xref: /llvm-project/clang/lib/AST/ByteCode/Compiler.cpp (revision 6b62e04e3045e5d8f4361afc100a460622266f82)
1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Compiler.h"
10 #include "ByteCodeEmitter.h"
11 #include "Context.h"
12 #include "FixedPoint.h"
13 #include "Floating.h"
14 #include "Function.h"
15 #include "InterpShared.h"
16 #include "PrimType.h"
17 #include "Program.h"
18 #include "clang/AST/Attr.h"
19 
20 using namespace clang;
21 using namespace clang::interp;
22 
23 using APSInt = llvm::APSInt;
24 
25 namespace clang {
26 namespace interp {
27 
28 /// Scope used to handle temporaries in toplevel variable declarations.
29 template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
30 public:
31   DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
32       : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
33         OldInitializingDecl(Ctx->InitializingDecl) {
34     Ctx->InitializingDecl = VD;
35     Ctx->InitStack.push_back(InitLink::Decl(VD));
36   }
37 
38   void addExtended(const Scope::Local &Local) override {
39     return this->addLocal(Local);
40   }
41 
42   ~DeclScope() {
43     this->Ctx->InitializingDecl = OldInitializingDecl;
44     this->Ctx->InitStack.pop_back();
45   }
46 
47 private:
48   Program::DeclScope Scope;
49   const ValueDecl *OldInitializingDecl;
50 };
51 
52 /// Scope used to handle initialization methods.
53 template <class Emitter> class OptionScope final {
54 public:
55   /// Root constructor, compiling or discarding primitives.
56   OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
57               bool NewInitializing)
58       : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
59         OldInitializing(Ctx->Initializing) {
60     Ctx->DiscardResult = NewDiscardResult;
61     Ctx->Initializing = NewInitializing;
62   }
63 
64   ~OptionScope() {
65     Ctx->DiscardResult = OldDiscardResult;
66     Ctx->Initializing = OldInitializing;
67   }
68 
69 private:
70   /// Parent context.
71   Compiler<Emitter> *Ctx;
72   /// Old discard flag to restore.
73   bool OldDiscardResult;
74   bool OldInitializing;
75 };
76 
77 template <class Emitter>
78 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
79   switch (Kind) {
80   case K_This:
81     return Ctx->emitThis(E);
82   case K_Field:
83     // We're assuming there's a base pointer on the stack already.
84     return Ctx->emitGetPtrFieldPop(Offset, E);
85   case K_Temp:
86     return Ctx->emitGetPtrLocal(Offset, E);
87   case K_Decl:
88     return Ctx->visitDeclRef(D, E);
89   case K_Elem:
90     if (!Ctx->emitConstUint32(Offset, E))
91       return false;
92     return Ctx->emitArrayElemPtrPopUint32(E);
93   default:
94     llvm_unreachable("Unhandled InitLink kind");
95   }
96   return true;
97 }
98 
99 /// Scope managing label targets.
100 template <class Emitter> class LabelScope {
101 public:
102   virtual ~LabelScope() {}
103 
104 protected:
105   LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
106   /// Compiler instance.
107   Compiler<Emitter> *Ctx;
108 };
109 
110 /// Sets the context for break/continue statements.
111 template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
112 public:
113   using LabelTy = typename Compiler<Emitter>::LabelTy;
114   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
115 
116   LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
117       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
118         OldContinueLabel(Ctx->ContinueLabel),
119         OldBreakVarScope(Ctx->BreakVarScope),
120         OldContinueVarScope(Ctx->ContinueVarScope) {
121     this->Ctx->BreakLabel = BreakLabel;
122     this->Ctx->ContinueLabel = ContinueLabel;
123     this->Ctx->BreakVarScope = this->Ctx->VarScope;
124     this->Ctx->ContinueVarScope = this->Ctx->VarScope;
125   }
126 
127   ~LoopScope() {
128     this->Ctx->BreakLabel = OldBreakLabel;
129     this->Ctx->ContinueLabel = OldContinueLabel;
130     this->Ctx->ContinueVarScope = OldContinueVarScope;
131     this->Ctx->BreakVarScope = OldBreakVarScope;
132   }
133 
134 private:
135   OptLabelTy OldBreakLabel;
136   OptLabelTy OldContinueLabel;
137   VariableScope<Emitter> *OldBreakVarScope;
138   VariableScope<Emitter> *OldContinueVarScope;
139 };
140 
141 // Sets the context for a switch scope, mapping labels.
142 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
143 public:
144   using LabelTy = typename Compiler<Emitter>::LabelTy;
145   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
146   using CaseMap = typename Compiler<Emitter>::CaseMap;
147 
148   SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
149               OptLabelTy DefaultLabel)
150       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
151         OldDefaultLabel(this->Ctx->DefaultLabel),
152         OldCaseLabels(std::move(this->Ctx->CaseLabels)),
153         OldLabelVarScope(Ctx->BreakVarScope) {
154     this->Ctx->BreakLabel = BreakLabel;
155     this->Ctx->DefaultLabel = DefaultLabel;
156     this->Ctx->CaseLabels = std::move(CaseLabels);
157     this->Ctx->BreakVarScope = this->Ctx->VarScope;
158   }
159 
160   ~SwitchScope() {
161     this->Ctx->BreakLabel = OldBreakLabel;
162     this->Ctx->DefaultLabel = OldDefaultLabel;
163     this->Ctx->CaseLabels = std::move(OldCaseLabels);
164     this->Ctx->BreakVarScope = OldLabelVarScope;
165   }
166 
167 private:
168   OptLabelTy OldBreakLabel;
169   OptLabelTy OldDefaultLabel;
170   CaseMap OldCaseLabels;
171   VariableScope<Emitter> *OldLabelVarScope;
172 };
173 
174 template <class Emitter> class StmtExprScope final {
175 public:
176   StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
177     Ctx->InStmtExpr = true;
178   }
179 
180   ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
181 
182 private:
183   Compiler<Emitter> *Ctx;
184   bool OldFlag;
185 };
186 
187 } // namespace interp
188 } // namespace clang
189 
190 template <class Emitter>
191 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
192   const Expr *SubExpr = CE->getSubExpr();
193   switch (CE->getCastKind()) {
194 
195   case CK_LValueToRValue: {
196     if (DiscardResult)
197       return this->discard(SubExpr);
198 
199     std::optional<PrimType> SubExprT = classify(SubExpr->getType());
200     // Prepare storage for the result.
201     if (!Initializing && !SubExprT) {
202       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
203       if (!LocalIndex)
204         return false;
205       if (!this->emitGetPtrLocal(*LocalIndex, CE))
206         return false;
207     }
208 
209     if (!this->visit(SubExpr))
210       return false;
211 
212     if (SubExprT)
213       return this->emitLoadPop(*SubExprT, CE);
214 
215     // If the subexpr type is not primitive, we need to perform a copy here.
216     // This happens for example in C when dereferencing a pointer of struct
217     // type.
218     return this->emitMemcpy(CE);
219   }
220 
221   case CK_DerivedToBaseMemberPointer: {
222     assert(classifyPrim(CE->getType()) == PT_MemberPtr);
223     assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
224     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
225     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
226 
227     unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
228                                                QualType(FromMP->getClass(), 0));
229 
230     if (!this->delegate(SubExpr))
231       return false;
232 
233     return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
234   }
235 
236   case CK_BaseToDerivedMemberPointer: {
237     assert(classifyPrim(CE) == PT_MemberPtr);
238     assert(classifyPrim(SubExpr) == PT_MemberPtr);
239     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
240     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
241 
242     unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
243                                                QualType(ToMP->getClass(), 0));
244 
245     if (!this->delegate(SubExpr))
246       return false;
247     return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
248   }
249 
250   case CK_UncheckedDerivedToBase:
251   case CK_DerivedToBase: {
252     if (!this->delegate(SubExpr))
253       return false;
254 
255     const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
256       if (const auto *PT = dyn_cast<PointerType>(Ty))
257         return PT->getPointeeType()->getAsCXXRecordDecl();
258       return Ty->getAsCXXRecordDecl();
259     };
260 
261     // FIXME: We can express a series of non-virtual casts as a single
262     // GetPtrBasePop op.
263     QualType CurType = SubExpr->getType();
264     for (const CXXBaseSpecifier *B : CE->path()) {
265       if (B->isVirtual()) {
266         if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
267           return false;
268         CurType = B->getType();
269       } else {
270         unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
271         if (!this->emitGetPtrBasePop(DerivedOffset, CE))
272           return false;
273         CurType = B->getType();
274       }
275     }
276 
277     return true;
278   }
279 
280   case CK_BaseToDerived: {
281     if (!this->delegate(SubExpr))
282       return false;
283 
284     unsigned DerivedOffset =
285         collectBaseOffset(SubExpr->getType(), CE->getType());
286 
287     return this->emitGetPtrDerivedPop(DerivedOffset, CE);
288   }
289 
290   case CK_FloatingCast: {
291     // HLSL uses CK_FloatingCast to cast between vectors.
292     if (!SubExpr->getType()->isFloatingType() ||
293         !CE->getType()->isFloatingType())
294       return false;
295     if (DiscardResult)
296       return this->discard(SubExpr);
297     if (!this->visit(SubExpr))
298       return false;
299     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
300     return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
301   }
302 
303   case CK_IntegralToFloating: {
304     if (DiscardResult)
305       return this->discard(SubExpr);
306     std::optional<PrimType> FromT = classify(SubExpr->getType());
307     if (!FromT)
308       return false;
309 
310     if (!this->visit(SubExpr))
311       return false;
312 
313     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
314     return this->emitCastIntegralFloating(*FromT, TargetSemantics,
315                                           getFPOptions(CE), CE);
316   }
317 
318   case CK_FloatingToBoolean:
319   case CK_FloatingToIntegral: {
320     if (DiscardResult)
321       return this->discard(SubExpr);
322 
323     std::optional<PrimType> ToT = classify(CE->getType());
324 
325     if (!ToT)
326       return false;
327 
328     if (!this->visit(SubExpr))
329       return false;
330 
331     if (ToT == PT_IntAP)
332       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
333                                               getFPOptions(CE), CE);
334     if (ToT == PT_IntAPS)
335       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
336                                                getFPOptions(CE), CE);
337 
338     return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE);
339   }
340 
341   case CK_NullToPointer:
342   case CK_NullToMemberPointer: {
343     if (!this->discard(SubExpr))
344       return false;
345     if (DiscardResult)
346       return true;
347 
348     const Descriptor *Desc = nullptr;
349     const QualType PointeeType = CE->getType()->getPointeeType();
350     if (!PointeeType.isNull()) {
351       if (std::optional<PrimType> T = classify(PointeeType))
352         Desc = P.createDescriptor(SubExpr, *T);
353       else
354         Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
355                                   std::nullopt, true, false,
356                                   /*IsMutable=*/false, nullptr);
357     }
358     return this->emitNull(classifyPrim(CE->getType()), Desc, CE);
359   }
360 
361   case CK_PointerToIntegral: {
362     if (DiscardResult)
363       return this->discard(SubExpr);
364 
365     if (!this->visit(SubExpr))
366       return false;
367 
368     // If SubExpr doesn't result in a pointer, make it one.
369     if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
370       assert(isPtrType(FromT));
371       if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
372         return false;
373     }
374 
375     PrimType T = classifyPrim(CE->getType());
376     if (T == PT_IntAP)
377       return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
378                                              CE);
379     if (T == PT_IntAPS)
380       return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
381                                               CE);
382     return this->emitCastPointerIntegral(T, CE);
383   }
384 
385   case CK_ArrayToPointerDecay: {
386     if (!this->visit(SubExpr))
387       return false;
388     if (!this->emitArrayDecay(CE))
389       return false;
390     if (DiscardResult)
391       return this->emitPopPtr(CE);
392     return true;
393   }
394 
395   case CK_IntegralToPointer: {
396     QualType IntType = SubExpr->getType();
397     assert(IntType->isIntegralOrEnumerationType());
398     if (!this->visit(SubExpr))
399       return false;
400     // FIXME: I think the discard is wrong since the int->ptr cast might cause a
401     // diagnostic.
402     PrimType T = classifyPrim(IntType);
403     if (DiscardResult)
404       return this->emitPop(T, CE);
405 
406     QualType PtrType = CE->getType();
407     const Descriptor *Desc;
408     if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
409       Desc = P.createDescriptor(SubExpr, *T);
410     else if (PtrType->getPointeeType()->isVoidType())
411       Desc = nullptr;
412     else
413       Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
414                                 Descriptor::InlineDescMD, true, false,
415                                 /*IsMutable=*/false, nullptr);
416 
417     if (!this->emitGetIntPtr(T, Desc, CE))
418       return false;
419 
420     PrimType DestPtrT = classifyPrim(PtrType);
421     if (DestPtrT == PT_Ptr)
422       return true;
423 
424     // In case we're converting the integer to a non-Pointer.
425     return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
426   }
427 
428   case CK_AtomicToNonAtomic:
429   case CK_ConstructorConversion:
430   case CK_FunctionToPointerDecay:
431   case CK_NonAtomicToAtomic:
432   case CK_NoOp:
433   case CK_UserDefinedConversion:
434   case CK_AddressSpaceConversion:
435   case CK_CPointerToObjCPointerCast:
436     return this->delegate(SubExpr);
437 
438   case CK_BitCast: {
439     // Reject bitcasts to atomic types.
440     if (CE->getType()->isAtomicType()) {
441       if (!this->discard(SubExpr))
442         return false;
443       return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
444     }
445 
446     if (DiscardResult)
447       return this->discard(SubExpr);
448 
449     QualType SubExprTy = SubExpr->getType();
450     std::optional<PrimType> FromT = classify(SubExprTy);
451     std::optional<PrimType> ToT = classify(CE->getType());
452     if (!FromT || !ToT)
453       return false;
454 
455     assert(isPtrType(*FromT));
456     assert(isPtrType(*ToT));
457     if (FromT == ToT) {
458       if (CE->getType()->isVoidPointerType())
459         return this->delegate(SubExpr);
460 
461       if (!this->visit(SubExpr))
462         return false;
463       if (FromT == PT_Ptr)
464         return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
465       return true;
466     }
467 
468     if (!this->visit(SubExpr))
469       return false;
470     return this->emitDecayPtr(*FromT, *ToT, CE);
471   }
472 
473   case CK_IntegralToBoolean:
474   case CK_FixedPointToBoolean:
475   case CK_BooleanToSignedIntegral:
476   case CK_IntegralCast: {
477     if (DiscardResult)
478       return this->discard(SubExpr);
479     std::optional<PrimType> FromT = classify(SubExpr->getType());
480     std::optional<PrimType> ToT = classify(CE->getType());
481 
482     if (!FromT || !ToT)
483       return false;
484 
485     if (!this->visit(SubExpr))
486       return false;
487 
488     // Possibly diagnose casts to enum types if the target type does not
489     // have a fixed size.
490     if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
491       if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
492           ET && !ET->getDecl()->isFixed()) {
493         if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
494           return false;
495       }
496     }
497 
498     auto maybeNegate = [&]() -> bool {
499       if (CE->getCastKind() == CK_BooleanToSignedIntegral)
500         return this->emitNeg(*ToT, CE);
501       return true;
502     };
503 
504     if (ToT == PT_IntAP)
505       return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
506              maybeNegate();
507     if (ToT == PT_IntAPS)
508       return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
509              maybeNegate();
510 
511     if (FromT == ToT)
512       return true;
513     if (!this->emitCast(*FromT, *ToT, CE))
514       return false;
515 
516     return maybeNegate();
517   }
518 
519   case CK_PointerToBoolean:
520   case CK_MemberPointerToBoolean: {
521     PrimType PtrT = classifyPrim(SubExpr->getType());
522 
523     if (!this->visit(SubExpr))
524       return false;
525     return this->emitIsNonNull(PtrT, CE);
526   }
527 
528   case CK_IntegralComplexToBoolean:
529   case CK_FloatingComplexToBoolean: {
530     if (DiscardResult)
531       return this->discard(SubExpr);
532     if (!this->visit(SubExpr))
533       return false;
534     return this->emitComplexBoolCast(SubExpr);
535   }
536 
537   case CK_IntegralComplexToReal:
538   case CK_FloatingComplexToReal:
539     return this->emitComplexReal(SubExpr);
540 
541   case CK_IntegralRealToComplex:
542   case CK_FloatingRealToComplex: {
543     // We're creating a complex value here, so we need to
544     // allocate storage for it.
545     if (!Initializing) {
546       unsigned LocalIndex = allocateTemporary(CE);
547       if (!this->emitGetPtrLocal(LocalIndex, CE))
548         return false;
549     }
550 
551     // Init the complex value to {SubExpr, 0}.
552     if (!this->visitArrayElemInit(0, SubExpr))
553       return false;
554     // Zero-init the second element.
555     PrimType T = classifyPrim(SubExpr->getType());
556     if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
557       return false;
558     return this->emitInitElem(T, 1, SubExpr);
559   }
560 
561   case CK_IntegralComplexCast:
562   case CK_FloatingComplexCast:
563   case CK_IntegralComplexToFloatingComplex:
564   case CK_FloatingComplexToIntegralComplex: {
565     assert(CE->getType()->isAnyComplexType());
566     assert(SubExpr->getType()->isAnyComplexType());
567     if (DiscardResult)
568       return this->discard(SubExpr);
569 
570     if (!Initializing) {
571       std::optional<unsigned> LocalIndex = allocateLocal(CE);
572       if (!LocalIndex)
573         return false;
574       if (!this->emitGetPtrLocal(*LocalIndex, CE))
575         return false;
576     }
577 
578     // Location for the SubExpr.
579     // Since SubExpr is of complex type, visiting it results in a pointer
580     // anyway, so we just create a temporary pointer variable.
581     unsigned SubExprOffset = allocateLocalPrimitive(
582         SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
583     if (!this->visit(SubExpr))
584       return false;
585     if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
586       return false;
587 
588     PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
589     QualType DestElemType =
590         CE->getType()->getAs<ComplexType>()->getElementType();
591     PrimType DestElemT = classifyPrim(DestElemType);
592     // Cast both elements individually.
593     for (unsigned I = 0; I != 2; ++I) {
594       if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
595         return false;
596       if (!this->emitArrayElemPop(SourceElemT, I, CE))
597         return false;
598 
599       // Do the cast.
600       if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
601         return false;
602 
603       // Save the value.
604       if (!this->emitInitElem(DestElemT, I, CE))
605         return false;
606     }
607     return true;
608   }
609 
610   case CK_VectorSplat: {
611     assert(!classify(CE->getType()));
612     assert(classify(SubExpr->getType()));
613     assert(CE->getType()->isVectorType());
614 
615     if (DiscardResult)
616       return this->discard(SubExpr);
617 
618     if (!Initializing) {
619       std::optional<unsigned> LocalIndex = allocateLocal(CE);
620       if (!LocalIndex)
621         return false;
622       if (!this->emitGetPtrLocal(*LocalIndex, CE))
623         return false;
624     }
625 
626     const auto *VT = CE->getType()->getAs<VectorType>();
627     PrimType ElemT = classifyPrim(SubExpr->getType());
628     unsigned ElemOffset = allocateLocalPrimitive(
629         SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
630 
631     // Prepare a local variable for the scalar value.
632     if (!this->visit(SubExpr))
633       return false;
634     if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
635       return false;
636 
637     if (!this->emitSetLocal(ElemT, ElemOffset, CE))
638       return false;
639 
640     for (unsigned I = 0; I != VT->getNumElements(); ++I) {
641       if (!this->emitGetLocal(ElemT, ElemOffset, CE))
642         return false;
643       if (!this->emitInitElem(ElemT, I, CE))
644         return false;
645     }
646 
647     return true;
648   }
649 
650   case CK_HLSLVectorTruncation: {
651     assert(SubExpr->getType()->isVectorType());
652     if (std::optional<PrimType> ResultT = classify(CE)) {
653       assert(!DiscardResult);
654       // Result must be either a float or integer. Take the first element.
655       if (!this->visit(SubExpr))
656         return false;
657       return this->emitArrayElemPop(*ResultT, 0, CE);
658     }
659     // Otherwise, this truncates from one vector type to another.
660     assert(CE->getType()->isVectorType());
661 
662     if (!Initializing) {
663       unsigned LocalIndex = allocateTemporary(CE);
664       if (!this->emitGetPtrLocal(LocalIndex, CE))
665         return false;
666     }
667     unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements();
668     assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize);
669     if (!this->visit(SubExpr))
670       return false;
671     return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0,
672                                ToSize, CE);
673   };
674 
675   case CK_IntegralToFixedPoint: {
676     if (!this->visit(SubExpr))
677       return false;
678 
679     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
680     uint32_t I;
681     std::memcpy(&I, &Sem, sizeof(Sem));
682     return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), I,
683                                             CE);
684   }
685 
686   case CK_ToVoid:
687     return discard(SubExpr);
688 
689   default:
690     return this->emitInvalid(CE);
691   }
692   llvm_unreachable("Unhandled clang::CastKind enum");
693 }
694 
695 template <class Emitter>
696 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
697   if (DiscardResult)
698     return true;
699 
700   return this->emitConst(LE->getValue(), LE);
701 }
702 
703 template <class Emitter>
704 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
705   if (DiscardResult)
706     return true;
707 
708   return this->emitConstFloat(E->getValue(), E);
709 }
710 
711 template <class Emitter>
712 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
713   assert(E->getType()->isAnyComplexType());
714   if (DiscardResult)
715     return true;
716 
717   if (!Initializing) {
718     unsigned LocalIndex = allocateTemporary(E);
719     if (!this->emitGetPtrLocal(LocalIndex, E))
720       return false;
721   }
722 
723   const Expr *SubExpr = E->getSubExpr();
724   PrimType SubExprT = classifyPrim(SubExpr->getType());
725 
726   if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
727     return false;
728   if (!this->emitInitElem(SubExprT, 0, SubExpr))
729     return false;
730   return this->visitArrayElemInit(1, SubExpr);
731 }
732 
733 template <class Emitter>
734 bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) {
735   assert(E->getType()->isFixedPointType());
736   assert(classifyPrim(E) == PT_FixedPoint);
737 
738   auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
739   APInt Value = E->getValue();
740   return this->emitConstFixedPoint(FixedPoint(Value, Sem), E);
741 }
742 
743 template <class Emitter>
744 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
745   return this->delegate(E->getSubExpr());
746 }
747 
748 template <class Emitter>
749 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
750   // Need short-circuiting for these.
751   if (BO->isLogicalOp() && !BO->getType()->isVectorType())
752     return this->VisitLogicalBinOp(BO);
753 
754   const Expr *LHS = BO->getLHS();
755   const Expr *RHS = BO->getRHS();
756 
757   // Handle comma operators. Just discard the LHS
758   // and delegate to RHS.
759   if (BO->isCommaOp()) {
760     if (!this->discard(LHS))
761       return false;
762     if (RHS->getType()->isVoidType())
763       return this->discard(RHS);
764 
765     return this->delegate(RHS);
766   }
767 
768   if (BO->getType()->isAnyComplexType())
769     return this->VisitComplexBinOp(BO);
770   if (BO->getType()->isVectorType())
771     return this->VisitVectorBinOp(BO);
772   if ((LHS->getType()->isAnyComplexType() ||
773        RHS->getType()->isAnyComplexType()) &&
774       BO->isComparisonOp())
775     return this->emitComplexComparison(LHS, RHS, BO);
776   if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType())
777     return this->VisitFixedPointBinOp(BO);
778 
779   if (BO->isPtrMemOp()) {
780     if (!this->visit(LHS))
781       return false;
782 
783     if (!this->visit(RHS))
784       return false;
785 
786     if (!this->emitToMemberPtr(BO))
787       return false;
788 
789     if (classifyPrim(BO) == PT_MemberPtr)
790       return true;
791 
792     if (!this->emitCastMemberPtrPtr(BO))
793       return false;
794     return DiscardResult ? this->emitPopPtr(BO) : true;
795   }
796 
797   // Typecheck the args.
798   std::optional<PrimType> LT = classify(LHS);
799   std::optional<PrimType> RT = classify(RHS);
800   std::optional<PrimType> T = classify(BO->getType());
801 
802   // Special case for C++'s three-way/spaceship operator <=>, which
803   // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
804   // have a PrimType).
805   if (!T && BO->getOpcode() == BO_Cmp) {
806     if (DiscardResult)
807       return true;
808     const ComparisonCategoryInfo *CmpInfo =
809         Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
810     assert(CmpInfo);
811 
812     // We need a temporary variable holding our return value.
813     if (!Initializing) {
814       std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
815       if (!this->emitGetPtrLocal(*ResultIndex, BO))
816         return false;
817     }
818 
819     if (!visit(LHS) || !visit(RHS))
820       return false;
821 
822     return this->emitCMP3(*LT, CmpInfo, BO);
823   }
824 
825   if (!LT || !RT || !T)
826     return false;
827 
828   // Pointer arithmetic special case.
829   if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
830     if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
831       return this->VisitPointerArithBinOp(BO);
832   }
833 
834   // Assignmentes require us to evalute the RHS first.
835   if (BO->getOpcode() == BO_Assign) {
836     if (!visit(RHS) || !visit(LHS))
837       return false;
838     if (!this->emitFlip(*LT, *RT, BO))
839       return false;
840   } else {
841     if (!visit(LHS) || !visit(RHS))
842       return false;
843   }
844 
845   // For languages such as C, cast the result of one
846   // of our comparision opcodes to T (which is usually int).
847   auto MaybeCastToBool = [this, T, BO](bool Result) {
848     if (!Result)
849       return false;
850     if (DiscardResult)
851       return this->emitPop(*T, BO);
852     if (T != PT_Bool)
853       return this->emitCast(PT_Bool, *T, BO);
854     return true;
855   };
856 
857   auto Discard = [this, T, BO](bool Result) {
858     if (!Result)
859       return false;
860     return DiscardResult ? this->emitPop(*T, BO) : true;
861   };
862 
863   switch (BO->getOpcode()) {
864   case BO_EQ:
865     return MaybeCastToBool(this->emitEQ(*LT, BO));
866   case BO_NE:
867     return MaybeCastToBool(this->emitNE(*LT, BO));
868   case BO_LT:
869     return MaybeCastToBool(this->emitLT(*LT, BO));
870   case BO_LE:
871     return MaybeCastToBool(this->emitLE(*LT, BO));
872   case BO_GT:
873     return MaybeCastToBool(this->emitGT(*LT, BO));
874   case BO_GE:
875     return MaybeCastToBool(this->emitGE(*LT, BO));
876   case BO_Sub:
877     if (BO->getType()->isFloatingType())
878       return Discard(this->emitSubf(getFPOptions(BO), BO));
879     return Discard(this->emitSub(*T, BO));
880   case BO_Add:
881     if (BO->getType()->isFloatingType())
882       return Discard(this->emitAddf(getFPOptions(BO), BO));
883     return Discard(this->emitAdd(*T, BO));
884   case BO_Mul:
885     if (BO->getType()->isFloatingType())
886       return Discard(this->emitMulf(getFPOptions(BO), BO));
887     return Discard(this->emitMul(*T, BO));
888   case BO_Rem:
889     return Discard(this->emitRem(*T, BO));
890   case BO_Div:
891     if (BO->getType()->isFloatingType())
892       return Discard(this->emitDivf(getFPOptions(BO), BO));
893     return Discard(this->emitDiv(*T, BO));
894   case BO_Assign:
895     if (DiscardResult)
896       return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
897                                      : this->emitStorePop(*T, BO);
898     if (LHS->refersToBitField()) {
899       if (!this->emitStoreBitField(*T, BO))
900         return false;
901     } else {
902       if (!this->emitStore(*T, BO))
903         return false;
904     }
905     // Assignments aren't necessarily lvalues in C.
906     // Load from them in that case.
907     if (!BO->isLValue())
908       return this->emitLoadPop(*T, BO);
909     return true;
910   case BO_And:
911     return Discard(this->emitBitAnd(*T, BO));
912   case BO_Or:
913     return Discard(this->emitBitOr(*T, BO));
914   case BO_Shl:
915     return Discard(this->emitShl(*LT, *RT, BO));
916   case BO_Shr:
917     return Discard(this->emitShr(*LT, *RT, BO));
918   case BO_Xor:
919     return Discard(this->emitBitXor(*T, BO));
920   case BO_LOr:
921   case BO_LAnd:
922     llvm_unreachable("Already handled earlier");
923   default:
924     return false;
925   }
926 
927   llvm_unreachable("Unhandled binary op");
928 }
929 
930 /// Perform addition/subtraction of a pointer and an integer or
931 /// subtraction of two pointers.
932 template <class Emitter>
933 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
934   BinaryOperatorKind Op = E->getOpcode();
935   const Expr *LHS = E->getLHS();
936   const Expr *RHS = E->getRHS();
937 
938   if ((Op != BO_Add && Op != BO_Sub) ||
939       (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
940     return false;
941 
942   std::optional<PrimType> LT = classify(LHS);
943   std::optional<PrimType> RT = classify(RHS);
944 
945   if (!LT || !RT)
946     return false;
947 
948   // Visit the given pointer expression and optionally convert to a PT_Ptr.
949   auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
950     if (!this->visit(E))
951       return false;
952     if (T != PT_Ptr)
953       return this->emitDecayPtr(T, PT_Ptr, E);
954     return true;
955   };
956 
957   if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
958     if (Op != BO_Sub)
959       return false;
960 
961     assert(E->getType()->isIntegerType());
962     if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
963       return false;
964 
965     return this->emitSubPtr(classifyPrim(E->getType()), E);
966   }
967 
968   PrimType OffsetType;
969   if (LHS->getType()->isIntegerType()) {
970     if (!visitAsPointer(RHS, *RT))
971       return false;
972     if (!this->visit(LHS))
973       return false;
974     OffsetType = *LT;
975   } else if (RHS->getType()->isIntegerType()) {
976     if (!visitAsPointer(LHS, *LT))
977       return false;
978     if (!this->visit(RHS))
979       return false;
980     OffsetType = *RT;
981   } else {
982     return false;
983   }
984 
985   // Do the operation and optionally transform to
986   // result pointer type.
987   if (Op == BO_Add) {
988     if (!this->emitAddOffset(OffsetType, E))
989       return false;
990 
991     if (classifyPrim(E) != PT_Ptr)
992       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
993     return true;
994   } else if (Op == BO_Sub) {
995     if (!this->emitSubOffset(OffsetType, E))
996       return false;
997 
998     if (classifyPrim(E) != PT_Ptr)
999       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
1000     return true;
1001   }
1002 
1003   return false;
1004 }
1005 
1006 template <class Emitter>
1007 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
1008   assert(E->isLogicalOp());
1009   BinaryOperatorKind Op = E->getOpcode();
1010   const Expr *LHS = E->getLHS();
1011   const Expr *RHS = E->getRHS();
1012   std::optional<PrimType> T = classify(E->getType());
1013 
1014   if (Op == BO_LOr) {
1015     // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
1016     LabelTy LabelTrue = this->getLabel();
1017     LabelTy LabelEnd = this->getLabel();
1018 
1019     if (!this->visitBool(LHS))
1020       return false;
1021     if (!this->jumpTrue(LabelTrue))
1022       return false;
1023 
1024     if (!this->visitBool(RHS))
1025       return false;
1026     if (!this->jump(LabelEnd))
1027       return false;
1028 
1029     this->emitLabel(LabelTrue);
1030     this->emitConstBool(true, E);
1031     this->fallthrough(LabelEnd);
1032     this->emitLabel(LabelEnd);
1033 
1034   } else {
1035     assert(Op == BO_LAnd);
1036     // Logical AND.
1037     // Visit LHS. Only visit RHS if LHS was TRUE.
1038     LabelTy LabelFalse = this->getLabel();
1039     LabelTy LabelEnd = this->getLabel();
1040 
1041     if (!this->visitBool(LHS))
1042       return false;
1043     if (!this->jumpFalse(LabelFalse))
1044       return false;
1045 
1046     if (!this->visitBool(RHS))
1047       return false;
1048     if (!this->jump(LabelEnd))
1049       return false;
1050 
1051     this->emitLabel(LabelFalse);
1052     this->emitConstBool(false, E);
1053     this->fallthrough(LabelEnd);
1054     this->emitLabel(LabelEnd);
1055   }
1056 
1057   if (DiscardResult)
1058     return this->emitPopBool(E);
1059 
1060   // For C, cast back to integer type.
1061   assert(T);
1062   if (T != PT_Bool)
1063     return this->emitCast(PT_Bool, *T, E);
1064   return true;
1065 }
1066 
1067 template <class Emitter>
1068 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
1069   // Prepare storage for result.
1070   if (!Initializing) {
1071     unsigned LocalIndex = allocateTemporary(E);
1072     if (!this->emitGetPtrLocal(LocalIndex, E))
1073       return false;
1074   }
1075 
1076   // Both LHS and RHS might _not_ be of complex type, but one of them
1077   // needs to be.
1078   const Expr *LHS = E->getLHS();
1079   const Expr *RHS = E->getRHS();
1080 
1081   PrimType ResultElemT = this->classifyComplexElementType(E->getType());
1082   unsigned ResultOffset = ~0u;
1083   if (!DiscardResult)
1084     ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
1085 
1086   // Save result pointer in ResultOffset
1087   if (!this->DiscardResult) {
1088     if (!this->emitDupPtr(E))
1089       return false;
1090     if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
1091       return false;
1092   }
1093   QualType LHSType = LHS->getType();
1094   if (const auto *AT = LHSType->getAs<AtomicType>())
1095     LHSType = AT->getValueType();
1096   QualType RHSType = RHS->getType();
1097   if (const auto *AT = RHSType->getAs<AtomicType>())
1098     RHSType = AT->getValueType();
1099 
1100   bool LHSIsComplex = LHSType->isAnyComplexType();
1101   unsigned LHSOffset;
1102   bool RHSIsComplex = RHSType->isAnyComplexType();
1103 
1104   // For ComplexComplex Mul, we have special ops to make their implementation
1105   // easier.
1106   BinaryOperatorKind Op = E->getOpcode();
1107   if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
1108     assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
1109            classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
1110     PrimType ElemT =
1111         classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
1112     if (!this->visit(LHS))
1113       return false;
1114     if (!this->visit(RHS))
1115       return false;
1116     return this->emitMulc(ElemT, E);
1117   }
1118 
1119   if (Op == BO_Div && RHSIsComplex) {
1120     QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
1121     PrimType ElemT = classifyPrim(ElemQT);
1122     // If the LHS is not complex, we still need to do the full complex
1123     // division, so just stub create a complex value and stub it out with
1124     // the LHS and a zero.
1125 
1126     if (!LHSIsComplex) {
1127       // This is using the RHS type for the fake-complex LHS.
1128       LHSOffset = allocateTemporary(RHS);
1129 
1130       if (!this->emitGetPtrLocal(LHSOffset, E))
1131         return false;
1132 
1133       if (!this->visit(LHS))
1134         return false;
1135       // real is LHS
1136       if (!this->emitInitElem(ElemT, 0, E))
1137         return false;
1138       // imag is zero
1139       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1140         return false;
1141       if (!this->emitInitElem(ElemT, 1, E))
1142         return false;
1143     } else {
1144       if (!this->visit(LHS))
1145         return false;
1146     }
1147 
1148     if (!this->visit(RHS))
1149       return false;
1150     return this->emitDivc(ElemT, E);
1151   }
1152 
1153   // Evaluate LHS and save value to LHSOffset.
1154   if (LHSType->isAnyComplexType()) {
1155     LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1156     if (!this->visit(LHS))
1157       return false;
1158     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1159       return false;
1160   } else {
1161     PrimType LHST = classifyPrim(LHSType);
1162     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
1163     if (!this->visit(LHS))
1164       return false;
1165     if (!this->emitSetLocal(LHST, LHSOffset, E))
1166       return false;
1167   }
1168 
1169   // Same with RHS.
1170   unsigned RHSOffset;
1171   if (RHSType->isAnyComplexType()) {
1172     RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1173     if (!this->visit(RHS))
1174       return false;
1175     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1176       return false;
1177   } else {
1178     PrimType RHST = classifyPrim(RHSType);
1179     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
1180     if (!this->visit(RHS))
1181       return false;
1182     if (!this->emitSetLocal(RHST, RHSOffset, E))
1183       return false;
1184   }
1185 
1186   // For both LHS and RHS, either load the value from the complex pointer, or
1187   // directly from the local variable. For index 1 (i.e. the imaginary part),
1188   // just load 0 and do the operation anyway.
1189   auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
1190                                  unsigned ElemIndex, unsigned Offset,
1191                                  const Expr *E) -> bool {
1192     if (IsComplex) {
1193       if (!this->emitGetLocal(PT_Ptr, Offset, E))
1194         return false;
1195       return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
1196                                     ElemIndex, E);
1197     }
1198     if (ElemIndex == 0 || !LoadZero)
1199       return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
1200     return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
1201                                       E);
1202   };
1203 
1204   // Now we can get pointers to the LHS and RHS from the offsets above.
1205   for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
1206     // Result pointer for the store later.
1207     if (!this->DiscardResult) {
1208       if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
1209         return false;
1210     }
1211 
1212     // The actual operation.
1213     switch (Op) {
1214     case BO_Add:
1215       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1216         return false;
1217 
1218       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1219         return false;
1220       if (ResultElemT == PT_Float) {
1221         if (!this->emitAddf(getFPOptions(E), E))
1222           return false;
1223       } else {
1224         if (!this->emitAdd(ResultElemT, E))
1225           return false;
1226       }
1227       break;
1228     case BO_Sub:
1229       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1230         return false;
1231 
1232       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1233         return false;
1234       if (ResultElemT == PT_Float) {
1235         if (!this->emitSubf(getFPOptions(E), E))
1236           return false;
1237       } else {
1238         if (!this->emitSub(ResultElemT, E))
1239           return false;
1240       }
1241       break;
1242     case BO_Mul:
1243       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1244         return false;
1245 
1246       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1247         return false;
1248 
1249       if (ResultElemT == PT_Float) {
1250         if (!this->emitMulf(getFPOptions(E), E))
1251           return false;
1252       } else {
1253         if (!this->emitMul(ResultElemT, E))
1254           return false;
1255       }
1256       break;
1257     case BO_Div:
1258       assert(!RHSIsComplex);
1259       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1260         return false;
1261 
1262       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1263         return false;
1264 
1265       if (ResultElemT == PT_Float) {
1266         if (!this->emitDivf(getFPOptions(E), E))
1267           return false;
1268       } else {
1269         if (!this->emitDiv(ResultElemT, E))
1270           return false;
1271       }
1272       break;
1273 
1274     default:
1275       return false;
1276     }
1277 
1278     if (!this->DiscardResult) {
1279       // Initialize array element with the value we just computed.
1280       if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
1281         return false;
1282     } else {
1283       if (!this->emitPop(ResultElemT, E))
1284         return false;
1285     }
1286   }
1287   return true;
1288 }
1289 
1290 template <class Emitter>
1291 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) {
1292   assert(!E->isCommaOp() &&
1293          "Comma op should be handled in VisitBinaryOperator");
1294   assert(E->getType()->isVectorType());
1295   assert(E->getLHS()->getType()->isVectorType());
1296   assert(E->getRHS()->getType()->isVectorType());
1297 
1298   // Prepare storage for result.
1299   if (!Initializing && !E->isCompoundAssignmentOp()) {
1300     unsigned LocalIndex = allocateTemporary(E);
1301     if (!this->emitGetPtrLocal(LocalIndex, E))
1302       return false;
1303   }
1304 
1305   const Expr *LHS = E->getLHS();
1306   const Expr *RHS = E->getRHS();
1307   const auto *VecTy = E->getType()->getAs<VectorType>();
1308   auto Op = E->isCompoundAssignmentOp()
1309                 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode())
1310                 : E->getOpcode();
1311 
1312   PrimType ElemT = this->classifyVectorElementType(LHS->getType());
1313   PrimType RHSElemT = this->classifyVectorElementType(RHS->getType());
1314   PrimType ResultElemT = this->classifyVectorElementType(E->getType());
1315 
1316   // Evaluate LHS and save value to LHSOffset.
1317   unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1318   if (!this->visit(LHS))
1319     return false;
1320   if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1321     return false;
1322 
1323   // Evaluate RHS and save value to RHSOffset.
1324   unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1325   if (!this->visit(RHS))
1326     return false;
1327   if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1328     return false;
1329 
1330   if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E))
1331     return false;
1332 
1333   // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the
1334   // integer promotion.
1335   bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp());
1336   QualType PromotTy =
1337       Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy);
1338   PrimType PromotT = classifyPrim(PromotTy);
1339   PrimType OpT = NeedIntPromot ? PromotT : ElemT;
1340 
1341   auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) {
1342     if (!this->emitGetLocal(PT_Ptr, Offset, E))
1343       return false;
1344     if (!this->emitArrayElemPop(ElemT, Index, E))
1345       return false;
1346     if (E->isLogicalOp()) {
1347       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
1348         return false;
1349       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1350         return false;
1351     } else if (NeedIntPromot) {
1352       if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E))
1353         return false;
1354     }
1355     return true;
1356   };
1357 
1358 #define EMIT_ARITH_OP(OP)                                                      \
1359   {                                                                            \
1360     if (ElemT == PT_Float) {                                                   \
1361       if (!this->emit##OP##f(getFPOptions(E), E))                              \
1362         return false;                                                          \
1363     } else {                                                                   \
1364       if (!this->emit##OP(ElemT, E))                                           \
1365         return false;                                                          \
1366     }                                                                          \
1367     break;                                                                     \
1368   }
1369 
1370   for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
1371     if (!getElem(LHSOffset, ElemT, I))
1372       return false;
1373     if (!getElem(RHSOffset, RHSElemT, I))
1374       return false;
1375     switch (Op) {
1376     case BO_Add:
1377       EMIT_ARITH_OP(Add)
1378     case BO_Sub:
1379       EMIT_ARITH_OP(Sub)
1380     case BO_Mul:
1381       EMIT_ARITH_OP(Mul)
1382     case BO_Div:
1383       EMIT_ARITH_OP(Div)
1384     case BO_Rem:
1385       if (!this->emitRem(ElemT, E))
1386         return false;
1387       break;
1388     case BO_And:
1389       if (!this->emitBitAnd(OpT, E))
1390         return false;
1391       break;
1392     case BO_Or:
1393       if (!this->emitBitOr(OpT, E))
1394         return false;
1395       break;
1396     case BO_Xor:
1397       if (!this->emitBitXor(OpT, E))
1398         return false;
1399       break;
1400     case BO_Shl:
1401       if (!this->emitShl(OpT, RHSElemT, E))
1402         return false;
1403       break;
1404     case BO_Shr:
1405       if (!this->emitShr(OpT, RHSElemT, E))
1406         return false;
1407       break;
1408     case BO_EQ:
1409       if (!this->emitEQ(ElemT, E))
1410         return false;
1411       break;
1412     case BO_NE:
1413       if (!this->emitNE(ElemT, E))
1414         return false;
1415       break;
1416     case BO_LE:
1417       if (!this->emitLE(ElemT, E))
1418         return false;
1419       break;
1420     case BO_LT:
1421       if (!this->emitLT(ElemT, E))
1422         return false;
1423       break;
1424     case BO_GE:
1425       if (!this->emitGE(ElemT, E))
1426         return false;
1427       break;
1428     case BO_GT:
1429       if (!this->emitGT(ElemT, E))
1430         return false;
1431       break;
1432     case BO_LAnd:
1433       // a && b is equivalent to a!=0 & b!=0
1434       if (!this->emitBitAnd(ResultElemT, E))
1435         return false;
1436       break;
1437     case BO_LOr:
1438       // a || b is equivalent to a!=0 | b!=0
1439       if (!this->emitBitOr(ResultElemT, E))
1440         return false;
1441       break;
1442     default:
1443       return this->emitInvalid(E);
1444     }
1445 
1446     // The result of the comparison is a vector of the same width and number
1447     // of elements as the comparison operands with a signed integral element
1448     // type.
1449     //
1450     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
1451     if (E->isComparisonOp()) {
1452       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1453         return false;
1454       if (!this->emitNeg(ResultElemT, E))
1455         return false;
1456     }
1457 
1458     // If we performed an integer promotion, we need to cast the compute result
1459     // into result vector element type.
1460     if (NeedIntPromot &&
1461         !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E))
1462       return false;
1463 
1464     // Initialize array element with the value we just computed.
1465     if (!this->emitInitElem(ResultElemT, I, E))
1466       return false;
1467   }
1468 
1469   if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E))
1470     return false;
1471   return true;
1472 }
1473 
1474 template <class Emitter>
1475 bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) {
1476   const Expr *LHS = E->getLHS();
1477   const Expr *RHS = E->getRHS();
1478 
1479   assert(LHS->getType()->isFixedPointType() ||
1480          RHS->getType()->isFixedPointType());
1481 
1482   if (!this->visit(LHS))
1483     return false;
1484   if (!LHS->getType()->isFixedPointType()) {
1485     auto Sem = Ctx.getASTContext().getFixedPointSemantics(LHS->getType());
1486     uint32_t I;
1487     std::memcpy(&I, &Sem, sizeof(Sem));
1488     if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()), I, E))
1489       return false;
1490   }
1491   if (!this->visit(RHS))
1492     return false;
1493   if (!RHS->getType()->isFixedPointType()) {
1494     auto Sem = Ctx.getASTContext().getFixedPointSemantics(RHS->getType());
1495     uint32_t I;
1496     std::memcpy(&I, &Sem, sizeof(Sem));
1497     if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()), I, E))
1498       return false;
1499   }
1500 
1501   switch (E->getOpcode()) {
1502   case BO_EQ:
1503     return this->emitEQFixedPoint(E);
1504   case BO_NE:
1505     return this->emitNEFixedPoint(E);
1506 #if 0
1507   case BO_LT:
1508     return this->emitLTFixedPoint(E);
1509   case BO_LE:
1510     return this->emitLEFixedPoint(E);
1511   case BO_GT:
1512     return this->emitGTFixedPoint(E);
1513   case BO_GE:
1514     return this->emitGEFixedPoint(E);
1515 #endif
1516   default:
1517     return this->emitInvalid(E);
1518   }
1519 
1520   llvm_unreachable("unhandled binop opcode");
1521 }
1522 
1523 template <class Emitter>
1524 bool Compiler<Emitter>::VisitImplicitValueInitExpr(
1525     const ImplicitValueInitExpr *E) {
1526   QualType QT = E->getType();
1527 
1528   if (std::optional<PrimType> T = classify(QT))
1529     return this->visitZeroInitializer(*T, QT, E);
1530 
1531   if (QT->isRecordType()) {
1532     const RecordDecl *RD = QT->getAsRecordDecl();
1533     assert(RD);
1534     if (RD->isInvalidDecl())
1535       return false;
1536 
1537     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1538         CXXRD && CXXRD->getNumVBases() > 0) {
1539       // TODO: Diagnose.
1540       return false;
1541     }
1542 
1543     const Record *R = getRecord(QT);
1544     if (!R)
1545       return false;
1546 
1547     assert(Initializing);
1548     return this->visitZeroRecordInitializer(R, E);
1549   }
1550 
1551   if (QT->isIncompleteArrayType())
1552     return true;
1553 
1554   if (QT->isArrayType()) {
1555     const ArrayType *AT = QT->getAsArrayTypeUnsafe();
1556     assert(AT);
1557     const auto *CAT = cast<ConstantArrayType>(AT);
1558     size_t NumElems = CAT->getZExtSize();
1559     PrimType ElemT = classifyPrim(CAT->getElementType());
1560 
1561     for (size_t I = 0; I != NumElems; ++I) {
1562       if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E))
1563         return false;
1564       if (!this->emitInitElem(ElemT, I, E))
1565         return false;
1566     }
1567 
1568     return true;
1569   }
1570 
1571   if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
1572     assert(Initializing);
1573     QualType ElemQT = ComplexTy->getElementType();
1574     PrimType ElemT = classifyPrim(ElemQT);
1575     for (unsigned I = 0; I < 2; ++I) {
1576       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1577         return false;
1578       if (!this->emitInitElem(ElemT, I, E))
1579         return false;
1580     }
1581     return true;
1582   }
1583 
1584   if (const auto *VecT = E->getType()->getAs<VectorType>()) {
1585     unsigned NumVecElements = VecT->getNumElements();
1586     QualType ElemQT = VecT->getElementType();
1587     PrimType ElemT = classifyPrim(ElemQT);
1588 
1589     for (unsigned I = 0; I < NumVecElements; ++I) {
1590       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1591         return false;
1592       if (!this->emitInitElem(ElemT, I, E))
1593         return false;
1594     }
1595     return true;
1596   }
1597 
1598   return false;
1599 }
1600 
1601 template <class Emitter>
1602 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1603   const Expr *LHS = E->getLHS();
1604   const Expr *RHS = E->getRHS();
1605   const Expr *Index = E->getIdx();
1606 
1607   if (DiscardResult)
1608     return this->discard(LHS) && this->discard(RHS);
1609 
1610   // C++17's rules require us to evaluate the LHS first, regardless of which
1611   // side is the base.
1612   bool Success = true;
1613   for (const Expr *SubExpr : {LHS, RHS}) {
1614     if (!this->visit(SubExpr))
1615       Success = false;
1616   }
1617 
1618   if (!Success)
1619     return false;
1620 
1621   PrimType IndexT = classifyPrim(Index->getType());
1622   // If the index is first, we need to change that.
1623   if (LHS == Index) {
1624     if (!this->emitFlip(PT_Ptr, IndexT, E))
1625       return false;
1626   }
1627 
1628   return this->emitArrayElemPtrPop(IndexT, E);
1629 }
1630 
1631 template <class Emitter>
1632 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
1633                                       const Expr *ArrayFiller, const Expr *E) {
1634   QualType QT = E->getType();
1635   if (const auto *AT = QT->getAs<AtomicType>())
1636     QT = AT->getValueType();
1637 
1638   if (QT->isVoidType()) {
1639     if (Inits.size() == 0)
1640       return true;
1641     return this->emitInvalid(E);
1642   }
1643 
1644   // Handle discarding first.
1645   if (DiscardResult) {
1646     for (const Expr *Init : Inits) {
1647       if (!this->discard(Init))
1648         return false;
1649     }
1650     return true;
1651   }
1652 
1653   // Primitive values.
1654   if (std::optional<PrimType> T = classify(QT)) {
1655     assert(!DiscardResult);
1656     if (Inits.size() == 0)
1657       return this->visitZeroInitializer(*T, QT, E);
1658     assert(Inits.size() == 1);
1659     return this->delegate(Inits[0]);
1660   }
1661 
1662   if (QT->isRecordType()) {
1663     const Record *R = getRecord(QT);
1664 
1665     if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
1666       return this->delegate(Inits[0]);
1667 
1668     auto initPrimitiveField = [=](const Record::Field *FieldToInit,
1669                                   const Expr *Init, PrimType T) -> bool {
1670       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1671       if (!this->visit(Init))
1672         return false;
1673 
1674       if (FieldToInit->isBitField())
1675         return this->emitInitBitField(T, FieldToInit, E);
1676       return this->emitInitField(T, FieldToInit->Offset, E);
1677     };
1678 
1679     auto initCompositeField = [=](const Record::Field *FieldToInit,
1680                                   const Expr *Init) -> bool {
1681       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1682       InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
1683       // Non-primitive case. Get a pointer to the field-to-initialize
1684       // on the stack and recurse into visitInitializer().
1685       if (!this->emitGetPtrField(FieldToInit->Offset, Init))
1686         return false;
1687       if (!this->visitInitializer(Init))
1688         return false;
1689       return this->emitPopPtr(E);
1690     };
1691 
1692     if (R->isUnion()) {
1693       if (Inits.size() == 0) {
1694         if (!this->visitZeroRecordInitializer(R, E))
1695           return false;
1696       } else {
1697         const Expr *Init = Inits[0];
1698         const FieldDecl *FToInit = nullptr;
1699         if (const auto *ILE = dyn_cast<InitListExpr>(E))
1700           FToInit = ILE->getInitializedFieldInUnion();
1701         else
1702           FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
1703 
1704         const Record::Field *FieldToInit = R->getField(FToInit);
1705         if (std::optional<PrimType> T = classify(Init)) {
1706           if (!initPrimitiveField(FieldToInit, Init, *T))
1707             return false;
1708         } else {
1709           if (!initCompositeField(FieldToInit, Init))
1710             return false;
1711         }
1712       }
1713       return this->emitFinishInit(E);
1714     }
1715 
1716     assert(!R->isUnion());
1717     unsigned InitIndex = 0;
1718     for (const Expr *Init : Inits) {
1719       // Skip unnamed bitfields.
1720       while (InitIndex < R->getNumFields() &&
1721              R->getField(InitIndex)->Decl->isUnnamedBitField())
1722         ++InitIndex;
1723 
1724       if (std::optional<PrimType> T = classify(Init)) {
1725         const Record::Field *FieldToInit = R->getField(InitIndex);
1726         if (!initPrimitiveField(FieldToInit, Init, *T))
1727           return false;
1728         ++InitIndex;
1729       } else {
1730         // Initializer for a direct base class.
1731         if (const Record::Base *B = R->getBase(Init->getType())) {
1732           if (!this->emitGetPtrBase(B->Offset, Init))
1733             return false;
1734 
1735           if (!this->visitInitializer(Init))
1736             return false;
1737 
1738           if (!this->emitFinishInitPop(E))
1739             return false;
1740           // Base initializers don't increase InitIndex, since they don't count
1741           // into the Record's fields.
1742         } else {
1743           const Record::Field *FieldToInit = R->getField(InitIndex);
1744           if (!initCompositeField(FieldToInit, Init))
1745             return false;
1746           ++InitIndex;
1747         }
1748       }
1749     }
1750     return this->emitFinishInit(E);
1751   }
1752 
1753   if (QT->isArrayType()) {
1754     if (Inits.size() == 1 && QT == Inits[0]->getType())
1755       return this->delegate(Inits[0]);
1756 
1757     unsigned ElementIndex = 0;
1758     for (const Expr *Init : Inits) {
1759       if (const auto *EmbedS =
1760               dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1761         PrimType TargetT = classifyPrim(Init->getType());
1762 
1763         auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
1764           PrimType InitT = classifyPrim(Init->getType());
1765           if (!this->visit(Init))
1766             return false;
1767           if (InitT != TargetT) {
1768             if (!this->emitCast(InitT, TargetT, E))
1769               return false;
1770           }
1771           return this->emitInitElem(TargetT, ElemIndex, Init);
1772         };
1773         if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
1774           return false;
1775       } else {
1776         if (!this->visitArrayElemInit(ElementIndex, Init))
1777           return false;
1778         ++ElementIndex;
1779       }
1780     }
1781 
1782     // Expand the filler expression.
1783     // FIXME: This should go away.
1784     if (ArrayFiller) {
1785       const ConstantArrayType *CAT =
1786           Ctx.getASTContext().getAsConstantArrayType(QT);
1787       uint64_t NumElems = CAT->getZExtSize();
1788 
1789       for (; ElementIndex != NumElems; ++ElementIndex) {
1790         if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
1791           return false;
1792       }
1793     }
1794 
1795     return this->emitFinishInit(E);
1796   }
1797 
1798   if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
1799     unsigned NumInits = Inits.size();
1800 
1801     if (NumInits == 1)
1802       return this->delegate(Inits[0]);
1803 
1804     QualType ElemQT = ComplexTy->getElementType();
1805     PrimType ElemT = classifyPrim(ElemQT);
1806     if (NumInits == 0) {
1807       // Zero-initialize both elements.
1808       for (unsigned I = 0; I < 2; ++I) {
1809         if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1810           return false;
1811         if (!this->emitInitElem(ElemT, I, E))
1812           return false;
1813       }
1814     } else if (NumInits == 2) {
1815       unsigned InitIndex = 0;
1816       for (const Expr *Init : Inits) {
1817         if (!this->visit(Init))
1818           return false;
1819 
1820         if (!this->emitInitElem(ElemT, InitIndex, E))
1821           return false;
1822         ++InitIndex;
1823       }
1824     }
1825     return true;
1826   }
1827 
1828   if (const auto *VecT = QT->getAs<VectorType>()) {
1829     unsigned NumVecElements = VecT->getNumElements();
1830     assert(NumVecElements >= Inits.size());
1831 
1832     QualType ElemQT = VecT->getElementType();
1833     PrimType ElemT = classifyPrim(ElemQT);
1834 
1835     // All initializer elements.
1836     unsigned InitIndex = 0;
1837     for (const Expr *Init : Inits) {
1838       if (!this->visit(Init))
1839         return false;
1840 
1841       // If the initializer is of vector type itself, we have to deconstruct
1842       // that and initialize all the target fields from the initializer fields.
1843       if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
1844         if (!this->emitCopyArray(ElemT, 0, InitIndex,
1845                                  InitVecT->getNumElements(), E))
1846           return false;
1847         InitIndex += InitVecT->getNumElements();
1848       } else {
1849         if (!this->emitInitElem(ElemT, InitIndex, E))
1850           return false;
1851         ++InitIndex;
1852       }
1853     }
1854 
1855     assert(InitIndex <= NumVecElements);
1856 
1857     // Fill the rest with zeroes.
1858     for (; InitIndex != NumVecElements; ++InitIndex) {
1859       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1860         return false;
1861       if (!this->emitInitElem(ElemT, InitIndex, E))
1862         return false;
1863     }
1864     return true;
1865   }
1866 
1867   return false;
1868 }
1869 
1870 /// Pointer to the array(not the element!) must be on the stack when calling
1871 /// this.
1872 template <class Emitter>
1873 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
1874                                            const Expr *Init) {
1875   if (std::optional<PrimType> T = classify(Init->getType())) {
1876     // Visit the primitive element like normal.
1877     if (!this->visit(Init))
1878       return false;
1879     return this->emitInitElem(*T, ElemIndex, Init);
1880   }
1881 
1882   InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
1883   // Advance the pointer currently on the stack to the given
1884   // dimension.
1885   if (!this->emitConstUint32(ElemIndex, Init))
1886     return false;
1887   if (!this->emitArrayElemPtrUint32(Init))
1888     return false;
1889   if (!this->visitInitializer(Init))
1890     return false;
1891   return this->emitFinishInitPop(Init);
1892 }
1893 
1894 template <class Emitter>
1895 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
1896   return this->visitInitList(E->inits(), E->getArrayFiller(), E);
1897 }
1898 
1899 template <class Emitter>
1900 bool Compiler<Emitter>::VisitCXXParenListInitExpr(
1901     const CXXParenListInitExpr *E) {
1902   return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
1903 }
1904 
1905 template <class Emitter>
1906 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
1907     const SubstNonTypeTemplateParmExpr *E) {
1908   return this->delegate(E->getReplacement());
1909 }
1910 
1911 template <class Emitter>
1912 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
1913   std::optional<PrimType> T = classify(E->getType());
1914   if (T && E->hasAPValueResult()) {
1915     // Try to emit the APValue directly, without visiting the subexpr.
1916     // This will only fail if we can't emit the APValue, so won't emit any
1917     // diagnostics or any double values.
1918     if (DiscardResult)
1919       return true;
1920 
1921     if (this->visitAPValue(E->getAPValueResult(), *T, E))
1922       return true;
1923   }
1924   return this->delegate(E->getSubExpr());
1925 }
1926 
1927 template <class Emitter>
1928 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
1929   auto It = E->begin();
1930   return this->visit(*It);
1931 }
1932 
1933 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
1934                              UnaryExprOrTypeTrait Kind) {
1935   bool AlignOfReturnsPreferred =
1936       ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
1937 
1938   // C++ [expr.alignof]p3:
1939   //     When alignof is applied to a reference type, the result is the
1940   //     alignment of the referenced type.
1941   if (const auto *Ref = T->getAs<ReferenceType>())
1942     T = Ref->getPointeeType();
1943 
1944   if (T.getQualifiers().hasUnaligned())
1945     return CharUnits::One();
1946 
1947   // __alignof is defined to return the preferred alignment.
1948   // Before 8, clang returned the preferred alignment for alignof and
1949   // _Alignof as well.
1950   if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
1951     return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
1952 
1953   return ASTCtx.getTypeAlignInChars(T);
1954 }
1955 
1956 template <class Emitter>
1957 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
1958     const UnaryExprOrTypeTraitExpr *E) {
1959   UnaryExprOrTypeTrait Kind = E->getKind();
1960   const ASTContext &ASTCtx = Ctx.getASTContext();
1961 
1962   if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
1963     QualType ArgType = E->getTypeOfArgument();
1964 
1965     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1966     //   the result is the size of the referenced type."
1967     if (const auto *Ref = ArgType->getAs<ReferenceType>())
1968       ArgType = Ref->getPointeeType();
1969 
1970     CharUnits Size;
1971     if (ArgType->isVoidType() || ArgType->isFunctionType())
1972       Size = CharUnits::One();
1973     else {
1974       if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
1975         return false;
1976 
1977       if (Kind == UETT_SizeOf)
1978         Size = ASTCtx.getTypeSizeInChars(ArgType);
1979       else
1980         Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
1981     }
1982 
1983     if (DiscardResult)
1984       return true;
1985 
1986     return this->emitConst(Size.getQuantity(), E);
1987   }
1988 
1989   if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
1990     CharUnits Size;
1991 
1992     if (E->isArgumentType()) {
1993       QualType ArgType = E->getTypeOfArgument();
1994 
1995       Size = AlignOfType(ArgType, ASTCtx, Kind);
1996     } else {
1997       // Argument is an expression, not a type.
1998       const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
1999 
2000       // The kinds of expressions that we have special-case logic here for
2001       // should be kept up to date with the special checks for those
2002       // expressions in Sema.
2003 
2004       // alignof decl is always accepted, even if it doesn't make sense: we
2005       // default to 1 in those cases.
2006       if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
2007         Size = ASTCtx.getDeclAlign(DRE->getDecl(),
2008                                    /*RefAsPointee*/ true);
2009       else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
2010         Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
2011                                    /*RefAsPointee*/ true);
2012       else
2013         Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
2014     }
2015 
2016     if (DiscardResult)
2017       return true;
2018 
2019     return this->emitConst(Size.getQuantity(), E);
2020   }
2021 
2022   if (Kind == UETT_VectorElements) {
2023     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
2024       return this->emitConst(VT->getNumElements(), E);
2025     assert(E->getTypeOfArgument()->isSizelessVectorType());
2026     return this->emitSizelessVectorElementSize(E);
2027   }
2028 
2029   if (Kind == UETT_VecStep) {
2030     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
2031       unsigned N = VT->getNumElements();
2032 
2033       // The vec_step built-in functions that take a 3-component
2034       // vector return 4. (OpenCL 1.1 spec 6.11.12)
2035       if (N == 3)
2036         N = 4;
2037 
2038       return this->emitConst(N, E);
2039     }
2040     return this->emitConst(1, E);
2041   }
2042 
2043   return false;
2044 }
2045 
2046 template <class Emitter>
2047 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
2048   // 'Base.Member'
2049   const Expr *Base = E->getBase();
2050   const ValueDecl *Member = E->getMemberDecl();
2051 
2052   if (DiscardResult)
2053     return this->discard(Base);
2054 
2055   // MemberExprs are almost always lvalues, in which case we don't need to
2056   // do the load. But sometimes they aren't.
2057   const auto maybeLoadValue = [&]() -> bool {
2058     if (E->isGLValue())
2059       return true;
2060     if (std::optional<PrimType> T = classify(E))
2061       return this->emitLoadPop(*T, E);
2062     return false;
2063   };
2064 
2065   if (const auto *VD = dyn_cast<VarDecl>(Member)) {
2066     // I am almost confident in saying that a var decl must be static
2067     // and therefore registered as a global variable. But this will probably
2068     // turn out to be wrong some time in the future, as always.
2069     if (auto GlobalIndex = P.getGlobal(VD))
2070       return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
2071     return false;
2072   }
2073 
2074   if (!isa<FieldDecl>(Member)) {
2075     if (!this->discard(Base) && !this->emitSideEffect(E))
2076       return false;
2077 
2078     return this->visitDeclRef(Member, E);
2079   }
2080 
2081   if (Initializing) {
2082     if (!this->delegate(Base))
2083       return false;
2084   } else {
2085     if (!this->visit(Base))
2086       return false;
2087   }
2088 
2089   // Base above gives us a pointer on the stack.
2090   const auto *FD = cast<FieldDecl>(Member);
2091   const RecordDecl *RD = FD->getParent();
2092   const Record *R = getRecord(RD);
2093   if (!R)
2094     return false;
2095   const Record::Field *F = R->getField(FD);
2096   // Leave a pointer to the field on the stack.
2097   if (F->Decl->getType()->isReferenceType())
2098     return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
2099   return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
2100 }
2101 
2102 template <class Emitter>
2103 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
2104   // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
2105   // stand-alone, e.g. via EvaluateAsInt().
2106   if (!ArrayIndex)
2107     return false;
2108   return this->emitConst(*ArrayIndex, E);
2109 }
2110 
2111 template <class Emitter>
2112 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
2113   assert(Initializing);
2114   assert(!DiscardResult);
2115 
2116   // We visit the common opaque expression here once so we have its value
2117   // cached.
2118   if (!this->discard(E->getCommonExpr()))
2119     return false;
2120 
2121   // TODO: This compiles to quite a lot of bytecode if the array is larger.
2122   //   Investigate compiling this to a loop.
2123   const Expr *SubExpr = E->getSubExpr();
2124   size_t Size = E->getArraySize().getZExtValue();
2125 
2126   // So, every iteration, we execute an assignment here
2127   // where the LHS is on the stack (the target array)
2128   // and the RHS is our SubExpr.
2129   for (size_t I = 0; I != Size; ++I) {
2130     ArrayIndexScope<Emitter> IndexScope(this, I);
2131     BlockScope<Emitter> BS(this);
2132 
2133     if (!this->visitArrayElemInit(I, SubExpr))
2134       return false;
2135     if (!BS.destroyLocals())
2136       return false;
2137   }
2138   return true;
2139 }
2140 
2141 template <class Emitter>
2142 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2143   const Expr *SourceExpr = E->getSourceExpr();
2144   if (!SourceExpr)
2145     return false;
2146 
2147   if (Initializing)
2148     return this->visitInitializer(SourceExpr);
2149 
2150   PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
2151   if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
2152     return this->emitGetLocal(SubExprT, It->second, E);
2153 
2154   if (!this->visit(SourceExpr))
2155     return false;
2156 
2157   // At this point we either have the evaluated source expression or a pointer
2158   // to an object on the stack. We want to create a local variable that stores
2159   // this value.
2160   unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
2161   if (!this->emitSetLocal(SubExprT, LocalIndex, E))
2162     return false;
2163 
2164   // Here the local variable is created but the value is removed from the stack,
2165   // so we put it back if the caller needs it.
2166   if (!DiscardResult) {
2167     if (!this->emitGetLocal(SubExprT, LocalIndex, E))
2168       return false;
2169   }
2170 
2171   // This is cleaned up when the local variable is destroyed.
2172   OpaqueExprs.insert({E, LocalIndex});
2173 
2174   return true;
2175 }
2176 
2177 template <class Emitter>
2178 bool Compiler<Emitter>::VisitAbstractConditionalOperator(
2179     const AbstractConditionalOperator *E) {
2180   const Expr *Condition = E->getCond();
2181   const Expr *TrueExpr = E->getTrueExpr();
2182   const Expr *FalseExpr = E->getFalseExpr();
2183 
2184   LabelTy LabelEnd = this->getLabel();   // Label after the operator.
2185   LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
2186 
2187   if (!this->visitBool(Condition))
2188     return false;
2189 
2190   if (!this->jumpFalse(LabelFalse))
2191     return false;
2192 
2193   {
2194     LocalScope<Emitter> S(this);
2195     if (!this->delegate(TrueExpr))
2196       return false;
2197     if (!S.destroyLocals())
2198       return false;
2199   }
2200 
2201   if (!this->jump(LabelEnd))
2202     return false;
2203 
2204   this->emitLabel(LabelFalse);
2205 
2206   {
2207     LocalScope<Emitter> S(this);
2208     if (!this->delegate(FalseExpr))
2209       return false;
2210     if (!S.destroyLocals())
2211       return false;
2212   }
2213 
2214   this->fallthrough(LabelEnd);
2215   this->emitLabel(LabelEnd);
2216 
2217   return true;
2218 }
2219 
2220 template <class Emitter>
2221 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
2222   if (DiscardResult)
2223     return true;
2224 
2225   if (!Initializing) {
2226     unsigned StringIndex = P.createGlobalString(E);
2227     return this->emitGetPtrGlobal(StringIndex, E);
2228   }
2229 
2230   // We are initializing an array on the stack.
2231   const ConstantArrayType *CAT =
2232       Ctx.getASTContext().getAsConstantArrayType(E->getType());
2233   assert(CAT && "a string literal that's not a constant array?");
2234 
2235   // If the initializer string is too long, a diagnostic has already been
2236   // emitted. Read only the array length from the string literal.
2237   unsigned ArraySize = CAT->getZExtSize();
2238   unsigned N = std::min(ArraySize, E->getLength());
2239   size_t CharWidth = E->getCharByteWidth();
2240 
2241   for (unsigned I = 0; I != N; ++I) {
2242     uint32_t CodeUnit = E->getCodeUnit(I);
2243 
2244     if (CharWidth == 1) {
2245       this->emitConstSint8(CodeUnit, E);
2246       this->emitInitElemSint8(I, E);
2247     } else if (CharWidth == 2) {
2248       this->emitConstUint16(CodeUnit, E);
2249       this->emitInitElemUint16(I, E);
2250     } else if (CharWidth == 4) {
2251       this->emitConstUint32(CodeUnit, E);
2252       this->emitInitElemUint32(I, E);
2253     } else {
2254       llvm_unreachable("unsupported character width");
2255     }
2256   }
2257 
2258   // Fill up the rest of the char array with NUL bytes.
2259   for (unsigned I = N; I != ArraySize; ++I) {
2260     if (CharWidth == 1) {
2261       this->emitConstSint8(0, E);
2262       this->emitInitElemSint8(I, E);
2263     } else if (CharWidth == 2) {
2264       this->emitConstUint16(0, E);
2265       this->emitInitElemUint16(I, E);
2266     } else if (CharWidth == 4) {
2267       this->emitConstUint32(0, E);
2268       this->emitInitElemUint32(I, E);
2269     } else {
2270       llvm_unreachable("unsupported character width");
2271     }
2272   }
2273 
2274   return true;
2275 }
2276 
2277 template <class Emitter>
2278 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2279   if (std::optional<unsigned> I = P.getOrCreateDummy(E))
2280     return this->emitGetPtrGlobal(*I, E);
2281   return false;
2282 }
2283 
2284 template <class Emitter>
2285 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2286   auto &A = Ctx.getASTContext();
2287   std::string Str;
2288   A.getObjCEncodingForType(E->getEncodedType(), Str);
2289   StringLiteral *SL =
2290       StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
2291                             /*Pascal=*/false, E->getType(), E->getAtLoc());
2292   return this->delegate(SL);
2293 }
2294 
2295 template <class Emitter>
2296 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
2297     const SYCLUniqueStableNameExpr *E) {
2298   if (DiscardResult)
2299     return true;
2300 
2301   assert(!Initializing);
2302 
2303   auto &A = Ctx.getASTContext();
2304   std::string ResultStr = E->ComputeName(A);
2305 
2306   QualType CharTy = A.CharTy.withConst();
2307   APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
2308   QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
2309                                             ArraySizeModifier::Normal, 0);
2310 
2311   StringLiteral *SL =
2312       StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
2313                             /*Pascal=*/false, ArrayTy, E->getLocation());
2314 
2315   unsigned StringIndex = P.createGlobalString(SL);
2316   return this->emitGetPtrGlobal(StringIndex, E);
2317 }
2318 
2319 template <class Emitter>
2320 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
2321   if (DiscardResult)
2322     return true;
2323   return this->emitConst(E->getValue(), E);
2324 }
2325 
2326 template <class Emitter>
2327 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
2328     const CompoundAssignOperator *E) {
2329 
2330   const Expr *LHS = E->getLHS();
2331   const Expr *RHS = E->getRHS();
2332   QualType LHSType = LHS->getType();
2333   QualType LHSComputationType = E->getComputationLHSType();
2334   QualType ResultType = E->getComputationResultType();
2335   std::optional<PrimType> LT = classify(LHSComputationType);
2336   std::optional<PrimType> RT = classify(ResultType);
2337 
2338   assert(ResultType->isFloatingType());
2339 
2340   if (!LT || !RT)
2341     return false;
2342 
2343   PrimType LHST = classifyPrim(LHSType);
2344 
2345   // C++17 onwards require that we evaluate the RHS first.
2346   // Compute RHS and save it in a temporary variable so we can
2347   // load it again later.
2348   if (!visit(RHS))
2349     return false;
2350 
2351   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2352   if (!this->emitSetLocal(*RT, TempOffset, E))
2353     return false;
2354 
2355   // First, visit LHS.
2356   if (!visit(LHS))
2357     return false;
2358   if (!this->emitLoad(LHST, E))
2359     return false;
2360 
2361   // If necessary, convert LHS to its computation type.
2362   if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
2363                           LHSComputationType, E))
2364     return false;
2365 
2366   // Now load RHS.
2367   if (!this->emitGetLocal(*RT, TempOffset, E))
2368     return false;
2369 
2370   switch (E->getOpcode()) {
2371   case BO_AddAssign:
2372     if (!this->emitAddf(getFPOptions(E), E))
2373       return false;
2374     break;
2375   case BO_SubAssign:
2376     if (!this->emitSubf(getFPOptions(E), E))
2377       return false;
2378     break;
2379   case BO_MulAssign:
2380     if (!this->emitMulf(getFPOptions(E), E))
2381       return false;
2382     break;
2383   case BO_DivAssign:
2384     if (!this->emitDivf(getFPOptions(E), E))
2385       return false;
2386     break;
2387   default:
2388     return false;
2389   }
2390 
2391   if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
2392     return false;
2393 
2394   if (DiscardResult)
2395     return this->emitStorePop(LHST, E);
2396   return this->emitStore(LHST, E);
2397 }
2398 
2399 template <class Emitter>
2400 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
2401     const CompoundAssignOperator *E) {
2402   BinaryOperatorKind Op = E->getOpcode();
2403   const Expr *LHS = E->getLHS();
2404   const Expr *RHS = E->getRHS();
2405   std::optional<PrimType> LT = classify(LHS->getType());
2406   std::optional<PrimType> RT = classify(RHS->getType());
2407 
2408   if (Op != BO_AddAssign && Op != BO_SubAssign)
2409     return false;
2410 
2411   if (!LT || !RT)
2412     return false;
2413 
2414   if (!visit(LHS))
2415     return false;
2416 
2417   if (!this->emitLoad(*LT, LHS))
2418     return false;
2419 
2420   if (!visit(RHS))
2421     return false;
2422 
2423   if (Op == BO_AddAssign) {
2424     if (!this->emitAddOffset(*RT, E))
2425       return false;
2426   } else {
2427     if (!this->emitSubOffset(*RT, E))
2428       return false;
2429   }
2430 
2431   if (DiscardResult)
2432     return this->emitStorePopPtr(E);
2433   return this->emitStorePtr(E);
2434 }
2435 
2436 template <class Emitter>
2437 bool Compiler<Emitter>::VisitCompoundAssignOperator(
2438     const CompoundAssignOperator *E) {
2439   if (E->getType()->isVectorType())
2440     return VisitVectorBinOp(E);
2441 
2442   const Expr *LHS = E->getLHS();
2443   const Expr *RHS = E->getRHS();
2444   std::optional<PrimType> LHSComputationT =
2445       classify(E->getComputationLHSType());
2446   std::optional<PrimType> LT = classify(LHS->getType());
2447   std::optional<PrimType> RT = classify(RHS->getType());
2448   std::optional<PrimType> ResultT = classify(E->getType());
2449 
2450   if (!Ctx.getLangOpts().CPlusPlus14)
2451     return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
2452 
2453   if (!LT || !RT || !ResultT || !LHSComputationT)
2454     return false;
2455 
2456   // Handle floating point operations separately here, since they
2457   // require special care.
2458 
2459   if (ResultT == PT_Float || RT == PT_Float)
2460     return VisitFloatCompoundAssignOperator(E);
2461 
2462   if (E->getType()->isPointerType())
2463     return VisitPointerCompoundAssignOperator(E);
2464 
2465   assert(!E->getType()->isPointerType() && "Handled above");
2466   assert(!E->getType()->isFloatingType() && "Handled above");
2467 
2468   // C++17 onwards require that we evaluate the RHS first.
2469   // Compute RHS and save it in a temporary variable so we can
2470   // load it again later.
2471   // FIXME: Compound assignments are unsequenced in C, so we might
2472   //   have to figure out how to reject them.
2473   if (!visit(RHS))
2474     return false;
2475 
2476   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2477 
2478   if (!this->emitSetLocal(*RT, TempOffset, E))
2479     return false;
2480 
2481   // Get LHS pointer, load its value and cast it to the
2482   // computation type if necessary.
2483   if (!visit(LHS))
2484     return false;
2485   if (!this->emitLoad(*LT, E))
2486     return false;
2487   if (LT != LHSComputationT) {
2488     if (!this->emitCast(*LT, *LHSComputationT, E))
2489       return false;
2490   }
2491 
2492   // Get the RHS value on the stack.
2493   if (!this->emitGetLocal(*RT, TempOffset, E))
2494     return false;
2495 
2496   // Perform operation.
2497   switch (E->getOpcode()) {
2498   case BO_AddAssign:
2499     if (!this->emitAdd(*LHSComputationT, E))
2500       return false;
2501     break;
2502   case BO_SubAssign:
2503     if (!this->emitSub(*LHSComputationT, E))
2504       return false;
2505     break;
2506   case BO_MulAssign:
2507     if (!this->emitMul(*LHSComputationT, E))
2508       return false;
2509     break;
2510   case BO_DivAssign:
2511     if (!this->emitDiv(*LHSComputationT, E))
2512       return false;
2513     break;
2514   case BO_RemAssign:
2515     if (!this->emitRem(*LHSComputationT, E))
2516       return false;
2517     break;
2518   case BO_ShlAssign:
2519     if (!this->emitShl(*LHSComputationT, *RT, E))
2520       return false;
2521     break;
2522   case BO_ShrAssign:
2523     if (!this->emitShr(*LHSComputationT, *RT, E))
2524       return false;
2525     break;
2526   case BO_AndAssign:
2527     if (!this->emitBitAnd(*LHSComputationT, E))
2528       return false;
2529     break;
2530   case BO_XorAssign:
2531     if (!this->emitBitXor(*LHSComputationT, E))
2532       return false;
2533     break;
2534   case BO_OrAssign:
2535     if (!this->emitBitOr(*LHSComputationT, E))
2536       return false;
2537     break;
2538   default:
2539     llvm_unreachable("Unimplemented compound assign operator");
2540   }
2541 
2542   // And now cast from LHSComputationT to ResultT.
2543   if (ResultT != LHSComputationT) {
2544     if (!this->emitCast(*LHSComputationT, *ResultT, E))
2545       return false;
2546   }
2547 
2548   // And store the result in LHS.
2549   if (DiscardResult) {
2550     if (LHS->refersToBitField())
2551       return this->emitStoreBitFieldPop(*ResultT, E);
2552     return this->emitStorePop(*ResultT, E);
2553   }
2554   if (LHS->refersToBitField())
2555     return this->emitStoreBitField(*ResultT, E);
2556   return this->emitStore(*ResultT, E);
2557 }
2558 
2559 template <class Emitter>
2560 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
2561   LocalScope<Emitter> ES(this);
2562   const Expr *SubExpr = E->getSubExpr();
2563 
2564   return this->delegate(SubExpr) && ES.destroyLocals(E);
2565 }
2566 
2567 template <class Emitter>
2568 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
2569     const MaterializeTemporaryExpr *E) {
2570   const Expr *SubExpr = E->getSubExpr();
2571 
2572   if (Initializing) {
2573     // We already have a value, just initialize that.
2574     return this->delegate(SubExpr);
2575   }
2576   // If we don't end up using the materialized temporary anyway, don't
2577   // bother creating it.
2578   if (DiscardResult)
2579     return this->discard(SubExpr);
2580 
2581   // When we're initializing a global variable *or* the storage duration of
2582   // the temporary is explicitly static, create a global variable.
2583   std::optional<PrimType> SubExprT = classify(SubExpr);
2584   bool IsStatic = E->getStorageDuration() == SD_Static;
2585   if (IsStatic) {
2586     std::optional<unsigned> GlobalIndex = P.createGlobal(E);
2587     if (!GlobalIndex)
2588       return false;
2589 
2590     const LifetimeExtendedTemporaryDecl *TempDecl =
2591         E->getLifetimeExtendedTemporaryDecl();
2592     if (IsStatic)
2593       assert(TempDecl);
2594 
2595     if (SubExprT) {
2596       if (!this->visit(SubExpr))
2597         return false;
2598       if (IsStatic) {
2599         if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
2600           return false;
2601       } else {
2602         if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
2603           return false;
2604       }
2605       return this->emitGetPtrGlobal(*GlobalIndex, E);
2606     }
2607 
2608     if (!this->checkLiteralType(SubExpr))
2609       return false;
2610     // Non-primitive values.
2611     if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2612       return false;
2613     if (!this->visitInitializer(SubExpr))
2614       return false;
2615     if (IsStatic)
2616       return this->emitInitGlobalTempComp(TempDecl, E);
2617     return true;
2618   }
2619 
2620   // For everyhing else, use local variables.
2621   if (SubExprT) {
2622     unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true,
2623                                                  /*IsExtended=*/true);
2624     if (!this->visit(SubExpr))
2625       return false;
2626     if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
2627       return false;
2628     return this->emitGetPtrLocal(LocalIndex, E);
2629   } else {
2630 
2631     if (!this->checkLiteralType(SubExpr))
2632       return false;
2633 
2634     const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2635     if (std::optional<unsigned> LocalIndex =
2636             allocateLocal(Inner, E->getExtendingDecl())) {
2637       InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
2638       if (!this->emitGetPtrLocal(*LocalIndex, E))
2639         return false;
2640       return this->visitInitializer(SubExpr);
2641     }
2642   }
2643   return false;
2644 }
2645 
2646 template <class Emitter>
2647 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
2648     const CXXBindTemporaryExpr *E) {
2649   return this->delegate(E->getSubExpr());
2650 }
2651 
2652 template <class Emitter>
2653 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2654   const Expr *Init = E->getInitializer();
2655   if (DiscardResult)
2656     return this->discard(Init);
2657 
2658   if (Initializing) {
2659     // We already have a value, just initialize that.
2660     return this->visitInitializer(Init) && this->emitFinishInit(E);
2661   }
2662 
2663   std::optional<PrimType> T = classify(E->getType());
2664   if (E->isFileScope()) {
2665     // Avoid creating a variable if this is a primitive RValue anyway.
2666     if (T && !E->isLValue())
2667       return this->delegate(Init);
2668 
2669     if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
2670       if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2671         return false;
2672 
2673       if (T) {
2674         if (!this->visit(Init))
2675           return false;
2676         return this->emitInitGlobal(*T, *GlobalIndex, E);
2677       }
2678 
2679       return this->visitInitializer(Init) && this->emitFinishInit(E);
2680     }
2681 
2682     return false;
2683   }
2684 
2685   // Otherwise, use a local variable.
2686   if (T && !E->isLValue()) {
2687     // For primitive types, we just visit the initializer.
2688     return this->delegate(Init);
2689   } else {
2690     unsigned LocalIndex;
2691 
2692     if (T)
2693       LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
2694     else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
2695       LocalIndex = *MaybeIndex;
2696     else
2697       return false;
2698 
2699     if (!this->emitGetPtrLocal(LocalIndex, E))
2700       return false;
2701 
2702     if (T) {
2703       if (!this->visit(Init)) {
2704         return false;
2705       }
2706       return this->emitInit(*T, E);
2707     } else {
2708       if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
2709         return false;
2710     }
2711     return true;
2712   }
2713 
2714   return false;
2715 }
2716 
2717 template <class Emitter>
2718 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
2719   if (DiscardResult)
2720     return true;
2721   if (E->getType()->isBooleanType())
2722     return this->emitConstBool(E->getValue(), E);
2723   return this->emitConst(E->getValue(), E);
2724 }
2725 
2726 template <class Emitter>
2727 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
2728   if (DiscardResult)
2729     return true;
2730   return this->emitConst(E->getValue(), E);
2731 }
2732 
2733 template <class Emitter>
2734 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
2735   if (DiscardResult)
2736     return true;
2737 
2738   assert(Initializing);
2739   const Record *R = P.getOrCreateRecord(E->getLambdaClass());
2740 
2741   auto *CaptureInitIt = E->capture_init_begin();
2742   // Initialize all fields (which represent lambda captures) of the
2743   // record with their initializers.
2744   for (const Record::Field &F : R->fields()) {
2745     const Expr *Init = *CaptureInitIt;
2746     ++CaptureInitIt;
2747 
2748     if (!Init)
2749       continue;
2750 
2751     if (std::optional<PrimType> T = classify(Init)) {
2752       if (!this->visit(Init))
2753         return false;
2754 
2755       if (!this->emitInitField(*T, F.Offset, E))
2756         return false;
2757     } else {
2758       if (!this->emitGetPtrField(F.Offset, E))
2759         return false;
2760 
2761       if (!this->visitInitializer(Init))
2762         return false;
2763 
2764       if (!this->emitPopPtr(E))
2765         return false;
2766     }
2767   }
2768 
2769   return true;
2770 }
2771 
2772 template <class Emitter>
2773 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
2774   if (DiscardResult)
2775     return true;
2776 
2777   return this->delegate(E->getFunctionName());
2778 }
2779 
2780 template <class Emitter>
2781 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
2782   if (E->getSubExpr() && !this->discard(E->getSubExpr()))
2783     return false;
2784 
2785   return this->emitInvalid(E);
2786 }
2787 
2788 template <class Emitter>
2789 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
2790     const CXXReinterpretCastExpr *E) {
2791   const Expr *SubExpr = E->getSubExpr();
2792 
2793   std::optional<PrimType> FromT = classify(SubExpr);
2794   std::optional<PrimType> ToT = classify(E);
2795 
2796   if (!FromT || !ToT)
2797     return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E);
2798 
2799   if (FromT == PT_Ptr || ToT == PT_Ptr) {
2800     // Both types could be PT_Ptr because their expressions are glvalues.
2801     std::optional<PrimType> PointeeFromT;
2802     if (SubExpr->getType()->isPointerOrReferenceType())
2803       PointeeFromT = classify(SubExpr->getType()->getPointeeType());
2804     else
2805       PointeeFromT = classify(SubExpr->getType());
2806 
2807     std::optional<PrimType> PointeeToT;
2808     if (E->getType()->isPointerOrReferenceType())
2809       PointeeToT = classify(E->getType()->getPointeeType());
2810     else
2811       PointeeToT = classify(E->getType());
2812 
2813     bool Fatal = true;
2814     if (PointeeToT && PointeeFromT) {
2815       if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT))
2816         Fatal = false;
2817     }
2818 
2819     if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2820       return false;
2821 
2822     if (E->getCastKind() == CK_LValueBitCast)
2823       return this->delegate(SubExpr);
2824     return this->VisitCastExpr(E);
2825   }
2826 
2827   // Try to actually do the cast.
2828   bool Fatal = (ToT != FromT);
2829   if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2830     return false;
2831 
2832   return this->VisitCastExpr(E);
2833 }
2834 
2835 template <class Emitter>
2836 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
2837   assert(E->getType()->isBooleanType());
2838 
2839   if (DiscardResult)
2840     return true;
2841   return this->emitConstBool(E->getValue(), E);
2842 }
2843 
2844 template <class Emitter>
2845 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
2846   QualType T = E->getType();
2847   assert(!classify(T));
2848 
2849   if (T->isRecordType()) {
2850     const CXXConstructorDecl *Ctor = E->getConstructor();
2851 
2852     // Trivial copy/move constructor. Avoid copy.
2853     if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
2854         Ctor->isTrivial() &&
2855         E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
2856                                         T->getAsCXXRecordDecl()))
2857       return this->visitInitializer(E->getArg(0));
2858 
2859     // If we're discarding a construct expression, we still need
2860     // to allocate a variable and call the constructor and destructor.
2861     if (DiscardResult) {
2862       if (Ctor->isTrivial())
2863         return true;
2864       assert(!Initializing);
2865       std::optional<unsigned> LocalIndex = allocateLocal(E);
2866 
2867       if (!LocalIndex)
2868         return false;
2869 
2870       if (!this->emitGetPtrLocal(*LocalIndex, E))
2871         return false;
2872     }
2873 
2874     // Zero initialization.
2875     if (E->requiresZeroInitialization()) {
2876       const Record *R = getRecord(E->getType());
2877 
2878       if (!this->visitZeroRecordInitializer(R, E))
2879         return false;
2880 
2881       // If the constructor is trivial anyway, we're done.
2882       if (Ctor->isTrivial())
2883         return true;
2884     }
2885 
2886     const Function *Func = getFunction(Ctor);
2887 
2888     if (!Func)
2889       return false;
2890 
2891     assert(Func->hasThisPointer());
2892     assert(!Func->hasRVO());
2893 
2894     //  The This pointer is already on the stack because this is an initializer,
2895     //  but we need to dup() so the call() below has its own copy.
2896     if (!this->emitDupPtr(E))
2897       return false;
2898 
2899     // Constructor arguments.
2900     for (const auto *Arg : E->arguments()) {
2901       if (!this->visit(Arg))
2902         return false;
2903     }
2904 
2905     if (Func->isVariadic()) {
2906       uint32_t VarArgSize = 0;
2907       unsigned NumParams = Func->getNumWrittenParams();
2908       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
2909         VarArgSize +=
2910             align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
2911       }
2912       if (!this->emitCallVar(Func, VarArgSize, E))
2913         return false;
2914     } else {
2915       if (!this->emitCall(Func, 0, E)) {
2916         // When discarding, we don't need the result anyway, so clean up
2917         // the instance dup we did earlier in case surrounding code wants
2918         // to keep evaluating.
2919         if (DiscardResult)
2920           (void)this->emitPopPtr(E);
2921         return false;
2922       }
2923     }
2924 
2925     if (DiscardResult)
2926       return this->emitPopPtr(E);
2927     return this->emitFinishInit(E);
2928   }
2929 
2930   if (T->isArrayType()) {
2931     const ConstantArrayType *CAT =
2932         Ctx.getASTContext().getAsConstantArrayType(E->getType());
2933     if (!CAT)
2934       return false;
2935 
2936     size_t NumElems = CAT->getZExtSize();
2937     const Function *Func = getFunction(E->getConstructor());
2938     if (!Func || !Func->isConstexpr())
2939       return false;
2940 
2941     // FIXME(perf): We're calling the constructor once per array element here,
2942     //   in the old intepreter we had a special-case for trivial constructors.
2943     for (size_t I = 0; I != NumElems; ++I) {
2944       if (!this->emitConstUint64(I, E))
2945         return false;
2946       if (!this->emitArrayElemPtrUint64(E))
2947         return false;
2948 
2949       // Constructor arguments.
2950       for (const auto *Arg : E->arguments()) {
2951         if (!this->visit(Arg))
2952           return false;
2953       }
2954 
2955       if (!this->emitCall(Func, 0, E))
2956         return false;
2957     }
2958     return true;
2959   }
2960 
2961   return false;
2962 }
2963 
2964 template <class Emitter>
2965 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
2966   if (DiscardResult)
2967     return true;
2968 
2969   const APValue Val =
2970       E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
2971 
2972   // Things like __builtin_LINE().
2973   if (E->getType()->isIntegerType()) {
2974     assert(Val.isInt());
2975     const APSInt &I = Val.getInt();
2976     return this->emitConst(I, E);
2977   }
2978   // Otherwise, the APValue is an LValue, with only one element.
2979   // Theoretically, we don't need the APValue at all of course.
2980   assert(E->getType()->isPointerType());
2981   assert(Val.isLValue());
2982   const APValue::LValueBase &Base = Val.getLValueBase();
2983   if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
2984     return this->visit(LValueExpr);
2985 
2986   // Otherwise, we have a decl (which is the case for
2987   // __builtin_source_location).
2988   assert(Base.is<const ValueDecl *>());
2989   assert(Val.getLValuePath().size() == 0);
2990   const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
2991   assert(BaseDecl);
2992 
2993   auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
2994 
2995   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
2996   if (!GlobalIndex)
2997     return false;
2998 
2999   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3000     return false;
3001 
3002   const Record *R = getRecord(E->getType());
3003   const APValue &V = UGCD->getValue();
3004   for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
3005     const Record::Field *F = R->getField(I);
3006     const APValue &FieldValue = V.getStructField(I);
3007 
3008     PrimType FieldT = classifyPrim(F->Decl->getType());
3009 
3010     if (!this->visitAPValue(FieldValue, FieldT, E))
3011       return false;
3012     if (!this->emitInitField(FieldT, F->Offset, E))
3013       return false;
3014   }
3015 
3016   // Leave the pointer to the global on the stack.
3017   return true;
3018 }
3019 
3020 template <class Emitter>
3021 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
3022   unsigned N = E->getNumComponents();
3023   if (N == 0)
3024     return false;
3025 
3026   for (unsigned I = 0; I != N; ++I) {
3027     const OffsetOfNode &Node = E->getComponent(I);
3028     if (Node.getKind() == OffsetOfNode::Array) {
3029       const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
3030       PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
3031 
3032       if (DiscardResult) {
3033         if (!this->discard(ArrayIndexExpr))
3034           return false;
3035         continue;
3036       }
3037 
3038       if (!this->visit(ArrayIndexExpr))
3039         return false;
3040       // Cast to Sint64.
3041       if (IndexT != PT_Sint64) {
3042         if (!this->emitCast(IndexT, PT_Sint64, E))
3043           return false;
3044       }
3045     }
3046   }
3047 
3048   if (DiscardResult)
3049     return true;
3050 
3051   PrimType T = classifyPrim(E->getType());
3052   return this->emitOffsetOf(T, E, E);
3053 }
3054 
3055 template <class Emitter>
3056 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
3057     const CXXScalarValueInitExpr *E) {
3058   QualType Ty = E->getType();
3059 
3060   if (DiscardResult || Ty->isVoidType())
3061     return true;
3062 
3063   if (std::optional<PrimType> T = classify(Ty))
3064     return this->visitZeroInitializer(*T, Ty, E);
3065 
3066   if (const auto *CT = Ty->getAs<ComplexType>()) {
3067     if (!Initializing) {
3068       std::optional<unsigned> LocalIndex = allocateLocal(E);
3069       if (!LocalIndex)
3070         return false;
3071       if (!this->emitGetPtrLocal(*LocalIndex, E))
3072         return false;
3073     }
3074 
3075     // Initialize both fields to 0.
3076     QualType ElemQT = CT->getElementType();
3077     PrimType ElemT = classifyPrim(ElemQT);
3078 
3079     for (unsigned I = 0; I != 2; ++I) {
3080       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3081         return false;
3082       if (!this->emitInitElem(ElemT, I, E))
3083         return false;
3084     }
3085     return true;
3086   }
3087 
3088   if (const auto *VT = Ty->getAs<VectorType>()) {
3089     // FIXME: Code duplication with the _Complex case above.
3090     if (!Initializing) {
3091       std::optional<unsigned> LocalIndex = allocateLocal(E);
3092       if (!LocalIndex)
3093         return false;
3094       if (!this->emitGetPtrLocal(*LocalIndex, E))
3095         return false;
3096     }
3097 
3098     // Initialize all fields to 0.
3099     QualType ElemQT = VT->getElementType();
3100     PrimType ElemT = classifyPrim(ElemQT);
3101 
3102     for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
3103       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3104         return false;
3105       if (!this->emitInitElem(ElemT, I, E))
3106         return false;
3107     }
3108     return true;
3109   }
3110 
3111   return false;
3112 }
3113 
3114 template <class Emitter>
3115 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
3116   return this->emitConst(E->getPackLength(), E);
3117 }
3118 
3119 template <class Emitter>
3120 bool Compiler<Emitter>::VisitGenericSelectionExpr(
3121     const GenericSelectionExpr *E) {
3122   return this->delegate(E->getResultExpr());
3123 }
3124 
3125 template <class Emitter>
3126 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
3127   return this->delegate(E->getChosenSubExpr());
3128 }
3129 
3130 template <class Emitter>
3131 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
3132   if (DiscardResult)
3133     return true;
3134 
3135   return this->emitConst(E->getValue(), E);
3136 }
3137 
3138 template <class Emitter>
3139 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
3140     const CXXInheritedCtorInitExpr *E) {
3141   const CXXConstructorDecl *Ctor = E->getConstructor();
3142   assert(!Ctor->isTrivial() &&
3143          "Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
3144   const Function *F = this->getFunction(Ctor);
3145   assert(F);
3146   assert(!F->hasRVO());
3147   assert(F->hasThisPointer());
3148 
3149   if (!this->emitDupPtr(SourceInfo{}))
3150     return false;
3151 
3152   // Forward all arguments of the current function (which should be a
3153   // constructor itself) to the inherited ctor.
3154   // This is necessary because the calling code has pushed the pointer
3155   // of the correct base for  us already, but the arguments need
3156   // to come after.
3157   unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
3158   for (const ParmVarDecl *PD : Ctor->parameters()) {
3159     PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
3160 
3161     if (!this->emitGetParam(PT, Offset, E))
3162       return false;
3163     Offset += align(primSize(PT));
3164   }
3165 
3166   return this->emitCall(F, 0, E);
3167 }
3168 
3169 template <class Emitter>
3170 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
3171   assert(classifyPrim(E->getType()) == PT_Ptr);
3172   const Expr *Init = E->getInitializer();
3173   QualType ElementType = E->getAllocatedType();
3174   std::optional<PrimType> ElemT = classify(ElementType);
3175   unsigned PlacementArgs = E->getNumPlacementArgs();
3176   const FunctionDecl *OperatorNew = E->getOperatorNew();
3177   const Expr *PlacementDest = nullptr;
3178   bool IsNoThrow = false;
3179 
3180   if (PlacementArgs != 0) {
3181     // FIXME: There is no restriction on this, but it's not clear that any
3182     // other form makes any sense. We get here for cases such as:
3183     //
3184     //   new (std::align_val_t{N}) X(int)
3185     //
3186     // (which should presumably be valid only if N is a multiple of
3187     // alignof(int), and in any case can't be deallocated unless N is
3188     // alignof(X) and X has new-extended alignment).
3189     if (PlacementArgs == 1) {
3190       const Expr *Arg1 = E->getPlacementArg(0);
3191       if (Arg1->getType()->isNothrowT()) {
3192         if (!this->discard(Arg1))
3193           return false;
3194         IsNoThrow = true;
3195       } else {
3196         // Invalid unless we have C++26 or are in a std:: function.
3197         if (!this->emitInvalidNewDeleteExpr(E, E))
3198           return false;
3199 
3200         // If we have a placement-new destination, we'll later use that instead
3201         // of allocating.
3202         if (OperatorNew->isReservedGlobalPlacementOperator())
3203           PlacementDest = Arg1;
3204       }
3205     } else {
3206       // Always invalid.
3207       return this->emitInvalid(E);
3208     }
3209   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction())
3210     return this->emitInvalidNewDeleteExpr(E, E);
3211 
3212   const Descriptor *Desc;
3213   if (!PlacementDest) {
3214     if (ElemT) {
3215       if (E->isArray())
3216         Desc = nullptr; // We're not going to use it in this case.
3217       else
3218         Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
3219                                   /*IsConst=*/false, /*IsTemporary=*/false,
3220                                   /*IsMutable=*/false);
3221     } else {
3222       Desc = P.createDescriptor(
3223           E, ElementType.getTypePtr(),
3224           E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
3225           /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
3226     }
3227   }
3228 
3229   if (E->isArray()) {
3230     std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
3231     if (!ArraySizeExpr)
3232       return false;
3233 
3234     const Expr *Stripped = *ArraySizeExpr;
3235     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
3236          Stripped = ICE->getSubExpr())
3237       if (ICE->getCastKind() != CK_NoOp &&
3238           ICE->getCastKind() != CK_IntegralCast)
3239         break;
3240 
3241     PrimType SizeT = classifyPrim(Stripped->getType());
3242 
3243     if (PlacementDest) {
3244       if (!this->visit(PlacementDest))
3245         return false;
3246       if (!this->visit(Stripped))
3247         return false;
3248       if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E))
3249         return false;
3250     } else {
3251       if (!this->visit(Stripped))
3252         return false;
3253 
3254       if (ElemT) {
3255         // N primitive elements.
3256         if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
3257           return false;
3258       } else {
3259         // N Composite elements.
3260         if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
3261           return false;
3262       }
3263     }
3264 
3265     if (Init && !this->visitInitializer(Init))
3266       return false;
3267 
3268   } else {
3269     if (PlacementDest) {
3270       if (!this->visit(PlacementDest))
3271         return false;
3272       if (!this->emitCheckNewTypeMismatch(E, E))
3273         return false;
3274     } else {
3275       // Allocate just one element.
3276       if (!this->emitAlloc(Desc, E))
3277         return false;
3278     }
3279 
3280     if (Init) {
3281       if (ElemT) {
3282         if (!this->visit(Init))
3283           return false;
3284 
3285         if (!this->emitInit(*ElemT, E))
3286           return false;
3287       } else {
3288         // Composite.
3289         if (!this->visitInitializer(Init))
3290           return false;
3291       }
3292     }
3293   }
3294 
3295   if (DiscardResult)
3296     return this->emitPopPtr(E);
3297 
3298   return true;
3299 }
3300 
3301 template <class Emitter>
3302 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
3303   const Expr *Arg = E->getArgument();
3304 
3305   const FunctionDecl *OperatorDelete = E->getOperatorDelete();
3306 
3307   if (!OperatorDelete->isReplaceableGlobalAllocationFunction())
3308     return this->emitInvalidNewDeleteExpr(E, E);
3309 
3310   // Arg must be an lvalue.
3311   if (!this->visit(Arg))
3312     return false;
3313 
3314   return this->emitFree(E->isArrayForm(), E);
3315 }
3316 
3317 template <class Emitter>
3318 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
3319   const Function *Func = nullptr;
3320   if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E))
3321     Func = F;
3322 
3323   if (!Func)
3324     return false;
3325   return this->emitGetFnPtr(Func, E);
3326 }
3327 
3328 template <class Emitter>
3329 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
3330   assert(Ctx.getLangOpts().CPlusPlus);
3331   return this->emitConstBool(E->getValue(), E);
3332 }
3333 
3334 template <class Emitter>
3335 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
3336   if (DiscardResult)
3337     return true;
3338   assert(!Initializing);
3339 
3340   const MSGuidDecl *GuidDecl = E->getGuidDecl();
3341   const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
3342   assert(RD);
3343   // If the definiton of the result type is incomplete, just return a dummy.
3344   // If (and when) that is read from, we will fail, but not now.
3345   if (!RD->isCompleteDefinition()) {
3346     if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl))
3347       return this->emitGetPtrGlobal(*I, E);
3348     return false;
3349   }
3350 
3351   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
3352   if (!GlobalIndex)
3353     return false;
3354   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3355     return false;
3356 
3357   assert(this->getRecord(E->getType()));
3358 
3359   const APValue &V = GuidDecl->getAsAPValue();
3360   if (V.getKind() == APValue::None)
3361     return true;
3362 
3363   assert(V.isStruct());
3364   assert(V.getStructNumBases() == 0);
3365   if (!this->visitAPValueInitializer(V, E))
3366     return false;
3367 
3368   return this->emitFinishInit(E);
3369 }
3370 
3371 template <class Emitter>
3372 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
3373   assert(classifyPrim(E->getType()) == PT_Bool);
3374   if (DiscardResult)
3375     return true;
3376   return this->emitConstBool(E->isSatisfied(), E);
3377 }
3378 
3379 template <class Emitter>
3380 bool Compiler<Emitter>::VisitConceptSpecializationExpr(
3381     const ConceptSpecializationExpr *E) {
3382   assert(classifyPrim(E->getType()) == PT_Bool);
3383   if (DiscardResult)
3384     return true;
3385   return this->emitConstBool(E->isSatisfied(), E);
3386 }
3387 
3388 template <class Emitter>
3389 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
3390     const CXXRewrittenBinaryOperator *E) {
3391   return this->delegate(E->getSemanticForm());
3392 }
3393 
3394 template <class Emitter>
3395 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
3396 
3397   for (const Expr *SemE : E->semantics()) {
3398     if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
3399       if (SemE == E->getResultExpr())
3400         return false;
3401 
3402       if (OVE->isUnique())
3403         continue;
3404 
3405       if (!this->discard(OVE))
3406         return false;
3407     } else if (SemE == E->getResultExpr()) {
3408       if (!this->delegate(SemE))
3409         return false;
3410     } else {
3411       if (!this->discard(SemE))
3412         return false;
3413     }
3414   }
3415   return true;
3416 }
3417 
3418 template <class Emitter>
3419 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
3420   return this->delegate(E->getSelectedExpr());
3421 }
3422 
3423 template <class Emitter>
3424 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
3425   return this->emitError(E);
3426 }
3427 
3428 template <class Emitter>
3429 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
3430   assert(E->getType()->isVoidPointerType());
3431 
3432   unsigned Offset = allocateLocalPrimitive(
3433       E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3434 
3435   return this->emitGetLocal(PT_Ptr, Offset, E);
3436 }
3437 
3438 template <class Emitter>
3439 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
3440   assert(Initializing);
3441   const auto *VT = E->getType()->castAs<VectorType>();
3442   QualType ElemType = VT->getElementType();
3443   PrimType ElemT = classifyPrim(ElemType);
3444   const Expr *Src = E->getSrcExpr();
3445   PrimType SrcElemT =
3446       classifyPrim(Src->getType()->castAs<VectorType>()->getElementType());
3447 
3448   unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
3449   if (!this->visit(Src))
3450     return false;
3451   if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
3452     return false;
3453 
3454   for (unsigned I = 0; I != VT->getNumElements(); ++I) {
3455     if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
3456       return false;
3457     if (!this->emitArrayElemPop(SrcElemT, I, E))
3458       return false;
3459     if (SrcElemT != ElemT) {
3460       if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
3461         return false;
3462     }
3463     if (!this->emitInitElem(ElemT, I, E))
3464       return false;
3465   }
3466 
3467   return true;
3468 }
3469 
3470 template <class Emitter>
3471 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
3472   assert(Initializing);
3473   assert(E->getNumSubExprs() > 2);
3474 
3475   const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
3476   const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
3477   PrimType ElemT = classifyPrim(VT->getElementType());
3478   unsigned NumInputElems = VT->getNumElements();
3479   unsigned NumOutputElems = E->getNumSubExprs() - 2;
3480   assert(NumOutputElems > 0);
3481 
3482   // Save both input vectors to a local variable.
3483   unsigned VectorOffsets[2];
3484   for (unsigned I = 0; I != 2; ++I) {
3485     VectorOffsets[I] = this->allocateLocalPrimitive(
3486         Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3487     if (!this->visit(Vecs[I]))
3488       return false;
3489     if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
3490       return false;
3491   }
3492   for (unsigned I = 0; I != NumOutputElems; ++I) {
3493     APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
3494     if (ShuffleIndex == -1)
3495       return this->emitInvalid(E); // FIXME: Better diagnostic.
3496 
3497     assert(ShuffleIndex < (NumInputElems * 2));
3498     if (!this->emitGetLocal(PT_Ptr,
3499                             VectorOffsets[ShuffleIndex >= NumInputElems], E))
3500       return false;
3501     unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
3502     if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
3503       return false;
3504 
3505     if (!this->emitInitElem(ElemT, I, E))
3506       return false;
3507   }
3508 
3509   return true;
3510 }
3511 
3512 template <class Emitter>
3513 bool Compiler<Emitter>::VisitExtVectorElementExpr(
3514     const ExtVectorElementExpr *E) {
3515   const Expr *Base = E->getBase();
3516   assert(
3517       Base->getType()->isVectorType() ||
3518       Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
3519 
3520   SmallVector<uint32_t, 4> Indices;
3521   E->getEncodedElementAccess(Indices);
3522 
3523   if (Indices.size() == 1) {
3524     if (!this->visit(Base))
3525       return false;
3526 
3527     if (E->isGLValue()) {
3528       if (!this->emitConstUint32(Indices[0], E))
3529         return false;
3530       return this->emitArrayElemPtrPop(PT_Uint32, E);
3531     }
3532     // Else, also load the value.
3533     return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
3534   }
3535 
3536   // Create a local variable for the base.
3537   unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
3538                                                /*IsExtended=*/false);
3539   if (!this->visit(Base))
3540     return false;
3541   if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
3542     return false;
3543 
3544   // Now the vector variable for the return value.
3545   if (!Initializing) {
3546     std::optional<unsigned> ResultIndex;
3547     ResultIndex = allocateLocal(E);
3548     if (!ResultIndex)
3549       return false;
3550     if (!this->emitGetPtrLocal(*ResultIndex, E))
3551       return false;
3552   }
3553 
3554   assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
3555 
3556   PrimType ElemT =
3557       classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
3558   uint32_t DstIndex = 0;
3559   for (uint32_t I : Indices) {
3560     if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
3561       return false;
3562     if (!this->emitArrayElemPop(ElemT, I, E))
3563       return false;
3564     if (!this->emitInitElem(ElemT, DstIndex, E))
3565       return false;
3566     ++DstIndex;
3567   }
3568 
3569   // Leave the result pointer on the stack.
3570   assert(!DiscardResult);
3571   return true;
3572 }
3573 
3574 template <class Emitter>
3575 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
3576   const Expr *SubExpr = E->getSubExpr();
3577   if (!E->isExpressibleAsConstantInitializer())
3578     return this->discard(SubExpr) && this->emitInvalid(E);
3579 
3580   assert(classifyPrim(E) == PT_Ptr);
3581   if (std::optional<unsigned> I = P.getOrCreateDummy(E))
3582     return this->emitGetPtrGlobal(*I, E);
3583 
3584   return false;
3585 }
3586 
3587 template <class Emitter>
3588 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
3589     const CXXStdInitializerListExpr *E) {
3590   const Expr *SubExpr = E->getSubExpr();
3591   const ConstantArrayType *ArrayType =
3592       Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
3593   const Record *R = getRecord(E->getType());
3594   assert(Initializing);
3595   assert(SubExpr->isGLValue());
3596 
3597   if (!this->visit(SubExpr))
3598     return false;
3599   if (!this->emitConstUint8(0, E))
3600     return false;
3601   if (!this->emitArrayElemPtrPopUint8(E))
3602     return false;
3603   if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
3604     return false;
3605 
3606   PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
3607   if (isIntegralType(SecondFieldT)) {
3608     if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
3609                          SecondFieldT, E))
3610       return false;
3611     return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
3612   }
3613   assert(SecondFieldT == PT_Ptr);
3614 
3615   if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
3616     return false;
3617   if (!this->emitExpandPtr(E))
3618     return false;
3619   if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
3620     return false;
3621   if (!this->emitArrayElemPtrPop(PT_Uint64, E))
3622     return false;
3623   return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
3624 }
3625 
3626 template <class Emitter>
3627 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
3628   BlockScope<Emitter> BS(this);
3629   StmtExprScope<Emitter> SS(this);
3630 
3631   const CompoundStmt *CS = E->getSubStmt();
3632   const Stmt *Result = CS->getStmtExprResult();
3633   for (const Stmt *S : CS->body()) {
3634     if (S != Result) {
3635       if (!this->visitStmt(S))
3636         return false;
3637       continue;
3638     }
3639 
3640     assert(S == Result);
3641     if (const Expr *ResultExpr = dyn_cast<Expr>(S))
3642       return this->delegate(ResultExpr);
3643     return this->emitUnsupported(E);
3644   }
3645 
3646   return BS.destroyLocals();
3647 }
3648 
3649 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
3650   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
3651                              /*NewInitializing=*/false);
3652   return this->Visit(E);
3653 }
3654 
3655 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
3656   // We're basically doing:
3657   // OptionScope<Emitter> Scope(this, DicardResult, Initializing);
3658   // but that's unnecessary of course.
3659   return this->Visit(E);
3660 }
3661 
3662 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
3663   if (E->getType().isNull())
3664     return false;
3665 
3666   if (E->getType()->isVoidType())
3667     return this->discard(E);
3668 
3669   // Create local variable to hold the return value.
3670   if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
3671       !classify(E->getType())) {
3672     std::optional<unsigned> LocalIndex = allocateLocal(E);
3673     if (!LocalIndex)
3674       return false;
3675 
3676     if (!this->emitGetPtrLocal(*LocalIndex, E))
3677       return false;
3678     return this->visitInitializer(E);
3679   }
3680 
3681   //  Otherwise,we have a primitive return value, produce the value directly
3682   //  and push it on the stack.
3683   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3684                              /*NewInitializing=*/false);
3685   return this->Visit(E);
3686 }
3687 
3688 template <class Emitter>
3689 bool Compiler<Emitter>::visitInitializer(const Expr *E) {
3690   assert(!classify(E->getType()));
3691 
3692   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3693                              /*NewInitializing=*/true);
3694   return this->Visit(E);
3695 }
3696 
3697 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
3698   std::optional<PrimType> T = classify(E->getType());
3699   if (!T) {
3700     // Convert complex values to bool.
3701     if (E->getType()->isAnyComplexType()) {
3702       if (!this->visit(E))
3703         return false;
3704       return this->emitComplexBoolCast(E);
3705     }
3706     return false;
3707   }
3708 
3709   if (!this->visit(E))
3710     return false;
3711 
3712   if (T == PT_Bool)
3713     return true;
3714 
3715   // Convert pointers to bool.
3716   if (T == PT_Ptr || T == PT_FnPtr) {
3717     if (!this->emitNull(*T, nullptr, E))
3718       return false;
3719     return this->emitNE(*T, E);
3720   }
3721 
3722   // Or Floats.
3723   if (T == PT_Float)
3724     return this->emitCastFloatingIntegralBool(getFPOptions(E), E);
3725 
3726   // Or anything else we can.
3727   return this->emitCast(*T, PT_Bool, E);
3728 }
3729 
3730 template <class Emitter>
3731 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
3732                                              const Expr *E) {
3733   switch (T) {
3734   case PT_Bool:
3735     return this->emitZeroBool(E);
3736   case PT_Sint8:
3737     return this->emitZeroSint8(E);
3738   case PT_Uint8:
3739     return this->emitZeroUint8(E);
3740   case PT_Sint16:
3741     return this->emitZeroSint16(E);
3742   case PT_Uint16:
3743     return this->emitZeroUint16(E);
3744   case PT_Sint32:
3745     return this->emitZeroSint32(E);
3746   case PT_Uint32:
3747     return this->emitZeroUint32(E);
3748   case PT_Sint64:
3749     return this->emitZeroSint64(E);
3750   case PT_Uint64:
3751     return this->emitZeroUint64(E);
3752   case PT_IntAP:
3753     return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
3754   case PT_IntAPS:
3755     return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
3756   case PT_Ptr:
3757     return this->emitNullPtr(nullptr, E);
3758   case PT_FnPtr:
3759     return this->emitNullFnPtr(nullptr, E);
3760   case PT_MemberPtr:
3761     return this->emitNullMemberPtr(nullptr, E);
3762   case PT_Float:
3763     return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
3764   case PT_FixedPoint: {
3765     auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
3766     return this->emitConstFixedPoint(FixedPoint::Zero(Sem), E);
3767   }
3768     llvm_unreachable("Implement");
3769   }
3770   llvm_unreachable("unknown primitive type");
3771 }
3772 
3773 template <class Emitter>
3774 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
3775                                                    const Expr *E) {
3776   assert(E);
3777   assert(R);
3778   // Fields
3779   for (const Record::Field &Field : R->fields()) {
3780     if (Field.Decl->isUnnamedBitField())
3781       continue;
3782 
3783     const Descriptor *D = Field.Desc;
3784     if (D->isPrimitive()) {
3785       QualType QT = D->getType();
3786       PrimType T = classifyPrim(D->getType());
3787       if (!this->visitZeroInitializer(T, QT, E))
3788         return false;
3789       if (!this->emitInitField(T, Field.Offset, E))
3790         return false;
3791       if (R->isUnion())
3792         break;
3793       continue;
3794     }
3795 
3796     if (!this->emitGetPtrField(Field.Offset, E))
3797       return false;
3798 
3799     if (D->isPrimitiveArray()) {
3800       QualType ET = D->getElemQualType();
3801       PrimType T = classifyPrim(ET);
3802       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3803         if (!this->visitZeroInitializer(T, ET, E))
3804           return false;
3805         if (!this->emitInitElem(T, I, E))
3806           return false;
3807       }
3808     } else if (D->isCompositeArray()) {
3809       const Record *ElemRecord = D->ElemDesc->ElemRecord;
3810       assert(D->ElemDesc->ElemRecord);
3811       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3812         if (!this->emitConstUint32(I, E))
3813           return false;
3814         if (!this->emitArrayElemPtr(PT_Uint32, E))
3815           return false;
3816         if (!this->visitZeroRecordInitializer(ElemRecord, E))
3817           return false;
3818         if (!this->emitPopPtr(E))
3819           return false;
3820       }
3821     } else if (D->isRecord()) {
3822       if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
3823         return false;
3824     } else {
3825       assert(false);
3826     }
3827 
3828     if (!this->emitFinishInitPop(E))
3829       return false;
3830 
3831     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3832     // object's first non-static named data member is zero-initialized
3833     if (R->isUnion())
3834       break;
3835   }
3836 
3837   for (const Record::Base &B : R->bases()) {
3838     if (!this->emitGetPtrBase(B.Offset, E))
3839       return false;
3840     if (!this->visitZeroRecordInitializer(B.R, E))
3841       return false;
3842     if (!this->emitFinishInitPop(E))
3843       return false;
3844   }
3845 
3846   // FIXME: Virtual bases.
3847 
3848   return true;
3849 }
3850 
3851 template <class Emitter>
3852 template <typename T>
3853 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
3854   switch (Ty) {
3855   case PT_Sint8:
3856     return this->emitConstSint8(Value, E);
3857   case PT_Uint8:
3858     return this->emitConstUint8(Value, E);
3859   case PT_Sint16:
3860     return this->emitConstSint16(Value, E);
3861   case PT_Uint16:
3862     return this->emitConstUint16(Value, E);
3863   case PT_Sint32:
3864     return this->emitConstSint32(Value, E);
3865   case PT_Uint32:
3866     return this->emitConstUint32(Value, E);
3867   case PT_Sint64:
3868     return this->emitConstSint64(Value, E);
3869   case PT_Uint64:
3870     return this->emitConstUint64(Value, E);
3871   case PT_Bool:
3872     return this->emitConstBool(Value, E);
3873   case PT_Ptr:
3874   case PT_FnPtr:
3875   case PT_MemberPtr:
3876   case PT_Float:
3877   case PT_IntAP:
3878   case PT_IntAPS:
3879   case PT_FixedPoint:
3880     llvm_unreachable("Invalid integral type");
3881     break;
3882   }
3883   llvm_unreachable("unknown primitive type");
3884 }
3885 
3886 template <class Emitter>
3887 template <typename T>
3888 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
3889   return this->emitConst(Value, classifyPrim(E->getType()), E);
3890 }
3891 
3892 template <class Emitter>
3893 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
3894                                   const Expr *E) {
3895   if (Ty == PT_IntAPS)
3896     return this->emitConstIntAPS(Value, E);
3897   if (Ty == PT_IntAP)
3898     return this->emitConstIntAP(Value, E);
3899 
3900   if (Value.isSigned())
3901     return this->emitConst(Value.getSExtValue(), Ty, E);
3902   return this->emitConst(Value.getZExtValue(), Ty, E);
3903 }
3904 
3905 template <class Emitter>
3906 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
3907   return this->emitConst(Value, classifyPrim(E->getType()), E);
3908 }
3909 
3910 template <class Emitter>
3911 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
3912                                                    bool IsConst,
3913                                                    bool IsExtended) {
3914   // Make sure we don't accidentally register the same decl twice.
3915   if (const auto *VD =
3916           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3917     assert(!P.getGlobal(VD));
3918     assert(!Locals.contains(VD));
3919     (void)VD;
3920   }
3921 
3922   // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
3923   //   (int){12} in C. Consider using Expr::isTemporaryObject() instead
3924   //   or isa<MaterializeTemporaryExpr>().
3925   Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
3926                                      Src.is<const Expr *>());
3927   Scope::Local Local = this->createLocal(D);
3928   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
3929     Locals.insert({VD, Local});
3930   VarScope->add(Local, IsExtended);
3931   return Local.Offset;
3932 }
3933 
3934 template <class Emitter>
3935 std::optional<unsigned>
3936 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) {
3937   // Make sure we don't accidentally register the same decl twice.
3938   if ([[maybe_unused]] const auto *VD =
3939           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3940     assert(!P.getGlobal(VD));
3941     assert(!Locals.contains(VD));
3942   }
3943 
3944   QualType Ty;
3945   const ValueDecl *Key = nullptr;
3946   const Expr *Init = nullptr;
3947   bool IsTemporary = false;
3948   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3949     Key = VD;
3950     Ty = VD->getType();
3951 
3952     if (const auto *VarD = dyn_cast<VarDecl>(VD))
3953       Init = VarD->getInit();
3954   }
3955   if (auto *E = Src.dyn_cast<const Expr *>()) {
3956     IsTemporary = true;
3957     Ty = E->getType();
3958   }
3959 
3960   Descriptor *D = P.createDescriptor(
3961       Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
3962       IsTemporary, /*IsMutable=*/false, Init);
3963   if (!D)
3964     return std::nullopt;
3965 
3966   Scope::Local Local = this->createLocal(D);
3967   if (Key)
3968     Locals.insert({Key, Local});
3969   if (ExtendingDecl)
3970     VarScope->addExtended(Local, ExtendingDecl);
3971   else
3972     VarScope->add(Local, false);
3973   return Local.Offset;
3974 }
3975 
3976 template <class Emitter>
3977 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) {
3978   QualType Ty = E->getType();
3979   assert(!Ty->isRecordType());
3980 
3981   Descriptor *D = P.createDescriptor(
3982       E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
3983       /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
3984   assert(D);
3985 
3986   Scope::Local Local = this->createLocal(D);
3987   VariableScope<Emitter> *S = VarScope;
3988   assert(S);
3989   // Attach to topmost scope.
3990   while (S->getParent())
3991     S = S->getParent();
3992   assert(S && !S->getParent());
3993   S->addLocal(Local);
3994   return Local.Offset;
3995 }
3996 
3997 template <class Emitter>
3998 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
3999   if (const PointerType *PT = dyn_cast<PointerType>(Ty))
4000     return PT->getPointeeType()->getAs<RecordType>();
4001   return Ty->getAs<RecordType>();
4002 }
4003 
4004 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
4005   if (const auto *RecordTy = getRecordTy(Ty))
4006     return getRecord(RecordTy->getDecl());
4007   return nullptr;
4008 }
4009 
4010 template <class Emitter>
4011 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
4012   return P.getOrCreateRecord(RD);
4013 }
4014 
4015 template <class Emitter>
4016 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
4017   return Ctx.getOrCreateFunction(FD);
4018 }
4019 
4020 template <class Emitter>
4021 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) {
4022   LocalScope<Emitter> RootScope(this);
4023 
4024   auto maybeDestroyLocals = [&]() -> bool {
4025     if (DestroyToplevelScope)
4026       return RootScope.destroyLocals();
4027     return true;
4028   };
4029 
4030   // Void expressions.
4031   if (E->getType()->isVoidType()) {
4032     if (!visit(E))
4033       return false;
4034     return this->emitRetVoid(E) && maybeDestroyLocals();
4035   }
4036 
4037   // Expressions with a primitive return type.
4038   if (std::optional<PrimType> T = classify(E)) {
4039     if (!visit(E))
4040       return false;
4041 
4042     return this->emitRet(*T, E) && maybeDestroyLocals();
4043   }
4044 
4045   // Expressions with a composite return type.
4046   // For us, that means everything we don't
4047   // have a PrimType for.
4048   if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
4049     if (!this->emitGetPtrLocal(*LocalOffset, E))
4050       return false;
4051 
4052     if (!visitInitializer(E))
4053       return false;
4054 
4055     if (!this->emitFinishInit(E))
4056       return false;
4057     // We are destroying the locals AFTER the Ret op.
4058     // The Ret op needs to copy the (alive) values, but the
4059     // destructors may still turn the entire expression invalid.
4060     return this->emitRetValue(E) && maybeDestroyLocals();
4061   }
4062 
4063   (void)maybeDestroyLocals();
4064   return false;
4065 }
4066 
4067 template <class Emitter>
4068 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
4069 
4070   auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
4071 
4072   if (R.notCreated())
4073     return R;
4074 
4075   if (R)
4076     return true;
4077 
4078   if (!R && Context::shouldBeGloballyIndexed(VD)) {
4079     if (auto GlobalIndex = P.getGlobal(VD)) {
4080       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4081       GlobalInlineDescriptor &GD =
4082           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4083 
4084       GD.InitState = GlobalInitState::InitializerFailed;
4085       GlobalBlock->invokeDtor();
4086     }
4087   }
4088 
4089   return R;
4090 }
4091 
4092 /// Toplevel visitDeclAndReturn().
4093 /// We get here from evaluateAsInitializer().
4094 /// We need to evaluate the initializer and return its value.
4095 template <class Emitter>
4096 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
4097                                            bool ConstantContext) {
4098   std::optional<PrimType> VarT = classify(VD->getType());
4099 
4100   // We only create variables if we're evaluating in a constant context.
4101   // Otherwise, just evaluate the initializer and return it.
4102   if (!ConstantContext) {
4103     DeclScope<Emitter> LS(this, VD);
4104     if (!this->visit(VD->getAnyInitializer()))
4105       return false;
4106     return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals();
4107   }
4108 
4109   LocalScope<Emitter> VDScope(this, VD);
4110   if (!this->visitVarDecl(VD, /*Toplevel=*/true))
4111     return false;
4112 
4113   if (Context::shouldBeGloballyIndexed(VD)) {
4114     auto GlobalIndex = P.getGlobal(VD);
4115     assert(GlobalIndex); // visitVarDecl() didn't return false.
4116     if (VarT) {
4117       if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
4118         return false;
4119     } else {
4120       if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
4121         return false;
4122     }
4123   } else {
4124     auto Local = Locals.find(VD);
4125     assert(Local != Locals.end()); // Same here.
4126     if (VarT) {
4127       if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
4128         return false;
4129     } else {
4130       if (!this->emitGetPtrLocal(Local->second.Offset, VD))
4131         return false;
4132     }
4133   }
4134 
4135   // Return the value.
4136   if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
4137     // If the Ret above failed and this is a global variable, mark it as
4138     // uninitialized, even everything else succeeded.
4139     if (Context::shouldBeGloballyIndexed(VD)) {
4140       auto GlobalIndex = P.getGlobal(VD);
4141       assert(GlobalIndex);
4142       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4143       GlobalInlineDescriptor &GD =
4144           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4145 
4146       GD.InitState = GlobalInitState::InitializerFailed;
4147       GlobalBlock->invokeDtor();
4148     }
4149     return false;
4150   }
4151 
4152   return VDScope.destroyLocals();
4153 }
4154 
4155 template <class Emitter>
4156 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
4157                                                  bool Toplevel) {
4158   // We don't know what to do with these, so just return false.
4159   if (VD->getType().isNull())
4160     return false;
4161 
4162   // This case is EvalEmitter-only. If we won't create any instructions for the
4163   // initializer anyway, don't bother creating the variable in the first place.
4164   if (!this->isActive())
4165     return VarCreationState::NotCreated();
4166 
4167   const Expr *Init = VD->getInit();
4168   std::optional<PrimType> VarT = classify(VD->getType());
4169 
4170   if (Init && Init->isValueDependent())
4171     return false;
4172 
4173   if (Context::shouldBeGloballyIndexed(VD)) {
4174     auto checkDecl = [&]() -> bool {
4175       bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
4176       return !NeedsOp || this->emitCheckDecl(VD, VD);
4177     };
4178 
4179     auto initGlobal = [&](unsigned GlobalIndex) -> bool {
4180       assert(Init);
4181 
4182       if (VarT) {
4183         if (!this->visit(Init))
4184           return checkDecl() && false;
4185 
4186         return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
4187       }
4188 
4189       if (!checkDecl())
4190         return false;
4191 
4192       if (!this->emitGetPtrGlobal(GlobalIndex, Init))
4193         return false;
4194 
4195       if (!visitInitializer(Init))
4196         return false;
4197 
4198       if (!this->emitFinishInit(Init))
4199         return false;
4200 
4201       return this->emitPopPtr(Init);
4202     };
4203 
4204     DeclScope<Emitter> LocalScope(this, VD);
4205 
4206     // We've already seen and initialized this global.
4207     if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
4208       if (P.getPtrGlobal(*GlobalIndex).isInitialized())
4209         return checkDecl();
4210 
4211       // The previous attempt at initialization might've been unsuccessful,
4212       // so let's try this one.
4213       return Init && checkDecl() && initGlobal(*GlobalIndex);
4214     }
4215 
4216     std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
4217 
4218     if (!GlobalIndex)
4219       return false;
4220 
4221     return !Init || (checkDecl() && initGlobal(*GlobalIndex));
4222   } else {
4223     InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
4224 
4225     if (VarT) {
4226       unsigned Offset = this->allocateLocalPrimitive(
4227           VD, *VarT, VD->getType().isConstQualified());
4228       if (Init) {
4229         // If this is a toplevel declaration, create a scope for the
4230         // initializer.
4231         if (Toplevel) {
4232           LocalScope<Emitter> Scope(this);
4233           if (!this->visit(Init))
4234             return false;
4235           return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
4236         } else {
4237           if (!this->visit(Init))
4238             return false;
4239           return this->emitSetLocal(*VarT, Offset, VD);
4240         }
4241       }
4242     } else {
4243       if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
4244         if (!Init)
4245           return true;
4246 
4247         if (!this->emitGetPtrLocal(*Offset, Init))
4248           return false;
4249 
4250         if (!visitInitializer(Init))
4251           return false;
4252 
4253         if (!this->emitFinishInit(Init))
4254           return false;
4255 
4256         return this->emitPopPtr(Init);
4257       }
4258       return false;
4259     }
4260     return true;
4261   }
4262 
4263   return false;
4264 }
4265 
4266 template <class Emitter>
4267 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
4268                                      const Expr *E) {
4269   assert(!DiscardResult);
4270   if (Val.isInt())
4271     return this->emitConst(Val.getInt(), ValType, E);
4272   else if (Val.isFloat())
4273     return this->emitConstFloat(Val.getFloat(), E);
4274 
4275   if (Val.isLValue()) {
4276     if (Val.isNullPointer())
4277       return this->emitNull(ValType, nullptr, E);
4278     APValue::LValueBase Base = Val.getLValueBase();
4279     if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
4280       return this->visit(BaseExpr);
4281     else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
4282       return this->visitDeclRef(VD, E);
4283     }
4284   } else if (Val.isMemberPointer()) {
4285     if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
4286       return this->emitGetMemberPtr(MemberDecl, E);
4287     return this->emitNullMemberPtr(nullptr, E);
4288   }
4289 
4290   return false;
4291 }
4292 
4293 template <class Emitter>
4294 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
4295                                                 const Expr *E) {
4296 
4297   if (Val.isStruct()) {
4298     const Record *R = this->getRecord(E->getType());
4299     assert(R);
4300     for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
4301       const APValue &F = Val.getStructField(I);
4302       const Record::Field *RF = R->getField(I);
4303 
4304       if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
4305         PrimType T = classifyPrim(RF->Decl->getType());
4306         if (!this->visitAPValue(F, T, E))
4307           return false;
4308         if (!this->emitInitField(T, RF->Offset, E))
4309           return false;
4310       } else if (F.isArray()) {
4311         assert(RF->Desc->isPrimitiveArray());
4312         const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
4313         PrimType ElemT = classifyPrim(ArrType->getElementType());
4314         assert(ArrType);
4315 
4316         if (!this->emitGetPtrField(RF->Offset, E))
4317           return false;
4318 
4319         for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
4320           if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
4321             return false;
4322           if (!this->emitInitElem(ElemT, A, E))
4323             return false;
4324         }
4325 
4326         if (!this->emitPopPtr(E))
4327           return false;
4328       } else if (F.isStruct() || F.isUnion()) {
4329         if (!this->emitGetPtrField(RF->Offset, E))
4330           return false;
4331         if (!this->visitAPValueInitializer(F, E))
4332           return false;
4333         if (!this->emitPopPtr(E))
4334           return false;
4335       } else {
4336         assert(false && "I don't think this should be possible");
4337       }
4338     }
4339     return true;
4340   } else if (Val.isUnion()) {
4341     const FieldDecl *UnionField = Val.getUnionField();
4342     const Record *R = this->getRecord(UnionField->getParent());
4343     assert(R);
4344     const APValue &F = Val.getUnionValue();
4345     const Record::Field *RF = R->getField(UnionField);
4346     PrimType T = classifyPrim(RF->Decl->getType());
4347     if (!this->visitAPValue(F, T, E))
4348       return false;
4349     return this->emitInitField(T, RF->Offset, E);
4350   }
4351   // TODO: Other types.
4352 
4353   return false;
4354 }
4355 
4356 template <class Emitter>
4357 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E,
4358                                              unsigned BuiltinID) {
4359   const Function *Func = getFunction(E->getDirectCallee());
4360   if (!Func)
4361     return false;
4362 
4363   // For these, we're expected to ultimately return an APValue pointing
4364   // to the CallExpr. This is needed to get the correct codegen.
4365   if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
4366       BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString ||
4367       BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant ||
4368       BuiltinID == Builtin::BI__builtin_function_start) {
4369     if (std::optional<unsigned> GlobalOffset = P.getOrCreateDummy(E)) {
4370       if (!this->emitGetPtrGlobal(*GlobalOffset, E))
4371         return false;
4372 
4373       if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT))
4374         return this->emitDecayPtr(PT_Ptr, PT, E);
4375       return true;
4376     }
4377     return false;
4378   }
4379 
4380   QualType ReturnType = E->getType();
4381   std::optional<PrimType> ReturnT = classify(E);
4382 
4383   // Non-primitive return type. Prepare storage.
4384   if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
4385     std::optional<unsigned> LocalIndex = allocateLocal(E);
4386     if (!LocalIndex)
4387       return false;
4388     if (!this->emitGetPtrLocal(*LocalIndex, E))
4389       return false;
4390   }
4391 
4392   if (!Func->isUnevaluatedBuiltin()) {
4393     // Put arguments on the stack.
4394     for (const auto *Arg : E->arguments()) {
4395       if (!this->visit(Arg))
4396         return false;
4397     }
4398   }
4399 
4400   if (!this->emitCallBI(Func, E, BuiltinID, E))
4401     return false;
4402 
4403   if (DiscardResult && !ReturnType->isVoidType()) {
4404     assert(ReturnT);
4405     return this->emitPop(*ReturnT, E);
4406   }
4407 
4408   return true;
4409 }
4410 
4411 template <class Emitter>
4412 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
4413   if (unsigned BuiltinID = E->getBuiltinCallee())
4414     return VisitBuiltinCallExpr(E, BuiltinID);
4415 
4416   const FunctionDecl *FuncDecl = E->getDirectCallee();
4417   // Calls to replaceable operator new/operator delete.
4418   if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) {
4419     if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New ||
4420         FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
4421       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new);
4422     } else {
4423       assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete);
4424       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete);
4425     }
4426   }
4427 
4428   QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
4429   std::optional<PrimType> T = classify(ReturnType);
4430   bool HasRVO = !ReturnType->isVoidType() && !T;
4431 
4432   if (HasRVO) {
4433     if (DiscardResult) {
4434       // If we need to discard the return value but the function returns its
4435       // value via an RVO pointer, we need to create one such pointer just
4436       // for this call.
4437       if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4438         if (!this->emitGetPtrLocal(*LocalIndex, E))
4439           return false;
4440       }
4441     } else {
4442       // We need the result. Prepare a pointer to return or
4443       // dup the current one.
4444       if (!Initializing) {
4445         if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4446           if (!this->emitGetPtrLocal(*LocalIndex, E))
4447             return false;
4448         }
4449       }
4450       if (!this->emitDupPtr(E))
4451         return false;
4452     }
4453   }
4454 
4455   SmallVector<const Expr *, 8> Args(
4456       llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
4457 
4458   bool IsAssignmentOperatorCall = false;
4459   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
4460       OCE && OCE->isAssignmentOp()) {
4461     // Just like with regular assignments, we need to special-case assignment
4462     // operators here and evaluate the RHS (the second arg) before the LHS (the
4463     // first arg. We fix this by using a Flip op later.
4464     assert(Args.size() == 2);
4465     IsAssignmentOperatorCall = true;
4466     std::reverse(Args.begin(), Args.end());
4467   }
4468   // Calling a static operator will still
4469   // pass the instance, but we don't need it.
4470   // Discard it here.
4471   if (isa<CXXOperatorCallExpr>(E)) {
4472     if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
4473         MD && MD->isStatic()) {
4474       if (!this->discard(E->getArg(0)))
4475         return false;
4476       // Drop first arg.
4477       Args.erase(Args.begin());
4478     }
4479   }
4480 
4481   std::optional<unsigned> CalleeOffset;
4482   // Add the (optional, implicit) This pointer.
4483   if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
4484     if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
4485       // If we end up creating a CallPtr op for this, we need the base of the
4486       // member pointer as the instance pointer, and later extract the function
4487       // decl as the function pointer.
4488       const Expr *Callee = E->getCallee();
4489       CalleeOffset =
4490           this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
4491       if (!this->visit(Callee))
4492         return false;
4493       if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
4494         return false;
4495       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4496         return false;
4497       if (!this->emitGetMemberPtrBase(E))
4498         return false;
4499     } else if (!this->visit(MC->getImplicitObjectArgument())) {
4500       return false;
4501     }
4502   } else if (!FuncDecl) {
4503     const Expr *Callee = E->getCallee();
4504     CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false);
4505     if (!this->visit(Callee))
4506       return false;
4507     if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E))
4508       return false;
4509   }
4510 
4511   llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
4512   // Put arguments on the stack.
4513   unsigned ArgIndex = 0;
4514   for (const auto *Arg : Args) {
4515     if (!this->visit(Arg))
4516       return false;
4517 
4518     // If we know the callee already, check the known parametrs for nullability.
4519     if (FuncDecl && NonNullArgs[ArgIndex]) {
4520       PrimType ArgT = classify(Arg).value_or(PT_Ptr);
4521       if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
4522         if (!this->emitCheckNonNullArg(ArgT, Arg))
4523           return false;
4524       }
4525     }
4526     ++ArgIndex;
4527   }
4528 
4529   // Undo the argument reversal we did earlier.
4530   if (IsAssignmentOperatorCall) {
4531     assert(Args.size() == 2);
4532     PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
4533     PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
4534     if (!this->emitFlip(Arg2T, Arg1T, E))
4535       return false;
4536   }
4537 
4538   if (FuncDecl) {
4539     const Function *Func = getFunction(FuncDecl);
4540     if (!Func)
4541       return false;
4542     assert(HasRVO == Func->hasRVO());
4543 
4544     bool HasQualifier = false;
4545     if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
4546       HasQualifier = ME->hasQualifier();
4547 
4548     bool IsVirtual = false;
4549     if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
4550       IsVirtual = MD->isVirtual();
4551 
4552     // In any case call the function. The return value will end up on the stack
4553     // and if the function has RVO, we already have the pointer on the stack to
4554     // write the result into.
4555     if (IsVirtual && !HasQualifier) {
4556       uint32_t VarArgSize = 0;
4557       unsigned NumParams =
4558           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4559       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4560         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4561 
4562       if (!this->emitCallVirt(Func, VarArgSize, E))
4563         return false;
4564     } else if (Func->isVariadic()) {
4565       uint32_t VarArgSize = 0;
4566       unsigned NumParams =
4567           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4568       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4569         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4570       if (!this->emitCallVar(Func, VarArgSize, E))
4571         return false;
4572     } else {
4573       if (!this->emitCall(Func, 0, E))
4574         return false;
4575     }
4576   } else {
4577     // Indirect call. Visit the callee, which will leave a FunctionPointer on
4578     // the stack. Cleanup of the returned value if necessary will be done after
4579     // the function call completed.
4580 
4581     // Sum the size of all args from the call expr.
4582     uint32_t ArgSize = 0;
4583     for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
4584       ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4585 
4586     // Get the callee, either from a member pointer or function pointer saved in
4587     // CalleeOffset.
4588     if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
4589       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4590         return false;
4591       if (!this->emitGetMemberPtrDecl(E))
4592         return false;
4593     } else {
4594       if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E))
4595         return false;
4596     }
4597     if (!this->emitCallPtr(ArgSize, E, E))
4598       return false;
4599   }
4600 
4601   // Cleanup for discarded return values.
4602   if (DiscardResult && !ReturnType->isVoidType() && T)
4603     return this->emitPop(*T, E);
4604 
4605   return true;
4606 }
4607 
4608 template <class Emitter>
4609 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4610   SourceLocScope<Emitter> SLS(this, E);
4611 
4612   return this->delegate(E->getExpr());
4613 }
4614 
4615 template <class Emitter>
4616 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
4617   SourceLocScope<Emitter> SLS(this, E);
4618 
4619   const Expr *SubExpr = E->getExpr();
4620   if (std::optional<PrimType> T = classify(E->getExpr()))
4621     return this->visit(SubExpr);
4622 
4623   assert(Initializing);
4624   return this->visitInitializer(SubExpr);
4625 }
4626 
4627 template <class Emitter>
4628 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4629   if (DiscardResult)
4630     return true;
4631 
4632   return this->emitConstBool(E->getValue(), E);
4633 }
4634 
4635 template <class Emitter>
4636 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
4637     const CXXNullPtrLiteralExpr *E) {
4638   if (DiscardResult)
4639     return true;
4640 
4641   return this->emitNullPtr(nullptr, E);
4642 }
4643 
4644 template <class Emitter>
4645 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
4646   if (DiscardResult)
4647     return true;
4648 
4649   assert(E->getType()->isIntegerType());
4650 
4651   PrimType T = classifyPrim(E->getType());
4652   return this->emitZero(T, E);
4653 }
4654 
4655 template <class Emitter>
4656 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
4657   if (DiscardResult)
4658     return true;
4659 
4660   if (this->LambdaThisCapture.Offset > 0) {
4661     if (this->LambdaThisCapture.IsPtr)
4662       return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
4663     return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
4664   }
4665 
4666   // In some circumstances, the 'this' pointer does not actually refer to the
4667   // instance pointer of the current function frame, but e.g. to the declaration
4668   // currently being initialized. Here we emit the necessary instruction(s) for
4669   // this scenario.
4670   if (!InitStackActive || !E->isImplicit())
4671     return this->emitThis(E);
4672 
4673   if (InitStackActive && !InitStack.empty()) {
4674     unsigned StartIndex = 0;
4675     for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
4676       if (InitStack[StartIndex].Kind != InitLink::K_Field &&
4677           InitStack[StartIndex].Kind != InitLink::K_Elem)
4678         break;
4679     }
4680 
4681     for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) {
4682       if (!InitStack[I].template emit<Emitter>(this, E))
4683         return false;
4684     }
4685     return true;
4686   }
4687   return this->emitThis(E);
4688 }
4689 
4690 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
4691   switch (S->getStmtClass()) {
4692   case Stmt::CompoundStmtClass:
4693     return visitCompoundStmt(cast<CompoundStmt>(S));
4694   case Stmt::DeclStmtClass:
4695     return visitDeclStmt(cast<DeclStmt>(S));
4696   case Stmt::ReturnStmtClass:
4697     return visitReturnStmt(cast<ReturnStmt>(S));
4698   case Stmt::IfStmtClass:
4699     return visitIfStmt(cast<IfStmt>(S));
4700   case Stmt::WhileStmtClass:
4701     return visitWhileStmt(cast<WhileStmt>(S));
4702   case Stmt::DoStmtClass:
4703     return visitDoStmt(cast<DoStmt>(S));
4704   case Stmt::ForStmtClass:
4705     return visitForStmt(cast<ForStmt>(S));
4706   case Stmt::CXXForRangeStmtClass:
4707     return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
4708   case Stmt::BreakStmtClass:
4709     return visitBreakStmt(cast<BreakStmt>(S));
4710   case Stmt::ContinueStmtClass:
4711     return visitContinueStmt(cast<ContinueStmt>(S));
4712   case Stmt::SwitchStmtClass:
4713     return visitSwitchStmt(cast<SwitchStmt>(S));
4714   case Stmt::CaseStmtClass:
4715     return visitCaseStmt(cast<CaseStmt>(S));
4716   case Stmt::DefaultStmtClass:
4717     return visitDefaultStmt(cast<DefaultStmt>(S));
4718   case Stmt::AttributedStmtClass:
4719     return visitAttributedStmt(cast<AttributedStmt>(S));
4720   case Stmt::CXXTryStmtClass:
4721     return visitCXXTryStmt(cast<CXXTryStmt>(S));
4722   case Stmt::NullStmtClass:
4723     return true;
4724   // Always invalid statements.
4725   case Stmt::GCCAsmStmtClass:
4726   case Stmt::MSAsmStmtClass:
4727   case Stmt::GotoStmtClass:
4728     return this->emitInvalid(S);
4729   case Stmt::LabelStmtClass:
4730     return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
4731   default: {
4732     if (const auto *E = dyn_cast<Expr>(S))
4733       return this->discard(E);
4734     return false;
4735   }
4736   }
4737 }
4738 
4739 template <class Emitter>
4740 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
4741   BlockScope<Emitter> Scope(this);
4742   for (const auto *InnerStmt : S->body())
4743     if (!visitStmt(InnerStmt))
4744       return false;
4745   return Scope.destroyLocals();
4746 }
4747 
4748 template <class Emitter>
4749 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
4750   for (const auto *D : DS->decls()) {
4751     if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
4752             FunctionDecl>(D))
4753       continue;
4754 
4755     const auto *VD = dyn_cast<VarDecl>(D);
4756     if (!VD)
4757       return false;
4758     if (!this->visitVarDecl(VD))
4759       return false;
4760   }
4761 
4762   return true;
4763 }
4764 
4765 template <class Emitter>
4766 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
4767   if (this->InStmtExpr)
4768     return this->emitUnsupported(RS);
4769 
4770   if (const Expr *RE = RS->getRetValue()) {
4771     LocalScope<Emitter> RetScope(this);
4772     if (ReturnType) {
4773       // Primitive types are simply returned.
4774       if (!this->visit(RE))
4775         return false;
4776       this->emitCleanup();
4777       return this->emitRet(*ReturnType, RS);
4778     } else if (RE->getType()->isVoidType()) {
4779       if (!this->visit(RE))
4780         return false;
4781     } else {
4782       // RVO - construct the value in the return location.
4783       if (!this->emitRVOPtr(RE))
4784         return false;
4785       if (!this->visitInitializer(RE))
4786         return false;
4787       if (!this->emitPopPtr(RE))
4788         return false;
4789 
4790       this->emitCleanup();
4791       return this->emitRetVoid(RS);
4792     }
4793   }
4794 
4795   // Void return.
4796   this->emitCleanup();
4797   return this->emitRetVoid(RS);
4798 }
4799 
4800 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
4801   if (auto *CondInit = IS->getInit())
4802     if (!visitStmt(CondInit))
4803       return false;
4804 
4805   if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
4806     if (!visitDeclStmt(CondDecl))
4807       return false;
4808 
4809   // Compile condition.
4810   if (IS->isNonNegatedConsteval()) {
4811     if (!this->emitIsConstantContext(IS))
4812       return false;
4813   } else if (IS->isNegatedConsteval()) {
4814     if (!this->emitIsConstantContext(IS))
4815       return false;
4816     if (!this->emitInv(IS))
4817       return false;
4818   } else {
4819     if (!this->visitBool(IS->getCond()))
4820       return false;
4821   }
4822 
4823   if (const Stmt *Else = IS->getElse()) {
4824     LabelTy LabelElse = this->getLabel();
4825     LabelTy LabelEnd = this->getLabel();
4826     if (!this->jumpFalse(LabelElse))
4827       return false;
4828     if (!visitStmt(IS->getThen()))
4829       return false;
4830     if (!this->jump(LabelEnd))
4831       return false;
4832     this->emitLabel(LabelElse);
4833     if (!visitStmt(Else))
4834       return false;
4835     this->emitLabel(LabelEnd);
4836   } else {
4837     LabelTy LabelEnd = this->getLabel();
4838     if (!this->jumpFalse(LabelEnd))
4839       return false;
4840     if (!visitStmt(IS->getThen()))
4841       return false;
4842     this->emitLabel(LabelEnd);
4843   }
4844 
4845   return true;
4846 }
4847 
4848 template <class Emitter>
4849 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
4850   const Expr *Cond = S->getCond();
4851   const Stmt *Body = S->getBody();
4852 
4853   LabelTy CondLabel = this->getLabel(); // Label before the condition.
4854   LabelTy EndLabel = this->getLabel();  // Label after the loop.
4855   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4856 
4857   this->fallthrough(CondLabel);
4858   this->emitLabel(CondLabel);
4859 
4860   {
4861     LocalScope<Emitter> CondScope(this);
4862     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4863       if (!visitDeclStmt(CondDecl))
4864         return false;
4865 
4866     if (!this->visitBool(Cond))
4867       return false;
4868     if (!this->jumpFalse(EndLabel))
4869       return false;
4870 
4871     if (!this->visitStmt(Body))
4872       return false;
4873 
4874     if (!CondScope.destroyLocals())
4875       return false;
4876   }
4877   if (!this->jump(CondLabel))
4878     return false;
4879   this->fallthrough(EndLabel);
4880   this->emitLabel(EndLabel);
4881 
4882   return true;
4883 }
4884 
4885 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
4886   const Expr *Cond = S->getCond();
4887   const Stmt *Body = S->getBody();
4888 
4889   LabelTy StartLabel = this->getLabel();
4890   LabelTy EndLabel = this->getLabel();
4891   LabelTy CondLabel = this->getLabel();
4892   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4893 
4894   this->fallthrough(StartLabel);
4895   this->emitLabel(StartLabel);
4896 
4897   {
4898     LocalScope<Emitter> CondScope(this);
4899     if (!this->visitStmt(Body))
4900       return false;
4901     this->fallthrough(CondLabel);
4902     this->emitLabel(CondLabel);
4903     if (!this->visitBool(Cond))
4904       return false;
4905 
4906     if (!CondScope.destroyLocals())
4907       return false;
4908   }
4909   if (!this->jumpTrue(StartLabel))
4910     return false;
4911 
4912   this->fallthrough(EndLabel);
4913   this->emitLabel(EndLabel);
4914   return true;
4915 }
4916 
4917 template <class Emitter>
4918 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
4919   // for (Init; Cond; Inc) { Body }
4920   const Stmt *Init = S->getInit();
4921   const Expr *Cond = S->getCond();
4922   const Expr *Inc = S->getInc();
4923   const Stmt *Body = S->getBody();
4924 
4925   LabelTy EndLabel = this->getLabel();
4926   LabelTy CondLabel = this->getLabel();
4927   LabelTy IncLabel = this->getLabel();
4928   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4929 
4930   if (Init && !this->visitStmt(Init))
4931     return false;
4932 
4933   this->fallthrough(CondLabel);
4934   this->emitLabel(CondLabel);
4935 
4936   {
4937     LocalScope<Emitter> CondScope(this);
4938     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4939       if (!visitDeclStmt(CondDecl))
4940         return false;
4941 
4942     if (Cond) {
4943       if (!this->visitBool(Cond))
4944         return false;
4945       if (!this->jumpFalse(EndLabel))
4946         return false;
4947     }
4948 
4949     if (Body && !this->visitStmt(Body))
4950       return false;
4951 
4952     this->fallthrough(IncLabel);
4953     this->emitLabel(IncLabel);
4954     if (Inc && !this->discard(Inc))
4955       return false;
4956 
4957     if (!CondScope.destroyLocals())
4958       return false;
4959   }
4960   if (!this->jump(CondLabel))
4961     return false;
4962 
4963   this->fallthrough(EndLabel);
4964   this->emitLabel(EndLabel);
4965   return true;
4966 }
4967 
4968 template <class Emitter>
4969 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
4970   const Stmt *Init = S->getInit();
4971   const Expr *Cond = S->getCond();
4972   const Expr *Inc = S->getInc();
4973   const Stmt *Body = S->getBody();
4974   const Stmt *BeginStmt = S->getBeginStmt();
4975   const Stmt *RangeStmt = S->getRangeStmt();
4976   const Stmt *EndStmt = S->getEndStmt();
4977   const VarDecl *LoopVar = S->getLoopVariable();
4978 
4979   LabelTy EndLabel = this->getLabel();
4980   LabelTy CondLabel = this->getLabel();
4981   LabelTy IncLabel = this->getLabel();
4982   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4983 
4984   // Emit declarations needed in the loop.
4985   if (Init && !this->visitStmt(Init))
4986     return false;
4987   if (!this->visitStmt(RangeStmt))
4988     return false;
4989   if (!this->visitStmt(BeginStmt))
4990     return false;
4991   if (!this->visitStmt(EndStmt))
4992     return false;
4993 
4994   // Now the condition as well as the loop variable assignment.
4995   this->fallthrough(CondLabel);
4996   this->emitLabel(CondLabel);
4997   if (!this->visitBool(Cond))
4998     return false;
4999   if (!this->jumpFalse(EndLabel))
5000     return false;
5001 
5002   if (!this->visitVarDecl(LoopVar))
5003     return false;
5004 
5005   // Body.
5006   {
5007     if (!this->visitStmt(Body))
5008       return false;
5009 
5010     this->fallthrough(IncLabel);
5011     this->emitLabel(IncLabel);
5012     if (!this->discard(Inc))
5013       return false;
5014   }
5015 
5016   if (!this->jump(CondLabel))
5017     return false;
5018 
5019   this->fallthrough(EndLabel);
5020   this->emitLabel(EndLabel);
5021   return true;
5022 }
5023 
5024 template <class Emitter>
5025 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
5026   if (!BreakLabel)
5027     return false;
5028 
5029   for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope;
5030        C = C->getParent())
5031     C->emitDestruction();
5032   return this->jump(*BreakLabel);
5033 }
5034 
5035 template <class Emitter>
5036 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
5037   if (!ContinueLabel)
5038     return false;
5039 
5040   for (VariableScope<Emitter> *C = VarScope;
5041        C && C->getParent() != ContinueVarScope; C = C->getParent())
5042     C->emitDestruction();
5043   return this->jump(*ContinueLabel);
5044 }
5045 
5046 template <class Emitter>
5047 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
5048   const Expr *Cond = S->getCond();
5049   PrimType CondT = this->classifyPrim(Cond->getType());
5050   LocalScope<Emitter> LS(this);
5051 
5052   LabelTy EndLabel = this->getLabel();
5053   OptLabelTy DefaultLabel = std::nullopt;
5054   unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
5055 
5056   if (const auto *CondInit = S->getInit())
5057     if (!visitStmt(CondInit))
5058       return false;
5059 
5060   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
5061     if (!visitDeclStmt(CondDecl))
5062       return false;
5063 
5064   // Initialize condition variable.
5065   if (!this->visit(Cond))
5066     return false;
5067   if (!this->emitSetLocal(CondT, CondVar, S))
5068     return false;
5069 
5070   CaseMap CaseLabels;
5071   // Create labels and comparison ops for all case statements.
5072   for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
5073        SC = SC->getNextSwitchCase()) {
5074     if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
5075       // FIXME: Implement ranges.
5076       if (CS->caseStmtIsGNURange())
5077         return false;
5078       CaseLabels[SC] = this->getLabel();
5079 
5080       const Expr *Value = CS->getLHS();
5081       PrimType ValueT = this->classifyPrim(Value->getType());
5082 
5083       // Compare the case statement's value to the switch condition.
5084       if (!this->emitGetLocal(CondT, CondVar, CS))
5085         return false;
5086       if (!this->visit(Value))
5087         return false;
5088 
5089       // Compare and jump to the case label.
5090       if (!this->emitEQ(ValueT, S))
5091         return false;
5092       if (!this->jumpTrue(CaseLabels[CS]))
5093         return false;
5094     } else {
5095       assert(!DefaultLabel);
5096       DefaultLabel = this->getLabel();
5097     }
5098   }
5099 
5100   // If none of the conditions above were true, fall through to the default
5101   // statement or jump after the switch statement.
5102   if (DefaultLabel) {
5103     if (!this->jump(*DefaultLabel))
5104       return false;
5105   } else {
5106     if (!this->jump(EndLabel))
5107       return false;
5108   }
5109 
5110   SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
5111   if (!this->visitStmt(S->getBody()))
5112     return false;
5113   this->emitLabel(EndLabel);
5114 
5115   return LS.destroyLocals();
5116 }
5117 
5118 template <class Emitter>
5119 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
5120   this->emitLabel(CaseLabels[S]);
5121   return this->visitStmt(S->getSubStmt());
5122 }
5123 
5124 template <class Emitter>
5125 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
5126   this->emitLabel(*DefaultLabel);
5127   return this->visitStmt(S->getSubStmt());
5128 }
5129 
5130 template <class Emitter>
5131 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
5132   if (this->Ctx.getLangOpts().CXXAssumptions &&
5133       !this->Ctx.getLangOpts().MSVCCompat) {
5134     for (const Attr *A : S->getAttrs()) {
5135       auto *AA = dyn_cast<CXXAssumeAttr>(A);
5136       if (!AA)
5137         continue;
5138 
5139       assert(isa<NullStmt>(S->getSubStmt()));
5140 
5141       const Expr *Assumption = AA->getAssumption();
5142       if (Assumption->isValueDependent())
5143         return false;
5144 
5145       if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
5146         continue;
5147 
5148       // Evaluate assumption.
5149       if (!this->visitBool(Assumption))
5150         return false;
5151 
5152       if (!this->emitAssume(Assumption))
5153         return false;
5154     }
5155   }
5156 
5157   // Ignore other attributes.
5158   return this->visitStmt(S->getSubStmt());
5159 }
5160 
5161 template <class Emitter>
5162 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
5163   // Ignore all handlers.
5164   return this->visitStmt(S->getTryBlock());
5165 }
5166 
5167 template <class Emitter>
5168 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
5169   assert(MD->isLambdaStaticInvoker());
5170   assert(MD->hasBody());
5171   assert(cast<CompoundStmt>(MD->getBody())->body_empty());
5172 
5173   const CXXRecordDecl *ClosureClass = MD->getParent();
5174   const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
5175   assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
5176   const Function *Func = this->getFunction(LambdaCallOp);
5177   if (!Func)
5178     return false;
5179   assert(Func->hasThisPointer());
5180   assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
5181 
5182   if (Func->hasRVO()) {
5183     if (!this->emitRVOPtr(MD))
5184       return false;
5185   }
5186 
5187   // The lambda call operator needs an instance pointer, but we don't have
5188   // one here, and we don't need one either because the lambda cannot have
5189   // any captures, as verified above. Emit a null pointer. This is then
5190   // special-cased when interpreting to not emit any misleading diagnostics.
5191   if (!this->emitNullPtr(nullptr, MD))
5192     return false;
5193 
5194   // Forward all arguments from the static invoker to the lambda call operator.
5195   for (const ParmVarDecl *PVD : MD->parameters()) {
5196     auto It = this->Params.find(PVD);
5197     assert(It != this->Params.end());
5198 
5199     // We do the lvalue-to-rvalue conversion manually here, so no need
5200     // to care about references.
5201     PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
5202     if (!this->emitGetParam(ParamType, It->second.Offset, MD))
5203       return false;
5204   }
5205 
5206   if (!this->emitCall(Func, 0, LambdaCallOp))
5207     return false;
5208 
5209   this->emitCleanup();
5210   if (ReturnType)
5211     return this->emitRet(*ReturnType, MD);
5212 
5213   // Nothing to do, since we emitted the RVO pointer above.
5214   return this->emitRetVoid(MD);
5215 }
5216 
5217 template <class Emitter>
5218 bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
5219   if (Ctx.getLangOpts().CPlusPlus23)
5220     return true;
5221 
5222   if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
5223     return true;
5224 
5225   return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
5226 }
5227 
5228 template <class Emitter>
5229 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
5230   assert(!ReturnType);
5231 
5232   auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
5233                                   const Expr *InitExpr) -> bool {
5234     // We don't know what to do with these, so just return false.
5235     if (InitExpr->getType().isNull())
5236       return false;
5237 
5238     if (std::optional<PrimType> T = this->classify(InitExpr)) {
5239       if (!this->visit(InitExpr))
5240         return false;
5241 
5242       if (F->isBitField())
5243         return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
5244       return this->emitInitThisField(*T, FieldOffset, InitExpr);
5245     }
5246     // Non-primitive case. Get a pointer to the field-to-initialize
5247     // on the stack and call visitInitialzer() for it.
5248     InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
5249     if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
5250       return false;
5251 
5252     if (!this->visitInitializer(InitExpr))
5253       return false;
5254 
5255     return this->emitFinishInitPop(InitExpr);
5256   };
5257 
5258   const RecordDecl *RD = Ctor->getParent();
5259   const Record *R = this->getRecord(RD);
5260   if (!R)
5261     return false;
5262 
5263   if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
5264     // union copy and move ctors are special.
5265     assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
5266     if (!this->emitThis(Ctor))
5267       return false;
5268 
5269     auto PVD = Ctor->getParamDecl(0);
5270     ParamOffset PO = this->Params[PVD]; // Must exist.
5271 
5272     if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
5273       return false;
5274 
5275     return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
5276            this->emitRetVoid(Ctor);
5277   }
5278 
5279   InitLinkScope<Emitter> InitScope(this, InitLink::This());
5280   for (const auto *Init : Ctor->inits()) {
5281     // Scope needed for the initializers.
5282     BlockScope<Emitter> Scope(this);
5283 
5284     const Expr *InitExpr = Init->getInit();
5285     if (const FieldDecl *Member = Init->getMember()) {
5286       const Record::Field *F = R->getField(Member);
5287 
5288       if (!emitFieldInitializer(F, F->Offset, InitExpr))
5289         return false;
5290     } else if (const Type *Base = Init->getBaseClass()) {
5291       const auto *BaseDecl = Base->getAsCXXRecordDecl();
5292       assert(BaseDecl);
5293 
5294       if (Init->isBaseVirtual()) {
5295         assert(R->getVirtualBase(BaseDecl));
5296         if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
5297           return false;
5298 
5299       } else {
5300         // Base class initializer.
5301         // Get This Base and call initializer on it.
5302         const Record::Base *B = R->getBase(BaseDecl);
5303         assert(B);
5304         if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
5305           return false;
5306       }
5307 
5308       if (!this->visitInitializer(InitExpr))
5309         return false;
5310       if (!this->emitFinishInitPop(InitExpr))
5311         return false;
5312     } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
5313       assert(IFD->getChainingSize() >= 2);
5314 
5315       unsigned NestedFieldOffset = 0;
5316       const Record::Field *NestedField = nullptr;
5317       for (const NamedDecl *ND : IFD->chain()) {
5318         const auto *FD = cast<FieldDecl>(ND);
5319         const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
5320         assert(FieldRecord);
5321 
5322         NestedField = FieldRecord->getField(FD);
5323         assert(NestedField);
5324 
5325         NestedFieldOffset += NestedField->Offset;
5326       }
5327       assert(NestedField);
5328 
5329       if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
5330         return false;
5331     } else {
5332       assert(Init->isDelegatingInitializer());
5333       if (!this->emitThis(InitExpr))
5334         return false;
5335       if (!this->visitInitializer(Init->getInit()))
5336         return false;
5337       if (!this->emitPopPtr(InitExpr))
5338         return false;
5339     }
5340 
5341     if (!Scope.destroyLocals())
5342       return false;
5343   }
5344 
5345   if (const auto *Body = Ctor->getBody())
5346     if (!visitStmt(Body))
5347       return false;
5348 
5349   return this->emitRetVoid(SourceInfo{});
5350 }
5351 
5352 template <class Emitter>
5353 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
5354   const RecordDecl *RD = Dtor->getParent();
5355   const Record *R = this->getRecord(RD);
5356   if (!R)
5357     return false;
5358 
5359   if (!Dtor->isTrivial() && Dtor->getBody()) {
5360     if (!this->visitStmt(Dtor->getBody()))
5361       return false;
5362   }
5363 
5364   if (!this->emitThis(Dtor))
5365     return false;
5366 
5367   assert(R);
5368   if (!R->isUnion()) {
5369     // First, destroy all fields.
5370     for (const Record::Field &Field : llvm::reverse(R->fields())) {
5371       const Descriptor *D = Field.Desc;
5372       if (!D->isPrimitive() && !D->isPrimitiveArray()) {
5373         if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
5374           return false;
5375         if (!this->emitDestruction(D, SourceInfo{}))
5376           return false;
5377         if (!this->emitPopPtr(SourceInfo{}))
5378           return false;
5379       }
5380     }
5381   }
5382 
5383   for (const Record::Base &Base : llvm::reverse(R->bases())) {
5384     if (Base.R->isAnonymousUnion())
5385       continue;
5386 
5387     if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
5388       return false;
5389     if (!this->emitRecordDestruction(Base.R, {}))
5390       return false;
5391     if (!this->emitPopPtr(SourceInfo{}))
5392       return false;
5393   }
5394 
5395   // FIXME: Virtual bases.
5396   return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
5397 }
5398 
5399 template <class Emitter>
5400 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
5401   // Classify the return type.
5402   ReturnType = this->classify(F->getReturnType());
5403 
5404   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
5405     return this->compileConstructor(Ctor);
5406   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
5407     return this->compileDestructor(Dtor);
5408 
5409   // Emit custom code if this is a lambda static invoker.
5410   if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
5411       MD && MD->isLambdaStaticInvoker())
5412     return this->emitLambdaStaticInvokerBody(MD);
5413 
5414   // Regular functions.
5415   if (const auto *Body = F->getBody())
5416     if (!visitStmt(Body))
5417       return false;
5418 
5419   // Emit a guard return to protect against a code path missing one.
5420   if (F->getReturnType()->isVoidType())
5421     return this->emitRetVoid(SourceInfo{});
5422   return this->emitNoRet(SourceInfo{});
5423 }
5424 
5425 template <class Emitter>
5426 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
5427   const Expr *SubExpr = E->getSubExpr();
5428   if (SubExpr->getType()->isAnyComplexType())
5429     return this->VisitComplexUnaryOperator(E);
5430   if (SubExpr->getType()->isVectorType())
5431     return this->VisitVectorUnaryOperator(E);
5432   std::optional<PrimType> T = classify(SubExpr->getType());
5433 
5434   switch (E->getOpcode()) {
5435   case UO_PostInc: { // x++
5436     if (!Ctx.getLangOpts().CPlusPlus14)
5437       return this->emitInvalid(E);
5438     if (!T)
5439       return this->emitError(E);
5440 
5441     if (!this->visit(SubExpr))
5442       return false;
5443 
5444     if (T == PT_Ptr || T == PT_FnPtr) {
5445       if (!this->emitIncPtr(E))
5446         return false;
5447 
5448       return DiscardResult ? this->emitPopPtr(E) : true;
5449     }
5450 
5451     if (T == PT_Float) {
5452       return DiscardResult ? this->emitIncfPop(getFPOptions(E), E)
5453                            : this->emitIncf(getFPOptions(E), E);
5454     }
5455 
5456     return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
5457   }
5458   case UO_PostDec: { // x--
5459     if (!Ctx.getLangOpts().CPlusPlus14)
5460       return this->emitInvalid(E);
5461     if (!T)
5462       return this->emitError(E);
5463 
5464     if (!this->visit(SubExpr))
5465       return false;
5466 
5467     if (T == PT_Ptr || T == PT_FnPtr) {
5468       if (!this->emitDecPtr(E))
5469         return false;
5470 
5471       return DiscardResult ? this->emitPopPtr(E) : true;
5472     }
5473 
5474     if (T == PT_Float) {
5475       return DiscardResult ? this->emitDecfPop(getFPOptions(E), E)
5476                            : this->emitDecf(getFPOptions(E), E);
5477     }
5478 
5479     return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
5480   }
5481   case UO_PreInc: { // ++x
5482     if (!Ctx.getLangOpts().CPlusPlus14)
5483       return this->emitInvalid(E);
5484     if (!T)
5485       return this->emitError(E);
5486 
5487     if (!this->visit(SubExpr))
5488       return false;
5489 
5490     if (T == PT_Ptr || T == PT_FnPtr) {
5491       if (!this->emitLoadPtr(E))
5492         return false;
5493       if (!this->emitConstUint8(1, E))
5494         return false;
5495       if (!this->emitAddOffsetUint8(E))
5496         return false;
5497       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5498     }
5499 
5500     // Post-inc and pre-inc are the same if the value is to be discarded.
5501     if (DiscardResult) {
5502       if (T == PT_Float)
5503         return this->emitIncfPop(getFPOptions(E), E);
5504       return this->emitIncPop(*T, E);
5505     }
5506 
5507     if (T == PT_Float) {
5508       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5509       if (!this->emitLoadFloat(E))
5510         return false;
5511       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5512         return false;
5513       if (!this->emitAddf(getFPOptions(E), E))
5514         return false;
5515       if (!this->emitStoreFloat(E))
5516         return false;
5517     } else {
5518       assert(isIntegralType(*T));
5519       if (!this->emitLoad(*T, E))
5520         return false;
5521       if (!this->emitConst(1, E))
5522         return false;
5523       if (!this->emitAdd(*T, E))
5524         return false;
5525       if (!this->emitStore(*T, E))
5526         return false;
5527     }
5528     return E->isGLValue() || this->emitLoadPop(*T, E);
5529   }
5530   case UO_PreDec: { // --x
5531     if (!Ctx.getLangOpts().CPlusPlus14)
5532       return this->emitInvalid(E);
5533     if (!T)
5534       return this->emitError(E);
5535 
5536     if (!this->visit(SubExpr))
5537       return false;
5538 
5539     if (T == PT_Ptr || T == PT_FnPtr) {
5540       if (!this->emitLoadPtr(E))
5541         return false;
5542       if (!this->emitConstUint8(1, E))
5543         return false;
5544       if (!this->emitSubOffsetUint8(E))
5545         return false;
5546       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5547     }
5548 
5549     // Post-dec and pre-dec are the same if the value is to be discarded.
5550     if (DiscardResult) {
5551       if (T == PT_Float)
5552         return this->emitDecfPop(getFPOptions(E), E);
5553       return this->emitDecPop(*T, E);
5554     }
5555 
5556     if (T == PT_Float) {
5557       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5558       if (!this->emitLoadFloat(E))
5559         return false;
5560       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5561         return false;
5562       if (!this->emitSubf(getFPOptions(E), E))
5563         return false;
5564       if (!this->emitStoreFloat(E))
5565         return false;
5566     } else {
5567       assert(isIntegralType(*T));
5568       if (!this->emitLoad(*T, E))
5569         return false;
5570       if (!this->emitConst(1, E))
5571         return false;
5572       if (!this->emitSub(*T, E))
5573         return false;
5574       if (!this->emitStore(*T, E))
5575         return false;
5576     }
5577     return E->isGLValue() || this->emitLoadPop(*T, E);
5578   }
5579   case UO_LNot: // !x
5580     if (!T)
5581       return this->emitError(E);
5582 
5583     if (DiscardResult)
5584       return this->discard(SubExpr);
5585 
5586     if (!this->visitBool(SubExpr))
5587       return false;
5588 
5589     if (!this->emitInv(E))
5590       return false;
5591 
5592     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5593       return this->emitCast(PT_Bool, ET, E);
5594     return true;
5595   case UO_Minus: // -x
5596     if (!T)
5597       return this->emitError(E);
5598 
5599     if (!this->visit(SubExpr))
5600       return false;
5601     return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
5602   case UO_Plus: // +x
5603     if (!T)
5604       return this->emitError(E);
5605 
5606     if (!this->visit(SubExpr)) // noop
5607       return false;
5608     return DiscardResult ? this->emitPop(*T, E) : true;
5609   case UO_AddrOf: // &x
5610     if (E->getType()->isMemberPointerType()) {
5611       // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5612       // member can be formed.
5613       return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
5614     }
5615     // We should already have a pointer when we get here.
5616     return this->delegate(SubExpr);
5617   case UO_Deref: // *x
5618     if (DiscardResult)
5619       return this->discard(SubExpr);
5620     return this->visit(SubExpr);
5621   case UO_Not: // ~x
5622     if (!T)
5623       return this->emitError(E);
5624 
5625     if (!this->visit(SubExpr))
5626       return false;
5627     return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
5628   case UO_Real: // __real x
5629     assert(T);
5630     return this->delegate(SubExpr);
5631   case UO_Imag: { // __imag x
5632     assert(T);
5633     if (!this->discard(SubExpr))
5634       return false;
5635     return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
5636   }
5637   case UO_Extension:
5638     return this->delegate(SubExpr);
5639   case UO_Coawait:
5640     assert(false && "Unhandled opcode");
5641   }
5642 
5643   return false;
5644 }
5645 
5646 template <class Emitter>
5647 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
5648   const Expr *SubExpr = E->getSubExpr();
5649   assert(SubExpr->getType()->isAnyComplexType());
5650 
5651   if (DiscardResult)
5652     return this->discard(SubExpr);
5653 
5654   std::optional<PrimType> ResT = classify(E);
5655   auto prepareResult = [=]() -> bool {
5656     if (!ResT && !Initializing) {
5657       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5658       if (!LocalIndex)
5659         return false;
5660       return this->emitGetPtrLocal(*LocalIndex, E);
5661     }
5662 
5663     return true;
5664   };
5665 
5666   // The offset of the temporary, if we created one.
5667   unsigned SubExprOffset = ~0u;
5668   auto createTemp = [=, &SubExprOffset]() -> bool {
5669     SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5670     if (!this->visit(SubExpr))
5671       return false;
5672     return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
5673   };
5674 
5675   PrimType ElemT = classifyComplexElementType(SubExpr->getType());
5676   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5677     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5678       return false;
5679     return this->emitArrayElemPop(ElemT, Index, E);
5680   };
5681 
5682   switch (E->getOpcode()) {
5683   case UO_Minus:
5684     if (!prepareResult())
5685       return false;
5686     if (!createTemp())
5687       return false;
5688     for (unsigned I = 0; I != 2; ++I) {
5689       if (!getElem(SubExprOffset, I))
5690         return false;
5691       if (!this->emitNeg(ElemT, E))
5692         return false;
5693       if (!this->emitInitElem(ElemT, I, E))
5694         return false;
5695     }
5696     break;
5697 
5698   case UO_Plus:   // +x
5699   case UO_AddrOf: // &x
5700   case UO_Deref:  // *x
5701     return this->delegate(SubExpr);
5702 
5703   case UO_LNot:
5704     if (!this->visit(SubExpr))
5705       return false;
5706     if (!this->emitComplexBoolCast(SubExpr))
5707       return false;
5708     if (!this->emitInv(E))
5709       return false;
5710     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5711       return this->emitCast(PT_Bool, ET, E);
5712     return true;
5713 
5714   case UO_Real:
5715     return this->emitComplexReal(SubExpr);
5716 
5717   case UO_Imag:
5718     if (!this->visit(SubExpr))
5719       return false;
5720 
5721     if (SubExpr->isLValue()) {
5722       if (!this->emitConstUint8(1, E))
5723         return false;
5724       return this->emitArrayElemPtrPopUint8(E);
5725     }
5726 
5727     // Since our _Complex implementation does not map to a primitive type,
5728     // we sometimes have to do the lvalue-to-rvalue conversion here manually.
5729     return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
5730 
5731   case UO_Not: // ~x
5732     if (!this->visit(SubExpr))
5733       return false;
5734     // Negate the imaginary component.
5735     if (!this->emitArrayElem(ElemT, 1, E))
5736       return false;
5737     if (!this->emitNeg(ElemT, E))
5738       return false;
5739     if (!this->emitInitElem(ElemT, 1, E))
5740       return false;
5741     return DiscardResult ? this->emitPopPtr(E) : true;
5742 
5743   case UO_Extension:
5744     return this->delegate(SubExpr);
5745 
5746   default:
5747     return this->emitInvalid(E);
5748   }
5749 
5750   return true;
5751 }
5752 
5753 template <class Emitter>
5754 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) {
5755   const Expr *SubExpr = E->getSubExpr();
5756   assert(SubExpr->getType()->isVectorType());
5757 
5758   if (DiscardResult)
5759     return this->discard(SubExpr);
5760 
5761   auto UnaryOp = E->getOpcode();
5762   if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot &&
5763       UnaryOp != UO_Not && UnaryOp != UO_AddrOf)
5764     return this->emitInvalid(E);
5765 
5766   // Nothing to do here.
5767   if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf)
5768     return this->delegate(SubExpr);
5769 
5770   if (!Initializing) {
5771     std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5772     if (!LocalIndex)
5773       return false;
5774     if (!this->emitGetPtrLocal(*LocalIndex, E))
5775       return false;
5776   }
5777 
5778   // The offset of the temporary, if we created one.
5779   unsigned SubExprOffset =
5780       this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5781   if (!this->visit(SubExpr))
5782     return false;
5783   if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E))
5784     return false;
5785 
5786   const auto *VecTy = SubExpr->getType()->getAs<VectorType>();
5787   PrimType ElemT = classifyVectorElementType(SubExpr->getType());
5788   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5789     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5790       return false;
5791     return this->emitArrayElemPop(ElemT, Index, E);
5792   };
5793 
5794   switch (UnaryOp) {
5795   case UO_Minus:
5796     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5797       if (!getElem(SubExprOffset, I))
5798         return false;
5799       if (!this->emitNeg(ElemT, E))
5800         return false;
5801       if (!this->emitInitElem(ElemT, I, E))
5802         return false;
5803     }
5804     break;
5805   case UO_LNot: { // !x
5806     // In C++, the logic operators !, &&, || are available for vectors. !v is
5807     // equivalent to v == 0.
5808     //
5809     // The result of the comparison is a vector of the same width and number of
5810     // elements as the comparison operands with a signed integral element type.
5811     //
5812     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
5813     QualType ResultVecTy = E->getType();
5814     PrimType ResultVecElemT =
5815         classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType());
5816     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5817       if (!getElem(SubExprOffset, I))
5818         return false;
5819       // operator ! on vectors returns -1 for 'truth', so negate it.
5820       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
5821         return false;
5822       if (!this->emitInv(E))
5823         return false;
5824       if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E))
5825         return false;
5826       if (!this->emitNeg(ElemT, E))
5827         return false;
5828       if (ElemT != ResultVecElemT &&
5829           !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E))
5830         return false;
5831       if (!this->emitInitElem(ResultVecElemT, I, E))
5832         return false;
5833     }
5834     break;
5835   }
5836   case UO_Not: // ~x
5837     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5838       if (!getElem(SubExprOffset, I))
5839         return false;
5840       if (ElemT == PT_Bool) {
5841         if (!this->emitInv(E))
5842           return false;
5843       } else {
5844         if (!this->emitComp(ElemT, E))
5845           return false;
5846       }
5847       if (!this->emitInitElem(ElemT, I, E))
5848         return false;
5849     }
5850     break;
5851   default:
5852     llvm_unreachable("Unsupported unary operators should be handled up front");
5853   }
5854   return true;
5855 }
5856 
5857 template <class Emitter>
5858 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
5859   if (DiscardResult)
5860     return true;
5861 
5862   if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
5863     return this->emitConst(ECD->getInitVal(), E);
5864   } else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
5865     return this->visit(BD->getBinding());
5866   } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
5867     const Function *F = getFunction(FuncDecl);
5868     return F && this->emitGetFnPtr(F, E);
5869   } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
5870     if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
5871       if (!this->emitGetPtrGlobal(*Index, E))
5872         return false;
5873       if (std::optional<PrimType> T = classify(E->getType())) {
5874         if (!this->visitAPValue(TPOD->getValue(), *T, E))
5875           return false;
5876         return this->emitInitGlobal(*T, *Index, E);
5877       }
5878       return this->visitAPValueInitializer(TPOD->getValue(), E);
5879     }
5880     return false;
5881   }
5882 
5883   // References are implemented via pointers, so when we see a DeclRefExpr
5884   // pointing to a reference, we need to get its value directly (i.e. the
5885   // pointer to the actual value) instead of a pointer to the pointer to the
5886   // value.
5887   bool IsReference = D->getType()->isReferenceType();
5888 
5889   // Check for local/global variables and parameters.
5890   if (auto It = Locals.find(D); It != Locals.end()) {
5891     const unsigned Offset = It->second.Offset;
5892     if (IsReference)
5893       return this->emitGetLocal(PT_Ptr, Offset, E);
5894     return this->emitGetPtrLocal(Offset, E);
5895   } else if (auto GlobalIndex = P.getGlobal(D)) {
5896     if (IsReference) {
5897       if (!Ctx.getLangOpts().CPlusPlus11)
5898         return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
5899       return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
5900     }
5901 
5902     return this->emitGetPtrGlobal(*GlobalIndex, E);
5903   } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
5904     if (auto It = this->Params.find(PVD); It != this->Params.end()) {
5905       if (IsReference || !It->second.IsPtr)
5906         return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
5907 
5908       return this->emitGetPtrParam(It->second.Offset, E);
5909     }
5910   }
5911 
5912   // In case we need to re-visit a declaration.
5913   auto revisit = [&](const VarDecl *VD) -> bool {
5914     auto VarState = this->visitDecl(VD);
5915 
5916     if (VarState.notCreated())
5917       return true;
5918     if (!VarState)
5919       return false;
5920     // Retry.
5921     return this->visitDeclRef(D, E);
5922   };
5923 
5924   // Handle lambda captures.
5925   if (auto It = this->LambdaCaptures.find(D);
5926       It != this->LambdaCaptures.end()) {
5927     auto [Offset, IsPtr] = It->second;
5928 
5929     if (IsPtr)
5930       return this->emitGetThisFieldPtr(Offset, E);
5931     return this->emitGetPtrThisField(Offset, E);
5932   } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
5933              DRE && DRE->refersToEnclosingVariableOrCapture()) {
5934     if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
5935       return revisit(VD);
5936   }
5937 
5938   if (D != InitializingDecl) {
5939     // Try to lazily visit (or emit dummy pointers for) declarations
5940     // we haven't seen yet.
5941     if (Ctx.getLangOpts().CPlusPlus) {
5942       if (const auto *VD = dyn_cast<VarDecl>(D)) {
5943         const auto typeShouldBeVisited = [&](QualType T) -> bool {
5944           if (T.isConstant(Ctx.getASTContext()))
5945             return true;
5946           if (const auto *RT = T->getAs<ReferenceType>())
5947             return RT->getPointeeType().isConstQualified();
5948           return false;
5949         };
5950 
5951         // DecompositionDecls are just proxies for us.
5952         if (isa<DecompositionDecl>(VD))
5953           return revisit(VD);
5954 
5955         if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) &&
5956             typeShouldBeVisited(VD->getType()))
5957           return revisit(VD);
5958 
5959         // FIXME: The evaluateValue() check here is a little ridiculous, since
5960         // it will ultimately call into Context::evaluateAsInitializer(). In
5961         // other words, we're evaluating the initializer, just to know if we can
5962         // evaluate the initializer.
5963         if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) &&
5964             VD->getInit() && !VD->getInit()->isValueDependent() &&
5965             VD->evaluateValue())
5966           return revisit(VD);
5967       }
5968     } else {
5969       if (const auto *VD = dyn_cast<VarDecl>(D);
5970           VD && VD->getAnyInitializer() &&
5971           VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
5972         return revisit(VD);
5973     }
5974   }
5975 
5976   if (std::optional<unsigned> I = P.getOrCreateDummy(D)) {
5977     if (!this->emitGetPtrGlobal(*I, E))
5978       return false;
5979     if (E->getType()->isVoidType())
5980       return true;
5981     // Convert the dummy pointer to another pointer type if we have to.
5982     if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
5983       if (isPtrType(PT))
5984         return this->emitDecayPtr(PT_Ptr, PT, E);
5985       return false;
5986     }
5987     return true;
5988   }
5989 
5990   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
5991     return this->emitInvalidDeclRef(DRE, E);
5992   return false;
5993 }
5994 
5995 template <class Emitter>
5996 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
5997   const auto *D = E->getDecl();
5998   return this->visitDeclRef(D, E);
5999 }
6000 
6001 template <class Emitter> void Compiler<Emitter>::emitCleanup() {
6002   for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
6003     C->emitDestruction();
6004 }
6005 
6006 template <class Emitter>
6007 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
6008                                               const QualType DerivedType) {
6009   const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
6010     if (const auto *R = Ty->getPointeeCXXRecordDecl())
6011       return R;
6012     return Ty->getAsCXXRecordDecl();
6013   };
6014   const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
6015   const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
6016 
6017   return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
6018 }
6019 
6020 /// Emit casts from a PrimType to another PrimType.
6021 template <class Emitter>
6022 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
6023                                      QualType ToQT, const Expr *E) {
6024 
6025   if (FromT == PT_Float) {
6026     // Floating to floating.
6027     if (ToT == PT_Float) {
6028       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6029       return this->emitCastFP(ToSem, getRoundingMode(E), E);
6030     }
6031 
6032     if (ToT == PT_IntAP)
6033       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT),
6034                                               getFPOptions(E), E);
6035     if (ToT == PT_IntAPS)
6036       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT),
6037                                                getFPOptions(E), E);
6038 
6039     // Float to integral.
6040     if (isIntegralType(ToT) || ToT == PT_Bool)
6041       return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E);
6042   }
6043 
6044   if (isIntegralType(FromT) || FromT == PT_Bool) {
6045     if (ToT == PT_IntAP)
6046       return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
6047     if (ToT == PT_IntAPS)
6048       return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
6049 
6050     // Integral to integral.
6051     if (isIntegralType(ToT) || ToT == PT_Bool)
6052       return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
6053 
6054     if (ToT == PT_Float) {
6055       // Integral to floating.
6056       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6057       return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E);
6058     }
6059   }
6060 
6061   return false;
6062 }
6063 
6064 /// Emits __real(SubExpr)
6065 template <class Emitter>
6066 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
6067   assert(SubExpr->getType()->isAnyComplexType());
6068 
6069   if (DiscardResult)
6070     return this->discard(SubExpr);
6071 
6072   if (!this->visit(SubExpr))
6073     return false;
6074   if (SubExpr->isLValue()) {
6075     if (!this->emitConstUint8(0, SubExpr))
6076       return false;
6077     return this->emitArrayElemPtrPopUint8(SubExpr);
6078   }
6079 
6080   // Rvalue, load the actual element.
6081   return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
6082                                 0, SubExpr);
6083 }
6084 
6085 template <class Emitter>
6086 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
6087   assert(!DiscardResult);
6088   PrimType ElemT = classifyComplexElementType(E->getType());
6089   // We emit the expression (__real(E) != 0 || __imag(E) != 0)
6090   // for us, that means (bool)E[0] || (bool)E[1]
6091   if (!this->emitArrayElem(ElemT, 0, E))
6092     return false;
6093   if (ElemT == PT_Float) {
6094     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6095       return false;
6096   } else {
6097     if (!this->emitCast(ElemT, PT_Bool, E))
6098       return false;
6099   }
6100 
6101   // We now have the bool value of E[0] on the stack.
6102   LabelTy LabelTrue = this->getLabel();
6103   if (!this->jumpTrue(LabelTrue))
6104     return false;
6105 
6106   if (!this->emitArrayElemPop(ElemT, 1, E))
6107     return false;
6108   if (ElemT == PT_Float) {
6109     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6110       return false;
6111   } else {
6112     if (!this->emitCast(ElemT, PT_Bool, E))
6113       return false;
6114   }
6115   // Leave the boolean value of E[1] on the stack.
6116   LabelTy EndLabel = this->getLabel();
6117   this->jump(EndLabel);
6118 
6119   this->emitLabel(LabelTrue);
6120   if (!this->emitPopPtr(E))
6121     return false;
6122   if (!this->emitConstBool(true, E))
6123     return false;
6124 
6125   this->fallthrough(EndLabel);
6126   this->emitLabel(EndLabel);
6127 
6128   return true;
6129 }
6130 
6131 template <class Emitter>
6132 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
6133                                               const BinaryOperator *E) {
6134   assert(E->isComparisonOp());
6135   assert(!Initializing);
6136   assert(!DiscardResult);
6137 
6138   PrimType ElemT;
6139   bool LHSIsComplex;
6140   unsigned LHSOffset;
6141   if (LHS->getType()->isAnyComplexType()) {
6142     LHSIsComplex = true;
6143     ElemT = classifyComplexElementType(LHS->getType());
6144     LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
6145                                        /*IsExtended=*/false);
6146     if (!this->visit(LHS))
6147       return false;
6148     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
6149       return false;
6150   } else {
6151     LHSIsComplex = false;
6152     PrimType LHST = classifyPrim(LHS->getType());
6153     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
6154     if (!this->visit(LHS))
6155       return false;
6156     if (!this->emitSetLocal(LHST, LHSOffset, E))
6157       return false;
6158   }
6159 
6160   bool RHSIsComplex;
6161   unsigned RHSOffset;
6162   if (RHS->getType()->isAnyComplexType()) {
6163     RHSIsComplex = true;
6164     ElemT = classifyComplexElementType(RHS->getType());
6165     RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
6166                                        /*IsExtended=*/false);
6167     if (!this->visit(RHS))
6168       return false;
6169     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
6170       return false;
6171   } else {
6172     RHSIsComplex = false;
6173     PrimType RHST = classifyPrim(RHS->getType());
6174     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
6175     if (!this->visit(RHS))
6176       return false;
6177     if (!this->emitSetLocal(RHST, RHSOffset, E))
6178       return false;
6179   }
6180 
6181   auto getElem = [&](unsigned LocalOffset, unsigned Index,
6182                      bool IsComplex) -> bool {
6183     if (IsComplex) {
6184       if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
6185         return false;
6186       return this->emitArrayElemPop(ElemT, Index, E);
6187     }
6188     return this->emitGetLocal(ElemT, LocalOffset, E);
6189   };
6190 
6191   for (unsigned I = 0; I != 2; ++I) {
6192     // Get both values.
6193     if (!getElem(LHSOffset, I, LHSIsComplex))
6194       return false;
6195     if (!getElem(RHSOffset, I, RHSIsComplex))
6196       return false;
6197     // And compare them.
6198     if (!this->emitEQ(ElemT, E))
6199       return false;
6200 
6201     if (!this->emitCastBoolUint8(E))
6202       return false;
6203   }
6204 
6205   // We now have two bool values on the stack. Compare those.
6206   if (!this->emitAddUint8(E))
6207     return false;
6208   if (!this->emitConstUint8(2, E))
6209     return false;
6210 
6211   if (E->getOpcode() == BO_EQ) {
6212     if (!this->emitEQUint8(E))
6213       return false;
6214   } else if (E->getOpcode() == BO_NE) {
6215     if (!this->emitNEUint8(E))
6216       return false;
6217   } else
6218     return false;
6219 
6220   // In C, this returns an int.
6221   if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
6222     return this->emitCast(PT_Bool, ResT, E);
6223   return true;
6224 }
6225 
6226 /// When calling this, we have a pointer of the local-to-destroy
6227 /// on the stack.
6228 /// Emit destruction of record types (or arrays of record types).
6229 template <class Emitter>
6230 bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) {
6231   assert(R);
6232   assert(!R->isAnonymousUnion());
6233   const CXXDestructorDecl *Dtor = R->getDestructor();
6234   if (!Dtor || Dtor->isTrivial())
6235     return true;
6236 
6237   assert(Dtor);
6238   const Function *DtorFunc = getFunction(Dtor);
6239   if (!DtorFunc)
6240     return false;
6241   assert(DtorFunc->hasThisPointer());
6242   assert(DtorFunc->getNumParams() == 1);
6243   if (!this->emitDupPtr(Loc))
6244     return false;
6245   return this->emitCall(DtorFunc, 0, Loc);
6246 }
6247 /// When calling this, we have a pointer of the local-to-destroy
6248 /// on the stack.
6249 /// Emit destruction of record types (or arrays of record types).
6250 template <class Emitter>
6251 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc,
6252                                         SourceInfo Loc) {
6253   assert(Desc);
6254   assert(!Desc->isPrimitive());
6255   assert(!Desc->isPrimitiveArray());
6256 
6257   // Arrays.
6258   if (Desc->isArray()) {
6259     const Descriptor *ElemDesc = Desc->ElemDesc;
6260     assert(ElemDesc);
6261 
6262     // Don't need to do anything for these.
6263     if (ElemDesc->isPrimitiveArray())
6264       return true;
6265 
6266     // If this is an array of record types, check if we need
6267     // to call the element destructors at all. If not, try
6268     // to save the work.
6269     if (const Record *ElemRecord = ElemDesc->ElemRecord) {
6270       if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
6271           !Dtor || Dtor->isTrivial())
6272         return true;
6273     }
6274 
6275     for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
6276       if (!this->emitConstUint64(I, Loc))
6277         return false;
6278       if (!this->emitArrayElemPtrUint64(Loc))
6279         return false;
6280       if (!this->emitDestruction(ElemDesc, Loc))
6281         return false;
6282       if (!this->emitPopPtr(Loc))
6283         return false;
6284     }
6285     return true;
6286   }
6287 
6288   assert(Desc->ElemRecord);
6289   if (Desc->ElemRecord->isAnonymousUnion())
6290     return true;
6291 
6292   return this->emitRecordDestruction(Desc->ElemRecord, Loc);
6293 }
6294 
6295 namespace clang {
6296 namespace interp {
6297 
6298 template class Compiler<ByteCodeEmitter>;
6299 template class Compiler<EvalEmitter>;
6300 
6301 } // namespace interp
6302 } // namespace clang
6303