xref: /llvm-project/clang/lib/AST/ByteCode/Compiler.cpp (revision 63d9ef5e37539b8920eb6c93524e4be2c33a510c)
1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Compiler.h"
10 #include "ByteCodeEmitter.h"
11 #include "Context.h"
12 #include "FixedPoint.h"
13 #include "Floating.h"
14 #include "Function.h"
15 #include "InterpShared.h"
16 #include "PrimType.h"
17 #include "Program.h"
18 #include "clang/AST/Attr.h"
19 
20 using namespace clang;
21 using namespace clang::interp;
22 
23 using APSInt = llvm::APSInt;
24 
25 namespace clang {
26 namespace interp {
27 
28 /// Scope used to handle temporaries in toplevel variable declarations.
29 template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
30 public:
31   DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
32       : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
33         OldInitializingDecl(Ctx->InitializingDecl) {
34     Ctx->InitializingDecl = VD;
35     Ctx->InitStack.push_back(InitLink::Decl(VD));
36   }
37 
38   void addExtended(const Scope::Local &Local) override {
39     return this->addLocal(Local);
40   }
41 
42   ~DeclScope() {
43     this->Ctx->InitializingDecl = OldInitializingDecl;
44     this->Ctx->InitStack.pop_back();
45   }
46 
47 private:
48   Program::DeclScope Scope;
49   const ValueDecl *OldInitializingDecl;
50 };
51 
52 /// Scope used to handle initialization methods.
53 template <class Emitter> class OptionScope final {
54 public:
55   /// Root constructor, compiling or discarding primitives.
56   OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
57               bool NewInitializing)
58       : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
59         OldInitializing(Ctx->Initializing) {
60     Ctx->DiscardResult = NewDiscardResult;
61     Ctx->Initializing = NewInitializing;
62   }
63 
64   ~OptionScope() {
65     Ctx->DiscardResult = OldDiscardResult;
66     Ctx->Initializing = OldInitializing;
67   }
68 
69 private:
70   /// Parent context.
71   Compiler<Emitter> *Ctx;
72   /// Old discard flag to restore.
73   bool OldDiscardResult;
74   bool OldInitializing;
75 };
76 
77 template <class Emitter>
78 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
79   switch (Kind) {
80   case K_This:
81     return Ctx->emitThis(E);
82   case K_Field:
83     // We're assuming there's a base pointer on the stack already.
84     return Ctx->emitGetPtrFieldPop(Offset, E);
85   case K_Temp:
86     return Ctx->emitGetPtrLocal(Offset, E);
87   case K_Decl:
88     return Ctx->visitDeclRef(D, E);
89   case K_Elem:
90     if (!Ctx->emitConstUint32(Offset, E))
91       return false;
92     return Ctx->emitArrayElemPtrPopUint32(E);
93   default:
94     llvm_unreachable("Unhandled InitLink kind");
95   }
96   return true;
97 }
98 
99 /// Scope managing label targets.
100 template <class Emitter> class LabelScope {
101 public:
102   virtual ~LabelScope() {}
103 
104 protected:
105   LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
106   /// Compiler instance.
107   Compiler<Emitter> *Ctx;
108 };
109 
110 /// Sets the context for break/continue statements.
111 template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
112 public:
113   using LabelTy = typename Compiler<Emitter>::LabelTy;
114   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
115 
116   LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
117       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
118         OldContinueLabel(Ctx->ContinueLabel),
119         OldBreakVarScope(Ctx->BreakVarScope),
120         OldContinueVarScope(Ctx->ContinueVarScope) {
121     this->Ctx->BreakLabel = BreakLabel;
122     this->Ctx->ContinueLabel = ContinueLabel;
123     this->Ctx->BreakVarScope = this->Ctx->VarScope;
124     this->Ctx->ContinueVarScope = this->Ctx->VarScope;
125   }
126 
127   ~LoopScope() {
128     this->Ctx->BreakLabel = OldBreakLabel;
129     this->Ctx->ContinueLabel = OldContinueLabel;
130     this->Ctx->ContinueVarScope = OldContinueVarScope;
131     this->Ctx->BreakVarScope = OldBreakVarScope;
132   }
133 
134 private:
135   OptLabelTy OldBreakLabel;
136   OptLabelTy OldContinueLabel;
137   VariableScope<Emitter> *OldBreakVarScope;
138   VariableScope<Emitter> *OldContinueVarScope;
139 };
140 
141 // Sets the context for a switch scope, mapping labels.
142 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
143 public:
144   using LabelTy = typename Compiler<Emitter>::LabelTy;
145   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
146   using CaseMap = typename Compiler<Emitter>::CaseMap;
147 
148   SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
149               OptLabelTy DefaultLabel)
150       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
151         OldDefaultLabel(this->Ctx->DefaultLabel),
152         OldCaseLabels(std::move(this->Ctx->CaseLabels)),
153         OldLabelVarScope(Ctx->BreakVarScope) {
154     this->Ctx->BreakLabel = BreakLabel;
155     this->Ctx->DefaultLabel = DefaultLabel;
156     this->Ctx->CaseLabels = std::move(CaseLabels);
157     this->Ctx->BreakVarScope = this->Ctx->VarScope;
158   }
159 
160   ~SwitchScope() {
161     this->Ctx->BreakLabel = OldBreakLabel;
162     this->Ctx->DefaultLabel = OldDefaultLabel;
163     this->Ctx->CaseLabels = std::move(OldCaseLabels);
164     this->Ctx->BreakVarScope = OldLabelVarScope;
165   }
166 
167 private:
168   OptLabelTy OldBreakLabel;
169   OptLabelTy OldDefaultLabel;
170   CaseMap OldCaseLabels;
171   VariableScope<Emitter> *OldLabelVarScope;
172 };
173 
174 template <class Emitter> class StmtExprScope final {
175 public:
176   StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
177     Ctx->InStmtExpr = true;
178   }
179 
180   ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
181 
182 private:
183   Compiler<Emitter> *Ctx;
184   bool OldFlag;
185 };
186 
187 } // namespace interp
188 } // namespace clang
189 
190 template <class Emitter>
191 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
192   const Expr *SubExpr = CE->getSubExpr();
193   switch (CE->getCastKind()) {
194 
195   case CK_LValueToRValue: {
196     if (DiscardResult)
197       return this->discard(SubExpr);
198 
199     std::optional<PrimType> SubExprT = classify(SubExpr->getType());
200     // Prepare storage for the result.
201     if (!Initializing && !SubExprT) {
202       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
203       if (!LocalIndex)
204         return false;
205       if (!this->emitGetPtrLocal(*LocalIndex, CE))
206         return false;
207     }
208 
209     if (!this->visit(SubExpr))
210       return false;
211 
212     if (SubExprT)
213       return this->emitLoadPop(*SubExprT, CE);
214 
215     // If the subexpr type is not primitive, we need to perform a copy here.
216     // This happens for example in C when dereferencing a pointer of struct
217     // type.
218     return this->emitMemcpy(CE);
219   }
220 
221   case CK_DerivedToBaseMemberPointer: {
222     assert(classifyPrim(CE->getType()) == PT_MemberPtr);
223     assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
224     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
225     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
226 
227     unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
228                                                QualType(FromMP->getClass(), 0));
229 
230     if (!this->delegate(SubExpr))
231       return false;
232 
233     return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
234   }
235 
236   case CK_BaseToDerivedMemberPointer: {
237     assert(classifyPrim(CE) == PT_MemberPtr);
238     assert(classifyPrim(SubExpr) == PT_MemberPtr);
239     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
240     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
241 
242     unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
243                                                QualType(ToMP->getClass(), 0));
244 
245     if (!this->delegate(SubExpr))
246       return false;
247     return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
248   }
249 
250   case CK_UncheckedDerivedToBase:
251   case CK_DerivedToBase: {
252     if (!this->delegate(SubExpr))
253       return false;
254 
255     const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
256       if (const auto *PT = dyn_cast<PointerType>(Ty))
257         return PT->getPointeeType()->getAsCXXRecordDecl();
258       return Ty->getAsCXXRecordDecl();
259     };
260 
261     // FIXME: We can express a series of non-virtual casts as a single
262     // GetPtrBasePop op.
263     QualType CurType = SubExpr->getType();
264     for (const CXXBaseSpecifier *B : CE->path()) {
265       if (B->isVirtual()) {
266         if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
267           return false;
268         CurType = B->getType();
269       } else {
270         unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
271         if (!this->emitGetPtrBasePop(DerivedOffset, CE))
272           return false;
273         CurType = B->getType();
274       }
275     }
276 
277     return true;
278   }
279 
280   case CK_BaseToDerived: {
281     if (!this->delegate(SubExpr))
282       return false;
283 
284     unsigned DerivedOffset =
285         collectBaseOffset(SubExpr->getType(), CE->getType());
286 
287     return this->emitGetPtrDerivedPop(DerivedOffset, CE);
288   }
289 
290   case CK_FloatingCast: {
291     // HLSL uses CK_FloatingCast to cast between vectors.
292     if (!SubExpr->getType()->isFloatingType() ||
293         !CE->getType()->isFloatingType())
294       return false;
295     if (DiscardResult)
296       return this->discard(SubExpr);
297     if (!this->visit(SubExpr))
298       return false;
299     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
300     return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
301   }
302 
303   case CK_IntegralToFloating: {
304     if (DiscardResult)
305       return this->discard(SubExpr);
306     std::optional<PrimType> FromT = classify(SubExpr->getType());
307     if (!FromT)
308       return false;
309 
310     if (!this->visit(SubExpr))
311       return false;
312 
313     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
314     return this->emitCastIntegralFloating(*FromT, TargetSemantics,
315                                           getFPOptions(CE), CE);
316   }
317 
318   case CK_FloatingToBoolean:
319   case CK_FloatingToIntegral: {
320     if (DiscardResult)
321       return this->discard(SubExpr);
322 
323     std::optional<PrimType> ToT = classify(CE->getType());
324 
325     if (!ToT)
326       return false;
327 
328     if (!this->visit(SubExpr))
329       return false;
330 
331     if (ToT == PT_IntAP)
332       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
333                                               getFPOptions(CE), CE);
334     if (ToT == PT_IntAPS)
335       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
336                                                getFPOptions(CE), CE);
337 
338     return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE);
339   }
340 
341   case CK_NullToPointer:
342   case CK_NullToMemberPointer: {
343     if (!this->discard(SubExpr))
344       return false;
345     if (DiscardResult)
346       return true;
347 
348     const Descriptor *Desc = nullptr;
349     const QualType PointeeType = CE->getType()->getPointeeType();
350     if (!PointeeType.isNull()) {
351       if (std::optional<PrimType> T = classify(PointeeType))
352         Desc = P.createDescriptor(SubExpr, *T);
353       else
354         Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
355                                   std::nullopt, true, false,
356                                   /*IsMutable=*/false, nullptr);
357     }
358     return this->emitNull(classifyPrim(CE->getType()), Desc, CE);
359   }
360 
361   case CK_PointerToIntegral: {
362     if (DiscardResult)
363       return this->discard(SubExpr);
364 
365     if (!this->visit(SubExpr))
366       return false;
367 
368     // If SubExpr doesn't result in a pointer, make it one.
369     if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
370       assert(isPtrType(FromT));
371       if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
372         return false;
373     }
374 
375     PrimType T = classifyPrim(CE->getType());
376     if (T == PT_IntAP)
377       return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
378                                              CE);
379     if (T == PT_IntAPS)
380       return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
381                                               CE);
382     return this->emitCastPointerIntegral(T, CE);
383   }
384 
385   case CK_ArrayToPointerDecay: {
386     if (!this->visit(SubExpr))
387       return false;
388     if (!this->emitArrayDecay(CE))
389       return false;
390     if (DiscardResult)
391       return this->emitPopPtr(CE);
392     return true;
393   }
394 
395   case CK_IntegralToPointer: {
396     QualType IntType = SubExpr->getType();
397     assert(IntType->isIntegralOrEnumerationType());
398     if (!this->visit(SubExpr))
399       return false;
400     // FIXME: I think the discard is wrong since the int->ptr cast might cause a
401     // diagnostic.
402     PrimType T = classifyPrim(IntType);
403     if (DiscardResult)
404       return this->emitPop(T, CE);
405 
406     QualType PtrType = CE->getType();
407     const Descriptor *Desc;
408     if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
409       Desc = P.createDescriptor(SubExpr, *T);
410     else if (PtrType->getPointeeType()->isVoidType())
411       Desc = nullptr;
412     else
413       Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
414                                 Descriptor::InlineDescMD, true, false,
415                                 /*IsMutable=*/false, nullptr);
416 
417     if (!this->emitGetIntPtr(T, Desc, CE))
418       return false;
419 
420     PrimType DestPtrT = classifyPrim(PtrType);
421     if (DestPtrT == PT_Ptr)
422       return true;
423 
424     // In case we're converting the integer to a non-Pointer.
425     return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
426   }
427 
428   case CK_AtomicToNonAtomic:
429   case CK_ConstructorConversion:
430   case CK_FunctionToPointerDecay:
431   case CK_NonAtomicToAtomic:
432   case CK_NoOp:
433   case CK_UserDefinedConversion:
434   case CK_AddressSpaceConversion:
435   case CK_CPointerToObjCPointerCast:
436     return this->delegate(SubExpr);
437 
438   case CK_BitCast: {
439     // Reject bitcasts to atomic types.
440     if (CE->getType()->isAtomicType()) {
441       if (!this->discard(SubExpr))
442         return false;
443       return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
444     }
445 
446     if (DiscardResult)
447       return this->discard(SubExpr);
448 
449     QualType SubExprTy = SubExpr->getType();
450     std::optional<PrimType> FromT = classify(SubExprTy);
451     std::optional<PrimType> ToT = classify(CE->getType());
452     if (!FromT || !ToT)
453       return false;
454 
455     assert(isPtrType(*FromT));
456     assert(isPtrType(*ToT));
457     if (FromT == ToT) {
458       if (CE->getType()->isVoidPointerType())
459         return this->delegate(SubExpr);
460 
461       if (!this->visit(SubExpr))
462         return false;
463       if (FromT == PT_Ptr)
464         return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
465       return true;
466     }
467 
468     if (!this->visit(SubExpr))
469       return false;
470     return this->emitDecayPtr(*FromT, *ToT, CE);
471   }
472 
473   case CK_LValueToRValueBitCast:
474     return this->emitBuiltinBitCast(CE);
475 
476   case CK_IntegralToBoolean:
477   case CK_FixedPointToBoolean:
478   case CK_BooleanToSignedIntegral:
479   case CK_IntegralCast: {
480     if (DiscardResult)
481       return this->discard(SubExpr);
482     std::optional<PrimType> FromT = classify(SubExpr->getType());
483     std::optional<PrimType> ToT = classify(CE->getType());
484 
485     if (!FromT || !ToT)
486       return false;
487 
488     if (!this->visit(SubExpr))
489       return false;
490 
491     // Possibly diagnose casts to enum types if the target type does not
492     // have a fixed size.
493     if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
494       if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
495           ET && !ET->getDecl()->isFixed()) {
496         if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
497           return false;
498       }
499     }
500 
501     auto maybeNegate = [&]() -> bool {
502       if (CE->getCastKind() == CK_BooleanToSignedIntegral)
503         return this->emitNeg(*ToT, CE);
504       return true;
505     };
506 
507     if (ToT == PT_IntAP)
508       return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
509              maybeNegate();
510     if (ToT == PT_IntAPS)
511       return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
512              maybeNegate();
513 
514     if (FromT == ToT)
515       return true;
516     if (!this->emitCast(*FromT, *ToT, CE))
517       return false;
518 
519     return maybeNegate();
520   }
521 
522   case CK_PointerToBoolean:
523   case CK_MemberPointerToBoolean: {
524     PrimType PtrT = classifyPrim(SubExpr->getType());
525 
526     if (!this->visit(SubExpr))
527       return false;
528     return this->emitIsNonNull(PtrT, CE);
529   }
530 
531   case CK_IntegralComplexToBoolean:
532   case CK_FloatingComplexToBoolean: {
533     if (DiscardResult)
534       return this->discard(SubExpr);
535     if (!this->visit(SubExpr))
536       return false;
537     return this->emitComplexBoolCast(SubExpr);
538   }
539 
540   case CK_IntegralComplexToReal:
541   case CK_FloatingComplexToReal:
542     return this->emitComplexReal(SubExpr);
543 
544   case CK_IntegralRealToComplex:
545   case CK_FloatingRealToComplex: {
546     // We're creating a complex value here, so we need to
547     // allocate storage for it.
548     if (!Initializing) {
549       unsigned LocalIndex = allocateTemporary(CE);
550       if (!this->emitGetPtrLocal(LocalIndex, CE))
551         return false;
552     }
553 
554     // Init the complex value to {SubExpr, 0}.
555     if (!this->visitArrayElemInit(0, SubExpr))
556       return false;
557     // Zero-init the second element.
558     PrimType T = classifyPrim(SubExpr->getType());
559     if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
560       return false;
561     return this->emitInitElem(T, 1, SubExpr);
562   }
563 
564   case CK_IntegralComplexCast:
565   case CK_FloatingComplexCast:
566   case CK_IntegralComplexToFloatingComplex:
567   case CK_FloatingComplexToIntegralComplex: {
568     assert(CE->getType()->isAnyComplexType());
569     assert(SubExpr->getType()->isAnyComplexType());
570     if (DiscardResult)
571       return this->discard(SubExpr);
572 
573     if (!Initializing) {
574       std::optional<unsigned> LocalIndex = allocateLocal(CE);
575       if (!LocalIndex)
576         return false;
577       if (!this->emitGetPtrLocal(*LocalIndex, CE))
578         return false;
579     }
580 
581     // Location for the SubExpr.
582     // Since SubExpr is of complex type, visiting it results in a pointer
583     // anyway, so we just create a temporary pointer variable.
584     unsigned SubExprOffset = allocateLocalPrimitive(
585         SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
586     if (!this->visit(SubExpr))
587       return false;
588     if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
589       return false;
590 
591     PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
592     QualType DestElemType =
593         CE->getType()->getAs<ComplexType>()->getElementType();
594     PrimType DestElemT = classifyPrim(DestElemType);
595     // Cast both elements individually.
596     for (unsigned I = 0; I != 2; ++I) {
597       if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
598         return false;
599       if (!this->emitArrayElemPop(SourceElemT, I, CE))
600         return false;
601 
602       // Do the cast.
603       if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
604         return false;
605 
606       // Save the value.
607       if (!this->emitInitElem(DestElemT, I, CE))
608         return false;
609     }
610     return true;
611   }
612 
613   case CK_VectorSplat: {
614     assert(!classify(CE->getType()));
615     assert(classify(SubExpr->getType()));
616     assert(CE->getType()->isVectorType());
617 
618     if (DiscardResult)
619       return this->discard(SubExpr);
620 
621     if (!Initializing) {
622       std::optional<unsigned> LocalIndex = allocateLocal(CE);
623       if (!LocalIndex)
624         return false;
625       if (!this->emitGetPtrLocal(*LocalIndex, CE))
626         return false;
627     }
628 
629     const auto *VT = CE->getType()->getAs<VectorType>();
630     PrimType ElemT = classifyPrim(SubExpr->getType());
631     unsigned ElemOffset = allocateLocalPrimitive(
632         SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
633 
634     // Prepare a local variable for the scalar value.
635     if (!this->visit(SubExpr))
636       return false;
637     if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
638       return false;
639 
640     if (!this->emitSetLocal(ElemT, ElemOffset, CE))
641       return false;
642 
643     for (unsigned I = 0; I != VT->getNumElements(); ++I) {
644       if (!this->emitGetLocal(ElemT, ElemOffset, CE))
645         return false;
646       if (!this->emitInitElem(ElemT, I, CE))
647         return false;
648     }
649 
650     return true;
651   }
652 
653   case CK_HLSLVectorTruncation: {
654     assert(SubExpr->getType()->isVectorType());
655     if (std::optional<PrimType> ResultT = classify(CE)) {
656       assert(!DiscardResult);
657       // Result must be either a float or integer. Take the first element.
658       if (!this->visit(SubExpr))
659         return false;
660       return this->emitArrayElemPop(*ResultT, 0, CE);
661     }
662     // Otherwise, this truncates from one vector type to another.
663     assert(CE->getType()->isVectorType());
664 
665     if (!Initializing) {
666       unsigned LocalIndex = allocateTemporary(CE);
667       if (!this->emitGetPtrLocal(LocalIndex, CE))
668         return false;
669     }
670     unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements();
671     assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize);
672     if (!this->visit(SubExpr))
673       return false;
674     return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0,
675                                ToSize, CE);
676   };
677 
678   case CK_IntegralToFixedPoint: {
679     if (!this->visit(SubExpr))
680       return false;
681 
682     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
683     uint32_t I;
684     std::memcpy(&I, &Sem, sizeof(Sem));
685     return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), I,
686                                             CE);
687   }
688   case CK_FloatingToFixedPoint: {
689     if (!this->visit(SubExpr))
690       return false;
691 
692     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
693     uint32_t I;
694     std::memcpy(&I, &Sem, sizeof(Sem));
695     return this->emitCastFloatingFixedPoint(I, CE);
696   }
697   case CK_FixedPointToFloating: {
698     if (!this->visit(SubExpr))
699       return false;
700     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
701     return this->emitCastFixedPointFloating(TargetSemantics, CE);
702   }
703   case CK_FixedPointToIntegral: {
704     if (!this->visit(SubExpr))
705       return false;
706     return this->emitCastFixedPointIntegral(classifyPrim(CE->getType()), CE);
707   }
708   case CK_FixedPointCast: {
709     if (!this->visit(SubExpr))
710       return false;
711     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
712     uint32_t I;
713     std::memcpy(&I, &Sem, sizeof(Sem));
714     return this->emitCastFixedPoint(I, CE);
715   }
716 
717   case CK_ToVoid:
718     return discard(SubExpr);
719 
720   default:
721     return this->emitInvalid(CE);
722   }
723   llvm_unreachable("Unhandled clang::CastKind enum");
724 }
725 
726 template <class Emitter>
727 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
728   if (DiscardResult)
729     return true;
730 
731   return this->emitConst(LE->getValue(), LE);
732 }
733 
734 template <class Emitter>
735 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
736   if (DiscardResult)
737     return true;
738 
739   return this->emitConstFloat(E->getValue(), E);
740 }
741 
742 template <class Emitter>
743 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
744   assert(E->getType()->isAnyComplexType());
745   if (DiscardResult)
746     return true;
747 
748   if (!Initializing) {
749     unsigned LocalIndex = allocateTemporary(E);
750     if (!this->emitGetPtrLocal(LocalIndex, E))
751       return false;
752   }
753 
754   const Expr *SubExpr = E->getSubExpr();
755   PrimType SubExprT = classifyPrim(SubExpr->getType());
756 
757   if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
758     return false;
759   if (!this->emitInitElem(SubExprT, 0, SubExpr))
760     return false;
761   return this->visitArrayElemInit(1, SubExpr);
762 }
763 
764 template <class Emitter>
765 bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) {
766   assert(E->getType()->isFixedPointType());
767   assert(classifyPrim(E) == PT_FixedPoint);
768 
769   if (DiscardResult)
770     return true;
771 
772   auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
773   APInt Value = E->getValue();
774   return this->emitConstFixedPoint(FixedPoint(Value, Sem), E);
775 }
776 
777 template <class Emitter>
778 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
779   return this->delegate(E->getSubExpr());
780 }
781 
782 template <class Emitter>
783 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
784   // Need short-circuiting for these.
785   if (BO->isLogicalOp() && !BO->getType()->isVectorType())
786     return this->VisitLogicalBinOp(BO);
787 
788   const Expr *LHS = BO->getLHS();
789   const Expr *RHS = BO->getRHS();
790 
791   // Handle comma operators. Just discard the LHS
792   // and delegate to RHS.
793   if (BO->isCommaOp()) {
794     if (!this->discard(LHS))
795       return false;
796     if (RHS->getType()->isVoidType())
797       return this->discard(RHS);
798 
799     return this->delegate(RHS);
800   }
801 
802   if (BO->getType()->isAnyComplexType())
803     return this->VisitComplexBinOp(BO);
804   if (BO->getType()->isVectorType())
805     return this->VisitVectorBinOp(BO);
806   if ((LHS->getType()->isAnyComplexType() ||
807        RHS->getType()->isAnyComplexType()) &&
808       BO->isComparisonOp())
809     return this->emitComplexComparison(LHS, RHS, BO);
810   if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType())
811     return this->VisitFixedPointBinOp(BO);
812 
813   if (BO->isPtrMemOp()) {
814     if (!this->visit(LHS))
815       return false;
816 
817     if (!this->visit(RHS))
818       return false;
819 
820     if (!this->emitToMemberPtr(BO))
821       return false;
822 
823     if (classifyPrim(BO) == PT_MemberPtr)
824       return true;
825 
826     if (!this->emitCastMemberPtrPtr(BO))
827       return false;
828     return DiscardResult ? this->emitPopPtr(BO) : true;
829   }
830 
831   // Typecheck the args.
832   std::optional<PrimType> LT = classify(LHS);
833   std::optional<PrimType> RT = classify(RHS);
834   std::optional<PrimType> T = classify(BO->getType());
835 
836   // Special case for C++'s three-way/spaceship operator <=>, which
837   // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
838   // have a PrimType).
839   if (!T && BO->getOpcode() == BO_Cmp) {
840     if (DiscardResult)
841       return true;
842     const ComparisonCategoryInfo *CmpInfo =
843         Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
844     assert(CmpInfo);
845 
846     // We need a temporary variable holding our return value.
847     if (!Initializing) {
848       std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
849       if (!this->emitGetPtrLocal(*ResultIndex, BO))
850         return false;
851     }
852 
853     if (!visit(LHS) || !visit(RHS))
854       return false;
855 
856     return this->emitCMP3(*LT, CmpInfo, BO);
857   }
858 
859   if (!LT || !RT || !T)
860     return false;
861 
862   // Pointer arithmetic special case.
863   if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
864     if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
865       return this->VisitPointerArithBinOp(BO);
866   }
867 
868   // Assignmentes require us to evalute the RHS first.
869   if (BO->getOpcode() == BO_Assign) {
870     if (!visit(RHS) || !visit(LHS))
871       return false;
872     if (!this->emitFlip(*LT, *RT, BO))
873       return false;
874   } else {
875     if (!visit(LHS) || !visit(RHS))
876       return false;
877   }
878 
879   // For languages such as C, cast the result of one
880   // of our comparision opcodes to T (which is usually int).
881   auto MaybeCastToBool = [this, T, BO](bool Result) {
882     if (!Result)
883       return false;
884     if (DiscardResult)
885       return this->emitPop(*T, BO);
886     if (T != PT_Bool)
887       return this->emitCast(PT_Bool, *T, BO);
888     return true;
889   };
890 
891   auto Discard = [this, T, BO](bool Result) {
892     if (!Result)
893       return false;
894     return DiscardResult ? this->emitPop(*T, BO) : true;
895   };
896 
897   switch (BO->getOpcode()) {
898   case BO_EQ:
899     return MaybeCastToBool(this->emitEQ(*LT, BO));
900   case BO_NE:
901     return MaybeCastToBool(this->emitNE(*LT, BO));
902   case BO_LT:
903     return MaybeCastToBool(this->emitLT(*LT, BO));
904   case BO_LE:
905     return MaybeCastToBool(this->emitLE(*LT, BO));
906   case BO_GT:
907     return MaybeCastToBool(this->emitGT(*LT, BO));
908   case BO_GE:
909     return MaybeCastToBool(this->emitGE(*LT, BO));
910   case BO_Sub:
911     if (BO->getType()->isFloatingType())
912       return Discard(this->emitSubf(getFPOptions(BO), BO));
913     return Discard(this->emitSub(*T, BO));
914   case BO_Add:
915     if (BO->getType()->isFloatingType())
916       return Discard(this->emitAddf(getFPOptions(BO), BO));
917     return Discard(this->emitAdd(*T, BO));
918   case BO_Mul:
919     if (BO->getType()->isFloatingType())
920       return Discard(this->emitMulf(getFPOptions(BO), BO));
921     return Discard(this->emitMul(*T, BO));
922   case BO_Rem:
923     return Discard(this->emitRem(*T, BO));
924   case BO_Div:
925     if (BO->getType()->isFloatingType())
926       return Discard(this->emitDivf(getFPOptions(BO), BO));
927     return Discard(this->emitDiv(*T, BO));
928   case BO_Assign:
929     if (DiscardResult)
930       return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
931                                      : this->emitStorePop(*T, BO);
932     if (LHS->refersToBitField()) {
933       if (!this->emitStoreBitField(*T, BO))
934         return false;
935     } else {
936       if (!this->emitStore(*T, BO))
937         return false;
938     }
939     // Assignments aren't necessarily lvalues in C.
940     // Load from them in that case.
941     if (!BO->isLValue())
942       return this->emitLoadPop(*T, BO);
943     return true;
944   case BO_And:
945     return Discard(this->emitBitAnd(*T, BO));
946   case BO_Or:
947     return Discard(this->emitBitOr(*T, BO));
948   case BO_Shl:
949     return Discard(this->emitShl(*LT, *RT, BO));
950   case BO_Shr:
951     return Discard(this->emitShr(*LT, *RT, BO));
952   case BO_Xor:
953     return Discard(this->emitBitXor(*T, BO));
954   case BO_LOr:
955   case BO_LAnd:
956     llvm_unreachable("Already handled earlier");
957   default:
958     return false;
959   }
960 
961   llvm_unreachable("Unhandled binary op");
962 }
963 
964 /// Perform addition/subtraction of a pointer and an integer or
965 /// subtraction of two pointers.
966 template <class Emitter>
967 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
968   BinaryOperatorKind Op = E->getOpcode();
969   const Expr *LHS = E->getLHS();
970   const Expr *RHS = E->getRHS();
971 
972   if ((Op != BO_Add && Op != BO_Sub) ||
973       (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
974     return false;
975 
976   std::optional<PrimType> LT = classify(LHS);
977   std::optional<PrimType> RT = classify(RHS);
978 
979   if (!LT || !RT)
980     return false;
981 
982   // Visit the given pointer expression and optionally convert to a PT_Ptr.
983   auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
984     if (!this->visit(E))
985       return false;
986     if (T != PT_Ptr)
987       return this->emitDecayPtr(T, PT_Ptr, E);
988     return true;
989   };
990 
991   if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
992     if (Op != BO_Sub)
993       return false;
994 
995     assert(E->getType()->isIntegerType());
996     if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
997       return false;
998 
999     return this->emitSubPtr(classifyPrim(E->getType()), E);
1000   }
1001 
1002   PrimType OffsetType;
1003   if (LHS->getType()->isIntegerType()) {
1004     if (!visitAsPointer(RHS, *RT))
1005       return false;
1006     if (!this->visit(LHS))
1007       return false;
1008     OffsetType = *LT;
1009   } else if (RHS->getType()->isIntegerType()) {
1010     if (!visitAsPointer(LHS, *LT))
1011       return false;
1012     if (!this->visit(RHS))
1013       return false;
1014     OffsetType = *RT;
1015   } else {
1016     return false;
1017   }
1018 
1019   // Do the operation and optionally transform to
1020   // result pointer type.
1021   if (Op == BO_Add) {
1022     if (!this->emitAddOffset(OffsetType, E))
1023       return false;
1024 
1025     if (classifyPrim(E) != PT_Ptr)
1026       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
1027     return true;
1028   } else if (Op == BO_Sub) {
1029     if (!this->emitSubOffset(OffsetType, E))
1030       return false;
1031 
1032     if (classifyPrim(E) != PT_Ptr)
1033       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
1034     return true;
1035   }
1036 
1037   return false;
1038 }
1039 
1040 template <class Emitter>
1041 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
1042   assert(E->isLogicalOp());
1043   BinaryOperatorKind Op = E->getOpcode();
1044   const Expr *LHS = E->getLHS();
1045   const Expr *RHS = E->getRHS();
1046   std::optional<PrimType> T = classify(E->getType());
1047 
1048   if (Op == BO_LOr) {
1049     // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
1050     LabelTy LabelTrue = this->getLabel();
1051     LabelTy LabelEnd = this->getLabel();
1052 
1053     if (!this->visitBool(LHS))
1054       return false;
1055     if (!this->jumpTrue(LabelTrue))
1056       return false;
1057 
1058     if (!this->visitBool(RHS))
1059       return false;
1060     if (!this->jump(LabelEnd))
1061       return false;
1062 
1063     this->emitLabel(LabelTrue);
1064     this->emitConstBool(true, E);
1065     this->fallthrough(LabelEnd);
1066     this->emitLabel(LabelEnd);
1067 
1068   } else {
1069     assert(Op == BO_LAnd);
1070     // Logical AND.
1071     // Visit LHS. Only visit RHS if LHS was TRUE.
1072     LabelTy LabelFalse = this->getLabel();
1073     LabelTy LabelEnd = this->getLabel();
1074 
1075     if (!this->visitBool(LHS))
1076       return false;
1077     if (!this->jumpFalse(LabelFalse))
1078       return false;
1079 
1080     if (!this->visitBool(RHS))
1081       return false;
1082     if (!this->jump(LabelEnd))
1083       return false;
1084 
1085     this->emitLabel(LabelFalse);
1086     this->emitConstBool(false, E);
1087     this->fallthrough(LabelEnd);
1088     this->emitLabel(LabelEnd);
1089   }
1090 
1091   if (DiscardResult)
1092     return this->emitPopBool(E);
1093 
1094   // For C, cast back to integer type.
1095   assert(T);
1096   if (T != PT_Bool)
1097     return this->emitCast(PT_Bool, *T, E);
1098   return true;
1099 }
1100 
1101 template <class Emitter>
1102 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
1103   // Prepare storage for result.
1104   if (!Initializing) {
1105     unsigned LocalIndex = allocateTemporary(E);
1106     if (!this->emitGetPtrLocal(LocalIndex, E))
1107       return false;
1108   }
1109 
1110   // Both LHS and RHS might _not_ be of complex type, but one of them
1111   // needs to be.
1112   const Expr *LHS = E->getLHS();
1113   const Expr *RHS = E->getRHS();
1114 
1115   PrimType ResultElemT = this->classifyComplexElementType(E->getType());
1116   unsigned ResultOffset = ~0u;
1117   if (!DiscardResult)
1118     ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
1119 
1120   // Save result pointer in ResultOffset
1121   if (!this->DiscardResult) {
1122     if (!this->emitDupPtr(E))
1123       return false;
1124     if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
1125       return false;
1126   }
1127   QualType LHSType = LHS->getType();
1128   if (const auto *AT = LHSType->getAs<AtomicType>())
1129     LHSType = AT->getValueType();
1130   QualType RHSType = RHS->getType();
1131   if (const auto *AT = RHSType->getAs<AtomicType>())
1132     RHSType = AT->getValueType();
1133 
1134   bool LHSIsComplex = LHSType->isAnyComplexType();
1135   unsigned LHSOffset;
1136   bool RHSIsComplex = RHSType->isAnyComplexType();
1137 
1138   // For ComplexComplex Mul, we have special ops to make their implementation
1139   // easier.
1140   BinaryOperatorKind Op = E->getOpcode();
1141   if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
1142     assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
1143            classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
1144     PrimType ElemT =
1145         classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
1146     if (!this->visit(LHS))
1147       return false;
1148     if (!this->visit(RHS))
1149       return false;
1150     return this->emitMulc(ElemT, E);
1151   }
1152 
1153   if (Op == BO_Div && RHSIsComplex) {
1154     QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
1155     PrimType ElemT = classifyPrim(ElemQT);
1156     // If the LHS is not complex, we still need to do the full complex
1157     // division, so just stub create a complex value and stub it out with
1158     // the LHS and a zero.
1159 
1160     if (!LHSIsComplex) {
1161       // This is using the RHS type for the fake-complex LHS.
1162       LHSOffset = allocateTemporary(RHS);
1163 
1164       if (!this->emitGetPtrLocal(LHSOffset, E))
1165         return false;
1166 
1167       if (!this->visit(LHS))
1168         return false;
1169       // real is LHS
1170       if (!this->emitInitElem(ElemT, 0, E))
1171         return false;
1172       // imag is zero
1173       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1174         return false;
1175       if (!this->emitInitElem(ElemT, 1, E))
1176         return false;
1177     } else {
1178       if (!this->visit(LHS))
1179         return false;
1180     }
1181 
1182     if (!this->visit(RHS))
1183       return false;
1184     return this->emitDivc(ElemT, E);
1185   }
1186 
1187   // Evaluate LHS and save value to LHSOffset.
1188   if (LHSType->isAnyComplexType()) {
1189     LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1190     if (!this->visit(LHS))
1191       return false;
1192     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1193       return false;
1194   } else {
1195     PrimType LHST = classifyPrim(LHSType);
1196     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
1197     if (!this->visit(LHS))
1198       return false;
1199     if (!this->emitSetLocal(LHST, LHSOffset, E))
1200       return false;
1201   }
1202 
1203   // Same with RHS.
1204   unsigned RHSOffset;
1205   if (RHSType->isAnyComplexType()) {
1206     RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1207     if (!this->visit(RHS))
1208       return false;
1209     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1210       return false;
1211   } else {
1212     PrimType RHST = classifyPrim(RHSType);
1213     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
1214     if (!this->visit(RHS))
1215       return false;
1216     if (!this->emitSetLocal(RHST, RHSOffset, E))
1217       return false;
1218   }
1219 
1220   // For both LHS and RHS, either load the value from the complex pointer, or
1221   // directly from the local variable. For index 1 (i.e. the imaginary part),
1222   // just load 0 and do the operation anyway.
1223   auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
1224                                  unsigned ElemIndex, unsigned Offset,
1225                                  const Expr *E) -> bool {
1226     if (IsComplex) {
1227       if (!this->emitGetLocal(PT_Ptr, Offset, E))
1228         return false;
1229       return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
1230                                     ElemIndex, E);
1231     }
1232     if (ElemIndex == 0 || !LoadZero)
1233       return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
1234     return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
1235                                       E);
1236   };
1237 
1238   // Now we can get pointers to the LHS and RHS from the offsets above.
1239   for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
1240     // Result pointer for the store later.
1241     if (!this->DiscardResult) {
1242       if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
1243         return false;
1244     }
1245 
1246     // The actual operation.
1247     switch (Op) {
1248     case BO_Add:
1249       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1250         return false;
1251 
1252       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1253         return false;
1254       if (ResultElemT == PT_Float) {
1255         if (!this->emitAddf(getFPOptions(E), E))
1256           return false;
1257       } else {
1258         if (!this->emitAdd(ResultElemT, E))
1259           return false;
1260       }
1261       break;
1262     case BO_Sub:
1263       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1264         return false;
1265 
1266       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1267         return false;
1268       if (ResultElemT == PT_Float) {
1269         if (!this->emitSubf(getFPOptions(E), E))
1270           return false;
1271       } else {
1272         if (!this->emitSub(ResultElemT, E))
1273           return false;
1274       }
1275       break;
1276     case BO_Mul:
1277       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1278         return false;
1279 
1280       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1281         return false;
1282 
1283       if (ResultElemT == PT_Float) {
1284         if (!this->emitMulf(getFPOptions(E), E))
1285           return false;
1286       } else {
1287         if (!this->emitMul(ResultElemT, E))
1288           return false;
1289       }
1290       break;
1291     case BO_Div:
1292       assert(!RHSIsComplex);
1293       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1294         return false;
1295 
1296       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1297         return false;
1298 
1299       if (ResultElemT == PT_Float) {
1300         if (!this->emitDivf(getFPOptions(E), E))
1301           return false;
1302       } else {
1303         if (!this->emitDiv(ResultElemT, E))
1304           return false;
1305       }
1306       break;
1307 
1308     default:
1309       return false;
1310     }
1311 
1312     if (!this->DiscardResult) {
1313       // Initialize array element with the value we just computed.
1314       if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
1315         return false;
1316     } else {
1317       if (!this->emitPop(ResultElemT, E))
1318         return false;
1319     }
1320   }
1321   return true;
1322 }
1323 
1324 template <class Emitter>
1325 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) {
1326   assert(!E->isCommaOp() &&
1327          "Comma op should be handled in VisitBinaryOperator");
1328   assert(E->getType()->isVectorType());
1329   assert(E->getLHS()->getType()->isVectorType());
1330   assert(E->getRHS()->getType()->isVectorType());
1331 
1332   // Prepare storage for result.
1333   if (!Initializing && !E->isCompoundAssignmentOp()) {
1334     unsigned LocalIndex = allocateTemporary(E);
1335     if (!this->emitGetPtrLocal(LocalIndex, E))
1336       return false;
1337   }
1338 
1339   const Expr *LHS = E->getLHS();
1340   const Expr *RHS = E->getRHS();
1341   const auto *VecTy = E->getType()->getAs<VectorType>();
1342   auto Op = E->isCompoundAssignmentOp()
1343                 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode())
1344                 : E->getOpcode();
1345 
1346   PrimType ElemT = this->classifyVectorElementType(LHS->getType());
1347   PrimType RHSElemT = this->classifyVectorElementType(RHS->getType());
1348   PrimType ResultElemT = this->classifyVectorElementType(E->getType());
1349 
1350   // Evaluate LHS and save value to LHSOffset.
1351   unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1352   if (!this->visit(LHS))
1353     return false;
1354   if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1355     return false;
1356 
1357   // Evaluate RHS and save value to RHSOffset.
1358   unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1359   if (!this->visit(RHS))
1360     return false;
1361   if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1362     return false;
1363 
1364   if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E))
1365     return false;
1366 
1367   // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the
1368   // integer promotion.
1369   bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp());
1370   QualType PromotTy =
1371       Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy);
1372   PrimType PromotT = classifyPrim(PromotTy);
1373   PrimType OpT = NeedIntPromot ? PromotT : ElemT;
1374 
1375   auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) {
1376     if (!this->emitGetLocal(PT_Ptr, Offset, E))
1377       return false;
1378     if (!this->emitArrayElemPop(ElemT, Index, E))
1379       return false;
1380     if (E->isLogicalOp()) {
1381       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
1382         return false;
1383       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1384         return false;
1385     } else if (NeedIntPromot) {
1386       if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E))
1387         return false;
1388     }
1389     return true;
1390   };
1391 
1392 #define EMIT_ARITH_OP(OP)                                                      \
1393   {                                                                            \
1394     if (ElemT == PT_Float) {                                                   \
1395       if (!this->emit##OP##f(getFPOptions(E), E))                              \
1396         return false;                                                          \
1397     } else {                                                                   \
1398       if (!this->emit##OP(ElemT, E))                                           \
1399         return false;                                                          \
1400     }                                                                          \
1401     break;                                                                     \
1402   }
1403 
1404   for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
1405     if (!getElem(LHSOffset, ElemT, I))
1406       return false;
1407     if (!getElem(RHSOffset, RHSElemT, I))
1408       return false;
1409     switch (Op) {
1410     case BO_Add:
1411       EMIT_ARITH_OP(Add)
1412     case BO_Sub:
1413       EMIT_ARITH_OP(Sub)
1414     case BO_Mul:
1415       EMIT_ARITH_OP(Mul)
1416     case BO_Div:
1417       EMIT_ARITH_OP(Div)
1418     case BO_Rem:
1419       if (!this->emitRem(ElemT, E))
1420         return false;
1421       break;
1422     case BO_And:
1423       if (!this->emitBitAnd(OpT, E))
1424         return false;
1425       break;
1426     case BO_Or:
1427       if (!this->emitBitOr(OpT, E))
1428         return false;
1429       break;
1430     case BO_Xor:
1431       if (!this->emitBitXor(OpT, E))
1432         return false;
1433       break;
1434     case BO_Shl:
1435       if (!this->emitShl(OpT, RHSElemT, E))
1436         return false;
1437       break;
1438     case BO_Shr:
1439       if (!this->emitShr(OpT, RHSElemT, E))
1440         return false;
1441       break;
1442     case BO_EQ:
1443       if (!this->emitEQ(ElemT, E))
1444         return false;
1445       break;
1446     case BO_NE:
1447       if (!this->emitNE(ElemT, E))
1448         return false;
1449       break;
1450     case BO_LE:
1451       if (!this->emitLE(ElemT, E))
1452         return false;
1453       break;
1454     case BO_LT:
1455       if (!this->emitLT(ElemT, E))
1456         return false;
1457       break;
1458     case BO_GE:
1459       if (!this->emitGE(ElemT, E))
1460         return false;
1461       break;
1462     case BO_GT:
1463       if (!this->emitGT(ElemT, E))
1464         return false;
1465       break;
1466     case BO_LAnd:
1467       // a && b is equivalent to a!=0 & b!=0
1468       if (!this->emitBitAnd(ResultElemT, E))
1469         return false;
1470       break;
1471     case BO_LOr:
1472       // a || b is equivalent to a!=0 | b!=0
1473       if (!this->emitBitOr(ResultElemT, E))
1474         return false;
1475       break;
1476     default:
1477       return this->emitInvalid(E);
1478     }
1479 
1480     // The result of the comparison is a vector of the same width and number
1481     // of elements as the comparison operands with a signed integral element
1482     // type.
1483     //
1484     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
1485     if (E->isComparisonOp()) {
1486       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1487         return false;
1488       if (!this->emitNeg(ResultElemT, E))
1489         return false;
1490     }
1491 
1492     // If we performed an integer promotion, we need to cast the compute result
1493     // into result vector element type.
1494     if (NeedIntPromot &&
1495         !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E))
1496       return false;
1497 
1498     // Initialize array element with the value we just computed.
1499     if (!this->emitInitElem(ResultElemT, I, E))
1500       return false;
1501   }
1502 
1503   if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E))
1504     return false;
1505   return true;
1506 }
1507 
1508 template <class Emitter>
1509 bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) {
1510   const Expr *LHS = E->getLHS();
1511   const Expr *RHS = E->getRHS();
1512 
1513   assert(LHS->getType()->isFixedPointType() ||
1514          RHS->getType()->isFixedPointType());
1515 
1516   auto LHSSema = Ctx.getASTContext().getFixedPointSemantics(LHS->getType());
1517   auto RHSSema = Ctx.getASTContext().getFixedPointSemantics(RHS->getType());
1518 
1519   if (!this->visit(LHS))
1520     return false;
1521   if (!LHS->getType()->isFixedPointType()) {
1522     uint32_t I;
1523     std::memcpy(&I, &LHSSema, sizeof(llvm::FixedPointSemantics));
1524     if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()), I, E))
1525       return false;
1526   }
1527 
1528   if (!this->visit(RHS))
1529     return false;
1530   if (!RHS->getType()->isFixedPointType()) {
1531     uint32_t I;
1532     std::memcpy(&I, &RHSSema, sizeof(llvm::FixedPointSemantics));
1533     if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()), I, E))
1534       return false;
1535   }
1536 
1537   // Convert the result to the target semantics.
1538   auto ConvertResult = [&](bool R) -> bool {
1539     if (!R)
1540       return false;
1541     auto ResultSema = Ctx.getASTContext().getFixedPointSemantics(E->getType());
1542     auto CommonSema = LHSSema.getCommonSemantics(RHSSema);
1543     if (ResultSema != CommonSema) {
1544       uint32_t I;
1545       std::memcpy(&I, &ResultSema, sizeof(ResultSema));
1546       return this->emitCastFixedPoint(I, E);
1547     }
1548     return true;
1549   };
1550 
1551   auto MaybeCastToBool = [&](bool Result) {
1552     if (!Result)
1553       return false;
1554     PrimType T = classifyPrim(E);
1555     if (DiscardResult)
1556       return this->emitPop(T, E);
1557     if (T != PT_Bool)
1558       return this->emitCast(PT_Bool, T, E);
1559     return true;
1560   };
1561 
1562   switch (E->getOpcode()) {
1563   case BO_EQ:
1564     return MaybeCastToBool(this->emitEQFixedPoint(E));
1565   case BO_NE:
1566     return MaybeCastToBool(this->emitNEFixedPoint(E));
1567   case BO_LT:
1568     return MaybeCastToBool(this->emitLTFixedPoint(E));
1569   case BO_LE:
1570     return MaybeCastToBool(this->emitLEFixedPoint(E));
1571   case BO_GT:
1572     return MaybeCastToBool(this->emitGTFixedPoint(E));
1573   case BO_GE:
1574     return MaybeCastToBool(this->emitGEFixedPoint(E));
1575   case BO_Add:
1576     return ConvertResult(this->emitAddFixedPoint(E));
1577   case BO_Sub:
1578     return ConvertResult(this->emitSubFixedPoint(E));
1579   case BO_Mul:
1580     return ConvertResult(this->emitMulFixedPoint(E));
1581   case BO_Div:
1582     return ConvertResult(this->emitDivFixedPoint(E));
1583   case BO_Shl:
1584     return ConvertResult(this->emitShiftFixedPoint(/*Left=*/true, E));
1585   case BO_Shr:
1586     return ConvertResult(this->emitShiftFixedPoint(/*Left=*/false, E));
1587 
1588   default:
1589     return this->emitInvalid(E);
1590   }
1591 
1592   llvm_unreachable("unhandled binop opcode");
1593 }
1594 
1595 template <class Emitter>
1596 bool Compiler<Emitter>::VisitFixedPointUnaryOperator(const UnaryOperator *E) {
1597   const Expr *SubExpr = E->getSubExpr();
1598   assert(SubExpr->getType()->isFixedPointType());
1599 
1600   switch (E->getOpcode()) {
1601   case UO_Plus:
1602     return this->delegate(SubExpr);
1603   case UO_Minus:
1604     if (!this->visit(SubExpr))
1605       return false;
1606     return this->emitNegFixedPoint(E);
1607   default:
1608     return false;
1609   }
1610 
1611   llvm_unreachable("Unhandled unary opcode");
1612 }
1613 
1614 template <class Emitter>
1615 bool Compiler<Emitter>::VisitImplicitValueInitExpr(
1616     const ImplicitValueInitExpr *E) {
1617   QualType QT = E->getType();
1618 
1619   if (std::optional<PrimType> T = classify(QT))
1620     return this->visitZeroInitializer(*T, QT, E);
1621 
1622   if (QT->isRecordType()) {
1623     const RecordDecl *RD = QT->getAsRecordDecl();
1624     assert(RD);
1625     if (RD->isInvalidDecl())
1626       return false;
1627 
1628     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1629         CXXRD && CXXRD->getNumVBases() > 0) {
1630       // TODO: Diagnose.
1631       return false;
1632     }
1633 
1634     const Record *R = getRecord(QT);
1635     if (!R)
1636       return false;
1637 
1638     assert(Initializing);
1639     return this->visitZeroRecordInitializer(R, E);
1640   }
1641 
1642   if (QT->isIncompleteArrayType())
1643     return true;
1644 
1645   if (QT->isArrayType()) {
1646     const ArrayType *AT = QT->getAsArrayTypeUnsafe();
1647     assert(AT);
1648     const auto *CAT = cast<ConstantArrayType>(AT);
1649     size_t NumElems = CAT->getZExtSize();
1650     PrimType ElemT = classifyPrim(CAT->getElementType());
1651 
1652     for (size_t I = 0; I != NumElems; ++I) {
1653       if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E))
1654         return false;
1655       if (!this->emitInitElem(ElemT, I, E))
1656         return false;
1657     }
1658 
1659     return true;
1660   }
1661 
1662   if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
1663     assert(Initializing);
1664     QualType ElemQT = ComplexTy->getElementType();
1665     PrimType ElemT = classifyPrim(ElemQT);
1666     for (unsigned I = 0; I < 2; ++I) {
1667       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1668         return false;
1669       if (!this->emitInitElem(ElemT, I, E))
1670         return false;
1671     }
1672     return true;
1673   }
1674 
1675   if (const auto *VecT = E->getType()->getAs<VectorType>()) {
1676     unsigned NumVecElements = VecT->getNumElements();
1677     QualType ElemQT = VecT->getElementType();
1678     PrimType ElemT = classifyPrim(ElemQT);
1679 
1680     for (unsigned I = 0; I < NumVecElements; ++I) {
1681       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1682         return false;
1683       if (!this->emitInitElem(ElemT, I, E))
1684         return false;
1685     }
1686     return true;
1687   }
1688 
1689   return false;
1690 }
1691 
1692 template <class Emitter>
1693 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1694   const Expr *LHS = E->getLHS();
1695   const Expr *RHS = E->getRHS();
1696   const Expr *Index = E->getIdx();
1697 
1698   if (DiscardResult)
1699     return this->discard(LHS) && this->discard(RHS);
1700 
1701   // C++17's rules require us to evaluate the LHS first, regardless of which
1702   // side is the base.
1703   bool Success = true;
1704   for (const Expr *SubExpr : {LHS, RHS}) {
1705     if (!this->visit(SubExpr))
1706       Success = false;
1707   }
1708 
1709   if (!Success)
1710     return false;
1711 
1712   PrimType IndexT = classifyPrim(Index->getType());
1713   // If the index is first, we need to change that.
1714   if (LHS == Index) {
1715     if (!this->emitFlip(PT_Ptr, IndexT, E))
1716       return false;
1717   }
1718 
1719   return this->emitArrayElemPtrPop(IndexT, E);
1720 }
1721 
1722 template <class Emitter>
1723 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
1724                                       const Expr *ArrayFiller, const Expr *E) {
1725   QualType QT = E->getType();
1726   if (const auto *AT = QT->getAs<AtomicType>())
1727     QT = AT->getValueType();
1728 
1729   if (QT->isVoidType()) {
1730     if (Inits.size() == 0)
1731       return true;
1732     return this->emitInvalid(E);
1733   }
1734 
1735   // Handle discarding first.
1736   if (DiscardResult) {
1737     for (const Expr *Init : Inits) {
1738       if (!this->discard(Init))
1739         return false;
1740     }
1741     return true;
1742   }
1743 
1744   // Primitive values.
1745   if (std::optional<PrimType> T = classify(QT)) {
1746     assert(!DiscardResult);
1747     if (Inits.size() == 0)
1748       return this->visitZeroInitializer(*T, QT, E);
1749     assert(Inits.size() == 1);
1750     return this->delegate(Inits[0]);
1751   }
1752 
1753   if (QT->isRecordType()) {
1754     const Record *R = getRecord(QT);
1755 
1756     if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
1757       return this->delegate(Inits[0]);
1758 
1759     auto initPrimitiveField = [=](const Record::Field *FieldToInit,
1760                                   const Expr *Init, PrimType T) -> bool {
1761       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1762       if (!this->visit(Init))
1763         return false;
1764 
1765       if (FieldToInit->isBitField())
1766         return this->emitInitBitField(T, FieldToInit, E);
1767       return this->emitInitField(T, FieldToInit->Offset, E);
1768     };
1769 
1770     auto initCompositeField = [=](const Record::Field *FieldToInit,
1771                                   const Expr *Init) -> bool {
1772       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1773       InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
1774       // Non-primitive case. Get a pointer to the field-to-initialize
1775       // on the stack and recurse into visitInitializer().
1776       if (!this->emitGetPtrField(FieldToInit->Offset, Init))
1777         return false;
1778       if (!this->visitInitializer(Init))
1779         return false;
1780       return this->emitPopPtr(E);
1781     };
1782 
1783     if (R->isUnion()) {
1784       if (Inits.size() == 0) {
1785         if (!this->visitZeroRecordInitializer(R, E))
1786           return false;
1787       } else {
1788         const Expr *Init = Inits[0];
1789         const FieldDecl *FToInit = nullptr;
1790         if (const auto *ILE = dyn_cast<InitListExpr>(E))
1791           FToInit = ILE->getInitializedFieldInUnion();
1792         else
1793           FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
1794 
1795         const Record::Field *FieldToInit = R->getField(FToInit);
1796         if (std::optional<PrimType> T = classify(Init)) {
1797           if (!initPrimitiveField(FieldToInit, Init, *T))
1798             return false;
1799         } else {
1800           if (!initCompositeField(FieldToInit, Init))
1801             return false;
1802         }
1803       }
1804       return this->emitFinishInit(E);
1805     }
1806 
1807     assert(!R->isUnion());
1808     unsigned InitIndex = 0;
1809     for (const Expr *Init : Inits) {
1810       // Skip unnamed bitfields.
1811       while (InitIndex < R->getNumFields() &&
1812              R->getField(InitIndex)->Decl->isUnnamedBitField())
1813         ++InitIndex;
1814 
1815       if (std::optional<PrimType> T = classify(Init)) {
1816         const Record::Field *FieldToInit = R->getField(InitIndex);
1817         if (!initPrimitiveField(FieldToInit, Init, *T))
1818           return false;
1819         ++InitIndex;
1820       } else {
1821         // Initializer for a direct base class.
1822         if (const Record::Base *B = R->getBase(Init->getType())) {
1823           if (!this->emitGetPtrBase(B->Offset, Init))
1824             return false;
1825 
1826           if (!this->visitInitializer(Init))
1827             return false;
1828 
1829           if (!this->emitFinishInitPop(E))
1830             return false;
1831           // Base initializers don't increase InitIndex, since they don't count
1832           // into the Record's fields.
1833         } else {
1834           const Record::Field *FieldToInit = R->getField(InitIndex);
1835           if (!initCompositeField(FieldToInit, Init))
1836             return false;
1837           ++InitIndex;
1838         }
1839       }
1840     }
1841     return this->emitFinishInit(E);
1842   }
1843 
1844   if (QT->isArrayType()) {
1845     if (Inits.size() == 1 && QT == Inits[0]->getType())
1846       return this->delegate(Inits[0]);
1847 
1848     unsigned ElementIndex = 0;
1849     for (const Expr *Init : Inits) {
1850       if (const auto *EmbedS =
1851               dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1852         PrimType TargetT = classifyPrim(Init->getType());
1853 
1854         auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
1855           PrimType InitT = classifyPrim(Init->getType());
1856           if (!this->visit(Init))
1857             return false;
1858           if (InitT != TargetT) {
1859             if (!this->emitCast(InitT, TargetT, E))
1860               return false;
1861           }
1862           return this->emitInitElem(TargetT, ElemIndex, Init);
1863         };
1864         if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
1865           return false;
1866       } else {
1867         if (!this->visitArrayElemInit(ElementIndex, Init))
1868           return false;
1869         ++ElementIndex;
1870       }
1871     }
1872 
1873     // Expand the filler expression.
1874     // FIXME: This should go away.
1875     if (ArrayFiller) {
1876       const ConstantArrayType *CAT =
1877           Ctx.getASTContext().getAsConstantArrayType(QT);
1878       uint64_t NumElems = CAT->getZExtSize();
1879 
1880       for (; ElementIndex != NumElems; ++ElementIndex) {
1881         if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
1882           return false;
1883       }
1884     }
1885 
1886     return this->emitFinishInit(E);
1887   }
1888 
1889   if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
1890     unsigned NumInits = Inits.size();
1891 
1892     if (NumInits == 1)
1893       return this->delegate(Inits[0]);
1894 
1895     QualType ElemQT = ComplexTy->getElementType();
1896     PrimType ElemT = classifyPrim(ElemQT);
1897     if (NumInits == 0) {
1898       // Zero-initialize both elements.
1899       for (unsigned I = 0; I < 2; ++I) {
1900         if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1901           return false;
1902         if (!this->emitInitElem(ElemT, I, E))
1903           return false;
1904       }
1905     } else if (NumInits == 2) {
1906       unsigned InitIndex = 0;
1907       for (const Expr *Init : Inits) {
1908         if (!this->visit(Init))
1909           return false;
1910 
1911         if (!this->emitInitElem(ElemT, InitIndex, E))
1912           return false;
1913         ++InitIndex;
1914       }
1915     }
1916     return true;
1917   }
1918 
1919   if (const auto *VecT = QT->getAs<VectorType>()) {
1920     unsigned NumVecElements = VecT->getNumElements();
1921     assert(NumVecElements >= Inits.size());
1922 
1923     QualType ElemQT = VecT->getElementType();
1924     PrimType ElemT = classifyPrim(ElemQT);
1925 
1926     // All initializer elements.
1927     unsigned InitIndex = 0;
1928     for (const Expr *Init : Inits) {
1929       if (!this->visit(Init))
1930         return false;
1931 
1932       // If the initializer is of vector type itself, we have to deconstruct
1933       // that and initialize all the target fields from the initializer fields.
1934       if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
1935         if (!this->emitCopyArray(ElemT, 0, InitIndex,
1936                                  InitVecT->getNumElements(), E))
1937           return false;
1938         InitIndex += InitVecT->getNumElements();
1939       } else {
1940         if (!this->emitInitElem(ElemT, InitIndex, E))
1941           return false;
1942         ++InitIndex;
1943       }
1944     }
1945 
1946     assert(InitIndex <= NumVecElements);
1947 
1948     // Fill the rest with zeroes.
1949     for (; InitIndex != NumVecElements; ++InitIndex) {
1950       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1951         return false;
1952       if (!this->emitInitElem(ElemT, InitIndex, E))
1953         return false;
1954     }
1955     return true;
1956   }
1957 
1958   return false;
1959 }
1960 
1961 /// Pointer to the array(not the element!) must be on the stack when calling
1962 /// this.
1963 template <class Emitter>
1964 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
1965                                            const Expr *Init) {
1966   if (std::optional<PrimType> T = classify(Init->getType())) {
1967     // Visit the primitive element like normal.
1968     if (!this->visit(Init))
1969       return false;
1970     return this->emitInitElem(*T, ElemIndex, Init);
1971   }
1972 
1973   InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
1974   // Advance the pointer currently on the stack to the given
1975   // dimension.
1976   if (!this->emitConstUint32(ElemIndex, Init))
1977     return false;
1978   if (!this->emitArrayElemPtrUint32(Init))
1979     return false;
1980   if (!this->visitInitializer(Init))
1981     return false;
1982   return this->emitFinishInitPop(Init);
1983 }
1984 
1985 template <class Emitter>
1986 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
1987   return this->visitInitList(E->inits(), E->getArrayFiller(), E);
1988 }
1989 
1990 template <class Emitter>
1991 bool Compiler<Emitter>::VisitCXXParenListInitExpr(
1992     const CXXParenListInitExpr *E) {
1993   return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
1994 }
1995 
1996 template <class Emitter>
1997 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
1998     const SubstNonTypeTemplateParmExpr *E) {
1999   return this->delegate(E->getReplacement());
2000 }
2001 
2002 template <class Emitter>
2003 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
2004   std::optional<PrimType> T = classify(E->getType());
2005   if (T && E->hasAPValueResult()) {
2006     // Try to emit the APValue directly, without visiting the subexpr.
2007     // This will only fail if we can't emit the APValue, so won't emit any
2008     // diagnostics or any double values.
2009     if (DiscardResult)
2010       return true;
2011 
2012     if (this->visitAPValue(E->getAPValueResult(), *T, E))
2013       return true;
2014   }
2015   return this->delegate(E->getSubExpr());
2016 }
2017 
2018 template <class Emitter>
2019 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
2020   auto It = E->begin();
2021   return this->visit(*It);
2022 }
2023 
2024 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
2025                              UnaryExprOrTypeTrait Kind) {
2026   bool AlignOfReturnsPreferred =
2027       ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
2028 
2029   // C++ [expr.alignof]p3:
2030   //     When alignof is applied to a reference type, the result is the
2031   //     alignment of the referenced type.
2032   if (const auto *Ref = T->getAs<ReferenceType>())
2033     T = Ref->getPointeeType();
2034 
2035   if (T.getQualifiers().hasUnaligned())
2036     return CharUnits::One();
2037 
2038   // __alignof is defined to return the preferred alignment.
2039   // Before 8, clang returned the preferred alignment for alignof and
2040   // _Alignof as well.
2041   if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
2042     return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
2043 
2044   return ASTCtx.getTypeAlignInChars(T);
2045 }
2046 
2047 template <class Emitter>
2048 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
2049     const UnaryExprOrTypeTraitExpr *E) {
2050   UnaryExprOrTypeTrait Kind = E->getKind();
2051   const ASTContext &ASTCtx = Ctx.getASTContext();
2052 
2053   if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
2054     QualType ArgType = E->getTypeOfArgument();
2055 
2056     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2057     //   the result is the size of the referenced type."
2058     if (const auto *Ref = ArgType->getAs<ReferenceType>())
2059       ArgType = Ref->getPointeeType();
2060 
2061     CharUnits Size;
2062     if (ArgType->isVoidType() || ArgType->isFunctionType())
2063       Size = CharUnits::One();
2064     else {
2065       if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
2066         return false;
2067 
2068       if (Kind == UETT_SizeOf)
2069         Size = ASTCtx.getTypeSizeInChars(ArgType);
2070       else
2071         Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
2072     }
2073 
2074     if (DiscardResult)
2075       return true;
2076 
2077     return this->emitConst(Size.getQuantity(), E);
2078   }
2079 
2080   if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
2081     CharUnits Size;
2082 
2083     if (E->isArgumentType()) {
2084       QualType ArgType = E->getTypeOfArgument();
2085 
2086       Size = AlignOfType(ArgType, ASTCtx, Kind);
2087     } else {
2088       // Argument is an expression, not a type.
2089       const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
2090 
2091       // The kinds of expressions that we have special-case logic here for
2092       // should be kept up to date with the special checks for those
2093       // expressions in Sema.
2094 
2095       // alignof decl is always accepted, even if it doesn't make sense: we
2096       // default to 1 in those cases.
2097       if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
2098         Size = ASTCtx.getDeclAlign(DRE->getDecl(),
2099                                    /*RefAsPointee*/ true);
2100       else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
2101         Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
2102                                    /*RefAsPointee*/ true);
2103       else
2104         Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
2105     }
2106 
2107     if (DiscardResult)
2108       return true;
2109 
2110     return this->emitConst(Size.getQuantity(), E);
2111   }
2112 
2113   if (Kind == UETT_VectorElements) {
2114     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
2115       return this->emitConst(VT->getNumElements(), E);
2116     assert(E->getTypeOfArgument()->isSizelessVectorType());
2117     return this->emitSizelessVectorElementSize(E);
2118   }
2119 
2120   if (Kind == UETT_VecStep) {
2121     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
2122       unsigned N = VT->getNumElements();
2123 
2124       // The vec_step built-in functions that take a 3-component
2125       // vector return 4. (OpenCL 1.1 spec 6.11.12)
2126       if (N == 3)
2127         N = 4;
2128 
2129       return this->emitConst(N, E);
2130     }
2131     return this->emitConst(1, E);
2132   }
2133 
2134   if (Kind == UETT_OpenMPRequiredSimdAlign) {
2135     assert(E->isArgumentType());
2136     unsigned Bits = ASTCtx.getOpenMPDefaultSimdAlign(E->getArgumentType());
2137 
2138     return this->emitConst(ASTCtx.toCharUnitsFromBits(Bits).getQuantity(), E);
2139   }
2140 
2141   return false;
2142 }
2143 
2144 template <class Emitter>
2145 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
2146   // 'Base.Member'
2147   const Expr *Base = E->getBase();
2148   const ValueDecl *Member = E->getMemberDecl();
2149 
2150   if (DiscardResult)
2151     return this->discard(Base);
2152 
2153   // MemberExprs are almost always lvalues, in which case we don't need to
2154   // do the load. But sometimes they aren't.
2155   const auto maybeLoadValue = [&]() -> bool {
2156     if (E->isGLValue())
2157       return true;
2158     if (std::optional<PrimType> T = classify(E))
2159       return this->emitLoadPop(*T, E);
2160     return false;
2161   };
2162 
2163   if (const auto *VD = dyn_cast<VarDecl>(Member)) {
2164     // I am almost confident in saying that a var decl must be static
2165     // and therefore registered as a global variable. But this will probably
2166     // turn out to be wrong some time in the future, as always.
2167     if (auto GlobalIndex = P.getGlobal(VD))
2168       return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
2169     return false;
2170   }
2171 
2172   if (!isa<FieldDecl>(Member)) {
2173     if (!this->discard(Base) && !this->emitSideEffect(E))
2174       return false;
2175 
2176     return this->visitDeclRef(Member, E);
2177   }
2178 
2179   if (Initializing) {
2180     if (!this->delegate(Base))
2181       return false;
2182   } else {
2183     if (!this->visit(Base))
2184       return false;
2185   }
2186 
2187   // Base above gives us a pointer on the stack.
2188   const auto *FD = cast<FieldDecl>(Member);
2189   const RecordDecl *RD = FD->getParent();
2190   const Record *R = getRecord(RD);
2191   if (!R)
2192     return false;
2193   const Record::Field *F = R->getField(FD);
2194   // Leave a pointer to the field on the stack.
2195   if (F->Decl->getType()->isReferenceType())
2196     return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
2197   return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
2198 }
2199 
2200 template <class Emitter>
2201 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
2202   // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
2203   // stand-alone, e.g. via EvaluateAsInt().
2204   if (!ArrayIndex)
2205     return false;
2206   return this->emitConst(*ArrayIndex, E);
2207 }
2208 
2209 template <class Emitter>
2210 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
2211   assert(Initializing);
2212   assert(!DiscardResult);
2213 
2214   // We visit the common opaque expression here once so we have its value
2215   // cached.
2216   if (!this->discard(E->getCommonExpr()))
2217     return false;
2218 
2219   // TODO: This compiles to quite a lot of bytecode if the array is larger.
2220   //   Investigate compiling this to a loop.
2221   const Expr *SubExpr = E->getSubExpr();
2222   size_t Size = E->getArraySize().getZExtValue();
2223 
2224   // So, every iteration, we execute an assignment here
2225   // where the LHS is on the stack (the target array)
2226   // and the RHS is our SubExpr.
2227   for (size_t I = 0; I != Size; ++I) {
2228     ArrayIndexScope<Emitter> IndexScope(this, I);
2229     BlockScope<Emitter> BS(this);
2230 
2231     if (!this->visitArrayElemInit(I, SubExpr))
2232       return false;
2233     if (!BS.destroyLocals())
2234       return false;
2235   }
2236   return true;
2237 }
2238 
2239 template <class Emitter>
2240 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2241   const Expr *SourceExpr = E->getSourceExpr();
2242   if (!SourceExpr)
2243     return false;
2244 
2245   if (Initializing)
2246     return this->visitInitializer(SourceExpr);
2247 
2248   PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
2249   if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
2250     return this->emitGetLocal(SubExprT, It->second, E);
2251 
2252   if (!this->visit(SourceExpr))
2253     return false;
2254 
2255   // At this point we either have the evaluated source expression or a pointer
2256   // to an object on the stack. We want to create a local variable that stores
2257   // this value.
2258   unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
2259   if (!this->emitSetLocal(SubExprT, LocalIndex, E))
2260     return false;
2261 
2262   // Here the local variable is created but the value is removed from the stack,
2263   // so we put it back if the caller needs it.
2264   if (!DiscardResult) {
2265     if (!this->emitGetLocal(SubExprT, LocalIndex, E))
2266       return false;
2267   }
2268 
2269   // This is cleaned up when the local variable is destroyed.
2270   OpaqueExprs.insert({E, LocalIndex});
2271 
2272   return true;
2273 }
2274 
2275 template <class Emitter>
2276 bool Compiler<Emitter>::VisitAbstractConditionalOperator(
2277     const AbstractConditionalOperator *E) {
2278   const Expr *Condition = E->getCond();
2279   const Expr *TrueExpr = E->getTrueExpr();
2280   const Expr *FalseExpr = E->getFalseExpr();
2281 
2282   LabelTy LabelEnd = this->getLabel();   // Label after the operator.
2283   LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
2284 
2285   if (!this->visitBool(Condition))
2286     return false;
2287 
2288   if (!this->jumpFalse(LabelFalse))
2289     return false;
2290 
2291   {
2292     LocalScope<Emitter> S(this);
2293     if (!this->delegate(TrueExpr))
2294       return false;
2295     if (!S.destroyLocals())
2296       return false;
2297   }
2298 
2299   if (!this->jump(LabelEnd))
2300     return false;
2301 
2302   this->emitLabel(LabelFalse);
2303 
2304   {
2305     LocalScope<Emitter> S(this);
2306     if (!this->delegate(FalseExpr))
2307       return false;
2308     if (!S.destroyLocals())
2309       return false;
2310   }
2311 
2312   this->fallthrough(LabelEnd);
2313   this->emitLabel(LabelEnd);
2314 
2315   return true;
2316 }
2317 
2318 template <class Emitter>
2319 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
2320   if (DiscardResult)
2321     return true;
2322 
2323   if (!Initializing) {
2324     unsigned StringIndex = P.createGlobalString(E);
2325     return this->emitGetPtrGlobal(StringIndex, E);
2326   }
2327 
2328   // We are initializing an array on the stack.
2329   const ConstantArrayType *CAT =
2330       Ctx.getASTContext().getAsConstantArrayType(E->getType());
2331   assert(CAT && "a string literal that's not a constant array?");
2332 
2333   // If the initializer string is too long, a diagnostic has already been
2334   // emitted. Read only the array length from the string literal.
2335   unsigned ArraySize = CAT->getZExtSize();
2336   unsigned N = std::min(ArraySize, E->getLength());
2337   size_t CharWidth = E->getCharByteWidth();
2338 
2339   for (unsigned I = 0; I != N; ++I) {
2340     uint32_t CodeUnit = E->getCodeUnit(I);
2341 
2342     if (CharWidth == 1) {
2343       this->emitConstSint8(CodeUnit, E);
2344       this->emitInitElemSint8(I, E);
2345     } else if (CharWidth == 2) {
2346       this->emitConstUint16(CodeUnit, E);
2347       this->emitInitElemUint16(I, E);
2348     } else if (CharWidth == 4) {
2349       this->emitConstUint32(CodeUnit, E);
2350       this->emitInitElemUint32(I, E);
2351     } else {
2352       llvm_unreachable("unsupported character width");
2353     }
2354   }
2355 
2356   // Fill up the rest of the char array with NUL bytes.
2357   for (unsigned I = N; I != ArraySize; ++I) {
2358     if (CharWidth == 1) {
2359       this->emitConstSint8(0, E);
2360       this->emitInitElemSint8(I, E);
2361     } else if (CharWidth == 2) {
2362       this->emitConstUint16(0, E);
2363       this->emitInitElemUint16(I, E);
2364     } else if (CharWidth == 4) {
2365       this->emitConstUint32(0, E);
2366       this->emitInitElemUint32(I, E);
2367     } else {
2368       llvm_unreachable("unsupported character width");
2369     }
2370   }
2371 
2372   return true;
2373 }
2374 
2375 template <class Emitter>
2376 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2377   if (DiscardResult)
2378     return true;
2379   return this->emitDummyPtr(E, E);
2380 }
2381 
2382 template <class Emitter>
2383 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2384   auto &A = Ctx.getASTContext();
2385   std::string Str;
2386   A.getObjCEncodingForType(E->getEncodedType(), Str);
2387   StringLiteral *SL =
2388       StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
2389                             /*Pascal=*/false, E->getType(), E->getAtLoc());
2390   return this->delegate(SL);
2391 }
2392 
2393 template <class Emitter>
2394 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
2395     const SYCLUniqueStableNameExpr *E) {
2396   if (DiscardResult)
2397     return true;
2398 
2399   assert(!Initializing);
2400 
2401   auto &A = Ctx.getASTContext();
2402   std::string ResultStr = E->ComputeName(A);
2403 
2404   QualType CharTy = A.CharTy.withConst();
2405   APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
2406   QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
2407                                             ArraySizeModifier::Normal, 0);
2408 
2409   StringLiteral *SL =
2410       StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
2411                             /*Pascal=*/false, ArrayTy, E->getLocation());
2412 
2413   unsigned StringIndex = P.createGlobalString(SL);
2414   return this->emitGetPtrGlobal(StringIndex, E);
2415 }
2416 
2417 template <class Emitter>
2418 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
2419   if (DiscardResult)
2420     return true;
2421   return this->emitConst(E->getValue(), E);
2422 }
2423 
2424 template <class Emitter>
2425 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
2426     const CompoundAssignOperator *E) {
2427 
2428   const Expr *LHS = E->getLHS();
2429   const Expr *RHS = E->getRHS();
2430   QualType LHSType = LHS->getType();
2431   QualType LHSComputationType = E->getComputationLHSType();
2432   QualType ResultType = E->getComputationResultType();
2433   std::optional<PrimType> LT = classify(LHSComputationType);
2434   std::optional<PrimType> RT = classify(ResultType);
2435 
2436   assert(ResultType->isFloatingType());
2437 
2438   if (!LT || !RT)
2439     return false;
2440 
2441   PrimType LHST = classifyPrim(LHSType);
2442 
2443   // C++17 onwards require that we evaluate the RHS first.
2444   // Compute RHS and save it in a temporary variable so we can
2445   // load it again later.
2446   if (!visit(RHS))
2447     return false;
2448 
2449   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2450   if (!this->emitSetLocal(*RT, TempOffset, E))
2451     return false;
2452 
2453   // First, visit LHS.
2454   if (!visit(LHS))
2455     return false;
2456   if (!this->emitLoad(LHST, E))
2457     return false;
2458 
2459   // If necessary, convert LHS to its computation type.
2460   if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
2461                           LHSComputationType, E))
2462     return false;
2463 
2464   // Now load RHS.
2465   if (!this->emitGetLocal(*RT, TempOffset, E))
2466     return false;
2467 
2468   switch (E->getOpcode()) {
2469   case BO_AddAssign:
2470     if (!this->emitAddf(getFPOptions(E), E))
2471       return false;
2472     break;
2473   case BO_SubAssign:
2474     if (!this->emitSubf(getFPOptions(E), E))
2475       return false;
2476     break;
2477   case BO_MulAssign:
2478     if (!this->emitMulf(getFPOptions(E), E))
2479       return false;
2480     break;
2481   case BO_DivAssign:
2482     if (!this->emitDivf(getFPOptions(E), E))
2483       return false;
2484     break;
2485   default:
2486     return false;
2487   }
2488 
2489   if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
2490     return false;
2491 
2492   if (DiscardResult)
2493     return this->emitStorePop(LHST, E);
2494   return this->emitStore(LHST, E);
2495 }
2496 
2497 template <class Emitter>
2498 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
2499     const CompoundAssignOperator *E) {
2500   BinaryOperatorKind Op = E->getOpcode();
2501   const Expr *LHS = E->getLHS();
2502   const Expr *RHS = E->getRHS();
2503   std::optional<PrimType> LT = classify(LHS->getType());
2504   std::optional<PrimType> RT = classify(RHS->getType());
2505 
2506   if (Op != BO_AddAssign && Op != BO_SubAssign)
2507     return false;
2508 
2509   if (!LT || !RT)
2510     return false;
2511 
2512   if (!visit(LHS))
2513     return false;
2514 
2515   if (!this->emitLoad(*LT, LHS))
2516     return false;
2517 
2518   if (!visit(RHS))
2519     return false;
2520 
2521   if (Op == BO_AddAssign) {
2522     if (!this->emitAddOffset(*RT, E))
2523       return false;
2524   } else {
2525     if (!this->emitSubOffset(*RT, E))
2526       return false;
2527   }
2528 
2529   if (DiscardResult)
2530     return this->emitStorePopPtr(E);
2531   return this->emitStorePtr(E);
2532 }
2533 
2534 template <class Emitter>
2535 bool Compiler<Emitter>::VisitCompoundAssignOperator(
2536     const CompoundAssignOperator *E) {
2537   if (E->getType()->isVectorType())
2538     return VisitVectorBinOp(E);
2539 
2540   const Expr *LHS = E->getLHS();
2541   const Expr *RHS = E->getRHS();
2542   std::optional<PrimType> LHSComputationT =
2543       classify(E->getComputationLHSType());
2544   std::optional<PrimType> LT = classify(LHS->getType());
2545   std::optional<PrimType> RT = classify(RHS->getType());
2546   std::optional<PrimType> ResultT = classify(E->getType());
2547 
2548   if (!Ctx.getLangOpts().CPlusPlus14)
2549     return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
2550 
2551   if (!LT || !RT || !ResultT || !LHSComputationT)
2552     return false;
2553 
2554   // Handle floating point operations separately here, since they
2555   // require special care.
2556 
2557   if (ResultT == PT_Float || RT == PT_Float)
2558     return VisitFloatCompoundAssignOperator(E);
2559 
2560   if (E->getType()->isPointerType())
2561     return VisitPointerCompoundAssignOperator(E);
2562 
2563   assert(!E->getType()->isPointerType() && "Handled above");
2564   assert(!E->getType()->isFloatingType() && "Handled above");
2565 
2566   // C++17 onwards require that we evaluate the RHS first.
2567   // Compute RHS and save it in a temporary variable so we can
2568   // load it again later.
2569   // FIXME: Compound assignments are unsequenced in C, so we might
2570   //   have to figure out how to reject them.
2571   if (!visit(RHS))
2572     return false;
2573 
2574   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2575 
2576   if (!this->emitSetLocal(*RT, TempOffset, E))
2577     return false;
2578 
2579   // Get LHS pointer, load its value and cast it to the
2580   // computation type if necessary.
2581   if (!visit(LHS))
2582     return false;
2583   if (!this->emitLoad(*LT, E))
2584     return false;
2585   if (LT != LHSComputationT) {
2586     if (!this->emitCast(*LT, *LHSComputationT, E))
2587       return false;
2588   }
2589 
2590   // Get the RHS value on the stack.
2591   if (!this->emitGetLocal(*RT, TempOffset, E))
2592     return false;
2593 
2594   // Perform operation.
2595   switch (E->getOpcode()) {
2596   case BO_AddAssign:
2597     if (!this->emitAdd(*LHSComputationT, E))
2598       return false;
2599     break;
2600   case BO_SubAssign:
2601     if (!this->emitSub(*LHSComputationT, E))
2602       return false;
2603     break;
2604   case BO_MulAssign:
2605     if (!this->emitMul(*LHSComputationT, E))
2606       return false;
2607     break;
2608   case BO_DivAssign:
2609     if (!this->emitDiv(*LHSComputationT, E))
2610       return false;
2611     break;
2612   case BO_RemAssign:
2613     if (!this->emitRem(*LHSComputationT, E))
2614       return false;
2615     break;
2616   case BO_ShlAssign:
2617     if (!this->emitShl(*LHSComputationT, *RT, E))
2618       return false;
2619     break;
2620   case BO_ShrAssign:
2621     if (!this->emitShr(*LHSComputationT, *RT, E))
2622       return false;
2623     break;
2624   case BO_AndAssign:
2625     if (!this->emitBitAnd(*LHSComputationT, E))
2626       return false;
2627     break;
2628   case BO_XorAssign:
2629     if (!this->emitBitXor(*LHSComputationT, E))
2630       return false;
2631     break;
2632   case BO_OrAssign:
2633     if (!this->emitBitOr(*LHSComputationT, E))
2634       return false;
2635     break;
2636   default:
2637     llvm_unreachable("Unimplemented compound assign operator");
2638   }
2639 
2640   // And now cast from LHSComputationT to ResultT.
2641   if (ResultT != LHSComputationT) {
2642     if (!this->emitCast(*LHSComputationT, *ResultT, E))
2643       return false;
2644   }
2645 
2646   // And store the result in LHS.
2647   if (DiscardResult) {
2648     if (LHS->refersToBitField())
2649       return this->emitStoreBitFieldPop(*ResultT, E);
2650     return this->emitStorePop(*ResultT, E);
2651   }
2652   if (LHS->refersToBitField())
2653     return this->emitStoreBitField(*ResultT, E);
2654   return this->emitStore(*ResultT, E);
2655 }
2656 
2657 template <class Emitter>
2658 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
2659   LocalScope<Emitter> ES(this);
2660   const Expr *SubExpr = E->getSubExpr();
2661 
2662   return this->delegate(SubExpr) && ES.destroyLocals(E);
2663 }
2664 
2665 template <class Emitter>
2666 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
2667     const MaterializeTemporaryExpr *E) {
2668   const Expr *SubExpr = E->getSubExpr();
2669 
2670   if (Initializing) {
2671     // We already have a value, just initialize that.
2672     return this->delegate(SubExpr);
2673   }
2674   // If we don't end up using the materialized temporary anyway, don't
2675   // bother creating it.
2676   if (DiscardResult)
2677     return this->discard(SubExpr);
2678 
2679   // When we're initializing a global variable *or* the storage duration of
2680   // the temporary is explicitly static, create a global variable.
2681   std::optional<PrimType> SubExprT = classify(SubExpr);
2682   bool IsStatic = E->getStorageDuration() == SD_Static;
2683   if (IsStatic) {
2684     std::optional<unsigned> GlobalIndex = P.createGlobal(E);
2685     if (!GlobalIndex)
2686       return false;
2687 
2688     const LifetimeExtendedTemporaryDecl *TempDecl =
2689         E->getLifetimeExtendedTemporaryDecl();
2690     if (IsStatic)
2691       assert(TempDecl);
2692 
2693     if (SubExprT) {
2694       if (!this->visit(SubExpr))
2695         return false;
2696       if (IsStatic) {
2697         if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
2698           return false;
2699       } else {
2700         if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
2701           return false;
2702       }
2703       return this->emitGetPtrGlobal(*GlobalIndex, E);
2704     }
2705 
2706     if (!this->checkLiteralType(SubExpr))
2707       return false;
2708     // Non-primitive values.
2709     if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2710       return false;
2711     if (!this->visitInitializer(SubExpr))
2712       return false;
2713     if (IsStatic)
2714       return this->emitInitGlobalTempComp(TempDecl, E);
2715     return true;
2716   }
2717 
2718   // For everyhing else, use local variables.
2719   if (SubExprT) {
2720     unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true,
2721                                                  /*IsExtended=*/true);
2722     if (!this->visit(SubExpr))
2723       return false;
2724     if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
2725       return false;
2726     return this->emitGetPtrLocal(LocalIndex, E);
2727   } else {
2728 
2729     if (!this->checkLiteralType(SubExpr))
2730       return false;
2731 
2732     const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2733     if (std::optional<unsigned> LocalIndex =
2734             allocateLocal(E, Inner->getType(), E->getExtendingDecl())) {
2735       InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
2736       if (!this->emitGetPtrLocal(*LocalIndex, E))
2737         return false;
2738       return this->visitInitializer(SubExpr) && this->emitFinishInit(E);
2739     }
2740   }
2741   return false;
2742 }
2743 
2744 template <class Emitter>
2745 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
2746     const CXXBindTemporaryExpr *E) {
2747   return this->delegate(E->getSubExpr());
2748 }
2749 
2750 template <class Emitter>
2751 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2752   const Expr *Init = E->getInitializer();
2753   if (DiscardResult)
2754     return this->discard(Init);
2755 
2756   if (Initializing) {
2757     // We already have a value, just initialize that.
2758     return this->visitInitializer(Init) && this->emitFinishInit(E);
2759   }
2760 
2761   std::optional<PrimType> T = classify(E->getType());
2762   if (E->isFileScope()) {
2763     // Avoid creating a variable if this is a primitive RValue anyway.
2764     if (T && !E->isLValue())
2765       return this->delegate(Init);
2766 
2767     if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
2768       if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2769         return false;
2770 
2771       if (T) {
2772         if (!this->visit(Init))
2773           return false;
2774         return this->emitInitGlobal(*T, *GlobalIndex, E);
2775       }
2776 
2777       return this->visitInitializer(Init) && this->emitFinishInit(E);
2778     }
2779 
2780     return false;
2781   }
2782 
2783   // Otherwise, use a local variable.
2784   if (T && !E->isLValue()) {
2785     // For primitive types, we just visit the initializer.
2786     return this->delegate(Init);
2787   } else {
2788     unsigned LocalIndex;
2789 
2790     if (T)
2791       LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
2792     else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
2793       LocalIndex = *MaybeIndex;
2794     else
2795       return false;
2796 
2797     if (!this->emitGetPtrLocal(LocalIndex, E))
2798       return false;
2799 
2800     if (T) {
2801       if (!this->visit(Init)) {
2802         return false;
2803       }
2804       return this->emitInit(*T, E);
2805     } else {
2806       if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
2807         return false;
2808     }
2809     return true;
2810   }
2811 
2812   return false;
2813 }
2814 
2815 template <class Emitter>
2816 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
2817   if (DiscardResult)
2818     return true;
2819   if (E->getType()->isBooleanType())
2820     return this->emitConstBool(E->getValue(), E);
2821   return this->emitConst(E->getValue(), E);
2822 }
2823 
2824 template <class Emitter>
2825 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
2826   if (DiscardResult)
2827     return true;
2828   return this->emitConst(E->getValue(), E);
2829 }
2830 
2831 template <class Emitter>
2832 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
2833   if (DiscardResult)
2834     return true;
2835 
2836   assert(Initializing);
2837   const Record *R = P.getOrCreateRecord(E->getLambdaClass());
2838 
2839   auto *CaptureInitIt = E->capture_init_begin();
2840   // Initialize all fields (which represent lambda captures) of the
2841   // record with their initializers.
2842   for (const Record::Field &F : R->fields()) {
2843     const Expr *Init = *CaptureInitIt;
2844     ++CaptureInitIt;
2845 
2846     if (!Init)
2847       continue;
2848 
2849     if (std::optional<PrimType> T = classify(Init)) {
2850       if (!this->visit(Init))
2851         return false;
2852 
2853       if (!this->emitInitField(*T, F.Offset, E))
2854         return false;
2855     } else {
2856       if (!this->emitGetPtrField(F.Offset, E))
2857         return false;
2858 
2859       if (!this->visitInitializer(Init))
2860         return false;
2861 
2862       if (!this->emitPopPtr(E))
2863         return false;
2864     }
2865   }
2866 
2867   return true;
2868 }
2869 
2870 template <class Emitter>
2871 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
2872   if (DiscardResult)
2873     return true;
2874 
2875   if (!Initializing) {
2876     unsigned StringIndex = P.createGlobalString(E->getFunctionName(), E);
2877     return this->emitGetPtrGlobal(StringIndex, E);
2878   }
2879 
2880   return this->delegate(E->getFunctionName());
2881 }
2882 
2883 template <class Emitter>
2884 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
2885   if (E->getSubExpr() && !this->discard(E->getSubExpr()))
2886     return false;
2887 
2888   return this->emitInvalid(E);
2889 }
2890 
2891 template <class Emitter>
2892 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
2893     const CXXReinterpretCastExpr *E) {
2894   const Expr *SubExpr = E->getSubExpr();
2895 
2896   std::optional<PrimType> FromT = classify(SubExpr);
2897   std::optional<PrimType> ToT = classify(E);
2898 
2899   if (!FromT || !ToT)
2900     return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E);
2901 
2902   if (FromT == PT_Ptr || ToT == PT_Ptr) {
2903     // Both types could be PT_Ptr because their expressions are glvalues.
2904     std::optional<PrimType> PointeeFromT;
2905     if (SubExpr->getType()->isPointerOrReferenceType())
2906       PointeeFromT = classify(SubExpr->getType()->getPointeeType());
2907     else
2908       PointeeFromT = classify(SubExpr->getType());
2909 
2910     std::optional<PrimType> PointeeToT;
2911     if (E->getType()->isPointerOrReferenceType())
2912       PointeeToT = classify(E->getType()->getPointeeType());
2913     else
2914       PointeeToT = classify(E->getType());
2915 
2916     bool Fatal = true;
2917     if (PointeeToT && PointeeFromT) {
2918       if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT))
2919         Fatal = false;
2920     }
2921 
2922     if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2923       return false;
2924 
2925     if (E->getCastKind() == CK_LValueBitCast)
2926       return this->delegate(SubExpr);
2927     return this->VisitCastExpr(E);
2928   }
2929 
2930   // Try to actually do the cast.
2931   bool Fatal = (ToT != FromT);
2932   if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2933     return false;
2934 
2935   return this->VisitCastExpr(E);
2936 }
2937 
2938 template <class Emitter>
2939 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
2940   assert(E->getType()->isBooleanType());
2941 
2942   if (DiscardResult)
2943     return true;
2944   return this->emitConstBool(E->getValue(), E);
2945 }
2946 
2947 template <class Emitter>
2948 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
2949   QualType T = E->getType();
2950   assert(!classify(T));
2951 
2952   if (T->isRecordType()) {
2953     const CXXConstructorDecl *Ctor = E->getConstructor();
2954 
2955     // Trivial copy/move constructor. Avoid copy.
2956     if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
2957         Ctor->isTrivial() &&
2958         E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
2959                                         T->getAsCXXRecordDecl()))
2960       return this->visitInitializer(E->getArg(0));
2961 
2962     // If we're discarding a construct expression, we still need
2963     // to allocate a variable and call the constructor and destructor.
2964     if (DiscardResult) {
2965       if (Ctor->isTrivial())
2966         return true;
2967       assert(!Initializing);
2968       std::optional<unsigned> LocalIndex = allocateLocal(E);
2969 
2970       if (!LocalIndex)
2971         return false;
2972 
2973       if (!this->emitGetPtrLocal(*LocalIndex, E))
2974         return false;
2975     }
2976 
2977     // Zero initialization.
2978     if (E->requiresZeroInitialization()) {
2979       const Record *R = getRecord(E->getType());
2980 
2981       if (!this->visitZeroRecordInitializer(R, E))
2982         return false;
2983 
2984       // If the constructor is trivial anyway, we're done.
2985       if (Ctor->isTrivial())
2986         return true;
2987     }
2988 
2989     const Function *Func = getFunction(Ctor);
2990 
2991     if (!Func)
2992       return false;
2993 
2994     assert(Func->hasThisPointer());
2995     assert(!Func->hasRVO());
2996 
2997     //  The This pointer is already on the stack because this is an initializer,
2998     //  but we need to dup() so the call() below has its own copy.
2999     if (!this->emitDupPtr(E))
3000       return false;
3001 
3002     // Constructor arguments.
3003     for (const auto *Arg : E->arguments()) {
3004       if (!this->visit(Arg))
3005         return false;
3006     }
3007 
3008     if (Func->isVariadic()) {
3009       uint32_t VarArgSize = 0;
3010       unsigned NumParams = Func->getNumWrittenParams();
3011       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
3012         VarArgSize +=
3013             align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
3014       }
3015       if (!this->emitCallVar(Func, VarArgSize, E))
3016         return false;
3017     } else {
3018       if (!this->emitCall(Func, 0, E)) {
3019         // When discarding, we don't need the result anyway, so clean up
3020         // the instance dup we did earlier in case surrounding code wants
3021         // to keep evaluating.
3022         if (DiscardResult)
3023           (void)this->emitPopPtr(E);
3024         return false;
3025       }
3026     }
3027 
3028     if (DiscardResult)
3029       return this->emitPopPtr(E);
3030     return this->emitFinishInit(E);
3031   }
3032 
3033   if (T->isArrayType()) {
3034     const ConstantArrayType *CAT =
3035         Ctx.getASTContext().getAsConstantArrayType(E->getType());
3036     if (!CAT)
3037       return false;
3038 
3039     size_t NumElems = CAT->getZExtSize();
3040     const Function *Func = getFunction(E->getConstructor());
3041     if (!Func || !Func->isConstexpr())
3042       return false;
3043 
3044     // FIXME(perf): We're calling the constructor once per array element here,
3045     //   in the old intepreter we had a special-case for trivial constructors.
3046     for (size_t I = 0; I != NumElems; ++I) {
3047       if (!this->emitConstUint64(I, E))
3048         return false;
3049       if (!this->emitArrayElemPtrUint64(E))
3050         return false;
3051 
3052       // Constructor arguments.
3053       for (const auto *Arg : E->arguments()) {
3054         if (!this->visit(Arg))
3055           return false;
3056       }
3057 
3058       if (!this->emitCall(Func, 0, E))
3059         return false;
3060     }
3061     return true;
3062   }
3063 
3064   return false;
3065 }
3066 
3067 template <class Emitter>
3068 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
3069   if (DiscardResult)
3070     return true;
3071 
3072   const APValue Val =
3073       E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
3074 
3075   // Things like __builtin_LINE().
3076   if (E->getType()->isIntegerType()) {
3077     assert(Val.isInt());
3078     const APSInt &I = Val.getInt();
3079     return this->emitConst(I, E);
3080   }
3081   // Otherwise, the APValue is an LValue, with only one element.
3082   // Theoretically, we don't need the APValue at all of course.
3083   assert(E->getType()->isPointerType());
3084   assert(Val.isLValue());
3085   const APValue::LValueBase &Base = Val.getLValueBase();
3086   if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
3087     return this->visit(LValueExpr);
3088 
3089   // Otherwise, we have a decl (which is the case for
3090   // __builtin_source_location).
3091   assert(Base.is<const ValueDecl *>());
3092   assert(Val.getLValuePath().size() == 0);
3093   const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
3094   assert(BaseDecl);
3095 
3096   auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
3097 
3098   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
3099   if (!GlobalIndex)
3100     return false;
3101 
3102   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3103     return false;
3104 
3105   const Record *R = getRecord(E->getType());
3106   const APValue &V = UGCD->getValue();
3107   for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
3108     const Record::Field *F = R->getField(I);
3109     const APValue &FieldValue = V.getStructField(I);
3110 
3111     PrimType FieldT = classifyPrim(F->Decl->getType());
3112 
3113     if (!this->visitAPValue(FieldValue, FieldT, E))
3114       return false;
3115     if (!this->emitInitField(FieldT, F->Offset, E))
3116       return false;
3117   }
3118 
3119   // Leave the pointer to the global on the stack.
3120   return true;
3121 }
3122 
3123 template <class Emitter>
3124 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
3125   unsigned N = E->getNumComponents();
3126   if (N == 0)
3127     return false;
3128 
3129   for (unsigned I = 0; I != N; ++I) {
3130     const OffsetOfNode &Node = E->getComponent(I);
3131     if (Node.getKind() == OffsetOfNode::Array) {
3132       const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
3133       PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
3134 
3135       if (DiscardResult) {
3136         if (!this->discard(ArrayIndexExpr))
3137           return false;
3138         continue;
3139       }
3140 
3141       if (!this->visit(ArrayIndexExpr))
3142         return false;
3143       // Cast to Sint64.
3144       if (IndexT != PT_Sint64) {
3145         if (!this->emitCast(IndexT, PT_Sint64, E))
3146           return false;
3147       }
3148     }
3149   }
3150 
3151   if (DiscardResult)
3152     return true;
3153 
3154   PrimType T = classifyPrim(E->getType());
3155   return this->emitOffsetOf(T, E, E);
3156 }
3157 
3158 template <class Emitter>
3159 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
3160     const CXXScalarValueInitExpr *E) {
3161   QualType Ty = E->getType();
3162 
3163   if (DiscardResult || Ty->isVoidType())
3164     return true;
3165 
3166   if (std::optional<PrimType> T = classify(Ty))
3167     return this->visitZeroInitializer(*T, Ty, E);
3168 
3169   if (const auto *CT = Ty->getAs<ComplexType>()) {
3170     if (!Initializing) {
3171       std::optional<unsigned> LocalIndex = allocateLocal(E);
3172       if (!LocalIndex)
3173         return false;
3174       if (!this->emitGetPtrLocal(*LocalIndex, E))
3175         return false;
3176     }
3177 
3178     // Initialize both fields to 0.
3179     QualType ElemQT = CT->getElementType();
3180     PrimType ElemT = classifyPrim(ElemQT);
3181 
3182     for (unsigned I = 0; I != 2; ++I) {
3183       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3184         return false;
3185       if (!this->emitInitElem(ElemT, I, E))
3186         return false;
3187     }
3188     return true;
3189   }
3190 
3191   if (const auto *VT = Ty->getAs<VectorType>()) {
3192     // FIXME: Code duplication with the _Complex case above.
3193     if (!Initializing) {
3194       std::optional<unsigned> LocalIndex = allocateLocal(E);
3195       if (!LocalIndex)
3196         return false;
3197       if (!this->emitGetPtrLocal(*LocalIndex, E))
3198         return false;
3199     }
3200 
3201     // Initialize all fields to 0.
3202     QualType ElemQT = VT->getElementType();
3203     PrimType ElemT = classifyPrim(ElemQT);
3204 
3205     for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
3206       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3207         return false;
3208       if (!this->emitInitElem(ElemT, I, E))
3209         return false;
3210     }
3211     return true;
3212   }
3213 
3214   return false;
3215 }
3216 
3217 template <class Emitter>
3218 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
3219   return this->emitConst(E->getPackLength(), E);
3220 }
3221 
3222 template <class Emitter>
3223 bool Compiler<Emitter>::VisitGenericSelectionExpr(
3224     const GenericSelectionExpr *E) {
3225   return this->delegate(E->getResultExpr());
3226 }
3227 
3228 template <class Emitter>
3229 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
3230   return this->delegate(E->getChosenSubExpr());
3231 }
3232 
3233 template <class Emitter>
3234 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
3235   if (DiscardResult)
3236     return true;
3237 
3238   return this->emitConst(E->getValue(), E);
3239 }
3240 
3241 template <class Emitter>
3242 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
3243     const CXXInheritedCtorInitExpr *E) {
3244   const CXXConstructorDecl *Ctor = E->getConstructor();
3245   assert(!Ctor->isTrivial() &&
3246          "Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
3247   const Function *F = this->getFunction(Ctor);
3248   assert(F);
3249   assert(!F->hasRVO());
3250   assert(F->hasThisPointer());
3251 
3252   if (!this->emitDupPtr(SourceInfo{}))
3253     return false;
3254 
3255   // Forward all arguments of the current function (which should be a
3256   // constructor itself) to the inherited ctor.
3257   // This is necessary because the calling code has pushed the pointer
3258   // of the correct base for  us already, but the arguments need
3259   // to come after.
3260   unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
3261   for (const ParmVarDecl *PD : Ctor->parameters()) {
3262     PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
3263 
3264     if (!this->emitGetParam(PT, Offset, E))
3265       return false;
3266     Offset += align(primSize(PT));
3267   }
3268 
3269   return this->emitCall(F, 0, E);
3270 }
3271 
3272 template <class Emitter>
3273 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
3274   assert(classifyPrim(E->getType()) == PT_Ptr);
3275   const Expr *Init = E->getInitializer();
3276   QualType ElementType = E->getAllocatedType();
3277   std::optional<PrimType> ElemT = classify(ElementType);
3278   unsigned PlacementArgs = E->getNumPlacementArgs();
3279   const FunctionDecl *OperatorNew = E->getOperatorNew();
3280   const Expr *PlacementDest = nullptr;
3281   bool IsNoThrow = false;
3282 
3283   if (PlacementArgs != 0) {
3284     // FIXME: There is no restriction on this, but it's not clear that any
3285     // other form makes any sense. We get here for cases such as:
3286     //
3287     //   new (std::align_val_t{N}) X(int)
3288     //
3289     // (which should presumably be valid only if N is a multiple of
3290     // alignof(int), and in any case can't be deallocated unless N is
3291     // alignof(X) and X has new-extended alignment).
3292     if (PlacementArgs == 1) {
3293       const Expr *Arg1 = E->getPlacementArg(0);
3294       if (Arg1->getType()->isNothrowT()) {
3295         if (!this->discard(Arg1))
3296           return false;
3297         IsNoThrow = true;
3298       } else {
3299         // Invalid unless we have C++26 or are in a std:: function.
3300         if (!this->emitInvalidNewDeleteExpr(E, E))
3301           return false;
3302 
3303         // If we have a placement-new destination, we'll later use that instead
3304         // of allocating.
3305         if (OperatorNew->isReservedGlobalPlacementOperator())
3306           PlacementDest = Arg1;
3307       }
3308     } else {
3309       // Always invalid.
3310       return this->emitInvalid(E);
3311     }
3312   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction())
3313     return this->emitInvalidNewDeleteExpr(E, E);
3314 
3315   const Descriptor *Desc;
3316   if (!PlacementDest) {
3317     if (ElemT) {
3318       if (E->isArray())
3319         Desc = nullptr; // We're not going to use it in this case.
3320       else
3321         Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
3322                                   /*IsConst=*/false, /*IsTemporary=*/false,
3323                                   /*IsMutable=*/false);
3324     } else {
3325       Desc = P.createDescriptor(
3326           E, ElementType.getTypePtr(),
3327           E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
3328           /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
3329     }
3330   }
3331 
3332   if (E->isArray()) {
3333     std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
3334     if (!ArraySizeExpr)
3335       return false;
3336 
3337     const Expr *Stripped = *ArraySizeExpr;
3338     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
3339          Stripped = ICE->getSubExpr())
3340       if (ICE->getCastKind() != CK_NoOp &&
3341           ICE->getCastKind() != CK_IntegralCast)
3342         break;
3343 
3344     PrimType SizeT = classifyPrim(Stripped->getType());
3345 
3346     if (PlacementDest) {
3347       if (!this->visit(PlacementDest))
3348         return false;
3349       if (!this->visit(Stripped))
3350         return false;
3351       if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E))
3352         return false;
3353     } else {
3354       if (!this->visit(Stripped))
3355         return false;
3356 
3357       if (ElemT) {
3358         // N primitive elements.
3359         if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
3360           return false;
3361       } else {
3362         // N Composite elements.
3363         if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
3364           return false;
3365       }
3366     }
3367 
3368     if (Init && !this->visitInitializer(Init))
3369       return false;
3370 
3371   } else {
3372     if (PlacementDest) {
3373       if (!this->visit(PlacementDest))
3374         return false;
3375       if (!this->emitCheckNewTypeMismatch(E, E))
3376         return false;
3377     } else {
3378       // Allocate just one element.
3379       if (!this->emitAlloc(Desc, E))
3380         return false;
3381     }
3382 
3383     if (Init) {
3384       if (ElemT) {
3385         if (!this->visit(Init))
3386           return false;
3387 
3388         if (!this->emitInit(*ElemT, E))
3389           return false;
3390       } else {
3391         // Composite.
3392         if (!this->visitInitializer(Init))
3393           return false;
3394       }
3395     }
3396   }
3397 
3398   if (DiscardResult)
3399     return this->emitPopPtr(E);
3400 
3401   return true;
3402 }
3403 
3404 template <class Emitter>
3405 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
3406   const Expr *Arg = E->getArgument();
3407 
3408   const FunctionDecl *OperatorDelete = E->getOperatorDelete();
3409 
3410   if (!OperatorDelete->isReplaceableGlobalAllocationFunction())
3411     return this->emitInvalidNewDeleteExpr(E, E);
3412 
3413   // Arg must be an lvalue.
3414   if (!this->visit(Arg))
3415     return false;
3416 
3417   return this->emitFree(E->isArrayForm(), E->isGlobalDelete(), E);
3418 }
3419 
3420 template <class Emitter>
3421 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
3422   if (DiscardResult)
3423     return true;
3424 
3425   const Function *Func = nullptr;
3426   if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E))
3427     Func = F;
3428 
3429   if (!Func)
3430     return false;
3431   return this->emitGetFnPtr(Func, E);
3432 }
3433 
3434 template <class Emitter>
3435 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
3436   assert(Ctx.getLangOpts().CPlusPlus);
3437   return this->emitConstBool(E->getValue(), E);
3438 }
3439 
3440 template <class Emitter>
3441 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
3442   if (DiscardResult)
3443     return true;
3444   assert(!Initializing);
3445 
3446   const MSGuidDecl *GuidDecl = E->getGuidDecl();
3447   const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
3448   assert(RD);
3449   // If the definiton of the result type is incomplete, just return a dummy.
3450   // If (and when) that is read from, we will fail, but not now.
3451   if (!RD->isCompleteDefinition())
3452     return this->emitDummyPtr(GuidDecl, E);
3453 
3454   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
3455   if (!GlobalIndex)
3456     return false;
3457   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3458     return false;
3459 
3460   assert(this->getRecord(E->getType()));
3461 
3462   const APValue &V = GuidDecl->getAsAPValue();
3463   if (V.getKind() == APValue::None)
3464     return true;
3465 
3466   assert(V.isStruct());
3467   assert(V.getStructNumBases() == 0);
3468   if (!this->visitAPValueInitializer(V, E))
3469     return false;
3470 
3471   return this->emitFinishInit(E);
3472 }
3473 
3474 template <class Emitter>
3475 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
3476   assert(classifyPrim(E->getType()) == PT_Bool);
3477   if (DiscardResult)
3478     return true;
3479   return this->emitConstBool(E->isSatisfied(), E);
3480 }
3481 
3482 template <class Emitter>
3483 bool Compiler<Emitter>::VisitConceptSpecializationExpr(
3484     const ConceptSpecializationExpr *E) {
3485   assert(classifyPrim(E->getType()) == PT_Bool);
3486   if (DiscardResult)
3487     return true;
3488   return this->emitConstBool(E->isSatisfied(), E);
3489 }
3490 
3491 template <class Emitter>
3492 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
3493     const CXXRewrittenBinaryOperator *E) {
3494   return this->delegate(E->getSemanticForm());
3495 }
3496 
3497 template <class Emitter>
3498 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
3499 
3500   for (const Expr *SemE : E->semantics()) {
3501     if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
3502       if (SemE == E->getResultExpr())
3503         return false;
3504 
3505       if (OVE->isUnique())
3506         continue;
3507 
3508       if (!this->discard(OVE))
3509         return false;
3510     } else if (SemE == E->getResultExpr()) {
3511       if (!this->delegate(SemE))
3512         return false;
3513     } else {
3514       if (!this->discard(SemE))
3515         return false;
3516     }
3517   }
3518   return true;
3519 }
3520 
3521 template <class Emitter>
3522 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
3523   return this->delegate(E->getSelectedExpr());
3524 }
3525 
3526 template <class Emitter>
3527 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
3528   return this->emitError(E);
3529 }
3530 
3531 template <class Emitter>
3532 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
3533   assert(E->getType()->isVoidPointerType());
3534 
3535   unsigned Offset = allocateLocalPrimitive(
3536       E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3537 
3538   return this->emitGetLocal(PT_Ptr, Offset, E);
3539 }
3540 
3541 template <class Emitter>
3542 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
3543   assert(Initializing);
3544   const auto *VT = E->getType()->castAs<VectorType>();
3545   QualType ElemType = VT->getElementType();
3546   PrimType ElemT = classifyPrim(ElemType);
3547   const Expr *Src = E->getSrcExpr();
3548   QualType SrcType = Src->getType();
3549   PrimType SrcElemT = classifyVectorElementType(SrcType);
3550 
3551   unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
3552   if (!this->visit(Src))
3553     return false;
3554   if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
3555     return false;
3556 
3557   for (unsigned I = 0; I != VT->getNumElements(); ++I) {
3558     if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
3559       return false;
3560     if (!this->emitArrayElemPop(SrcElemT, I, E))
3561       return false;
3562 
3563     // Cast to the desired result element type.
3564     if (SrcElemT != ElemT) {
3565       if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
3566         return false;
3567     } else if (ElemType->isFloatingType() && SrcType != ElemType) {
3568       const auto *TargetSemantics = &Ctx.getFloatSemantics(ElemType);
3569       if (!this->emitCastFP(TargetSemantics, getRoundingMode(E), E))
3570         return false;
3571     }
3572     if (!this->emitInitElem(ElemT, I, E))
3573       return false;
3574   }
3575 
3576   return true;
3577 }
3578 
3579 template <class Emitter>
3580 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
3581   assert(Initializing);
3582   assert(E->getNumSubExprs() > 2);
3583 
3584   const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
3585   const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
3586   PrimType ElemT = classifyPrim(VT->getElementType());
3587   unsigned NumInputElems = VT->getNumElements();
3588   unsigned NumOutputElems = E->getNumSubExprs() - 2;
3589   assert(NumOutputElems > 0);
3590 
3591   // Save both input vectors to a local variable.
3592   unsigned VectorOffsets[2];
3593   for (unsigned I = 0; I != 2; ++I) {
3594     VectorOffsets[I] = this->allocateLocalPrimitive(
3595         Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3596     if (!this->visit(Vecs[I]))
3597       return false;
3598     if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
3599       return false;
3600   }
3601   for (unsigned I = 0; I != NumOutputElems; ++I) {
3602     APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
3603     assert(ShuffleIndex >= -1);
3604     if (ShuffleIndex == -1)
3605       return this->emitInvalidShuffleVectorIndex(I, E);
3606 
3607     assert(ShuffleIndex < (NumInputElems * 2));
3608     if (!this->emitGetLocal(PT_Ptr,
3609                             VectorOffsets[ShuffleIndex >= NumInputElems], E))
3610       return false;
3611     unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
3612     if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
3613       return false;
3614 
3615     if (!this->emitInitElem(ElemT, I, E))
3616       return false;
3617   }
3618 
3619   return true;
3620 }
3621 
3622 template <class Emitter>
3623 bool Compiler<Emitter>::VisitExtVectorElementExpr(
3624     const ExtVectorElementExpr *E) {
3625   const Expr *Base = E->getBase();
3626   assert(
3627       Base->getType()->isVectorType() ||
3628       Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
3629 
3630   SmallVector<uint32_t, 4> Indices;
3631   E->getEncodedElementAccess(Indices);
3632 
3633   if (Indices.size() == 1) {
3634     if (!this->visit(Base))
3635       return false;
3636 
3637     if (E->isGLValue()) {
3638       if (!this->emitConstUint32(Indices[0], E))
3639         return false;
3640       return this->emitArrayElemPtrPop(PT_Uint32, E);
3641     }
3642     // Else, also load the value.
3643     return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
3644   }
3645 
3646   // Create a local variable for the base.
3647   unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
3648                                                /*IsExtended=*/false);
3649   if (!this->visit(Base))
3650     return false;
3651   if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
3652     return false;
3653 
3654   // Now the vector variable for the return value.
3655   if (!Initializing) {
3656     std::optional<unsigned> ResultIndex;
3657     ResultIndex = allocateLocal(E);
3658     if (!ResultIndex)
3659       return false;
3660     if (!this->emitGetPtrLocal(*ResultIndex, E))
3661       return false;
3662   }
3663 
3664   assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
3665 
3666   PrimType ElemT =
3667       classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
3668   uint32_t DstIndex = 0;
3669   for (uint32_t I : Indices) {
3670     if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
3671       return false;
3672     if (!this->emitArrayElemPop(ElemT, I, E))
3673       return false;
3674     if (!this->emitInitElem(ElemT, DstIndex, E))
3675       return false;
3676     ++DstIndex;
3677   }
3678 
3679   // Leave the result pointer on the stack.
3680   assert(!DiscardResult);
3681   return true;
3682 }
3683 
3684 template <class Emitter>
3685 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
3686   const Expr *SubExpr = E->getSubExpr();
3687   if (!E->isExpressibleAsConstantInitializer())
3688     return this->discard(SubExpr) && this->emitInvalid(E);
3689 
3690   if (DiscardResult)
3691     return true;
3692 
3693   assert(classifyPrim(E) == PT_Ptr);
3694   return this->emitDummyPtr(E, E);
3695 }
3696 
3697 template <class Emitter>
3698 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
3699     const CXXStdInitializerListExpr *E) {
3700   const Expr *SubExpr = E->getSubExpr();
3701   const ConstantArrayType *ArrayType =
3702       Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
3703   const Record *R = getRecord(E->getType());
3704   assert(Initializing);
3705   assert(SubExpr->isGLValue());
3706 
3707   if (!this->visit(SubExpr))
3708     return false;
3709   if (!this->emitConstUint8(0, E))
3710     return false;
3711   if (!this->emitArrayElemPtrPopUint8(E))
3712     return false;
3713   if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
3714     return false;
3715 
3716   PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
3717   if (isIntegralType(SecondFieldT)) {
3718     if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
3719                          SecondFieldT, E))
3720       return false;
3721     return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
3722   }
3723   assert(SecondFieldT == PT_Ptr);
3724 
3725   if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
3726     return false;
3727   if (!this->emitExpandPtr(E))
3728     return false;
3729   if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
3730     return false;
3731   if (!this->emitArrayElemPtrPop(PT_Uint64, E))
3732     return false;
3733   return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
3734 }
3735 
3736 template <class Emitter>
3737 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
3738   BlockScope<Emitter> BS(this);
3739   StmtExprScope<Emitter> SS(this);
3740 
3741   const CompoundStmt *CS = E->getSubStmt();
3742   const Stmt *Result = CS->getStmtExprResult();
3743   for (const Stmt *S : CS->body()) {
3744     if (S != Result) {
3745       if (!this->visitStmt(S))
3746         return false;
3747       continue;
3748     }
3749 
3750     assert(S == Result);
3751     if (const Expr *ResultExpr = dyn_cast<Expr>(S))
3752       return this->delegate(ResultExpr);
3753     return this->emitUnsupported(E);
3754   }
3755 
3756   return BS.destroyLocals();
3757 }
3758 
3759 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
3760   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
3761                              /*NewInitializing=*/false);
3762   return this->Visit(E);
3763 }
3764 
3765 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
3766   // We're basically doing:
3767   // OptionScope<Emitter> Scope(this, DicardResult, Initializing);
3768   // but that's unnecessary of course.
3769   return this->Visit(E);
3770 }
3771 
3772 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
3773   if (E->getType().isNull())
3774     return false;
3775 
3776   if (E->getType()->isVoidType())
3777     return this->discard(E);
3778 
3779   // Create local variable to hold the return value.
3780   if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
3781       !classify(E->getType())) {
3782     std::optional<unsigned> LocalIndex = allocateLocal(E);
3783     if (!LocalIndex)
3784       return false;
3785 
3786     if (!this->emitGetPtrLocal(*LocalIndex, E))
3787       return false;
3788     return this->visitInitializer(E);
3789   }
3790 
3791   //  Otherwise,we have a primitive return value, produce the value directly
3792   //  and push it on the stack.
3793   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3794                              /*NewInitializing=*/false);
3795   return this->Visit(E);
3796 }
3797 
3798 template <class Emitter>
3799 bool Compiler<Emitter>::visitInitializer(const Expr *E) {
3800   assert(!classify(E->getType()));
3801 
3802   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3803                              /*NewInitializing=*/true);
3804   return this->Visit(E);
3805 }
3806 
3807 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
3808   std::optional<PrimType> T = classify(E->getType());
3809   if (!T) {
3810     // Convert complex values to bool.
3811     if (E->getType()->isAnyComplexType()) {
3812       if (!this->visit(E))
3813         return false;
3814       return this->emitComplexBoolCast(E);
3815     }
3816     return false;
3817   }
3818 
3819   if (!this->visit(E))
3820     return false;
3821 
3822   if (T == PT_Bool)
3823     return true;
3824 
3825   // Convert pointers to bool.
3826   if (T == PT_Ptr || T == PT_FnPtr) {
3827     if (!this->emitNull(*T, nullptr, E))
3828       return false;
3829     return this->emitNE(*T, E);
3830   }
3831 
3832   // Or Floats.
3833   if (T == PT_Float)
3834     return this->emitCastFloatingIntegralBool(getFPOptions(E), E);
3835 
3836   // Or anything else we can.
3837   return this->emitCast(*T, PT_Bool, E);
3838 }
3839 
3840 template <class Emitter>
3841 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
3842                                              const Expr *E) {
3843   switch (T) {
3844   case PT_Bool:
3845     return this->emitZeroBool(E);
3846   case PT_Sint8:
3847     return this->emitZeroSint8(E);
3848   case PT_Uint8:
3849     return this->emitZeroUint8(E);
3850   case PT_Sint16:
3851     return this->emitZeroSint16(E);
3852   case PT_Uint16:
3853     return this->emitZeroUint16(E);
3854   case PT_Sint32:
3855     return this->emitZeroSint32(E);
3856   case PT_Uint32:
3857     return this->emitZeroUint32(E);
3858   case PT_Sint64:
3859     return this->emitZeroSint64(E);
3860   case PT_Uint64:
3861     return this->emitZeroUint64(E);
3862   case PT_IntAP:
3863     return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
3864   case PT_IntAPS:
3865     return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
3866   case PT_Ptr:
3867     return this->emitNullPtr(nullptr, E);
3868   case PT_FnPtr:
3869     return this->emitNullFnPtr(nullptr, E);
3870   case PT_MemberPtr:
3871     return this->emitNullMemberPtr(nullptr, E);
3872   case PT_Float:
3873     return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
3874   case PT_FixedPoint: {
3875     auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
3876     return this->emitConstFixedPoint(FixedPoint::zero(Sem), E);
3877   }
3878     llvm_unreachable("Implement");
3879   }
3880   llvm_unreachable("unknown primitive type");
3881 }
3882 
3883 template <class Emitter>
3884 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
3885                                                    const Expr *E) {
3886   assert(E);
3887   assert(R);
3888   // Fields
3889   for (const Record::Field &Field : R->fields()) {
3890     if (Field.Decl->isUnnamedBitField())
3891       continue;
3892 
3893     const Descriptor *D = Field.Desc;
3894     if (D->isPrimitive()) {
3895       QualType QT = D->getType();
3896       PrimType T = classifyPrim(D->getType());
3897       if (!this->visitZeroInitializer(T, QT, E))
3898         return false;
3899       if (!this->emitInitField(T, Field.Offset, E))
3900         return false;
3901       if (R->isUnion())
3902         break;
3903       continue;
3904     }
3905 
3906     if (!this->emitGetPtrField(Field.Offset, E))
3907       return false;
3908 
3909     if (D->isPrimitiveArray()) {
3910       QualType ET = D->getElemQualType();
3911       PrimType T = classifyPrim(ET);
3912       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3913         if (!this->visitZeroInitializer(T, ET, E))
3914           return false;
3915         if (!this->emitInitElem(T, I, E))
3916           return false;
3917       }
3918     } else if (D->isCompositeArray()) {
3919       const Record *ElemRecord = D->ElemDesc->ElemRecord;
3920       assert(D->ElemDesc->ElemRecord);
3921       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3922         if (!this->emitConstUint32(I, E))
3923           return false;
3924         if (!this->emitArrayElemPtr(PT_Uint32, E))
3925           return false;
3926         if (!this->visitZeroRecordInitializer(ElemRecord, E))
3927           return false;
3928         if (!this->emitPopPtr(E))
3929           return false;
3930       }
3931     } else if (D->isRecord()) {
3932       if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
3933         return false;
3934     } else {
3935       assert(false);
3936     }
3937 
3938     if (!this->emitFinishInitPop(E))
3939       return false;
3940 
3941     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3942     // object's first non-static named data member is zero-initialized
3943     if (R->isUnion())
3944       break;
3945   }
3946 
3947   for (const Record::Base &B : R->bases()) {
3948     if (!this->emitGetPtrBase(B.Offset, E))
3949       return false;
3950     if (!this->visitZeroRecordInitializer(B.R, E))
3951       return false;
3952     if (!this->emitFinishInitPop(E))
3953       return false;
3954   }
3955 
3956   // FIXME: Virtual bases.
3957 
3958   return true;
3959 }
3960 
3961 template <class Emitter>
3962 template <typename T>
3963 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
3964   switch (Ty) {
3965   case PT_Sint8:
3966     return this->emitConstSint8(Value, E);
3967   case PT_Uint8:
3968     return this->emitConstUint8(Value, E);
3969   case PT_Sint16:
3970     return this->emitConstSint16(Value, E);
3971   case PT_Uint16:
3972     return this->emitConstUint16(Value, E);
3973   case PT_Sint32:
3974     return this->emitConstSint32(Value, E);
3975   case PT_Uint32:
3976     return this->emitConstUint32(Value, E);
3977   case PT_Sint64:
3978     return this->emitConstSint64(Value, E);
3979   case PT_Uint64:
3980     return this->emitConstUint64(Value, E);
3981   case PT_Bool:
3982     return this->emitConstBool(Value, E);
3983   case PT_Ptr:
3984   case PT_FnPtr:
3985   case PT_MemberPtr:
3986   case PT_Float:
3987   case PT_IntAP:
3988   case PT_IntAPS:
3989   case PT_FixedPoint:
3990     llvm_unreachable("Invalid integral type");
3991     break;
3992   }
3993   llvm_unreachable("unknown primitive type");
3994 }
3995 
3996 template <class Emitter>
3997 template <typename T>
3998 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
3999   return this->emitConst(Value, classifyPrim(E->getType()), E);
4000 }
4001 
4002 template <class Emitter>
4003 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
4004                                   const Expr *E) {
4005   if (Ty == PT_IntAPS)
4006     return this->emitConstIntAPS(Value, E);
4007   if (Ty == PT_IntAP)
4008     return this->emitConstIntAP(Value, E);
4009 
4010   if (Value.isSigned())
4011     return this->emitConst(Value.getSExtValue(), Ty, E);
4012   return this->emitConst(Value.getZExtValue(), Ty, E);
4013 }
4014 
4015 template <class Emitter>
4016 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
4017   return this->emitConst(Value, classifyPrim(E->getType()), E);
4018 }
4019 
4020 template <class Emitter>
4021 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
4022                                                    bool IsConst,
4023                                                    bool IsExtended) {
4024   // Make sure we don't accidentally register the same decl twice.
4025   if (const auto *VD =
4026           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
4027     assert(!P.getGlobal(VD));
4028     assert(!Locals.contains(VD));
4029     (void)VD;
4030   }
4031 
4032   // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
4033   //   (int){12} in C. Consider using Expr::isTemporaryObject() instead
4034   //   or isa<MaterializeTemporaryExpr>().
4035   Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
4036                                      isa<const Expr *>(Src));
4037   Scope::Local Local = this->createLocal(D);
4038   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
4039     Locals.insert({VD, Local});
4040   VarScope->add(Local, IsExtended);
4041   return Local.Offset;
4042 }
4043 
4044 template <class Emitter>
4045 std::optional<unsigned>
4046 Compiler<Emitter>::allocateLocal(DeclTy &&Src, QualType Ty,
4047                                  const ValueDecl *ExtendingDecl) {
4048   // Make sure we don't accidentally register the same decl twice.
4049   if ([[maybe_unused]] const auto *VD =
4050           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
4051     assert(!P.getGlobal(VD));
4052     assert(!Locals.contains(VD));
4053   }
4054 
4055   const ValueDecl *Key = nullptr;
4056   const Expr *Init = nullptr;
4057   bool IsTemporary = false;
4058   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
4059     Key = VD;
4060     Ty = VD->getType();
4061 
4062     if (const auto *VarD = dyn_cast<VarDecl>(VD))
4063       Init = VarD->getInit();
4064   }
4065   if (auto *E = Src.dyn_cast<const Expr *>()) {
4066     IsTemporary = true;
4067     if (Ty.isNull())
4068       Ty = E->getType();
4069   }
4070 
4071   Descriptor *D = P.createDescriptor(
4072       Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
4073       IsTemporary, /*IsMutable=*/false, Init);
4074   if (!D)
4075     return std::nullopt;
4076 
4077   Scope::Local Local = this->createLocal(D);
4078   if (Key)
4079     Locals.insert({Key, Local});
4080   if (ExtendingDecl)
4081     VarScope->addExtended(Local, ExtendingDecl);
4082   else
4083     VarScope->add(Local, false);
4084   return Local.Offset;
4085 }
4086 
4087 template <class Emitter>
4088 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) {
4089   QualType Ty = E->getType();
4090   assert(!Ty->isRecordType());
4091 
4092   Descriptor *D = P.createDescriptor(
4093       E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
4094       /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
4095   assert(D);
4096 
4097   Scope::Local Local = this->createLocal(D);
4098   VariableScope<Emitter> *S = VarScope;
4099   assert(S);
4100   // Attach to topmost scope.
4101   while (S->getParent())
4102     S = S->getParent();
4103   assert(S && !S->getParent());
4104   S->addLocal(Local);
4105   return Local.Offset;
4106 }
4107 
4108 template <class Emitter>
4109 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
4110   if (const PointerType *PT = dyn_cast<PointerType>(Ty))
4111     return PT->getPointeeType()->getAs<RecordType>();
4112   return Ty->getAs<RecordType>();
4113 }
4114 
4115 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
4116   if (const auto *RecordTy = getRecordTy(Ty))
4117     return getRecord(RecordTy->getDecl());
4118   return nullptr;
4119 }
4120 
4121 template <class Emitter>
4122 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
4123   return P.getOrCreateRecord(RD);
4124 }
4125 
4126 template <class Emitter>
4127 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
4128   return Ctx.getOrCreateFunction(FD);
4129 }
4130 
4131 template <class Emitter>
4132 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) {
4133   LocalScope<Emitter> RootScope(this);
4134 
4135   // If we won't destroy the toplevel scope, check for memory leaks first.
4136   if (!DestroyToplevelScope) {
4137     if (!this->emitCheckAllocations(E))
4138       return false;
4139   }
4140 
4141   auto maybeDestroyLocals = [&]() -> bool {
4142     if (DestroyToplevelScope)
4143       return RootScope.destroyLocals() && this->emitCheckAllocations(E);
4144     return this->emitCheckAllocations(E);
4145   };
4146 
4147   // Void expressions.
4148   if (E->getType()->isVoidType()) {
4149     if (!visit(E))
4150       return false;
4151     return this->emitRetVoid(E) && maybeDestroyLocals();
4152   }
4153 
4154   // Expressions with a primitive return type.
4155   if (std::optional<PrimType> T = classify(E)) {
4156     if (!visit(E))
4157       return false;
4158 
4159     return this->emitRet(*T, E) && maybeDestroyLocals();
4160   }
4161 
4162   // Expressions with a composite return type.
4163   // For us, that means everything we don't
4164   // have a PrimType for.
4165   if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
4166     if (!this->emitGetPtrLocal(*LocalOffset, E))
4167       return false;
4168 
4169     if (!visitInitializer(E))
4170       return false;
4171 
4172     if (!this->emitFinishInit(E))
4173       return false;
4174     // We are destroying the locals AFTER the Ret op.
4175     // The Ret op needs to copy the (alive) values, but the
4176     // destructors may still turn the entire expression invalid.
4177     return this->emitRetValue(E) && maybeDestroyLocals();
4178   }
4179 
4180   return maybeDestroyLocals() && this->emitCheckAllocations(E) && false;
4181 }
4182 
4183 template <class Emitter>
4184 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
4185 
4186   auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
4187 
4188   if (R.notCreated())
4189     return R;
4190 
4191   if (R)
4192     return true;
4193 
4194   if (!R && Context::shouldBeGloballyIndexed(VD)) {
4195     if (auto GlobalIndex = P.getGlobal(VD)) {
4196       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4197       GlobalInlineDescriptor &GD =
4198           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4199 
4200       GD.InitState = GlobalInitState::InitializerFailed;
4201       GlobalBlock->invokeDtor();
4202     }
4203   }
4204 
4205   return R;
4206 }
4207 
4208 /// Toplevel visitDeclAndReturn().
4209 /// We get here from evaluateAsInitializer().
4210 /// We need to evaluate the initializer and return its value.
4211 template <class Emitter>
4212 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
4213                                            bool ConstantContext) {
4214   std::optional<PrimType> VarT = classify(VD->getType());
4215 
4216   // We only create variables if we're evaluating in a constant context.
4217   // Otherwise, just evaluate the initializer and return it.
4218   if (!ConstantContext) {
4219     DeclScope<Emitter> LS(this, VD);
4220     if (!this->visit(VD->getAnyInitializer()))
4221       return false;
4222     return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals() &&
4223            this->emitCheckAllocations(VD);
4224   }
4225 
4226   LocalScope<Emitter> VDScope(this, VD);
4227   if (!this->visitVarDecl(VD, /*Toplevel=*/true))
4228     return false;
4229 
4230   if (Context::shouldBeGloballyIndexed(VD)) {
4231     auto GlobalIndex = P.getGlobal(VD);
4232     assert(GlobalIndex); // visitVarDecl() didn't return false.
4233     if (VarT) {
4234       if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
4235         return false;
4236     } else {
4237       if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
4238         return false;
4239     }
4240   } else {
4241     auto Local = Locals.find(VD);
4242     assert(Local != Locals.end()); // Same here.
4243     if (VarT) {
4244       if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
4245         return false;
4246     } else {
4247       if (!this->emitGetPtrLocal(Local->second.Offset, VD))
4248         return false;
4249     }
4250   }
4251 
4252   // Return the value.
4253   if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
4254     // If the Ret above failed and this is a global variable, mark it as
4255     // uninitialized, even everything else succeeded.
4256     if (Context::shouldBeGloballyIndexed(VD)) {
4257       auto GlobalIndex = P.getGlobal(VD);
4258       assert(GlobalIndex);
4259       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4260       GlobalInlineDescriptor &GD =
4261           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4262 
4263       GD.InitState = GlobalInitState::InitializerFailed;
4264       GlobalBlock->invokeDtor();
4265     }
4266     return false;
4267   }
4268 
4269   return VDScope.destroyLocals() && this->emitCheckAllocations(VD);
4270 }
4271 
4272 template <class Emitter>
4273 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
4274                                                  bool Toplevel) {
4275   // We don't know what to do with these, so just return false.
4276   if (VD->getType().isNull())
4277     return false;
4278 
4279   // This case is EvalEmitter-only. If we won't create any instructions for the
4280   // initializer anyway, don't bother creating the variable in the first place.
4281   if (!this->isActive())
4282     return VarCreationState::NotCreated();
4283 
4284   const Expr *Init = VD->getInit();
4285   std::optional<PrimType> VarT = classify(VD->getType());
4286 
4287   if (Init && Init->isValueDependent())
4288     return false;
4289 
4290   if (Context::shouldBeGloballyIndexed(VD)) {
4291     auto checkDecl = [&]() -> bool {
4292       bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
4293       return !NeedsOp || this->emitCheckDecl(VD, VD);
4294     };
4295 
4296     auto initGlobal = [&](unsigned GlobalIndex) -> bool {
4297       assert(Init);
4298 
4299       if (VarT) {
4300         if (!this->visit(Init))
4301           return checkDecl() && false;
4302 
4303         return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
4304       }
4305 
4306       if (!checkDecl())
4307         return false;
4308 
4309       if (!this->emitGetPtrGlobal(GlobalIndex, Init))
4310         return false;
4311 
4312       if (!visitInitializer(Init))
4313         return false;
4314 
4315       if (!this->emitFinishInit(Init))
4316         return false;
4317 
4318       return this->emitPopPtr(Init);
4319     };
4320 
4321     DeclScope<Emitter> LocalScope(this, VD);
4322 
4323     // We've already seen and initialized this global.
4324     if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
4325       if (P.getPtrGlobal(*GlobalIndex).isInitialized())
4326         return checkDecl();
4327 
4328       // The previous attempt at initialization might've been unsuccessful,
4329       // so let's try this one.
4330       return Init && checkDecl() && initGlobal(*GlobalIndex);
4331     }
4332 
4333     std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
4334 
4335     if (!GlobalIndex)
4336       return false;
4337 
4338     return !Init || (checkDecl() && initGlobal(*GlobalIndex));
4339   } else {
4340     InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
4341 
4342     if (VarT) {
4343       unsigned Offset = this->allocateLocalPrimitive(
4344           VD, *VarT, VD->getType().isConstQualified());
4345       if (Init) {
4346         // If this is a toplevel declaration, create a scope for the
4347         // initializer.
4348         if (Toplevel) {
4349           LocalScope<Emitter> Scope(this);
4350           if (!this->visit(Init))
4351             return false;
4352           return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
4353         } else {
4354           if (!this->visit(Init))
4355             return false;
4356           return this->emitSetLocal(*VarT, Offset, VD);
4357         }
4358       }
4359     } else {
4360       if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
4361         if (!Init)
4362           return true;
4363 
4364         if (!this->emitGetPtrLocal(*Offset, Init))
4365           return false;
4366 
4367         if (!visitInitializer(Init))
4368           return false;
4369 
4370         if (!this->emitFinishInit(Init))
4371           return false;
4372 
4373         return this->emitPopPtr(Init);
4374       }
4375       return false;
4376     }
4377     return true;
4378   }
4379 
4380   return false;
4381 }
4382 
4383 template <class Emitter>
4384 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
4385                                      const Expr *E) {
4386   assert(!DiscardResult);
4387   if (Val.isInt())
4388     return this->emitConst(Val.getInt(), ValType, E);
4389   else if (Val.isFloat())
4390     return this->emitConstFloat(Val.getFloat(), E);
4391 
4392   if (Val.isLValue()) {
4393     if (Val.isNullPointer())
4394       return this->emitNull(ValType, nullptr, E);
4395     APValue::LValueBase Base = Val.getLValueBase();
4396     if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
4397       return this->visit(BaseExpr);
4398     else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
4399       return this->visitDeclRef(VD, E);
4400     }
4401   } else if (Val.isMemberPointer()) {
4402     if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
4403       return this->emitGetMemberPtr(MemberDecl, E);
4404     return this->emitNullMemberPtr(nullptr, E);
4405   }
4406 
4407   return false;
4408 }
4409 
4410 template <class Emitter>
4411 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
4412                                                 const Expr *E) {
4413 
4414   if (Val.isStruct()) {
4415     const Record *R = this->getRecord(E->getType());
4416     assert(R);
4417     for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
4418       const APValue &F = Val.getStructField(I);
4419       const Record::Field *RF = R->getField(I);
4420 
4421       if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
4422         PrimType T = classifyPrim(RF->Decl->getType());
4423         if (!this->visitAPValue(F, T, E))
4424           return false;
4425         if (!this->emitInitField(T, RF->Offset, E))
4426           return false;
4427       } else if (F.isArray()) {
4428         assert(RF->Desc->isPrimitiveArray());
4429         const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
4430         PrimType ElemT = classifyPrim(ArrType->getElementType());
4431         assert(ArrType);
4432 
4433         if (!this->emitGetPtrField(RF->Offset, E))
4434           return false;
4435 
4436         for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
4437           if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
4438             return false;
4439           if (!this->emitInitElem(ElemT, A, E))
4440             return false;
4441         }
4442 
4443         if (!this->emitPopPtr(E))
4444           return false;
4445       } else if (F.isStruct() || F.isUnion()) {
4446         if (!this->emitGetPtrField(RF->Offset, E))
4447           return false;
4448         if (!this->visitAPValueInitializer(F, E))
4449           return false;
4450         if (!this->emitPopPtr(E))
4451           return false;
4452       } else {
4453         assert(false && "I don't think this should be possible");
4454       }
4455     }
4456     return true;
4457   } else if (Val.isUnion()) {
4458     const FieldDecl *UnionField = Val.getUnionField();
4459     const Record *R = this->getRecord(UnionField->getParent());
4460     assert(R);
4461     const APValue &F = Val.getUnionValue();
4462     const Record::Field *RF = R->getField(UnionField);
4463     PrimType T = classifyPrim(RF->Decl->getType());
4464     if (!this->visitAPValue(F, T, E))
4465       return false;
4466     return this->emitInitField(T, RF->Offset, E);
4467   }
4468   // TODO: Other types.
4469 
4470   return false;
4471 }
4472 
4473 template <class Emitter>
4474 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E,
4475                                              unsigned BuiltinID) {
4476   const Function *Func = getFunction(E->getDirectCallee());
4477   if (!Func)
4478     return false;
4479 
4480   // For these, we're expected to ultimately return an APValue pointing
4481   // to the CallExpr. This is needed to get the correct codegen.
4482   if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
4483       BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString ||
4484       BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant ||
4485       BuiltinID == Builtin::BI__builtin_function_start) {
4486     if (DiscardResult)
4487       return true;
4488     return this->emitDummyPtr(E, E);
4489   }
4490 
4491   QualType ReturnType = E->getType();
4492   std::optional<PrimType> ReturnT = classify(E);
4493 
4494   // Non-primitive return type. Prepare storage.
4495   if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
4496     std::optional<unsigned> LocalIndex = allocateLocal(E);
4497     if (!LocalIndex)
4498       return false;
4499     if (!this->emitGetPtrLocal(*LocalIndex, E))
4500       return false;
4501   }
4502 
4503   if (!Func->isUnevaluatedBuiltin()) {
4504     // Put arguments on the stack.
4505     for (const auto *Arg : E->arguments()) {
4506       if (!this->visit(Arg))
4507         return false;
4508     }
4509   }
4510 
4511   if (!this->emitCallBI(Func, E, BuiltinID, E))
4512     return false;
4513 
4514   if (DiscardResult && !ReturnType->isVoidType()) {
4515     assert(ReturnT);
4516     return this->emitPop(*ReturnT, E);
4517   }
4518 
4519   return true;
4520 }
4521 
4522 template <class Emitter>
4523 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
4524   if (unsigned BuiltinID = E->getBuiltinCallee())
4525     return VisitBuiltinCallExpr(E, BuiltinID);
4526 
4527   const FunctionDecl *FuncDecl = E->getDirectCallee();
4528   // Calls to replaceable operator new/operator delete.
4529   if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) {
4530     if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New ||
4531         FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
4532       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new);
4533     } else {
4534       assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete);
4535       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete);
4536     }
4537   }
4538   // Explicit calls to trivial destructors
4539   if (const auto *DD = dyn_cast_if_present<CXXDestructorDecl>(FuncDecl);
4540       DD && DD->isTrivial())
4541     return true;
4542 
4543   QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
4544   std::optional<PrimType> T = classify(ReturnType);
4545   bool HasRVO = !ReturnType->isVoidType() && !T;
4546 
4547   if (HasRVO) {
4548     if (DiscardResult) {
4549       // If we need to discard the return value but the function returns its
4550       // value via an RVO pointer, we need to create one such pointer just
4551       // for this call.
4552       if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4553         if (!this->emitGetPtrLocal(*LocalIndex, E))
4554           return false;
4555       }
4556     } else {
4557       // We need the result. Prepare a pointer to return or
4558       // dup the current one.
4559       if (!Initializing) {
4560         if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4561           if (!this->emitGetPtrLocal(*LocalIndex, E))
4562             return false;
4563         }
4564       }
4565       if (!this->emitDupPtr(E))
4566         return false;
4567     }
4568   }
4569 
4570   SmallVector<const Expr *, 8> Args(
4571       llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
4572 
4573   bool IsAssignmentOperatorCall = false;
4574   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
4575       OCE && OCE->isAssignmentOp()) {
4576     // Just like with regular assignments, we need to special-case assignment
4577     // operators here and evaluate the RHS (the second arg) before the LHS (the
4578     // first arg. We fix this by using a Flip op later.
4579     assert(Args.size() == 2);
4580     IsAssignmentOperatorCall = true;
4581     std::reverse(Args.begin(), Args.end());
4582   }
4583   // Calling a static operator will still
4584   // pass the instance, but we don't need it.
4585   // Discard it here.
4586   if (isa<CXXOperatorCallExpr>(E)) {
4587     if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
4588         MD && MD->isStatic()) {
4589       if (!this->discard(E->getArg(0)))
4590         return false;
4591       // Drop first arg.
4592       Args.erase(Args.begin());
4593     }
4594   }
4595 
4596   std::optional<unsigned> CalleeOffset;
4597   // Add the (optional, implicit) This pointer.
4598   if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
4599     if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
4600       // If we end up creating a CallPtr op for this, we need the base of the
4601       // member pointer as the instance pointer, and later extract the function
4602       // decl as the function pointer.
4603       const Expr *Callee = E->getCallee();
4604       CalleeOffset =
4605           this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
4606       if (!this->visit(Callee))
4607         return false;
4608       if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
4609         return false;
4610       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4611         return false;
4612       if (!this->emitGetMemberPtrBase(E))
4613         return false;
4614     } else if (!this->visit(MC->getImplicitObjectArgument())) {
4615       return false;
4616     }
4617   } else if (!FuncDecl) {
4618     const Expr *Callee = E->getCallee();
4619     CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false);
4620     if (!this->visit(Callee))
4621       return false;
4622     if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E))
4623       return false;
4624   }
4625 
4626   llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
4627   // Put arguments on the stack.
4628   unsigned ArgIndex = 0;
4629   for (const auto *Arg : Args) {
4630     if (!this->visit(Arg))
4631       return false;
4632 
4633     // If we know the callee already, check the known parametrs for nullability.
4634     if (FuncDecl && NonNullArgs[ArgIndex]) {
4635       PrimType ArgT = classify(Arg).value_or(PT_Ptr);
4636       if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
4637         if (!this->emitCheckNonNullArg(ArgT, Arg))
4638           return false;
4639       }
4640     }
4641     ++ArgIndex;
4642   }
4643 
4644   // Undo the argument reversal we did earlier.
4645   if (IsAssignmentOperatorCall) {
4646     assert(Args.size() == 2);
4647     PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
4648     PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
4649     if (!this->emitFlip(Arg2T, Arg1T, E))
4650       return false;
4651   }
4652 
4653   if (FuncDecl) {
4654     const Function *Func = getFunction(FuncDecl);
4655     if (!Func)
4656       return false;
4657     assert(HasRVO == Func->hasRVO());
4658 
4659     bool HasQualifier = false;
4660     if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
4661       HasQualifier = ME->hasQualifier();
4662 
4663     bool IsVirtual = false;
4664     if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
4665       IsVirtual = MD->isVirtual();
4666 
4667     // In any case call the function. The return value will end up on the stack
4668     // and if the function has RVO, we already have the pointer on the stack to
4669     // write the result into.
4670     if (IsVirtual && !HasQualifier) {
4671       uint32_t VarArgSize = 0;
4672       unsigned NumParams =
4673           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4674       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4675         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4676 
4677       if (!this->emitCallVirt(Func, VarArgSize, E))
4678         return false;
4679     } else if (Func->isVariadic()) {
4680       uint32_t VarArgSize = 0;
4681       unsigned NumParams =
4682           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4683       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4684         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4685       if (!this->emitCallVar(Func, VarArgSize, E))
4686         return false;
4687     } else {
4688       if (!this->emitCall(Func, 0, E))
4689         return false;
4690     }
4691   } else {
4692     // Indirect call. Visit the callee, which will leave a FunctionPointer on
4693     // the stack. Cleanup of the returned value if necessary will be done after
4694     // the function call completed.
4695 
4696     // Sum the size of all args from the call expr.
4697     uint32_t ArgSize = 0;
4698     for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
4699       ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4700 
4701     // Get the callee, either from a member pointer or function pointer saved in
4702     // CalleeOffset.
4703     if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
4704       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4705         return false;
4706       if (!this->emitGetMemberPtrDecl(E))
4707         return false;
4708     } else {
4709       if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E))
4710         return false;
4711     }
4712     if (!this->emitCallPtr(ArgSize, E, E))
4713       return false;
4714   }
4715 
4716   // Cleanup for discarded return values.
4717   if (DiscardResult && !ReturnType->isVoidType() && T)
4718     return this->emitPop(*T, E);
4719 
4720   return true;
4721 }
4722 
4723 template <class Emitter>
4724 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4725   SourceLocScope<Emitter> SLS(this, E);
4726 
4727   return this->delegate(E->getExpr());
4728 }
4729 
4730 template <class Emitter>
4731 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
4732   SourceLocScope<Emitter> SLS(this, E);
4733 
4734   const Expr *SubExpr = E->getExpr();
4735   if (std::optional<PrimType> T = classify(E->getExpr()))
4736     return this->visit(SubExpr);
4737 
4738   assert(Initializing);
4739   return this->visitInitializer(SubExpr);
4740 }
4741 
4742 template <class Emitter>
4743 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4744   if (DiscardResult)
4745     return true;
4746 
4747   return this->emitConstBool(E->getValue(), E);
4748 }
4749 
4750 template <class Emitter>
4751 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
4752     const CXXNullPtrLiteralExpr *E) {
4753   if (DiscardResult)
4754     return true;
4755 
4756   return this->emitNullPtr(nullptr, E);
4757 }
4758 
4759 template <class Emitter>
4760 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
4761   if (DiscardResult)
4762     return true;
4763 
4764   assert(E->getType()->isIntegerType());
4765 
4766   PrimType T = classifyPrim(E->getType());
4767   return this->emitZero(T, E);
4768 }
4769 
4770 template <class Emitter>
4771 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
4772   if (DiscardResult)
4773     return true;
4774 
4775   if (this->LambdaThisCapture.Offset > 0) {
4776     if (this->LambdaThisCapture.IsPtr)
4777       return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
4778     return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
4779   }
4780 
4781   // In some circumstances, the 'this' pointer does not actually refer to the
4782   // instance pointer of the current function frame, but e.g. to the declaration
4783   // currently being initialized. Here we emit the necessary instruction(s) for
4784   // this scenario.
4785   if (!InitStackActive || !E->isImplicit())
4786     return this->emitThis(E);
4787 
4788   if (InitStackActive && !InitStack.empty()) {
4789     unsigned StartIndex = 0;
4790     for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
4791       if (InitStack[StartIndex].Kind != InitLink::K_Field &&
4792           InitStack[StartIndex].Kind != InitLink::K_Elem)
4793         break;
4794     }
4795 
4796     for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) {
4797       if (!InitStack[I].template emit<Emitter>(this, E))
4798         return false;
4799     }
4800     return true;
4801   }
4802   return this->emitThis(E);
4803 }
4804 
4805 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
4806   switch (S->getStmtClass()) {
4807   case Stmt::CompoundStmtClass:
4808     return visitCompoundStmt(cast<CompoundStmt>(S));
4809   case Stmt::DeclStmtClass:
4810     return visitDeclStmt(cast<DeclStmt>(S));
4811   case Stmt::ReturnStmtClass:
4812     return visitReturnStmt(cast<ReturnStmt>(S));
4813   case Stmt::IfStmtClass:
4814     return visitIfStmt(cast<IfStmt>(S));
4815   case Stmt::WhileStmtClass:
4816     return visitWhileStmt(cast<WhileStmt>(S));
4817   case Stmt::DoStmtClass:
4818     return visitDoStmt(cast<DoStmt>(S));
4819   case Stmt::ForStmtClass:
4820     return visitForStmt(cast<ForStmt>(S));
4821   case Stmt::CXXForRangeStmtClass:
4822     return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
4823   case Stmt::BreakStmtClass:
4824     return visitBreakStmt(cast<BreakStmt>(S));
4825   case Stmt::ContinueStmtClass:
4826     return visitContinueStmt(cast<ContinueStmt>(S));
4827   case Stmt::SwitchStmtClass:
4828     return visitSwitchStmt(cast<SwitchStmt>(S));
4829   case Stmt::CaseStmtClass:
4830     return visitCaseStmt(cast<CaseStmt>(S));
4831   case Stmt::DefaultStmtClass:
4832     return visitDefaultStmt(cast<DefaultStmt>(S));
4833   case Stmt::AttributedStmtClass:
4834     return visitAttributedStmt(cast<AttributedStmt>(S));
4835   case Stmt::CXXTryStmtClass:
4836     return visitCXXTryStmt(cast<CXXTryStmt>(S));
4837   case Stmt::NullStmtClass:
4838     return true;
4839   // Always invalid statements.
4840   case Stmt::GCCAsmStmtClass:
4841   case Stmt::MSAsmStmtClass:
4842   case Stmt::GotoStmtClass:
4843     return this->emitInvalid(S);
4844   case Stmt::LabelStmtClass:
4845     return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
4846   default: {
4847     if (const auto *E = dyn_cast<Expr>(S))
4848       return this->discard(E);
4849     return false;
4850   }
4851   }
4852 }
4853 
4854 template <class Emitter>
4855 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
4856   BlockScope<Emitter> Scope(this);
4857   for (const auto *InnerStmt : S->body())
4858     if (!visitStmt(InnerStmt))
4859       return false;
4860   return Scope.destroyLocals();
4861 }
4862 
4863 template <class Emitter>
4864 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
4865   for (const auto *D : DS->decls()) {
4866     if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
4867             FunctionDecl>(D))
4868       continue;
4869 
4870     const auto *VD = dyn_cast<VarDecl>(D);
4871     if (!VD)
4872       return false;
4873     if (!this->visitVarDecl(VD))
4874       return false;
4875   }
4876 
4877   return true;
4878 }
4879 
4880 template <class Emitter>
4881 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
4882   if (this->InStmtExpr)
4883     return this->emitUnsupported(RS);
4884 
4885   if (const Expr *RE = RS->getRetValue()) {
4886     LocalScope<Emitter> RetScope(this);
4887     if (ReturnType) {
4888       // Primitive types are simply returned.
4889       if (!this->visit(RE))
4890         return false;
4891       this->emitCleanup();
4892       return this->emitRet(*ReturnType, RS);
4893     } else if (RE->getType()->isVoidType()) {
4894       if (!this->visit(RE))
4895         return false;
4896     } else {
4897       // RVO - construct the value in the return location.
4898       if (!this->emitRVOPtr(RE))
4899         return false;
4900       if (!this->visitInitializer(RE))
4901         return false;
4902       if (!this->emitPopPtr(RE))
4903         return false;
4904 
4905       this->emitCleanup();
4906       return this->emitRetVoid(RS);
4907     }
4908   }
4909 
4910   // Void return.
4911   this->emitCleanup();
4912   return this->emitRetVoid(RS);
4913 }
4914 
4915 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
4916   if (auto *CondInit = IS->getInit())
4917     if (!visitStmt(CondInit))
4918       return false;
4919 
4920   if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
4921     if (!visitDeclStmt(CondDecl))
4922       return false;
4923 
4924   // Compile condition.
4925   if (IS->isNonNegatedConsteval()) {
4926     if (!this->emitIsConstantContext(IS))
4927       return false;
4928   } else if (IS->isNegatedConsteval()) {
4929     if (!this->emitIsConstantContext(IS))
4930       return false;
4931     if (!this->emitInv(IS))
4932       return false;
4933   } else {
4934     if (!this->visitBool(IS->getCond()))
4935       return false;
4936   }
4937 
4938   if (const Stmt *Else = IS->getElse()) {
4939     LabelTy LabelElse = this->getLabel();
4940     LabelTy LabelEnd = this->getLabel();
4941     if (!this->jumpFalse(LabelElse))
4942       return false;
4943     if (!visitStmt(IS->getThen()))
4944       return false;
4945     if (!this->jump(LabelEnd))
4946       return false;
4947     this->emitLabel(LabelElse);
4948     if (!visitStmt(Else))
4949       return false;
4950     this->emitLabel(LabelEnd);
4951   } else {
4952     LabelTy LabelEnd = this->getLabel();
4953     if (!this->jumpFalse(LabelEnd))
4954       return false;
4955     if (!visitStmt(IS->getThen()))
4956       return false;
4957     this->emitLabel(LabelEnd);
4958   }
4959 
4960   return true;
4961 }
4962 
4963 template <class Emitter>
4964 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
4965   const Expr *Cond = S->getCond();
4966   const Stmt *Body = S->getBody();
4967 
4968   LabelTy CondLabel = this->getLabel(); // Label before the condition.
4969   LabelTy EndLabel = this->getLabel();  // Label after the loop.
4970   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4971 
4972   this->fallthrough(CondLabel);
4973   this->emitLabel(CondLabel);
4974 
4975   {
4976     LocalScope<Emitter> CondScope(this);
4977     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4978       if (!visitDeclStmt(CondDecl))
4979         return false;
4980 
4981     if (!this->visitBool(Cond))
4982       return false;
4983     if (!this->jumpFalse(EndLabel))
4984       return false;
4985 
4986     if (!this->visitStmt(Body))
4987       return false;
4988 
4989     if (!CondScope.destroyLocals())
4990       return false;
4991   }
4992   if (!this->jump(CondLabel))
4993     return false;
4994   this->fallthrough(EndLabel);
4995   this->emitLabel(EndLabel);
4996 
4997   return true;
4998 }
4999 
5000 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
5001   const Expr *Cond = S->getCond();
5002   const Stmt *Body = S->getBody();
5003 
5004   LabelTy StartLabel = this->getLabel();
5005   LabelTy EndLabel = this->getLabel();
5006   LabelTy CondLabel = this->getLabel();
5007   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
5008 
5009   this->fallthrough(StartLabel);
5010   this->emitLabel(StartLabel);
5011 
5012   {
5013     LocalScope<Emitter> CondScope(this);
5014     if (!this->visitStmt(Body))
5015       return false;
5016     this->fallthrough(CondLabel);
5017     this->emitLabel(CondLabel);
5018     if (!this->visitBool(Cond))
5019       return false;
5020 
5021     if (!CondScope.destroyLocals())
5022       return false;
5023   }
5024   if (!this->jumpTrue(StartLabel))
5025     return false;
5026 
5027   this->fallthrough(EndLabel);
5028   this->emitLabel(EndLabel);
5029   return true;
5030 }
5031 
5032 template <class Emitter>
5033 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
5034   // for (Init; Cond; Inc) { Body }
5035   const Stmt *Init = S->getInit();
5036   const Expr *Cond = S->getCond();
5037   const Expr *Inc = S->getInc();
5038   const Stmt *Body = S->getBody();
5039 
5040   LabelTy EndLabel = this->getLabel();
5041   LabelTy CondLabel = this->getLabel();
5042   LabelTy IncLabel = this->getLabel();
5043   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
5044 
5045   if (Init && !this->visitStmt(Init))
5046     return false;
5047 
5048   this->fallthrough(CondLabel);
5049   this->emitLabel(CondLabel);
5050 
5051   {
5052     LocalScope<Emitter> CondScope(this);
5053     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
5054       if (!visitDeclStmt(CondDecl))
5055         return false;
5056 
5057     if (Cond) {
5058       if (!this->visitBool(Cond))
5059         return false;
5060       if (!this->jumpFalse(EndLabel))
5061         return false;
5062     }
5063 
5064     if (Body && !this->visitStmt(Body))
5065       return false;
5066 
5067     this->fallthrough(IncLabel);
5068     this->emitLabel(IncLabel);
5069     if (Inc && !this->discard(Inc))
5070       return false;
5071 
5072     if (!CondScope.destroyLocals())
5073       return false;
5074   }
5075   if (!this->jump(CondLabel))
5076     return false;
5077 
5078   this->fallthrough(EndLabel);
5079   this->emitLabel(EndLabel);
5080   return true;
5081 }
5082 
5083 template <class Emitter>
5084 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
5085   const Stmt *Init = S->getInit();
5086   const Expr *Cond = S->getCond();
5087   const Expr *Inc = S->getInc();
5088   const Stmt *Body = S->getBody();
5089   const Stmt *BeginStmt = S->getBeginStmt();
5090   const Stmt *RangeStmt = S->getRangeStmt();
5091   const Stmt *EndStmt = S->getEndStmt();
5092   const VarDecl *LoopVar = S->getLoopVariable();
5093 
5094   LabelTy EndLabel = this->getLabel();
5095   LabelTy CondLabel = this->getLabel();
5096   LabelTy IncLabel = this->getLabel();
5097   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
5098 
5099   // Emit declarations needed in the loop.
5100   if (Init && !this->visitStmt(Init))
5101     return false;
5102   if (!this->visitStmt(RangeStmt))
5103     return false;
5104   if (!this->visitStmt(BeginStmt))
5105     return false;
5106   if (!this->visitStmt(EndStmt))
5107     return false;
5108 
5109   // Now the condition as well as the loop variable assignment.
5110   this->fallthrough(CondLabel);
5111   this->emitLabel(CondLabel);
5112   if (!this->visitBool(Cond))
5113     return false;
5114   if (!this->jumpFalse(EndLabel))
5115     return false;
5116 
5117   if (!this->visitVarDecl(LoopVar))
5118     return false;
5119 
5120   // Body.
5121   {
5122     if (!this->visitStmt(Body))
5123       return false;
5124 
5125     this->fallthrough(IncLabel);
5126     this->emitLabel(IncLabel);
5127     if (!this->discard(Inc))
5128       return false;
5129   }
5130 
5131   if (!this->jump(CondLabel))
5132     return false;
5133 
5134   this->fallthrough(EndLabel);
5135   this->emitLabel(EndLabel);
5136   return true;
5137 }
5138 
5139 template <class Emitter>
5140 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
5141   if (!BreakLabel)
5142     return false;
5143 
5144   for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope;
5145        C = C->getParent())
5146     C->emitDestruction();
5147   return this->jump(*BreakLabel);
5148 }
5149 
5150 template <class Emitter>
5151 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
5152   if (!ContinueLabel)
5153     return false;
5154 
5155   for (VariableScope<Emitter> *C = VarScope;
5156        C && C->getParent() != ContinueVarScope; C = C->getParent())
5157     C->emitDestruction();
5158   return this->jump(*ContinueLabel);
5159 }
5160 
5161 template <class Emitter>
5162 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
5163   const Expr *Cond = S->getCond();
5164   PrimType CondT = this->classifyPrim(Cond->getType());
5165   LocalScope<Emitter> LS(this);
5166 
5167   LabelTy EndLabel = this->getLabel();
5168   OptLabelTy DefaultLabel = std::nullopt;
5169   unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
5170 
5171   if (const auto *CondInit = S->getInit())
5172     if (!visitStmt(CondInit))
5173       return false;
5174 
5175   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
5176     if (!visitDeclStmt(CondDecl))
5177       return false;
5178 
5179   // Initialize condition variable.
5180   if (!this->visit(Cond))
5181     return false;
5182   if (!this->emitSetLocal(CondT, CondVar, S))
5183     return false;
5184 
5185   CaseMap CaseLabels;
5186   // Create labels and comparison ops for all case statements.
5187   for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
5188        SC = SC->getNextSwitchCase()) {
5189     if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
5190       // FIXME: Implement ranges.
5191       if (CS->caseStmtIsGNURange())
5192         return false;
5193       CaseLabels[SC] = this->getLabel();
5194 
5195       const Expr *Value = CS->getLHS();
5196       PrimType ValueT = this->classifyPrim(Value->getType());
5197 
5198       // Compare the case statement's value to the switch condition.
5199       if (!this->emitGetLocal(CondT, CondVar, CS))
5200         return false;
5201       if (!this->visit(Value))
5202         return false;
5203 
5204       // Compare and jump to the case label.
5205       if (!this->emitEQ(ValueT, S))
5206         return false;
5207       if (!this->jumpTrue(CaseLabels[CS]))
5208         return false;
5209     } else {
5210       assert(!DefaultLabel);
5211       DefaultLabel = this->getLabel();
5212     }
5213   }
5214 
5215   // If none of the conditions above were true, fall through to the default
5216   // statement or jump after the switch statement.
5217   if (DefaultLabel) {
5218     if (!this->jump(*DefaultLabel))
5219       return false;
5220   } else {
5221     if (!this->jump(EndLabel))
5222       return false;
5223   }
5224 
5225   SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
5226   if (!this->visitStmt(S->getBody()))
5227     return false;
5228   this->emitLabel(EndLabel);
5229 
5230   return LS.destroyLocals();
5231 }
5232 
5233 template <class Emitter>
5234 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
5235   this->emitLabel(CaseLabels[S]);
5236   return this->visitStmt(S->getSubStmt());
5237 }
5238 
5239 template <class Emitter>
5240 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
5241   this->emitLabel(*DefaultLabel);
5242   return this->visitStmt(S->getSubStmt());
5243 }
5244 
5245 template <class Emitter>
5246 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
5247   if (this->Ctx.getLangOpts().CXXAssumptions &&
5248       !this->Ctx.getLangOpts().MSVCCompat) {
5249     for (const Attr *A : S->getAttrs()) {
5250       auto *AA = dyn_cast<CXXAssumeAttr>(A);
5251       if (!AA)
5252         continue;
5253 
5254       assert(isa<NullStmt>(S->getSubStmt()));
5255 
5256       const Expr *Assumption = AA->getAssumption();
5257       if (Assumption->isValueDependent())
5258         return false;
5259 
5260       if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
5261         continue;
5262 
5263       // Evaluate assumption.
5264       if (!this->visitBool(Assumption))
5265         return false;
5266 
5267       if (!this->emitAssume(Assumption))
5268         return false;
5269     }
5270   }
5271 
5272   // Ignore other attributes.
5273   return this->visitStmt(S->getSubStmt());
5274 }
5275 
5276 template <class Emitter>
5277 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
5278   // Ignore all handlers.
5279   return this->visitStmt(S->getTryBlock());
5280 }
5281 
5282 template <class Emitter>
5283 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
5284   assert(MD->isLambdaStaticInvoker());
5285   assert(MD->hasBody());
5286   assert(cast<CompoundStmt>(MD->getBody())->body_empty());
5287 
5288   const CXXRecordDecl *ClosureClass = MD->getParent();
5289   const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
5290   assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
5291   const Function *Func = this->getFunction(LambdaCallOp);
5292   if (!Func)
5293     return false;
5294   assert(Func->hasThisPointer());
5295   assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
5296 
5297   if (Func->hasRVO()) {
5298     if (!this->emitRVOPtr(MD))
5299       return false;
5300   }
5301 
5302   // The lambda call operator needs an instance pointer, but we don't have
5303   // one here, and we don't need one either because the lambda cannot have
5304   // any captures, as verified above. Emit a null pointer. This is then
5305   // special-cased when interpreting to not emit any misleading diagnostics.
5306   if (!this->emitNullPtr(nullptr, MD))
5307     return false;
5308 
5309   // Forward all arguments from the static invoker to the lambda call operator.
5310   for (const ParmVarDecl *PVD : MD->parameters()) {
5311     auto It = this->Params.find(PVD);
5312     assert(It != this->Params.end());
5313 
5314     // We do the lvalue-to-rvalue conversion manually here, so no need
5315     // to care about references.
5316     PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
5317     if (!this->emitGetParam(ParamType, It->second.Offset, MD))
5318       return false;
5319   }
5320 
5321   if (!this->emitCall(Func, 0, LambdaCallOp))
5322     return false;
5323 
5324   this->emitCleanup();
5325   if (ReturnType)
5326     return this->emitRet(*ReturnType, MD);
5327 
5328   // Nothing to do, since we emitted the RVO pointer above.
5329   return this->emitRetVoid(MD);
5330 }
5331 
5332 template <class Emitter>
5333 bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
5334   if (Ctx.getLangOpts().CPlusPlus23)
5335     return true;
5336 
5337   if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
5338     return true;
5339 
5340   return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
5341 }
5342 
5343 template <class Emitter>
5344 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
5345   assert(!ReturnType);
5346 
5347   auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
5348                                   const Expr *InitExpr) -> bool {
5349     // We don't know what to do with these, so just return false.
5350     if (InitExpr->getType().isNull())
5351       return false;
5352 
5353     if (std::optional<PrimType> T = this->classify(InitExpr)) {
5354       if (!this->visit(InitExpr))
5355         return false;
5356 
5357       if (F->isBitField())
5358         return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
5359       return this->emitInitThisField(*T, FieldOffset, InitExpr);
5360     }
5361     // Non-primitive case. Get a pointer to the field-to-initialize
5362     // on the stack and call visitInitialzer() for it.
5363     InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
5364     if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
5365       return false;
5366 
5367     if (!this->visitInitializer(InitExpr))
5368       return false;
5369 
5370     return this->emitFinishInitPop(InitExpr);
5371   };
5372 
5373   const RecordDecl *RD = Ctor->getParent();
5374   const Record *R = this->getRecord(RD);
5375   if (!R)
5376     return false;
5377 
5378   if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
5379     // union copy and move ctors are special.
5380     assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
5381     if (!this->emitThis(Ctor))
5382       return false;
5383 
5384     auto PVD = Ctor->getParamDecl(0);
5385     ParamOffset PO = this->Params[PVD]; // Must exist.
5386 
5387     if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
5388       return false;
5389 
5390     return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
5391            this->emitRetVoid(Ctor);
5392   }
5393 
5394   InitLinkScope<Emitter> InitScope(this, InitLink::This());
5395   for (const auto *Init : Ctor->inits()) {
5396     // Scope needed for the initializers.
5397     BlockScope<Emitter> Scope(this);
5398 
5399     const Expr *InitExpr = Init->getInit();
5400     if (const FieldDecl *Member = Init->getMember()) {
5401       const Record::Field *F = R->getField(Member);
5402 
5403       if (!emitFieldInitializer(F, F->Offset, InitExpr))
5404         return false;
5405     } else if (const Type *Base = Init->getBaseClass()) {
5406       const auto *BaseDecl = Base->getAsCXXRecordDecl();
5407       assert(BaseDecl);
5408 
5409       if (Init->isBaseVirtual()) {
5410         assert(R->getVirtualBase(BaseDecl));
5411         if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
5412           return false;
5413 
5414       } else {
5415         // Base class initializer.
5416         // Get This Base and call initializer on it.
5417         const Record::Base *B = R->getBase(BaseDecl);
5418         assert(B);
5419         if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
5420           return false;
5421       }
5422 
5423       if (!this->visitInitializer(InitExpr))
5424         return false;
5425       if (!this->emitFinishInitPop(InitExpr))
5426         return false;
5427     } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
5428       assert(IFD->getChainingSize() >= 2);
5429 
5430       unsigned NestedFieldOffset = 0;
5431       const Record::Field *NestedField = nullptr;
5432       for (const NamedDecl *ND : IFD->chain()) {
5433         const auto *FD = cast<FieldDecl>(ND);
5434         const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
5435         assert(FieldRecord);
5436 
5437         NestedField = FieldRecord->getField(FD);
5438         assert(NestedField);
5439 
5440         NestedFieldOffset += NestedField->Offset;
5441       }
5442       assert(NestedField);
5443 
5444       if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
5445         return false;
5446     } else {
5447       assert(Init->isDelegatingInitializer());
5448       if (!this->emitThis(InitExpr))
5449         return false;
5450       if (!this->visitInitializer(Init->getInit()))
5451         return false;
5452       if (!this->emitPopPtr(InitExpr))
5453         return false;
5454     }
5455 
5456     if (!Scope.destroyLocals())
5457       return false;
5458   }
5459 
5460   if (const auto *Body = Ctor->getBody())
5461     if (!visitStmt(Body))
5462       return false;
5463 
5464   return this->emitRetVoid(SourceInfo{});
5465 }
5466 
5467 template <class Emitter>
5468 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
5469   const RecordDecl *RD = Dtor->getParent();
5470   const Record *R = this->getRecord(RD);
5471   if (!R)
5472     return false;
5473 
5474   if (!Dtor->isTrivial() && Dtor->getBody()) {
5475     if (!this->visitStmt(Dtor->getBody()))
5476       return false;
5477   }
5478 
5479   if (!this->emitThis(Dtor))
5480     return false;
5481 
5482   assert(R);
5483   if (!R->isUnion()) {
5484     // First, destroy all fields.
5485     for (const Record::Field &Field : llvm::reverse(R->fields())) {
5486       const Descriptor *D = Field.Desc;
5487       if (!D->isPrimitive() && !D->isPrimitiveArray()) {
5488         if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
5489           return false;
5490         if (!this->emitDestruction(D, SourceInfo{}))
5491           return false;
5492         if (!this->emitPopPtr(SourceInfo{}))
5493           return false;
5494       }
5495     }
5496   }
5497 
5498   for (const Record::Base &Base : llvm::reverse(R->bases())) {
5499     if (Base.R->isAnonymousUnion())
5500       continue;
5501 
5502     if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
5503       return false;
5504     if (!this->emitRecordDestruction(Base.R, {}))
5505       return false;
5506     if (!this->emitPopPtr(SourceInfo{}))
5507       return false;
5508   }
5509 
5510   // FIXME: Virtual bases.
5511   return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
5512 }
5513 
5514 template <class Emitter>
5515 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
5516   // Classify the return type.
5517   ReturnType = this->classify(F->getReturnType());
5518 
5519   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
5520     return this->compileConstructor(Ctor);
5521   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
5522     return this->compileDestructor(Dtor);
5523 
5524   // Emit custom code if this is a lambda static invoker.
5525   if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
5526       MD && MD->isLambdaStaticInvoker())
5527     return this->emitLambdaStaticInvokerBody(MD);
5528 
5529   // Regular functions.
5530   if (const auto *Body = F->getBody())
5531     if (!visitStmt(Body))
5532       return false;
5533 
5534   // Emit a guard return to protect against a code path missing one.
5535   if (F->getReturnType()->isVoidType())
5536     return this->emitRetVoid(SourceInfo{});
5537   return this->emitNoRet(SourceInfo{});
5538 }
5539 
5540 template <class Emitter>
5541 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
5542   const Expr *SubExpr = E->getSubExpr();
5543   if (SubExpr->getType()->isAnyComplexType())
5544     return this->VisitComplexUnaryOperator(E);
5545   if (SubExpr->getType()->isVectorType())
5546     return this->VisitVectorUnaryOperator(E);
5547   if (SubExpr->getType()->isFixedPointType())
5548     return this->VisitFixedPointUnaryOperator(E);
5549   std::optional<PrimType> T = classify(SubExpr->getType());
5550 
5551   switch (E->getOpcode()) {
5552   case UO_PostInc: { // x++
5553     if (!Ctx.getLangOpts().CPlusPlus14)
5554       return this->emitInvalid(E);
5555     if (!T)
5556       return this->emitError(E);
5557 
5558     if (!this->visit(SubExpr))
5559       return false;
5560 
5561     if (T == PT_Ptr || T == PT_FnPtr) {
5562       if (!this->emitIncPtr(E))
5563         return false;
5564 
5565       return DiscardResult ? this->emitPopPtr(E) : true;
5566     }
5567 
5568     if (T == PT_Float) {
5569       return DiscardResult ? this->emitIncfPop(getFPOptions(E), E)
5570                            : this->emitIncf(getFPOptions(E), E);
5571     }
5572 
5573     return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
5574   }
5575   case UO_PostDec: { // x--
5576     if (!Ctx.getLangOpts().CPlusPlus14)
5577       return this->emitInvalid(E);
5578     if (!T)
5579       return this->emitError(E);
5580 
5581     if (!this->visit(SubExpr))
5582       return false;
5583 
5584     if (T == PT_Ptr || T == PT_FnPtr) {
5585       if (!this->emitDecPtr(E))
5586         return false;
5587 
5588       return DiscardResult ? this->emitPopPtr(E) : true;
5589     }
5590 
5591     if (T == PT_Float) {
5592       return DiscardResult ? this->emitDecfPop(getFPOptions(E), E)
5593                            : this->emitDecf(getFPOptions(E), E);
5594     }
5595 
5596     return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
5597   }
5598   case UO_PreInc: { // ++x
5599     if (!Ctx.getLangOpts().CPlusPlus14)
5600       return this->emitInvalid(E);
5601     if (!T)
5602       return this->emitError(E);
5603 
5604     if (!this->visit(SubExpr))
5605       return false;
5606 
5607     if (T == PT_Ptr || T == PT_FnPtr) {
5608       if (!this->emitLoadPtr(E))
5609         return false;
5610       if (!this->emitConstUint8(1, E))
5611         return false;
5612       if (!this->emitAddOffsetUint8(E))
5613         return false;
5614       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5615     }
5616 
5617     // Post-inc and pre-inc are the same if the value is to be discarded.
5618     if (DiscardResult) {
5619       if (T == PT_Float)
5620         return this->emitIncfPop(getFPOptions(E), E);
5621       return this->emitIncPop(*T, E);
5622     }
5623 
5624     if (T == PT_Float) {
5625       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5626       if (!this->emitLoadFloat(E))
5627         return false;
5628       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5629         return false;
5630       if (!this->emitAddf(getFPOptions(E), E))
5631         return false;
5632       if (!this->emitStoreFloat(E))
5633         return false;
5634     } else {
5635       assert(isIntegralType(*T));
5636       if (!this->emitLoad(*T, E))
5637         return false;
5638       if (!this->emitConst(1, E))
5639         return false;
5640       if (!this->emitAdd(*T, E))
5641         return false;
5642       if (!this->emitStore(*T, E))
5643         return false;
5644     }
5645     return E->isGLValue() || this->emitLoadPop(*T, E);
5646   }
5647   case UO_PreDec: { // --x
5648     if (!Ctx.getLangOpts().CPlusPlus14)
5649       return this->emitInvalid(E);
5650     if (!T)
5651       return this->emitError(E);
5652 
5653     if (!this->visit(SubExpr))
5654       return false;
5655 
5656     if (T == PT_Ptr || T == PT_FnPtr) {
5657       if (!this->emitLoadPtr(E))
5658         return false;
5659       if (!this->emitConstUint8(1, E))
5660         return false;
5661       if (!this->emitSubOffsetUint8(E))
5662         return false;
5663       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5664     }
5665 
5666     // Post-dec and pre-dec are the same if the value is to be discarded.
5667     if (DiscardResult) {
5668       if (T == PT_Float)
5669         return this->emitDecfPop(getFPOptions(E), E);
5670       return this->emitDecPop(*T, E);
5671     }
5672 
5673     if (T == PT_Float) {
5674       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5675       if (!this->emitLoadFloat(E))
5676         return false;
5677       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5678         return false;
5679       if (!this->emitSubf(getFPOptions(E), E))
5680         return false;
5681       if (!this->emitStoreFloat(E))
5682         return false;
5683     } else {
5684       assert(isIntegralType(*T));
5685       if (!this->emitLoad(*T, E))
5686         return false;
5687       if (!this->emitConst(1, E))
5688         return false;
5689       if (!this->emitSub(*T, E))
5690         return false;
5691       if (!this->emitStore(*T, E))
5692         return false;
5693     }
5694     return E->isGLValue() || this->emitLoadPop(*T, E);
5695   }
5696   case UO_LNot: // !x
5697     if (!T)
5698       return this->emitError(E);
5699 
5700     if (DiscardResult)
5701       return this->discard(SubExpr);
5702 
5703     if (!this->visitBool(SubExpr))
5704       return false;
5705 
5706     if (!this->emitInv(E))
5707       return false;
5708 
5709     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5710       return this->emitCast(PT_Bool, ET, E);
5711     return true;
5712   case UO_Minus: // -x
5713     if (!T)
5714       return this->emitError(E);
5715 
5716     if (!this->visit(SubExpr))
5717       return false;
5718     return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
5719   case UO_Plus: // +x
5720     if (!T)
5721       return this->emitError(E);
5722 
5723     if (!this->visit(SubExpr)) // noop
5724       return false;
5725     return DiscardResult ? this->emitPop(*T, E) : true;
5726   case UO_AddrOf: // &x
5727     if (E->getType()->isMemberPointerType()) {
5728       // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5729       // member can be formed.
5730       return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
5731     }
5732     // We should already have a pointer when we get here.
5733     return this->delegate(SubExpr);
5734   case UO_Deref: // *x
5735     if (DiscardResult) {
5736       // assert(false);
5737       return this->discard(SubExpr);
5738     }
5739 
5740     if (!this->visit(SubExpr))
5741       return false;
5742     if (classifyPrim(SubExpr) == PT_Ptr)
5743       return this->emitNarrowPtr(E);
5744     return true;
5745 
5746   case UO_Not: // ~x
5747     if (!T)
5748       return this->emitError(E);
5749 
5750     if (!this->visit(SubExpr))
5751       return false;
5752     return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
5753   case UO_Real: // __real x
5754     assert(T);
5755     return this->delegate(SubExpr);
5756   case UO_Imag: { // __imag x
5757     assert(T);
5758     if (!this->discard(SubExpr))
5759       return false;
5760     return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
5761   }
5762   case UO_Extension:
5763     return this->delegate(SubExpr);
5764   case UO_Coawait:
5765     assert(false && "Unhandled opcode");
5766   }
5767 
5768   return false;
5769 }
5770 
5771 template <class Emitter>
5772 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
5773   const Expr *SubExpr = E->getSubExpr();
5774   assert(SubExpr->getType()->isAnyComplexType());
5775 
5776   if (DiscardResult)
5777     return this->discard(SubExpr);
5778 
5779   std::optional<PrimType> ResT = classify(E);
5780   auto prepareResult = [=]() -> bool {
5781     if (!ResT && !Initializing) {
5782       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5783       if (!LocalIndex)
5784         return false;
5785       return this->emitGetPtrLocal(*LocalIndex, E);
5786     }
5787 
5788     return true;
5789   };
5790 
5791   // The offset of the temporary, if we created one.
5792   unsigned SubExprOffset = ~0u;
5793   auto createTemp = [=, &SubExprOffset]() -> bool {
5794     SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5795     if (!this->visit(SubExpr))
5796       return false;
5797     return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
5798   };
5799 
5800   PrimType ElemT = classifyComplexElementType(SubExpr->getType());
5801   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5802     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5803       return false;
5804     return this->emitArrayElemPop(ElemT, Index, E);
5805   };
5806 
5807   switch (E->getOpcode()) {
5808   case UO_Minus:
5809     if (!prepareResult())
5810       return false;
5811     if (!createTemp())
5812       return false;
5813     for (unsigned I = 0; I != 2; ++I) {
5814       if (!getElem(SubExprOffset, I))
5815         return false;
5816       if (!this->emitNeg(ElemT, E))
5817         return false;
5818       if (!this->emitInitElem(ElemT, I, E))
5819         return false;
5820     }
5821     break;
5822 
5823   case UO_Plus:   // +x
5824   case UO_AddrOf: // &x
5825   case UO_Deref:  // *x
5826     return this->delegate(SubExpr);
5827 
5828   case UO_LNot:
5829     if (!this->visit(SubExpr))
5830       return false;
5831     if (!this->emitComplexBoolCast(SubExpr))
5832       return false;
5833     if (!this->emitInv(E))
5834       return false;
5835     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5836       return this->emitCast(PT_Bool, ET, E);
5837     return true;
5838 
5839   case UO_Real:
5840     return this->emitComplexReal(SubExpr);
5841 
5842   case UO_Imag:
5843     if (!this->visit(SubExpr))
5844       return false;
5845 
5846     if (SubExpr->isLValue()) {
5847       if (!this->emitConstUint8(1, E))
5848         return false;
5849       return this->emitArrayElemPtrPopUint8(E);
5850     }
5851 
5852     // Since our _Complex implementation does not map to a primitive type,
5853     // we sometimes have to do the lvalue-to-rvalue conversion here manually.
5854     return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
5855 
5856   case UO_Not: // ~x
5857     if (!this->visit(SubExpr))
5858       return false;
5859     // Negate the imaginary component.
5860     if (!this->emitArrayElem(ElemT, 1, E))
5861       return false;
5862     if (!this->emitNeg(ElemT, E))
5863       return false;
5864     if (!this->emitInitElem(ElemT, 1, E))
5865       return false;
5866     return DiscardResult ? this->emitPopPtr(E) : true;
5867 
5868   case UO_Extension:
5869     return this->delegate(SubExpr);
5870 
5871   default:
5872     return this->emitInvalid(E);
5873   }
5874 
5875   return true;
5876 }
5877 
5878 template <class Emitter>
5879 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) {
5880   const Expr *SubExpr = E->getSubExpr();
5881   assert(SubExpr->getType()->isVectorType());
5882 
5883   if (DiscardResult)
5884     return this->discard(SubExpr);
5885 
5886   auto UnaryOp = E->getOpcode();
5887   if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot &&
5888       UnaryOp != UO_Not && UnaryOp != UO_AddrOf)
5889     return this->emitInvalid(E);
5890 
5891   // Nothing to do here.
5892   if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf)
5893     return this->delegate(SubExpr);
5894 
5895   if (!Initializing) {
5896     std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5897     if (!LocalIndex)
5898       return false;
5899     if (!this->emitGetPtrLocal(*LocalIndex, E))
5900       return false;
5901   }
5902 
5903   // The offset of the temporary, if we created one.
5904   unsigned SubExprOffset =
5905       this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5906   if (!this->visit(SubExpr))
5907     return false;
5908   if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E))
5909     return false;
5910 
5911   const auto *VecTy = SubExpr->getType()->getAs<VectorType>();
5912   PrimType ElemT = classifyVectorElementType(SubExpr->getType());
5913   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5914     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5915       return false;
5916     return this->emitArrayElemPop(ElemT, Index, E);
5917   };
5918 
5919   switch (UnaryOp) {
5920   case UO_Minus:
5921     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5922       if (!getElem(SubExprOffset, I))
5923         return false;
5924       if (!this->emitNeg(ElemT, E))
5925         return false;
5926       if (!this->emitInitElem(ElemT, I, E))
5927         return false;
5928     }
5929     break;
5930   case UO_LNot: { // !x
5931     // In C++, the logic operators !, &&, || are available for vectors. !v is
5932     // equivalent to v == 0.
5933     //
5934     // The result of the comparison is a vector of the same width and number of
5935     // elements as the comparison operands with a signed integral element type.
5936     //
5937     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
5938     QualType ResultVecTy = E->getType();
5939     PrimType ResultVecElemT =
5940         classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType());
5941     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5942       if (!getElem(SubExprOffset, I))
5943         return false;
5944       // operator ! on vectors returns -1 for 'truth', so negate it.
5945       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
5946         return false;
5947       if (!this->emitInv(E))
5948         return false;
5949       if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E))
5950         return false;
5951       if (!this->emitNeg(ElemT, E))
5952         return false;
5953       if (ElemT != ResultVecElemT &&
5954           !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E))
5955         return false;
5956       if (!this->emitInitElem(ResultVecElemT, I, E))
5957         return false;
5958     }
5959     break;
5960   }
5961   case UO_Not: // ~x
5962     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5963       if (!getElem(SubExprOffset, I))
5964         return false;
5965       if (ElemT == PT_Bool) {
5966         if (!this->emitInv(E))
5967           return false;
5968       } else {
5969         if (!this->emitComp(ElemT, E))
5970           return false;
5971       }
5972       if (!this->emitInitElem(ElemT, I, E))
5973         return false;
5974     }
5975     break;
5976   default:
5977     llvm_unreachable("Unsupported unary operators should be handled up front");
5978   }
5979   return true;
5980 }
5981 
5982 template <class Emitter>
5983 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
5984   if (DiscardResult)
5985     return true;
5986 
5987   if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
5988     return this->emitConst(ECD->getInitVal(), E);
5989   } else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
5990     return this->visit(BD->getBinding());
5991   } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
5992     const Function *F = getFunction(FuncDecl);
5993     return F && this->emitGetFnPtr(F, E);
5994   } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
5995     if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
5996       if (!this->emitGetPtrGlobal(*Index, E))
5997         return false;
5998       if (std::optional<PrimType> T = classify(E->getType())) {
5999         if (!this->visitAPValue(TPOD->getValue(), *T, E))
6000           return false;
6001         return this->emitInitGlobal(*T, *Index, E);
6002       }
6003       return this->visitAPValueInitializer(TPOD->getValue(), E);
6004     }
6005     return false;
6006   }
6007 
6008   // References are implemented via pointers, so when we see a DeclRefExpr
6009   // pointing to a reference, we need to get its value directly (i.e. the
6010   // pointer to the actual value) instead of a pointer to the pointer to the
6011   // value.
6012   bool IsReference = D->getType()->isReferenceType();
6013 
6014   // Check for local/global variables and parameters.
6015   if (auto It = Locals.find(D); It != Locals.end()) {
6016     const unsigned Offset = It->second.Offset;
6017     if (IsReference)
6018       return this->emitGetLocal(PT_Ptr, Offset, E);
6019     return this->emitGetPtrLocal(Offset, E);
6020   } else if (auto GlobalIndex = P.getGlobal(D)) {
6021     if (IsReference) {
6022       if (!Ctx.getLangOpts().CPlusPlus11)
6023         return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
6024       return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
6025     }
6026 
6027     return this->emitGetPtrGlobal(*GlobalIndex, E);
6028   } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
6029     if (auto It = this->Params.find(PVD); It != this->Params.end()) {
6030       if (IsReference || !It->second.IsPtr)
6031         return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
6032 
6033       return this->emitGetPtrParam(It->second.Offset, E);
6034     }
6035 
6036     if (D->getType()->isReferenceType())
6037       return false; // FIXME: Do we need to emit InvalidDeclRef?
6038   }
6039 
6040   // In case we need to re-visit a declaration.
6041   auto revisit = [&](const VarDecl *VD) -> bool {
6042     auto VarState = this->visitDecl(VD);
6043 
6044     if (VarState.notCreated())
6045       return true;
6046     if (!VarState)
6047       return false;
6048     // Retry.
6049     return this->visitDeclRef(D, E);
6050   };
6051 
6052   // Handle lambda captures.
6053   if (auto It = this->LambdaCaptures.find(D);
6054       It != this->LambdaCaptures.end()) {
6055     auto [Offset, IsPtr] = It->second;
6056 
6057     if (IsPtr)
6058       return this->emitGetThisFieldPtr(Offset, E);
6059     return this->emitGetPtrThisField(Offset, E);
6060   } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
6061              DRE && DRE->refersToEnclosingVariableOrCapture()) {
6062     if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
6063       return revisit(VD);
6064   }
6065 
6066   if (D != InitializingDecl) {
6067     // Try to lazily visit (or emit dummy pointers for) declarations
6068     // we haven't seen yet.
6069     if (Ctx.getLangOpts().CPlusPlus) {
6070       if (const auto *VD = dyn_cast<VarDecl>(D)) {
6071         const auto typeShouldBeVisited = [&](QualType T) -> bool {
6072           if (T.isConstant(Ctx.getASTContext()))
6073             return true;
6074           return T->isReferenceType();
6075         };
6076 
6077         // DecompositionDecls are just proxies for us.
6078         if (isa<DecompositionDecl>(VD))
6079           return revisit(VD);
6080 
6081         if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) &&
6082             typeShouldBeVisited(VD->getType()))
6083           return revisit(VD);
6084 
6085         // FIXME: The evaluateValue() check here is a little ridiculous, since
6086         // it will ultimately call into Context::evaluateAsInitializer(). In
6087         // other words, we're evaluating the initializer, just to know if we can
6088         // evaluate the initializer.
6089         if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) &&
6090             VD->getInit() && !VD->getInit()->isValueDependent()) {
6091 
6092           if (VD->evaluateValue())
6093             return revisit(VD);
6094 
6095           if (!D->getType()->isReferenceType())
6096             return this->emitDummyPtr(D, E);
6097 
6098           return this->emitInvalidDeclRef(cast<DeclRefExpr>(E),
6099                                           /*InitializerFailed=*/true, E);
6100         }
6101       }
6102     } else {
6103       if (const auto *VD = dyn_cast<VarDecl>(D);
6104           VD && VD->getAnyInitializer() &&
6105           VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
6106         return revisit(VD);
6107     }
6108   }
6109 
6110   return this->emitDummyPtr(D, E);
6111 }
6112 
6113 template <class Emitter>
6114 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
6115   const auto *D = E->getDecl();
6116   return this->visitDeclRef(D, E);
6117 }
6118 
6119 template <class Emitter> void Compiler<Emitter>::emitCleanup() {
6120   for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
6121     C->emitDestruction();
6122 }
6123 
6124 template <class Emitter>
6125 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
6126                                               const QualType DerivedType) {
6127   const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
6128     if (const auto *R = Ty->getPointeeCXXRecordDecl())
6129       return R;
6130     return Ty->getAsCXXRecordDecl();
6131   };
6132   const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
6133   const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
6134 
6135   return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
6136 }
6137 
6138 /// Emit casts from a PrimType to another PrimType.
6139 template <class Emitter>
6140 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
6141                                      QualType ToQT, const Expr *E) {
6142 
6143   if (FromT == PT_Float) {
6144     // Floating to floating.
6145     if (ToT == PT_Float) {
6146       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6147       return this->emitCastFP(ToSem, getRoundingMode(E), E);
6148     }
6149 
6150     if (ToT == PT_IntAP)
6151       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT),
6152                                               getFPOptions(E), E);
6153     if (ToT == PT_IntAPS)
6154       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT),
6155                                                getFPOptions(E), E);
6156 
6157     // Float to integral.
6158     if (isIntegralType(ToT) || ToT == PT_Bool)
6159       return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E);
6160   }
6161 
6162   if (isIntegralType(FromT) || FromT == PT_Bool) {
6163     if (ToT == PT_IntAP)
6164       return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
6165     if (ToT == PT_IntAPS)
6166       return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
6167 
6168     // Integral to integral.
6169     if (isIntegralType(ToT) || ToT == PT_Bool)
6170       return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
6171 
6172     if (ToT == PT_Float) {
6173       // Integral to floating.
6174       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6175       return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E);
6176     }
6177   }
6178 
6179   return false;
6180 }
6181 
6182 /// Emits __real(SubExpr)
6183 template <class Emitter>
6184 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
6185   assert(SubExpr->getType()->isAnyComplexType());
6186 
6187   if (DiscardResult)
6188     return this->discard(SubExpr);
6189 
6190   if (!this->visit(SubExpr))
6191     return false;
6192   if (SubExpr->isLValue()) {
6193     if (!this->emitConstUint8(0, SubExpr))
6194       return false;
6195     return this->emitArrayElemPtrPopUint8(SubExpr);
6196   }
6197 
6198   // Rvalue, load the actual element.
6199   return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
6200                                 0, SubExpr);
6201 }
6202 
6203 template <class Emitter>
6204 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
6205   assert(!DiscardResult);
6206   PrimType ElemT = classifyComplexElementType(E->getType());
6207   // We emit the expression (__real(E) != 0 || __imag(E) != 0)
6208   // for us, that means (bool)E[0] || (bool)E[1]
6209   if (!this->emitArrayElem(ElemT, 0, E))
6210     return false;
6211   if (ElemT == PT_Float) {
6212     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6213       return false;
6214   } else {
6215     if (!this->emitCast(ElemT, PT_Bool, E))
6216       return false;
6217   }
6218 
6219   // We now have the bool value of E[0] on the stack.
6220   LabelTy LabelTrue = this->getLabel();
6221   if (!this->jumpTrue(LabelTrue))
6222     return false;
6223 
6224   if (!this->emitArrayElemPop(ElemT, 1, E))
6225     return false;
6226   if (ElemT == PT_Float) {
6227     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6228       return false;
6229   } else {
6230     if (!this->emitCast(ElemT, PT_Bool, E))
6231       return false;
6232   }
6233   // Leave the boolean value of E[1] on the stack.
6234   LabelTy EndLabel = this->getLabel();
6235   this->jump(EndLabel);
6236 
6237   this->emitLabel(LabelTrue);
6238   if (!this->emitPopPtr(E))
6239     return false;
6240   if (!this->emitConstBool(true, E))
6241     return false;
6242 
6243   this->fallthrough(EndLabel);
6244   this->emitLabel(EndLabel);
6245 
6246   return true;
6247 }
6248 
6249 template <class Emitter>
6250 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
6251                                               const BinaryOperator *E) {
6252   assert(E->isComparisonOp());
6253   assert(!Initializing);
6254   assert(!DiscardResult);
6255 
6256   PrimType ElemT;
6257   bool LHSIsComplex;
6258   unsigned LHSOffset;
6259   if (LHS->getType()->isAnyComplexType()) {
6260     LHSIsComplex = true;
6261     ElemT = classifyComplexElementType(LHS->getType());
6262     LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
6263                                        /*IsExtended=*/false);
6264     if (!this->visit(LHS))
6265       return false;
6266     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
6267       return false;
6268   } else {
6269     LHSIsComplex = false;
6270     PrimType LHST = classifyPrim(LHS->getType());
6271     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
6272     if (!this->visit(LHS))
6273       return false;
6274     if (!this->emitSetLocal(LHST, LHSOffset, E))
6275       return false;
6276   }
6277 
6278   bool RHSIsComplex;
6279   unsigned RHSOffset;
6280   if (RHS->getType()->isAnyComplexType()) {
6281     RHSIsComplex = true;
6282     ElemT = classifyComplexElementType(RHS->getType());
6283     RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
6284                                        /*IsExtended=*/false);
6285     if (!this->visit(RHS))
6286       return false;
6287     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
6288       return false;
6289   } else {
6290     RHSIsComplex = false;
6291     PrimType RHST = classifyPrim(RHS->getType());
6292     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
6293     if (!this->visit(RHS))
6294       return false;
6295     if (!this->emitSetLocal(RHST, RHSOffset, E))
6296       return false;
6297   }
6298 
6299   auto getElem = [&](unsigned LocalOffset, unsigned Index,
6300                      bool IsComplex) -> bool {
6301     if (IsComplex) {
6302       if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
6303         return false;
6304       return this->emitArrayElemPop(ElemT, Index, E);
6305     }
6306     return this->emitGetLocal(ElemT, LocalOffset, E);
6307   };
6308 
6309   for (unsigned I = 0; I != 2; ++I) {
6310     // Get both values.
6311     if (!getElem(LHSOffset, I, LHSIsComplex))
6312       return false;
6313     if (!getElem(RHSOffset, I, RHSIsComplex))
6314       return false;
6315     // And compare them.
6316     if (!this->emitEQ(ElemT, E))
6317       return false;
6318 
6319     if (!this->emitCastBoolUint8(E))
6320       return false;
6321   }
6322 
6323   // We now have two bool values on the stack. Compare those.
6324   if (!this->emitAddUint8(E))
6325     return false;
6326   if (!this->emitConstUint8(2, E))
6327     return false;
6328 
6329   if (E->getOpcode() == BO_EQ) {
6330     if (!this->emitEQUint8(E))
6331       return false;
6332   } else if (E->getOpcode() == BO_NE) {
6333     if (!this->emitNEUint8(E))
6334       return false;
6335   } else
6336     return false;
6337 
6338   // In C, this returns an int.
6339   if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
6340     return this->emitCast(PT_Bool, ResT, E);
6341   return true;
6342 }
6343 
6344 /// When calling this, we have a pointer of the local-to-destroy
6345 /// on the stack.
6346 /// Emit destruction of record types (or arrays of record types).
6347 template <class Emitter>
6348 bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) {
6349   assert(R);
6350   assert(!R->isAnonymousUnion());
6351   const CXXDestructorDecl *Dtor = R->getDestructor();
6352   if (!Dtor || Dtor->isTrivial())
6353     return true;
6354 
6355   assert(Dtor);
6356   const Function *DtorFunc = getFunction(Dtor);
6357   if (!DtorFunc)
6358     return false;
6359   assert(DtorFunc->hasThisPointer());
6360   assert(DtorFunc->getNumParams() == 1);
6361   if (!this->emitDupPtr(Loc))
6362     return false;
6363   return this->emitCall(DtorFunc, 0, Loc);
6364 }
6365 /// When calling this, we have a pointer of the local-to-destroy
6366 /// on the stack.
6367 /// Emit destruction of record types (or arrays of record types).
6368 template <class Emitter>
6369 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc,
6370                                         SourceInfo Loc) {
6371   assert(Desc);
6372   assert(!Desc->isPrimitive());
6373   assert(!Desc->isPrimitiveArray());
6374 
6375   // Arrays.
6376   if (Desc->isArray()) {
6377     const Descriptor *ElemDesc = Desc->ElemDesc;
6378     assert(ElemDesc);
6379 
6380     // Don't need to do anything for these.
6381     if (ElemDesc->isPrimitiveArray())
6382       return true;
6383 
6384     // If this is an array of record types, check if we need
6385     // to call the element destructors at all. If not, try
6386     // to save the work.
6387     if (const Record *ElemRecord = ElemDesc->ElemRecord) {
6388       if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
6389           !Dtor || Dtor->isTrivial())
6390         return true;
6391     }
6392 
6393     for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
6394       if (!this->emitConstUint64(I, Loc))
6395         return false;
6396       if (!this->emitArrayElemPtrUint64(Loc))
6397         return false;
6398       if (!this->emitDestruction(ElemDesc, Loc))
6399         return false;
6400       if (!this->emitPopPtr(Loc))
6401         return false;
6402     }
6403     return true;
6404   }
6405 
6406   assert(Desc->ElemRecord);
6407   if (Desc->ElemRecord->isAnonymousUnion())
6408     return true;
6409 
6410   return this->emitRecordDestruction(Desc->ElemRecord, Loc);
6411 }
6412 
6413 /// Create a dummy pointer for the given decl (or expr) and
6414 /// push a pointer to it on the stack.
6415 template <class Emitter>
6416 bool Compiler<Emitter>::emitDummyPtr(const DeclTy &D, const Expr *E) {
6417   assert(!DiscardResult && "Should've been checked before");
6418 
6419   unsigned DummyID = P.getOrCreateDummy(D);
6420 
6421   if (!this->emitGetPtrGlobal(DummyID, E))
6422     return false;
6423   if (E->getType()->isVoidType())
6424     return true;
6425 
6426   // Convert the dummy pointer to another pointer type if we have to.
6427   if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
6428     if (isPtrType(PT))
6429       return this->emitDecayPtr(PT_Ptr, PT, E);
6430     return false;
6431   }
6432   return true;
6433 }
6434 
6435 //  This function is constexpr if and only if To, From, and the types of
6436 //  all subobjects of To and From are types T such that...
6437 //  (3.1) - is_union_v<T> is false;
6438 //  (3.2) - is_pointer_v<T> is false;
6439 //  (3.3) - is_member_pointer_v<T> is false;
6440 //  (3.4) - is_volatile_v<T> is false; and
6441 //  (3.5) - T has no non-static data members of reference type
6442 template <class Emitter>
6443 bool Compiler<Emitter>::emitBuiltinBitCast(const CastExpr *E) {
6444   const Expr *SubExpr = E->getSubExpr();
6445   QualType FromType = SubExpr->getType();
6446   QualType ToType = E->getType();
6447   std::optional<PrimType> ToT = classify(ToType);
6448 
6449   if (ToType->isNullPtrType()) {
6450     if (!this->discard(SubExpr))
6451       return false;
6452 
6453     return this->emitNullPtr(nullptr, E);
6454   }
6455 
6456   if (FromType->isNullPtrType() && ToT) {
6457     if (!this->discard(SubExpr))
6458       return false;
6459 
6460     return visitZeroInitializer(*ToT, ToType, E);
6461   }
6462   assert(!ToType->isReferenceType());
6463 
6464   // Prepare storage for the result in case we discard.
6465   if (DiscardResult && !Initializing && !ToT) {
6466     std::optional<unsigned> LocalIndex = allocateLocal(E);
6467     if (!LocalIndex)
6468       return false;
6469     if (!this->emitGetPtrLocal(*LocalIndex, E))
6470       return false;
6471   }
6472 
6473   // Get a pointer to the value-to-cast on the stack.
6474   if (!this->visit(SubExpr))
6475     return false;
6476 
6477   if (!ToT || ToT == PT_Ptr) {
6478     if (!this->emitBitCastPtr(E))
6479       return false;
6480     return DiscardResult ? this->emitPopPtr(E) : true;
6481   }
6482   assert(ToT);
6483 
6484   const llvm::fltSemantics *TargetSemantics = nullptr;
6485   if (ToT == PT_Float)
6486     TargetSemantics = &Ctx.getFloatSemantics(ToType);
6487 
6488   // Conversion to a primitive type. FromType can be another
6489   // primitive type, or a record/array.
6490   bool ToTypeIsUChar = (ToType->isSpecificBuiltinType(BuiltinType::UChar) ||
6491                         ToType->isSpecificBuiltinType(BuiltinType::Char_U));
6492   uint32_t ResultBitWidth = std::max(Ctx.getBitWidth(ToType), 8u);
6493 
6494   if (!this->emitBitCast(*ToT, ToTypeIsUChar || ToType->isStdByteType(),
6495                          ResultBitWidth, TargetSemantics, E))
6496     return false;
6497 
6498   if (DiscardResult)
6499     return this->emitPop(*ToT, E);
6500 
6501   return true;
6502 }
6503 
6504 namespace clang {
6505 namespace interp {
6506 
6507 template class Compiler<ByteCodeEmitter>;
6508 template class Compiler<EvalEmitter>;
6509 
6510 } // namespace interp
6511 } // namespace clang
6512