I); 2252 2253 if (CharWidth == 1) { 2254 this->emitConstSint8(CodeUnit, E); 2255 this->emitInitElemSint8(I, E); 2256 } else if (CharWidth == 2) { 2257 this->emitConstUint16(CodeUnit, E); 2258 this->emitInitElemUint16(I, E); 2259 } else if (CharWidth == 4) { 2260 this->emitConstUint32(CodeUnit, E); 2261 this->emitInitElemUint32(I, E); 2262 } else { 2263 llvm_unreachable("unsupported character width"); 2264 } 2265 } 2266 2267 // Fill up the rest of the char array with NUL bytes. 2268 for (unsigned I = N; I != ArraySize; ++I) { 2269 if (CharWidth == 1) { 2270 this->emitConstSint8(0, E); 2271 this->emitInitElemSint8(I, E); 2272 } else if (CharWidth == 2) { 2273 this->emitConstUint16(0, E); 2274 this->emitInitElemUint16(I, E); 2275 } else if (CharWidth == 4) { 2276 this->emitConstUint32(0, E); 2277 this->emitInitElemUint32(I, E); 2278 } else { 2279 llvm_unreachable("unsupported character width"); 2280 } 2281 } 2282 2283 return true; 2284 } 2285 2286 template <class Emitter> 2287 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 2288 if (std::optional<unsigned> I = P.getOrCreateDummy(E)) 2289 return this->emitGetPtrGlobal(*I, E); 2290 return false; 2291 } 2292 2293 template <class Emitter> 2294 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 2295 auto &A = Ctx.getASTContext(); 2296 std::string Str; 2297 A.getObjCEncodingForType(E->getEncodedType(), Str); 2298 StringLiteral *SL = 2299 StringLiteral::Create(A, Str, StringLiteralKind::Ordinary, 2300 /*Pascal=*/false, E->getType(), E->getAtLoc()); 2301 return this->delegate(SL); 2302 } 2303 2304 template <class Emitter> 2305 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr( 2306 const SYCLUniqueStableNameExpr *E) { 2307 if (DiscardResult) 2308 return true; 2309 2310 assert(!Initializing); 2311 2312 auto &A = Ctx.getASTContext(); 2313 std::string ResultStr = E->ComputeName(A); 2314 2315 QualType CharTy = A.CharTy.withConst(); 2316 APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1); 2317 QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr, 2318 ArraySizeModifier::Normal, 0); 2319 2320 StringLiteral *SL = 2321 StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary, 2322 /*Pascal=*/false, ArrayTy, E->getLocation()); 2323 2324 unsigned StringIndex = P.createGlobalString(SL); 2325 return this->emitGetPtrGlobal(StringIndex, E); 2326 } 2327 2328 template <class Emitter> 2329 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) { 2330 if (DiscardResult) 2331 return true; 2332 return this->emitConst(E->getValue(), E); 2333 } 2334 2335 template <class Emitter> 2336 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator( 2337 const CompoundAssignOperator *E) { 2338 2339 const Expr *LHS = E->getLHS(); 2340 const Expr *RHS = E->getRHS(); 2341 QualType LHSType = LHS->getType(); 2342 QualType LHSComputationType = E->getComputationLHSType(); 2343 QualType ResultType = E->getComputationResultType(); 2344 std::optional<PrimType> LT = classify(LHSComputationType); 2345 std::optional<PrimType> RT = classify(ResultType); 2346 2347 assert(ResultType->isFloatingType()); 2348 2349 if (!LT || !RT) 2350 return false; 2351 2352 PrimType LHST = classifyPrim(LHSType); 2353 2354 // C++17 onwards require that we evaluate the RHS first. 2355 // Compute RHS and save it in a temporary variable so we can 2356 // load it again later. 2357 if (!visit(RHS)) 2358 return false; 2359 2360 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2361 if (!this->emitSetLocal(*RT, TempOffset, E)) 2362 return false; 2363 2364 // First, visit LHS. 2365 if (!visit(LHS)) 2366 return false; 2367 if (!this->emitLoad(LHST, E)) 2368 return false; 2369 2370 // If necessary, convert LHS to its computation type. 2371 if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType), 2372 LHSComputationType, E)) 2373 return false; 2374 2375 // Now load RHS. 2376 if (!this->emitGetLocal(*RT, TempOffset, E)) 2377 return false; 2378 2379 switch (E->getOpcode()) { 2380 case BO_AddAssign: 2381 if (!this->emitAddf(getFPOptions(E), E)) 2382 return false; 2383 break; 2384 case BO_SubAssign: 2385 if (!this->emitSubf(getFPOptions(E), E)) 2386 return false; 2387 break; 2388 case BO_MulAssign: 2389 if (!this->emitMulf(getFPOptions(E), E)) 2390 return false; 2391 break; 2392 case BO_DivAssign: 2393 if (!this->emitDivf(getFPOptions(E), E)) 2394 return false; 2395 break; 2396 default: 2397 return false; 2398 } 2399 2400 if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E)) 2401 return false; 2402 2403 if (DiscardResult) 2404 return this->emitStorePop(LHST, E); 2405 return this->emitStore(LHST, E); 2406 } 2407 2408 template <class Emitter> 2409 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator( 2410 const CompoundAssignOperator *E) { 2411 BinaryOperatorKind Op = E->getOpcode(); 2412 const Expr *LHS = E->getLHS(); 2413 const Expr *RHS = E->getRHS(); 2414 std::optional<PrimType> LT = classify(LHS->getType()); 2415 std::optional<PrimType> RT = classify(RHS->getType()); 2416 2417 if (Op != BO_AddAssign && Op != BO_SubAssign) 2418 return false; 2419 2420 if (!LT || !RT) 2421 return false; 2422 2423 if (!visit(LHS)) 2424 return false; 2425 2426 if (!this->emitLoad(*LT, LHS)) 2427 return false; 2428 2429 if (!visit(RHS)) 2430 return false; 2431 2432 if (Op == BO_AddAssign) { 2433 if (!this->emitAddOffset(*RT, E)) 2434 return false; 2435 } else { 2436 if (!this->emitSubOffset(*RT, E)) 2437 return false; 2438 } 2439 2440 if (DiscardResult) 2441 return this->emitStorePopPtr(E); 2442 return this->emitStorePtr(E); 2443 } 2444 2445 template <class Emitter> 2446 bool Compiler<Emitter>::VisitCompoundAssignOperator( 2447 const CompoundAssignOperator *E) { 2448 if (E->getType()->isVectorType()) 2449 return VisitVectorBinOp(E); 2450 2451 const Expr *LHS = E->getLHS(); 2452 const Expr *RHS = E->getRHS(); 2453 std::optional<PrimType> LHSComputationT = 2454 classify(E->getComputationLHSType()); 2455 std::optional<PrimType> LT = classify(LHS->getType()); 2456 std::optional<PrimType> RT = classify(RHS->getType()); 2457 std::optional<PrimType> ResultT = classify(E->getType()); 2458 2459 if (!Ctx.getLangOpts().CPlusPlus14) 2460 return this->visit(RHS) && this->visit(LHS) && this->emitError(E); 2461 2462 if (!LT || !RT || !ResultT || !LHSComputationT) 2463 return false; 2464 2465 // Handle floating point operations separately here, since they 2466 // require special care. 2467 2468 if (ResultT == PT_Float || RT == PT_Float) 2469 return VisitFloatCompoundAssignOperator(E); 2470 2471 if (E->getType()->isPointerType()) 2472 return VisitPointerCompoundAssignOperator(E); 2473 2474 assert(!E->getType()->isPointerType() && "Handled above"); 2475 assert(!E->getType()->isFloatingType() && "Handled above"); 2476 2477 // C++17 onwards require that we evaluate the RHS first. 2478 // Compute RHS and save it in a temporary variable so we can 2479 // load it again later. 2480 // FIXME: Compound assignments are unsequenced in C, so we might 2481 // have to figure out how to reject them. 2482 if (!visit(RHS)) 2483 return false; 2484 2485 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2486 2487 if (!this->emitSetLocal(*RT, TempOffset, E)) 2488 return false; 2489 2490 // Get LHS pointer, load its value and cast it to the 2491 // computation type if necessary. 2492 if (!visit(LHS)) 2493 return false; 2494 if (!this->emitLoad(*LT, E)) 2495 return false; 2496 if (LT != LHSComputationT) { 2497 if (!this->emitCast(*LT, *LHSComputationT, E)) 2498 return false; 2499 } 2500 2501 // Get the RHS value on the stack. 2502 if (!this->emitGetLocal(*RT, TempOffset, E)) 2503 return false; 2504 2505 // Perform operation. 2506 switch (E->getOpcode()) { 2507 case BO_AddAssign: 2508 if (!this->emitAdd(*LHSComputationT, E)) 2509 return false; 2510 break; 2511 case BO_SubAssign: 2512 if (!this->emitSub(*LHSComputationT, E)) 2513 return false; 2514 break; 2515 case BO_MulAssign: 2516 if (!this->emitMul(*LHSComputationT, E)) 2517 return false; 2518 break; 2519 case BO_DivAssign: 2520 if (!this->emitDiv(*LHSComputationT, E)) 2521 return false; 2522 break; 2523 case BO_RemAssign: 2524 if (!this->emitRem(*LHSComputationT, E)) 2525 return false; 2526 break; 2527 case BO_ShlAssign: 2528 if (!this->emitShl(*LHSComputationT, *RT, E)) 2529 return false; 2530 break; 2531 case BO_ShrAssign: 2532 if (!this->emitShr(*LHSComputationT, *RT, E)) 2533 return false; 2534 break; 2535 case BO_AndAssign: 2536 if (!this->emitBitAnd(*LHSComputationT, E)) 2537 return false; 2538 break; 2539 case BO_XorAssign: 2540 if (!this->emitBitXor(*LHSComputationT, E)) 2541 return false; 2542 break; 2543 case BO_OrAssign: 2544 if (!this->emitBitOr(*LHSComputationT, E)) 2545 return false; 2546 break; 2547 default: 2548 llvm_unreachable("Unimplemented compound assign operator"); 2549 } 2550 2551 // And now cast from LHSComputationT to ResultT. 2552 if (ResultT != LHSComputationT) { 2553 if (!this->emitCast(*LHSComputationT, *ResultT, E)) 2554 return false; 2555 } 2556 2557 // And store the result in LHS. 2558 if (DiscardResult) { 2559 if (LHS->refersToBitField()) 2560 return this->emitStoreBitFieldPop(*ResultT, E); 2561 return this->emitStorePop(*ResultT, E); 2562 } 2563 if (LHS->refersToBitField()) 2564 return this->emitStoreBitField(*ResultT, E); 2565 return this->emitStore(*ResultT, E); 2566 } 2567 2568 template <class Emitter> 2569 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) { 2570 LocalScope<Emitter> ES(this); 2571 const Expr *SubExpr = E->getSubExpr(); 2572 2573 return this->delegate(SubExpr) && ES.destroyLocals(E); 2574 } 2575 2576 template <class Emitter> 2577 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr( 2578 const MaterializeTemporaryExpr *E) { 2579 const Expr *SubExpr = E->getSubExpr(); 2580 2581 if (Initializing) { 2582 // We already have a value, just initialize that. 2583 return this->delegate(SubExpr); 2584 } 2585 // If we don't end up using the materialized temporary anyway, don't 2586 // bother creating it. 2587 if (DiscardResult) 2588 return this->discard(SubExpr); 2589 2590 // When we're initializing a global variable *or* the storage duration of 2591 // the temporary is explicitly static, create a global variable. 2592 std::optional<PrimType> SubExprT = classify(SubExpr); 2593 bool IsStatic = E->getStorageDuration() == SD_Static; 2594 if (IsStatic) { 2595 std::optional<unsigned> GlobalIndex = P.createGlobal(E); 2596 if (!GlobalIndex) 2597 return false; 2598 2599 const LifetimeExtendedTemporaryDecl *TempDecl = 2600 E->getLifetimeExtendedTemporaryDecl(); 2601 if (IsStatic) 2602 assert(TempDecl); 2603 2604 if (SubExprT) { 2605 if (!this->visit(SubExpr)) 2606 return false; 2607 if (IsStatic) { 2608 if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E)) 2609 return false; 2610 } else { 2611 if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E)) 2612 return false; 2613 } 2614 return this->emitGetPtrGlobal(*GlobalIndex, E); 2615 } 2616 2617 if (!this->checkLiteralType(SubExpr)) 2618 return false; 2619 // Non-primitive values. 2620 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2621 return false; 2622 if (!this->visitInitializer(SubExpr)) 2623 return false; 2624 if (IsStatic) 2625 return this->emitInitGlobalTempComp(TempDecl, E); 2626 return true; 2627 } 2628 2629 // For everyhing else, use local variables. 2630 if (SubExprT) { 2631 unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true, 2632 /*IsExtended=*/true); 2633 if (!this->visit(SubExpr)) 2634 return false; 2635 if (!this->emitSetLocal(*SubExprT, LocalIndex, E)) 2636 return false; 2637 return this->emitGetPtrLocal(LocalIndex, E); 2638 } else { 2639 2640 if (!this->checkLiteralType(SubExpr)) 2641 return false; 2642 2643 const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); 2644 if (std::optional<unsigned> LocalIndex = 2645 allocateLocal(Inner, E->getExtendingDecl())) { 2646 InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); 2647 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2648 return false; 2649 return this->visitInitializer(SubExpr); 2650 } 2651 } 2652 return false; 2653 } 2654 2655 template <class Emitter> 2656 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr( 2657 const CXXBindTemporaryExpr *E) { 2658 return this->delegate(E->getSubExpr()); 2659 } 2660 2661 template <class Emitter> 2662 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 2663 const Expr *Init = E->getInitializer(); 2664 if (DiscardResult) 2665 return this->discard(Init); 2666 2667 if (Initializing) { 2668 // We already have a value, just initialize that. 2669 return this->visitInitializer(Init) && this->emitFinishInit(E); 2670 } 2671 2672 std::optional<PrimType> T = classify(E->getType()); 2673 if (E->isFileScope()) { 2674 // Avoid creating a variable if this is a primitive RValue anyway. 2675 if (T && !E->isLValue()) 2676 return this->delegate(Init); 2677 2678 if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) { 2679 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2680 return false; 2681 2682 if (T) { 2683 if (!this->visit(Init)) 2684 return false; 2685 return this->emitInitGlobal(*T, *GlobalIndex, E); 2686 } 2687 2688 return this->visitInitializer(Init) && this->emitFinishInit(E); 2689 } 2690 2691 return false; 2692 } 2693 2694 // Otherwise, use a local variable. 2695 if (T && !E->isLValue()) { 2696 // For primitive types, we just visit the initializer. 2697 return this->delegate(Init); 2698 } else { 2699 unsigned LocalIndex; 2700 2701 if (T) 2702 LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false); 2703 else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init)) 2704 LocalIndex = *MaybeIndex; 2705 else 2706 return false; 2707 2708 if (!this->emitGetPtrLocal(LocalIndex, E)) 2709 return false; 2710 2711 if (T) { 2712 if (!this->visit(Init)) { 2713 return false; 2714 } 2715 return this->emitInit(*T, E); 2716 } else { 2717 if (!this->visitInitializer(Init) || !this->emitFinishInit(E)) 2718 return false; 2719 } 2720 return true; 2721 } 2722 2723 return false; 2724 } 2725 2726 template <class Emitter> 2727 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) { 2728 if (DiscardResult) 2729 return true; 2730 if (E->getType()->isBooleanType()) 2731 return this->emitConstBool(E->getValue(), E); 2732 return this->emitConst(E->getValue(), E); 2733 } 2734 2735 template <class Emitter> 2736 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 2737 if (DiscardResult) 2738 return true; 2739 return this->emitConst(E->getValue(), E); 2740 } 2741 2742 template <class Emitter> 2743 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) { 2744 if (DiscardResult) 2745 return true; 2746 2747 assert(Initializing); 2748 const Record *R = P.getOrCreateRecord(E->getLambdaClass()); 2749 2750 auto *CaptureInitIt = E->capture_init_begin(); 2751 // Initialize all fields (which represent lambda captures) of the 2752 // record with their initializers. 2753 for (const Record::Field &F : R->fields()) { 2754 const Expr *Init = *CaptureInitIt; 2755 ++CaptureInitIt; 2756 2757 if (!Init) 2758 continue; 2759 2760 if (std::optional<PrimType> T = classify(Init)) { 2761 if (!this->visit(Init)) 2762 return false; 2763 2764 if (!this->emitInitField(*T, F.Offset, E)) 2765 return false; 2766 } else { 2767 if (!this->emitGetPtrField(F.Offset, E)) 2768 return false; 2769 2770 if (!this->visitInitializer(Init)) 2771 return false; 2772 2773 if (!this->emitPopPtr(E)) 2774 return false; 2775 } 2776 } 2777 2778 return true; 2779 } 2780 2781 template <class Emitter> 2782 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) { 2783 if (DiscardResult) 2784 return true; 2785 2786 return this->delegate(E->getFunctionName()); 2787 } 2788 2789 template <class Emitter> 2790 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) { 2791 if (E->getSubExpr() && !this->discard(E->getSubExpr())) 2792 return false; 2793 2794 return this->emitInvalid(E); 2795 } 2796 2797 template <class Emitter> 2798 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr( 2799 const CXXReinterpretCastExpr *E) { 2800 const Expr *SubExpr = E->getSubExpr(); 2801 2802 std::optional<PrimType> FromT = classify(SubExpr); 2803 std::optional<PrimType> ToT = classify(E); 2804 2805 if (!FromT || !ToT) 2806 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E); 2807 2808 if (FromT == PT_Ptr || ToT == PT_Ptr) { 2809 // Both types could be PT_Ptr because their expressions are glvalues. 2810 std::optional<PrimType> PointeeFromT; 2811 if (SubExpr->getType()->isPointerOrReferenceType()) 2812 PointeeFromT = classify(SubExpr->getType()->getPointeeType()); 2813 else 2814 PointeeFromT = classify(SubExpr->getType()); 2815 2816 std::optional<PrimType> PointeeToT; 2817 if (E->getType()->isPointerOrReferenceType()) 2818 PointeeToT = classify(E->getType()->getPointeeType()); 2819 else 2820 PointeeToT = classify(E->getType()); 2821 2822 bool Fatal = true; 2823 if (PointeeToT && PointeeFromT) { 2824 if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT)) 2825 Fatal = false; 2826 } 2827 2828 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2829 return false; 2830 2831 if (E->getCastKind() == CK_LValueBitCast) 2832 return this->delegate(SubExpr); 2833 return this->VisitCastExpr(E); 2834 } 2835 2836 // Try to actually do the cast. 2837 bool Fatal = (ToT != FromT); 2838 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2839 return false; 2840 2841 return this->VisitCastExpr(E); 2842 } 2843 2844 template <class Emitter> 2845 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 2846 assert(E->getType()->isBooleanType()); 2847 2848 if (DiscardResult) 2849 return true; 2850 return this->emitConstBool(E->getValue(), E); 2851 } 2852 2853 template <class Emitter> 2854 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) { 2855 QualType T = E->getType(); 2856 assert(!classify(T)); 2857 2858 if (T->isRecordType()) { 2859 const CXXConstructorDecl *Ctor = E->getConstructor(); 2860 2861 // Trivial copy/move constructor. Avoid copy. 2862 if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() && 2863 Ctor->isTrivial() && 2864 E->getArg(0)->isTemporaryObject(Ctx.getASTContext(), 2865 T->getAsCXXRecordDecl())) 2866 return this->visitInitializer(E->getArg(0)); 2867 2868 // If we're discarding a construct expression, we still need 2869 // to allocate a variable and call the constructor and destructor. 2870 if (DiscardResult) { 2871 if (Ctor->isTrivial()) 2872 return true; 2873 assert(!Initializing); 2874 std::optional<unsigned> LocalIndex = allocateLocal(E); 2875 2876 if (!LocalIndex) 2877 return false; 2878 2879 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2880 return false; 2881 } 2882 2883 // Zero initialization. 2884 if (E->requiresZeroInitialization()) { 2885 const Record *R = getRecord(E->getType()); 2886 2887 if (!this->visitZeroRecordInitializer(R, E)) 2888 return false; 2889 2890 // If the constructor is trivial anyway, we're done. 2891 if (Ctor->isTrivial()) 2892 return true; 2893 } 2894 2895 const Function *Func = getFunction(Ctor); 2896 2897 if (!Func) 2898 return false; 2899 2900 assert(Func->hasThisPointer()); 2901 assert(!Func->hasRVO()); 2902 2903 // The This pointer is already on the stack because this is an initializer, 2904 // but we need to dup() so the call() below has its own copy. 2905 if (!this->emitDupPtr(E)) 2906 return false; 2907 2908 // Constructor arguments. 2909 for (const auto *Arg : E->arguments()) { 2910 if (!this->visit(Arg)) 2911 return false; 2912 } 2913 2914 if (Func->isVariadic()) { 2915 uint32_t VarArgSize = 0; 2916 unsigned NumParams = Func->getNumWrittenParams(); 2917 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) { 2918 VarArgSize += 2919 align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr))); 2920 } 2921 if (!this->emitCallVar(Func, VarArgSize, E)) 2922 return false; 2923 } else { 2924 if (!this->emitCall(Func, 0, E)) { 2925 // When discarding, we don't need the result anyway, so clean up 2926 // the instance dup we did earlier in case surrounding code wants 2927 // to keep evaluating. 2928 if (DiscardResult) 2929 (void)this->emitPopPtr(E); 2930 return false; 2931 } 2932 } 2933 2934 if (DiscardResult) 2935 return this->emitPopPtr(E); 2936 return this->emitFinishInit(E); 2937 } 2938 2939 if (T->isArrayType()) { 2940 const ConstantArrayType *CAT = 2941 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 2942 if (!CAT) 2943 return false; 2944 2945 size_t NumElems = CAT->getZExtSize(); 2946 const Function *Func = getFunction(E->getConstructor()); 2947 if (!Func || !Func->isConstexpr()) 2948 return false; 2949 2950 // FIXME(perf): We're calling the constructor once per array element here, 2951 // in the old intepreter we had a special-case for trivial constructors. 2952 for (size_t I = 0; I != NumElems; ++I) { 2953 if (!this->emitConstUint64(I, E)) 2954 return false; 2955 if (!this->emitArrayElemPtrUint64(E)) 2956 return false; 2957 2958 // Constructor arguments. 2959 for (const auto *Arg : E->arguments()) { 2960 if (!this->visit(Arg)) 2961 return false; 2962 } 2963 2964 if (!this->emitCall(Func, 0, E)) 2965 return false; 2966 } 2967 return true; 2968 } 2969 2970 return false; 2971 } 2972 2973 template <class Emitter> 2974 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) { 2975 if (DiscardResult) 2976 return true; 2977 2978 const APValue Val = 2979 E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr); 2980 2981 // Things like __builtin_LINE(). 2982 if (E->getType()->isIntegerType()) { 2983 assert(Val.isInt()); 2984 const APSInt &I = Val.getInt(); 2985 return this->emitConst(I, E); 2986 } 2987 // Otherwise, the APValue is an LValue, with only one element. 2988 // Theoretically, we don't need the APValue at all of course. 2989 assert(E->getType()->isPointerType()); 2990 assert(Val.isLValue()); 2991 const APValue::LValueBase &Base = Val.getLValueBase(); 2992 if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>()) 2993 return this->visit(LValueExpr); 2994 2995 // Otherwise, we have a decl (which is the case for 2996 // __builtin_source_location). 2997 assert(Base.is<const ValueDecl *>()); 2998 assert(Val.getLValuePath().size() == 0); 2999 const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>(); 3000 assert(BaseDecl); 3001 3002 auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl); 3003 3004 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD); 3005 if (!GlobalIndex) 3006 return false; 3007 3008 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 3009 return false; 3010 3011 const Record *R = getRecord(E->getType()); 3012 const APValue &V = UGCD->getValue(); 3013 for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) { 3014 const Record::Field *F = R->getField(I); 3015 const APValue &FieldValue = V.getStructField(I); 3016 3017 PrimType FieldT = classifyPrim(F->Decl->getType()); 3018 3019 if (!this->visitAPValue(FieldValue, FieldT, E)) 3020 return false; 3021 if (!this->emitInitField(FieldT, F->Offset, E)) 3022 return false; 3023 } 3024 3025 // Leave the pointer to the global on the stack. 3026 return true; 3027 } 3028 3029 template <class Emitter> 3030 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) { 3031 unsigned N = E->getNumComponents(); 3032 if (N == 0) 3033 return false; 3034 3035 for (unsigned I = 0; I != N; ++I) { 3036 const OffsetOfNode &Node = E->getComponent(I); 3037 if (Node.getKind() == OffsetOfNode::Array) { 3038 const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex()); 3039 PrimType IndexT = classifyPrim(ArrayIndexExpr->getType()); 3040 3041 if (DiscardResult) { 3042 if (!this->discard(ArrayIndexExpr)) 3043 return false; 3044 continue; 3045 } 3046 3047 if (!this->visit(ArrayIndexExpr)) 3048 return false; 3049 // Cast to Sint64. 3050 if (IndexT != PT_Sint64) { 3051 if (!this->emitCast(IndexT, PT_Sint64, E)) 3052 return false; 3053 } 3054 } 3055 } 3056 3057 if (DiscardResult) 3058 return true; 3059 3060 PrimType T = classifyPrim(E->getType()); 3061 return this->emitOffsetOf(T, E, E); 3062 } 3063 3064 template <class Emitter> 3065 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr( 3066 const CXXScalarValueInitExpr *E) { 3067 QualType Ty = E->getType(); 3068 3069 if (DiscardResult || Ty->isVoidType()) 3070 return true; 3071 3072 if (std::optional<PrimType> T = classify(Ty)) 3073 return this->visitZeroInitializer(*T, Ty, E); 3074 3075 if (const auto *CT = Ty->getAs<ComplexType>()) { 3076 if (!Initializing) { 3077 std::optional<unsigned> LocalIndex = allocateLocal(E); 3078 if (!LocalIndex) 3079 return false; 3080 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3081 return false; 3082 } 3083 3084 // Initialize both fields to 0. 3085 QualType ElemQT = CT->getElementType(); 3086 PrimType ElemT = classifyPrim(ElemQT); 3087 3088 for (unsigned I = 0; I != 2; ++I) { 3089 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 3090 return false; 3091 if (!this->emitInitElem(ElemT, I, E)) 3092 return false; 3093 } 3094 return true; 3095 } 3096 3097 if (const auto *VT = Ty->getAs<VectorType>()) { 3098 // FIXME: Code duplication with the _Complex case above. 3099 if (!Initializing) { 3100 std::optional<unsigned> LocalIndex = allocateLocal(E); 3101 if (!LocalIndex) 3102 return false; 3103 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3104 return false; 3105 } 3106 3107 // Initialize all fields to 0. 3108 QualType ElemQT = VT->getElementType(); 3109 PrimType ElemT = classifyPrim(ElemQT); 3110 3111 for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) { 3112 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 3113 return false; 3114 if (!this->emitInitElem(ElemT, I, E)) 3115 return false; 3116 } 3117 return true; 3118 } 3119 3120 return false; 3121 } 3122 3123 template <class Emitter> 3124 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 3125 return this->emitConst(E->getPackLength(), E); 3126 } 3127 3128 template <class Emitter> 3129 bool Compiler<Emitter>::VisitGenericSelectionExpr( 3130 const GenericSelectionExpr *E) { 3131 return this->delegate(E->getResultExpr()); 3132 } 3133 3134 template <class Emitter> 3135 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) { 3136 return this->delegate(E->getChosenSubExpr()); 3137 } 3138 3139 template <class Emitter> 3140 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 3141 if (DiscardResult) 3142 return true; 3143 3144 return this->emitConst(E->getValue(), E); 3145 } 3146 3147 template <class Emitter> 3148 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr( 3149 const CXXInheritedCtorInitExpr *E) { 3150 const CXXConstructorDecl *Ctor = E->getConstructor(); 3151 assert(!Ctor->isTrivial() && 3152 "Trivial CXXInheritedCtorInitExpr, implement. (possible?)"); 3153 const Function *F = this->getFunction(Ctor); 3154 assert(F); 3155 assert(!F->hasRVO()); 3156 assert(F->hasThisPointer()); 3157 3158 if (!this->emitDupPtr(SourceInfo{})) 3159 return false; 3160 3161 // Forward all arguments of the current function (which should be a 3162 // constructor itself) to the inherited ctor. 3163 // This is necessary because the calling code has pushed the pointer 3164 // of the correct base for us already, but the arguments need 3165 // to come after. 3166 unsigned Offset = align(primSize(PT_Ptr)); // instance pointer. 3167 for (const ParmVarDecl *PD : Ctor->parameters()) { 3168 PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr); 3169 3170 if (!this->emitGetParam(PT, Offset, E)) 3171 return false; 3172 Offset += align(primSize(PT)); 3173 } 3174 3175 return this->emitCall(F, 0, E); 3176 } 3177 3178 template <class Emitter> 3179 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) { 3180 assert(classifyPrim(E->getType()) == PT_Ptr); 3181 const Expr *Init = E->getInitializer(); 3182 QualType ElementType = E->getAllocatedType(); 3183 std::optional<PrimType> ElemT = classify(ElementType); 3184 unsigned PlacementArgs = E->getNumPlacementArgs(); 3185 const FunctionDecl *OperatorNew = E->getOperatorNew(); 3186 const Expr *PlacementDest = nullptr; 3187 bool IsNoThrow = false; 3188 3189 if (PlacementArgs != 0) { 3190 // FIXME: There is no restriction on this, but it's not clear that any 3191 // other form makes any sense. We get here for cases such as: 3192 // 3193 // new (std::align_val_t{N}) X(int) 3194 // 3195 // (which should presumably be valid only if N is a multiple of 3196 // alignof(int), and in any case can't be deallocated unless N is 3197 // alignof(X) and X has new-extended alignment). 3198 if (PlacementArgs == 1) { 3199 const Expr *Arg1 = E->getPlacementArg(0); 3200 if (Arg1->getType()->isNothrowT()) { 3201 if (!this->discard(Arg1)) 3202 return false; 3203 IsNoThrow = true; 3204 } else { 3205 // Invalid unless we have C++26 or are in a std:: function. 3206 if (!this->emitInvalidNewDeleteExpr(E, E)) 3207 return false; 3208 3209 // If we have a placement-new destination, we'll later use that instead 3210 // of allocating. 3211 if (OperatorNew->isReservedGlobalPlacementOperator()) 3212 PlacementDest = Arg1; 3213 } 3214 } else { 3215 // Always invalid. 3216 return this->emitInvalid(E); 3217 } 3218 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) 3219 return this->emitInvalidNewDeleteExpr(E, E); 3220 3221 const Descriptor *Desc; 3222 if (!PlacementDest) { 3223 if (ElemT) { 3224 if (E->isArray()) 3225 Desc = nullptr; // We're not going to use it in this case. 3226 else 3227 Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD, 3228 /*IsConst=*/false, /*IsTemporary=*/false, 3229 /*IsMutable=*/false); 3230 } else { 3231 Desc = P.createDescriptor( 3232 E, ElementType.getTypePtr(), 3233 E->isArray() ? std::nullopt : Descriptor::InlineDescMD, 3234 /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init); 3235 } 3236 } 3237 3238 if (E->isArray()) { 3239 std::optional<const Expr *> ArraySizeExpr = E->getArraySize(); 3240 if (!ArraySizeExpr) 3241 return false; 3242 3243 const Expr *Stripped = *ArraySizeExpr; 3244 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 3245 Stripped = ICE->getSubExpr()) 3246 if (ICE->getCastKind() != CK_NoOp && 3247 ICE->getCastKind() != CK_IntegralCast) 3248 break; 3249 3250 PrimType SizeT = classifyPrim(Stripped->getType()); 3251 3252 if (PlacementDest) { 3253 if (!this->visit(PlacementDest)) 3254 return false; 3255 if (!this->visit(Stripped)) 3256 return false; 3257 if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E)) 3258 return false; 3259 } else { 3260 if (!this->visit(Stripped)) 3261 return false; 3262 3263 if (ElemT) { 3264 // N primitive elements. 3265 if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E)) 3266 return false; 3267 } else { 3268 // N Composite elements. 3269 if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E)) 3270 return false; 3271 } 3272 } 3273 3274 if (Init && !this->visitInitializer(Init)) 3275 return false; 3276 3277 } else { 3278 if (PlacementDest) { 3279 if (!this->visit(PlacementDest)) 3280 return false; 3281 if (!this->emitCheckNewTypeMismatch(E, E)) 3282 return false; 3283 } else { 3284 // Allocate just one element. 3285 if (!this->emitAlloc(Desc, E)) 3286 return false; 3287 } 3288 3289 if (Init) { 3290 if (ElemT) { 3291 if (!this->visit(Init)) 3292 return false; 3293 3294 if (!this->emitInit(*ElemT, E)) 3295 return false; 3296 } else { 3297 // Composite. 3298 if (!this->visitInitializer(Init)) 3299 return false; 3300 } 3301 } 3302 } 3303 3304 if (DiscardResult) 3305 return this->emitPopPtr(E); 3306 3307 return true; 3308 } 3309 3310 template <class Emitter> 3311 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 3312 const Expr *Arg = E->getArgument(); 3313 3314 const FunctionDecl *OperatorDelete = E->getOperatorDelete(); 3315 3316 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) 3317 return this->emitInvalidNewDeleteExpr(E, E); 3318 3319 // Arg must be an lvalue. 3320 if (!this->visit(Arg)) 3321 return false; 3322 3323 return this->emitFree(E->isArrayForm(), E); 3324 } 3325 3326 template <class Emitter> 3327 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) { 3328 const Function *Func = nullptr; 3329 if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E)) 3330 Func = F; 3331 3332 if (!Func) 3333 return false; 3334 return this->emitGetFnPtr(Func, E); 3335 } 3336 3337 template <class Emitter> 3338 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 3339 assert(Ctx.getLangOpts().CPlusPlus); 3340 return this->emitConstBool(E->getValue(), E); 3341 } 3342 3343 template <class Emitter> 3344 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 3345 if (DiscardResult) 3346 return true; 3347 assert(!Initializing); 3348 3349 const MSGuidDecl *GuidDecl = E->getGuidDecl(); 3350 const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl(); 3351 assert(RD); 3352 // If the definiton of the result type is incomplete, just return a dummy. 3353 // If (and when) that is read from, we will fail, but not now. 3354 if (!RD->isCompleteDefinition()) { 3355 if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl)) 3356 return this->emitGetPtrGlobal(*I, E); 3357 return false; 3358 } 3359 3360 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl); 3361 if (!GlobalIndex) 3362 return false; 3363 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 3364 return false; 3365 3366 assert(this->getRecord(E->getType())); 3367 3368 const APValue &V = GuidDecl->getAsAPValue(); 3369 if (V.getKind() == APValue::None) 3370 return true; 3371 3372 assert(V.isStruct()); 3373 assert(V.getStructNumBases() == 0); 3374 if (!this->visitAPValueInitializer(V, E)) 3375 return false; 3376 3377 return this->emitFinishInit(E); 3378 } 3379 3380 template <class Emitter> 3381 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) { 3382 assert(classifyPrim(E->getType()) == PT_Bool); 3383 if (DiscardResult) 3384 return true; 3385 return this->emitConstBool(E->isSatisfied(), E); 3386 } 3387 3388 template <class Emitter> 3389 bool Compiler<Emitter>::VisitConceptSpecializationExpr( 3390 const ConceptSpecializationExpr *E) { 3391 assert(classifyPrim(E->getType()) == PT_Bool); 3392 if (DiscardResult) 3393 return true; 3394 return this->emitConstBool(E->isSatisfied(), E); 3395 } 3396 3397 template <class Emitter> 3398 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator( 3399 const CXXRewrittenBinaryOperator *E) { 3400 return this->delegate(E->getSemanticForm()); 3401 } 3402 3403 template <class Emitter> 3404 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) { 3405 3406 for (const Expr *SemE : E->semantics()) { 3407 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { 3408 if (SemE == E->getResultExpr()) 3409 return false; 3410 3411 if (OVE->isUnique()) 3412 continue; 3413 3414 if (!this->discard(OVE)) 3415 return false; 3416 } else if (SemE == E->getResultExpr()) { 3417 if (!this->delegate(SemE)) 3418 return false; 3419 } else { 3420 if (!this->discard(SemE)) 3421 return false; 3422 } 3423 } 3424 return true; 3425 } 3426 3427 template <class Emitter> 3428 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) { 3429 return this->delegate(E->getSelectedExpr()); 3430 } 3431 3432 template <class Emitter> 3433 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) { 3434 return this->emitError(E); 3435 } 3436 3437 template <class Emitter> 3438 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) { 3439 assert(E->getType()->isVoidPointerType()); 3440 3441 unsigned Offset = allocateLocalPrimitive( 3442 E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3443 3444 return this->emitGetLocal(PT_Ptr, Offset, E); 3445 } 3446 3447 template <class Emitter> 3448 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) { 3449 assert(Initializing); 3450 const auto *VT = E->getType()->castAs<VectorType>(); 3451 QualType ElemType = VT->getElementType(); 3452 PrimType ElemT = classifyPrim(ElemType); 3453 const Expr *Src = E->getSrcExpr(); 3454 PrimType SrcElemT = 3455 classifyPrim(Src->getType()->castAs<VectorType>()->getElementType()); 3456 3457 unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false); 3458 if (!this->visit(Src)) 3459 return false; 3460 if (!this->emitSetLocal(PT_Ptr, SrcOffset, E)) 3461 return false; 3462 3463 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 3464 if (!this->emitGetLocal(PT_Ptr, SrcOffset, E)) 3465 return false; 3466 if (!this->emitArrayElemPop(SrcElemT, I, E)) 3467 return false; 3468 if (SrcElemT != ElemT) { 3469 if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E)) 3470 return false; 3471 } 3472 if (!this->emitInitElem(ElemT, I, E)) 3473 return false; 3474 } 3475 3476 return true; 3477 } 3478 3479 template <class Emitter> 3480 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { 3481 assert(Initializing); 3482 assert(E->getNumSubExprs() > 2); 3483 3484 const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)}; 3485 const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>(); 3486 PrimType ElemT = classifyPrim(VT->getElementType()); 3487 unsigned NumInputElems = VT->getNumElements(); 3488 unsigned NumOutputElems = E->getNumSubExprs() - 2; 3489 assert(NumOutputElems > 0); 3490 3491 // Save both input vectors to a local variable. 3492 unsigned VectorOffsets[2]; 3493 for (unsigned I = 0; I != 2; ++I) { 3494 VectorOffsets[I] = this->allocateLocalPrimitive( 3495 Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3496 if (!this->visit(Vecs[I])) 3497 return false; 3498 if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E)) 3499 return false; 3500 } 3501 for (unsigned I = 0; I != NumOutputElems; ++I) { 3502 APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I); 3503 if (ShuffleIndex == -1) 3504 return this->emitInvalid(E); // FIXME: Better diagnostic. 3505 3506 assert(ShuffleIndex < (NumInputElems * 2)); 3507 if (!this->emitGetLocal(PT_Ptr, 3508 VectorOffsets[ShuffleIndex >= NumInputElems], E)) 3509 return false; 3510 unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems; 3511 if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E)) 3512 return false; 3513 3514 if (!this->emitInitElem(ElemT, I, E)) 3515 return false; 3516 } 3517 3518 return true; 3519 } 3520 3521 template <class Emitter> 3522 bool Compiler<Emitter>::VisitExtVectorElementExpr( 3523 const ExtVectorElementExpr *E) { 3524 const Expr *Base = E->getBase(); 3525 assert( 3526 Base->getType()->isVectorType() || 3527 Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType()); 3528 3529 SmallVector<uint32_t, 4> Indices; 3530 E->getEncodedElementAccess(Indices); 3531 3532 if (Indices.size() == 1) { 3533 if (!this->visit(Base)) 3534 return false; 3535 3536 if (E->isGLValue()) { 3537 if (!this->emitConstUint32(Indices[0], E)) 3538 return false; 3539 return this->emitArrayElemPtrPop(PT_Uint32, E); 3540 } 3541 // Else, also load the value. 3542 return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E); 3543 } 3544 3545 // Create a local variable for the base. 3546 unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true, 3547 /*IsExtended=*/false); 3548 if (!this->visit(Base)) 3549 return false; 3550 if (!this->emitSetLocal(PT_Ptr, BaseOffset, E)) 3551 return false; 3552 3553 // Now the vector variable for the return value. 3554 if (!Initializing) { 3555 std::optional<unsigned> ResultIndex; 3556 ResultIndex = allocateLocal(E); 3557 if (!ResultIndex) 3558 return false; 3559 if (!this->emitGetPtrLocal(*ResultIndex, E)) 3560 return false; 3561 } 3562 3563 assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements()); 3564 3565 PrimType ElemT = 3566 classifyPrim(E->getType()->getAs<VectorType>()->getElementType()); 3567 uint32_t DstIndex = 0; 3568 for (uint32_t I : Indices) { 3569 if (!this->emitGetLocal(PT_Ptr, BaseOffset, E)) 3570 return false; 3571 if (!this->emitArrayElemPop(ElemT, I, E)) 3572 return false; 3573 if (!this->emitInitElem(ElemT, DstIndex, E)) 3574 return false; 3575 ++DstIndex; 3576 } 3577 3578 // Leave the result pointer on the stack. 3579 assert(!DiscardResult); 3580 return true; 3581 } 3582 3583 template <class Emitter> 3584 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 3585 const Expr *SubExpr = E->getSubExpr(); 3586 if (!E->isExpressibleAsConstantInitializer()) 3587 return this->discard(SubExpr) && this->emitInvalid(E); 3588 3589 assert(classifyPrim(E) == PT_Ptr); 3590 if (std::optional<unsigned> I = P.getOrCreateDummy(E)) 3591 return this->emitGetPtrGlobal(*I, E); 3592 3593 return false; 3594 } 3595 3596 template <class Emitter> 3597 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr( 3598 const CXXStdInitializerListExpr *E) { 3599 const Expr *SubExpr = E->getSubExpr(); 3600 const ConstantArrayType *ArrayType = 3601 Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType()); 3602 const Record *R = getRecord(E->getType()); 3603 assert(Initializing); 3604 assert(SubExpr->isGLValue()); 3605 3606 if (!this->visit(SubExpr)) 3607 return false; 3608 if (!this->emitConstUint8(0, E)) 3609 return false; 3610 if (!this->emitArrayElemPtrPopUint8(E)) 3611 return false; 3612 if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E)) 3613 return false; 3614 3615 PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType()); 3616 if (isIntegralType(SecondFieldT)) { 3617 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), 3618 SecondFieldT, E)) 3619 return false; 3620 return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E); 3621 } 3622 assert(SecondFieldT == PT_Ptr); 3623 3624 if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E)) 3625 return false; 3626 if (!this->emitExpandPtr(E)) 3627 return false; 3628 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E)) 3629 return false; 3630 if (!this->emitArrayElemPtrPop(PT_Uint64, E)) 3631 return false; 3632 return this->emitInitFieldPtr(R->getField(1u)->Offset, E); 3633 } 3634 3635 template <class Emitter> 3636 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) { 3637 BlockScope<Emitter> BS(this); 3638 StmtExprScope<Emitter> SS(this); 3639 3640 const CompoundStmt *CS = E->getSubStmt(); 3641 const Stmt *Result = CS->getStmtExprResult(); 3642 for (const Stmt *S : CS->body()) { 3643 if (S != Result) { 3644 if (!this->visitStmt(S)) 3645 return false; 3646 continue; 3647 } 3648 3649 assert(S == Result); 3650 if (const Expr *ResultExpr = dyn_cast<Expr>(S)) 3651 return this->delegate(ResultExpr); 3652 return this->emitUnsupported(E); 3653 } 3654 3655 return BS.destroyLocals(); 3656 } 3657 3658 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) { 3659 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true, 3660 /*NewInitializing=*/false); 3661 return this->Visit(E); 3662 } 3663 3664 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) { 3665 // We're basically doing: 3666 // OptionScope<Emitter> Scope(this, DicardResult, Initializing); 3667 // but that's unnecessary of course. 3668 return this->Visit(E); 3669 } 3670 3671 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) { 3672 if (E->getType().isNull()) 3673 return false; 3674 3675 if (E->getType()->isVoidType()) 3676 return this->discard(E); 3677 3678 // Create local variable to hold the return value. 3679 if (!E->isGLValue() && !E->getType()->isAnyComplexType() && 3680 !classify(E->getType())) { 3681 std::optional<unsigned> LocalIndex = allocateLocal(E); 3682 if (!LocalIndex) 3683 return false; 3684 3685 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3686 return false; 3687 return this->visitInitializer(E); 3688 } 3689 3690 // Otherwise,we have a primitive return value, produce the value directly 3691 // and push it on the stack. 3692 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3693 /*NewInitializing=*/false); 3694 return this->Visit(E); 3695 } 3696 3697 template <class Emitter> 3698 bool Compiler<Emitter>::visitInitializer(const Expr *E) { 3699 assert(!classify(E->getType())); 3700 3701 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3702 /*NewInitializing=*/true); 3703 return this->Visit(E); 3704 } 3705 3706 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) { 3707 std::optional<PrimType> T = classify(E->getType()); 3708 if (!T) { 3709 // Convert complex values to bool. 3710 if (E->getType()->isAnyComplexType()) { 3711 if (!this->visit(E)) 3712 return false; 3713 return this->emitComplexBoolCast(E); 3714 } 3715 return false; 3716 } 3717 3718 if (!this->visit(E)) 3719 return false; 3720 3721 if (T == PT_Bool) 3722 return true; 3723 3724 // Convert pointers to bool. 3725 if (T == PT_Ptr || T == PT_FnPtr) { 3726 if (!this->emitNull(*T, nullptr, E)) 3727 return false; 3728 return this->emitNE(*T, E); 3729 } 3730 3731 // Or Floats. 3732 if (T == PT_Float) 3733 return this->emitCastFloatingIntegralBool(getFPOptions(E), E); 3734 3735 // Or anything else we can. 3736 return this->emitCast(*T, PT_Bool, E); 3737 } 3738 3739 template <class Emitter> 3740 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT, 3741 const Expr *E) { 3742 switch (T) { 3743 case PT_Bool: 3744 return this->emitZeroBool(E); 3745 case PT_Sint8: 3746 return this->emitZeroSint8(E); 3747 case PT_Uint8: 3748 return this->emitZeroUint8(E); 3749 case PT_Sint16: 3750 return this->emitZeroSint16(E); 3751 case PT_Uint16: 3752 return this->emitZeroUint16(E); 3753 case PT_Sint32: 3754 return this->emitZeroSint32(E); 3755 case PT_Uint32: 3756 return this->emitZeroUint32(E); 3757 case PT_Sint64: 3758 return this->emitZeroSint64(E); 3759 case PT_Uint64: 3760 return this->emitZeroUint64(E); 3761 case PT_IntAP: 3762 return this->emitZeroIntAP(Ctx.getBitWidth(QT), E); 3763 case PT_IntAPS: 3764 return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E); 3765 case PT_Ptr: 3766 return this->emitNullPtr(nullptr, E); 3767 case PT_FnPtr: 3768 return this->emitNullFnPtr(nullptr, E); 3769 case PT_MemberPtr: 3770 return this->emitNullMemberPtr(nullptr, E); 3771 case PT_Float: 3772 return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E); 3773 case PT_FixedPoint: { 3774 auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 3775 return this->emitConstFixedPoint(FixedPoint::Zero(Sem), E); 3776 } 3777 llvm_unreachable("Implement"); 3778 } 3779 llvm_unreachable("unknown primitive type"); 3780 } 3781 3782 template <class Emitter> 3783 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R, 3784 const Expr *E) { 3785 assert(E); 3786 assert(R); 3787 // Fields 3788 for (const Record::Field &Field : R->fields()) { 3789 if (Field.Decl->isUnnamedBitField()) 3790 continue; 3791 3792 const Descriptor *D = Field.Desc; 3793 if (D->isPrimitive()) { 3794 QualType QT = D->getType(); 3795 PrimType T = classifyPrim(D->getType()); 3796 if (!this->visitZeroInitializer(T, QT, E)) 3797 return false; 3798 if (!this->emitInitField(T, Field.Offset, E)) 3799 return false; 3800 if (R->isUnion()) 3801 break; 3802 continue; 3803 } 3804 3805 if (!this->emitGetPtrField(Field.Offset, E)) 3806 return false; 3807 3808 if (D->isPrimitiveArray()) { 3809 QualType ET = D->getElemQualType(); 3810 PrimType T = classifyPrim(ET); 3811 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3812 if (!this->visitZeroInitializer(T, ET, E)) 3813 return false; 3814 if (!this->emitInitElem(T, I, E)) 3815 return false; 3816 } 3817 } else if (D->isCompositeArray()) { 3818 const Record *ElemRecord = D->ElemDesc->ElemRecord; 3819 assert(D->ElemDesc->ElemRecord); 3820 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3821 if (!this->emitConstUint32(I, E)) 3822 return false; 3823 if (!this->emitArrayElemPtr(PT_Uint32, E)) 3824 return false; 3825 if (!this->visitZeroRecordInitializer(ElemRecord, E)) 3826 return false; 3827 if (!this->emitPopPtr(E)) 3828 return false; 3829 } 3830 } else if (D->isRecord()) { 3831 if (!this->visitZeroRecordInitializer(D->ElemRecord, E)) 3832 return false; 3833 } else { 3834 assert(false); 3835 } 3836 3837 if (!this->emitFinishInitPop(E)) 3838 return false; 3839 3840 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 3841 // object's first non-static named data member is zero-initialized 3842 if (R->isUnion()) 3843 break; 3844 } 3845 3846 for (const Record::Base &B : R->bases()) { 3847 if (!this->emitGetPtrBase(B.Offset, E)) 3848 return false; 3849 if (!this->visitZeroRecordInitializer(B.R, E)) 3850 return false; 3851 if (!this->emitFinishInitPop(E)) 3852 return false; 3853 } 3854 3855 // FIXME: Virtual bases. 3856 3857 return true; 3858 } 3859 3860 template <class Emitter> 3861 template <typename T> 3862 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) { 3863 switch (Ty) { 3864 case PT_Sint8: 3865 return this->emitConstSint8(Value, E); 3866 case PT_Uint8: 3867 return this->emitConstUint8(Value, E); 3868 case PT_Sint16: 3869 return this->emitConstSint16(Value, E); 3870 case PT_Uint16: 3871 return this->emitConstUint16(Value, E); 3872 case PT_Sint32: 3873 return this->emitConstSint32(Value, E); 3874 case PT_Uint32: 3875 return this->emitConstUint32(Value, E); 3876 case PT_Sint64: 3877 return this->emitConstSint64(Value, E); 3878 case PT_Uint64: 3879 return this->emitConstUint64(Value, E); 3880 case PT_Bool: 3881 return this->emitConstBool(Value, E); 3882 case PT_Ptr: 3883 case PT_FnPtr: 3884 case PT_MemberPtr: 3885 case PT_Float: 3886 case PT_IntAP: 3887 case PT_IntAPS: 3888 case PT_FixedPoint: 3889 llvm_unreachable("Invalid integral type"); 3890 break; 3891 } 3892 llvm_unreachable("unknown primitive type"); 3893 } 3894 3895 template <class Emitter> 3896 template <typename T> 3897 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) { 3898 return this->emitConst(Value, classifyPrim(E->getType()), E); 3899 } 3900 3901 template <class Emitter> 3902 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty, 3903 const Expr *E) { 3904 if (Ty == PT_IntAPS) 3905 return this->emitConstIntAPS(Value, E); 3906 if (Ty == PT_IntAP) 3907 return this->emitConstIntAP(Value, E); 3908 3909 if (Value.isSigned()) 3910 return this->emitConst(Value.getSExtValue(), Ty, E); 3911 return this->emitConst(Value.getZExtValue(), Ty, E); 3912 } 3913 3914 template <class Emitter> 3915 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) { 3916 return this->emitConst(Value, classifyPrim(E->getType()), E); 3917 } 3918 3919 template <class Emitter> 3920 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty, 3921 bool IsConst, 3922 bool IsExtended) { 3923 // Make sure we don't accidentally register the same decl twice. 3924 if (const auto *VD = 3925 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3926 assert(!P.getGlobal(VD)); 3927 assert(!Locals.contains(VD)); 3928 (void)VD; 3929 } 3930 3931 // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g. 3932 // (int){12} in C. Consider using Expr::isTemporaryObject() instead 3933 // or isa<MaterializeTemporaryExpr>(). 3934 Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst, 3935 Src.is<const Expr *>()); 3936 Scope::Local Local = this->createLocal(D); 3937 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) 3938 Locals.insert({VD, Local}); 3939 VarScope->add(Local, IsExtended); 3940 return Local.Offset; 3941 } 3942 3943 template <class Emitter> 3944 std::optional<unsigned> 3945 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) { 3946 // Make sure we don't accidentally register the same decl twice. 3947 if ([[maybe_unused]] const auto *VD = 3948 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3949 assert(!P.getGlobal(VD)); 3950 assert(!Locals.contains(VD)); 3951 } 3952 3953 QualType Ty; 3954 const ValueDecl *Key = nullptr; 3955 const Expr *Init = nullptr; 3956 bool IsTemporary = false; 3957 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3958 Key = VD; 3959 Ty = VD->getType(); 3960 3961 if (const auto *VarD = dyn_cast<VarDecl>(VD)) 3962 Init = VarD->getInit(); 3963 } 3964 if (auto *E = Src.dyn_cast<const Expr *>()) { 3965 IsTemporary = true; 3966 Ty = E->getType(); 3967 } 3968 3969 Descriptor *D = P.createDescriptor( 3970 Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 3971 IsTemporary, /*IsMutable=*/false, Init); 3972 if (!D) 3973 return std::nullopt; 3974 3975 Scope::Local Local = this->createLocal(D); 3976 if (Key) 3977 Locals.insert({Key, Local}); 3978 if (ExtendingDecl) 3979 VarScope->addExtended(Local, ExtendingDecl); 3980 else 3981 VarScope->add(Local, false); 3982 return Local.Offset; 3983 } 3984 3985 template <class Emitter> 3986 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) { 3987 QualType Ty = E->getType(); 3988 assert(!Ty->isRecordType()); 3989 3990 Descriptor *D = P.createDescriptor( 3991 E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 3992 /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr); 3993 assert(D); 3994 3995 Scope::Local Local = this->createLocal(D); 3996 VariableScope<Emitter> *S = VarScope; 3997 assert(S); 3998 // Attach to topmost scope. 3999 while (S->getParent()) 4000 S = S->getParent(); 4001 assert(S && !S->getParent()); 4002 S->addLocal(Local); 4003 return Local.Offset; 4004 } 4005 4006 template <class Emitter> 4007 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) { 4008 if (const PointerType *PT = dyn_cast<PointerType>(Ty)) 4009 return PT->getPointeeType()->getAs<RecordType>(); 4010 return Ty->getAs<RecordType>(); 4011 } 4012 4013 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) { 4014 if (const auto *RecordTy = getRecordTy(Ty)) 4015 return getRecord(RecordTy->getDecl()); 4016 return nullptr; 4017 } 4018 4019 template <class Emitter> 4020 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) { 4021 return P.getOrCreateRecord(RD); 4022 } 4023 4024 template <class Emitter> 4025 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) { 4026 return Ctx.getOrCreateFunction(FD); 4027 } 4028 4029 template <class Emitter> 4030 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) { 4031 LocalScope<Emitter> RootScope(this); 4032 4033 auto maybeDestroyLocals = [&]() -> bool { 4034 if (DestroyToplevelScope) 4035 return RootScope.destroyLocals(); 4036 return true; 4037 }; 4038 4039 // Void expressions. 4040 if (E->getType()->isVoidType()) { 4041 if (!visit(E)) 4042 return false; 4043 return this->emitRetVoid(E) && maybeDestroyLocals(); 4044 } 4045 4046 // Expressions with a primitive return type. 4047 if (std::optional<PrimType> T = classify(E)) { 4048 if (!visit(E)) 4049 return false; 4050 4051 return this->emitRet(*T, E) && maybeDestroyLocals(); 4052 } 4053 4054 // Expressions with a composite return type. 4055 // For us, that means everything we don't 4056 // have a PrimType for. 4057 if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) { 4058 if (!this->emitGetPtrLocal(*LocalOffset, E)) 4059 return false; 4060 4061 if (!visitInitializer(E)) 4062 return false; 4063 4064 if (!this->emitFinishInit(E)) 4065 return false; 4066 // We are destroying the locals AFTER the Ret op. 4067 // The Ret op needs to copy the (alive) values, but the 4068 // destructors may still turn the entire expression invalid. 4069 return this->emitRetValue(E) && maybeDestroyLocals(); 4070 } 4071 4072 (void)maybeDestroyLocals(); 4073 return false; 4074 } 4075 4076 template <class Emitter> 4077 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) { 4078 4079 auto R = this->visitVarDecl(VD, /*Toplevel=*/true); 4080 4081 if (R.notCreated()) 4082 return R; 4083 4084 if (R) 4085 return true; 4086 4087 if (!R && Context::shouldBeGloballyIndexed(VD)) { 4088 if (auto GlobalIndex = P.getGlobal(VD)) { 4089 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 4090 GlobalInlineDescriptor &GD = 4091 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 4092 4093 GD.InitState = GlobalInitState::InitializerFailed; 4094 GlobalBlock->invokeDtor(); 4095 } 4096 } 4097 4098 return R; 4099 } 4100 4101 /// Toplevel visitDeclAndReturn(). 4102 /// We get here from evaluateAsInitializer(). 4103 /// We need to evaluate the initializer and return its value. 4104 template <class Emitter> 4105 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD, 4106 bool ConstantContext) { 4107 std::optional<PrimType> VarT = classify(VD->getType()); 4108 4109 // We only create variables if we're evaluating in a constant context. 4110 // Otherwise, just evaluate the initializer and return it. 4111 if (!ConstantContext) { 4112 DeclScope<Emitter> LS(this, VD); 4113 if (!this->visit(VD->getAnyInitializer())) 4114 return false; 4115 return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals(); 4116 } 4117 4118 LocalScope<Emitter> VDScope(this, VD); 4119 if (!this->visitVarDecl(VD, /*Toplevel=*/true)) 4120 return false; 4121 4122 if (Context::shouldBeGloballyIndexed(VD)) { 4123 auto GlobalIndex = P.getGlobal(VD); 4124 assert(GlobalIndex); // visitVarDecl() didn't return false. 4125 if (VarT) { 4126 if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD)) 4127 return false; 4128 } else { 4129 if (!this->emitGetPtrGlobal(*GlobalIndex, VD)) 4130 return false; 4131 } 4132 } else { 4133 auto Local = Locals.find(VD); 4134 assert(Local != Locals.end()); // Same here. 4135 if (VarT) { 4136 if (!this->emitGetLocal(*VarT, Local->second.Offset, VD)) 4137 return false; 4138 } else { 4139 if (!this->emitGetPtrLocal(Local->second.Offset, VD)) 4140 return false; 4141 } 4142 } 4143 4144 // Return the value. 4145 if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) { 4146 // If the Ret above failed and this is a global variable, mark it as 4147 // uninitialized, even everything else succeeded. 4148 if (Context::shouldBeGloballyIndexed(VD)) { 4149 auto GlobalIndex = P.getGlobal(VD); 4150 assert(GlobalIndex); 4151 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 4152 GlobalInlineDescriptor &GD = 4153 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 4154 4155 GD.InitState = GlobalInitState::InitializerFailed; 4156 GlobalBlock->invokeDtor(); 4157 } 4158 return false; 4159 } 4160 4161 return VDScope.destroyLocals(); 4162 } 4163 4164 template <class Emitter> 4165 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD, 4166 bool Toplevel) { 4167 // We don't know what to do with these, so just return false. 4168 if (VD->getType().isNull()) 4169 return false; 4170 4171 // This case is EvalEmitter-only. If we won't create any instructions for the 4172 // initializer anyway, don't bother creating the variable in the first place. 4173 if (!this->isActive()) 4174 return VarCreationState::NotCreated(); 4175 4176 const Expr *Init = VD->getInit(); 4177 std::optional<PrimType> VarT = classify(VD->getType()); 4178 4179 if (Init && Init->isValueDependent()) 4180 return false; 4181 4182 if (Context::shouldBeGloballyIndexed(VD)) { 4183 auto checkDecl = [&]() -> bool { 4184 bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal(); 4185 return !NeedsOp || this->emitCheckDecl(VD, VD); 4186 }; 4187 4188 auto initGlobal = [&](unsigned GlobalIndex) -> bool { 4189 assert(Init); 4190 4191 if (VarT) { 4192 if (!this->visit(Init)) 4193 return checkDecl() && false; 4194 4195 return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD); 4196 } 4197 4198 if (!checkDecl()) 4199 return false; 4200 4201 if (!this->emitGetPtrGlobal(GlobalIndex, Init)) 4202 return false; 4203 4204 if (!visitInitializer(Init)) 4205 return false; 4206 4207 if (!this->emitFinishInit(Init)) 4208 return false; 4209 4210 return this->emitPopPtr(Init); 4211 }; 4212 4213 DeclScope<Emitter> LocalScope(this, VD); 4214 4215 // We've already seen and initialized this global. 4216 if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) { 4217 if (P.getPtrGlobal(*GlobalIndex).isInitialized()) 4218 return checkDecl(); 4219 4220 // The previous attempt at initialization might've been unsuccessful, 4221 // so let's try this one. 4222 return Init && checkDecl() && initGlobal(*GlobalIndex); 4223 } 4224 4225 std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init); 4226 4227 if (!GlobalIndex) 4228 return false; 4229 4230 return !Init || (checkDecl() && initGlobal(*GlobalIndex)); 4231 } else { 4232 InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD)); 4233 4234 if (VarT) { 4235 unsigned Offset = this->allocateLocalPrimitive( 4236 VD, *VarT, VD->getType().isConstQualified()); 4237 if (Init) { 4238 // If this is a toplevel declaration, create a scope for the 4239 // initializer. 4240 if (Toplevel) { 4241 LocalScope<Emitter> Scope(this); 4242 if (!this->visit(Init)) 4243 return false; 4244 return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals(); 4245 } else { 4246 if (!this->visit(Init)) 4247 return false; 4248 return this->emitSetLocal(*VarT, Offset, VD); 4249 } 4250 } 4251 } else { 4252 if (std::optional<unsigned> Offset = this->allocateLocal(VD)) { 4253 if (!Init) 4254 return true; 4255 4256 if (!this->emitGetPtrLocal(*Offset, Init)) 4257 return false; 4258 4259 if (!visitInitializer(Init)) 4260 return false; 4261 4262 if (!this->emitFinishInit(Init)) 4263 return false; 4264 4265 return this->emitPopPtr(Init); 4266 } 4267 return false; 4268 } 4269 return true; 4270 } 4271 4272 return false; 4273 } 4274 4275 template <class Emitter> 4276 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType, 4277 const Expr *E) { 4278 assert(!DiscardResult); 4279 if (Val.isInt()) 4280 return this->emitConst(Val.getInt(), ValType, E); 4281 else if (Val.isFloat()) 4282 return this->emitConstFloat(Val.getFloat(), E); 4283 4284 if (Val.isLValue()) { 4285 if (Val.isNullPointer()) 4286 return this->emitNull(ValType, nullptr, E); 4287 APValue::LValueBase Base = Val.getLValueBase(); 4288 if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>()) 4289 return this->visit(BaseExpr); 4290 else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) { 4291 return this->visitDeclRef(VD, E); 4292 } 4293 } else if (Val.isMemberPointer()) { 4294 if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl()) 4295 return this->emitGetMemberPtr(MemberDecl, E); 4296 return this->emitNullMemberPtr(nullptr, E); 4297 } 4298 4299 return false; 4300 } 4301 4302 template <class Emitter> 4303 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val, 4304 const Expr *E) { 4305 4306 if (Val.isStruct()) { 4307 const Record *R = this->getRecord(E->getType()); 4308 assert(R); 4309 for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) { 4310 const APValue &F = Val.getStructField(I); 4311 const Record::Field *RF = R->getField(I); 4312 4313 if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) { 4314 PrimType T = classifyPrim(RF->Decl->getType()); 4315 if (!this->visitAPValue(F, T, E)) 4316 return false; 4317 if (!this->emitInitField(T, RF->Offset, E)) 4318 return false; 4319 } else if (F.isArray()) { 4320 assert(RF->Desc->isPrimitiveArray()); 4321 const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe(); 4322 PrimType ElemT = classifyPrim(ArrType->getElementType()); 4323 assert(ArrType); 4324 4325 if (!this->emitGetPtrField(RF->Offset, E)) 4326 return false; 4327 4328 for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) { 4329 if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E)) 4330 return false; 4331 if (!this->emitInitElem(ElemT, A, E)) 4332 return false; 4333 } 4334 4335 if (!this->emitPopPtr(E)) 4336 return false; 4337 } else if (F.isStruct() || F.isUnion()) { 4338 if (!this->emitGetPtrField(RF->Offset, E)) 4339 return false; 4340 if (!this->visitAPValueInitializer(F, E)) 4341 return false; 4342 if (!this->emitPopPtr(E)) 4343 return false; 4344 } else { 4345 assert(false && "I don't think this should be possible"); 4346 } 4347 } 4348 return true; 4349 } else if (Val.isUnion()) { 4350 const FieldDecl *UnionField = Val.getUnionField(); 4351 const Record *R = this->getRecord(UnionField->getParent()); 4352 assert(R); 4353 const APValue &F = Val.getUnionValue(); 4354 const Record::Field *RF = R->getField(UnionField); 4355 PrimType T = classifyPrim(RF->Decl->getType()); 4356 if (!this->visitAPValue(F, T, E)) 4357 return false; 4358 return this->emitInitField(T, RF->Offset, E); 4359 } 4360 // TODO: Other types. 4361 4362 return false; 4363 } 4364 4365 template <class Emitter> 4366 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E, 4367 unsigned BuiltinID) { 4368 const Function *Func = getFunction(E->getDirectCallee()); 4369 if (!Func) 4370 return false; 4371 4372 // For these, we're expected to ultimately return an APValue pointing 4373 // to the CallExpr. This is needed to get the correct codegen. 4374 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 4375 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString || 4376 BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant || 4377 BuiltinID == Builtin::BI__builtin_function_start) { 4378 if (std::optional<unsigned> GlobalOffset = P.getOrCreateDummy(E)) { 4379 if (!this->emitGetPtrGlobal(*GlobalOffset, E)) 4380 return false; 4381 4382 if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT)) 4383 return this->emitDecayPtr(PT_Ptr, PT, E); 4384 return true; 4385 } 4386 return false; 4387 } 4388 4389 QualType ReturnType = E->getType(); 4390 std::optional<PrimType> ReturnT = classify(E); 4391 4392 // Non-primitive return type. Prepare storage. 4393 if (!Initializing && !ReturnT && !ReturnType->isVoidType()) { 4394 std::optional<unsigned> LocalIndex = allocateLocal(E); 4395 if (!LocalIndex) 4396 return false; 4397 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4398 return false; 4399 } 4400 4401 if (!Func->isUnevaluatedBuiltin()) { 4402 // Put arguments on the stack. 4403 for (const auto *Arg : E->arguments()) { 4404 if (!this->visit(Arg)) 4405 return false; 4406 } 4407 } 4408 4409 if (!this->emitCallBI(Func, E, BuiltinID, E)) 4410 return false; 4411 4412 if (DiscardResult && !ReturnType->isVoidType()) { 4413 assert(ReturnT); 4414 return this->emitPop(*ReturnT, E); 4415 } 4416 4417 return true; 4418 } 4419 4420 template <class Emitter> 4421 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) { 4422 if (unsigned BuiltinID = E->getBuiltinCallee()) 4423 return VisitBuiltinCallExpr(E, BuiltinID); 4424 4425 const FunctionDecl *FuncDecl = E->getDirectCallee(); 4426 // Calls to replaceable operator new/operator delete. 4427 if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) { 4428 if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New || 4429 FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { 4430 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new); 4431 } else { 4432 assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete); 4433 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete); 4434 } 4435 } 4436 4437 QualType ReturnType = E->getCallReturnType(Ctx.getASTContext()); 4438 std::optional<PrimType> T = classify(ReturnType); 4439 bool HasRVO = !ReturnType->isVoidType() && !T; 4440 4441 if (HasRVO) { 4442 if (DiscardResult) { 4443 // If we need to discard the return value but the function returns its 4444 // value via an RVO pointer, we need to create one such pointer just 4445 // for this call. 4446 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4447 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4448 return false; 4449 } 4450 } else { 4451 // We need the result. Prepare a pointer to return or 4452 // dup the current one. 4453 if (!Initializing) { 4454 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4455 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4456 return false; 4457 } 4458 } 4459 if (!this->emitDupPtr(E)) 4460 return false; 4461 } 4462 } 4463 4464 SmallVector<const Expr *, 8> Args( 4465 llvm::ArrayRef(E->getArgs(), E->getNumArgs())); 4466 4467 bool IsAssignmentOperatorCall = false; 4468 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); 4469 OCE && OCE->isAssignmentOp()) { 4470 // Just like with regular assignments, we need to special-case assignment 4471 // operators here and evaluate the RHS (the second arg) before the LHS (the 4472 // first arg. We fix this by using a Flip op later. 4473 assert(Args.size() == 2); 4474 IsAssignmentOperatorCall = true; 4475 std::reverse(Args.begin(), Args.end()); 4476 } 4477 // Calling a static operator will still 4478 // pass the instance, but we don't need it. 4479 // Discard it here. 4480 if (isa<CXXOperatorCallExpr>(E)) { 4481 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl); 4482 MD && MD->isStatic()) { 4483 if (!this->discard(E->getArg(0))) 4484 return false; 4485 // Drop first arg. 4486 Args.erase(Args.begin()); 4487 } 4488 } 4489 4490 std::optional<unsigned> CalleeOffset; 4491 // Add the (optional, implicit) This pointer. 4492 if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) { 4493 if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) { 4494 // If we end up creating a CallPtr op for this, we need the base of the 4495 // member pointer as the instance pointer, and later extract the function 4496 // decl as the function pointer. 4497 const Expr *Callee = E->getCallee(); 4498 CalleeOffset = 4499 this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false); 4500 if (!this->visit(Callee)) 4501 return false; 4502 if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E)) 4503 return false; 4504 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4505 return false; 4506 if (!this->emitGetMemberPtrBase(E)) 4507 return false; 4508 } else if (!this->visit(MC->getImplicitObjectArgument())) { 4509 return false; 4510 } 4511 } else if (!FuncDecl) { 4512 const Expr *Callee = E->getCallee(); 4513 CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false); 4514 if (!this->visit(Callee)) 4515 return false; 4516 if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E)) 4517 return false; 4518 } 4519 4520 llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args); 4521 // Put arguments on the stack. 4522 unsigned ArgIndex = 0; 4523 for (const auto *Arg : Args) { 4524 if (!this->visit(Arg)) 4525 return false; 4526 4527 // If we know the callee already, check the known parametrs for nullability. 4528 if (FuncDecl && NonNullArgs[ArgIndex]) { 4529 PrimType ArgT = classify(Arg).value_or(PT_Ptr); 4530 if (ArgT == PT_Ptr || ArgT == PT_FnPtr) { 4531 if (!this->emitCheckNonNullArg(ArgT, Arg)) 4532 return false; 4533 } 4534 } 4535 ++ArgIndex; 4536 } 4537 4538 // Undo the argument reversal we did earlier. 4539 if (IsAssignmentOperatorCall) { 4540 assert(Args.size() == 2); 4541 PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr); 4542 PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr); 4543 if (!this->emitFlip(Arg2T, Arg1T, E)) 4544 return false; 4545 } 4546 4547 if (FuncDecl) { 4548 const Function *Func = getFunction(FuncDecl); 4549 if (!Func) 4550 return false; 4551 assert(HasRVO == Func->hasRVO()); 4552 4553 bool HasQualifier = false; 4554 if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee())) 4555 HasQualifier = ME->hasQualifier(); 4556 4557 bool IsVirtual = false; 4558 if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) 4559 IsVirtual = MD->isVirtual(); 4560 4561 // In any case call the function. The return value will end up on the stack 4562 // and if the function has RVO, we already have the pointer on the stack to 4563 // write the result into. 4564 if (IsVirtual && !HasQualifier) { 4565 uint32_t VarArgSize = 0; 4566 unsigned NumParams = 4567 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4568 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4569 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4570 4571 if (!this->emitCallVirt(Func, VarArgSize, E)) 4572 return false; 4573 } else if (Func->isVariadic()) { 4574 uint32_t VarArgSize = 0; 4575 unsigned NumParams = 4576 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4577 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4578 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4579 if (!this->emitCallVar(Func, VarArgSize, E)) 4580 return false; 4581 } else { 4582 if (!this->emitCall(Func, 0, E)) 4583 return false; 4584 } 4585 } else { 4586 // Indirect call. Visit the callee, which will leave a FunctionPointer on 4587 // the stack. Cleanup of the returned value if necessary will be done after 4588 // the function call completed. 4589 4590 // Sum the size of all args from the call expr. 4591 uint32_t ArgSize = 0; 4592 for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) 4593 ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4594 4595 // Get the callee, either from a member pointer or function pointer saved in 4596 // CalleeOffset. 4597 if (isa<CXXMemberCallExpr>(E) && CalleeOffset) { 4598 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4599 return false; 4600 if (!this->emitGetMemberPtrDecl(E)) 4601 return false; 4602 } else { 4603 if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E)) 4604 return false; 4605 } 4606 if (!this->emitCallPtr(ArgSize, E, E)) 4607 return false; 4608 } 4609 4610 // Cleanup for discarded return values. 4611 if (DiscardResult && !ReturnType->isVoidType() && T) 4612 return this->emitPop(*T, E); 4613 4614 return true; 4615 } 4616 4617 template <class Emitter> 4618 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 4619 SourceLocScope<Emitter> SLS(this, E); 4620 4621 return this->delegate(E->getExpr()); 4622 } 4623 4624 template <class Emitter> 4625 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 4626 SourceLocScope<Emitter> SLS(this, E); 4627 4628 const Expr *SubExpr = E->getExpr(); 4629 if (std::optional<PrimType> T = classify(E->getExpr())) 4630 return this->visit(SubExpr); 4631 4632 assert(Initializing); 4633 return this->visitInitializer(SubExpr); 4634 } 4635 4636 template <class Emitter> 4637 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 4638 if (DiscardResult) 4639 return true; 4640 4641 return this->emitConstBool(E->getValue(), E); 4642 } 4643 4644 template <class Emitter> 4645 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr( 4646 const CXXNullPtrLiteralExpr *E) { 4647 if (DiscardResult) 4648 return true; 4649 4650 return this->emitNullPtr(nullptr, E); 4651 } 4652 4653 template <class Emitter> 4654 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) { 4655 if (DiscardResult) 4656 return true; 4657 4658 assert(E->getType()->isIntegerType()); 4659 4660 PrimType T = classifyPrim(E->getType()); 4661 return this->emitZero(T, E); 4662 } 4663 4664 template <class Emitter> 4665 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) { 4666 if (DiscardResult) 4667 return true; 4668 4669 if (this->LambdaThisCapture.Offset > 0) { 4670 if (this->LambdaThisCapture.IsPtr) 4671 return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E); 4672 return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E); 4673 } 4674 4675 // In some circumstances, the 'this' pointer does not actually refer to the 4676 // instance pointer of the current function frame, but e.g. to the declaration 4677 // currently being initialized. Here we emit the necessary instruction(s) for 4678 // this scenario. 4679 if (!InitStackActive || !E->isImplicit()) 4680 return this->emitThis(E); 4681 4682 if (InitStackActive && !InitStack.empty()) { 4683 unsigned StartIndex = 0; 4684 for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) { 4685 if (InitStack[StartIndex].Kind != InitLink::K_Field && 4686 InitStack[StartIndex].Kind != InitLink::K_Elem) 4687 break; 4688 } 4689 4690 for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) { 4691 if (!InitStack[I].template emit<Emitter>(this, E)) 4692 return false; 4693 } 4694 return true; 4695 } 4696 return this->emitThis(E); 4697 } 4698 4699 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) { 4700 switch (S->getStmtClass()) { 4701 case Stmt::CompoundStmtClass: 4702 return visitCompoundStmt(cast<CompoundStmt>(S)); 4703 case Stmt::DeclStmtClass: 4704 return visitDeclStmt(cast<DeclStmt>(S)); 4705 case Stmt::ReturnStmtClass: 4706 return visitReturnStmt(cast<ReturnStmt>(S)); 4707 case Stmt::IfStmtClass: 4708 return visitIfStmt(cast<IfStmt>(S)); 4709 case Stmt::WhileStmtClass: 4710 return visitWhileStmt(cast<WhileStmt>(S)); 4711 case Stmt::DoStmtClass: 4712 return visitDoStmt(cast<DoStmt>(S)); 4713 case Stmt::ForStmtClass: 4714 return visitForStmt(cast<ForStmt>(S)); 4715 case Stmt::CXXForRangeStmtClass: 4716 return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); 4717 case Stmt::BreakStmtClass: 4718 return visitBreakStmt(cast<BreakStmt>(S)); 4719 case Stmt::ContinueStmtClass: 4720 return visitContinueStmt(cast<ContinueStmt>(S)); 4721 case Stmt::SwitchStmtClass: 4722 return visitSwitchStmt(cast<SwitchStmt>(S)); 4723 case Stmt::CaseStmtClass: 4724 return visitCaseStmt(cast<CaseStmt>(S)); 4725 case Stmt::DefaultStmtClass: 4726 return visitDefaultStmt(cast<DefaultStmt>(S)); 4727 case Stmt::AttributedStmtClass: 4728 return visitAttributedStmt(cast<AttributedStmt>(S)); 4729 case Stmt::CXXTryStmtClass: 4730 return visitCXXTryStmt(cast<CXXTryStmt>(S)); 4731 case Stmt::NullStmtClass: 4732 return true; 4733 // Always invalid statements. 4734 case Stmt::GCCAsmStmtClass: 4735 case Stmt::MSAsmStmtClass: 4736 case Stmt::GotoStmtClass: 4737 return this->emitInvalid(S); 4738 case Stmt::LabelStmtClass: 4739 return this->visitStmt(cast<LabelStmt>(S)->getSubStmt()); 4740 default: { 4741 if (const auto *E = dyn_cast<Expr>(S)) 4742 return this->discard(E); 4743 return false; 4744 } 4745 } 4746 } 4747 4748 template <class Emitter> 4749 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) { 4750 BlockScope<Emitter> Scope(this); 4751 for (const auto *InnerStmt : S->body()) 4752 if (!visitStmt(InnerStmt)) 4753 return false; 4754 return Scope.destroyLocals(); 4755 } 4756 4757 template <class Emitter> 4758 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) { 4759 for (const auto *D : DS->decls()) { 4760 if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl, 4761 FunctionDecl>(D)) 4762 continue; 4763 4764 const auto *VD = dyn_cast<VarDecl>(D); 4765 if (!VD) 4766 return false; 4767 if (!this->visitVarDecl(VD)) 4768 return false; 4769 } 4770 4771 return true; 4772 } 4773 4774 template <class Emitter> 4775 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) { 4776 if (this->InStmtExpr) 4777 return this->emitUnsupported(RS); 4778 4779 if (const Expr *RE = RS->getRetValue()) { 4780 LocalScope<Emitter> RetScope(this); 4781 if (ReturnType) { 4782 // Primitive types are simply returned. 4783 if (!this->visit(RE)) 4784 return false; 4785 this->emitCleanup(); 4786 return this->emitRet(*ReturnType, RS); 4787 } else if (RE->getType()->isVoidType()) { 4788 if (!this->visit(RE)) 4789 return false; 4790 } else { 4791 // RVO - construct the value in the return location. 4792 if (!this->emitRVOPtr(RE)) 4793 return false; 4794 if (!this->visitInitializer(RE)) 4795 return false; 4796 if (!this->emitPopPtr(RE)) 4797 return false; 4798 4799 this->emitCleanup(); 4800 return this->emitRetVoid(RS); 4801 } 4802 } 4803 4804 // Void return. 4805 this->emitCleanup(); 4806 return this->emitRetVoid(RS); 4807 } 4808 4809 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) { 4810 if (auto *CondInit = IS->getInit()) 4811 if (!visitStmt(CondInit)) 4812 return false; 4813 4814 if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt()) 4815 if (!visitDeclStmt(CondDecl)) 4816 return false; 4817 4818 // Compile condition. 4819 if (IS->isNonNegatedConsteval()) { 4820 if (!this->emitIsConstantContext(IS)) 4821 return false; 4822 } else if (IS->isNegatedConsteval()) { 4823 if (!this->emitIsConstantContext(IS)) 4824 return false; 4825 if (!this->emitInv(IS)) 4826 return false; 4827 } else { 4828 if (!this->visitBool(IS->getCond())) 4829 return false; 4830 } 4831 4832 if (const Stmt *Else = IS->getElse()) { 4833 LabelTy LabelElse = this->getLabel(); 4834 LabelTy LabelEnd = this->getLabel(); 4835 if (!this->jumpFalse(LabelElse)) 4836 return false; 4837 if (!visitStmt(IS->getThen())) 4838 return false; 4839 if (!this->jump(LabelEnd)) 4840 return false; 4841 this->emitLabel(LabelElse); 4842 if (!visitStmt(Else)) 4843 return false; 4844 this->emitLabel(LabelEnd); 4845 } else { 4846 LabelTy LabelEnd = this->getLabel(); 4847 if (!this->jumpFalse(LabelEnd)) 4848 return false; 4849 if (!visitStmt(IS->getThen())) 4850 return false; 4851 this->emitLabel(LabelEnd); 4852 } 4853 4854 return true; 4855 } 4856 4857 template <class Emitter> 4858 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) { 4859 const Expr *Cond = S->getCond(); 4860 const Stmt *Body = S->getBody(); 4861 4862 LabelTy CondLabel = this->getLabel(); // Label before the condition. 4863 LabelTy EndLabel = this->getLabel(); // Label after the loop. 4864 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4865 4866 this->fallthrough(CondLabel); 4867 this->emitLabel(CondLabel); 4868 4869 { 4870 LocalScope<Emitter> CondScope(this); 4871 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4872 if (!visitDeclStmt(CondDecl)) 4873 return false; 4874 4875 if (!this->visitBool(Cond)) 4876 return false; 4877 if (!this->jumpFalse(EndLabel)) 4878 return false; 4879 4880 if (!this->visitStmt(Body)) 4881 return false; 4882 4883 if (!CondScope.destroyLocals()) 4884 return false; 4885 } 4886 if (!this->jump(CondLabel)) 4887 return false; 4888 this->fallthrough(EndLabel); 4889 this->emitLabel(EndLabel); 4890 4891 return true; 4892 } 4893 4894 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) { 4895 const Expr *Cond = S->getCond(); 4896 const Stmt *Body = S->getBody(); 4897 4898 LabelTy StartLabel = this->getLabel(); 4899 LabelTy EndLabel = this->getLabel(); 4900 LabelTy CondLabel = this->getLabel(); 4901 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4902 4903 this->fallthrough(StartLabel); 4904 this->emitLabel(StartLabel); 4905 4906 { 4907 LocalScope<Emitter> CondScope(this); 4908 if (!this->visitStmt(Body)) 4909 return false; 4910 this->fallthrough(CondLabel); 4911 this->emitLabel(CondLabel); 4912 if (!this->visitBool(Cond)) 4913 return false; 4914 4915 if (!CondScope.destroyLocals()) 4916 return false; 4917 } 4918 if (!this->jumpTrue(StartLabel)) 4919 return false; 4920 4921 this->fallthrough(EndLabel); 4922 this->emitLabel(EndLabel); 4923 return true; 4924 } 4925 4926 template <class Emitter> 4927 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) { 4928 // for (Init; Cond; Inc) { Body } 4929 const Stmt *Init = S->getInit(); 4930 const Expr *Cond = S->getCond(); 4931 const Expr *Inc = S->getInc(); 4932 const Stmt *Body = S->getBody(); 4933 4934 LabelTy EndLabel = this->getLabel(); 4935 LabelTy CondLabel = this->getLabel(); 4936 LabelTy IncLabel = this->getLabel(); 4937 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 4938 4939 if (Init && !this->visitStmt(Init)) 4940 return false; 4941 4942 this->fallthrough(CondLabel); 4943 this->emitLabel(CondLabel); 4944 4945 { 4946 LocalScope<Emitter> CondScope(this); 4947 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4948 if (!visitDeclStmt(CondDecl)) 4949 return false; 4950 4951 if (Cond) { 4952 if (!this->visitBool(Cond)) 4953 return false; 4954 if (!this->jumpFalse(EndLabel)) 4955 return false; 4956 } 4957 4958 if (Body && !this->visitStmt(Body)) 4959 return false; 4960 4961 this->fallthrough(IncLabel); 4962 this->emitLabel(IncLabel); 4963 if (Inc && !this->discard(Inc)) 4964 return false; 4965 4966 if (!CondScope.destroyLocals()) 4967 return false; 4968 } 4969 if (!this->jump(CondLabel)) 4970 return false; 4971 4972 this->fallthrough(EndLabel); 4973 this->emitLabel(EndLabel); 4974 return true; 4975 } 4976 4977 template <class Emitter> 4978 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) { 4979 const Stmt *Init = S->getInit(); 4980 const Expr *Cond = S->getCond(); 4981 const Expr *Inc = S->getInc(); 4982 const Stmt *Body = S->getBody(); 4983 const Stmt *BeginStmt = S->getBeginStmt(); 4984 const Stmt *RangeStmt = S->getRangeStmt(); 4985 const Stmt *EndStmt = S->getEndStmt(); 4986 const VarDecl *LoopVar = S->getLoopVariable(); 4987 4988 LabelTy EndLabel = this->getLabel(); 4989 LabelTy CondLabel = this->getLabel(); 4990 LabelTy IncLabel = this->getLabel(); 4991 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 4992 4993 // Emit declarations needed in the loop. 4994 if (Init && !this->visitStmt(Init)) 4995 return false; 4996 if (!this->visitStmt(RangeStmt)) 4997 return false; 4998 if (!this->visitStmt(BeginStmt)) 4999 return false; 5000 if (!this->visitStmt(EndStmt)) 5001 return false; 5002 5003 // Now the condition as well as the loop variable assignment. 5004 this->fallthrough(CondLabel); 5005 this->emitLabel(CondLabel); 5006 if (!this->visitBool(Cond)) 5007 return false; 5008 if (!this->jumpFalse(EndLabel)) 5009 return false; 5010 5011 if (!this->visitVarDecl(LoopVar)) 5012 return false; 5013 5014 // Body. 5015 { 5016 if (!this->visitStmt(Body)) 5017 return false; 5018 5019 this->fallthrough(IncLabel); 5020 this->emitLabel(IncLabel); 5021 if (!this->discard(Inc)) 5022 return false; 5023 } 5024 5025 if (!this->jump(CondLabel)) 5026 return false; 5027 5028 this->fallthrough(EndLabel); 5029 this->emitLabel(EndLabel); 5030 return true; 5031 } 5032 5033 template <class Emitter> 5034 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) { 5035 if (!BreakLabel) 5036 return false; 5037 5038 for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope; 5039 C = C->getParent()) 5040 C->emitDestruction(); 5041 return this->jump(*BreakLabel); 5042 } 5043 5044 template <class Emitter> 5045 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) { 5046 if (!ContinueLabel) 5047 return false; 5048 5049 for (VariableScope<Emitter> *C = VarScope; 5050 C && C->getParent() != ContinueVarScope; C = C->getParent()) 5051 C->emitDestruction(); 5052 return this->jump(*ContinueLabel); 5053 } 5054 5055 template <class Emitter> 5056 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) { 5057 const Expr *Cond = S->getCond(); 5058 PrimType CondT = this->classifyPrim(Cond->getType()); 5059 LocalScope<Emitter> LS(this); 5060 5061 LabelTy EndLabel = this->getLabel(); 5062 OptLabelTy DefaultLabel = std::nullopt; 5063 unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false); 5064 5065 if (const auto *CondInit = S->getInit()) 5066 if (!visitStmt(CondInit)) 5067 return false; 5068 5069 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 5070 if (!visitDeclStmt(CondDecl)) 5071 return false; 5072 5073 // Initialize condition variable. 5074 if (!this->visit(Cond)) 5075 return false; 5076 if (!this->emitSetLocal(CondT, CondVar, S)) 5077 return false; 5078 5079 CaseMap CaseLabels; 5080 // Create labels and comparison ops for all case statements. 5081 for (const SwitchCase *SC = S->getSwitchCaseList(); SC; 5082 SC = SC->getNextSwitchCase()) { 5083 if (const auto *CS = dyn_cast<CaseStmt>(SC)) { 5084 // FIXME: Implement ranges. 5085 if (CS->caseStmtIsGNURange()) 5086 return false; 5087 CaseLabels[SC] = this->getLabel(); 5088 5089 const Expr *Value = CS->getLHS(); 5090 PrimType ValueT = this->classifyPrim(Value->getType()); 5091 5092 // Compare the case statement's value to the switch condition. 5093 if (!this->emitGetLocal(CondT, CondVar, CS)) 5094 return false; 5095 if (!this->visit(Value)) 5096 return false; 5097 5098 // Compare and jump to the case label. 5099 if (!this->emitEQ(ValueT, S)) 5100 return false; 5101 if (!this->jumpTrue(CaseLabels[CS])) 5102 return false; 5103 } else { 5104 assert(!DefaultLabel); 5105 DefaultLabel = this->getLabel(); 5106 } 5107 } 5108 5109 // If none of the conditions above were true, fall through to the default 5110 // statement or jump after the switch statement. 5111 if (DefaultLabel) { 5112 if (!this->jump(*DefaultLabel)) 5113 return false; 5114 } else { 5115 if (!this->jump(EndLabel)) 5116 return false; 5117 } 5118 5119 SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel); 5120 if (!this->visitStmt(S->getBody())) 5121 return false; 5122 this->emitLabel(EndLabel); 5123 5124 return LS.destroyLocals(); 5125 } 5126 5127 template <class Emitter> 5128 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) { 5129 this->emitLabel(CaseLabels[S]); 5130 return this->visitStmt(S->getSubStmt()); 5131 } 5132 5133 template <class Emitter> 5134 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) { 5135 this->emitLabel(*DefaultLabel); 5136 return this->visitStmt(S->getSubStmt()); 5137 } 5138 5139 template <class Emitter> 5140 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) { 5141 if (this->Ctx.getLangOpts().CXXAssumptions && 5142 !this->Ctx.getLangOpts().MSVCCompat) { 5143 for (const Attr *A : S->getAttrs()) { 5144 auto *AA = dyn_cast<CXXAssumeAttr>(A); 5145 if (!AA) 5146 continue; 5147 5148 assert(isa<NullStmt>(S->getSubStmt())); 5149 5150 const Expr *Assumption = AA->getAssumption(); 5151 if (Assumption->isValueDependent()) 5152 return false; 5153 5154 if (Assumption->HasSideEffects(this->Ctx.getASTContext())) 5155 continue; 5156 5157 // Evaluate assumption. 5158 if (!this->visitBool(Assumption)) 5159 return false; 5160 5161 if (!this->emitAssume(Assumption)) 5162 return false; 5163 } 5164 } 5165 5166 // Ignore other attributes. 5167 return this->visitStmt(S->getSubStmt()); 5168 } 5169 5170 template <class Emitter> 5171 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) { 5172 // Ignore all handlers. 5173 return this->visitStmt(S->getTryBlock()); 5174 } 5175 5176 template <class Emitter> 5177 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) { 5178 assert(MD->isLambdaStaticInvoker()); 5179 assert(MD->hasBody()); 5180 assert(cast<CompoundStmt>(MD->getBody())->body_empty()); 5181 5182 const CXXRecordDecl *ClosureClass = MD->getParent(); 5183 const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); 5184 assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); 5185 const Function *Func = this->getFunction(LambdaCallOp); 5186 if (!Func) 5187 return false; 5188 assert(Func->hasThisPointer()); 5189 assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO())); 5190 5191 if (Func->hasRVO()) { 5192 if (!this->emitRVOPtr(MD)) 5193 return false; 5194 } 5195 5196 // The lambda call operator needs an instance pointer, but we don't have 5197 // one here, and we don't need one either because the lambda cannot have 5198 // any captures, as verified above. Emit a null pointer. This is then 5199 // special-cased when interpreting to not emit any misleading diagnostics. 5200 if (!this->emitNullPtr(nullptr, MD)) 5201 return false; 5202 5203 // Forward all arguments from the static invoker to the lambda call operator. 5204 for (const ParmVarDecl *PVD : MD->parameters()) { 5205 auto It = this->Params.find(PVD); 5206 assert(It != this->Params.end()); 5207 5208 // We do the lvalue-to-rvalue conversion manually here, so no need 5209 // to care about references. 5210 PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr); 5211 if (!this->emitGetParam(ParamType, It->second.Offset, MD)) 5212 return false; 5213 } 5214 5215 if (!this->emitCall(Func, 0, LambdaCallOp)) 5216 return false; 5217 5218 this->emitCleanup(); 5219 if (ReturnType) 5220 return this->emitRet(*ReturnType, MD); 5221 5222 // Nothing to do, since we emitted the RVO pointer above. 5223 return this->emitRetVoid(MD); 5224 } 5225 5226 template <class Emitter> 5227 bool Compiler<Emitter>::checkLiteralType(const Expr *E) { 5228 if (Ctx.getLangOpts().CPlusPlus23) 5229 return true; 5230 5231 if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext())) 5232 return true; 5233 5234 return this->emitCheckLiteralType(E->getType().getTypePtr(), E); 5235 } 5236 5237 template <class Emitter> 5238 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) { 5239 assert(!ReturnType); 5240 5241 auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset, 5242 const Expr *InitExpr) -> bool { 5243 // We don't know what to do with these, so just return false. 5244 if (InitExpr->getType().isNull()) 5245 return false; 5246 5247 if (std::optional<PrimType> T = this->classify(InitExpr)) { 5248 if (!this->visit(InitExpr)) 5249 return false; 5250 5251 if (F->isBitField()) 5252 return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr); 5253 return this->emitInitThisField(*T, FieldOffset, InitExpr); 5254 } 5255 // Non-primitive case. Get a pointer to the field-to-initialize 5256 // on the stack and call visitInitialzer() for it. 5257 InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset)); 5258 if (!this->emitGetPtrThisField(FieldOffset, InitExpr)) 5259 return false; 5260 5261 if (!this->visitInitializer(InitExpr)) 5262 return false; 5263 5264 return this->emitFinishInitPop(InitExpr); 5265 }; 5266 5267 const RecordDecl *RD = Ctor->getParent(); 5268 const Record *R = this->getRecord(RD); 5269 if (!R) 5270 return false; 5271 5272 if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) { 5273 // union copy and move ctors are special. 5274 assert(cast<CompoundStmt>(Ctor->getBody())->body_empty()); 5275 if (!this->emitThis(Ctor)) 5276 return false; 5277 5278 auto PVD = Ctor->getParamDecl(0); 5279 ParamOffset PO = this->Params[PVD]; // Must exist. 5280 5281 if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor)) 5282 return false; 5283 5284 return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) && 5285 this->emitRetVoid(Ctor); 5286 } 5287 5288 InitLinkScope<Emitter> InitScope(this, InitLink::This()); 5289 for (const auto *Init : Ctor->inits()) { 5290 // Scope needed for the initializers. 5291 BlockScope<Emitter> Scope(this); 5292 5293 const Expr *InitExpr = Init->getInit(); 5294 if (const FieldDecl *Member = Init->getMember()) { 5295 const Record::Field *F = R->getField(Member); 5296 5297 if (!emitFieldInitializer(F, F->Offset, InitExpr)) 5298 return false; 5299 } else if (const Type *Base = Init->getBaseClass()) { 5300 const auto *BaseDecl = Base->getAsCXXRecordDecl(); 5301 assert(BaseDecl); 5302 5303 if (Init->isBaseVirtual()) { 5304 assert(R->getVirtualBase(BaseDecl)); 5305 if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr)) 5306 return false; 5307 5308 } else { 5309 // Base class initializer. 5310 // Get This Base and call initializer on it. 5311 const Record::Base *B = R->getBase(BaseDecl); 5312 assert(B); 5313 if (!this->emitGetPtrThisBase(B->Offset, InitExpr)) 5314 return false; 5315 } 5316 5317 if (!this->visitInitializer(InitExpr)) 5318 return false; 5319 if (!this->emitFinishInitPop(InitExpr)) 5320 return false; 5321 } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) { 5322 assert(IFD->getChainingSize() >= 2); 5323 5324 unsigned NestedFieldOffset = 0; 5325 const Record::Field *NestedField = nullptr; 5326 for (const NamedDecl *ND : IFD->chain()) { 5327 const auto *FD = cast<FieldDecl>(ND); 5328 const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); 5329 assert(FieldRecord); 5330 5331 NestedField = FieldRecord->getField(FD); 5332 assert(NestedField); 5333 5334 NestedFieldOffset += NestedField->Offset; 5335 } 5336 assert(NestedField); 5337 5338 if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr)) 5339 return false; 5340 } else { 5341 assert(Init->isDelegatingInitializer()); 5342 if (!this->emitThis(InitExpr)) 5343 return false; 5344 if (!this->visitInitializer(Init->getInit())) 5345 return false; 5346 if (!this->emitPopPtr(InitExpr)) 5347 return false; 5348 } 5349 5350 if (!Scope.destroyLocals()) 5351 return false; 5352 } 5353 5354 if (const auto *Body = Ctor->getBody()) 5355 if (!visitStmt(Body)) 5356 return false; 5357 5358 return this->emitRetVoid(SourceInfo{}); 5359 } 5360 5361 template <class Emitter> 5362 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) { 5363 const RecordDecl *RD = Dtor->getParent(); 5364 const Record *R = this->getRecord(RD); 5365 if (!R) 5366 return false; 5367 5368 if (!Dtor->isTrivial() && Dtor->getBody()) { 5369 if (!this->visitStmt(Dtor->getBody())) 5370 return false; 5371 } 5372 5373 if (!this->emitThis(Dtor)) 5374 return false; 5375 5376 assert(R); 5377 if (!R->isUnion()) { 5378 // First, destroy all fields. 5379 for (const Record::Field &Field : llvm::reverse(R->fields())) { 5380 const Descriptor *D = Field.Desc; 5381 if (!D->isPrimitive() && !D->isPrimitiveArray()) { 5382 if (!this->emitGetPtrField(Field.Offset, SourceInfo{})) 5383 return false; 5384 if (!this->emitDestruction(D, SourceInfo{})) 5385 return false; 5386 if (!this->emitPopPtr(SourceInfo{})) 5387 return false; 5388 } 5389 } 5390 } 5391 5392 for (const Record::Base &Base : llvm::reverse(R->bases())) { 5393 if (Base.R->isAnonymousUnion()) 5394 continue; 5395 5396 if (!this->emitGetPtrBase(Base.Offset, SourceInfo{})) 5397 return false; 5398 if (!this->emitRecordDestruction(Base.R, {})) 5399 return false; 5400 if (!this->emitPopPtr(SourceInfo{})) 5401 return false; 5402 } 5403 5404 // FIXME: Virtual bases. 5405 return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor); 5406 } 5407 5408 template <class Emitter> 5409 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) { 5410 // Classify the return type. 5411 ReturnType = this->classify(F->getReturnType()); 5412 5413 if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F)) 5414 return this->compileConstructor(Ctor); 5415 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F)) 5416 return this->compileDestructor(Dtor); 5417 5418 // Emit custom code if this is a lambda static invoker. 5419 if (const auto *MD = dyn_cast<CXXMethodDecl>(F); 5420 MD && MD->isLambdaStaticInvoker()) 5421 return this->emitLambdaStaticInvokerBody(MD); 5422 5423 // Regular functions. 5424 if (const auto *Body = F->getBody()) 5425 if (!visitStmt(Body)) 5426 return false; 5427 5428 // Emit a guard return to protect against a code path missing one. 5429 if (F->getReturnType()->isVoidType()) 5430 return this->emitRetVoid(SourceInfo{}); 5431 return this->emitNoRet(SourceInfo{}); 5432 } 5433 5434 template <class Emitter> 5435 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) { 5436 const Expr *SubExpr = E->getSubExpr(); 5437 if (SubExpr->getType()->isAnyComplexType()) 5438 return this->VisitComplexUnaryOperator(E); 5439 if (SubExpr->getType()->isVectorType()) 5440 return this->VisitVectorUnaryOperator(E); 5441 std::optional<PrimType> T = classify(SubExpr->getType()); 5442 5443 switch (E->getOpcode()) { 5444 case UO_PostInc: { // x++ 5445 if (!Ctx.getLangOpts().CPlusPlus14) 5446 return this->emitInvalid(E); 5447 if (!T) 5448 return this->emitError(E); 5449 5450 if (!this->visit(SubExpr)) 5451 return false; 5452 5453 if (T == PT_Ptr || T == PT_FnPtr) { 5454 if (!this->emitIncPtr(E)) 5455 return false; 5456 5457 return DiscardResult ? this->emitPopPtr(E) : true; 5458 } 5459 5460 if (T == PT_Float) { 5461 return DiscardResult ? this->emitIncfPop(getFPOptions(E), E) 5462 : this->emitIncf(getFPOptions(E), E); 5463 } 5464 5465 return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E); 5466 } 5467 case UO_PostDec: { // x-- 5468 if (!Ctx.getLangOpts().CPlusPlus14) 5469 return this->emitInvalid(E); 5470 if (!T) 5471 return this->emitError(E); 5472 5473 if (!this->visit(SubExpr)) 5474 return false; 5475 5476 if (T == PT_Ptr || T == PT_FnPtr) { 5477 if (!this->emitDecPtr(E)) 5478 return false; 5479 5480 return DiscardResult ? this->emitPopPtr(E) : true; 5481 } 5482 5483 if (T == PT_Float) { 5484 return DiscardResult ? this->emitDecfPop(getFPOptions(E), E) 5485 : this->emitDecf(getFPOptions(E), E); 5486 } 5487 5488 return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E); 5489 } 5490 case UO_PreInc: { // ++x 5491 if (!Ctx.getLangOpts().CPlusPlus14) 5492 return this->emitInvalid(E); 5493 if (!T) 5494 return this->emitError(E); 5495 5496 if (!this->visit(SubExpr)) 5497 return false; 5498 5499 if (T == PT_Ptr || T == PT_FnPtr) { 5500 if (!this->emitLoadPtr(E)) 5501 return false; 5502 if (!this->emitConstUint8(1, E)) 5503 return false; 5504 if (!this->emitAddOffsetUint8(E)) 5505 return false; 5506 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5507 } 5508 5509 // Post-inc and pre-inc are the same if the value is to be discarded. 5510 if (DiscardResult) { 5511 if (T == PT_Float) 5512 return this->emitIncfPop(getFPOptions(E), E); 5513 return this->emitIncPop(*T, E); 5514 } 5515 5516 if (T == PT_Float) { 5517 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5518 if (!this->emitLoadFloat(E)) 5519 return false; 5520 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5521 return false; 5522 if (!this->emitAddf(getFPOptions(E), E)) 5523 return false; 5524 if (!this->emitStoreFloat(E)) 5525 return false; 5526 } else { 5527 assert(isIntegralType(*T)); 5528 if (!this->emitLoad(*T, E)) 5529 return false; 5530 if (!this->emitConst(1, E)) 5531 return false; 5532 if (!this->emitAdd(*T, E)) 5533 return false; 5534 if (!this->emitStore(*T, E)) 5535 return false; 5536 } 5537 return E->isGLValue() || this->emitLoadPop(*T, E); 5538 } 5539 case UO_PreDec: { // --x 5540 if (!Ctx.getLangOpts().CPlusPlus14) 5541 return this->emitInvalid(E); 5542 if (!T) 5543 return this->emitError(E); 5544 5545 if (!this->visit(SubExpr)) 5546 return false; 5547 5548 if (T == PT_Ptr || T == PT_FnPtr) { 5549 if (!this->emitLoadPtr(E)) 5550 return false; 5551 if (!this->emitConstUint8(1, E)) 5552 return false; 5553 if (!this->emitSubOffsetUint8(E)) 5554 return false; 5555 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5556 } 5557 5558 // Post-dec and pre-dec are the same if the value is to be discarded. 5559 if (DiscardResult) { 5560 if (T == PT_Float) 5561 return this->emitDecfPop(getFPOptions(E), E); 5562 return this->emitDecPop(*T, E); 5563 } 5564 5565 if (T == PT_Float) { 5566 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5567 if (!this->emitLoadFloat(E)) 5568 return false; 5569 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5570 return false; 5571 if (!this->emitSubf(getFPOptions(E), E)) 5572 return false; 5573 if (!this->emitStoreFloat(E)) 5574 return false; 5575 } else { 5576 assert(isIntegralType(*T)); 5577 if (!this->emitLoad(*T, E)) 5578 return false; 5579 if (!this->emitConst(1, E)) 5580 return false; 5581 if (!this->emitSub(*T, E)) 5582 return false; 5583 if (!this->emitStore(*T, E)) 5584 return false; 5585 } 5586 return E->isGLValue() || this->emitLoadPop(*T, E); 5587 } 5588 case UO_LNot: // !x 5589 if (!T) 5590 return this->emitError(E); 5591 5592 if (DiscardResult) 5593 return this->discard(SubExpr); 5594 5595 if (!this->visitBool(SubExpr)) 5596 return false; 5597 5598 if (!this->emitInv(E)) 5599 return false; 5600 5601 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5602 return this->emitCast(PT_Bool, ET, E); 5603 return true; 5604 case UO_Minus: // -x 5605 if (!T) 5606 return this->emitError(E); 5607 5608 if (!this->visit(SubExpr)) 5609 return false; 5610 return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E); 5611 case UO_Plus: // +x 5612 if (!T) 5613 return this->emitError(E); 5614 5615 if (!this->visit(SubExpr)) // noop 5616 return false; 5617 return DiscardResult ? this->emitPop(*T, E) : true; 5618 case UO_AddrOf: // &x 5619 if (E->getType()->isMemberPointerType()) { 5620 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 5621 // member can be formed. 5622 return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E); 5623 } 5624 // We should already have a pointer when we get here. 5625 return this->delegate(SubExpr); 5626 case UO_Deref: // *x 5627 if (DiscardResult) 5628 return this->discard(SubExpr); 5629 return this->visit(SubExpr); 5630 case UO_Not: // ~x 5631 if (!T) 5632 return this->emitError(E); 5633 5634 if (!this->visit(SubExpr)) 5635 return false; 5636 return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E); 5637 case UO_Real: // __real x 5638 assert(T); 5639 return this->delegate(SubExpr); 5640 case UO_Imag: { // __imag x 5641 assert(T); 5642 if (!this->discard(SubExpr)) 5643 return false; 5644 return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr); 5645 } 5646 case UO_Extension: 5647 return this->delegate(SubExpr); 5648 case UO_Coawait: 5649 assert(false && "Unhandled opcode"); 5650 } 5651 5652 return false; 5653 } 5654 5655 template <class Emitter> 5656 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) { 5657 const Expr *SubExpr = E->getSubExpr(); 5658 assert(SubExpr->getType()->isAnyComplexType()); 5659 5660 if (DiscardResult) 5661 return this->discard(SubExpr); 5662 5663 std::optional<PrimType> ResT = classify(E); 5664 auto prepareResult = [=]() -> bool { 5665 if (!ResT && !Initializing) { 5666 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5667 if (!LocalIndex) 5668 return false; 5669 return this->emitGetPtrLocal(*LocalIndex, E); 5670 } 5671 5672 return true; 5673 }; 5674 5675 // The offset of the temporary, if we created one. 5676 unsigned SubExprOffset = ~0u; 5677 auto createTemp = [=, &SubExprOffset]() -> bool { 5678 SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5679 if (!this->visit(SubExpr)) 5680 return false; 5681 return this->emitSetLocal(PT_Ptr, SubExprOffset, E); 5682 }; 5683 5684 PrimType ElemT = classifyComplexElementType(SubExpr->getType()); 5685 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5686 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5687 return false; 5688 return this->emitArrayElemPop(ElemT, Index, E); 5689 }; 5690 5691 switch (E->getOpcode()) { 5692 case UO_Minus: 5693 if (!prepareResult()) 5694 return false; 5695 if (!createTemp()) 5696 return false; 5697 for (unsigned I = 0; I != 2; ++I) { 5698 if (!getElem(SubExprOffset, I)) 5699 return false; 5700 if (!this->emitNeg(ElemT, E)) 5701 return false; 5702 if (!this->emitInitElem(ElemT, I, E)) 5703 return false; 5704 } 5705 break; 5706 5707 case UO_Plus: // +x 5708 case UO_AddrOf: // &x 5709 case UO_Deref: // *x 5710 return this->delegate(SubExpr); 5711 5712 case UO_LNot: 5713 if (!this->visit(SubExpr)) 5714 return false; 5715 if (!this->emitComplexBoolCast(SubExpr)) 5716 return false; 5717 if (!this->emitInv(E)) 5718 return false; 5719 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5720 return this->emitCast(PT_Bool, ET, E); 5721 return true; 5722 5723 case UO_Real: 5724 return this->emitComplexReal(SubExpr); 5725 5726 case UO_Imag: 5727 if (!this->visit(SubExpr)) 5728 return false; 5729 5730 if (SubExpr->isLValue()) { 5731 if (!this->emitConstUint8(1, E)) 5732 return false; 5733 return this->emitArrayElemPtrPopUint8(E); 5734 } 5735 5736 // Since our _Complex implementation does not map to a primitive type, 5737 // we sometimes have to do the lvalue-to-rvalue conversion here manually. 5738 return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E); 5739 5740 case UO_Not: // ~x 5741 if (!this->visit(SubExpr)) 5742 return false; 5743 // Negate the imaginary component. 5744 if (!this->emitArrayElem(ElemT, 1, E)) 5745 return false; 5746 if (!this->emitNeg(ElemT, E)) 5747 return false; 5748 if (!this->emitInitElem(ElemT, 1, E)) 5749 return false; 5750 return DiscardResult ? this->emitPopPtr(E) : true; 5751 5752 case UO_Extension: 5753 return this->delegate(SubExpr); 5754 5755 default: 5756 return this->emitInvalid(E); 5757 } 5758 5759 return true; 5760 } 5761 5762 template <class Emitter> 5763 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) { 5764 const Expr *SubExpr = E->getSubExpr(); 5765 assert(SubExpr->getType()->isVectorType()); 5766 5767 if (DiscardResult) 5768 return this->discard(SubExpr); 5769 5770 auto UnaryOp = E->getOpcode(); 5771 if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot && 5772 UnaryOp != UO_Not && UnaryOp != UO_AddrOf) 5773 return this->emitInvalid(E); 5774 5775 // Nothing to do here. 5776 if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf) 5777 return this->delegate(SubExpr); 5778 5779 if (!Initializing) { 5780 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5781 if (!LocalIndex) 5782 return false; 5783 if (!this->emitGetPtrLocal(*LocalIndex, E)) 5784 return false; 5785 } 5786 5787 // The offset of the temporary, if we created one. 5788 unsigned SubExprOffset = 5789 this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5790 if (!this->visit(SubExpr)) 5791 return false; 5792 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E)) 5793 return false; 5794 5795 const auto *VecTy = SubExpr->getType()->getAs<VectorType>(); 5796 PrimType ElemT = classifyVectorElementType(SubExpr->getType()); 5797 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5798 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5799 return false; 5800 return this->emitArrayElemPop(ElemT, Index, E); 5801 }; 5802 5803 switch (UnaryOp) { 5804 case UO_Minus: 5805 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5806 if (!getElem(SubExprOffset, I)) 5807 return false; 5808 if (!this->emitNeg(ElemT, E)) 5809 return false; 5810 if (!this->emitInitElem(ElemT, I, E)) 5811 return false; 5812 } 5813 break; 5814 case UO_LNot: { // !x 5815 // In C++, the logic operators !, &&, || are available for vectors. !v is 5816 // equivalent to v == 0. 5817 // 5818 // The result of the comparison is a vector of the same width and number of 5819 // elements as the comparison operands with a signed integral element type. 5820 // 5821 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 5822 QualType ResultVecTy = E->getType(); 5823 PrimType ResultVecElemT = 5824 classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType()); 5825 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5826 if (!getElem(SubExprOffset, I)) 5827 return false; 5828 // operator ! on vectors returns -1 for 'truth', so negate it. 5829 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 5830 return false; 5831 if (!this->emitInv(E)) 5832 return false; 5833 if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E)) 5834 return false; 5835 if (!this->emitNeg(ElemT, E)) 5836 return false; 5837 if (ElemT != ResultVecElemT && 5838 !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E)) 5839 return false; 5840 if (!this->emitInitElem(ResultVecElemT, I, E)) 5841 return false; 5842 } 5843 break; 5844 } 5845 case UO_Not: // ~x 5846 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5847 if (!getElem(SubExprOffset, I)) 5848 return false; 5849 if (ElemT == PT_Bool) { 5850 if (!this->emitInv(E)) 5851 return false; 5852 } else { 5853 if (!this->emitComp(ElemT, E)) 5854 return false; 5855 } 5856 if (!this->emitInitElem(ElemT, I, E)) 5857 return false; 5858 } 5859 break; 5860 default: 5861 llvm_unreachable("Unsupported unary operators should be handled up front"); 5862 } 5863 return true; 5864 } 5865 5866 template <class Emitter> 5867 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) { 5868 if (DiscardResult) 5869 return true; 5870 5871 if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) { 5872 return this->emitConst(ECD->getInitVal(), E); 5873 } else if (const auto *BD = dyn_cast<BindingDecl>(D)) { 5874 return this->visit(BD->getBinding()); 5875 } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) { 5876 const Function *F = getFunction(FuncDecl); 5877 return F && this->emitGetFnPtr(F, E); 5878 } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) { 5879 if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) { 5880 if (!this->emitGetPtrGlobal(*Index, E)) 5881 return false; 5882 if (std::optional<PrimType> T = classify(E->getType())) { 5883 if (!this->visitAPValue(TPOD->getValue(), *T, E)) 5884 return false; 5885 return this->emitInitGlobal(*T, *Index, E); 5886 } 5887 return this->visitAPValueInitializer(TPOD->getValue(), E); 5888 } 5889 return false; 5890 } 5891 5892 // References are implemented via pointers, so when we see a DeclRefExpr 5893 // pointing to a reference, we need to get its value directly (i.e. the 5894 // pointer to the actual value) instead of a pointer to the pointer to the 5895 // value. 5896 bool IsReference = D->getType()->isReferenceType(); 5897 5898 // Check for local/global variables and parameters. 5899 if (auto It = Locals.find(D); It != Locals.end()) { 5900 const unsigned Offset = It->second.Offset; 5901 if (IsReference) 5902 return this->emitGetLocal(PT_Ptr, Offset, E); 5903 return this->emitGetPtrLocal(Offset, E); 5904 } else if (auto GlobalIndex = P.getGlobal(D)) { 5905 if (IsReference) { 5906 if (!Ctx.getLangOpts().CPlusPlus11) 5907 return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E); 5908 return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E); 5909 } 5910 5911 return this->emitGetPtrGlobal(*GlobalIndex, E); 5912 } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { 5913 if (auto It = this->Params.find(PVD); It != this->Params.end()) { 5914 if (IsReference || !It->second.IsPtr) 5915 return this->emitGetParam(classifyPrim(E), It->second.Offset, E); 5916 5917 return this->emitGetPtrParam(It->second.Offset, E); 5918 } 5919 } 5920 5921 // In case we need to re-visit a declaration. 5922 auto revisit = [&](const VarDecl *VD) -> bool { 5923 auto VarState = this->visitDecl(VD); 5924 5925 if (VarState.notCreated()) 5926 return true; 5927 if (!VarState) 5928 return false; 5929 // Retry. 5930 return this->visitDeclRef(D, E); 5931 }; 5932 5933 // Handle lambda captures. 5934 if (auto It = this->LambdaCaptures.find(D); 5935 It != this->LambdaCaptures.end()) { 5936 auto [Offset, IsPtr] = It->second; 5937 5938 if (IsPtr) 5939 return this->emitGetThisFieldPtr(Offset, E); 5940 return this->emitGetPtrThisField(Offset, E); 5941 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E); 5942 DRE && DRE->refersToEnclosingVariableOrCapture()) { 5943 if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture()) 5944 return revisit(VD); 5945 } 5946 5947 if (D != InitializingDecl) { 5948 // Try to lazily visit (or emit dummy pointers for) declarations 5949 // we haven't seen yet. 5950 if (Ctx.getLangOpts().CPlusPlus) { 5951 if (const auto *VD = dyn_cast<VarDecl>(D)) { 5952 const auto typeShouldBeVisited = [&](QualType T) -> bool { 5953 if (T.isConstant(Ctx.getASTContext())) 5954 return true; 5955 if (const auto *RT = T->getAs<ReferenceType>()) 5956 return RT->getPointeeType().isConstQualified(); 5957 return false; 5958 }; 5959 5960 // DecompositionDecls are just proxies for us. 5961 if (isa<DecompositionDecl>(VD)) 5962 return revisit(VD); 5963 5964 if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) && 5965 typeShouldBeVisited(VD->getType())) 5966 return revisit(VD); 5967 5968 // FIXME: The evaluateValue() check here is a little ridiculous, since 5969 // it will ultimately call into Context::evaluateAsInitializer(). In 5970 // other words, we're evaluating the initializer, just to know if we can 5971 // evaluate the initializer. 5972 if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) && 5973 VD->getInit() && !VD->getInit()->isValueDependent() && 5974 VD->evaluateValue()) 5975 return revisit(VD); 5976 } 5977 } else { 5978 if (const auto *VD = dyn_cast<VarDecl>(D); 5979 VD && VD->getAnyInitializer() && 5980 VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak()) 5981 return revisit(VD); 5982 } 5983 } 5984 5985 if (std::optional<unsigned> I = P.getOrCreateDummy(D)) { 5986 if (!this->emitGetPtrGlobal(*I, E)) 5987 return false; 5988 if (E->getType()->isVoidType()) 5989 return true; 5990 // Convert the dummy pointer to another pointer type if we have to. 5991 if (PrimType PT = classifyPrim(E); PT != PT_Ptr) { 5992 if (isPtrType(PT)) 5993 return this->emitDecayPtr(PT_Ptr, PT, E); 5994 return false; 5995 } 5996 return true; 5997 } 5998 5999 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 6000 return this->emitInvalidDeclRef(DRE, E); 6001 return false; 6002 } 6003 6004 template <class Emitter> 6005 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) { 6006 const auto *D = E->getDecl(); 6007 return this->visitDeclRef(D, E); 6008 } 6009 6010 template <class Emitter> void Compiler<Emitter>::emitCleanup() { 6011 for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent()) 6012 C->emitDestruction(); 6013 } 6014 6015 template <class Emitter> 6016 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType, 6017 const QualType DerivedType) { 6018 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 6019 if (const auto *R = Ty->getPointeeCXXRecordDecl()) 6020 return R; 6021 return Ty->getAsCXXRecordDecl(); 6022 }; 6023 const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType); 6024 const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType); 6025 6026 return Ctx.collectBaseOffset(BaseDecl, DerivedDecl); 6027 } 6028 6029 /// Emit casts from a PrimType to another PrimType. 6030 template <class Emitter> 6031 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT, 6032 QualType ToQT, const Expr *E) { 6033 6034 if (FromT == PT_Float) { 6035 // Floating to floating. 6036 if (ToT == PT_Float) { 6037 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 6038 return this->emitCastFP(ToSem, getRoundingMode(E), E); 6039 } 6040 6041 if (ToT == PT_IntAP) 6042 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), 6043 getFPOptions(E), E); 6044 if (ToT == PT_IntAPS) 6045 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), 6046 getFPOptions(E), E); 6047 6048 // Float to integral. 6049 if (isIntegralType(ToT) || ToT == PT_Bool) 6050 return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E); 6051 } 6052 6053 if (isIntegralType(FromT) || FromT == PT_Bool) { 6054 if (ToT == PT_IntAP) 6055 return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E); 6056 if (ToT == PT_IntAPS) 6057 return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E); 6058 6059 // Integral to integral. 6060 if (isIntegralType(ToT) || ToT == PT_Bool) 6061 return FromT != ToT ? this->emitCast(FromT, ToT, E) : true; 6062 6063 if (ToT == PT_Float) { 6064 // Integral to floating. 6065 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 6066 return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E); 6067 } 6068 } 6069 6070 return false; 6071 } 6072 6073 /// Emits __real(SubExpr) 6074 template <class Emitter> 6075 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) { 6076 assert(SubExpr->getType()->isAnyComplexType()); 6077 6078 if (DiscardResult) 6079 return this->discard(SubExpr); 6080 6081 if (!this->visit(SubExpr)) 6082 return false; 6083 if (SubExpr->isLValue()) { 6084 if (!this->emitConstUint8(0, SubExpr)) 6085 return false; 6086 return this->emitArrayElemPtrPopUint8(SubExpr); 6087 } 6088 6089 // Rvalue, load the actual element. 6090 return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()), 6091 0, SubExpr); 6092 } 6093 6094 template <class Emitter> 6095 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) { 6096 assert(!DiscardResult); 6097 PrimType ElemT = classifyComplexElementType(E->getType()); 6098 // We emit the expression (__real(E) != 0 || __imag(E) != 0) 6099 // for us, that means (bool)E[0] || (bool)E[1] 6100 if (!this->emitArrayElem(ElemT, 0, E)) 6101 return false; 6102 if (ElemT == PT_Float) { 6103 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 6104 return false; 6105 } else { 6106 if (!this->emitCast(ElemT, PT_Bool, E)) 6107 return false; 6108 } 6109 6110 // We now have the bool value of E[0] on the stack. 6111 LabelTy LabelTrue = this->getLabel(); 6112 if (!this->jumpTrue(LabelTrue)) 6113 return false; 6114 6115 if (!this->emitArrayElemPop(ElemT, 1, E)) 6116 return false; 6117 if (ElemT == PT_Float) { 6118 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 6119 return false; 6120 } else { 6121 if (!this->emitCast(ElemT, PT_Bool, E)) 6122 return false; 6123 } 6124 // Leave the boolean value of E[1] on the stack. 6125 LabelTy EndLabel = this->getLabel(); 6126 this->jump(EndLabel); 6127 6128 this->emitLabel(LabelTrue); 6129 if (!this->emitPopPtr(E)) 6130 return false; 6131 if (!this->emitConstBool(true, E)) 6132 return false; 6133 6134 this->fallthrough(EndLabel); 6135 this->emitLabel(EndLabel); 6136 6137 return true; 6138 } 6139 6140 template <class Emitter> 6141 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS, 6142 const BinaryOperator *E) { 6143 assert(E->isComparisonOp()); 6144 assert(!Initializing); 6145 assert(!DiscardResult); 6146 6147 PrimType ElemT; 6148 bool LHSIsComplex; 6149 unsigned LHSOffset; 6150 if (LHS->getType()->isAnyComplexType()) { 6151 LHSIsComplex = true; 6152 ElemT = classifyComplexElementType(LHS->getType()); 6153 LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true, 6154 /*IsExtended=*/false); 6155 if (!this->visit(LHS)) 6156 return false; 6157 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 6158 return false; 6159 } else { 6160 LHSIsComplex = false; 6161 PrimType LHST = classifyPrim(LHS->getType()); 6162 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 6163 if (!this->visit(LHS)) 6164 return false; 6165 if (!this->emitSetLocal(LHST, LHSOffset, E)) 6166 return false; 6167 } 6168 6169 bool RHSIsComplex; 6170 unsigned RHSOffset; 6171 if (RHS->getType()->isAnyComplexType()) { 6172 RHSIsComplex = true; 6173 ElemT = classifyComplexElementType(RHS->getType()); 6174 RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true, 6175 /*IsExtended=*/false); 6176 if (!this->visit(RHS)) 6177 return false; 6178 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 6179 return false; 6180 } else { 6181 RHSIsComplex = false; 6182 PrimType RHST = classifyPrim(RHS->getType()); 6183 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 6184 if (!this->visit(RHS)) 6185 return false; 6186 if (!this->emitSetLocal(RHST, RHSOffset, E)) 6187 return false; 6188 } 6189 6190 auto getElem = [&](unsigned LocalOffset, unsigned Index, 6191 bool IsComplex) -> bool { 6192 if (IsComplex) { 6193 if (!this->emitGetLocal(PT_Ptr, LocalOffset, E)) 6194 return false; 6195 return this->emitArrayElemPop(ElemT, Index, E); 6196 } 6197 return this->emitGetLocal(ElemT, LocalOffset, E); 6198 }; 6199 6200 for (unsigned I = 0; I != 2; ++I) { 6201 // Get both values. 6202 if (!getElem(LHSOffset, I, LHSIsComplex)) 6203 return false; 6204 if (!getElem(RHSOffset, I, RHSIsComplex)) 6205 return false; 6206 // And compare them. 6207 if (!this->emitEQ(ElemT, E)) 6208 return false; 6209 6210 if (!this->emitCastBoolUint8(E)) 6211 return false; 6212 } 6213 6214 // We now have two bool values on the stack. Compare those. 6215 if (!this->emitAddUint8(E)) 6216 return false; 6217 if (!this->emitConstUint8(2, E)) 6218 return false; 6219 6220 if (E->getOpcode() == BO_EQ) { 6221 if (!this->emitEQUint8(E)) 6222 return false; 6223 } else if (E->getOpcode() == BO_NE) { 6224 if (!this->emitNEUint8(E)) 6225 return false; 6226 } else 6227 return false; 6228 6229 // In C, this returns an int. 6230 if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool) 6231 return this->emitCast(PT_Bool, ResT, E); 6232 return true; 6233 } 6234 6235 /// When calling this, we have a pointer of the local-to-destroy 6236 /// on the stack. 6237 /// Emit destruction of record types (or arrays of record types). 6238 template <class Emitter> 6239 bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) { 6240 assert(R); 6241 assert(!R->isAnonymousUnion()); 6242 const CXXDestructorDecl *Dtor = R->getDestructor(); 6243 if (!Dtor || Dtor->isTrivial()) 6244 return true; 6245 6246 assert(Dtor); 6247 const Function *DtorFunc = getFunction(Dtor); 6248 if (!DtorFunc) 6249 return false; 6250 assert(DtorFunc->hasThisPointer()); 6251 assert(DtorFunc->getNumParams() == 1); 6252 if (!this->emitDupPtr(Loc)) 6253 return false; 6254 return this->emitCall(DtorFunc, 0, Loc); 6255 } 6256 /// When calling this, we have a pointer of the local-to-destroy 6257 /// on the stack. 6258 /// Emit destruction of record types (or arrays of record types). 6259 template <class Emitter> 6260 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc, 6261 SourceInfo Loc) { 6262 assert(Desc); 6263 assert(!Desc->isPrimitive()); 6264 assert(!Desc->isPrimitiveArray()); 6265 6266 // Arrays. 6267 if (Desc->isArray()) { 6268 const Descriptor *ElemDesc = Desc->ElemDesc; 6269 assert(ElemDesc); 6270 6271 // Don't need to do anything for these. 6272 if (ElemDesc->isPrimitiveArray()) 6273 return true; 6274 6275 // If this is an array of record types, check if we need 6276 // to call the element destructors at all. If not, try 6277 // to save the work. 6278 if (const Record *ElemRecord = ElemDesc->ElemRecord) { 6279 if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor(); 6280 !Dtor || Dtor->isTrivial()) 6281 return true; 6282 } 6283 6284 for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) { 6285 if (!this->emitConstUint64(I, Loc)) 6286 return false; 6287 if (!this->emitArrayElemPtrUint64(Loc)) 6288 return false; 6289 if (!this->emitDestruction(ElemDesc, Loc)) 6290 return false; 6291 if (!this->emitPopPtr(Loc)) 6292 return false; 6293 } 6294 return true; 6295 } 6296 6297 assert(Desc->ElemRecord); 6298 if (Desc->ElemRecord->isAnonymousUnion()) 6299 return true; 6300 6301 return this->emitRecordDestruction(Desc->ElemRecord, Loc); 6302 } 6303 6304 namespace clang { 6305 namespace interp { 6306 6307 template class Compiler<ByteCodeEmitter>; 6308 template class Compiler<EvalEmitter>; 6309 6310 } // namespace interp 6311 } // namespace clang 6312