xref: /llvm-project/clang/lib/AST/ByteCode/Compiler.cpp (revision 641b4d5370f1ce2f5d448cf63519f391be1cf263)
1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Compiler.h"
10 #include "ByteCodeEmitter.h"
11 #include "Context.h"
12 #include "FixedPoint.h"
13 #include "Floating.h"
14 #include "Function.h"
15 #include "InterpShared.h"
16 #include "PrimType.h"
17 #include "Program.h"
18 #include "clang/AST/Attr.h"
19 
20 using namespace clang;
21 using namespace clang::interp;
22 
23 using APSInt = llvm::APSInt;
24 
25 namespace clang {
26 namespace interp {
27 
28 /// Scope used to handle temporaries in toplevel variable declarations.
29 template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
30 public:
31   DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
32       : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
33         OldInitializingDecl(Ctx->InitializingDecl) {
34     Ctx->InitializingDecl = VD;
35     Ctx->InitStack.push_back(InitLink::Decl(VD));
36   }
37 
38   void addExtended(const Scope::Local &Local) override {
39     return this->addLocal(Local);
40   }
41 
42   ~DeclScope() {
43     this->Ctx->InitializingDecl = OldInitializingDecl;
44     this->Ctx->InitStack.pop_back();
45   }
46 
47 private:
48   Program::DeclScope Scope;
49   const ValueDecl *OldInitializingDecl;
50 };
51 
52 /// Scope used to handle initialization methods.
53 template <class Emitter> class OptionScope final {
54 public:
55   /// Root constructor, compiling or discarding primitives.
56   OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
57               bool NewInitializing)
58       : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
59         OldInitializing(Ctx->Initializing) {
60     Ctx->DiscardResult = NewDiscardResult;
61     Ctx->Initializing = NewInitializing;
62   }
63 
64   ~OptionScope() {
65     Ctx->DiscardResult = OldDiscardResult;
66     Ctx->Initializing = OldInitializing;
67   }
68 
69 private:
70   /// Parent context.
71   Compiler<Emitter> *Ctx;
72   /// Old discard flag to restore.
73   bool OldDiscardResult;
74   bool OldInitializing;
75 };
76 
77 template <class Emitter>
78 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
79   switch (Kind) {
80   case K_This:
81     return Ctx->emitThis(E);
82   case K_Field:
83     // We're assuming there's a base pointer on the stack already.
84     return Ctx->emitGetPtrFieldPop(Offset, E);
85   case K_Temp:
86     return Ctx->emitGetPtrLocal(Offset, E);
87   case K_Decl:
88     return Ctx->visitDeclRef(D, E);
89   case K_Elem:
90     if (!Ctx->emitConstUint32(Offset, E))
91       return false;
92     return Ctx->emitArrayElemPtrPopUint32(E);
93   default:
94     llvm_unreachable("Unhandled InitLink kind");
95   }
96   return true;
97 }
98 
99 /// Scope managing label targets.
100 template <class Emitter> class LabelScope {
101 public:
102   virtual ~LabelScope() {}
103 
104 protected:
105   LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
106   /// Compiler instance.
107   Compiler<Emitter> *Ctx;
108 };
109 
110 /// Sets the context for break/continue statements.
111 template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
112 public:
113   using LabelTy = typename Compiler<Emitter>::LabelTy;
114   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
115 
116   LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
117       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
118         OldContinueLabel(Ctx->ContinueLabel),
119         OldBreakVarScope(Ctx->BreakVarScope),
120         OldContinueVarScope(Ctx->ContinueVarScope) {
121     this->Ctx->BreakLabel = BreakLabel;
122     this->Ctx->ContinueLabel = ContinueLabel;
123     this->Ctx->BreakVarScope = this->Ctx->VarScope;
124     this->Ctx->ContinueVarScope = this->Ctx->VarScope;
125   }
126 
127   ~LoopScope() {
128     this->Ctx->BreakLabel = OldBreakLabel;
129     this->Ctx->ContinueLabel = OldContinueLabel;
130     this->Ctx->ContinueVarScope = OldContinueVarScope;
131     this->Ctx->BreakVarScope = OldBreakVarScope;
132   }
133 
134 private:
135   OptLabelTy OldBreakLabel;
136   OptLabelTy OldContinueLabel;
137   VariableScope<Emitter> *OldBreakVarScope;
138   VariableScope<Emitter> *OldContinueVarScope;
139 };
140 
141 // Sets the context for a switch scope, mapping labels.
142 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
143 public:
144   using LabelTy = typename Compiler<Emitter>::LabelTy;
145   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
146   using CaseMap = typename Compiler<Emitter>::CaseMap;
147 
148   SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
149               OptLabelTy DefaultLabel)
150       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
151         OldDefaultLabel(this->Ctx->DefaultLabel),
152         OldCaseLabels(std::move(this->Ctx->CaseLabels)),
153         OldLabelVarScope(Ctx->BreakVarScope) {
154     this->Ctx->BreakLabel = BreakLabel;
155     this->Ctx->DefaultLabel = DefaultLabel;
156     this->Ctx->CaseLabels = std::move(CaseLabels);
157     this->Ctx->BreakVarScope = this->Ctx->VarScope;
158   }
159 
160   ~SwitchScope() {
161     this->Ctx->BreakLabel = OldBreakLabel;
162     this->Ctx->DefaultLabel = OldDefaultLabel;
163     this->Ctx->CaseLabels = std::move(OldCaseLabels);
164     this->Ctx->BreakVarScope = OldLabelVarScope;
165   }
166 
167 private:
168   OptLabelTy OldBreakLabel;
169   OptLabelTy OldDefaultLabel;
170   CaseMap OldCaseLabels;
171   VariableScope<Emitter> *OldLabelVarScope;
172 };
173 
174 template <class Emitter> class StmtExprScope final {
175 public:
176   StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
177     Ctx->InStmtExpr = true;
178   }
179 
180   ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
181 
182 private:
183   Compiler<Emitter> *Ctx;
184   bool OldFlag;
185 };
186 
187 } // namespace interp
188 } // namespace clang
189 
190 template <class Emitter>
191 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
192   const Expr *SubExpr = CE->getSubExpr();
193   switch (CE->getCastKind()) {
194 
195   case CK_LValueToRValue: {
196     if (DiscardResult)
197       return this->discard(SubExpr);
198 
199     std::optional<PrimType> SubExprT = classify(SubExpr->getType());
200     // Prepare storage for the result.
201     if (!Initializing && !SubExprT) {
202       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
203       if (!LocalIndex)
204         return false;
205       if (!this->emitGetPtrLocal(*LocalIndex, CE))
206         return false;
207     }
208 
209     if (!this->visit(SubExpr))
210       return false;
211 
212     if (SubExprT)
213       return this->emitLoadPop(*SubExprT, CE);
214 
215     // If the subexpr type is not primitive, we need to perform a copy here.
216     // This happens for example in C when dereferencing a pointer of struct
217     // type.
218     return this->emitMemcpy(CE);
219   }
220 
221   case CK_DerivedToBaseMemberPointer: {
222     assert(classifyPrim(CE->getType()) == PT_MemberPtr);
223     assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
224     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
225     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
226 
227     unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
228                                                QualType(FromMP->getClass(), 0));
229 
230     if (!this->delegate(SubExpr))
231       return false;
232 
233     return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
234   }
235 
236   case CK_BaseToDerivedMemberPointer: {
237     assert(classifyPrim(CE) == PT_MemberPtr);
238     assert(classifyPrim(SubExpr) == PT_MemberPtr);
239     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
240     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
241 
242     unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
243                                                QualType(ToMP->getClass(), 0));
244 
245     if (!this->delegate(SubExpr))
246       return false;
247     return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
248   }
249 
250   case CK_UncheckedDerivedToBase:
251   case CK_DerivedToBase: {
252     if (!this->delegate(SubExpr))
253       return false;
254 
255     const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
256       if (const auto *PT = dyn_cast<PointerType>(Ty))
257         return PT->getPointeeType()->getAsCXXRecordDecl();
258       return Ty->getAsCXXRecordDecl();
259     };
260 
261     // FIXME: We can express a series of non-virtual casts as a single
262     // GetPtrBasePop op.
263     QualType CurType = SubExpr->getType();
264     for (const CXXBaseSpecifier *B : CE->path()) {
265       if (B->isVirtual()) {
266         if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
267           return false;
268         CurType = B->getType();
269       } else {
270         unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
271         if (!this->emitGetPtrBasePop(DerivedOffset, CE))
272           return false;
273         CurType = B->getType();
274       }
275     }
276 
277     return true;
278   }
279 
280   case CK_BaseToDerived: {
281     if (!this->delegate(SubExpr))
282       return false;
283 
284     unsigned DerivedOffset =
285         collectBaseOffset(SubExpr->getType(), CE->getType());
286 
287     return this->emitGetPtrDerivedPop(DerivedOffset, CE);
288   }
289 
290   case CK_FloatingCast: {
291     // HLSL uses CK_FloatingCast to cast between vectors.
292     if (!SubExpr->getType()->isFloatingType() ||
293         !CE->getType()->isFloatingType())
294       return false;
295     if (DiscardResult)
296       return this->discard(SubExpr);
297     if (!this->visit(SubExpr))
298       return false;
299     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
300     return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
301   }
302 
303   case CK_IntegralToFloating: {
304     if (DiscardResult)
305       return this->discard(SubExpr);
306     std::optional<PrimType> FromT = classify(SubExpr->getType());
307     if (!FromT)
308       return false;
309 
310     if (!this->visit(SubExpr))
311       return false;
312 
313     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
314     return this->emitCastIntegralFloating(*FromT, TargetSemantics,
315                                           getFPOptions(CE), CE);
316   }
317 
318   case CK_FloatingToBoolean:
319   case CK_FloatingToIntegral: {
320     if (DiscardResult)
321       return this->discard(SubExpr);
322 
323     std::optional<PrimType> ToT = classify(CE->getType());
324 
325     if (!ToT)
326       return false;
327 
328     if (!this->visit(SubExpr))
329       return false;
330 
331     if (ToT == PT_IntAP)
332       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
333                                               getFPOptions(CE), CE);
334     if (ToT == PT_IntAPS)
335       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
336                                                getFPOptions(CE), CE);
337 
338     return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE);
339   }
340 
341   case CK_NullToPointer:
342   case CK_NullToMemberPointer: {
343     if (!this->discard(SubExpr))
344       return false;
345     if (DiscardResult)
346       return true;
347 
348     const Descriptor *Desc = nullptr;
349     const QualType PointeeType = CE->getType()->getPointeeType();
350     if (!PointeeType.isNull()) {
351       if (std::optional<PrimType> T = classify(PointeeType))
352         Desc = P.createDescriptor(SubExpr, *T);
353       else
354         Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
355                                   std::nullopt, true, false,
356                                   /*IsMutable=*/false, nullptr);
357     }
358     return this->emitNull(classifyPrim(CE->getType()), Desc, CE);
359   }
360 
361   case CK_PointerToIntegral: {
362     if (DiscardResult)
363       return this->discard(SubExpr);
364 
365     if (!this->visit(SubExpr))
366       return false;
367 
368     // If SubExpr doesn't result in a pointer, make it one.
369     if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
370       assert(isPtrType(FromT));
371       if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
372         return false;
373     }
374 
375     PrimType T = classifyPrim(CE->getType());
376     if (T == PT_IntAP)
377       return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
378                                              CE);
379     if (T == PT_IntAPS)
380       return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
381                                               CE);
382     return this->emitCastPointerIntegral(T, CE);
383   }
384 
385   case CK_ArrayToPointerDecay: {
386     if (!this->visit(SubExpr))
387       return false;
388     if (!this->emitArrayDecay(CE))
389       return false;
390     if (DiscardResult)
391       return this->emitPopPtr(CE);
392     return true;
393   }
394 
395   case CK_IntegralToPointer: {
396     QualType IntType = SubExpr->getType();
397     assert(IntType->isIntegralOrEnumerationType());
398     if (!this->visit(SubExpr))
399       return false;
400     // FIXME: I think the discard is wrong since the int->ptr cast might cause a
401     // diagnostic.
402     PrimType T = classifyPrim(IntType);
403     if (DiscardResult)
404       return this->emitPop(T, CE);
405 
406     QualType PtrType = CE->getType();
407     const Descriptor *Desc;
408     if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
409       Desc = P.createDescriptor(SubExpr, *T);
410     else if (PtrType->getPointeeType()->isVoidType())
411       Desc = nullptr;
412     else
413       Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
414                                 Descriptor::InlineDescMD, true, false,
415                                 /*IsMutable=*/false, nullptr);
416 
417     if (!this->emitGetIntPtr(T, Desc, CE))
418       return false;
419 
420     PrimType DestPtrT = classifyPrim(PtrType);
421     if (DestPtrT == PT_Ptr)
422       return true;
423 
424     // In case we're converting the integer to a non-Pointer.
425     return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
426   }
427 
428   case CK_AtomicToNonAtomic:
429   case CK_ConstructorConversion:
430   case CK_FunctionToPointerDecay:
431   case CK_NonAtomicToAtomic:
432   case CK_NoOp:
433   case CK_UserDefinedConversion:
434   case CK_AddressSpaceConversion:
435   case CK_CPointerToObjCPointerCast:
436     return this->delegate(SubExpr);
437 
438   case CK_BitCast: {
439     // Reject bitcasts to atomic types.
440     if (CE->getType()->isAtomicType()) {
441       if (!this->discard(SubExpr))
442         return false;
443       return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
444     }
445 
446     if (DiscardResult)
447       return this->discard(SubExpr);
448 
449     QualType SubExprTy = SubExpr->getType();
450     std::optional<PrimType> FromT = classify(SubExprTy);
451     std::optional<PrimType> ToT = classify(CE->getType());
452     if (!FromT || !ToT)
453       return false;
454 
455     assert(isPtrType(*FromT));
456     assert(isPtrType(*ToT));
457     if (FromT == ToT) {
458       if (CE->getType()->isVoidPointerType())
459         return this->delegate(SubExpr);
460 
461       if (!this->visit(SubExpr))
462         return false;
463       if (FromT == PT_Ptr)
464         return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
465       return true;
466     }
467 
468     if (!this->visit(SubExpr))
469       return false;
470     return this->emitDecayPtr(*FromT, *ToT, CE);
471   }
472 
473   case CK_IntegralToBoolean:
474   case CK_FixedPointToBoolean:
475   case CK_BooleanToSignedIntegral:
476   case CK_IntegralCast: {
477     if (DiscardResult)
478       return this->discard(SubExpr);
479     std::optional<PrimType> FromT = classify(SubExpr->getType());
480     std::optional<PrimType> ToT = classify(CE->getType());
481 
482     if (!FromT || !ToT)
483       return false;
484 
485     if (!this->visit(SubExpr))
486       return false;
487 
488     // Possibly diagnose casts to enum types if the target type does not
489     // have a fixed size.
490     if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
491       if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
492           ET && !ET->getDecl()->isFixed()) {
493         if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
494           return false;
495       }
496     }
497 
498     auto maybeNegate = [&]() -> bool {
499       if (CE->getCastKind() == CK_BooleanToSignedIntegral)
500         return this->emitNeg(*ToT, CE);
501       return true;
502     };
503 
504     if (ToT == PT_IntAP)
505       return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
506              maybeNegate();
507     if (ToT == PT_IntAPS)
508       return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
509              maybeNegate();
510 
511     if (FromT == ToT)
512       return true;
513     if (!this->emitCast(*FromT, *ToT, CE))
514       return false;
515 
516     return maybeNegate();
517   }
518 
519   case CK_PointerToBoolean:
520   case CK_MemberPointerToBoolean: {
521     PrimType PtrT = classifyPrim(SubExpr->getType());
522 
523     if (!this->visit(SubExpr))
524       return false;
525     return this->emitIsNonNull(PtrT, CE);
526   }
527 
528   case CK_IntegralComplexToBoolean:
529   case CK_FloatingComplexToBoolean: {
530     if (DiscardResult)
531       return this->discard(SubExpr);
532     if (!this->visit(SubExpr))
533       return false;
534     return this->emitComplexBoolCast(SubExpr);
535   }
536 
537   case CK_IntegralComplexToReal:
538   case CK_FloatingComplexToReal:
539     return this->emitComplexReal(SubExpr);
540 
541   case CK_IntegralRealToComplex:
542   case CK_FloatingRealToComplex: {
543     // We're creating a complex value here, so we need to
544     // allocate storage for it.
545     if (!Initializing) {
546       unsigned LocalIndex = allocateTemporary(CE);
547       if (!this->emitGetPtrLocal(LocalIndex, CE))
548         return false;
549     }
550 
551     // Init the complex value to {SubExpr, 0}.
552     if (!this->visitArrayElemInit(0, SubExpr))
553       return false;
554     // Zero-init the second element.
555     PrimType T = classifyPrim(SubExpr->getType());
556     if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
557       return false;
558     return this->emitInitElem(T, 1, SubExpr);
559   }
560 
561   case CK_IntegralComplexCast:
562   case CK_FloatingComplexCast:
563   case CK_IntegralComplexToFloatingComplex:
564   case CK_FloatingComplexToIntegralComplex: {
565     assert(CE->getType()->isAnyComplexType());
566     assert(SubExpr->getType()->isAnyComplexType());
567     if (DiscardResult)
568       return this->discard(SubExpr);
569 
570     if (!Initializing) {
571       std::optional<unsigned> LocalIndex = allocateLocal(CE);
572       if (!LocalIndex)
573         return false;
574       if (!this->emitGetPtrLocal(*LocalIndex, CE))
575         return false;
576     }
577 
578     // Location for the SubExpr.
579     // Since SubExpr is of complex type, visiting it results in a pointer
580     // anyway, so we just create a temporary pointer variable.
581     unsigned SubExprOffset = allocateLocalPrimitive(
582         SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
583     if (!this->visit(SubExpr))
584       return false;
585     if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
586       return false;
587 
588     PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
589     QualType DestElemType =
590         CE->getType()->getAs<ComplexType>()->getElementType();
591     PrimType DestElemT = classifyPrim(DestElemType);
592     // Cast both elements individually.
593     for (unsigned I = 0; I != 2; ++I) {
594       if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
595         return false;
596       if (!this->emitArrayElemPop(SourceElemT, I, CE))
597         return false;
598 
599       // Do the cast.
600       if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
601         return false;
602 
603       // Save the value.
604       if (!this->emitInitElem(DestElemT, I, CE))
605         return false;
606     }
607     return true;
608   }
609 
610   case CK_VectorSplat: {
611     assert(!classify(CE->getType()));
612     assert(classify(SubExpr->getType()));
613     assert(CE->getType()->isVectorType());
614 
615     if (DiscardResult)
616       return this->discard(SubExpr);
617 
618     if (!Initializing) {
619       std::optional<unsigned> LocalIndex = allocateLocal(CE);
620       if (!LocalIndex)
621         return false;
622       if (!this->emitGetPtrLocal(*LocalIndex, CE))
623         return false;
624     }
625 
626     const auto *VT = CE->getType()->getAs<VectorType>();
627     PrimType ElemT = classifyPrim(SubExpr->getType());
628     unsigned ElemOffset = allocateLocalPrimitive(
629         SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
630 
631     // Prepare a local variable for the scalar value.
632     if (!this->visit(SubExpr))
633       return false;
634     if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
635       return false;
636 
637     if (!this->emitSetLocal(ElemT, ElemOffset, CE))
638       return false;
639 
640     for (unsigned I = 0; I != VT->getNumElements(); ++I) {
641       if (!this->emitGetLocal(ElemT, ElemOffset, CE))
642         return false;
643       if (!this->emitInitElem(ElemT, I, CE))
644         return false;
645     }
646 
647     return true;
648   }
649 
650   case CK_HLSLVectorTruncation: {
651     assert(SubExpr->getType()->isVectorType());
652     if (std::optional<PrimType> ResultT = classify(CE)) {
653       assert(!DiscardResult);
654       // Result must be either a float or integer. Take the first element.
655       if (!this->visit(SubExpr))
656         return false;
657       return this->emitArrayElemPop(*ResultT, 0, CE);
658     }
659     // Otherwise, this truncates from one vector type to another.
660     assert(CE->getType()->isVectorType());
661 
662     if (!Initializing) {
663       unsigned LocalIndex = allocateTemporary(CE);
664       if (!this->emitGetPtrLocal(LocalIndex, CE))
665         return false;
666     }
667     unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements();
668     assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize);
669     if (!this->visit(SubExpr))
670       return false;
671     return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0,
672                                ToSize, CE);
673   };
674 
675   case CK_IntegralToFixedPoint: {
676     if (!this->visit(SubExpr))
677       return false;
678 
679     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
680     uint32_t I;
681     std::memcpy(&I, &Sem, sizeof(Sem));
682     return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), I,
683                                             CE);
684   }
685 
686   case CK_ToVoid:
687     return discard(SubExpr);
688 
689   default:
690     return this->emitInvalid(CE);
691   }
692   llvm_unreachable("Unhandled clang::CastKind enum");
693 }
694 
695 template <class Emitter>
696 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
697   if (DiscardResult)
698     return true;
699 
700   return this->emitConst(LE->getValue(), LE);
701 }
702 
703 template <class Emitter>
704 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
705   if (DiscardResult)
706     return true;
707 
708   return this->emitConstFloat(E->getValue(), E);
709 }
710 
711 template <class Emitter>
712 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
713   assert(E->getType()->isAnyComplexType());
714   if (DiscardResult)
715     return true;
716 
717   if (!Initializing) {
718     unsigned LocalIndex = allocateTemporary(E);
719     if (!this->emitGetPtrLocal(LocalIndex, E))
720       return false;
721   }
722 
723   const Expr *SubExpr = E->getSubExpr();
724   PrimType SubExprT = classifyPrim(SubExpr->getType());
725 
726   if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
727     return false;
728   if (!this->emitInitElem(SubExprT, 0, SubExpr))
729     return false;
730   return this->visitArrayElemInit(1, SubExpr);
731 }
732 
733 template <class Emitter>
734 bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) {
735   assert(E->getType()->isFixedPointType());
736   assert(classifyPrim(E) == PT_FixedPoint);
737 
738   auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
739   APInt Value = E->getValue();
740   return this->emitConstFixedPoint(FixedPoint(Value, Sem), E);
741 }
742 
743 template <class Emitter>
744 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
745   return this->delegate(E->getSubExpr());
746 }
747 
748 template <class Emitter>
749 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
750   // Need short-circuiting for these.
751   if (BO->isLogicalOp() && !BO->getType()->isVectorType())
752     return this->VisitLogicalBinOp(BO);
753 
754   const Expr *LHS = BO->getLHS();
755   const Expr *RHS = BO->getRHS();
756 
757   // Handle comma operators. Just discard the LHS
758   // and delegate to RHS.
759   if (BO->isCommaOp()) {
760     if (!this->discard(LHS))
761       return false;
762     if (RHS->getType()->isVoidType())
763       return this->discard(RHS);
764 
765     return this->delegate(RHS);
766   }
767 
768   if (BO->getType()->isAnyComplexType())
769     return this->VisitComplexBinOp(BO);
770   if (BO->getType()->isVectorType())
771     return this->VisitVectorBinOp(BO);
772   if ((LHS->getType()->isAnyComplexType() ||
773        RHS->getType()->isAnyComplexType()) &&
774       BO->isComparisonOp())
775     return this->emitComplexComparison(LHS, RHS, BO);
776 
777   if (BO->isPtrMemOp()) {
778     if (!this->visit(LHS))
779       return false;
780 
781     if (!this->visit(RHS))
782       return false;
783 
784     if (!this->emitToMemberPtr(BO))
785       return false;
786 
787     if (classifyPrim(BO) == PT_MemberPtr)
788       return true;
789 
790     if (!this->emitCastMemberPtrPtr(BO))
791       return false;
792     return DiscardResult ? this->emitPopPtr(BO) : true;
793   }
794 
795   // Typecheck the args.
796   std::optional<PrimType> LT = classify(LHS);
797   std::optional<PrimType> RT = classify(RHS);
798   std::optional<PrimType> T = classify(BO->getType());
799 
800   // Special case for C++'s three-way/spaceship operator <=>, which
801   // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
802   // have a PrimType).
803   if (!T && BO->getOpcode() == BO_Cmp) {
804     if (DiscardResult)
805       return true;
806     const ComparisonCategoryInfo *CmpInfo =
807         Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
808     assert(CmpInfo);
809 
810     // We need a temporary variable holding our return value.
811     if (!Initializing) {
812       std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
813       if (!this->emitGetPtrLocal(*ResultIndex, BO))
814         return false;
815     }
816 
817     if (!visit(LHS) || !visit(RHS))
818       return false;
819 
820     return this->emitCMP3(*LT, CmpInfo, BO);
821   }
822 
823   if (!LT || !RT || !T)
824     return false;
825 
826   // Pointer arithmetic special case.
827   if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
828     if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
829       return this->VisitPointerArithBinOp(BO);
830   }
831 
832   // Assignmentes require us to evalute the RHS first.
833   if (BO->getOpcode() == BO_Assign) {
834     if (!visit(RHS) || !visit(LHS))
835       return false;
836     if (!this->emitFlip(*LT, *RT, BO))
837       return false;
838   } else {
839     if (!visit(LHS) || !visit(RHS))
840       return false;
841   }
842 
843   // For languages such as C, cast the result of one
844   // of our comparision opcodes to T (which is usually int).
845   auto MaybeCastToBool = [this, T, BO](bool Result) {
846     if (!Result)
847       return false;
848     if (DiscardResult)
849       return this->emitPop(*T, BO);
850     if (T != PT_Bool)
851       return this->emitCast(PT_Bool, *T, BO);
852     return true;
853   };
854 
855   auto Discard = [this, T, BO](bool Result) {
856     if (!Result)
857       return false;
858     return DiscardResult ? this->emitPop(*T, BO) : true;
859   };
860 
861   switch (BO->getOpcode()) {
862   case BO_EQ:
863     return MaybeCastToBool(this->emitEQ(*LT, BO));
864   case BO_NE:
865     return MaybeCastToBool(this->emitNE(*LT, BO));
866   case BO_LT:
867     return MaybeCastToBool(this->emitLT(*LT, BO));
868   case BO_LE:
869     return MaybeCastToBool(this->emitLE(*LT, BO));
870   case BO_GT:
871     return MaybeCastToBool(this->emitGT(*LT, BO));
872   case BO_GE:
873     return MaybeCastToBool(this->emitGE(*LT, BO));
874   case BO_Sub:
875     if (BO->getType()->isFloatingType())
876       return Discard(this->emitSubf(getFPOptions(BO), BO));
877     return Discard(this->emitSub(*T, BO));
878   case BO_Add:
879     if (BO->getType()->isFloatingType())
880       return Discard(this->emitAddf(getFPOptions(BO), BO));
881     return Discard(this->emitAdd(*T, BO));
882   case BO_Mul:
883     if (BO->getType()->isFloatingType())
884       return Discard(this->emitMulf(getFPOptions(BO), BO));
885     return Discard(this->emitMul(*T, BO));
886   case BO_Rem:
887     return Discard(this->emitRem(*T, BO));
888   case BO_Div:
889     if (BO->getType()->isFloatingType())
890       return Discard(this->emitDivf(getFPOptions(BO), BO));
891     return Discard(this->emitDiv(*T, BO));
892   case BO_Assign:
893     if (DiscardResult)
894       return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
895                                      : this->emitStorePop(*T, BO);
896     if (LHS->refersToBitField()) {
897       if (!this->emitStoreBitField(*T, BO))
898         return false;
899     } else {
900       if (!this->emitStore(*T, BO))
901         return false;
902     }
903     // Assignments aren't necessarily lvalues in C.
904     // Load from them in that case.
905     if (!BO->isLValue())
906       return this->emitLoadPop(*T, BO);
907     return true;
908   case BO_And:
909     return Discard(this->emitBitAnd(*T, BO));
910   case BO_Or:
911     return Discard(this->emitBitOr(*T, BO));
912   case BO_Shl:
913     return Discard(this->emitShl(*LT, *RT, BO));
914   case BO_Shr:
915     return Discard(this->emitShr(*LT, *RT, BO));
916   case BO_Xor:
917     return Discard(this->emitBitXor(*T, BO));
918   case BO_LOr:
919   case BO_LAnd:
920     llvm_unreachable("Already handled earlier");
921   default:
922     return false;
923   }
924 
925   llvm_unreachable("Unhandled binary op");
926 }
927 
928 /// Perform addition/subtraction of a pointer and an integer or
929 /// subtraction of two pointers.
930 template <class Emitter>
931 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
932   BinaryOperatorKind Op = E->getOpcode();
933   const Expr *LHS = E->getLHS();
934   const Expr *RHS = E->getRHS();
935 
936   if ((Op != BO_Add && Op != BO_Sub) ||
937       (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
938     return false;
939 
940   std::optional<PrimType> LT = classify(LHS);
941   std::optional<PrimType> RT = classify(RHS);
942 
943   if (!LT || !RT)
944     return false;
945 
946   // Visit the given pointer expression and optionally convert to a PT_Ptr.
947   auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
948     if (!this->visit(E))
949       return false;
950     if (T != PT_Ptr)
951       return this->emitDecayPtr(T, PT_Ptr, E);
952     return true;
953   };
954 
955   if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
956     if (Op != BO_Sub)
957       return false;
958 
959     assert(E->getType()->isIntegerType());
960     if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
961       return false;
962 
963     return this->emitSubPtr(classifyPrim(E->getType()), E);
964   }
965 
966   PrimType OffsetType;
967   if (LHS->getType()->isIntegerType()) {
968     if (!visitAsPointer(RHS, *RT))
969       return false;
970     if (!this->visit(LHS))
971       return false;
972     OffsetType = *LT;
973   } else if (RHS->getType()->isIntegerType()) {
974     if (!visitAsPointer(LHS, *LT))
975       return false;
976     if (!this->visit(RHS))
977       return false;
978     OffsetType = *RT;
979   } else {
980     return false;
981   }
982 
983   // Do the operation and optionally transform to
984   // result pointer type.
985   if (Op == BO_Add) {
986     if (!this->emitAddOffset(OffsetType, E))
987       return false;
988 
989     if (classifyPrim(E) != PT_Ptr)
990       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
991     return true;
992   } else if (Op == BO_Sub) {
993     if (!this->emitSubOffset(OffsetType, E))
994       return false;
995 
996     if (classifyPrim(E) != PT_Ptr)
997       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
998     return true;
999   }
1000 
1001   return false;
1002 }
1003 
1004 template <class Emitter>
1005 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
1006   assert(E->isLogicalOp());
1007   BinaryOperatorKind Op = E->getOpcode();
1008   const Expr *LHS = E->getLHS();
1009   const Expr *RHS = E->getRHS();
1010   std::optional<PrimType> T = classify(E->getType());
1011 
1012   if (Op == BO_LOr) {
1013     // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
1014     LabelTy LabelTrue = this->getLabel();
1015     LabelTy LabelEnd = this->getLabel();
1016 
1017     if (!this->visitBool(LHS))
1018       return false;
1019     if (!this->jumpTrue(LabelTrue))
1020       return false;
1021 
1022     if (!this->visitBool(RHS))
1023       return false;
1024     if (!this->jump(LabelEnd))
1025       return false;
1026 
1027     this->emitLabel(LabelTrue);
1028     this->emitConstBool(true, E);
1029     this->fallthrough(LabelEnd);
1030     this->emitLabel(LabelEnd);
1031 
1032   } else {
1033     assert(Op == BO_LAnd);
1034     // Logical AND.
1035     // Visit LHS. Only visit RHS if LHS was TRUE.
1036     LabelTy LabelFalse = this->getLabel();
1037     LabelTy LabelEnd = this->getLabel();
1038 
1039     if (!this->visitBool(LHS))
1040       return false;
1041     if (!this->jumpFalse(LabelFalse))
1042       return false;
1043 
1044     if (!this->visitBool(RHS))
1045       return false;
1046     if (!this->jump(LabelEnd))
1047       return false;
1048 
1049     this->emitLabel(LabelFalse);
1050     this->emitConstBool(false, E);
1051     this->fallthrough(LabelEnd);
1052     this->emitLabel(LabelEnd);
1053   }
1054 
1055   if (DiscardResult)
1056     return this->emitPopBool(E);
1057 
1058   // For C, cast back to integer type.
1059   assert(T);
1060   if (T != PT_Bool)
1061     return this->emitCast(PT_Bool, *T, E);
1062   return true;
1063 }
1064 
1065 template <class Emitter>
1066 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
1067   // Prepare storage for result.
1068   if (!Initializing) {
1069     unsigned LocalIndex = allocateTemporary(E);
1070     if (!this->emitGetPtrLocal(LocalIndex, E))
1071       return false;
1072   }
1073 
1074   // Both LHS and RHS might _not_ be of complex type, but one of them
1075   // needs to be.
1076   const Expr *LHS = E->getLHS();
1077   const Expr *RHS = E->getRHS();
1078 
1079   PrimType ResultElemT = this->classifyComplexElementType(E->getType());
1080   unsigned ResultOffset = ~0u;
1081   if (!DiscardResult)
1082     ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
1083 
1084   // Save result pointer in ResultOffset
1085   if (!this->DiscardResult) {
1086     if (!this->emitDupPtr(E))
1087       return false;
1088     if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
1089       return false;
1090   }
1091   QualType LHSType = LHS->getType();
1092   if (const auto *AT = LHSType->getAs<AtomicType>())
1093     LHSType = AT->getValueType();
1094   QualType RHSType = RHS->getType();
1095   if (const auto *AT = RHSType->getAs<AtomicType>())
1096     RHSType = AT->getValueType();
1097 
1098   bool LHSIsComplex = LHSType->isAnyComplexType();
1099   unsigned LHSOffset;
1100   bool RHSIsComplex = RHSType->isAnyComplexType();
1101 
1102   // For ComplexComplex Mul, we have special ops to make their implementation
1103   // easier.
1104   BinaryOperatorKind Op = E->getOpcode();
1105   if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
1106     assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
1107            classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
1108     PrimType ElemT =
1109         classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
1110     if (!this->visit(LHS))
1111       return false;
1112     if (!this->visit(RHS))
1113       return false;
1114     return this->emitMulc(ElemT, E);
1115   }
1116 
1117   if (Op == BO_Div && RHSIsComplex) {
1118     QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
1119     PrimType ElemT = classifyPrim(ElemQT);
1120     // If the LHS is not complex, we still need to do the full complex
1121     // division, so just stub create a complex value and stub it out with
1122     // the LHS and a zero.
1123 
1124     if (!LHSIsComplex) {
1125       // This is using the RHS type for the fake-complex LHS.
1126       LHSOffset = allocateTemporary(RHS);
1127 
1128       if (!this->emitGetPtrLocal(LHSOffset, E))
1129         return false;
1130 
1131       if (!this->visit(LHS))
1132         return false;
1133       // real is LHS
1134       if (!this->emitInitElem(ElemT, 0, E))
1135         return false;
1136       // imag is zero
1137       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1138         return false;
1139       if (!this->emitInitElem(ElemT, 1, E))
1140         return false;
1141     } else {
1142       if (!this->visit(LHS))
1143         return false;
1144     }
1145 
1146     if (!this->visit(RHS))
1147       return false;
1148     return this->emitDivc(ElemT, E);
1149   }
1150 
1151   // Evaluate LHS and save value to LHSOffset.
1152   if (LHSType->isAnyComplexType()) {
1153     LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1154     if (!this->visit(LHS))
1155       return false;
1156     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1157       return false;
1158   } else {
1159     PrimType LHST = classifyPrim(LHSType);
1160     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
1161     if (!this->visit(LHS))
1162       return false;
1163     if (!this->emitSetLocal(LHST, LHSOffset, E))
1164       return false;
1165   }
1166 
1167   // Same with RHS.
1168   unsigned RHSOffset;
1169   if (RHSType->isAnyComplexType()) {
1170     RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1171     if (!this->visit(RHS))
1172       return false;
1173     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1174       return false;
1175   } else {
1176     PrimType RHST = classifyPrim(RHSType);
1177     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
1178     if (!this->visit(RHS))
1179       return false;
1180     if (!this->emitSetLocal(RHST, RHSOffset, E))
1181       return false;
1182   }
1183 
1184   // For both LHS and RHS, either load the value from the complex pointer, or
1185   // directly from the local variable. For index 1 (i.e. the imaginary part),
1186   // just load 0 and do the operation anyway.
1187   auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
1188                                  unsigned ElemIndex, unsigned Offset,
1189                                  const Expr *E) -> bool {
1190     if (IsComplex) {
1191       if (!this->emitGetLocal(PT_Ptr, Offset, E))
1192         return false;
1193       return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
1194                                     ElemIndex, E);
1195     }
1196     if (ElemIndex == 0 || !LoadZero)
1197       return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
1198     return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
1199                                       E);
1200   };
1201 
1202   // Now we can get pointers to the LHS and RHS from the offsets above.
1203   for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
1204     // Result pointer for the store later.
1205     if (!this->DiscardResult) {
1206       if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
1207         return false;
1208     }
1209 
1210     // The actual operation.
1211     switch (Op) {
1212     case BO_Add:
1213       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1214         return false;
1215 
1216       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1217         return false;
1218       if (ResultElemT == PT_Float) {
1219         if (!this->emitAddf(getFPOptions(E), E))
1220           return false;
1221       } else {
1222         if (!this->emitAdd(ResultElemT, E))
1223           return false;
1224       }
1225       break;
1226     case BO_Sub:
1227       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1228         return false;
1229 
1230       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1231         return false;
1232       if (ResultElemT == PT_Float) {
1233         if (!this->emitSubf(getFPOptions(E), E))
1234           return false;
1235       } else {
1236         if (!this->emitSub(ResultElemT, E))
1237           return false;
1238       }
1239       break;
1240     case BO_Mul:
1241       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1242         return false;
1243 
1244       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1245         return false;
1246 
1247       if (ResultElemT == PT_Float) {
1248         if (!this->emitMulf(getFPOptions(E), E))
1249           return false;
1250       } else {
1251         if (!this->emitMul(ResultElemT, E))
1252           return false;
1253       }
1254       break;
1255     case BO_Div:
1256       assert(!RHSIsComplex);
1257       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1258         return false;
1259 
1260       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1261         return false;
1262 
1263       if (ResultElemT == PT_Float) {
1264         if (!this->emitDivf(getFPOptions(E), E))
1265           return false;
1266       } else {
1267         if (!this->emitDiv(ResultElemT, E))
1268           return false;
1269       }
1270       break;
1271 
1272     default:
1273       return false;
1274     }
1275 
1276     if (!this->DiscardResult) {
1277       // Initialize array element with the value we just computed.
1278       if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
1279         return false;
1280     } else {
1281       if (!this->emitPop(ResultElemT, E))
1282         return false;
1283     }
1284   }
1285   return true;
1286 }
1287 
1288 template <class Emitter>
1289 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) {
1290   assert(!E->isCommaOp() &&
1291          "Comma op should be handled in VisitBinaryOperator");
1292   assert(E->getType()->isVectorType());
1293   assert(E->getLHS()->getType()->isVectorType());
1294   assert(E->getRHS()->getType()->isVectorType());
1295 
1296   // Prepare storage for result.
1297   if (!Initializing && !E->isCompoundAssignmentOp()) {
1298     unsigned LocalIndex = allocateTemporary(E);
1299     if (!this->emitGetPtrLocal(LocalIndex, E))
1300       return false;
1301   }
1302 
1303   const Expr *LHS = E->getLHS();
1304   const Expr *RHS = E->getRHS();
1305   const auto *VecTy = E->getType()->getAs<VectorType>();
1306   auto Op = E->isCompoundAssignmentOp()
1307                 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode())
1308                 : E->getOpcode();
1309 
1310   PrimType ElemT = this->classifyVectorElementType(LHS->getType());
1311   PrimType RHSElemT = this->classifyVectorElementType(RHS->getType());
1312   PrimType ResultElemT = this->classifyVectorElementType(E->getType());
1313 
1314   // Evaluate LHS and save value to LHSOffset.
1315   unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1316   if (!this->visit(LHS))
1317     return false;
1318   if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1319     return false;
1320 
1321   // Evaluate RHS and save value to RHSOffset.
1322   unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1323   if (!this->visit(RHS))
1324     return false;
1325   if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1326     return false;
1327 
1328   if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E))
1329     return false;
1330 
1331   // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the
1332   // integer promotion.
1333   bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp());
1334   QualType PromotTy =
1335       Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy);
1336   PrimType PromotT = classifyPrim(PromotTy);
1337   PrimType OpT = NeedIntPromot ? PromotT : ElemT;
1338 
1339   auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) {
1340     if (!this->emitGetLocal(PT_Ptr, Offset, E))
1341       return false;
1342     if (!this->emitArrayElemPop(ElemT, Index, E))
1343       return false;
1344     if (E->isLogicalOp()) {
1345       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
1346         return false;
1347       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1348         return false;
1349     } else if (NeedIntPromot) {
1350       if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E))
1351         return false;
1352     }
1353     return true;
1354   };
1355 
1356 #define EMIT_ARITH_OP(OP)                                                      \
1357   {                                                                            \
1358     if (ElemT == PT_Float) {                                                   \
1359       if (!this->emit##OP##f(getFPOptions(E), E))                              \
1360         return false;                                                          \
1361     } else {                                                                   \
1362       if (!this->emit##OP(ElemT, E))                                           \
1363         return false;                                                          \
1364     }                                                                          \
1365     break;                                                                     \
1366   }
1367 
1368   for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
1369     if (!getElem(LHSOffset, ElemT, I))
1370       return false;
1371     if (!getElem(RHSOffset, RHSElemT, I))
1372       return false;
1373     switch (Op) {
1374     case BO_Add:
1375       EMIT_ARITH_OP(Add)
1376     case BO_Sub:
1377       EMIT_ARITH_OP(Sub)
1378     case BO_Mul:
1379       EMIT_ARITH_OP(Mul)
1380     case BO_Div:
1381       EMIT_ARITH_OP(Div)
1382     case BO_Rem:
1383       if (!this->emitRem(ElemT, E))
1384         return false;
1385       break;
1386     case BO_And:
1387       if (!this->emitBitAnd(OpT, E))
1388         return false;
1389       break;
1390     case BO_Or:
1391       if (!this->emitBitOr(OpT, E))
1392         return false;
1393       break;
1394     case BO_Xor:
1395       if (!this->emitBitXor(OpT, E))
1396         return false;
1397       break;
1398     case BO_Shl:
1399       if (!this->emitShl(OpT, RHSElemT, E))
1400         return false;
1401       break;
1402     case BO_Shr:
1403       if (!this->emitShr(OpT, RHSElemT, E))
1404         return false;
1405       break;
1406     case BO_EQ:
1407       if (!this->emitEQ(ElemT, E))
1408         return false;
1409       break;
1410     case BO_NE:
1411       if (!this->emitNE(ElemT, E))
1412         return false;
1413       break;
1414     case BO_LE:
1415       if (!this->emitLE(ElemT, E))
1416         return false;
1417       break;
1418     case BO_LT:
1419       if (!this->emitLT(ElemT, E))
1420         return false;
1421       break;
1422     case BO_GE:
1423       if (!this->emitGE(ElemT, E))
1424         return false;
1425       break;
1426     case BO_GT:
1427       if (!this->emitGT(ElemT, E))
1428         return false;
1429       break;
1430     case BO_LAnd:
1431       // a && b is equivalent to a!=0 & b!=0
1432       if (!this->emitBitAnd(ResultElemT, E))
1433         return false;
1434       break;
1435     case BO_LOr:
1436       // a || b is equivalent to a!=0 | b!=0
1437       if (!this->emitBitOr(ResultElemT, E))
1438         return false;
1439       break;
1440     default:
1441       return this->emitInvalid(E);
1442     }
1443 
1444     // The result of the comparison is a vector of the same width and number
1445     // of elements as the comparison operands with a signed integral element
1446     // type.
1447     //
1448     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
1449     if (E->isComparisonOp()) {
1450       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1451         return false;
1452       if (!this->emitNeg(ResultElemT, E))
1453         return false;
1454     }
1455 
1456     // If we performed an integer promotion, we need to cast the compute result
1457     // into result vector element type.
1458     if (NeedIntPromot &&
1459         !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E))
1460       return false;
1461 
1462     // Initialize array element with the value we just computed.
1463     if (!this->emitInitElem(ResultElemT, I, E))
1464       return false;
1465   }
1466 
1467   if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E))
1468     return false;
1469   return true;
1470 }
1471 
1472 template <class Emitter>
1473 bool Compiler<Emitter>::VisitImplicitValueInitExpr(
1474     const ImplicitValueInitExpr *E) {
1475   QualType QT = E->getType();
1476 
1477   if (std::optional<PrimType> T = classify(QT))
1478     return this->visitZeroInitializer(*T, QT, E);
1479 
1480   if (QT->isRecordType()) {
1481     const RecordDecl *RD = QT->getAsRecordDecl();
1482     assert(RD);
1483     if (RD->isInvalidDecl())
1484       return false;
1485 
1486     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1487         CXXRD && CXXRD->getNumVBases() > 0) {
1488       // TODO: Diagnose.
1489       return false;
1490     }
1491 
1492     const Record *R = getRecord(QT);
1493     if (!R)
1494       return false;
1495 
1496     assert(Initializing);
1497     return this->visitZeroRecordInitializer(R, E);
1498   }
1499 
1500   if (QT->isIncompleteArrayType())
1501     return true;
1502 
1503   if (QT->isArrayType()) {
1504     const ArrayType *AT = QT->getAsArrayTypeUnsafe();
1505     assert(AT);
1506     const auto *CAT = cast<ConstantArrayType>(AT);
1507     size_t NumElems = CAT->getZExtSize();
1508     PrimType ElemT = classifyPrim(CAT->getElementType());
1509 
1510     for (size_t I = 0; I != NumElems; ++I) {
1511       if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E))
1512         return false;
1513       if (!this->emitInitElem(ElemT, I, E))
1514         return false;
1515     }
1516 
1517     return true;
1518   }
1519 
1520   if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
1521     assert(Initializing);
1522     QualType ElemQT = ComplexTy->getElementType();
1523     PrimType ElemT = classifyPrim(ElemQT);
1524     for (unsigned I = 0; I < 2; ++I) {
1525       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1526         return false;
1527       if (!this->emitInitElem(ElemT, I, E))
1528         return false;
1529     }
1530     return true;
1531   }
1532 
1533   if (const auto *VecT = E->getType()->getAs<VectorType>()) {
1534     unsigned NumVecElements = VecT->getNumElements();
1535     QualType ElemQT = VecT->getElementType();
1536     PrimType ElemT = classifyPrim(ElemQT);
1537 
1538     for (unsigned I = 0; I < NumVecElements; ++I) {
1539       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1540         return false;
1541       if (!this->emitInitElem(ElemT, I, E))
1542         return false;
1543     }
1544     return true;
1545   }
1546 
1547   return false;
1548 }
1549 
1550 template <class Emitter>
1551 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1552   const Expr *LHS = E->getLHS();
1553   const Expr *RHS = E->getRHS();
1554   const Expr *Index = E->getIdx();
1555 
1556   if (DiscardResult)
1557     return this->discard(LHS) && this->discard(RHS);
1558 
1559   // C++17's rules require us to evaluate the LHS first, regardless of which
1560   // side is the base.
1561   bool Success = true;
1562   for (const Expr *SubExpr : {LHS, RHS}) {
1563     if (!this->visit(SubExpr))
1564       Success = false;
1565   }
1566 
1567   if (!Success)
1568     return false;
1569 
1570   PrimType IndexT = classifyPrim(Index->getType());
1571   // If the index is first, we need to change that.
1572   if (LHS == Index) {
1573     if (!this->emitFlip(PT_Ptr, IndexT, E))
1574       return false;
1575   }
1576 
1577   return this->emitArrayElemPtrPop(IndexT, E);
1578 }
1579 
1580 template <class Emitter>
1581 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
1582                                       const Expr *ArrayFiller, const Expr *E) {
1583   QualType QT = E->getType();
1584   if (const auto *AT = QT->getAs<AtomicType>())
1585     QT = AT->getValueType();
1586 
1587   if (QT->isVoidType()) {
1588     if (Inits.size() == 0)
1589       return true;
1590     return this->emitInvalid(E);
1591   }
1592 
1593   // Handle discarding first.
1594   if (DiscardResult) {
1595     for (const Expr *Init : Inits) {
1596       if (!this->discard(Init))
1597         return false;
1598     }
1599     return true;
1600   }
1601 
1602   // Primitive values.
1603   if (std::optional<PrimType> T = classify(QT)) {
1604     assert(!DiscardResult);
1605     if (Inits.size() == 0)
1606       return this->visitZeroInitializer(*T, QT, E);
1607     assert(Inits.size() == 1);
1608     return this->delegate(Inits[0]);
1609   }
1610 
1611   if (QT->isRecordType()) {
1612     const Record *R = getRecord(QT);
1613 
1614     if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
1615       return this->delegate(Inits[0]);
1616 
1617     auto initPrimitiveField = [=](const Record::Field *FieldToInit,
1618                                   const Expr *Init, PrimType T) -> bool {
1619       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1620       if (!this->visit(Init))
1621         return false;
1622 
1623       if (FieldToInit->isBitField())
1624         return this->emitInitBitField(T, FieldToInit, E);
1625       return this->emitInitField(T, FieldToInit->Offset, E);
1626     };
1627 
1628     auto initCompositeField = [=](const Record::Field *FieldToInit,
1629                                   const Expr *Init) -> bool {
1630       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1631       InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
1632       // Non-primitive case. Get a pointer to the field-to-initialize
1633       // on the stack and recurse into visitInitializer().
1634       if (!this->emitGetPtrField(FieldToInit->Offset, Init))
1635         return false;
1636       if (!this->visitInitializer(Init))
1637         return false;
1638       return this->emitPopPtr(E);
1639     };
1640 
1641     if (R->isUnion()) {
1642       if (Inits.size() == 0) {
1643         if (!this->visitZeroRecordInitializer(R, E))
1644           return false;
1645       } else {
1646         const Expr *Init = Inits[0];
1647         const FieldDecl *FToInit = nullptr;
1648         if (const auto *ILE = dyn_cast<InitListExpr>(E))
1649           FToInit = ILE->getInitializedFieldInUnion();
1650         else
1651           FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
1652 
1653         const Record::Field *FieldToInit = R->getField(FToInit);
1654         if (std::optional<PrimType> T = classify(Init)) {
1655           if (!initPrimitiveField(FieldToInit, Init, *T))
1656             return false;
1657         } else {
1658           if (!initCompositeField(FieldToInit, Init))
1659             return false;
1660         }
1661       }
1662       return this->emitFinishInit(E);
1663     }
1664 
1665     assert(!R->isUnion());
1666     unsigned InitIndex = 0;
1667     for (const Expr *Init : Inits) {
1668       // Skip unnamed bitfields.
1669       while (InitIndex < R->getNumFields() &&
1670              R->getField(InitIndex)->Decl->isUnnamedBitField())
1671         ++InitIndex;
1672 
1673       if (std::optional<PrimType> T = classify(Init)) {
1674         const Record::Field *FieldToInit = R->getField(InitIndex);
1675         if (!initPrimitiveField(FieldToInit, Init, *T))
1676           return false;
1677         ++InitIndex;
1678       } else {
1679         // Initializer for a direct base class.
1680         if (const Record::Base *B = R->getBase(Init->getType())) {
1681           if (!this->emitGetPtrBase(B->Offset, Init))
1682             return false;
1683 
1684           if (!this->visitInitializer(Init))
1685             return false;
1686 
1687           if (!this->emitFinishInitPop(E))
1688             return false;
1689           // Base initializers don't increase InitIndex, since they don't count
1690           // into the Record's fields.
1691         } else {
1692           const Record::Field *FieldToInit = R->getField(InitIndex);
1693           if (!initCompositeField(FieldToInit, Init))
1694             return false;
1695           ++InitIndex;
1696         }
1697       }
1698     }
1699     return this->emitFinishInit(E);
1700   }
1701 
1702   if (QT->isArrayType()) {
1703     if (Inits.size() == 1 && QT == Inits[0]->getType())
1704       return this->delegate(Inits[0]);
1705 
1706     unsigned ElementIndex = 0;
1707     for (const Expr *Init : Inits) {
1708       if (const auto *EmbedS =
1709               dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1710         PrimType TargetT = classifyPrim(Init->getType());
1711 
1712         auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
1713           PrimType InitT = classifyPrim(Init->getType());
1714           if (!this->visit(Init))
1715             return false;
1716           if (InitT != TargetT) {
1717             if (!this->emitCast(InitT, TargetT, E))
1718               return false;
1719           }
1720           return this->emitInitElem(TargetT, ElemIndex, Init);
1721         };
1722         if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
1723           return false;
1724       } else {
1725         if (!this->visitArrayElemInit(ElementIndex, Init))
1726           return false;
1727         ++ElementIndex;
1728       }
1729     }
1730 
1731     // Expand the filler expression.
1732     // FIXME: This should go away.
1733     if (ArrayFiller) {
1734       const ConstantArrayType *CAT =
1735           Ctx.getASTContext().getAsConstantArrayType(QT);
1736       uint64_t NumElems = CAT->getZExtSize();
1737 
1738       for (; ElementIndex != NumElems; ++ElementIndex) {
1739         if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
1740           return false;
1741       }
1742     }
1743 
1744     return this->emitFinishInit(E);
1745   }
1746 
1747   if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
1748     unsigned NumInits = Inits.size();
1749 
1750     if (NumInits == 1)
1751       return this->delegate(Inits[0]);
1752 
1753     QualType ElemQT = ComplexTy->getElementType();
1754     PrimType ElemT = classifyPrim(ElemQT);
1755     if (NumInits == 0) {
1756       // Zero-initialize both elements.
1757       for (unsigned I = 0; I < 2; ++I) {
1758         if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1759           return false;
1760         if (!this->emitInitElem(ElemT, I, E))
1761           return false;
1762       }
1763     } else if (NumInits == 2) {
1764       unsigned InitIndex = 0;
1765       for (const Expr *Init : Inits) {
1766         if (!this->visit(Init))
1767           return false;
1768 
1769         if (!this->emitInitElem(ElemT, InitIndex, E))
1770           return false;
1771         ++InitIndex;
1772       }
1773     }
1774     return true;
1775   }
1776 
1777   if (const auto *VecT = QT->getAs<VectorType>()) {
1778     unsigned NumVecElements = VecT->getNumElements();
1779     assert(NumVecElements >= Inits.size());
1780 
1781     QualType ElemQT = VecT->getElementType();
1782     PrimType ElemT = classifyPrim(ElemQT);
1783 
1784     // All initializer elements.
1785     unsigned InitIndex = 0;
1786     for (const Expr *Init : Inits) {
1787       if (!this->visit(Init))
1788         return false;
1789 
1790       // If the initializer is of vector type itself, we have to deconstruct
1791       // that and initialize all the target fields from the initializer fields.
1792       if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
1793         if (!this->emitCopyArray(ElemT, 0, InitIndex,
1794                                  InitVecT->getNumElements(), E))
1795           return false;
1796         InitIndex += InitVecT->getNumElements();
1797       } else {
1798         if (!this->emitInitElem(ElemT, InitIndex, E))
1799           return false;
1800         ++InitIndex;
1801       }
1802     }
1803 
1804     assert(InitIndex <= NumVecElements);
1805 
1806     // Fill the rest with zeroes.
1807     for (; InitIndex != NumVecElements; ++InitIndex) {
1808       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1809         return false;
1810       if (!this->emitInitElem(ElemT, InitIndex, E))
1811         return false;
1812     }
1813     return true;
1814   }
1815 
1816   return false;
1817 }
1818 
1819 /// Pointer to the array(not the element!) must be on the stack when calling
1820 /// this.
1821 template <class Emitter>
1822 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
1823                                            const Expr *Init) {
1824   if (std::optional<PrimType> T = classify(Init->getType())) {
1825     // Visit the primitive element like normal.
1826     if (!this->visit(Init))
1827       return false;
1828     return this->emitInitElem(*T, ElemIndex, Init);
1829   }
1830 
1831   InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
1832   // Advance the pointer currently on the stack to the given
1833   // dimension.
1834   if (!this->emitConstUint32(ElemIndex, Init))
1835     return false;
1836   if (!this->emitArrayElemPtrUint32(Init))
1837     return false;
1838   if (!this->visitInitializer(Init))
1839     return false;
1840   return this->emitFinishInitPop(Init);
1841 }
1842 
1843 template <class Emitter>
1844 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
1845   return this->visitInitList(E->inits(), E->getArrayFiller(), E);
1846 }
1847 
1848 template <class Emitter>
1849 bool Compiler<Emitter>::VisitCXXParenListInitExpr(
1850     const CXXParenListInitExpr *E) {
1851   return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
1852 }
1853 
1854 template <class Emitter>
1855 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
1856     const SubstNonTypeTemplateParmExpr *E) {
1857   return this->delegate(E->getReplacement());
1858 }
1859 
1860 template <class Emitter>
1861 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
1862   std::optional<PrimType> T = classify(E->getType());
1863   if (T && E->hasAPValueResult()) {
1864     // Try to emit the APValue directly, without visiting the subexpr.
1865     // This will only fail if we can't emit the APValue, so won't emit any
1866     // diagnostics or any double values.
1867     if (DiscardResult)
1868       return true;
1869 
1870     if (this->visitAPValue(E->getAPValueResult(), *T, E))
1871       return true;
1872   }
1873   return this->delegate(E->getSubExpr());
1874 }
1875 
1876 template <class Emitter>
1877 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
1878   auto It = E->begin();
1879   return this->visit(*It);
1880 }
1881 
1882 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
1883                              UnaryExprOrTypeTrait Kind) {
1884   bool AlignOfReturnsPreferred =
1885       ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
1886 
1887   // C++ [expr.alignof]p3:
1888   //     When alignof is applied to a reference type, the result is the
1889   //     alignment of the referenced type.
1890   if (const auto *Ref = T->getAs<ReferenceType>())
1891     T = Ref->getPointeeType();
1892 
1893   if (T.getQualifiers().hasUnaligned())
1894     return CharUnits::One();
1895 
1896   // __alignof is defined to return the preferred alignment.
1897   // Before 8, clang returned the preferred alignment for alignof and
1898   // _Alignof as well.
1899   if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
1900     return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
1901 
1902   return ASTCtx.getTypeAlignInChars(T);
1903 }
1904 
1905 template <class Emitter>
1906 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
1907     const UnaryExprOrTypeTraitExpr *E) {
1908   UnaryExprOrTypeTrait Kind = E->getKind();
1909   const ASTContext &ASTCtx = Ctx.getASTContext();
1910 
1911   if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
1912     QualType ArgType = E->getTypeOfArgument();
1913 
1914     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1915     //   the result is the size of the referenced type."
1916     if (const auto *Ref = ArgType->getAs<ReferenceType>())
1917       ArgType = Ref->getPointeeType();
1918 
1919     CharUnits Size;
1920     if (ArgType->isVoidType() || ArgType->isFunctionType())
1921       Size = CharUnits::One();
1922     else {
1923       if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
1924         return false;
1925 
1926       if (Kind == UETT_SizeOf)
1927         Size = ASTCtx.getTypeSizeInChars(ArgType);
1928       else
1929         Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
1930     }
1931 
1932     if (DiscardResult)
1933       return true;
1934 
1935     return this->emitConst(Size.getQuantity(), E);
1936   }
1937 
1938   if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
1939     CharUnits Size;
1940 
1941     if (E->isArgumentType()) {
1942       QualType ArgType = E->getTypeOfArgument();
1943 
1944       Size = AlignOfType(ArgType, ASTCtx, Kind);
1945     } else {
1946       // Argument is an expression, not a type.
1947       const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
1948 
1949       // The kinds of expressions that we have special-case logic here for
1950       // should be kept up to date with the special checks for those
1951       // expressions in Sema.
1952 
1953       // alignof decl is always accepted, even if it doesn't make sense: we
1954       // default to 1 in those cases.
1955       if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
1956         Size = ASTCtx.getDeclAlign(DRE->getDecl(),
1957                                    /*RefAsPointee*/ true);
1958       else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
1959         Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
1960                                    /*RefAsPointee*/ true);
1961       else
1962         Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
1963     }
1964 
1965     if (DiscardResult)
1966       return true;
1967 
1968     return this->emitConst(Size.getQuantity(), E);
1969   }
1970 
1971   if (Kind == UETT_VectorElements) {
1972     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
1973       return this->emitConst(VT->getNumElements(), E);
1974     assert(E->getTypeOfArgument()->isSizelessVectorType());
1975     return this->emitSizelessVectorElementSize(E);
1976   }
1977 
1978   if (Kind == UETT_VecStep) {
1979     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
1980       unsigned N = VT->getNumElements();
1981 
1982       // The vec_step built-in functions that take a 3-component
1983       // vector return 4. (OpenCL 1.1 spec 6.11.12)
1984       if (N == 3)
1985         N = 4;
1986 
1987       return this->emitConst(N, E);
1988     }
1989     return this->emitConst(1, E);
1990   }
1991 
1992   return false;
1993 }
1994 
1995 template <class Emitter>
1996 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
1997   // 'Base.Member'
1998   const Expr *Base = E->getBase();
1999   const ValueDecl *Member = E->getMemberDecl();
2000 
2001   if (DiscardResult)
2002     return this->discard(Base);
2003 
2004   // MemberExprs are almost always lvalues, in which case we don't need to
2005   // do the load. But sometimes they aren't.
2006   const auto maybeLoadValue = [&]() -> bool {
2007     if (E->isGLValue())
2008       return true;
2009     if (std::optional<PrimType> T = classify(E))
2010       return this->emitLoadPop(*T, E);
2011     return false;
2012   };
2013 
2014   if (const auto *VD = dyn_cast<VarDecl>(Member)) {
2015     // I am almost confident in saying that a var decl must be static
2016     // and therefore registered as a global variable. But this will probably
2017     // turn out to be wrong some time in the future, as always.
2018     if (auto GlobalIndex = P.getGlobal(VD))
2019       return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
2020     return false;
2021   }
2022 
2023   if (!isa<FieldDecl>(Member)) {
2024     if (!this->discard(Base) && !this->emitSideEffect(E))
2025       return false;
2026 
2027     return this->visitDeclRef(Member, E);
2028   }
2029 
2030   if (Initializing) {
2031     if (!this->delegate(Base))
2032       return false;
2033   } else {
2034     if (!this->visit(Base))
2035       return false;
2036   }
2037 
2038   // Base above gives us a pointer on the stack.
2039   const auto *FD = cast<FieldDecl>(Member);
2040   const RecordDecl *RD = FD->getParent();
2041   const Record *R = getRecord(RD);
2042   if (!R)
2043     return false;
2044   const Record::Field *F = R->getField(FD);
2045   // Leave a pointer to the field on the stack.
2046   if (F->Decl->getType()->isReferenceType())
2047     return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
2048   return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
2049 }
2050 
2051 template <class Emitter>
2052 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
2053   // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
2054   // stand-alone, e.g. via EvaluateAsInt().
2055   if (!ArrayIndex)
2056     return false;
2057   return this->emitConst(*ArrayIndex, E);
2058 }
2059 
2060 template <class Emitter>
2061 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
2062   assert(Initializing);
2063   assert(!DiscardResult);
2064 
2065   // We visit the common opaque expression here once so we have its value
2066   // cached.
2067   if (!this->discard(E->getCommonExpr()))
2068     return false;
2069 
2070   // TODO: This compiles to quite a lot of bytecode if the array is larger.
2071   //   Investigate compiling this to a loop.
2072   const Expr *SubExpr = E->getSubExpr();
2073   size_t Size = E->getArraySize().getZExtValue();
2074 
2075   // So, every iteration, we execute an assignment here
2076   // where the LHS is on the stack (the target array)
2077   // and the RHS is our SubExpr.
2078   for (size_t I = 0; I != Size; ++I) {
2079     ArrayIndexScope<Emitter> IndexScope(this, I);
2080     BlockScope<Emitter> BS(this);
2081 
2082     if (!this->visitArrayElemInit(I, SubExpr))
2083       return false;
2084     if (!BS.destroyLocals())
2085       return false;
2086   }
2087   return true;
2088 }
2089 
2090 template <class Emitter>
2091 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2092   const Expr *SourceExpr = E->getSourceExpr();
2093   if (!SourceExpr)
2094     return false;
2095 
2096   if (Initializing)
2097     return this->visitInitializer(SourceExpr);
2098 
2099   PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
2100   if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
2101     return this->emitGetLocal(SubExprT, It->second, E);
2102 
2103   if (!this->visit(SourceExpr))
2104     return false;
2105 
2106   // At this point we either have the evaluated source expression or a pointer
2107   // to an object on the stack. We want to create a local variable that stores
2108   // this value.
2109   unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
2110   if (!this->emitSetLocal(SubExprT, LocalIndex, E))
2111     return false;
2112 
2113   // Here the local variable is created but the value is removed from the stack,
2114   // so we put it back if the caller needs it.
2115   if (!DiscardResult) {
2116     if (!this->emitGetLocal(SubExprT, LocalIndex, E))
2117       return false;
2118   }
2119 
2120   // This is cleaned up when the local variable is destroyed.
2121   OpaqueExprs.insert({E, LocalIndex});
2122 
2123   return true;
2124 }
2125 
2126 template <class Emitter>
2127 bool Compiler<Emitter>::VisitAbstractConditionalOperator(
2128     const AbstractConditionalOperator *E) {
2129   const Expr *Condition = E->getCond();
2130   const Expr *TrueExpr = E->getTrueExpr();
2131   const Expr *FalseExpr = E->getFalseExpr();
2132 
2133   LabelTy LabelEnd = this->getLabel();   // Label after the operator.
2134   LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
2135 
2136   if (!this->visitBool(Condition))
2137     return false;
2138 
2139   if (!this->jumpFalse(LabelFalse))
2140     return false;
2141 
2142   {
2143     LocalScope<Emitter> S(this);
2144     if (!this->delegate(TrueExpr))
2145       return false;
2146     if (!S.destroyLocals())
2147       return false;
2148   }
2149 
2150   if (!this->jump(LabelEnd))
2151     return false;
2152 
2153   this->emitLabel(LabelFalse);
2154 
2155   {
2156     LocalScope<Emitter> S(this);
2157     if (!this->delegate(FalseExpr))
2158       return false;
2159     if (!S.destroyLocals())
2160       return false;
2161   }
2162 
2163   this->fallthrough(LabelEnd);
2164   this->emitLabel(LabelEnd);
2165 
2166   return true;
2167 }
2168 
2169 template <class Emitter>
2170 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
2171   if (DiscardResult)
2172     return true;
2173 
2174   if (!Initializing) {
2175     unsigned StringIndex = P.createGlobalString(E);
2176     return this->emitGetPtrGlobal(StringIndex, E);
2177   }
2178 
2179   // We are initializing an array on the stack.
2180   const ConstantArrayType *CAT =
2181       Ctx.getASTContext().getAsConstantArrayType(E->getType());
2182   assert(CAT && "a string literal that's not a constant array?");
2183 
2184   // If the initializer string is too long, a diagnostic has already been
2185   // emitted. Read only the array length from the string literal.
2186   unsigned ArraySize = CAT->getZExtSize();
2187   unsigned N = std::min(ArraySize, E->getLength());
2188   size_t CharWidth = E->getCharByteWidth();
2189 
2190   for (unsigned I = 0; I != N; ++I) {
2191     uint32_t CodeUnit = E->getCodeUnit(I);
2192 
2193     if (CharWidth == 1) {
2194       this->emitConstSint8(CodeUnit, E);
2195       this->emitInitElemSint8(I, E);
2196     } else if (CharWidth == 2) {
2197       this->emitConstUint16(CodeUnit, E);
2198       this->emitInitElemUint16(I, E);
2199     } else if (CharWidth == 4) {
2200       this->emitConstUint32(CodeUnit, E);
2201       this->emitInitElemUint32(I, E);
2202     } else {
2203       llvm_unreachable("unsupported character width");
2204     }
2205   }
2206 
2207   // Fill up the rest of the char array with NUL bytes.
2208   for (unsigned I = N; I != ArraySize; ++I) {
2209     if (CharWidth == 1) {
2210       this->emitConstSint8(0, E);
2211       this->emitInitElemSint8(I, E);
2212     } else if (CharWidth == 2) {
2213       this->emitConstUint16(0, E);
2214       this->emitInitElemUint16(I, E);
2215     } else if (CharWidth == 4) {
2216       this->emitConstUint32(0, E);
2217       this->emitInitElemUint32(I, E);
2218     } else {
2219       llvm_unreachable("unsupported character width");
2220     }
2221   }
2222 
2223   return true;
2224 }
2225 
2226 template <class Emitter>
2227 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2228   if (std::optional<unsigned> I = P.getOrCreateDummy(E))
2229     return this->emitGetPtrGlobal(*I, E);
2230   return false;
2231 }
2232 
2233 template <class Emitter>
2234 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2235   auto &A = Ctx.getASTContext();
2236   std::string Str;
2237   A.getObjCEncodingForType(E->getEncodedType(), Str);
2238   StringLiteral *SL =
2239       StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
2240                             /*Pascal=*/false, E->getType(), E->getAtLoc());
2241   return this->delegate(SL);
2242 }
2243 
2244 template <class Emitter>
2245 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
2246     const SYCLUniqueStableNameExpr *E) {
2247   if (DiscardResult)
2248     return true;
2249 
2250   assert(!Initializing);
2251 
2252   auto &A = Ctx.getASTContext();
2253   std::string ResultStr = E->ComputeName(A);
2254 
2255   QualType CharTy = A.CharTy.withConst();
2256   APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
2257   QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
2258                                             ArraySizeModifier::Normal, 0);
2259 
2260   StringLiteral *SL =
2261       StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
2262                             /*Pascal=*/false, ArrayTy, E->getLocation());
2263 
2264   unsigned StringIndex = P.createGlobalString(SL);
2265   return this->emitGetPtrGlobal(StringIndex, E);
2266 }
2267 
2268 template <class Emitter>
2269 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
2270   if (DiscardResult)
2271     return true;
2272   return this->emitConst(E->getValue(), E);
2273 }
2274 
2275 template <class Emitter>
2276 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
2277     const CompoundAssignOperator *E) {
2278 
2279   const Expr *LHS = E->getLHS();
2280   const Expr *RHS = E->getRHS();
2281   QualType LHSType = LHS->getType();
2282   QualType LHSComputationType = E->getComputationLHSType();
2283   QualType ResultType = E->getComputationResultType();
2284   std::optional<PrimType> LT = classify(LHSComputationType);
2285   std::optional<PrimType> RT = classify(ResultType);
2286 
2287   assert(ResultType->isFloatingType());
2288 
2289   if (!LT || !RT)
2290     return false;
2291 
2292   PrimType LHST = classifyPrim(LHSType);
2293 
2294   // C++17 onwards require that we evaluate the RHS first.
2295   // Compute RHS and save it in a temporary variable so we can
2296   // load it again later.
2297   if (!visit(RHS))
2298     return false;
2299 
2300   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2301   if (!this->emitSetLocal(*RT, TempOffset, E))
2302     return false;
2303 
2304   // First, visit LHS.
2305   if (!visit(LHS))
2306     return false;
2307   if (!this->emitLoad(LHST, E))
2308     return false;
2309 
2310   // If necessary, convert LHS to its computation type.
2311   if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
2312                           LHSComputationType, E))
2313     return false;
2314 
2315   // Now load RHS.
2316   if (!this->emitGetLocal(*RT, TempOffset, E))
2317     return false;
2318 
2319   switch (E->getOpcode()) {
2320   case BO_AddAssign:
2321     if (!this->emitAddf(getFPOptions(E), E))
2322       return false;
2323     break;
2324   case BO_SubAssign:
2325     if (!this->emitSubf(getFPOptions(E), E))
2326       return false;
2327     break;
2328   case BO_MulAssign:
2329     if (!this->emitMulf(getFPOptions(E), E))
2330       return false;
2331     break;
2332   case BO_DivAssign:
2333     if (!this->emitDivf(getFPOptions(E), E))
2334       return false;
2335     break;
2336   default:
2337     return false;
2338   }
2339 
2340   if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
2341     return false;
2342 
2343   if (DiscardResult)
2344     return this->emitStorePop(LHST, E);
2345   return this->emitStore(LHST, E);
2346 }
2347 
2348 template <class Emitter>
2349 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
2350     const CompoundAssignOperator *E) {
2351   BinaryOperatorKind Op = E->getOpcode();
2352   const Expr *LHS = E->getLHS();
2353   const Expr *RHS = E->getRHS();
2354   std::optional<PrimType> LT = classify(LHS->getType());
2355   std::optional<PrimType> RT = classify(RHS->getType());
2356 
2357   if (Op != BO_AddAssign && Op != BO_SubAssign)
2358     return false;
2359 
2360   if (!LT || !RT)
2361     return false;
2362 
2363   if (!visit(LHS))
2364     return false;
2365 
2366   if (!this->emitLoad(*LT, LHS))
2367     return false;
2368 
2369   if (!visit(RHS))
2370     return false;
2371 
2372   if (Op == BO_AddAssign) {
2373     if (!this->emitAddOffset(*RT, E))
2374       return false;
2375   } else {
2376     if (!this->emitSubOffset(*RT, E))
2377       return false;
2378   }
2379 
2380   if (DiscardResult)
2381     return this->emitStorePopPtr(E);
2382   return this->emitStorePtr(E);
2383 }
2384 
2385 template <class Emitter>
2386 bool Compiler<Emitter>::VisitCompoundAssignOperator(
2387     const CompoundAssignOperator *E) {
2388   if (E->getType()->isVectorType())
2389     return VisitVectorBinOp(E);
2390 
2391   const Expr *LHS = E->getLHS();
2392   const Expr *RHS = E->getRHS();
2393   std::optional<PrimType> LHSComputationT =
2394       classify(E->getComputationLHSType());
2395   std::optional<PrimType> LT = classify(LHS->getType());
2396   std::optional<PrimType> RT = classify(RHS->getType());
2397   std::optional<PrimType> ResultT = classify(E->getType());
2398 
2399   if (!Ctx.getLangOpts().CPlusPlus14)
2400     return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
2401 
2402   if (!LT || !RT || !ResultT || !LHSComputationT)
2403     return false;
2404 
2405   // Handle floating point operations separately here, since they
2406   // require special care.
2407 
2408   if (ResultT == PT_Float || RT == PT_Float)
2409     return VisitFloatCompoundAssignOperator(E);
2410 
2411   if (E->getType()->isPointerType())
2412     return VisitPointerCompoundAssignOperator(E);
2413 
2414   assert(!E->getType()->isPointerType() && "Handled above");
2415   assert(!E->getType()->isFloatingType() && "Handled above");
2416 
2417   // C++17 onwards require that we evaluate the RHS first.
2418   // Compute RHS and save it in a temporary variable so we can
2419   // load it again later.
2420   // FIXME: Compound assignments are unsequenced in C, so we might
2421   //   have to figure out how to reject them.
2422   if (!visit(RHS))
2423     return false;
2424 
2425   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2426 
2427   if (!this->emitSetLocal(*RT, TempOffset, E))
2428     return false;
2429 
2430   // Get LHS pointer, load its value and cast it to the
2431   // computation type if necessary.
2432   if (!visit(LHS))
2433     return false;
2434   if (!this->emitLoad(*LT, E))
2435     return false;
2436   if (LT != LHSComputationT) {
2437     if (!this->emitCast(*LT, *LHSComputationT, E))
2438       return false;
2439   }
2440 
2441   // Get the RHS value on the stack.
2442   if (!this->emitGetLocal(*RT, TempOffset, E))
2443     return false;
2444 
2445   // Perform operation.
2446   switch (E->getOpcode()) {
2447   case BO_AddAssign:
2448     if (!this->emitAdd(*LHSComputationT, E))
2449       return false;
2450     break;
2451   case BO_SubAssign:
2452     if (!this->emitSub(*LHSComputationT, E))
2453       return false;
2454     break;
2455   case BO_MulAssign:
2456     if (!this->emitMul(*LHSComputationT, E))
2457       return false;
2458     break;
2459   case BO_DivAssign:
2460     if (!this->emitDiv(*LHSComputationT, E))
2461       return false;
2462     break;
2463   case BO_RemAssign:
2464     if (!this->emitRem(*LHSComputationT, E))
2465       return false;
2466     break;
2467   case BO_ShlAssign:
2468     if (!this->emitShl(*LHSComputationT, *RT, E))
2469       return false;
2470     break;
2471   case BO_ShrAssign:
2472     if (!this->emitShr(*LHSComputationT, *RT, E))
2473       return false;
2474     break;
2475   case BO_AndAssign:
2476     if (!this->emitBitAnd(*LHSComputationT, E))
2477       return false;
2478     break;
2479   case BO_XorAssign:
2480     if (!this->emitBitXor(*LHSComputationT, E))
2481       return false;
2482     break;
2483   case BO_OrAssign:
2484     if (!this->emitBitOr(*LHSComputationT, E))
2485       return false;
2486     break;
2487   default:
2488     llvm_unreachable("Unimplemented compound assign operator");
2489   }
2490 
2491   // And now cast from LHSComputationT to ResultT.
2492   if (ResultT != LHSComputationT) {
2493     if (!this->emitCast(*LHSComputationT, *ResultT, E))
2494       return false;
2495   }
2496 
2497   // And store the result in LHS.
2498   if (DiscardResult) {
2499     if (LHS->refersToBitField())
2500       return this->emitStoreBitFieldPop(*ResultT, E);
2501     return this->emitStorePop(*ResultT, E);
2502   }
2503   if (LHS->refersToBitField())
2504     return this->emitStoreBitField(*ResultT, E);
2505   return this->emitStore(*ResultT, E);
2506 }
2507 
2508 template <class Emitter>
2509 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
2510   LocalScope<Emitter> ES(this);
2511   const Expr *SubExpr = E->getSubExpr();
2512 
2513   return this->delegate(SubExpr) && ES.destroyLocals(E);
2514 }
2515 
2516 template <class Emitter>
2517 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
2518     const MaterializeTemporaryExpr *E) {
2519   const Expr *SubExpr = E->getSubExpr();
2520 
2521   if (Initializing) {
2522     // We already have a value, just initialize that.
2523     return this->delegate(SubExpr);
2524   }
2525   // If we don't end up using the materialized temporary anyway, don't
2526   // bother creating it.
2527   if (DiscardResult)
2528     return this->discard(SubExpr);
2529 
2530   // When we're initializing a global variable *or* the storage duration of
2531   // the temporary is explicitly static, create a global variable.
2532   std::optional<PrimType> SubExprT = classify(SubExpr);
2533   bool IsStatic = E->getStorageDuration() == SD_Static;
2534   if (IsStatic) {
2535     std::optional<unsigned> GlobalIndex = P.createGlobal(E);
2536     if (!GlobalIndex)
2537       return false;
2538 
2539     const LifetimeExtendedTemporaryDecl *TempDecl =
2540         E->getLifetimeExtendedTemporaryDecl();
2541     if (IsStatic)
2542       assert(TempDecl);
2543 
2544     if (SubExprT) {
2545       if (!this->visit(SubExpr))
2546         return false;
2547       if (IsStatic) {
2548         if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
2549           return false;
2550       } else {
2551         if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
2552           return false;
2553       }
2554       return this->emitGetPtrGlobal(*GlobalIndex, E);
2555     }
2556 
2557     if (!this->checkLiteralType(SubExpr))
2558       return false;
2559     // Non-primitive values.
2560     if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2561       return false;
2562     if (!this->visitInitializer(SubExpr))
2563       return false;
2564     if (IsStatic)
2565       return this->emitInitGlobalTempComp(TempDecl, E);
2566     return true;
2567   }
2568 
2569   // For everyhing else, use local variables.
2570   if (SubExprT) {
2571     unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true,
2572                                                  /*IsExtended=*/true);
2573     if (!this->visit(SubExpr))
2574       return false;
2575     if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
2576       return false;
2577     return this->emitGetPtrLocal(LocalIndex, E);
2578   } else {
2579 
2580     if (!this->checkLiteralType(SubExpr))
2581       return false;
2582 
2583     const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2584     if (std::optional<unsigned> LocalIndex =
2585             allocateLocal(Inner, E->getExtendingDecl())) {
2586       InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
2587       if (!this->emitGetPtrLocal(*LocalIndex, E))
2588         return false;
2589       return this->visitInitializer(SubExpr);
2590     }
2591   }
2592   return false;
2593 }
2594 
2595 template <class Emitter>
2596 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
2597     const CXXBindTemporaryExpr *E) {
2598   return this->delegate(E->getSubExpr());
2599 }
2600 
2601 template <class Emitter>
2602 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2603   const Expr *Init = E->getInitializer();
2604   if (DiscardResult)
2605     return this->discard(Init);
2606 
2607   if (Initializing) {
2608     // We already have a value, just initialize that.
2609     return this->visitInitializer(Init) && this->emitFinishInit(E);
2610   }
2611 
2612   std::optional<PrimType> T = classify(E->getType());
2613   if (E->isFileScope()) {
2614     // Avoid creating a variable if this is a primitive RValue anyway.
2615     if (T && !E->isLValue())
2616       return this->delegate(Init);
2617 
2618     if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
2619       if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2620         return false;
2621 
2622       if (T) {
2623         if (!this->visit(Init))
2624           return false;
2625         return this->emitInitGlobal(*T, *GlobalIndex, E);
2626       }
2627 
2628       return this->visitInitializer(Init) && this->emitFinishInit(E);
2629     }
2630 
2631     return false;
2632   }
2633 
2634   // Otherwise, use a local variable.
2635   if (T && !E->isLValue()) {
2636     // For primitive types, we just visit the initializer.
2637     return this->delegate(Init);
2638   } else {
2639     unsigned LocalIndex;
2640 
2641     if (T)
2642       LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
2643     else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
2644       LocalIndex = *MaybeIndex;
2645     else
2646       return false;
2647 
2648     if (!this->emitGetPtrLocal(LocalIndex, E))
2649       return false;
2650 
2651     if (T) {
2652       if (!this->visit(Init)) {
2653         return false;
2654       }
2655       return this->emitInit(*T, E);
2656     } else {
2657       if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
2658         return false;
2659     }
2660     return true;
2661   }
2662 
2663   return false;
2664 }
2665 
2666 template <class Emitter>
2667 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
2668   if (DiscardResult)
2669     return true;
2670   if (E->getType()->isBooleanType())
2671     return this->emitConstBool(E->getValue(), E);
2672   return this->emitConst(E->getValue(), E);
2673 }
2674 
2675 template <class Emitter>
2676 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
2677   if (DiscardResult)
2678     return true;
2679   return this->emitConst(E->getValue(), E);
2680 }
2681 
2682 template <class Emitter>
2683 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
2684   if (DiscardResult)
2685     return true;
2686 
2687   assert(Initializing);
2688   const Record *R = P.getOrCreateRecord(E->getLambdaClass());
2689 
2690   auto *CaptureInitIt = E->capture_init_begin();
2691   // Initialize all fields (which represent lambda captures) of the
2692   // record with their initializers.
2693   for (const Record::Field &F : R->fields()) {
2694     const Expr *Init = *CaptureInitIt;
2695     ++CaptureInitIt;
2696 
2697     if (!Init)
2698       continue;
2699 
2700     if (std::optional<PrimType> T = classify(Init)) {
2701       if (!this->visit(Init))
2702         return false;
2703 
2704       if (!this->emitInitField(*T, F.Offset, E))
2705         return false;
2706     } else {
2707       if (!this->emitGetPtrField(F.Offset, E))
2708         return false;
2709 
2710       if (!this->visitInitializer(Init))
2711         return false;
2712 
2713       if (!this->emitPopPtr(E))
2714         return false;
2715     }
2716   }
2717 
2718   return true;
2719 }
2720 
2721 template <class Emitter>
2722 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
2723   if (DiscardResult)
2724     return true;
2725 
2726   return this->delegate(E->getFunctionName());
2727 }
2728 
2729 template <class Emitter>
2730 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
2731   if (E->getSubExpr() && !this->discard(E->getSubExpr()))
2732     return false;
2733 
2734   return this->emitInvalid(E);
2735 }
2736 
2737 template <class Emitter>
2738 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
2739     const CXXReinterpretCastExpr *E) {
2740   const Expr *SubExpr = E->getSubExpr();
2741 
2742   std::optional<PrimType> FromT = classify(SubExpr);
2743   std::optional<PrimType> ToT = classify(E);
2744 
2745   if (!FromT || !ToT)
2746     return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E);
2747 
2748   if (FromT == PT_Ptr || ToT == PT_Ptr) {
2749     // Both types could be PT_Ptr because their expressions are glvalues.
2750     std::optional<PrimType> PointeeFromT;
2751     if (SubExpr->getType()->isPointerOrReferenceType())
2752       PointeeFromT = classify(SubExpr->getType()->getPointeeType());
2753     else
2754       PointeeFromT = classify(SubExpr->getType());
2755 
2756     std::optional<PrimType> PointeeToT;
2757     if (E->getType()->isPointerOrReferenceType())
2758       PointeeToT = classify(E->getType()->getPointeeType());
2759     else
2760       PointeeToT = classify(E->getType());
2761 
2762     bool Fatal = true;
2763     if (PointeeToT && PointeeFromT) {
2764       if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT))
2765         Fatal = false;
2766     }
2767 
2768     if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2769       return false;
2770 
2771     if (E->getCastKind() == CK_LValueBitCast)
2772       return this->delegate(SubExpr);
2773     return this->VisitCastExpr(E);
2774   }
2775 
2776   // Try to actually do the cast.
2777   bool Fatal = (ToT != FromT);
2778   if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2779     return false;
2780 
2781   return this->VisitCastExpr(E);
2782 }
2783 
2784 template <class Emitter>
2785 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
2786   assert(E->getType()->isBooleanType());
2787 
2788   if (DiscardResult)
2789     return true;
2790   return this->emitConstBool(E->getValue(), E);
2791 }
2792 
2793 template <class Emitter>
2794 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
2795   QualType T = E->getType();
2796   assert(!classify(T));
2797 
2798   if (T->isRecordType()) {
2799     const CXXConstructorDecl *Ctor = E->getConstructor();
2800 
2801     // Trivial copy/move constructor. Avoid copy.
2802     if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
2803         Ctor->isTrivial() &&
2804         E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
2805                                         T->getAsCXXRecordDecl()))
2806       return this->visitInitializer(E->getArg(0));
2807 
2808     // If we're discarding a construct expression, we still need
2809     // to allocate a variable and call the constructor and destructor.
2810     if (DiscardResult) {
2811       if (Ctor->isTrivial())
2812         return true;
2813       assert(!Initializing);
2814       std::optional<unsigned> LocalIndex = allocateLocal(E);
2815 
2816       if (!LocalIndex)
2817         return false;
2818 
2819       if (!this->emitGetPtrLocal(*LocalIndex, E))
2820         return false;
2821     }
2822 
2823     // Zero initialization.
2824     if (E->requiresZeroInitialization()) {
2825       const Record *R = getRecord(E->getType());
2826 
2827       if (!this->visitZeroRecordInitializer(R, E))
2828         return false;
2829 
2830       // If the constructor is trivial anyway, we're done.
2831       if (Ctor->isTrivial())
2832         return true;
2833     }
2834 
2835     const Function *Func = getFunction(Ctor);
2836 
2837     if (!Func)
2838       return false;
2839 
2840     assert(Func->hasThisPointer());
2841     assert(!Func->hasRVO());
2842 
2843     //  The This pointer is already on the stack because this is an initializer,
2844     //  but we need to dup() so the call() below has its own copy.
2845     if (!this->emitDupPtr(E))
2846       return false;
2847 
2848     // Constructor arguments.
2849     for (const auto *Arg : E->arguments()) {
2850       if (!this->visit(Arg))
2851         return false;
2852     }
2853 
2854     if (Func->isVariadic()) {
2855       uint32_t VarArgSize = 0;
2856       unsigned NumParams = Func->getNumWrittenParams();
2857       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
2858         VarArgSize +=
2859             align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
2860       }
2861       if (!this->emitCallVar(Func, VarArgSize, E))
2862         return false;
2863     } else {
2864       if (!this->emitCall(Func, 0, E)) {
2865         // When discarding, we don't need the result anyway, so clean up
2866         // the instance dup we did earlier in case surrounding code wants
2867         // to keep evaluating.
2868         if (DiscardResult)
2869           (void)this->emitPopPtr(E);
2870         return false;
2871       }
2872     }
2873 
2874     if (DiscardResult)
2875       return this->emitPopPtr(E);
2876     return this->emitFinishInit(E);
2877   }
2878 
2879   if (T->isArrayType()) {
2880     const ConstantArrayType *CAT =
2881         Ctx.getASTContext().getAsConstantArrayType(E->getType());
2882     if (!CAT)
2883       return false;
2884 
2885     size_t NumElems = CAT->getZExtSize();
2886     const Function *Func = getFunction(E->getConstructor());
2887     if (!Func || !Func->isConstexpr())
2888       return false;
2889 
2890     // FIXME(perf): We're calling the constructor once per array element here,
2891     //   in the old intepreter we had a special-case for trivial constructors.
2892     for (size_t I = 0; I != NumElems; ++I) {
2893       if (!this->emitConstUint64(I, E))
2894         return false;
2895       if (!this->emitArrayElemPtrUint64(E))
2896         return false;
2897 
2898       // Constructor arguments.
2899       for (const auto *Arg : E->arguments()) {
2900         if (!this->visit(Arg))
2901           return false;
2902       }
2903 
2904       if (!this->emitCall(Func, 0, E))
2905         return false;
2906     }
2907     return true;
2908   }
2909 
2910   return false;
2911 }
2912 
2913 template <class Emitter>
2914 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
2915   if (DiscardResult)
2916     return true;
2917 
2918   const APValue Val =
2919       E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
2920 
2921   // Things like __builtin_LINE().
2922   if (E->getType()->isIntegerType()) {
2923     assert(Val.isInt());
2924     const APSInt &I = Val.getInt();
2925     return this->emitConst(I, E);
2926   }
2927   // Otherwise, the APValue is an LValue, with only one element.
2928   // Theoretically, we don't need the APValue at all of course.
2929   assert(E->getType()->isPointerType());
2930   assert(Val.isLValue());
2931   const APValue::LValueBase &Base = Val.getLValueBase();
2932   if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
2933     return this->visit(LValueExpr);
2934 
2935   // Otherwise, we have a decl (which is the case for
2936   // __builtin_source_location).
2937   assert(Base.is<const ValueDecl *>());
2938   assert(Val.getLValuePath().size() == 0);
2939   const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
2940   assert(BaseDecl);
2941 
2942   auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
2943 
2944   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
2945   if (!GlobalIndex)
2946     return false;
2947 
2948   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2949     return false;
2950 
2951   const Record *R = getRecord(E->getType());
2952   const APValue &V = UGCD->getValue();
2953   for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
2954     const Record::Field *F = R->getField(I);
2955     const APValue &FieldValue = V.getStructField(I);
2956 
2957     PrimType FieldT = classifyPrim(F->Decl->getType());
2958 
2959     if (!this->visitAPValue(FieldValue, FieldT, E))
2960       return false;
2961     if (!this->emitInitField(FieldT, F->Offset, E))
2962       return false;
2963   }
2964 
2965   // Leave the pointer to the global on the stack.
2966   return true;
2967 }
2968 
2969 template <class Emitter>
2970 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
2971   unsigned N = E->getNumComponents();
2972   if (N == 0)
2973     return false;
2974 
2975   for (unsigned I = 0; I != N; ++I) {
2976     const OffsetOfNode &Node = E->getComponent(I);
2977     if (Node.getKind() == OffsetOfNode::Array) {
2978       const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
2979       PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
2980 
2981       if (DiscardResult) {
2982         if (!this->discard(ArrayIndexExpr))
2983           return false;
2984         continue;
2985       }
2986 
2987       if (!this->visit(ArrayIndexExpr))
2988         return false;
2989       // Cast to Sint64.
2990       if (IndexT != PT_Sint64) {
2991         if (!this->emitCast(IndexT, PT_Sint64, E))
2992           return false;
2993       }
2994     }
2995   }
2996 
2997   if (DiscardResult)
2998     return true;
2999 
3000   PrimType T = classifyPrim(E->getType());
3001   return this->emitOffsetOf(T, E, E);
3002 }
3003 
3004 template <class Emitter>
3005 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
3006     const CXXScalarValueInitExpr *E) {
3007   QualType Ty = E->getType();
3008 
3009   if (DiscardResult || Ty->isVoidType())
3010     return true;
3011 
3012   if (std::optional<PrimType> T = classify(Ty))
3013     return this->visitZeroInitializer(*T, Ty, E);
3014 
3015   if (const auto *CT = Ty->getAs<ComplexType>()) {
3016     if (!Initializing) {
3017       std::optional<unsigned> LocalIndex = allocateLocal(E);
3018       if (!LocalIndex)
3019         return false;
3020       if (!this->emitGetPtrLocal(*LocalIndex, E))
3021         return false;
3022     }
3023 
3024     // Initialize both fields to 0.
3025     QualType ElemQT = CT->getElementType();
3026     PrimType ElemT = classifyPrim(ElemQT);
3027 
3028     for (unsigned I = 0; I != 2; ++I) {
3029       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3030         return false;
3031       if (!this->emitInitElem(ElemT, I, E))
3032         return false;
3033     }
3034     return true;
3035   }
3036 
3037   if (const auto *VT = Ty->getAs<VectorType>()) {
3038     // FIXME: Code duplication with the _Complex case above.
3039     if (!Initializing) {
3040       std::optional<unsigned> LocalIndex = allocateLocal(E);
3041       if (!LocalIndex)
3042         return false;
3043       if (!this->emitGetPtrLocal(*LocalIndex, E))
3044         return false;
3045     }
3046 
3047     // Initialize all fields to 0.
3048     QualType ElemQT = VT->getElementType();
3049     PrimType ElemT = classifyPrim(ElemQT);
3050 
3051     for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
3052       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3053         return false;
3054       if (!this->emitInitElem(ElemT, I, E))
3055         return false;
3056     }
3057     return true;
3058   }
3059 
3060   return false;
3061 }
3062 
3063 template <class Emitter>
3064 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
3065   return this->emitConst(E->getPackLength(), E);
3066 }
3067 
3068 template <class Emitter>
3069 bool Compiler<Emitter>::VisitGenericSelectionExpr(
3070     const GenericSelectionExpr *E) {
3071   return this->delegate(E->getResultExpr());
3072 }
3073 
3074 template <class Emitter>
3075 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
3076   return this->delegate(E->getChosenSubExpr());
3077 }
3078 
3079 template <class Emitter>
3080 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
3081   if (DiscardResult)
3082     return true;
3083 
3084   return this->emitConst(E->getValue(), E);
3085 }
3086 
3087 template <class Emitter>
3088 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
3089     const CXXInheritedCtorInitExpr *E) {
3090   const CXXConstructorDecl *Ctor = E->getConstructor();
3091   assert(!Ctor->isTrivial() &&
3092          "Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
3093   const Function *F = this->getFunction(Ctor);
3094   assert(F);
3095   assert(!F->hasRVO());
3096   assert(F->hasThisPointer());
3097 
3098   if (!this->emitDupPtr(SourceInfo{}))
3099     return false;
3100 
3101   // Forward all arguments of the current function (which should be a
3102   // constructor itself) to the inherited ctor.
3103   // This is necessary because the calling code has pushed the pointer
3104   // of the correct base for  us already, but the arguments need
3105   // to come after.
3106   unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
3107   for (const ParmVarDecl *PD : Ctor->parameters()) {
3108     PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
3109 
3110     if (!this->emitGetParam(PT, Offset, E))
3111       return false;
3112     Offset += align(primSize(PT));
3113   }
3114 
3115   return this->emitCall(F, 0, E);
3116 }
3117 
3118 template <class Emitter>
3119 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
3120   assert(classifyPrim(E->getType()) == PT_Ptr);
3121   const Expr *Init = E->getInitializer();
3122   QualType ElementType = E->getAllocatedType();
3123   std::optional<PrimType> ElemT = classify(ElementType);
3124   unsigned PlacementArgs = E->getNumPlacementArgs();
3125   const FunctionDecl *OperatorNew = E->getOperatorNew();
3126   const Expr *PlacementDest = nullptr;
3127   bool IsNoThrow = false;
3128 
3129   if (PlacementArgs != 0) {
3130     // FIXME: There is no restriction on this, but it's not clear that any
3131     // other form makes any sense. We get here for cases such as:
3132     //
3133     //   new (std::align_val_t{N}) X(int)
3134     //
3135     // (which should presumably be valid only if N is a multiple of
3136     // alignof(int), and in any case can't be deallocated unless N is
3137     // alignof(X) and X has new-extended alignment).
3138     if (PlacementArgs == 1) {
3139       const Expr *Arg1 = E->getPlacementArg(0);
3140       if (Arg1->getType()->isNothrowT()) {
3141         if (!this->discard(Arg1))
3142           return false;
3143         IsNoThrow = true;
3144       } else {
3145         // Invalid unless we have C++26 or are in a std:: function.
3146         if (!this->emitInvalidNewDeleteExpr(E, E))
3147           return false;
3148 
3149         // If we have a placement-new destination, we'll later use that instead
3150         // of allocating.
3151         if (OperatorNew->isReservedGlobalPlacementOperator())
3152           PlacementDest = Arg1;
3153       }
3154     } else {
3155       // Always invalid.
3156       return this->emitInvalid(E);
3157     }
3158   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction())
3159     return this->emitInvalidNewDeleteExpr(E, E);
3160 
3161   const Descriptor *Desc;
3162   if (!PlacementDest) {
3163     if (ElemT) {
3164       if (E->isArray())
3165         Desc = nullptr; // We're not going to use it in this case.
3166       else
3167         Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
3168                                   /*IsConst=*/false, /*IsTemporary=*/false,
3169                                   /*IsMutable=*/false);
3170     } else {
3171       Desc = P.createDescriptor(
3172           E, ElementType.getTypePtr(),
3173           E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
3174           /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
3175     }
3176   }
3177 
3178   if (E->isArray()) {
3179     std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
3180     if (!ArraySizeExpr)
3181       return false;
3182 
3183     const Expr *Stripped = *ArraySizeExpr;
3184     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
3185          Stripped = ICE->getSubExpr())
3186       if (ICE->getCastKind() != CK_NoOp &&
3187           ICE->getCastKind() != CK_IntegralCast)
3188         break;
3189 
3190     PrimType SizeT = classifyPrim(Stripped->getType());
3191 
3192     if (PlacementDest) {
3193       if (!this->visit(PlacementDest))
3194         return false;
3195       if (!this->visit(Stripped))
3196         return false;
3197       if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E))
3198         return false;
3199     } else {
3200       if (!this->visit(Stripped))
3201         return false;
3202 
3203       if (ElemT) {
3204         // N primitive elements.
3205         if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
3206           return false;
3207       } else {
3208         // N Composite elements.
3209         if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
3210           return false;
3211       }
3212     }
3213 
3214     if (Init && !this->visitInitializer(Init))
3215       return false;
3216 
3217   } else {
3218     if (PlacementDest) {
3219       if (!this->visit(PlacementDest))
3220         return false;
3221       if (!this->emitCheckNewTypeMismatch(E, E))
3222         return false;
3223     } else {
3224       // Allocate just one element.
3225       if (!this->emitAlloc(Desc, E))
3226         return false;
3227     }
3228 
3229     if (Init) {
3230       if (ElemT) {
3231         if (!this->visit(Init))
3232           return false;
3233 
3234         if (!this->emitInit(*ElemT, E))
3235           return false;
3236       } else {
3237         // Composite.
3238         if (!this->visitInitializer(Init))
3239           return false;
3240       }
3241     }
3242   }
3243 
3244   if (DiscardResult)
3245     return this->emitPopPtr(E);
3246 
3247   return true;
3248 }
3249 
3250 template <class Emitter>
3251 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
3252   const Expr *Arg = E->getArgument();
3253 
3254   const FunctionDecl *OperatorDelete = E->getOperatorDelete();
3255 
3256   if (!OperatorDelete->isReplaceableGlobalAllocationFunction())
3257     return this->emitInvalidNewDeleteExpr(E, E);
3258 
3259   // Arg must be an lvalue.
3260   if (!this->visit(Arg))
3261     return false;
3262 
3263   return this->emitFree(E->isArrayForm(), E);
3264 }
3265 
3266 template <class Emitter>
3267 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
3268   const Function *Func = nullptr;
3269   if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E))
3270     Func = F;
3271 
3272   if (!Func)
3273     return false;
3274   return this->emitGetFnPtr(Func, E);
3275 }
3276 
3277 template <class Emitter>
3278 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
3279   assert(Ctx.getLangOpts().CPlusPlus);
3280   return this->emitConstBool(E->getValue(), E);
3281 }
3282 
3283 template <class Emitter>
3284 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
3285   if (DiscardResult)
3286     return true;
3287   assert(!Initializing);
3288 
3289   const MSGuidDecl *GuidDecl = E->getGuidDecl();
3290   const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
3291   assert(RD);
3292   // If the definiton of the result type is incomplete, just return a dummy.
3293   // If (and when) that is read from, we will fail, but not now.
3294   if (!RD->isCompleteDefinition()) {
3295     if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl))
3296       return this->emitGetPtrGlobal(*I, E);
3297     return false;
3298   }
3299 
3300   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
3301   if (!GlobalIndex)
3302     return false;
3303   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3304     return false;
3305 
3306   assert(this->getRecord(E->getType()));
3307 
3308   const APValue &V = GuidDecl->getAsAPValue();
3309   if (V.getKind() == APValue::None)
3310     return true;
3311 
3312   assert(V.isStruct());
3313   assert(V.getStructNumBases() == 0);
3314   if (!this->visitAPValueInitializer(V, E))
3315     return false;
3316 
3317   return this->emitFinishInit(E);
3318 }
3319 
3320 template <class Emitter>
3321 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
3322   assert(classifyPrim(E->getType()) == PT_Bool);
3323   if (DiscardResult)
3324     return true;
3325   return this->emitConstBool(E->isSatisfied(), E);
3326 }
3327 
3328 template <class Emitter>
3329 bool Compiler<Emitter>::VisitConceptSpecializationExpr(
3330     const ConceptSpecializationExpr *E) {
3331   assert(classifyPrim(E->getType()) == PT_Bool);
3332   if (DiscardResult)
3333     return true;
3334   return this->emitConstBool(E->isSatisfied(), E);
3335 }
3336 
3337 template <class Emitter>
3338 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
3339     const CXXRewrittenBinaryOperator *E) {
3340   return this->delegate(E->getSemanticForm());
3341 }
3342 
3343 template <class Emitter>
3344 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
3345 
3346   for (const Expr *SemE : E->semantics()) {
3347     if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
3348       if (SemE == E->getResultExpr())
3349         return false;
3350 
3351       if (OVE->isUnique())
3352         continue;
3353 
3354       if (!this->discard(OVE))
3355         return false;
3356     } else if (SemE == E->getResultExpr()) {
3357       if (!this->delegate(SemE))
3358         return false;
3359     } else {
3360       if (!this->discard(SemE))
3361         return false;
3362     }
3363   }
3364   return true;
3365 }
3366 
3367 template <class Emitter>
3368 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
3369   return this->delegate(E->getSelectedExpr());
3370 }
3371 
3372 template <class Emitter>
3373 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
3374   return this->emitError(E);
3375 }
3376 
3377 template <class Emitter>
3378 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
3379   assert(E->getType()->isVoidPointerType());
3380 
3381   unsigned Offset = allocateLocalPrimitive(
3382       E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3383 
3384   return this->emitGetLocal(PT_Ptr, Offset, E);
3385 }
3386 
3387 template <class Emitter>
3388 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
3389   assert(Initializing);
3390   const auto *VT = E->getType()->castAs<VectorType>();
3391   QualType ElemType = VT->getElementType();
3392   PrimType ElemT = classifyPrim(ElemType);
3393   const Expr *Src = E->getSrcExpr();
3394   PrimType SrcElemT =
3395       classifyPrim(Src->getType()->castAs<VectorType>()->getElementType());
3396 
3397   unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
3398   if (!this->visit(Src))
3399     return false;
3400   if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
3401     return false;
3402 
3403   for (unsigned I = 0; I != VT->getNumElements(); ++I) {
3404     if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
3405       return false;
3406     if (!this->emitArrayElemPop(SrcElemT, I, E))
3407       return false;
3408     if (SrcElemT != ElemT) {
3409       if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
3410         return false;
3411     }
3412     if (!this->emitInitElem(ElemT, I, E))
3413       return false;
3414   }
3415 
3416   return true;
3417 }
3418 
3419 template <class Emitter>
3420 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
3421   assert(Initializing);
3422   assert(E->getNumSubExprs() > 2);
3423 
3424   const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
3425   const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
3426   PrimType ElemT = classifyPrim(VT->getElementType());
3427   unsigned NumInputElems = VT->getNumElements();
3428   unsigned NumOutputElems = E->getNumSubExprs() - 2;
3429   assert(NumOutputElems > 0);
3430 
3431   // Save both input vectors to a local variable.
3432   unsigned VectorOffsets[2];
3433   for (unsigned I = 0; I != 2; ++I) {
3434     VectorOffsets[I] = this->allocateLocalPrimitive(
3435         Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3436     if (!this->visit(Vecs[I]))
3437       return false;
3438     if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
3439       return false;
3440   }
3441   for (unsigned I = 0; I != NumOutputElems; ++I) {
3442     APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
3443     if (ShuffleIndex == -1)
3444       return this->emitInvalid(E); // FIXME: Better diagnostic.
3445 
3446     assert(ShuffleIndex < (NumInputElems * 2));
3447     if (!this->emitGetLocal(PT_Ptr,
3448                             VectorOffsets[ShuffleIndex >= NumInputElems], E))
3449       return false;
3450     unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
3451     if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
3452       return false;
3453 
3454     if (!this->emitInitElem(ElemT, I, E))
3455       return false;
3456   }
3457 
3458   return true;
3459 }
3460 
3461 template <class Emitter>
3462 bool Compiler<Emitter>::VisitExtVectorElementExpr(
3463     const ExtVectorElementExpr *E) {
3464   const Expr *Base = E->getBase();
3465   assert(
3466       Base->getType()->isVectorType() ||
3467       Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
3468 
3469   SmallVector<uint32_t, 4> Indices;
3470   E->getEncodedElementAccess(Indices);
3471 
3472   if (Indices.size() == 1) {
3473     if (!this->visit(Base))
3474       return false;
3475 
3476     if (E->isGLValue()) {
3477       if (!this->emitConstUint32(Indices[0], E))
3478         return false;
3479       return this->emitArrayElemPtrPop(PT_Uint32, E);
3480     }
3481     // Else, also load the value.
3482     return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
3483   }
3484 
3485   // Create a local variable for the base.
3486   unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
3487                                                /*IsExtended=*/false);
3488   if (!this->visit(Base))
3489     return false;
3490   if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
3491     return false;
3492 
3493   // Now the vector variable for the return value.
3494   if (!Initializing) {
3495     std::optional<unsigned> ResultIndex;
3496     ResultIndex = allocateLocal(E);
3497     if (!ResultIndex)
3498       return false;
3499     if (!this->emitGetPtrLocal(*ResultIndex, E))
3500       return false;
3501   }
3502 
3503   assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
3504 
3505   PrimType ElemT =
3506       classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
3507   uint32_t DstIndex = 0;
3508   for (uint32_t I : Indices) {
3509     if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
3510       return false;
3511     if (!this->emitArrayElemPop(ElemT, I, E))
3512       return false;
3513     if (!this->emitInitElem(ElemT, DstIndex, E))
3514       return false;
3515     ++DstIndex;
3516   }
3517 
3518   // Leave the result pointer on the stack.
3519   assert(!DiscardResult);
3520   return true;
3521 }
3522 
3523 template <class Emitter>
3524 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
3525   const Expr *SubExpr = E->getSubExpr();
3526   if (!E->isExpressibleAsConstantInitializer())
3527     return this->discard(SubExpr) && this->emitInvalid(E);
3528 
3529   assert(classifyPrim(E) == PT_Ptr);
3530   if (std::optional<unsigned> I = P.getOrCreateDummy(E))
3531     return this->emitGetPtrGlobal(*I, E);
3532 
3533   return false;
3534 }
3535 
3536 template <class Emitter>
3537 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
3538     const CXXStdInitializerListExpr *E) {
3539   const Expr *SubExpr = E->getSubExpr();
3540   const ConstantArrayType *ArrayType =
3541       Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
3542   const Record *R = getRecord(E->getType());
3543   assert(Initializing);
3544   assert(SubExpr->isGLValue());
3545 
3546   if (!this->visit(SubExpr))
3547     return false;
3548   if (!this->emitConstUint8(0, E))
3549     return false;
3550   if (!this->emitArrayElemPtrPopUint8(E))
3551     return false;
3552   if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
3553     return false;
3554 
3555   PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
3556   if (isIntegralType(SecondFieldT)) {
3557     if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
3558                          SecondFieldT, E))
3559       return false;
3560     return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
3561   }
3562   assert(SecondFieldT == PT_Ptr);
3563 
3564   if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
3565     return false;
3566   if (!this->emitExpandPtr(E))
3567     return false;
3568   if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
3569     return false;
3570   if (!this->emitArrayElemPtrPop(PT_Uint64, E))
3571     return false;
3572   return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
3573 }
3574 
3575 template <class Emitter>
3576 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
3577   BlockScope<Emitter> BS(this);
3578   StmtExprScope<Emitter> SS(this);
3579 
3580   const CompoundStmt *CS = E->getSubStmt();
3581   const Stmt *Result = CS->getStmtExprResult();
3582   for (const Stmt *S : CS->body()) {
3583     if (S != Result) {
3584       if (!this->visitStmt(S))
3585         return false;
3586       continue;
3587     }
3588 
3589     assert(S == Result);
3590     if (const Expr *ResultExpr = dyn_cast<Expr>(S))
3591       return this->delegate(ResultExpr);
3592     return this->emitUnsupported(E);
3593   }
3594 
3595   return BS.destroyLocals();
3596 }
3597 
3598 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
3599   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
3600                              /*NewInitializing=*/false);
3601   return this->Visit(E);
3602 }
3603 
3604 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
3605   // We're basically doing:
3606   // OptionScope<Emitter> Scope(this, DicardResult, Initializing);
3607   // but that's unnecessary of course.
3608   return this->Visit(E);
3609 }
3610 
3611 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
3612   if (E->getType().isNull())
3613     return false;
3614 
3615   if (E->getType()->isVoidType())
3616     return this->discard(E);
3617 
3618   // Create local variable to hold the return value.
3619   if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
3620       !classify(E->getType())) {
3621     std::optional<unsigned> LocalIndex = allocateLocal(E);
3622     if (!LocalIndex)
3623       return false;
3624 
3625     if (!this->emitGetPtrLocal(*LocalIndex, E))
3626       return false;
3627     return this->visitInitializer(E);
3628   }
3629 
3630   //  Otherwise,we have a primitive return value, produce the value directly
3631   //  and push it on the stack.
3632   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3633                              /*NewInitializing=*/false);
3634   return this->Visit(E);
3635 }
3636 
3637 template <class Emitter>
3638 bool Compiler<Emitter>::visitInitializer(const Expr *E) {
3639   assert(!classify(E->getType()));
3640 
3641   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3642                              /*NewInitializing=*/true);
3643   return this->Visit(E);
3644 }
3645 
3646 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
3647   std::optional<PrimType> T = classify(E->getType());
3648   if (!T) {
3649     // Convert complex values to bool.
3650     if (E->getType()->isAnyComplexType()) {
3651       if (!this->visit(E))
3652         return false;
3653       return this->emitComplexBoolCast(E);
3654     }
3655     return false;
3656   }
3657 
3658   if (!this->visit(E))
3659     return false;
3660 
3661   if (T == PT_Bool)
3662     return true;
3663 
3664   // Convert pointers to bool.
3665   if (T == PT_Ptr || T == PT_FnPtr) {
3666     if (!this->emitNull(*T, nullptr, E))
3667       return false;
3668     return this->emitNE(*T, E);
3669   }
3670 
3671   // Or Floats.
3672   if (T == PT_Float)
3673     return this->emitCastFloatingIntegralBool(getFPOptions(E), E);
3674 
3675   // Or anything else we can.
3676   return this->emitCast(*T, PT_Bool, E);
3677 }
3678 
3679 template <class Emitter>
3680 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
3681                                              const Expr *E) {
3682   switch (T) {
3683   case PT_Bool:
3684     return this->emitZeroBool(E);
3685   case PT_Sint8:
3686     return this->emitZeroSint8(E);
3687   case PT_Uint8:
3688     return this->emitZeroUint8(E);
3689   case PT_Sint16:
3690     return this->emitZeroSint16(E);
3691   case PT_Uint16:
3692     return this->emitZeroUint16(E);
3693   case PT_Sint32:
3694     return this->emitZeroSint32(E);
3695   case PT_Uint32:
3696     return this->emitZeroUint32(E);
3697   case PT_Sint64:
3698     return this->emitZeroSint64(E);
3699   case PT_Uint64:
3700     return this->emitZeroUint64(E);
3701   case PT_IntAP:
3702     return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
3703   case PT_IntAPS:
3704     return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
3705   case PT_Ptr:
3706     return this->emitNullPtr(nullptr, E);
3707   case PT_FnPtr:
3708     return this->emitNullFnPtr(nullptr, E);
3709   case PT_MemberPtr:
3710     return this->emitNullMemberPtr(nullptr, E);
3711   case PT_Float:
3712     return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
3713   case PT_FixedPoint: {
3714     auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
3715     return this->emitConstFixedPoint(FixedPoint::Zero(Sem), E);
3716   }
3717     llvm_unreachable("Implement");
3718   }
3719   llvm_unreachable("unknown primitive type");
3720 }
3721 
3722 template <class Emitter>
3723 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
3724                                                    const Expr *E) {
3725   assert(E);
3726   assert(R);
3727   // Fields
3728   for (const Record::Field &Field : R->fields()) {
3729     if (Field.Decl->isUnnamedBitField())
3730       continue;
3731 
3732     const Descriptor *D = Field.Desc;
3733     if (D->isPrimitive()) {
3734       QualType QT = D->getType();
3735       PrimType T = classifyPrim(D->getType());
3736       if (!this->visitZeroInitializer(T, QT, E))
3737         return false;
3738       if (!this->emitInitField(T, Field.Offset, E))
3739         return false;
3740       if (R->isUnion())
3741         break;
3742       continue;
3743     }
3744 
3745     if (!this->emitGetPtrField(Field.Offset, E))
3746       return false;
3747 
3748     if (D->isPrimitiveArray()) {
3749       QualType ET = D->getElemQualType();
3750       PrimType T = classifyPrim(ET);
3751       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3752         if (!this->visitZeroInitializer(T, ET, E))
3753           return false;
3754         if (!this->emitInitElem(T, I, E))
3755           return false;
3756       }
3757     } else if (D->isCompositeArray()) {
3758       const Record *ElemRecord = D->ElemDesc->ElemRecord;
3759       assert(D->ElemDesc->ElemRecord);
3760       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3761         if (!this->emitConstUint32(I, E))
3762           return false;
3763         if (!this->emitArrayElemPtr(PT_Uint32, E))
3764           return false;
3765         if (!this->visitZeroRecordInitializer(ElemRecord, E))
3766           return false;
3767         if (!this->emitPopPtr(E))
3768           return false;
3769       }
3770     } else if (D->isRecord()) {
3771       if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
3772         return false;
3773     } else {
3774       assert(false);
3775     }
3776 
3777     if (!this->emitFinishInitPop(E))
3778       return false;
3779 
3780     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3781     // object's first non-static named data member is zero-initialized
3782     if (R->isUnion())
3783       break;
3784   }
3785 
3786   for (const Record::Base &B : R->bases()) {
3787     if (!this->emitGetPtrBase(B.Offset, E))
3788       return false;
3789     if (!this->visitZeroRecordInitializer(B.R, E))
3790       return false;
3791     if (!this->emitFinishInitPop(E))
3792       return false;
3793   }
3794 
3795   // FIXME: Virtual bases.
3796 
3797   return true;
3798 }
3799 
3800 template <class Emitter>
3801 template <typename T>
3802 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
3803   switch (Ty) {
3804   case PT_Sint8:
3805     return this->emitConstSint8(Value, E);
3806   case PT_Uint8:
3807     return this->emitConstUint8(Value, E);
3808   case PT_Sint16:
3809     return this->emitConstSint16(Value, E);
3810   case PT_Uint16:
3811     return this->emitConstUint16(Value, E);
3812   case PT_Sint32:
3813     return this->emitConstSint32(Value, E);
3814   case PT_Uint32:
3815     return this->emitConstUint32(Value, E);
3816   case PT_Sint64:
3817     return this->emitConstSint64(Value, E);
3818   case PT_Uint64:
3819     return this->emitConstUint64(Value, E);
3820   case PT_Bool:
3821     return this->emitConstBool(Value, E);
3822   case PT_Ptr:
3823   case PT_FnPtr:
3824   case PT_MemberPtr:
3825   case PT_Float:
3826   case PT_IntAP:
3827   case PT_IntAPS:
3828   case PT_FixedPoint:
3829     llvm_unreachable("Invalid integral type");
3830     break;
3831   }
3832   llvm_unreachable("unknown primitive type");
3833 }
3834 
3835 template <class Emitter>
3836 template <typename T>
3837 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
3838   return this->emitConst(Value, classifyPrim(E->getType()), E);
3839 }
3840 
3841 template <class Emitter>
3842 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
3843                                   const Expr *E) {
3844   if (Ty == PT_IntAPS)
3845     return this->emitConstIntAPS(Value, E);
3846   if (Ty == PT_IntAP)
3847     return this->emitConstIntAP(Value, E);
3848 
3849   if (Value.isSigned())
3850     return this->emitConst(Value.getSExtValue(), Ty, E);
3851   return this->emitConst(Value.getZExtValue(), Ty, E);
3852 }
3853 
3854 template <class Emitter>
3855 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
3856   return this->emitConst(Value, classifyPrim(E->getType()), E);
3857 }
3858 
3859 template <class Emitter>
3860 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
3861                                                    bool IsConst,
3862                                                    bool IsExtended) {
3863   // Make sure we don't accidentally register the same decl twice.
3864   if (const auto *VD =
3865           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3866     assert(!P.getGlobal(VD));
3867     assert(!Locals.contains(VD));
3868     (void)VD;
3869   }
3870 
3871   // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
3872   //   (int){12} in C. Consider using Expr::isTemporaryObject() instead
3873   //   or isa<MaterializeTemporaryExpr>().
3874   Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
3875                                      Src.is<const Expr *>());
3876   Scope::Local Local = this->createLocal(D);
3877   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
3878     Locals.insert({VD, Local});
3879   VarScope->add(Local, IsExtended);
3880   return Local.Offset;
3881 }
3882 
3883 template <class Emitter>
3884 std::optional<unsigned>
3885 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) {
3886   // Make sure we don't accidentally register the same decl twice.
3887   if ([[maybe_unused]] const auto *VD =
3888           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3889     assert(!P.getGlobal(VD));
3890     assert(!Locals.contains(VD));
3891   }
3892 
3893   QualType Ty;
3894   const ValueDecl *Key = nullptr;
3895   const Expr *Init = nullptr;
3896   bool IsTemporary = false;
3897   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3898     Key = VD;
3899     Ty = VD->getType();
3900 
3901     if (const auto *VarD = dyn_cast<VarDecl>(VD))
3902       Init = VarD->getInit();
3903   }
3904   if (auto *E = Src.dyn_cast<const Expr *>()) {
3905     IsTemporary = true;
3906     Ty = E->getType();
3907   }
3908 
3909   Descriptor *D = P.createDescriptor(
3910       Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
3911       IsTemporary, /*IsMutable=*/false, Init);
3912   if (!D)
3913     return std::nullopt;
3914 
3915   Scope::Local Local = this->createLocal(D);
3916   if (Key)
3917     Locals.insert({Key, Local});
3918   if (ExtendingDecl)
3919     VarScope->addExtended(Local, ExtendingDecl);
3920   else
3921     VarScope->add(Local, false);
3922   return Local.Offset;
3923 }
3924 
3925 template <class Emitter>
3926 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) {
3927   QualType Ty = E->getType();
3928   assert(!Ty->isRecordType());
3929 
3930   Descriptor *D = P.createDescriptor(
3931       E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
3932       /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
3933   assert(D);
3934 
3935   Scope::Local Local = this->createLocal(D);
3936   VariableScope<Emitter> *S = VarScope;
3937   assert(S);
3938   // Attach to topmost scope.
3939   while (S->getParent())
3940     S = S->getParent();
3941   assert(S && !S->getParent());
3942   S->addLocal(Local);
3943   return Local.Offset;
3944 }
3945 
3946 template <class Emitter>
3947 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
3948   if (const PointerType *PT = dyn_cast<PointerType>(Ty))
3949     return PT->getPointeeType()->getAs<RecordType>();
3950   return Ty->getAs<RecordType>();
3951 }
3952 
3953 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
3954   if (const auto *RecordTy = getRecordTy(Ty))
3955     return getRecord(RecordTy->getDecl());
3956   return nullptr;
3957 }
3958 
3959 template <class Emitter>
3960 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
3961   return P.getOrCreateRecord(RD);
3962 }
3963 
3964 template <class Emitter>
3965 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
3966   return Ctx.getOrCreateFunction(FD);
3967 }
3968 
3969 template <class Emitter>
3970 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) {
3971   LocalScope<Emitter> RootScope(this);
3972 
3973   auto maybeDestroyLocals = [&]() -> bool {
3974     if (DestroyToplevelScope)
3975       return RootScope.destroyLocals();
3976     return true;
3977   };
3978 
3979   // Void expressions.
3980   if (E->getType()->isVoidType()) {
3981     if (!visit(E))
3982       return false;
3983     return this->emitRetVoid(E) && maybeDestroyLocals();
3984   }
3985 
3986   // Expressions with a primitive return type.
3987   if (std::optional<PrimType> T = classify(E)) {
3988     if (!visit(E))
3989       return false;
3990 
3991     return this->emitRet(*T, E) && maybeDestroyLocals();
3992   }
3993 
3994   // Expressions with a composite return type.
3995   // For us, that means everything we don't
3996   // have a PrimType for.
3997   if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
3998     if (!this->emitGetPtrLocal(*LocalOffset, E))
3999       return false;
4000 
4001     if (!visitInitializer(E))
4002       return false;
4003 
4004     if (!this->emitFinishInit(E))
4005       return false;
4006     // We are destroying the locals AFTER the Ret op.
4007     // The Ret op needs to copy the (alive) values, but the
4008     // destructors may still turn the entire expression invalid.
4009     return this->emitRetValue(E) && maybeDestroyLocals();
4010   }
4011 
4012   (void)maybeDestroyLocals();
4013   return false;
4014 }
4015 
4016 template <class Emitter>
4017 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
4018 
4019   auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
4020 
4021   if (R.notCreated())
4022     return R;
4023 
4024   if (R)
4025     return true;
4026 
4027   if (!R && Context::shouldBeGloballyIndexed(VD)) {
4028     if (auto GlobalIndex = P.getGlobal(VD)) {
4029       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4030       GlobalInlineDescriptor &GD =
4031           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4032 
4033       GD.InitState = GlobalInitState::InitializerFailed;
4034       GlobalBlock->invokeDtor();
4035     }
4036   }
4037 
4038   return R;
4039 }
4040 
4041 /// Toplevel visitDeclAndReturn().
4042 /// We get here from evaluateAsInitializer().
4043 /// We need to evaluate the initializer and return its value.
4044 template <class Emitter>
4045 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
4046                                            bool ConstantContext) {
4047   std::optional<PrimType> VarT = classify(VD->getType());
4048 
4049   // We only create variables if we're evaluating in a constant context.
4050   // Otherwise, just evaluate the initializer and return it.
4051   if (!ConstantContext) {
4052     DeclScope<Emitter> LS(this, VD);
4053     if (!this->visit(VD->getAnyInitializer()))
4054       return false;
4055     return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals();
4056   }
4057 
4058   LocalScope<Emitter> VDScope(this, VD);
4059   if (!this->visitVarDecl(VD, /*Toplevel=*/true))
4060     return false;
4061 
4062   if (Context::shouldBeGloballyIndexed(VD)) {
4063     auto GlobalIndex = P.getGlobal(VD);
4064     assert(GlobalIndex); // visitVarDecl() didn't return false.
4065     if (VarT) {
4066       if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
4067         return false;
4068     } else {
4069       if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
4070         return false;
4071     }
4072   } else {
4073     auto Local = Locals.find(VD);
4074     assert(Local != Locals.end()); // Same here.
4075     if (VarT) {
4076       if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
4077         return false;
4078     } else {
4079       if (!this->emitGetPtrLocal(Local->second.Offset, VD))
4080         return false;
4081     }
4082   }
4083 
4084   // Return the value.
4085   if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
4086     // If the Ret above failed and this is a global variable, mark it as
4087     // uninitialized, even everything else succeeded.
4088     if (Context::shouldBeGloballyIndexed(VD)) {
4089       auto GlobalIndex = P.getGlobal(VD);
4090       assert(GlobalIndex);
4091       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4092       GlobalInlineDescriptor &GD =
4093           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4094 
4095       GD.InitState = GlobalInitState::InitializerFailed;
4096       GlobalBlock->invokeDtor();
4097     }
4098     return false;
4099   }
4100 
4101   return VDScope.destroyLocals();
4102 }
4103 
4104 template <class Emitter>
4105 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
4106                                                  bool Toplevel) {
4107   // We don't know what to do with these, so just return false.
4108   if (VD->getType().isNull())
4109     return false;
4110 
4111   // This case is EvalEmitter-only. If we won't create any instructions for the
4112   // initializer anyway, don't bother creating the variable in the first place.
4113   if (!this->isActive())
4114     return VarCreationState::NotCreated();
4115 
4116   const Expr *Init = VD->getInit();
4117   std::optional<PrimType> VarT = classify(VD->getType());
4118 
4119   if (Init && Init->isValueDependent())
4120     return false;
4121 
4122   if (Context::shouldBeGloballyIndexed(VD)) {
4123     auto checkDecl = [&]() -> bool {
4124       bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
4125       return !NeedsOp || this->emitCheckDecl(VD, VD);
4126     };
4127 
4128     auto initGlobal = [&](unsigned GlobalIndex) -> bool {
4129       assert(Init);
4130 
4131       if (VarT) {
4132         if (!this->visit(Init))
4133           return checkDecl() && false;
4134 
4135         return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
4136       }
4137 
4138       if (!checkDecl())
4139         return false;
4140 
4141       if (!this->emitGetPtrGlobal(GlobalIndex, Init))
4142         return false;
4143 
4144       if (!visitInitializer(Init))
4145         return false;
4146 
4147       if (!this->emitFinishInit(Init))
4148         return false;
4149 
4150       return this->emitPopPtr(Init);
4151     };
4152 
4153     DeclScope<Emitter> LocalScope(this, VD);
4154 
4155     // We've already seen and initialized this global.
4156     if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
4157       if (P.getPtrGlobal(*GlobalIndex).isInitialized())
4158         return checkDecl();
4159 
4160       // The previous attempt at initialization might've been unsuccessful,
4161       // so let's try this one.
4162       return Init && checkDecl() && initGlobal(*GlobalIndex);
4163     }
4164 
4165     std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
4166 
4167     if (!GlobalIndex)
4168       return false;
4169 
4170     return !Init || (checkDecl() && initGlobal(*GlobalIndex));
4171   } else {
4172     InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
4173 
4174     if (VarT) {
4175       unsigned Offset = this->allocateLocalPrimitive(
4176           VD, *VarT, VD->getType().isConstQualified());
4177       if (Init) {
4178         // If this is a toplevel declaration, create a scope for the
4179         // initializer.
4180         if (Toplevel) {
4181           LocalScope<Emitter> Scope(this);
4182           if (!this->visit(Init))
4183             return false;
4184           return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
4185         } else {
4186           if (!this->visit(Init))
4187             return false;
4188           return this->emitSetLocal(*VarT, Offset, VD);
4189         }
4190       }
4191     } else {
4192       if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
4193         if (!Init)
4194           return true;
4195 
4196         if (!this->emitGetPtrLocal(*Offset, Init))
4197           return false;
4198 
4199         if (!visitInitializer(Init))
4200           return false;
4201 
4202         if (!this->emitFinishInit(Init))
4203           return false;
4204 
4205         return this->emitPopPtr(Init);
4206       }
4207       return false;
4208     }
4209     return true;
4210   }
4211 
4212   return false;
4213 }
4214 
4215 template <class Emitter>
4216 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
4217                                      const Expr *E) {
4218   assert(!DiscardResult);
4219   if (Val.isInt())
4220     return this->emitConst(Val.getInt(), ValType, E);
4221   else if (Val.isFloat())
4222     return this->emitConstFloat(Val.getFloat(), E);
4223 
4224   if (Val.isLValue()) {
4225     if (Val.isNullPointer())
4226       return this->emitNull(ValType, nullptr, E);
4227     APValue::LValueBase Base = Val.getLValueBase();
4228     if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
4229       return this->visit(BaseExpr);
4230     else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
4231       return this->visitDeclRef(VD, E);
4232     }
4233   } else if (Val.isMemberPointer()) {
4234     if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
4235       return this->emitGetMemberPtr(MemberDecl, E);
4236     return this->emitNullMemberPtr(nullptr, E);
4237   }
4238 
4239   return false;
4240 }
4241 
4242 template <class Emitter>
4243 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
4244                                                 const Expr *E) {
4245 
4246   if (Val.isStruct()) {
4247     const Record *R = this->getRecord(E->getType());
4248     assert(R);
4249     for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
4250       const APValue &F = Val.getStructField(I);
4251       const Record::Field *RF = R->getField(I);
4252 
4253       if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
4254         PrimType T = classifyPrim(RF->Decl->getType());
4255         if (!this->visitAPValue(F, T, E))
4256           return false;
4257         if (!this->emitInitField(T, RF->Offset, E))
4258           return false;
4259       } else if (F.isArray()) {
4260         assert(RF->Desc->isPrimitiveArray());
4261         const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
4262         PrimType ElemT = classifyPrim(ArrType->getElementType());
4263         assert(ArrType);
4264 
4265         if (!this->emitGetPtrField(RF->Offset, E))
4266           return false;
4267 
4268         for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
4269           if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
4270             return false;
4271           if (!this->emitInitElem(ElemT, A, E))
4272             return false;
4273         }
4274 
4275         if (!this->emitPopPtr(E))
4276           return false;
4277       } else if (F.isStruct() || F.isUnion()) {
4278         if (!this->emitGetPtrField(RF->Offset, E))
4279           return false;
4280         if (!this->visitAPValueInitializer(F, E))
4281           return false;
4282         if (!this->emitPopPtr(E))
4283           return false;
4284       } else {
4285         assert(false && "I don't think this should be possible");
4286       }
4287     }
4288     return true;
4289   } else if (Val.isUnion()) {
4290     const FieldDecl *UnionField = Val.getUnionField();
4291     const Record *R = this->getRecord(UnionField->getParent());
4292     assert(R);
4293     const APValue &F = Val.getUnionValue();
4294     const Record::Field *RF = R->getField(UnionField);
4295     PrimType T = classifyPrim(RF->Decl->getType());
4296     if (!this->visitAPValue(F, T, E))
4297       return false;
4298     return this->emitInitField(T, RF->Offset, E);
4299   }
4300   // TODO: Other types.
4301 
4302   return false;
4303 }
4304 
4305 template <class Emitter>
4306 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E,
4307                                              unsigned BuiltinID) {
4308   const Function *Func = getFunction(E->getDirectCallee());
4309   if (!Func)
4310     return false;
4311 
4312   // For these, we're expected to ultimately return an APValue pointing
4313   // to the CallExpr. This is needed to get the correct codegen.
4314   if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
4315       BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString ||
4316       BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant ||
4317       BuiltinID == Builtin::BI__builtin_function_start) {
4318     if (std::optional<unsigned> GlobalOffset = P.getOrCreateDummy(E)) {
4319       if (!this->emitGetPtrGlobal(*GlobalOffset, E))
4320         return false;
4321 
4322       if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT))
4323         return this->emitDecayPtr(PT_Ptr, PT, E);
4324       return true;
4325     }
4326     return false;
4327   }
4328 
4329   QualType ReturnType = E->getType();
4330   std::optional<PrimType> ReturnT = classify(E);
4331 
4332   // Non-primitive return type. Prepare storage.
4333   if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
4334     std::optional<unsigned> LocalIndex = allocateLocal(E);
4335     if (!LocalIndex)
4336       return false;
4337     if (!this->emitGetPtrLocal(*LocalIndex, E))
4338       return false;
4339   }
4340 
4341   if (!Func->isUnevaluatedBuiltin()) {
4342     // Put arguments on the stack.
4343     for (const auto *Arg : E->arguments()) {
4344       if (!this->visit(Arg))
4345         return false;
4346     }
4347   }
4348 
4349   if (!this->emitCallBI(Func, E, BuiltinID, E))
4350     return false;
4351 
4352   if (DiscardResult && !ReturnType->isVoidType()) {
4353     assert(ReturnT);
4354     return this->emitPop(*ReturnT, E);
4355   }
4356 
4357   return true;
4358 }
4359 
4360 template <class Emitter>
4361 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
4362   if (unsigned BuiltinID = E->getBuiltinCallee())
4363     return VisitBuiltinCallExpr(E, BuiltinID);
4364 
4365   const FunctionDecl *FuncDecl = E->getDirectCallee();
4366   // Calls to replaceable operator new/operator delete.
4367   if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) {
4368     if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New ||
4369         FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
4370       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new);
4371     } else {
4372       assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete);
4373       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete);
4374     }
4375   }
4376 
4377   QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
4378   std::optional<PrimType> T = classify(ReturnType);
4379   bool HasRVO = !ReturnType->isVoidType() && !T;
4380 
4381   if (HasRVO) {
4382     if (DiscardResult) {
4383       // If we need to discard the return value but the function returns its
4384       // value via an RVO pointer, we need to create one such pointer just
4385       // for this call.
4386       if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4387         if (!this->emitGetPtrLocal(*LocalIndex, E))
4388           return false;
4389       }
4390     } else {
4391       // We need the result. Prepare a pointer to return or
4392       // dup the current one.
4393       if (!Initializing) {
4394         if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4395           if (!this->emitGetPtrLocal(*LocalIndex, E))
4396             return false;
4397         }
4398       }
4399       if (!this->emitDupPtr(E))
4400         return false;
4401     }
4402   }
4403 
4404   SmallVector<const Expr *, 8> Args(
4405       llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
4406 
4407   bool IsAssignmentOperatorCall = false;
4408   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
4409       OCE && OCE->isAssignmentOp()) {
4410     // Just like with regular assignments, we need to special-case assignment
4411     // operators here and evaluate the RHS (the second arg) before the LHS (the
4412     // first arg. We fix this by using a Flip op later.
4413     assert(Args.size() == 2);
4414     IsAssignmentOperatorCall = true;
4415     std::reverse(Args.begin(), Args.end());
4416   }
4417   // Calling a static operator will still
4418   // pass the instance, but we don't need it.
4419   // Discard it here.
4420   if (isa<CXXOperatorCallExpr>(E)) {
4421     if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
4422         MD && MD->isStatic()) {
4423       if (!this->discard(E->getArg(0)))
4424         return false;
4425       // Drop first arg.
4426       Args.erase(Args.begin());
4427     }
4428   }
4429 
4430   std::optional<unsigned> CalleeOffset;
4431   // Add the (optional, implicit) This pointer.
4432   if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
4433     if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
4434       // If we end up creating a CallPtr op for this, we need the base of the
4435       // member pointer as the instance pointer, and later extract the function
4436       // decl as the function pointer.
4437       const Expr *Callee = E->getCallee();
4438       CalleeOffset =
4439           this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
4440       if (!this->visit(Callee))
4441         return false;
4442       if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
4443         return false;
4444       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4445         return false;
4446       if (!this->emitGetMemberPtrBase(E))
4447         return false;
4448     } else if (!this->visit(MC->getImplicitObjectArgument())) {
4449       return false;
4450     }
4451   } else if (!FuncDecl) {
4452     const Expr *Callee = E->getCallee();
4453     CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false);
4454     if (!this->visit(Callee))
4455       return false;
4456     if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E))
4457       return false;
4458   }
4459 
4460   llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
4461   // Put arguments on the stack.
4462   unsigned ArgIndex = 0;
4463   for (const auto *Arg : Args) {
4464     if (!this->visit(Arg))
4465       return false;
4466 
4467     // If we know the callee already, check the known parametrs for nullability.
4468     if (FuncDecl && NonNullArgs[ArgIndex]) {
4469       PrimType ArgT = classify(Arg).value_or(PT_Ptr);
4470       if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
4471         if (!this->emitCheckNonNullArg(ArgT, Arg))
4472           return false;
4473       }
4474     }
4475     ++ArgIndex;
4476   }
4477 
4478   // Undo the argument reversal we did earlier.
4479   if (IsAssignmentOperatorCall) {
4480     assert(Args.size() == 2);
4481     PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
4482     PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
4483     if (!this->emitFlip(Arg2T, Arg1T, E))
4484       return false;
4485   }
4486 
4487   if (FuncDecl) {
4488     const Function *Func = getFunction(FuncDecl);
4489     if (!Func)
4490       return false;
4491     assert(HasRVO == Func->hasRVO());
4492 
4493     bool HasQualifier = false;
4494     if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
4495       HasQualifier = ME->hasQualifier();
4496 
4497     bool IsVirtual = false;
4498     if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
4499       IsVirtual = MD->isVirtual();
4500 
4501     // In any case call the function. The return value will end up on the stack
4502     // and if the function has RVO, we already have the pointer on the stack to
4503     // write the result into.
4504     if (IsVirtual && !HasQualifier) {
4505       uint32_t VarArgSize = 0;
4506       unsigned NumParams =
4507           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4508       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4509         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4510 
4511       if (!this->emitCallVirt(Func, VarArgSize, E))
4512         return false;
4513     } else if (Func->isVariadic()) {
4514       uint32_t VarArgSize = 0;
4515       unsigned NumParams =
4516           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4517       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4518         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4519       if (!this->emitCallVar(Func, VarArgSize, E))
4520         return false;
4521     } else {
4522       if (!this->emitCall(Func, 0, E))
4523         return false;
4524     }
4525   } else {
4526     // Indirect call. Visit the callee, which will leave a FunctionPointer on
4527     // the stack. Cleanup of the returned value if necessary will be done after
4528     // the function call completed.
4529 
4530     // Sum the size of all args from the call expr.
4531     uint32_t ArgSize = 0;
4532     for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
4533       ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4534 
4535     // Get the callee, either from a member pointer or function pointer saved in
4536     // CalleeOffset.
4537     if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
4538       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4539         return false;
4540       if (!this->emitGetMemberPtrDecl(E))
4541         return false;
4542     } else {
4543       if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E))
4544         return false;
4545     }
4546     if (!this->emitCallPtr(ArgSize, E, E))
4547       return false;
4548   }
4549 
4550   // Cleanup for discarded return values.
4551   if (DiscardResult && !ReturnType->isVoidType() && T)
4552     return this->emitPop(*T, E);
4553 
4554   return true;
4555 }
4556 
4557 template <class Emitter>
4558 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4559   SourceLocScope<Emitter> SLS(this, E);
4560 
4561   return this->delegate(E->getExpr());
4562 }
4563 
4564 template <class Emitter>
4565 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
4566   SourceLocScope<Emitter> SLS(this, E);
4567 
4568   const Expr *SubExpr = E->getExpr();
4569   if (std::optional<PrimType> T = classify(E->getExpr()))
4570     return this->visit(SubExpr);
4571 
4572   assert(Initializing);
4573   return this->visitInitializer(SubExpr);
4574 }
4575 
4576 template <class Emitter>
4577 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4578   if (DiscardResult)
4579     return true;
4580 
4581   return this->emitConstBool(E->getValue(), E);
4582 }
4583 
4584 template <class Emitter>
4585 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
4586     const CXXNullPtrLiteralExpr *E) {
4587   if (DiscardResult)
4588     return true;
4589 
4590   return this->emitNullPtr(nullptr, E);
4591 }
4592 
4593 template <class Emitter>
4594 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
4595   if (DiscardResult)
4596     return true;
4597 
4598   assert(E->getType()->isIntegerType());
4599 
4600   PrimType T = classifyPrim(E->getType());
4601   return this->emitZero(T, E);
4602 }
4603 
4604 template <class Emitter>
4605 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
4606   if (DiscardResult)
4607     return true;
4608 
4609   if (this->LambdaThisCapture.Offset > 0) {
4610     if (this->LambdaThisCapture.IsPtr)
4611       return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
4612     return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
4613   }
4614 
4615   // In some circumstances, the 'this' pointer does not actually refer to the
4616   // instance pointer of the current function frame, but e.g. to the declaration
4617   // currently being initialized. Here we emit the necessary instruction(s) for
4618   // this scenario.
4619   if (!InitStackActive || !E->isImplicit())
4620     return this->emitThis(E);
4621 
4622   if (InitStackActive && !InitStack.empty()) {
4623     unsigned StartIndex = 0;
4624     for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
4625       if (InitStack[StartIndex].Kind != InitLink::K_Field &&
4626           InitStack[StartIndex].Kind != InitLink::K_Elem)
4627         break;
4628     }
4629 
4630     for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) {
4631       if (!InitStack[I].template emit<Emitter>(this, E))
4632         return false;
4633     }
4634     return true;
4635   }
4636   return this->emitThis(E);
4637 }
4638 
4639 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
4640   switch (S->getStmtClass()) {
4641   case Stmt::CompoundStmtClass:
4642     return visitCompoundStmt(cast<CompoundStmt>(S));
4643   case Stmt::DeclStmtClass:
4644     return visitDeclStmt(cast<DeclStmt>(S));
4645   case Stmt::ReturnStmtClass:
4646     return visitReturnStmt(cast<ReturnStmt>(S));
4647   case Stmt::IfStmtClass:
4648     return visitIfStmt(cast<IfStmt>(S));
4649   case Stmt::WhileStmtClass:
4650     return visitWhileStmt(cast<WhileStmt>(S));
4651   case Stmt::DoStmtClass:
4652     return visitDoStmt(cast<DoStmt>(S));
4653   case Stmt::ForStmtClass:
4654     return visitForStmt(cast<ForStmt>(S));
4655   case Stmt::CXXForRangeStmtClass:
4656     return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
4657   case Stmt::BreakStmtClass:
4658     return visitBreakStmt(cast<BreakStmt>(S));
4659   case Stmt::ContinueStmtClass:
4660     return visitContinueStmt(cast<ContinueStmt>(S));
4661   case Stmt::SwitchStmtClass:
4662     return visitSwitchStmt(cast<SwitchStmt>(S));
4663   case Stmt::CaseStmtClass:
4664     return visitCaseStmt(cast<CaseStmt>(S));
4665   case Stmt::DefaultStmtClass:
4666     return visitDefaultStmt(cast<DefaultStmt>(S));
4667   case Stmt::AttributedStmtClass:
4668     return visitAttributedStmt(cast<AttributedStmt>(S));
4669   case Stmt::CXXTryStmtClass:
4670     return visitCXXTryStmt(cast<CXXTryStmt>(S));
4671   case Stmt::NullStmtClass:
4672     return true;
4673   // Always invalid statements.
4674   case Stmt::GCCAsmStmtClass:
4675   case Stmt::MSAsmStmtClass:
4676   case Stmt::GotoStmtClass:
4677     return this->emitInvalid(S);
4678   case Stmt::LabelStmtClass:
4679     return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
4680   default: {
4681     if (const auto *E = dyn_cast<Expr>(S))
4682       return this->discard(E);
4683     return false;
4684   }
4685   }
4686 }
4687 
4688 template <class Emitter>
4689 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
4690   BlockScope<Emitter> Scope(this);
4691   for (const auto *InnerStmt : S->body())
4692     if (!visitStmt(InnerStmt))
4693       return false;
4694   return Scope.destroyLocals();
4695 }
4696 
4697 template <class Emitter>
4698 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
4699   for (const auto *D : DS->decls()) {
4700     if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
4701             FunctionDecl>(D))
4702       continue;
4703 
4704     const auto *VD = dyn_cast<VarDecl>(D);
4705     if (!VD)
4706       return false;
4707     if (!this->visitVarDecl(VD))
4708       return false;
4709   }
4710 
4711   return true;
4712 }
4713 
4714 template <class Emitter>
4715 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
4716   if (this->InStmtExpr)
4717     return this->emitUnsupported(RS);
4718 
4719   if (const Expr *RE = RS->getRetValue()) {
4720     LocalScope<Emitter> RetScope(this);
4721     if (ReturnType) {
4722       // Primitive types are simply returned.
4723       if (!this->visit(RE))
4724         return false;
4725       this->emitCleanup();
4726       return this->emitRet(*ReturnType, RS);
4727     } else if (RE->getType()->isVoidType()) {
4728       if (!this->visit(RE))
4729         return false;
4730     } else {
4731       // RVO - construct the value in the return location.
4732       if (!this->emitRVOPtr(RE))
4733         return false;
4734       if (!this->visitInitializer(RE))
4735         return false;
4736       if (!this->emitPopPtr(RE))
4737         return false;
4738 
4739       this->emitCleanup();
4740       return this->emitRetVoid(RS);
4741     }
4742   }
4743 
4744   // Void return.
4745   this->emitCleanup();
4746   return this->emitRetVoid(RS);
4747 }
4748 
4749 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
4750   if (auto *CondInit = IS->getInit())
4751     if (!visitStmt(CondInit))
4752       return false;
4753 
4754   if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
4755     if (!visitDeclStmt(CondDecl))
4756       return false;
4757 
4758   // Compile condition.
4759   if (IS->isNonNegatedConsteval()) {
4760     if (!this->emitIsConstantContext(IS))
4761       return false;
4762   } else if (IS->isNegatedConsteval()) {
4763     if (!this->emitIsConstantContext(IS))
4764       return false;
4765     if (!this->emitInv(IS))
4766       return false;
4767   } else {
4768     if (!this->visitBool(IS->getCond()))
4769       return false;
4770   }
4771 
4772   if (const Stmt *Else = IS->getElse()) {
4773     LabelTy LabelElse = this->getLabel();
4774     LabelTy LabelEnd = this->getLabel();
4775     if (!this->jumpFalse(LabelElse))
4776       return false;
4777     if (!visitStmt(IS->getThen()))
4778       return false;
4779     if (!this->jump(LabelEnd))
4780       return false;
4781     this->emitLabel(LabelElse);
4782     if (!visitStmt(Else))
4783       return false;
4784     this->emitLabel(LabelEnd);
4785   } else {
4786     LabelTy LabelEnd = this->getLabel();
4787     if (!this->jumpFalse(LabelEnd))
4788       return false;
4789     if (!visitStmt(IS->getThen()))
4790       return false;
4791     this->emitLabel(LabelEnd);
4792   }
4793 
4794   return true;
4795 }
4796 
4797 template <class Emitter>
4798 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
4799   const Expr *Cond = S->getCond();
4800   const Stmt *Body = S->getBody();
4801 
4802   LabelTy CondLabel = this->getLabel(); // Label before the condition.
4803   LabelTy EndLabel = this->getLabel();  // Label after the loop.
4804   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4805 
4806   this->fallthrough(CondLabel);
4807   this->emitLabel(CondLabel);
4808 
4809   {
4810     LocalScope<Emitter> CondScope(this);
4811     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4812       if (!visitDeclStmt(CondDecl))
4813         return false;
4814 
4815     if (!this->visitBool(Cond))
4816       return false;
4817     if (!this->jumpFalse(EndLabel))
4818       return false;
4819 
4820     if (!this->visitStmt(Body))
4821       return false;
4822 
4823     if (!CondScope.destroyLocals())
4824       return false;
4825   }
4826   if (!this->jump(CondLabel))
4827     return false;
4828   this->fallthrough(EndLabel);
4829   this->emitLabel(EndLabel);
4830 
4831   return true;
4832 }
4833 
4834 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
4835   const Expr *Cond = S->getCond();
4836   const Stmt *Body = S->getBody();
4837 
4838   LabelTy StartLabel = this->getLabel();
4839   LabelTy EndLabel = this->getLabel();
4840   LabelTy CondLabel = this->getLabel();
4841   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4842 
4843   this->fallthrough(StartLabel);
4844   this->emitLabel(StartLabel);
4845 
4846   {
4847     LocalScope<Emitter> CondScope(this);
4848     if (!this->visitStmt(Body))
4849       return false;
4850     this->fallthrough(CondLabel);
4851     this->emitLabel(CondLabel);
4852     if (!this->visitBool(Cond))
4853       return false;
4854 
4855     if (!CondScope.destroyLocals())
4856       return false;
4857   }
4858   if (!this->jumpTrue(StartLabel))
4859     return false;
4860 
4861   this->fallthrough(EndLabel);
4862   this->emitLabel(EndLabel);
4863   return true;
4864 }
4865 
4866 template <class Emitter>
4867 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
4868   // for (Init; Cond; Inc) { Body }
4869   const Stmt *Init = S->getInit();
4870   const Expr *Cond = S->getCond();
4871   const Expr *Inc = S->getInc();
4872   const Stmt *Body = S->getBody();
4873 
4874   LabelTy EndLabel = this->getLabel();
4875   LabelTy CondLabel = this->getLabel();
4876   LabelTy IncLabel = this->getLabel();
4877   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4878 
4879   if (Init && !this->visitStmt(Init))
4880     return false;
4881 
4882   this->fallthrough(CondLabel);
4883   this->emitLabel(CondLabel);
4884 
4885   {
4886     LocalScope<Emitter> CondScope(this);
4887     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4888       if (!visitDeclStmt(CondDecl))
4889         return false;
4890 
4891     if (Cond) {
4892       if (!this->visitBool(Cond))
4893         return false;
4894       if (!this->jumpFalse(EndLabel))
4895         return false;
4896     }
4897 
4898     if (Body && !this->visitStmt(Body))
4899       return false;
4900 
4901     this->fallthrough(IncLabel);
4902     this->emitLabel(IncLabel);
4903     if (Inc && !this->discard(Inc))
4904       return false;
4905 
4906     if (!CondScope.destroyLocals())
4907       return false;
4908   }
4909   if (!this->jump(CondLabel))
4910     return false;
4911 
4912   this->fallthrough(EndLabel);
4913   this->emitLabel(EndLabel);
4914   return true;
4915 }
4916 
4917 template <class Emitter>
4918 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
4919   const Stmt *Init = S->getInit();
4920   const Expr *Cond = S->getCond();
4921   const Expr *Inc = S->getInc();
4922   const Stmt *Body = S->getBody();
4923   const Stmt *BeginStmt = S->getBeginStmt();
4924   const Stmt *RangeStmt = S->getRangeStmt();
4925   const Stmt *EndStmt = S->getEndStmt();
4926   const VarDecl *LoopVar = S->getLoopVariable();
4927 
4928   LabelTy EndLabel = this->getLabel();
4929   LabelTy CondLabel = this->getLabel();
4930   LabelTy IncLabel = this->getLabel();
4931   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4932 
4933   // Emit declarations needed in the loop.
4934   if (Init && !this->visitStmt(Init))
4935     return false;
4936   if (!this->visitStmt(RangeStmt))
4937     return false;
4938   if (!this->visitStmt(BeginStmt))
4939     return false;
4940   if (!this->visitStmt(EndStmt))
4941     return false;
4942 
4943   // Now the condition as well as the loop variable assignment.
4944   this->fallthrough(CondLabel);
4945   this->emitLabel(CondLabel);
4946   if (!this->visitBool(Cond))
4947     return false;
4948   if (!this->jumpFalse(EndLabel))
4949     return false;
4950 
4951   if (!this->visitVarDecl(LoopVar))
4952     return false;
4953 
4954   // Body.
4955   {
4956     if (!this->visitStmt(Body))
4957       return false;
4958 
4959     this->fallthrough(IncLabel);
4960     this->emitLabel(IncLabel);
4961     if (!this->discard(Inc))
4962       return false;
4963   }
4964 
4965   if (!this->jump(CondLabel))
4966     return false;
4967 
4968   this->fallthrough(EndLabel);
4969   this->emitLabel(EndLabel);
4970   return true;
4971 }
4972 
4973 template <class Emitter>
4974 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
4975   if (!BreakLabel)
4976     return false;
4977 
4978   for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope;
4979        C = C->getParent())
4980     C->emitDestruction();
4981   return this->jump(*BreakLabel);
4982 }
4983 
4984 template <class Emitter>
4985 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
4986   if (!ContinueLabel)
4987     return false;
4988 
4989   for (VariableScope<Emitter> *C = VarScope;
4990        C && C->getParent() != ContinueVarScope; C = C->getParent())
4991     C->emitDestruction();
4992   return this->jump(*ContinueLabel);
4993 }
4994 
4995 template <class Emitter>
4996 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
4997   const Expr *Cond = S->getCond();
4998   PrimType CondT = this->classifyPrim(Cond->getType());
4999   LocalScope<Emitter> LS(this);
5000 
5001   LabelTy EndLabel = this->getLabel();
5002   OptLabelTy DefaultLabel = std::nullopt;
5003   unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
5004 
5005   if (const auto *CondInit = S->getInit())
5006     if (!visitStmt(CondInit))
5007       return false;
5008 
5009   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
5010     if (!visitDeclStmt(CondDecl))
5011       return false;
5012 
5013   // Initialize condition variable.
5014   if (!this->visit(Cond))
5015     return false;
5016   if (!this->emitSetLocal(CondT, CondVar, S))
5017     return false;
5018 
5019   CaseMap CaseLabels;
5020   // Create labels and comparison ops for all case statements.
5021   for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
5022        SC = SC->getNextSwitchCase()) {
5023     if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
5024       // FIXME: Implement ranges.
5025       if (CS->caseStmtIsGNURange())
5026         return false;
5027       CaseLabels[SC] = this->getLabel();
5028 
5029       const Expr *Value = CS->getLHS();
5030       PrimType ValueT = this->classifyPrim(Value->getType());
5031 
5032       // Compare the case statement's value to the switch condition.
5033       if (!this->emitGetLocal(CondT, CondVar, CS))
5034         return false;
5035       if (!this->visit(Value))
5036         return false;
5037 
5038       // Compare and jump to the case label.
5039       if (!this->emitEQ(ValueT, S))
5040         return false;
5041       if (!this->jumpTrue(CaseLabels[CS]))
5042         return false;
5043     } else {
5044       assert(!DefaultLabel);
5045       DefaultLabel = this->getLabel();
5046     }
5047   }
5048 
5049   // If none of the conditions above were true, fall through to the default
5050   // statement or jump after the switch statement.
5051   if (DefaultLabel) {
5052     if (!this->jump(*DefaultLabel))
5053       return false;
5054   } else {
5055     if (!this->jump(EndLabel))
5056       return false;
5057   }
5058 
5059   SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
5060   if (!this->visitStmt(S->getBody()))
5061     return false;
5062   this->emitLabel(EndLabel);
5063 
5064   return LS.destroyLocals();
5065 }
5066 
5067 template <class Emitter>
5068 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
5069   this->emitLabel(CaseLabels[S]);
5070   return this->visitStmt(S->getSubStmt());
5071 }
5072 
5073 template <class Emitter>
5074 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
5075   this->emitLabel(*DefaultLabel);
5076   return this->visitStmt(S->getSubStmt());
5077 }
5078 
5079 template <class Emitter>
5080 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
5081   if (this->Ctx.getLangOpts().CXXAssumptions &&
5082       !this->Ctx.getLangOpts().MSVCCompat) {
5083     for (const Attr *A : S->getAttrs()) {
5084       auto *AA = dyn_cast<CXXAssumeAttr>(A);
5085       if (!AA)
5086         continue;
5087 
5088       assert(isa<NullStmt>(S->getSubStmt()));
5089 
5090       const Expr *Assumption = AA->getAssumption();
5091       if (Assumption->isValueDependent())
5092         return false;
5093 
5094       if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
5095         continue;
5096 
5097       // Evaluate assumption.
5098       if (!this->visitBool(Assumption))
5099         return false;
5100 
5101       if (!this->emitAssume(Assumption))
5102         return false;
5103     }
5104   }
5105 
5106   // Ignore other attributes.
5107   return this->visitStmt(S->getSubStmt());
5108 }
5109 
5110 template <class Emitter>
5111 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
5112   // Ignore all handlers.
5113   return this->visitStmt(S->getTryBlock());
5114 }
5115 
5116 template <class Emitter>
5117 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
5118   assert(MD->isLambdaStaticInvoker());
5119   assert(MD->hasBody());
5120   assert(cast<CompoundStmt>(MD->getBody())->body_empty());
5121 
5122   const CXXRecordDecl *ClosureClass = MD->getParent();
5123   const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
5124   assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
5125   const Function *Func = this->getFunction(LambdaCallOp);
5126   if (!Func)
5127     return false;
5128   assert(Func->hasThisPointer());
5129   assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
5130 
5131   if (Func->hasRVO()) {
5132     if (!this->emitRVOPtr(MD))
5133       return false;
5134   }
5135 
5136   // The lambda call operator needs an instance pointer, but we don't have
5137   // one here, and we don't need one either because the lambda cannot have
5138   // any captures, as verified above. Emit a null pointer. This is then
5139   // special-cased when interpreting to not emit any misleading diagnostics.
5140   if (!this->emitNullPtr(nullptr, MD))
5141     return false;
5142 
5143   // Forward all arguments from the static invoker to the lambda call operator.
5144   for (const ParmVarDecl *PVD : MD->parameters()) {
5145     auto It = this->Params.find(PVD);
5146     assert(It != this->Params.end());
5147 
5148     // We do the lvalue-to-rvalue conversion manually here, so no need
5149     // to care about references.
5150     PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
5151     if (!this->emitGetParam(ParamType, It->second.Offset, MD))
5152       return false;
5153   }
5154 
5155   if (!this->emitCall(Func, 0, LambdaCallOp))
5156     return false;
5157 
5158   this->emitCleanup();
5159   if (ReturnType)
5160     return this->emitRet(*ReturnType, MD);
5161 
5162   // Nothing to do, since we emitted the RVO pointer above.
5163   return this->emitRetVoid(MD);
5164 }
5165 
5166 template <class Emitter>
5167 bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
5168   if (Ctx.getLangOpts().CPlusPlus23)
5169     return true;
5170 
5171   if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
5172     return true;
5173 
5174   return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
5175 }
5176 
5177 template <class Emitter>
5178 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
5179   assert(!ReturnType);
5180 
5181   auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
5182                                   const Expr *InitExpr) -> bool {
5183     // We don't know what to do with these, so just return false.
5184     if (InitExpr->getType().isNull())
5185       return false;
5186 
5187     if (std::optional<PrimType> T = this->classify(InitExpr)) {
5188       if (!this->visit(InitExpr))
5189         return false;
5190 
5191       if (F->isBitField())
5192         return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
5193       return this->emitInitThisField(*T, FieldOffset, InitExpr);
5194     }
5195     // Non-primitive case. Get a pointer to the field-to-initialize
5196     // on the stack and call visitInitialzer() for it.
5197     InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
5198     if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
5199       return false;
5200 
5201     if (!this->visitInitializer(InitExpr))
5202       return false;
5203 
5204     return this->emitFinishInitPop(InitExpr);
5205   };
5206 
5207   const RecordDecl *RD = Ctor->getParent();
5208   const Record *R = this->getRecord(RD);
5209   if (!R)
5210     return false;
5211 
5212   if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
5213     // union copy and move ctors are special.
5214     assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
5215     if (!this->emitThis(Ctor))
5216       return false;
5217 
5218     auto PVD = Ctor->getParamDecl(0);
5219     ParamOffset PO = this->Params[PVD]; // Must exist.
5220 
5221     if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
5222       return false;
5223 
5224     return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
5225            this->emitRetVoid(Ctor);
5226   }
5227 
5228   InitLinkScope<Emitter> InitScope(this, InitLink::This());
5229   for (const auto *Init : Ctor->inits()) {
5230     // Scope needed for the initializers.
5231     BlockScope<Emitter> Scope(this);
5232 
5233     const Expr *InitExpr = Init->getInit();
5234     if (const FieldDecl *Member = Init->getMember()) {
5235       const Record::Field *F = R->getField(Member);
5236 
5237       if (!emitFieldInitializer(F, F->Offset, InitExpr))
5238         return false;
5239     } else if (const Type *Base = Init->getBaseClass()) {
5240       const auto *BaseDecl = Base->getAsCXXRecordDecl();
5241       assert(BaseDecl);
5242 
5243       if (Init->isBaseVirtual()) {
5244         assert(R->getVirtualBase(BaseDecl));
5245         if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
5246           return false;
5247 
5248       } else {
5249         // Base class initializer.
5250         // Get This Base and call initializer on it.
5251         const Record::Base *B = R->getBase(BaseDecl);
5252         assert(B);
5253         if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
5254           return false;
5255       }
5256 
5257       if (!this->visitInitializer(InitExpr))
5258         return false;
5259       if (!this->emitFinishInitPop(InitExpr))
5260         return false;
5261     } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
5262       assert(IFD->getChainingSize() >= 2);
5263 
5264       unsigned NestedFieldOffset = 0;
5265       const Record::Field *NestedField = nullptr;
5266       for (const NamedDecl *ND : IFD->chain()) {
5267         const auto *FD = cast<FieldDecl>(ND);
5268         const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
5269         assert(FieldRecord);
5270 
5271         NestedField = FieldRecord->getField(FD);
5272         assert(NestedField);
5273 
5274         NestedFieldOffset += NestedField->Offset;
5275       }
5276       assert(NestedField);
5277 
5278       if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
5279         return false;
5280     } else {
5281       assert(Init->isDelegatingInitializer());
5282       if (!this->emitThis(InitExpr))
5283         return false;
5284       if (!this->visitInitializer(Init->getInit()))
5285         return false;
5286       if (!this->emitPopPtr(InitExpr))
5287         return false;
5288     }
5289 
5290     if (!Scope.destroyLocals())
5291       return false;
5292   }
5293 
5294   if (const auto *Body = Ctor->getBody())
5295     if (!visitStmt(Body))
5296       return false;
5297 
5298   return this->emitRetVoid(SourceInfo{});
5299 }
5300 
5301 template <class Emitter>
5302 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
5303   const RecordDecl *RD = Dtor->getParent();
5304   const Record *R = this->getRecord(RD);
5305   if (!R)
5306     return false;
5307 
5308   if (!Dtor->isTrivial() && Dtor->getBody()) {
5309     if (!this->visitStmt(Dtor->getBody()))
5310       return false;
5311   }
5312 
5313   if (!this->emitThis(Dtor))
5314     return false;
5315 
5316   assert(R);
5317   if (!R->isUnion()) {
5318     // First, destroy all fields.
5319     for (const Record::Field &Field : llvm::reverse(R->fields())) {
5320       const Descriptor *D = Field.Desc;
5321       if (!D->isPrimitive() && !D->isPrimitiveArray()) {
5322         if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
5323           return false;
5324         if (!this->emitDestruction(D, SourceInfo{}))
5325           return false;
5326         if (!this->emitPopPtr(SourceInfo{}))
5327           return false;
5328       }
5329     }
5330   }
5331 
5332   for (const Record::Base &Base : llvm::reverse(R->bases())) {
5333     if (Base.R->isAnonymousUnion())
5334       continue;
5335 
5336     if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
5337       return false;
5338     if (!this->emitRecordDestruction(Base.R, {}))
5339       return false;
5340     if (!this->emitPopPtr(SourceInfo{}))
5341       return false;
5342   }
5343 
5344   // FIXME: Virtual bases.
5345   return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
5346 }
5347 
5348 template <class Emitter>
5349 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
5350   // Classify the return type.
5351   ReturnType = this->classify(F->getReturnType());
5352 
5353   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
5354     return this->compileConstructor(Ctor);
5355   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
5356     return this->compileDestructor(Dtor);
5357 
5358   // Emit custom code if this is a lambda static invoker.
5359   if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
5360       MD && MD->isLambdaStaticInvoker())
5361     return this->emitLambdaStaticInvokerBody(MD);
5362 
5363   // Regular functions.
5364   if (const auto *Body = F->getBody())
5365     if (!visitStmt(Body))
5366       return false;
5367 
5368   // Emit a guard return to protect against a code path missing one.
5369   if (F->getReturnType()->isVoidType())
5370     return this->emitRetVoid(SourceInfo{});
5371   return this->emitNoRet(SourceInfo{});
5372 }
5373 
5374 template <class Emitter>
5375 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
5376   const Expr *SubExpr = E->getSubExpr();
5377   if (SubExpr->getType()->isAnyComplexType())
5378     return this->VisitComplexUnaryOperator(E);
5379   if (SubExpr->getType()->isVectorType())
5380     return this->VisitVectorUnaryOperator(E);
5381   std::optional<PrimType> T = classify(SubExpr->getType());
5382 
5383   switch (E->getOpcode()) {
5384   case UO_PostInc: { // x++
5385     if (!Ctx.getLangOpts().CPlusPlus14)
5386       return this->emitInvalid(E);
5387     if (!T)
5388       return this->emitError(E);
5389 
5390     if (!this->visit(SubExpr))
5391       return false;
5392 
5393     if (T == PT_Ptr || T == PT_FnPtr) {
5394       if (!this->emitIncPtr(E))
5395         return false;
5396 
5397       return DiscardResult ? this->emitPopPtr(E) : true;
5398     }
5399 
5400     if (T == PT_Float) {
5401       return DiscardResult ? this->emitIncfPop(getFPOptions(E), E)
5402                            : this->emitIncf(getFPOptions(E), E);
5403     }
5404 
5405     return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
5406   }
5407   case UO_PostDec: { // x--
5408     if (!Ctx.getLangOpts().CPlusPlus14)
5409       return this->emitInvalid(E);
5410     if (!T)
5411       return this->emitError(E);
5412 
5413     if (!this->visit(SubExpr))
5414       return false;
5415 
5416     if (T == PT_Ptr || T == PT_FnPtr) {
5417       if (!this->emitDecPtr(E))
5418         return false;
5419 
5420       return DiscardResult ? this->emitPopPtr(E) : true;
5421     }
5422 
5423     if (T == PT_Float) {
5424       return DiscardResult ? this->emitDecfPop(getFPOptions(E), E)
5425                            : this->emitDecf(getFPOptions(E), E);
5426     }
5427 
5428     return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
5429   }
5430   case UO_PreInc: { // ++x
5431     if (!Ctx.getLangOpts().CPlusPlus14)
5432       return this->emitInvalid(E);
5433     if (!T)
5434       return this->emitError(E);
5435 
5436     if (!this->visit(SubExpr))
5437       return false;
5438 
5439     if (T == PT_Ptr || T == PT_FnPtr) {
5440       if (!this->emitLoadPtr(E))
5441         return false;
5442       if (!this->emitConstUint8(1, E))
5443         return false;
5444       if (!this->emitAddOffsetUint8(E))
5445         return false;
5446       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5447     }
5448 
5449     // Post-inc and pre-inc are the same if the value is to be discarded.
5450     if (DiscardResult) {
5451       if (T == PT_Float)
5452         return this->emitIncfPop(getFPOptions(E), E);
5453       return this->emitIncPop(*T, E);
5454     }
5455 
5456     if (T == PT_Float) {
5457       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5458       if (!this->emitLoadFloat(E))
5459         return false;
5460       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5461         return false;
5462       if (!this->emitAddf(getFPOptions(E), E))
5463         return false;
5464       if (!this->emitStoreFloat(E))
5465         return false;
5466     } else {
5467       assert(isIntegralType(*T));
5468       if (!this->emitLoad(*T, E))
5469         return false;
5470       if (!this->emitConst(1, E))
5471         return false;
5472       if (!this->emitAdd(*T, E))
5473         return false;
5474       if (!this->emitStore(*T, E))
5475         return false;
5476     }
5477     return E->isGLValue() || this->emitLoadPop(*T, E);
5478   }
5479   case UO_PreDec: { // --x
5480     if (!Ctx.getLangOpts().CPlusPlus14)
5481       return this->emitInvalid(E);
5482     if (!T)
5483       return this->emitError(E);
5484 
5485     if (!this->visit(SubExpr))
5486       return false;
5487 
5488     if (T == PT_Ptr || T == PT_FnPtr) {
5489       if (!this->emitLoadPtr(E))
5490         return false;
5491       if (!this->emitConstUint8(1, E))
5492         return false;
5493       if (!this->emitSubOffsetUint8(E))
5494         return false;
5495       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5496     }
5497 
5498     // Post-dec and pre-dec are the same if the value is to be discarded.
5499     if (DiscardResult) {
5500       if (T == PT_Float)
5501         return this->emitDecfPop(getFPOptions(E), E);
5502       return this->emitDecPop(*T, E);
5503     }
5504 
5505     if (T == PT_Float) {
5506       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5507       if (!this->emitLoadFloat(E))
5508         return false;
5509       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5510         return false;
5511       if (!this->emitSubf(getFPOptions(E), E))
5512         return false;
5513       if (!this->emitStoreFloat(E))
5514         return false;
5515     } else {
5516       assert(isIntegralType(*T));
5517       if (!this->emitLoad(*T, E))
5518         return false;
5519       if (!this->emitConst(1, E))
5520         return false;
5521       if (!this->emitSub(*T, E))
5522         return false;
5523       if (!this->emitStore(*T, E))
5524         return false;
5525     }
5526     return E->isGLValue() || this->emitLoadPop(*T, E);
5527   }
5528   case UO_LNot: // !x
5529     if (!T)
5530       return this->emitError(E);
5531 
5532     if (DiscardResult)
5533       return this->discard(SubExpr);
5534 
5535     if (!this->visitBool(SubExpr))
5536       return false;
5537 
5538     if (!this->emitInv(E))
5539       return false;
5540 
5541     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5542       return this->emitCast(PT_Bool, ET, E);
5543     return true;
5544   case UO_Minus: // -x
5545     if (!T)
5546       return this->emitError(E);
5547 
5548     if (!this->visit(SubExpr))
5549       return false;
5550     return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
5551   case UO_Plus: // +x
5552     if (!T)
5553       return this->emitError(E);
5554 
5555     if (!this->visit(SubExpr)) // noop
5556       return false;
5557     return DiscardResult ? this->emitPop(*T, E) : true;
5558   case UO_AddrOf: // &x
5559     if (E->getType()->isMemberPointerType()) {
5560       // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5561       // member can be formed.
5562       return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
5563     }
5564     // We should already have a pointer when we get here.
5565     return this->delegate(SubExpr);
5566   case UO_Deref: // *x
5567     if (DiscardResult)
5568       return this->discard(SubExpr);
5569     return this->visit(SubExpr);
5570   case UO_Not: // ~x
5571     if (!T)
5572       return this->emitError(E);
5573 
5574     if (!this->visit(SubExpr))
5575       return false;
5576     return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
5577   case UO_Real: // __real x
5578     assert(T);
5579     return this->delegate(SubExpr);
5580   case UO_Imag: { // __imag x
5581     assert(T);
5582     if (!this->discard(SubExpr))
5583       return false;
5584     return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
5585   }
5586   case UO_Extension:
5587     return this->delegate(SubExpr);
5588   case UO_Coawait:
5589     assert(false && "Unhandled opcode");
5590   }
5591 
5592   return false;
5593 }
5594 
5595 template <class Emitter>
5596 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
5597   const Expr *SubExpr = E->getSubExpr();
5598   assert(SubExpr->getType()->isAnyComplexType());
5599 
5600   if (DiscardResult)
5601     return this->discard(SubExpr);
5602 
5603   std::optional<PrimType> ResT = classify(E);
5604   auto prepareResult = [=]() -> bool {
5605     if (!ResT && !Initializing) {
5606       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5607       if (!LocalIndex)
5608         return false;
5609       return this->emitGetPtrLocal(*LocalIndex, E);
5610     }
5611 
5612     return true;
5613   };
5614 
5615   // The offset of the temporary, if we created one.
5616   unsigned SubExprOffset = ~0u;
5617   auto createTemp = [=, &SubExprOffset]() -> bool {
5618     SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5619     if (!this->visit(SubExpr))
5620       return false;
5621     return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
5622   };
5623 
5624   PrimType ElemT = classifyComplexElementType(SubExpr->getType());
5625   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5626     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5627       return false;
5628     return this->emitArrayElemPop(ElemT, Index, E);
5629   };
5630 
5631   switch (E->getOpcode()) {
5632   case UO_Minus:
5633     if (!prepareResult())
5634       return false;
5635     if (!createTemp())
5636       return false;
5637     for (unsigned I = 0; I != 2; ++I) {
5638       if (!getElem(SubExprOffset, I))
5639         return false;
5640       if (!this->emitNeg(ElemT, E))
5641         return false;
5642       if (!this->emitInitElem(ElemT, I, E))
5643         return false;
5644     }
5645     break;
5646 
5647   case UO_Plus:   // +x
5648   case UO_AddrOf: // &x
5649   case UO_Deref:  // *x
5650     return this->delegate(SubExpr);
5651 
5652   case UO_LNot:
5653     if (!this->visit(SubExpr))
5654       return false;
5655     if (!this->emitComplexBoolCast(SubExpr))
5656       return false;
5657     if (!this->emitInv(E))
5658       return false;
5659     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5660       return this->emitCast(PT_Bool, ET, E);
5661     return true;
5662 
5663   case UO_Real:
5664     return this->emitComplexReal(SubExpr);
5665 
5666   case UO_Imag:
5667     if (!this->visit(SubExpr))
5668       return false;
5669 
5670     if (SubExpr->isLValue()) {
5671       if (!this->emitConstUint8(1, E))
5672         return false;
5673       return this->emitArrayElemPtrPopUint8(E);
5674     }
5675 
5676     // Since our _Complex implementation does not map to a primitive type,
5677     // we sometimes have to do the lvalue-to-rvalue conversion here manually.
5678     return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
5679 
5680   case UO_Not: // ~x
5681     if (!this->visit(SubExpr))
5682       return false;
5683     // Negate the imaginary component.
5684     if (!this->emitArrayElem(ElemT, 1, E))
5685       return false;
5686     if (!this->emitNeg(ElemT, E))
5687       return false;
5688     if (!this->emitInitElem(ElemT, 1, E))
5689       return false;
5690     return DiscardResult ? this->emitPopPtr(E) : true;
5691 
5692   case UO_Extension:
5693     return this->delegate(SubExpr);
5694 
5695   default:
5696     return this->emitInvalid(E);
5697   }
5698 
5699   return true;
5700 }
5701 
5702 template <class Emitter>
5703 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) {
5704   const Expr *SubExpr = E->getSubExpr();
5705   assert(SubExpr->getType()->isVectorType());
5706 
5707   if (DiscardResult)
5708     return this->discard(SubExpr);
5709 
5710   auto UnaryOp = E->getOpcode();
5711   if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot &&
5712       UnaryOp != UO_Not && UnaryOp != UO_AddrOf)
5713     return this->emitInvalid(E);
5714 
5715   // Nothing to do here.
5716   if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf)
5717     return this->delegate(SubExpr);
5718 
5719   if (!Initializing) {
5720     std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5721     if (!LocalIndex)
5722       return false;
5723     if (!this->emitGetPtrLocal(*LocalIndex, E))
5724       return false;
5725   }
5726 
5727   // The offset of the temporary, if we created one.
5728   unsigned SubExprOffset =
5729       this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5730   if (!this->visit(SubExpr))
5731     return false;
5732   if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E))
5733     return false;
5734 
5735   const auto *VecTy = SubExpr->getType()->getAs<VectorType>();
5736   PrimType ElemT = classifyVectorElementType(SubExpr->getType());
5737   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5738     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5739       return false;
5740     return this->emitArrayElemPop(ElemT, Index, E);
5741   };
5742 
5743   switch (UnaryOp) {
5744   case UO_Minus:
5745     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5746       if (!getElem(SubExprOffset, I))
5747         return false;
5748       if (!this->emitNeg(ElemT, E))
5749         return false;
5750       if (!this->emitInitElem(ElemT, I, E))
5751         return false;
5752     }
5753     break;
5754   case UO_LNot: { // !x
5755     // In C++, the logic operators !, &&, || are available for vectors. !v is
5756     // equivalent to v == 0.
5757     //
5758     // The result of the comparison is a vector of the same width and number of
5759     // elements as the comparison operands with a signed integral element type.
5760     //
5761     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
5762     QualType ResultVecTy = E->getType();
5763     PrimType ResultVecElemT =
5764         classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType());
5765     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5766       if (!getElem(SubExprOffset, I))
5767         return false;
5768       // operator ! on vectors returns -1 for 'truth', so negate it.
5769       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
5770         return false;
5771       if (!this->emitInv(E))
5772         return false;
5773       if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E))
5774         return false;
5775       if (!this->emitNeg(ElemT, E))
5776         return false;
5777       if (ElemT != ResultVecElemT &&
5778           !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E))
5779         return false;
5780       if (!this->emitInitElem(ResultVecElemT, I, E))
5781         return false;
5782     }
5783     break;
5784   }
5785   case UO_Not: // ~x
5786     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5787       if (!getElem(SubExprOffset, I))
5788         return false;
5789       if (ElemT == PT_Bool) {
5790         if (!this->emitInv(E))
5791           return false;
5792       } else {
5793         if (!this->emitComp(ElemT, E))
5794           return false;
5795       }
5796       if (!this->emitInitElem(ElemT, I, E))
5797         return false;
5798     }
5799     break;
5800   default:
5801     llvm_unreachable("Unsupported unary operators should be handled up front");
5802   }
5803   return true;
5804 }
5805 
5806 template <class Emitter>
5807 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
5808   if (DiscardResult)
5809     return true;
5810 
5811   if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
5812     return this->emitConst(ECD->getInitVal(), E);
5813   } else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
5814     return this->visit(BD->getBinding());
5815   } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
5816     const Function *F = getFunction(FuncDecl);
5817     return F && this->emitGetFnPtr(F, E);
5818   } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
5819     if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
5820       if (!this->emitGetPtrGlobal(*Index, E))
5821         return false;
5822       if (std::optional<PrimType> T = classify(E->getType())) {
5823         if (!this->visitAPValue(TPOD->getValue(), *T, E))
5824           return false;
5825         return this->emitInitGlobal(*T, *Index, E);
5826       }
5827       return this->visitAPValueInitializer(TPOD->getValue(), E);
5828     }
5829     return false;
5830   }
5831 
5832   // References are implemented via pointers, so when we see a DeclRefExpr
5833   // pointing to a reference, we need to get its value directly (i.e. the
5834   // pointer to the actual value) instead of a pointer to the pointer to the
5835   // value.
5836   bool IsReference = D->getType()->isReferenceType();
5837 
5838   // Check for local/global variables and parameters.
5839   if (auto It = Locals.find(D); It != Locals.end()) {
5840     const unsigned Offset = It->second.Offset;
5841     if (IsReference)
5842       return this->emitGetLocal(PT_Ptr, Offset, E);
5843     return this->emitGetPtrLocal(Offset, E);
5844   } else if (auto GlobalIndex = P.getGlobal(D)) {
5845     if (IsReference) {
5846       if (!Ctx.getLangOpts().CPlusPlus11)
5847         return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
5848       return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
5849     }
5850 
5851     return this->emitGetPtrGlobal(*GlobalIndex, E);
5852   } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
5853     if (auto It = this->Params.find(PVD); It != this->Params.end()) {
5854       if (IsReference || !It->second.IsPtr)
5855         return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
5856 
5857       return this->emitGetPtrParam(It->second.Offset, E);
5858     }
5859   }
5860 
5861   // In case we need to re-visit a declaration.
5862   auto revisit = [&](const VarDecl *VD) -> bool {
5863     auto VarState = this->visitDecl(VD);
5864 
5865     if (VarState.notCreated())
5866       return true;
5867     if (!VarState)
5868       return false;
5869     // Retry.
5870     return this->visitDeclRef(D, E);
5871   };
5872 
5873   // Handle lambda captures.
5874   if (auto It = this->LambdaCaptures.find(D);
5875       It != this->LambdaCaptures.end()) {
5876     auto [Offset, IsPtr] = It->second;
5877 
5878     if (IsPtr)
5879       return this->emitGetThisFieldPtr(Offset, E);
5880     return this->emitGetPtrThisField(Offset, E);
5881   } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
5882              DRE && DRE->refersToEnclosingVariableOrCapture()) {
5883     if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
5884       return revisit(VD);
5885   }
5886 
5887   if (D != InitializingDecl) {
5888     // Try to lazily visit (or emit dummy pointers for) declarations
5889     // we haven't seen yet.
5890     if (Ctx.getLangOpts().CPlusPlus) {
5891       if (const auto *VD = dyn_cast<VarDecl>(D)) {
5892         const auto typeShouldBeVisited = [&](QualType T) -> bool {
5893           if (T.isConstant(Ctx.getASTContext()))
5894             return true;
5895           if (const auto *RT = T->getAs<ReferenceType>())
5896             return RT->getPointeeType().isConstQualified();
5897           return false;
5898         };
5899 
5900         // DecompositionDecls are just proxies for us.
5901         if (isa<DecompositionDecl>(VD))
5902           return revisit(VD);
5903 
5904         if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) &&
5905             typeShouldBeVisited(VD->getType()))
5906           return revisit(VD);
5907 
5908         // FIXME: The evaluateValue() check here is a little ridiculous, since
5909         // it will ultimately call into Context::evaluateAsInitializer(). In
5910         // other words, we're evaluating the initializer, just to know if we can
5911         // evaluate the initializer.
5912         if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) &&
5913             VD->getInit() && !VD->getInit()->isValueDependent() &&
5914             VD->evaluateValue())
5915           return revisit(VD);
5916       }
5917     } else {
5918       if (const auto *VD = dyn_cast<VarDecl>(D);
5919           VD && VD->getAnyInitializer() &&
5920           VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
5921         return revisit(VD);
5922     }
5923   }
5924 
5925   if (std::optional<unsigned> I = P.getOrCreateDummy(D)) {
5926     if (!this->emitGetPtrGlobal(*I, E))
5927       return false;
5928     if (E->getType()->isVoidType())
5929       return true;
5930     // Convert the dummy pointer to another pointer type if we have to.
5931     if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
5932       if (isPtrType(PT))
5933         return this->emitDecayPtr(PT_Ptr, PT, E);
5934       return false;
5935     }
5936     return true;
5937   }
5938 
5939   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
5940     return this->emitInvalidDeclRef(DRE, E);
5941   return false;
5942 }
5943 
5944 template <class Emitter>
5945 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
5946   const auto *D = E->getDecl();
5947   return this->visitDeclRef(D, E);
5948 }
5949 
5950 template <class Emitter> void Compiler<Emitter>::emitCleanup() {
5951   for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
5952     C->emitDestruction();
5953 }
5954 
5955 template <class Emitter>
5956 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
5957                                               const QualType DerivedType) {
5958   const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
5959     if (const auto *R = Ty->getPointeeCXXRecordDecl())
5960       return R;
5961     return Ty->getAsCXXRecordDecl();
5962   };
5963   const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
5964   const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
5965 
5966   return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
5967 }
5968 
5969 /// Emit casts from a PrimType to another PrimType.
5970 template <class Emitter>
5971 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
5972                                      QualType ToQT, const Expr *E) {
5973 
5974   if (FromT == PT_Float) {
5975     // Floating to floating.
5976     if (ToT == PT_Float) {
5977       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
5978       return this->emitCastFP(ToSem, getRoundingMode(E), E);
5979     }
5980 
5981     if (ToT == PT_IntAP)
5982       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT),
5983                                               getFPOptions(E), E);
5984     if (ToT == PT_IntAPS)
5985       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT),
5986                                                getFPOptions(E), E);
5987 
5988     // Float to integral.
5989     if (isIntegralType(ToT) || ToT == PT_Bool)
5990       return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E);
5991   }
5992 
5993   if (isIntegralType(FromT) || FromT == PT_Bool) {
5994     if (ToT == PT_IntAP)
5995       return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
5996     if (ToT == PT_IntAPS)
5997       return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
5998 
5999     // Integral to integral.
6000     if (isIntegralType(ToT) || ToT == PT_Bool)
6001       return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
6002 
6003     if (ToT == PT_Float) {
6004       // Integral to floating.
6005       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6006       return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E);
6007     }
6008   }
6009 
6010   return false;
6011 }
6012 
6013 /// Emits __real(SubExpr)
6014 template <class Emitter>
6015 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
6016   assert(SubExpr->getType()->isAnyComplexType());
6017 
6018   if (DiscardResult)
6019     return this->discard(SubExpr);
6020 
6021   if (!this->visit(SubExpr))
6022     return false;
6023   if (SubExpr->isLValue()) {
6024     if (!this->emitConstUint8(0, SubExpr))
6025       return false;
6026     return this->emitArrayElemPtrPopUint8(SubExpr);
6027   }
6028 
6029   // Rvalue, load the actual element.
6030   return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
6031                                 0, SubExpr);
6032 }
6033 
6034 template <class Emitter>
6035 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
6036   assert(!DiscardResult);
6037   PrimType ElemT = classifyComplexElementType(E->getType());
6038   // We emit the expression (__real(E) != 0 || __imag(E) != 0)
6039   // for us, that means (bool)E[0] || (bool)E[1]
6040   if (!this->emitArrayElem(ElemT, 0, E))
6041     return false;
6042   if (ElemT == PT_Float) {
6043     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6044       return false;
6045   } else {
6046     if (!this->emitCast(ElemT, PT_Bool, E))
6047       return false;
6048   }
6049 
6050   // We now have the bool value of E[0] on the stack.
6051   LabelTy LabelTrue = this->getLabel();
6052   if (!this->jumpTrue(LabelTrue))
6053     return false;
6054 
6055   if (!this->emitArrayElemPop(ElemT, 1, E))
6056     return false;
6057   if (ElemT == PT_Float) {
6058     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6059       return false;
6060   } else {
6061     if (!this->emitCast(ElemT, PT_Bool, E))
6062       return false;
6063   }
6064   // Leave the boolean value of E[1] on the stack.
6065   LabelTy EndLabel = this->getLabel();
6066   this->jump(EndLabel);
6067 
6068   this->emitLabel(LabelTrue);
6069   if (!this->emitPopPtr(E))
6070     return false;
6071   if (!this->emitConstBool(true, E))
6072     return false;
6073 
6074   this->fallthrough(EndLabel);
6075   this->emitLabel(EndLabel);
6076 
6077   return true;
6078 }
6079 
6080 template <class Emitter>
6081 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
6082                                               const BinaryOperator *E) {
6083   assert(E->isComparisonOp());
6084   assert(!Initializing);
6085   assert(!DiscardResult);
6086 
6087   PrimType ElemT;
6088   bool LHSIsComplex;
6089   unsigned LHSOffset;
6090   if (LHS->getType()->isAnyComplexType()) {
6091     LHSIsComplex = true;
6092     ElemT = classifyComplexElementType(LHS->getType());
6093     LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
6094                                        /*IsExtended=*/false);
6095     if (!this->visit(LHS))
6096       return false;
6097     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
6098       return false;
6099   } else {
6100     LHSIsComplex = false;
6101     PrimType LHST = classifyPrim(LHS->getType());
6102     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
6103     if (!this->visit(LHS))
6104       return false;
6105     if (!this->emitSetLocal(LHST, LHSOffset, E))
6106       return false;
6107   }
6108 
6109   bool RHSIsComplex;
6110   unsigned RHSOffset;
6111   if (RHS->getType()->isAnyComplexType()) {
6112     RHSIsComplex = true;
6113     ElemT = classifyComplexElementType(RHS->getType());
6114     RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
6115                                        /*IsExtended=*/false);
6116     if (!this->visit(RHS))
6117       return false;
6118     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
6119       return false;
6120   } else {
6121     RHSIsComplex = false;
6122     PrimType RHST = classifyPrim(RHS->getType());
6123     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
6124     if (!this->visit(RHS))
6125       return false;
6126     if (!this->emitSetLocal(RHST, RHSOffset, E))
6127       return false;
6128   }
6129 
6130   auto getElem = [&](unsigned LocalOffset, unsigned Index,
6131                      bool IsComplex) -> bool {
6132     if (IsComplex) {
6133       if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
6134         return false;
6135       return this->emitArrayElemPop(ElemT, Index, E);
6136     }
6137     return this->emitGetLocal(ElemT, LocalOffset, E);
6138   };
6139 
6140   for (unsigned I = 0; I != 2; ++I) {
6141     // Get both values.
6142     if (!getElem(LHSOffset, I, LHSIsComplex))
6143       return false;
6144     if (!getElem(RHSOffset, I, RHSIsComplex))
6145       return false;
6146     // And compare them.
6147     if (!this->emitEQ(ElemT, E))
6148       return false;
6149 
6150     if (!this->emitCastBoolUint8(E))
6151       return false;
6152   }
6153 
6154   // We now have two bool values on the stack. Compare those.
6155   if (!this->emitAddUint8(E))
6156     return false;
6157   if (!this->emitConstUint8(2, E))
6158     return false;
6159 
6160   if (E->getOpcode() == BO_EQ) {
6161     if (!this->emitEQUint8(E))
6162       return false;
6163   } else if (E->getOpcode() == BO_NE) {
6164     if (!this->emitNEUint8(E))
6165       return false;
6166   } else
6167     return false;
6168 
6169   // In C, this returns an int.
6170   if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
6171     return this->emitCast(PT_Bool, ResT, E);
6172   return true;
6173 }
6174 
6175 /// When calling this, we have a pointer of the local-to-destroy
6176 /// on the stack.
6177 /// Emit destruction of record types (or arrays of record types).
6178 template <class Emitter>
6179 bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) {
6180   assert(R);
6181   assert(!R->isAnonymousUnion());
6182   const CXXDestructorDecl *Dtor = R->getDestructor();
6183   if (!Dtor || Dtor->isTrivial())
6184     return true;
6185 
6186   assert(Dtor);
6187   const Function *DtorFunc = getFunction(Dtor);
6188   if (!DtorFunc)
6189     return false;
6190   assert(DtorFunc->hasThisPointer());
6191   assert(DtorFunc->getNumParams() == 1);
6192   if (!this->emitDupPtr(Loc))
6193     return false;
6194   return this->emitCall(DtorFunc, 0, Loc);
6195 }
6196 /// When calling this, we have a pointer of the local-to-destroy
6197 /// on the stack.
6198 /// Emit destruction of record types (or arrays of record types).
6199 template <class Emitter>
6200 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc,
6201                                         SourceInfo Loc) {
6202   assert(Desc);
6203   assert(!Desc->isPrimitive());
6204   assert(!Desc->isPrimitiveArray());
6205 
6206   // Arrays.
6207   if (Desc->isArray()) {
6208     const Descriptor *ElemDesc = Desc->ElemDesc;
6209     assert(ElemDesc);
6210 
6211     // Don't need to do anything for these.
6212     if (ElemDesc->isPrimitiveArray())
6213       return true;
6214 
6215     // If this is an array of record types, check if we need
6216     // to call the element destructors at all. If not, try
6217     // to save the work.
6218     if (const Record *ElemRecord = ElemDesc->ElemRecord) {
6219       if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
6220           !Dtor || Dtor->isTrivial())
6221         return true;
6222     }
6223 
6224     for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
6225       if (!this->emitConstUint64(I, Loc))
6226         return false;
6227       if (!this->emitArrayElemPtrUint64(Loc))
6228         return false;
6229       if (!this->emitDestruction(ElemDesc, Loc))
6230         return false;
6231       if (!this->emitPopPtr(Loc))
6232         return false;
6233     }
6234     return true;
6235   }
6236 
6237   assert(Desc->ElemRecord);
6238   if (Desc->ElemRecord->isAnonymousUnion())
6239     return true;
6240 
6241   return this->emitRecordDestruction(Desc->ElemRecord, Loc);
6242 }
6243 
6244 namespace clang {
6245 namespace interp {
6246 
6247 template class Compiler<ByteCodeEmitter>;
6248 template class Compiler<EvalEmitter>;
6249 
6250 } // namespace interp
6251 } // namespace clang
6252