xref: /llvm-project/clang/lib/AST/ByteCode/Compiler.cpp (revision 60eb9b214cdcf482069ac4d5da9490b3bbd81b6a)
1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Compiler.h"
10 #include "ByteCodeEmitter.h"
11 #include "Context.h"
12 #include "Floating.h"
13 #include "Function.h"
14 #include "InterpShared.h"
15 #include "PrimType.h"
16 #include "Program.h"
17 #include "clang/AST/Attr.h"
18 
19 using namespace clang;
20 using namespace clang::interp;
21 
22 using APSInt = llvm::APSInt;
23 
24 namespace clang {
25 namespace interp {
26 
27 /// Scope used to handle temporaries in toplevel variable declarations.
28 template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
29 public:
30   DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
31       : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
32         OldInitializingDecl(Ctx->InitializingDecl) {
33     Ctx->InitializingDecl = VD;
34     Ctx->InitStack.push_back(InitLink::Decl(VD));
35   }
36 
37   void addExtended(const Scope::Local &Local) override {
38     return this->addLocal(Local);
39   }
40 
41   ~DeclScope() {
42     this->Ctx->InitializingDecl = OldInitializingDecl;
43     this->Ctx->InitStack.pop_back();
44   }
45 
46 private:
47   Program::DeclScope Scope;
48   const ValueDecl *OldInitializingDecl;
49 };
50 
51 /// Scope used to handle initialization methods.
52 template <class Emitter> class OptionScope final {
53 public:
54   /// Root constructor, compiling or discarding primitives.
55   OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
56               bool NewInitializing)
57       : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
58         OldInitializing(Ctx->Initializing) {
59     Ctx->DiscardResult = NewDiscardResult;
60     Ctx->Initializing = NewInitializing;
61   }
62 
63   ~OptionScope() {
64     Ctx->DiscardResult = OldDiscardResult;
65     Ctx->Initializing = OldInitializing;
66   }
67 
68 private:
69   /// Parent context.
70   Compiler<Emitter> *Ctx;
71   /// Old discard flag to restore.
72   bool OldDiscardResult;
73   bool OldInitializing;
74 };
75 
76 template <class Emitter>
77 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
78   switch (Kind) {
79   case K_This:
80     return Ctx->emitThis(E);
81   case K_Field:
82     // We're assuming there's a base pointer on the stack already.
83     return Ctx->emitGetPtrFieldPop(Offset, E);
84   case K_Temp:
85     return Ctx->emitGetPtrLocal(Offset, E);
86   case K_Decl:
87     return Ctx->visitDeclRef(D, E);
88   case K_Elem:
89     if (!Ctx->emitConstUint32(Offset, E))
90       return false;
91     return Ctx->emitArrayElemPtrPopUint32(E);
92   default:
93     llvm_unreachable("Unhandled InitLink kind");
94   }
95   return true;
96 }
97 
98 /// Scope managing label targets.
99 template <class Emitter> class LabelScope {
100 public:
101   virtual ~LabelScope() {}
102 
103 protected:
104   LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
105   /// Compiler instance.
106   Compiler<Emitter> *Ctx;
107 };
108 
109 /// Sets the context for break/continue statements.
110 template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
111 public:
112   using LabelTy = typename Compiler<Emitter>::LabelTy;
113   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
114 
115   LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
116       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
117         OldContinueLabel(Ctx->ContinueLabel) {
118     this->Ctx->BreakLabel = BreakLabel;
119     this->Ctx->ContinueLabel = ContinueLabel;
120   }
121 
122   ~LoopScope() {
123     this->Ctx->BreakLabel = OldBreakLabel;
124     this->Ctx->ContinueLabel = OldContinueLabel;
125   }
126 
127 private:
128   OptLabelTy OldBreakLabel;
129   OptLabelTy OldContinueLabel;
130 };
131 
132 // Sets the context for a switch scope, mapping labels.
133 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
134 public:
135   using LabelTy = typename Compiler<Emitter>::LabelTy;
136   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
137   using CaseMap = typename Compiler<Emitter>::CaseMap;
138 
139   SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
140               OptLabelTy DefaultLabel)
141       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
142         OldDefaultLabel(this->Ctx->DefaultLabel),
143         OldCaseLabels(std::move(this->Ctx->CaseLabels)) {
144     this->Ctx->BreakLabel = BreakLabel;
145     this->Ctx->DefaultLabel = DefaultLabel;
146     this->Ctx->CaseLabels = std::move(CaseLabels);
147   }
148 
149   ~SwitchScope() {
150     this->Ctx->BreakLabel = OldBreakLabel;
151     this->Ctx->DefaultLabel = OldDefaultLabel;
152     this->Ctx->CaseLabels = std::move(OldCaseLabels);
153   }
154 
155 private:
156   OptLabelTy OldBreakLabel;
157   OptLabelTy OldDefaultLabel;
158   CaseMap OldCaseLabels;
159 };
160 
161 template <class Emitter> class StmtExprScope final {
162 public:
163   StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
164     Ctx->InStmtExpr = true;
165   }
166 
167   ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
168 
169 private:
170   Compiler<Emitter> *Ctx;
171   bool OldFlag;
172 };
173 
174 } // namespace interp
175 } // namespace clang
176 
177 template <class Emitter>
178 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
179   const Expr *SubExpr = CE->getSubExpr();
180   switch (CE->getCastKind()) {
181 
182   case CK_LValueToRValue: {
183     if (DiscardResult)
184       return this->discard(SubExpr);
185 
186     std::optional<PrimType> SubExprT = classify(SubExpr->getType());
187     // Prepare storage for the result.
188     if (!Initializing && !SubExprT) {
189       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
190       if (!LocalIndex)
191         return false;
192       if (!this->emitGetPtrLocal(*LocalIndex, CE))
193         return false;
194     }
195 
196     if (!this->visit(SubExpr))
197       return false;
198 
199     if (SubExprT)
200       return this->emitLoadPop(*SubExprT, CE);
201 
202     // If the subexpr type is not primitive, we need to perform a copy here.
203     // This happens for example in C when dereferencing a pointer of struct
204     // type.
205     return this->emitMemcpy(CE);
206   }
207 
208   case CK_DerivedToBaseMemberPointer: {
209     assert(classifyPrim(CE->getType()) == PT_MemberPtr);
210     assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
211     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
212     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
213 
214     unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
215                                                QualType(FromMP->getClass(), 0));
216 
217     if (!this->delegate(SubExpr))
218       return false;
219 
220     return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
221   }
222 
223   case CK_BaseToDerivedMemberPointer: {
224     assert(classifyPrim(CE) == PT_MemberPtr);
225     assert(classifyPrim(SubExpr) == PT_MemberPtr);
226     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
227     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
228 
229     unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
230                                                QualType(ToMP->getClass(), 0));
231 
232     if (!this->delegate(SubExpr))
233       return false;
234     return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
235   }
236 
237   case CK_UncheckedDerivedToBase:
238   case CK_DerivedToBase: {
239     if (!this->delegate(SubExpr))
240       return false;
241 
242     const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
243       if (const auto *PT = dyn_cast<PointerType>(Ty))
244         return PT->getPointeeType()->getAsCXXRecordDecl();
245       return Ty->getAsCXXRecordDecl();
246     };
247 
248     // FIXME: We can express a series of non-virtual casts as a single
249     // GetPtrBasePop op.
250     QualType CurType = SubExpr->getType();
251     for (const CXXBaseSpecifier *B : CE->path()) {
252       if (B->isVirtual()) {
253         if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
254           return false;
255         CurType = B->getType();
256       } else {
257         unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
258         if (!this->emitGetPtrBasePop(DerivedOffset, CE))
259           return false;
260         CurType = B->getType();
261       }
262     }
263 
264     return true;
265   }
266 
267   case CK_BaseToDerived: {
268     if (!this->delegate(SubExpr))
269       return false;
270 
271     unsigned DerivedOffset =
272         collectBaseOffset(SubExpr->getType(), CE->getType());
273 
274     return this->emitGetPtrDerivedPop(DerivedOffset, CE);
275   }
276 
277   case CK_FloatingCast: {
278     // HLSL uses CK_FloatingCast to cast between vectors.
279     if (!SubExpr->getType()->isFloatingType() ||
280         !CE->getType()->isFloatingType())
281       return false;
282     if (DiscardResult)
283       return this->discard(SubExpr);
284     if (!this->visit(SubExpr))
285       return false;
286     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
287     return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
288   }
289 
290   case CK_IntegralToFloating: {
291     if (DiscardResult)
292       return this->discard(SubExpr);
293     std::optional<PrimType> FromT = classify(SubExpr->getType());
294     if (!FromT)
295       return false;
296 
297     if (!this->visit(SubExpr))
298       return false;
299 
300     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
301     return this->emitCastIntegralFloating(*FromT, TargetSemantics,
302                                           getFPOptions(CE), CE);
303   }
304 
305   case CK_FloatingToBoolean:
306   case CK_FloatingToIntegral: {
307     if (DiscardResult)
308       return this->discard(SubExpr);
309 
310     std::optional<PrimType> ToT = classify(CE->getType());
311 
312     if (!ToT)
313       return false;
314 
315     if (!this->visit(SubExpr))
316       return false;
317 
318     if (ToT == PT_IntAP)
319       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
320                                               getFPOptions(CE), CE);
321     if (ToT == PT_IntAPS)
322       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
323                                                getFPOptions(CE), CE);
324 
325     return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE);
326   }
327 
328   case CK_NullToPointer:
329   case CK_NullToMemberPointer: {
330     if (!this->discard(SubExpr))
331       return false;
332     if (DiscardResult)
333       return true;
334 
335     const Descriptor *Desc = nullptr;
336     const QualType PointeeType = CE->getType()->getPointeeType();
337     if (!PointeeType.isNull()) {
338       if (std::optional<PrimType> T = classify(PointeeType))
339         Desc = P.createDescriptor(SubExpr, *T);
340       else
341         Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
342                                   std::nullopt, true, false,
343                                   /*IsMutable=*/false, nullptr);
344     }
345     return this->emitNull(classifyPrim(CE->getType()), Desc, CE);
346   }
347 
348   case CK_PointerToIntegral: {
349     if (DiscardResult)
350       return this->discard(SubExpr);
351 
352     if (!this->visit(SubExpr))
353       return false;
354 
355     // If SubExpr doesn't result in a pointer, make it one.
356     if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
357       assert(isPtrType(FromT));
358       if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
359         return false;
360     }
361 
362     PrimType T = classifyPrim(CE->getType());
363     if (T == PT_IntAP)
364       return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
365                                              CE);
366     if (T == PT_IntAPS)
367       return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
368                                               CE);
369     return this->emitCastPointerIntegral(T, CE);
370   }
371 
372   case CK_ArrayToPointerDecay: {
373     if (!this->visit(SubExpr))
374       return false;
375     if (!this->emitArrayDecay(CE))
376       return false;
377     if (DiscardResult)
378       return this->emitPopPtr(CE);
379     return true;
380   }
381 
382   case CK_IntegralToPointer: {
383     QualType IntType = SubExpr->getType();
384     assert(IntType->isIntegralOrEnumerationType());
385     if (!this->visit(SubExpr))
386       return false;
387     // FIXME: I think the discard is wrong since the int->ptr cast might cause a
388     // diagnostic.
389     PrimType T = classifyPrim(IntType);
390     if (DiscardResult)
391       return this->emitPop(T, CE);
392 
393     QualType PtrType = CE->getType();
394     const Descriptor *Desc;
395     if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
396       Desc = P.createDescriptor(SubExpr, *T);
397     else if (PtrType->getPointeeType()->isVoidType())
398       Desc = nullptr;
399     else
400       Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
401                                 Descriptor::InlineDescMD, true, false,
402                                 /*IsMutable=*/false, nullptr);
403 
404     if (!this->emitGetIntPtr(T, Desc, CE))
405       return false;
406 
407     PrimType DestPtrT = classifyPrim(PtrType);
408     if (DestPtrT == PT_Ptr)
409       return true;
410 
411     // In case we're converting the integer to a non-Pointer.
412     return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
413   }
414 
415   case CK_AtomicToNonAtomic:
416   case CK_ConstructorConversion:
417   case CK_FunctionToPointerDecay:
418   case CK_NonAtomicToAtomic:
419   case CK_NoOp:
420   case CK_UserDefinedConversion:
421   case CK_AddressSpaceConversion:
422     return this->delegate(SubExpr);
423 
424   case CK_BitCast: {
425     // Reject bitcasts to atomic types.
426     if (CE->getType()->isAtomicType()) {
427       if (!this->discard(SubExpr))
428         return false;
429       return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
430     }
431 
432     if (DiscardResult)
433       return this->discard(SubExpr);
434 
435     QualType SubExprTy = SubExpr->getType();
436     std::optional<PrimType> FromT = classify(SubExprTy);
437     std::optional<PrimType> ToT = classify(CE->getType());
438     if (!FromT || !ToT)
439       return false;
440 
441     assert(isPtrType(*FromT));
442     assert(isPtrType(*ToT));
443     if (FromT == ToT) {
444       if (CE->getType()->isVoidPointerType())
445         return this->delegate(SubExpr);
446 
447       if (!this->visit(SubExpr))
448         return false;
449       if (FromT == PT_Ptr)
450         return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
451       return true;
452     }
453 
454     if (!this->visit(SubExpr))
455       return false;
456     return this->emitDecayPtr(*FromT, *ToT, CE);
457   }
458 
459   case CK_IntegralToBoolean:
460   case CK_BooleanToSignedIntegral:
461   case CK_IntegralCast: {
462     if (DiscardResult)
463       return this->discard(SubExpr);
464     std::optional<PrimType> FromT = classify(SubExpr->getType());
465     std::optional<PrimType> ToT = classify(CE->getType());
466 
467     if (!FromT || !ToT)
468       return false;
469 
470     if (!this->visit(SubExpr))
471       return false;
472 
473     // Possibly diagnose casts to enum types if the target type does not
474     // have a fixed size.
475     if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
476       if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
477           ET && !ET->getDecl()->isFixed()) {
478         if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
479           return false;
480       }
481     }
482 
483     auto maybeNegate = [&]() -> bool {
484       if (CE->getCastKind() == CK_BooleanToSignedIntegral)
485         return this->emitNeg(*ToT, CE);
486       return true;
487     };
488 
489     if (ToT == PT_IntAP)
490       return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
491              maybeNegate();
492     if (ToT == PT_IntAPS)
493       return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
494              maybeNegate();
495 
496     if (FromT == ToT)
497       return true;
498     if (!this->emitCast(*FromT, *ToT, CE))
499       return false;
500 
501     return maybeNegate();
502   }
503 
504   case CK_PointerToBoolean:
505   case CK_MemberPointerToBoolean: {
506     PrimType PtrT = classifyPrim(SubExpr->getType());
507 
508     if (!this->visit(SubExpr))
509       return false;
510     return this->emitIsNonNull(PtrT, CE);
511   }
512 
513   case CK_IntegralComplexToBoolean:
514   case CK_FloatingComplexToBoolean: {
515     if (DiscardResult)
516       return this->discard(SubExpr);
517     if (!this->visit(SubExpr))
518       return false;
519     return this->emitComplexBoolCast(SubExpr);
520   }
521 
522   case CK_IntegralComplexToReal:
523   case CK_FloatingComplexToReal:
524     return this->emitComplexReal(SubExpr);
525 
526   case CK_IntegralRealToComplex:
527   case CK_FloatingRealToComplex: {
528     // We're creating a complex value here, so we need to
529     // allocate storage for it.
530     if (!Initializing) {
531       unsigned LocalIndex = allocateTemporary(CE);
532       if (!this->emitGetPtrLocal(LocalIndex, CE))
533         return false;
534     }
535 
536     // Init the complex value to {SubExpr, 0}.
537     if (!this->visitArrayElemInit(0, SubExpr))
538       return false;
539     // Zero-init the second element.
540     PrimType T = classifyPrim(SubExpr->getType());
541     if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
542       return false;
543     return this->emitInitElem(T, 1, SubExpr);
544   }
545 
546   case CK_IntegralComplexCast:
547   case CK_FloatingComplexCast:
548   case CK_IntegralComplexToFloatingComplex:
549   case CK_FloatingComplexToIntegralComplex: {
550     assert(CE->getType()->isAnyComplexType());
551     assert(SubExpr->getType()->isAnyComplexType());
552     if (DiscardResult)
553       return this->discard(SubExpr);
554 
555     if (!Initializing) {
556       std::optional<unsigned> LocalIndex = allocateLocal(CE);
557       if (!LocalIndex)
558         return false;
559       if (!this->emitGetPtrLocal(*LocalIndex, CE))
560         return false;
561     }
562 
563     // Location for the SubExpr.
564     // Since SubExpr is of complex type, visiting it results in a pointer
565     // anyway, so we just create a temporary pointer variable.
566     unsigned SubExprOffset = allocateLocalPrimitive(
567         SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
568     if (!this->visit(SubExpr))
569       return false;
570     if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
571       return false;
572 
573     PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
574     QualType DestElemType =
575         CE->getType()->getAs<ComplexType>()->getElementType();
576     PrimType DestElemT = classifyPrim(DestElemType);
577     // Cast both elements individually.
578     for (unsigned I = 0; I != 2; ++I) {
579       if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
580         return false;
581       if (!this->emitArrayElemPop(SourceElemT, I, CE))
582         return false;
583 
584       // Do the cast.
585       if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
586         return false;
587 
588       // Save the value.
589       if (!this->emitInitElem(DestElemT, I, CE))
590         return false;
591     }
592     return true;
593   }
594 
595   case CK_VectorSplat: {
596     assert(!classify(CE->getType()));
597     assert(classify(SubExpr->getType()));
598     assert(CE->getType()->isVectorType());
599 
600     if (DiscardResult)
601       return this->discard(SubExpr);
602 
603     if (!Initializing) {
604       std::optional<unsigned> LocalIndex = allocateLocal(CE);
605       if (!LocalIndex)
606         return false;
607       if (!this->emitGetPtrLocal(*LocalIndex, CE))
608         return false;
609     }
610 
611     const auto *VT = CE->getType()->getAs<VectorType>();
612     PrimType ElemT = classifyPrim(SubExpr->getType());
613     unsigned ElemOffset = allocateLocalPrimitive(
614         SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
615 
616     // Prepare a local variable for the scalar value.
617     if (!this->visit(SubExpr))
618       return false;
619     if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
620       return false;
621 
622     if (!this->emitSetLocal(ElemT, ElemOffset, CE))
623       return false;
624 
625     for (unsigned I = 0; I != VT->getNumElements(); ++I) {
626       if (!this->emitGetLocal(ElemT, ElemOffset, CE))
627         return false;
628       if (!this->emitInitElem(ElemT, I, CE))
629         return false;
630     }
631 
632     return true;
633   }
634 
635   case CK_ToVoid:
636     return discard(SubExpr);
637 
638   default:
639     return this->emitInvalid(CE);
640   }
641   llvm_unreachable("Unhandled clang::CastKind enum");
642 }
643 
644 template <class Emitter>
645 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
646   if (DiscardResult)
647     return true;
648 
649   return this->emitConst(LE->getValue(), LE);
650 }
651 
652 template <class Emitter>
653 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
654   if (DiscardResult)
655     return true;
656 
657   return this->emitConstFloat(E->getValue(), E);
658 }
659 
660 template <class Emitter>
661 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
662   assert(E->getType()->isAnyComplexType());
663   if (DiscardResult)
664     return true;
665 
666   if (!Initializing) {
667     unsigned LocalIndex = allocateTemporary(E);
668     if (!this->emitGetPtrLocal(LocalIndex, E))
669       return false;
670   }
671 
672   const Expr *SubExpr = E->getSubExpr();
673   PrimType SubExprT = classifyPrim(SubExpr->getType());
674 
675   if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
676     return false;
677   if (!this->emitInitElem(SubExprT, 0, SubExpr))
678     return false;
679   return this->visitArrayElemInit(1, SubExpr);
680 }
681 
682 template <class Emitter>
683 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
684   return this->delegate(E->getSubExpr());
685 }
686 
687 template <class Emitter>
688 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
689   // Need short-circuiting for these.
690   if (BO->getType()->isVectorType())
691     return this->VisitVectorBinOp(BO);
692   if (BO->isLogicalOp())
693     return this->VisitLogicalBinOp(BO);
694 
695   const Expr *LHS = BO->getLHS();
696   const Expr *RHS = BO->getRHS();
697 
698   // Handle comma operators. Just discard the LHS
699   // and delegate to RHS.
700   if (BO->isCommaOp()) {
701     if (!this->discard(LHS))
702       return false;
703     if (RHS->getType()->isVoidType())
704       return this->discard(RHS);
705 
706     return this->delegate(RHS);
707   }
708 
709   if (BO->getType()->isAnyComplexType())
710     return this->VisitComplexBinOp(BO);
711   if ((LHS->getType()->isAnyComplexType() ||
712        RHS->getType()->isAnyComplexType()) &&
713       BO->isComparisonOp())
714     return this->emitComplexComparison(LHS, RHS, BO);
715 
716   if (BO->isPtrMemOp()) {
717     if (!this->visit(LHS))
718       return false;
719 
720     if (!this->visit(RHS))
721       return false;
722 
723     if (!this->emitToMemberPtr(BO))
724       return false;
725 
726     if (classifyPrim(BO) == PT_MemberPtr)
727       return true;
728 
729     if (!this->emitCastMemberPtrPtr(BO))
730       return false;
731     return DiscardResult ? this->emitPopPtr(BO) : true;
732   }
733 
734   // Typecheck the args.
735   std::optional<PrimType> LT = classify(LHS);
736   std::optional<PrimType> RT = classify(RHS);
737   std::optional<PrimType> T = classify(BO->getType());
738 
739   // Special case for C++'s three-way/spaceship operator <=>, which
740   // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
741   // have a PrimType).
742   if (!T && BO->getOpcode() == BO_Cmp) {
743     if (DiscardResult)
744       return true;
745     const ComparisonCategoryInfo *CmpInfo =
746         Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
747     assert(CmpInfo);
748 
749     // We need a temporary variable holding our return value.
750     if (!Initializing) {
751       std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
752       if (!this->emitGetPtrLocal(*ResultIndex, BO))
753         return false;
754     }
755 
756     if (!visit(LHS) || !visit(RHS))
757       return false;
758 
759     return this->emitCMP3(*LT, CmpInfo, BO);
760   }
761 
762   if (!LT || !RT || !T)
763     return false;
764 
765   // Pointer arithmetic special case.
766   if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
767     if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
768       return this->VisitPointerArithBinOp(BO);
769   }
770 
771   // Assignmentes require us to evalute the RHS first.
772   if (BO->getOpcode() == BO_Assign) {
773     if (!visit(RHS) || !visit(LHS))
774       return false;
775     if (!this->emitFlip(*LT, *RT, BO))
776       return false;
777   } else {
778     if (!visit(LHS) || !visit(RHS))
779       return false;
780   }
781 
782   // For languages such as C, cast the result of one
783   // of our comparision opcodes to T (which is usually int).
784   auto MaybeCastToBool = [this, T, BO](bool Result) {
785     if (!Result)
786       return false;
787     if (DiscardResult)
788       return this->emitPop(*T, BO);
789     if (T != PT_Bool)
790       return this->emitCast(PT_Bool, *T, BO);
791     return true;
792   };
793 
794   auto Discard = [this, T, BO](bool Result) {
795     if (!Result)
796       return false;
797     return DiscardResult ? this->emitPop(*T, BO) : true;
798   };
799 
800   switch (BO->getOpcode()) {
801   case BO_EQ:
802     return MaybeCastToBool(this->emitEQ(*LT, BO));
803   case BO_NE:
804     return MaybeCastToBool(this->emitNE(*LT, BO));
805   case BO_LT:
806     return MaybeCastToBool(this->emitLT(*LT, BO));
807   case BO_LE:
808     return MaybeCastToBool(this->emitLE(*LT, BO));
809   case BO_GT:
810     return MaybeCastToBool(this->emitGT(*LT, BO));
811   case BO_GE:
812     return MaybeCastToBool(this->emitGE(*LT, BO));
813   case BO_Sub:
814     if (BO->getType()->isFloatingType())
815       return Discard(this->emitSubf(getFPOptions(BO), BO));
816     return Discard(this->emitSub(*T, BO));
817   case BO_Add:
818     if (BO->getType()->isFloatingType())
819       return Discard(this->emitAddf(getFPOptions(BO), BO));
820     return Discard(this->emitAdd(*T, BO));
821   case BO_Mul:
822     if (BO->getType()->isFloatingType())
823       return Discard(this->emitMulf(getFPOptions(BO), BO));
824     return Discard(this->emitMul(*T, BO));
825   case BO_Rem:
826     return Discard(this->emitRem(*T, BO));
827   case BO_Div:
828     if (BO->getType()->isFloatingType())
829       return Discard(this->emitDivf(getFPOptions(BO), BO));
830     return Discard(this->emitDiv(*T, BO));
831   case BO_Assign:
832     if (DiscardResult)
833       return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
834                                      : this->emitStorePop(*T, BO);
835     if (LHS->refersToBitField()) {
836       if (!this->emitStoreBitField(*T, BO))
837         return false;
838     } else {
839       if (!this->emitStore(*T, BO))
840         return false;
841     }
842     // Assignments aren't necessarily lvalues in C.
843     // Load from them in that case.
844     if (!BO->isLValue())
845       return this->emitLoadPop(*T, BO);
846     return true;
847   case BO_And:
848     return Discard(this->emitBitAnd(*T, BO));
849   case BO_Or:
850     return Discard(this->emitBitOr(*T, BO));
851   case BO_Shl:
852     return Discard(this->emitShl(*LT, *RT, BO));
853   case BO_Shr:
854     return Discard(this->emitShr(*LT, *RT, BO));
855   case BO_Xor:
856     return Discard(this->emitBitXor(*T, BO));
857   case BO_LOr:
858   case BO_LAnd:
859     llvm_unreachable("Already handled earlier");
860   default:
861     return false;
862   }
863 
864   llvm_unreachable("Unhandled binary op");
865 }
866 
867 /// Perform addition/subtraction of a pointer and an integer or
868 /// subtraction of two pointers.
869 template <class Emitter>
870 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
871   BinaryOperatorKind Op = E->getOpcode();
872   const Expr *LHS = E->getLHS();
873   const Expr *RHS = E->getRHS();
874 
875   if ((Op != BO_Add && Op != BO_Sub) ||
876       (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
877     return false;
878 
879   std::optional<PrimType> LT = classify(LHS);
880   std::optional<PrimType> RT = classify(RHS);
881 
882   if (!LT || !RT)
883     return false;
884 
885   // Visit the given pointer expression and optionally convert to a PT_Ptr.
886   auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
887     if (!this->visit(E))
888       return false;
889     if (T != PT_Ptr)
890       return this->emitDecayPtr(T, PT_Ptr, E);
891     return true;
892   };
893 
894   if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
895     if (Op != BO_Sub)
896       return false;
897 
898     assert(E->getType()->isIntegerType());
899     if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
900       return false;
901 
902     return this->emitSubPtr(classifyPrim(E->getType()), E);
903   }
904 
905   PrimType OffsetType;
906   if (LHS->getType()->isIntegerType()) {
907     if (!visitAsPointer(RHS, *RT))
908       return false;
909     if (!this->visit(LHS))
910       return false;
911     OffsetType = *LT;
912   } else if (RHS->getType()->isIntegerType()) {
913     if (!visitAsPointer(LHS, *LT))
914       return false;
915     if (!this->visit(RHS))
916       return false;
917     OffsetType = *RT;
918   } else {
919     return false;
920   }
921 
922   // Do the operation and optionally transform to
923   // result pointer type.
924   if (Op == BO_Add) {
925     if (!this->emitAddOffset(OffsetType, E))
926       return false;
927 
928     if (classifyPrim(E) != PT_Ptr)
929       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
930     return true;
931   } else if (Op == BO_Sub) {
932     if (!this->emitSubOffset(OffsetType, E))
933       return false;
934 
935     if (classifyPrim(E) != PT_Ptr)
936       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
937     return true;
938   }
939 
940   return false;
941 }
942 
943 template <class Emitter>
944 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
945   assert(E->isLogicalOp());
946   BinaryOperatorKind Op = E->getOpcode();
947   const Expr *LHS = E->getLHS();
948   const Expr *RHS = E->getRHS();
949   std::optional<PrimType> T = classify(E->getType());
950 
951   if (Op == BO_LOr) {
952     // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
953     LabelTy LabelTrue = this->getLabel();
954     LabelTy LabelEnd = this->getLabel();
955 
956     if (!this->visitBool(LHS))
957       return false;
958     if (!this->jumpTrue(LabelTrue))
959       return false;
960 
961     if (!this->visitBool(RHS))
962       return false;
963     if (!this->jump(LabelEnd))
964       return false;
965 
966     this->emitLabel(LabelTrue);
967     this->emitConstBool(true, E);
968     this->fallthrough(LabelEnd);
969     this->emitLabel(LabelEnd);
970 
971   } else {
972     assert(Op == BO_LAnd);
973     // Logical AND.
974     // Visit LHS. Only visit RHS if LHS was TRUE.
975     LabelTy LabelFalse = this->getLabel();
976     LabelTy LabelEnd = this->getLabel();
977 
978     if (!this->visitBool(LHS))
979       return false;
980     if (!this->jumpFalse(LabelFalse))
981       return false;
982 
983     if (!this->visitBool(RHS))
984       return false;
985     if (!this->jump(LabelEnd))
986       return false;
987 
988     this->emitLabel(LabelFalse);
989     this->emitConstBool(false, E);
990     this->fallthrough(LabelEnd);
991     this->emitLabel(LabelEnd);
992   }
993 
994   if (DiscardResult)
995     return this->emitPopBool(E);
996 
997   // For C, cast back to integer type.
998   assert(T);
999   if (T != PT_Bool)
1000     return this->emitCast(PT_Bool, *T, E);
1001   return true;
1002 }
1003 
1004 template <class Emitter>
1005 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
1006   // Prepare storage for result.
1007   if (!Initializing) {
1008     unsigned LocalIndex = allocateTemporary(E);
1009     if (!this->emitGetPtrLocal(LocalIndex, E))
1010       return false;
1011   }
1012 
1013   // Both LHS and RHS might _not_ be of complex type, but one of them
1014   // needs to be.
1015   const Expr *LHS = E->getLHS();
1016   const Expr *RHS = E->getRHS();
1017 
1018   PrimType ResultElemT = this->classifyComplexElementType(E->getType());
1019   unsigned ResultOffset = ~0u;
1020   if (!DiscardResult)
1021     ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
1022 
1023   // Save result pointer in ResultOffset
1024   if (!this->DiscardResult) {
1025     if (!this->emitDupPtr(E))
1026       return false;
1027     if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
1028       return false;
1029   }
1030   QualType LHSType = LHS->getType();
1031   if (const auto *AT = LHSType->getAs<AtomicType>())
1032     LHSType = AT->getValueType();
1033   QualType RHSType = RHS->getType();
1034   if (const auto *AT = RHSType->getAs<AtomicType>())
1035     RHSType = AT->getValueType();
1036 
1037   bool LHSIsComplex = LHSType->isAnyComplexType();
1038   unsigned LHSOffset;
1039   bool RHSIsComplex = RHSType->isAnyComplexType();
1040 
1041   // For ComplexComplex Mul, we have special ops to make their implementation
1042   // easier.
1043   BinaryOperatorKind Op = E->getOpcode();
1044   if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
1045     assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
1046            classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
1047     PrimType ElemT =
1048         classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
1049     if (!this->visit(LHS))
1050       return false;
1051     if (!this->visit(RHS))
1052       return false;
1053     return this->emitMulc(ElemT, E);
1054   }
1055 
1056   if (Op == BO_Div && RHSIsComplex) {
1057     QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
1058     PrimType ElemT = classifyPrim(ElemQT);
1059     // If the LHS is not complex, we still need to do the full complex
1060     // division, so just stub create a complex value and stub it out with
1061     // the LHS and a zero.
1062 
1063     if (!LHSIsComplex) {
1064       // This is using the RHS type for the fake-complex LHS.
1065       LHSOffset = allocateTemporary(RHS);
1066 
1067       if (!this->emitGetPtrLocal(LHSOffset, E))
1068         return false;
1069 
1070       if (!this->visit(LHS))
1071         return false;
1072       // real is LHS
1073       if (!this->emitInitElem(ElemT, 0, E))
1074         return false;
1075       // imag is zero
1076       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1077         return false;
1078       if (!this->emitInitElem(ElemT, 1, E))
1079         return false;
1080     } else {
1081       if (!this->visit(LHS))
1082         return false;
1083     }
1084 
1085     if (!this->visit(RHS))
1086       return false;
1087     return this->emitDivc(ElemT, E);
1088   }
1089 
1090   // Evaluate LHS and save value to LHSOffset.
1091   if (LHSType->isAnyComplexType()) {
1092     LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1093     if (!this->visit(LHS))
1094       return false;
1095     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1096       return false;
1097   } else {
1098     PrimType LHST = classifyPrim(LHSType);
1099     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
1100     if (!this->visit(LHS))
1101       return false;
1102     if (!this->emitSetLocal(LHST, LHSOffset, E))
1103       return false;
1104   }
1105 
1106   // Same with RHS.
1107   unsigned RHSOffset;
1108   if (RHSType->isAnyComplexType()) {
1109     RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1110     if (!this->visit(RHS))
1111       return false;
1112     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1113       return false;
1114   } else {
1115     PrimType RHST = classifyPrim(RHSType);
1116     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
1117     if (!this->visit(RHS))
1118       return false;
1119     if (!this->emitSetLocal(RHST, RHSOffset, E))
1120       return false;
1121   }
1122 
1123   // For both LHS and RHS, either load the value from the complex pointer, or
1124   // directly from the local variable. For index 1 (i.e. the imaginary part),
1125   // just load 0 and do the operation anyway.
1126   auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
1127                                  unsigned ElemIndex, unsigned Offset,
1128                                  const Expr *E) -> bool {
1129     if (IsComplex) {
1130       if (!this->emitGetLocal(PT_Ptr, Offset, E))
1131         return false;
1132       return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
1133                                     ElemIndex, E);
1134     }
1135     if (ElemIndex == 0 || !LoadZero)
1136       return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
1137     return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
1138                                       E);
1139   };
1140 
1141   // Now we can get pointers to the LHS and RHS from the offsets above.
1142   for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
1143     // Result pointer for the store later.
1144     if (!this->DiscardResult) {
1145       if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
1146         return false;
1147     }
1148 
1149     // The actual operation.
1150     switch (Op) {
1151     case BO_Add:
1152       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1153         return false;
1154 
1155       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1156         return false;
1157       if (ResultElemT == PT_Float) {
1158         if (!this->emitAddf(getFPOptions(E), E))
1159           return false;
1160       } else {
1161         if (!this->emitAdd(ResultElemT, E))
1162           return false;
1163       }
1164       break;
1165     case BO_Sub:
1166       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1167         return false;
1168 
1169       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1170         return false;
1171       if (ResultElemT == PT_Float) {
1172         if (!this->emitSubf(getFPOptions(E), E))
1173           return false;
1174       } else {
1175         if (!this->emitSub(ResultElemT, E))
1176           return false;
1177       }
1178       break;
1179     case BO_Mul:
1180       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1181         return false;
1182 
1183       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1184         return false;
1185 
1186       if (ResultElemT == PT_Float) {
1187         if (!this->emitMulf(getFPOptions(E), E))
1188           return false;
1189       } else {
1190         if (!this->emitMul(ResultElemT, E))
1191           return false;
1192       }
1193       break;
1194     case BO_Div:
1195       assert(!RHSIsComplex);
1196       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1197         return false;
1198 
1199       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1200         return false;
1201 
1202       if (ResultElemT == PT_Float) {
1203         if (!this->emitDivf(getFPOptions(E), E))
1204           return false;
1205       } else {
1206         if (!this->emitDiv(ResultElemT, E))
1207           return false;
1208       }
1209       break;
1210 
1211     default:
1212       return false;
1213     }
1214 
1215     if (!this->DiscardResult) {
1216       // Initialize array element with the value we just computed.
1217       if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
1218         return false;
1219     } else {
1220       if (!this->emitPop(ResultElemT, E))
1221         return false;
1222     }
1223   }
1224   return true;
1225 }
1226 
1227 template <class Emitter>
1228 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) {
1229   assert(E->getType()->isVectorType());
1230   assert(E->getLHS()->getType()->isVectorType());
1231   assert(E->getRHS()->getType()->isVectorType());
1232 
1233   // FIXME: Current only support comparison binary operator, add support for
1234   // other binary operator.
1235   if (!E->isComparisonOp())
1236     return this->emitInvalid(E);
1237   // Prepare storage for result.
1238   if (!Initializing) {
1239     unsigned LocalIndex = allocateTemporary(E);
1240     if (!this->emitGetPtrLocal(LocalIndex, E))
1241       return false;
1242   }
1243 
1244   const Expr *LHS = E->getLHS();
1245   const Expr *RHS = E->getRHS();
1246   const auto *VecTy = E->getType()->getAs<VectorType>();
1247 
1248   // The LHS and RHS of a comparison operator must have the same type. So we
1249   // just use LHS vector element type here.
1250   PrimType ElemT = this->classifyVectorElementType(LHS->getType());
1251   PrimType ResultElemT = this->classifyVectorElementType(E->getType());
1252 
1253   // Evaluate LHS and save value to LHSOffset.
1254   unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1255   if (!this->visit(LHS))
1256     return false;
1257   if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1258     return false;
1259 
1260   // Evaluate RHS and save value to RHSOffset.
1261   unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1262   if (!this->visit(RHS))
1263     return false;
1264   if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1265     return false;
1266 
1267   auto getElem = [=](unsigned Offset, unsigned Index) {
1268     if (!this->emitGetLocal(PT_Ptr, Offset, E))
1269       return false;
1270     return this->emitArrayElemPop(ElemT, Index, E);
1271   };
1272 
1273   for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
1274     if (!getElem(LHSOffset, I))
1275       return false;
1276     if (!getElem(RHSOffset, I))
1277       return false;
1278     switch (E->getOpcode()) {
1279     case BO_EQ:
1280       if (!this->emitEQ(ElemT, E))
1281         return false;
1282       break;
1283     case BO_NE:
1284       if (!this->emitNE(ElemT, E))
1285         return false;
1286       break;
1287     case BO_LE:
1288       if (!this->emitLE(ElemT, E))
1289         return false;
1290       break;
1291     case BO_LT:
1292       if (!this->emitLT(ElemT, E))
1293         return false;
1294       break;
1295     case BO_GE:
1296       if (!this->emitGE(ElemT, E))
1297         return false;
1298       break;
1299     case BO_GT:
1300       if (!this->emitGT(ElemT, E))
1301         return false;
1302       break;
1303     default:
1304       llvm_unreachable("Unsupported binary operator");
1305     }
1306 
1307     // The result of the comparison is a vector of the same width and number
1308     // of elements as the comparison operands with a signed integral element
1309     // type.
1310     //
1311     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
1312     if (E->isComparisonOp()) {
1313       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1314         return false;
1315       if (!this->emitNeg(ResultElemT, E))
1316         return false;
1317     }
1318 
1319     // Initialize array element with the value we just computed.
1320     if (!this->emitInitElem(ResultElemT, I, E))
1321       return false;
1322   }
1323   return true;
1324 }
1325 
1326 template <class Emitter>
1327 bool Compiler<Emitter>::VisitImplicitValueInitExpr(
1328     const ImplicitValueInitExpr *E) {
1329   QualType QT = E->getType();
1330 
1331   if (std::optional<PrimType> T = classify(QT))
1332     return this->visitZeroInitializer(*T, QT, E);
1333 
1334   if (QT->isRecordType()) {
1335     const RecordDecl *RD = QT->getAsRecordDecl();
1336     assert(RD);
1337     if (RD->isInvalidDecl())
1338       return false;
1339 
1340     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1341         CXXRD && CXXRD->getNumVBases() > 0) {
1342       // TODO: Diagnose.
1343       return false;
1344     }
1345 
1346     const Record *R = getRecord(QT);
1347     if (!R)
1348       return false;
1349 
1350     assert(Initializing);
1351     return this->visitZeroRecordInitializer(R, E);
1352   }
1353 
1354   if (QT->isIncompleteArrayType())
1355     return true;
1356 
1357   if (QT->isArrayType()) {
1358     const ArrayType *AT = QT->getAsArrayTypeUnsafe();
1359     assert(AT);
1360     const auto *CAT = cast<ConstantArrayType>(AT);
1361     size_t NumElems = CAT->getZExtSize();
1362     PrimType ElemT = classifyPrim(CAT->getElementType());
1363 
1364     for (size_t I = 0; I != NumElems; ++I) {
1365       if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E))
1366         return false;
1367       if (!this->emitInitElem(ElemT, I, E))
1368         return false;
1369     }
1370 
1371     return true;
1372   }
1373 
1374   if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
1375     assert(Initializing);
1376     QualType ElemQT = ComplexTy->getElementType();
1377     PrimType ElemT = classifyPrim(ElemQT);
1378     for (unsigned I = 0; I < 2; ++I) {
1379       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1380         return false;
1381       if (!this->emitInitElem(ElemT, I, E))
1382         return false;
1383     }
1384     return true;
1385   }
1386 
1387   if (const auto *VecT = E->getType()->getAs<VectorType>()) {
1388     unsigned NumVecElements = VecT->getNumElements();
1389     QualType ElemQT = VecT->getElementType();
1390     PrimType ElemT = classifyPrim(ElemQT);
1391 
1392     for (unsigned I = 0; I < NumVecElements; ++I) {
1393       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1394         return false;
1395       if (!this->emitInitElem(ElemT, I, E))
1396         return false;
1397     }
1398     return true;
1399   }
1400 
1401   return false;
1402 }
1403 
1404 template <class Emitter>
1405 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1406   const Expr *LHS = E->getLHS();
1407   const Expr *RHS = E->getRHS();
1408   const Expr *Index = E->getIdx();
1409 
1410   if (DiscardResult)
1411     return this->discard(LHS) && this->discard(RHS);
1412 
1413   // C++17's rules require us to evaluate the LHS first, regardless of which
1414   // side is the base.
1415   bool Success = true;
1416   for (const Expr *SubExpr : {LHS, RHS}) {
1417     if (!this->visit(SubExpr))
1418       Success = false;
1419   }
1420 
1421   if (!Success)
1422     return false;
1423 
1424   PrimType IndexT = classifyPrim(Index->getType());
1425   // If the index is first, we need to change that.
1426   if (LHS == Index) {
1427     if (!this->emitFlip(PT_Ptr, IndexT, E))
1428       return false;
1429   }
1430 
1431   return this->emitArrayElemPtrPop(IndexT, E);
1432 }
1433 
1434 template <class Emitter>
1435 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
1436                                       const Expr *ArrayFiller, const Expr *E) {
1437   QualType QT = E->getType();
1438   if (const auto *AT = QT->getAs<AtomicType>())
1439     QT = AT->getValueType();
1440 
1441   if (QT->isVoidType()) {
1442     if (Inits.size() == 0)
1443       return true;
1444     return this->emitInvalid(E);
1445   }
1446 
1447   // Handle discarding first.
1448   if (DiscardResult) {
1449     for (const Expr *Init : Inits) {
1450       if (!this->discard(Init))
1451         return false;
1452     }
1453     return true;
1454   }
1455 
1456   // Primitive values.
1457   if (std::optional<PrimType> T = classify(QT)) {
1458     assert(!DiscardResult);
1459     if (Inits.size() == 0)
1460       return this->visitZeroInitializer(*T, QT, E);
1461     assert(Inits.size() == 1);
1462     return this->delegate(Inits[0]);
1463   }
1464 
1465   if (QT->isRecordType()) {
1466     const Record *R = getRecord(QT);
1467 
1468     if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
1469       return this->delegate(Inits[0]);
1470 
1471     auto initPrimitiveField = [=](const Record::Field *FieldToInit,
1472                                   const Expr *Init, PrimType T) -> bool {
1473       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1474       if (!this->visit(Init))
1475         return false;
1476 
1477       if (FieldToInit->isBitField())
1478         return this->emitInitBitField(T, FieldToInit, E);
1479       return this->emitInitField(T, FieldToInit->Offset, E);
1480     };
1481 
1482     auto initCompositeField = [=](const Record::Field *FieldToInit,
1483                                   const Expr *Init) -> bool {
1484       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1485       InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
1486       // Non-primitive case. Get a pointer to the field-to-initialize
1487       // on the stack and recurse into visitInitializer().
1488       if (!this->emitGetPtrField(FieldToInit->Offset, Init))
1489         return false;
1490       if (!this->visitInitializer(Init))
1491         return false;
1492       return this->emitPopPtr(E);
1493     };
1494 
1495     if (R->isUnion()) {
1496       if (Inits.size() == 0) {
1497         if (!this->visitZeroRecordInitializer(R, E))
1498           return false;
1499       } else {
1500         const Expr *Init = Inits[0];
1501         const FieldDecl *FToInit = nullptr;
1502         if (const auto *ILE = dyn_cast<InitListExpr>(E))
1503           FToInit = ILE->getInitializedFieldInUnion();
1504         else
1505           FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
1506 
1507         const Record::Field *FieldToInit = R->getField(FToInit);
1508         if (std::optional<PrimType> T = classify(Init)) {
1509           if (!initPrimitiveField(FieldToInit, Init, *T))
1510             return false;
1511         } else {
1512           if (!initCompositeField(FieldToInit, Init))
1513             return false;
1514         }
1515       }
1516       return this->emitFinishInit(E);
1517     }
1518 
1519     assert(!R->isUnion());
1520     unsigned InitIndex = 0;
1521     for (const Expr *Init : Inits) {
1522       // Skip unnamed bitfields.
1523       while (InitIndex < R->getNumFields() &&
1524              R->getField(InitIndex)->Decl->isUnnamedBitField())
1525         ++InitIndex;
1526 
1527       if (std::optional<PrimType> T = classify(Init)) {
1528         const Record::Field *FieldToInit = R->getField(InitIndex);
1529         if (!initPrimitiveField(FieldToInit, Init, *T))
1530           return false;
1531         ++InitIndex;
1532       } else {
1533         // Initializer for a direct base class.
1534         if (const Record::Base *B = R->getBase(Init->getType())) {
1535           if (!this->emitGetPtrBase(B->Offset, Init))
1536             return false;
1537 
1538           if (!this->visitInitializer(Init))
1539             return false;
1540 
1541           if (!this->emitFinishInitPop(E))
1542             return false;
1543           // Base initializers don't increase InitIndex, since they don't count
1544           // into the Record's fields.
1545         } else {
1546           const Record::Field *FieldToInit = R->getField(InitIndex);
1547           if (!initCompositeField(FieldToInit, Init))
1548             return false;
1549           ++InitIndex;
1550         }
1551       }
1552     }
1553     return this->emitFinishInit(E);
1554   }
1555 
1556   if (QT->isArrayType()) {
1557     if (Inits.size() == 1 && QT == Inits[0]->getType())
1558       return this->delegate(Inits[0]);
1559 
1560     unsigned ElementIndex = 0;
1561     for (const Expr *Init : Inits) {
1562       if (const auto *EmbedS =
1563               dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1564         PrimType TargetT = classifyPrim(Init->getType());
1565 
1566         auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
1567           PrimType InitT = classifyPrim(Init->getType());
1568           if (!this->visit(Init))
1569             return false;
1570           if (InitT != TargetT) {
1571             if (!this->emitCast(InitT, TargetT, E))
1572               return false;
1573           }
1574           return this->emitInitElem(TargetT, ElemIndex, Init);
1575         };
1576         if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
1577           return false;
1578       } else {
1579         if (!this->visitArrayElemInit(ElementIndex, Init))
1580           return false;
1581         ++ElementIndex;
1582       }
1583     }
1584 
1585     // Expand the filler expression.
1586     // FIXME: This should go away.
1587     if (ArrayFiller) {
1588       const ConstantArrayType *CAT =
1589           Ctx.getASTContext().getAsConstantArrayType(QT);
1590       uint64_t NumElems = CAT->getZExtSize();
1591 
1592       for (; ElementIndex != NumElems; ++ElementIndex) {
1593         if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
1594           return false;
1595       }
1596     }
1597 
1598     return this->emitFinishInit(E);
1599   }
1600 
1601   if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
1602     unsigned NumInits = Inits.size();
1603 
1604     if (NumInits == 1)
1605       return this->delegate(Inits[0]);
1606 
1607     QualType ElemQT = ComplexTy->getElementType();
1608     PrimType ElemT = classifyPrim(ElemQT);
1609     if (NumInits == 0) {
1610       // Zero-initialize both elements.
1611       for (unsigned I = 0; I < 2; ++I) {
1612         if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1613           return false;
1614         if (!this->emitInitElem(ElemT, I, E))
1615           return false;
1616       }
1617     } else if (NumInits == 2) {
1618       unsigned InitIndex = 0;
1619       for (const Expr *Init : Inits) {
1620         if (!this->visit(Init))
1621           return false;
1622 
1623         if (!this->emitInitElem(ElemT, InitIndex, E))
1624           return false;
1625         ++InitIndex;
1626       }
1627     }
1628     return true;
1629   }
1630 
1631   if (const auto *VecT = QT->getAs<VectorType>()) {
1632     unsigned NumVecElements = VecT->getNumElements();
1633     assert(NumVecElements >= Inits.size());
1634 
1635     QualType ElemQT = VecT->getElementType();
1636     PrimType ElemT = classifyPrim(ElemQT);
1637 
1638     // All initializer elements.
1639     unsigned InitIndex = 0;
1640     for (const Expr *Init : Inits) {
1641       if (!this->visit(Init))
1642         return false;
1643 
1644       // If the initializer is of vector type itself, we have to deconstruct
1645       // that and initialize all the target fields from the initializer fields.
1646       if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
1647         if (!this->emitCopyArray(ElemT, 0, InitIndex,
1648                                  InitVecT->getNumElements(), E))
1649           return false;
1650         InitIndex += InitVecT->getNumElements();
1651       } else {
1652         if (!this->emitInitElem(ElemT, InitIndex, E))
1653           return false;
1654         ++InitIndex;
1655       }
1656     }
1657 
1658     assert(InitIndex <= NumVecElements);
1659 
1660     // Fill the rest with zeroes.
1661     for (; InitIndex != NumVecElements; ++InitIndex) {
1662       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1663         return false;
1664       if (!this->emitInitElem(ElemT, InitIndex, E))
1665         return false;
1666     }
1667     return true;
1668   }
1669 
1670   return false;
1671 }
1672 
1673 /// Pointer to the array(not the element!) must be on the stack when calling
1674 /// this.
1675 template <class Emitter>
1676 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
1677                                            const Expr *Init) {
1678   if (std::optional<PrimType> T = classify(Init->getType())) {
1679     // Visit the primitive element like normal.
1680     if (!this->visit(Init))
1681       return false;
1682     return this->emitInitElem(*T, ElemIndex, Init);
1683   }
1684 
1685   InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
1686   // Advance the pointer currently on the stack to the given
1687   // dimension.
1688   if (!this->emitConstUint32(ElemIndex, Init))
1689     return false;
1690   if (!this->emitArrayElemPtrUint32(Init))
1691     return false;
1692   if (!this->visitInitializer(Init))
1693     return false;
1694   return this->emitFinishInitPop(Init);
1695 }
1696 
1697 template <class Emitter>
1698 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
1699   return this->visitInitList(E->inits(), E->getArrayFiller(), E);
1700 }
1701 
1702 template <class Emitter>
1703 bool Compiler<Emitter>::VisitCXXParenListInitExpr(
1704     const CXXParenListInitExpr *E) {
1705   return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
1706 }
1707 
1708 template <class Emitter>
1709 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
1710     const SubstNonTypeTemplateParmExpr *E) {
1711   return this->delegate(E->getReplacement());
1712 }
1713 
1714 template <class Emitter>
1715 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
1716   std::optional<PrimType> T = classify(E->getType());
1717   if (T && E->hasAPValueResult()) {
1718     // Try to emit the APValue directly, without visiting the subexpr.
1719     // This will only fail if we can't emit the APValue, so won't emit any
1720     // diagnostics or any double values.
1721     if (DiscardResult)
1722       return true;
1723 
1724     if (this->visitAPValue(E->getAPValueResult(), *T, E))
1725       return true;
1726   }
1727   return this->delegate(E->getSubExpr());
1728 }
1729 
1730 template <class Emitter>
1731 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
1732   auto It = E->begin();
1733   return this->visit(*It);
1734 }
1735 
1736 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
1737                              UnaryExprOrTypeTrait Kind) {
1738   bool AlignOfReturnsPreferred =
1739       ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
1740 
1741   // C++ [expr.alignof]p3:
1742   //     When alignof is applied to a reference type, the result is the
1743   //     alignment of the referenced type.
1744   if (const auto *Ref = T->getAs<ReferenceType>())
1745     T = Ref->getPointeeType();
1746 
1747   if (T.getQualifiers().hasUnaligned())
1748     return CharUnits::One();
1749 
1750   // __alignof is defined to return the preferred alignment.
1751   // Before 8, clang returned the preferred alignment for alignof and
1752   // _Alignof as well.
1753   if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
1754     return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
1755 
1756   return ASTCtx.getTypeAlignInChars(T);
1757 }
1758 
1759 template <class Emitter>
1760 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
1761     const UnaryExprOrTypeTraitExpr *E) {
1762   UnaryExprOrTypeTrait Kind = E->getKind();
1763   const ASTContext &ASTCtx = Ctx.getASTContext();
1764 
1765   if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
1766     QualType ArgType = E->getTypeOfArgument();
1767 
1768     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1769     //   the result is the size of the referenced type."
1770     if (const auto *Ref = ArgType->getAs<ReferenceType>())
1771       ArgType = Ref->getPointeeType();
1772 
1773     CharUnits Size;
1774     if (ArgType->isVoidType() || ArgType->isFunctionType())
1775       Size = CharUnits::One();
1776     else {
1777       if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
1778         return false;
1779 
1780       if (Kind == UETT_SizeOf)
1781         Size = ASTCtx.getTypeSizeInChars(ArgType);
1782       else
1783         Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
1784     }
1785 
1786     if (DiscardResult)
1787       return true;
1788 
1789     return this->emitConst(Size.getQuantity(), E);
1790   }
1791 
1792   if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
1793     CharUnits Size;
1794 
1795     if (E->isArgumentType()) {
1796       QualType ArgType = E->getTypeOfArgument();
1797 
1798       Size = AlignOfType(ArgType, ASTCtx, Kind);
1799     } else {
1800       // Argument is an expression, not a type.
1801       const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
1802 
1803       // The kinds of expressions that we have special-case logic here for
1804       // should be kept up to date with the special checks for those
1805       // expressions in Sema.
1806 
1807       // alignof decl is always accepted, even if it doesn't make sense: we
1808       // default to 1 in those cases.
1809       if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
1810         Size = ASTCtx.getDeclAlign(DRE->getDecl(),
1811                                    /*RefAsPointee*/ true);
1812       else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
1813         Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
1814                                    /*RefAsPointee*/ true);
1815       else
1816         Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
1817     }
1818 
1819     if (DiscardResult)
1820       return true;
1821 
1822     return this->emitConst(Size.getQuantity(), E);
1823   }
1824 
1825   if (Kind == UETT_VectorElements) {
1826     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
1827       return this->emitConst(VT->getNumElements(), E);
1828     assert(E->getTypeOfArgument()->isSizelessVectorType());
1829     return this->emitSizelessVectorElementSize(E);
1830   }
1831 
1832   if (Kind == UETT_VecStep) {
1833     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
1834       unsigned N = VT->getNumElements();
1835 
1836       // The vec_step built-in functions that take a 3-component
1837       // vector return 4. (OpenCL 1.1 spec 6.11.12)
1838       if (N == 3)
1839         N = 4;
1840 
1841       return this->emitConst(N, E);
1842     }
1843     return this->emitConst(1, E);
1844   }
1845 
1846   return false;
1847 }
1848 
1849 template <class Emitter>
1850 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
1851   // 'Base.Member'
1852   const Expr *Base = E->getBase();
1853   const ValueDecl *Member = E->getMemberDecl();
1854 
1855   if (DiscardResult)
1856     return this->discard(Base);
1857 
1858   // MemberExprs are almost always lvalues, in which case we don't need to
1859   // do the load. But sometimes they aren't.
1860   const auto maybeLoadValue = [&]() -> bool {
1861     if (E->isGLValue())
1862       return true;
1863     if (std::optional<PrimType> T = classify(E))
1864       return this->emitLoadPop(*T, E);
1865     return false;
1866   };
1867 
1868   if (const auto *VD = dyn_cast<VarDecl>(Member)) {
1869     // I am almost confident in saying that a var decl must be static
1870     // and therefore registered as a global variable. But this will probably
1871     // turn out to be wrong some time in the future, as always.
1872     if (auto GlobalIndex = P.getGlobal(VD))
1873       return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
1874     return false;
1875   }
1876 
1877   if (!isa<FieldDecl>(Member))
1878     return this->discard(Base) && this->visitDeclRef(Member, E);
1879 
1880   if (Initializing) {
1881     if (!this->delegate(Base))
1882       return false;
1883   } else {
1884     if (!this->visit(Base))
1885       return false;
1886   }
1887 
1888   // Base above gives us a pointer on the stack.
1889   const auto *FD = cast<FieldDecl>(Member);
1890   const RecordDecl *RD = FD->getParent();
1891   const Record *R = getRecord(RD);
1892   if (!R)
1893     return false;
1894   const Record::Field *F = R->getField(FD);
1895   // Leave a pointer to the field on the stack.
1896   if (F->Decl->getType()->isReferenceType())
1897     return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
1898   return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
1899 }
1900 
1901 template <class Emitter>
1902 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
1903   // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
1904   // stand-alone, e.g. via EvaluateAsInt().
1905   if (!ArrayIndex)
1906     return false;
1907   return this->emitConst(*ArrayIndex, E);
1908 }
1909 
1910 template <class Emitter>
1911 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
1912   assert(Initializing);
1913   assert(!DiscardResult);
1914 
1915   // We visit the common opaque expression here once so we have its value
1916   // cached.
1917   if (!this->discard(E->getCommonExpr()))
1918     return false;
1919 
1920   // TODO: This compiles to quite a lot of bytecode if the array is larger.
1921   //   Investigate compiling this to a loop.
1922   const Expr *SubExpr = E->getSubExpr();
1923   size_t Size = E->getArraySize().getZExtValue();
1924 
1925   // So, every iteration, we execute an assignment here
1926   // where the LHS is on the stack (the target array)
1927   // and the RHS is our SubExpr.
1928   for (size_t I = 0; I != Size; ++I) {
1929     ArrayIndexScope<Emitter> IndexScope(this, I);
1930     BlockScope<Emitter> BS(this);
1931 
1932     if (!this->visitArrayElemInit(I, SubExpr))
1933       return false;
1934     if (!BS.destroyLocals())
1935       return false;
1936   }
1937   return true;
1938 }
1939 
1940 template <class Emitter>
1941 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
1942   const Expr *SourceExpr = E->getSourceExpr();
1943   if (!SourceExpr)
1944     return false;
1945 
1946   if (Initializing)
1947     return this->visitInitializer(SourceExpr);
1948 
1949   PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
1950   if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
1951     return this->emitGetLocal(SubExprT, It->second, E);
1952 
1953   if (!this->visit(SourceExpr))
1954     return false;
1955 
1956   // At this point we either have the evaluated source expression or a pointer
1957   // to an object on the stack. We want to create a local variable that stores
1958   // this value.
1959   unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
1960   if (!this->emitSetLocal(SubExprT, LocalIndex, E))
1961     return false;
1962 
1963   // Here the local variable is created but the value is removed from the stack,
1964   // so we put it back if the caller needs it.
1965   if (!DiscardResult) {
1966     if (!this->emitGetLocal(SubExprT, LocalIndex, E))
1967       return false;
1968   }
1969 
1970   // This is cleaned up when the local variable is destroyed.
1971   OpaqueExprs.insert({E, LocalIndex});
1972 
1973   return true;
1974 }
1975 
1976 template <class Emitter>
1977 bool Compiler<Emitter>::VisitAbstractConditionalOperator(
1978     const AbstractConditionalOperator *E) {
1979   const Expr *Condition = E->getCond();
1980   const Expr *TrueExpr = E->getTrueExpr();
1981   const Expr *FalseExpr = E->getFalseExpr();
1982 
1983   LabelTy LabelEnd = this->getLabel();   // Label after the operator.
1984   LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
1985 
1986   if (!this->visitBool(Condition))
1987     return false;
1988 
1989   if (!this->jumpFalse(LabelFalse))
1990     return false;
1991 
1992   {
1993     LocalScope<Emitter> S(this);
1994     if (!this->delegate(TrueExpr))
1995       return false;
1996     if (!S.destroyLocals())
1997       return false;
1998   }
1999 
2000   if (!this->jump(LabelEnd))
2001     return false;
2002 
2003   this->emitLabel(LabelFalse);
2004 
2005   {
2006     LocalScope<Emitter> S(this);
2007     if (!this->delegate(FalseExpr))
2008       return false;
2009     if (!S.destroyLocals())
2010       return false;
2011   }
2012 
2013   this->fallthrough(LabelEnd);
2014   this->emitLabel(LabelEnd);
2015 
2016   return true;
2017 }
2018 
2019 template <class Emitter>
2020 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
2021   if (DiscardResult)
2022     return true;
2023 
2024   if (!Initializing) {
2025     unsigned StringIndex = P.createGlobalString(E);
2026     return this->emitGetPtrGlobal(StringIndex, E);
2027   }
2028 
2029   // We are initializing an array on the stack.
2030   const ConstantArrayType *CAT =
2031       Ctx.getASTContext().getAsConstantArrayType(E->getType());
2032   assert(CAT && "a string literal that's not a constant array?");
2033 
2034   // If the initializer string is too long, a diagnostic has already been
2035   // emitted. Read only the array length from the string literal.
2036   unsigned ArraySize = CAT->getZExtSize();
2037   unsigned N = std::min(ArraySize, E->getLength());
2038   size_t CharWidth = E->getCharByteWidth();
2039 
2040   for (unsigned I = 0; I != N; ++I) {
2041     uint32_t CodeUnit = E->getCodeUnit(I);
2042 
2043     if (CharWidth == 1) {
2044       this->emitConstSint8(CodeUnit, E);
2045       this->emitInitElemSint8(I, E);
2046     } else if (CharWidth == 2) {
2047       this->emitConstUint16(CodeUnit, E);
2048       this->emitInitElemUint16(I, E);
2049     } else if (CharWidth == 4) {
2050       this->emitConstUint32(CodeUnit, E);
2051       this->emitInitElemUint32(I, E);
2052     } else {
2053       llvm_unreachable("unsupported character width");
2054     }
2055   }
2056 
2057   // Fill up the rest of the char array with NUL bytes.
2058   for (unsigned I = N; I != ArraySize; ++I) {
2059     if (CharWidth == 1) {
2060       this->emitConstSint8(0, E);
2061       this->emitInitElemSint8(I, E);
2062     } else if (CharWidth == 2) {
2063       this->emitConstUint16(0, E);
2064       this->emitInitElemUint16(I, E);
2065     } else if (CharWidth == 4) {
2066       this->emitConstUint32(0, E);
2067       this->emitInitElemUint32(I, E);
2068     } else {
2069       llvm_unreachable("unsupported character width");
2070     }
2071   }
2072 
2073   return true;
2074 }
2075 
2076 template <class Emitter>
2077 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2078   return this->delegate(E->getString());
2079 }
2080 
2081 template <class Emitter>
2082 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2083   auto &A = Ctx.getASTContext();
2084   std::string Str;
2085   A.getObjCEncodingForType(E->getEncodedType(), Str);
2086   StringLiteral *SL =
2087       StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
2088                             /*Pascal=*/false, E->getType(), E->getAtLoc());
2089   return this->delegate(SL);
2090 }
2091 
2092 template <class Emitter>
2093 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
2094     const SYCLUniqueStableNameExpr *E) {
2095   if (DiscardResult)
2096     return true;
2097 
2098   assert(!Initializing);
2099 
2100   auto &A = Ctx.getASTContext();
2101   std::string ResultStr = E->ComputeName(A);
2102 
2103   QualType CharTy = A.CharTy.withConst();
2104   APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
2105   QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
2106                                             ArraySizeModifier::Normal, 0);
2107 
2108   StringLiteral *SL =
2109       StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
2110                             /*Pascal=*/false, ArrayTy, E->getLocation());
2111 
2112   unsigned StringIndex = P.createGlobalString(SL);
2113   return this->emitGetPtrGlobal(StringIndex, E);
2114 }
2115 
2116 template <class Emitter>
2117 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
2118   if (DiscardResult)
2119     return true;
2120   return this->emitConst(E->getValue(), E);
2121 }
2122 
2123 template <class Emitter>
2124 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
2125     const CompoundAssignOperator *E) {
2126 
2127   const Expr *LHS = E->getLHS();
2128   const Expr *RHS = E->getRHS();
2129   QualType LHSType = LHS->getType();
2130   QualType LHSComputationType = E->getComputationLHSType();
2131   QualType ResultType = E->getComputationResultType();
2132   std::optional<PrimType> LT = classify(LHSComputationType);
2133   std::optional<PrimType> RT = classify(ResultType);
2134 
2135   assert(ResultType->isFloatingType());
2136 
2137   if (!LT || !RT)
2138     return false;
2139 
2140   PrimType LHST = classifyPrim(LHSType);
2141 
2142   // C++17 onwards require that we evaluate the RHS first.
2143   // Compute RHS and save it in a temporary variable so we can
2144   // load it again later.
2145   if (!visit(RHS))
2146     return false;
2147 
2148   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2149   if (!this->emitSetLocal(*RT, TempOffset, E))
2150     return false;
2151 
2152   // First, visit LHS.
2153   if (!visit(LHS))
2154     return false;
2155   if (!this->emitLoad(LHST, E))
2156     return false;
2157 
2158   // If necessary, convert LHS to its computation type.
2159   if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
2160                           LHSComputationType, E))
2161     return false;
2162 
2163   // Now load RHS.
2164   if (!this->emitGetLocal(*RT, TempOffset, E))
2165     return false;
2166 
2167   switch (E->getOpcode()) {
2168   case BO_AddAssign:
2169     if (!this->emitAddf(getFPOptions(E), E))
2170       return false;
2171     break;
2172   case BO_SubAssign:
2173     if (!this->emitSubf(getFPOptions(E), E))
2174       return false;
2175     break;
2176   case BO_MulAssign:
2177     if (!this->emitMulf(getFPOptions(E), E))
2178       return false;
2179     break;
2180   case BO_DivAssign:
2181     if (!this->emitDivf(getFPOptions(E), E))
2182       return false;
2183     break;
2184   default:
2185     return false;
2186   }
2187 
2188   if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
2189     return false;
2190 
2191   if (DiscardResult)
2192     return this->emitStorePop(LHST, E);
2193   return this->emitStore(LHST, E);
2194 }
2195 
2196 template <class Emitter>
2197 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
2198     const CompoundAssignOperator *E) {
2199   BinaryOperatorKind Op = E->getOpcode();
2200   const Expr *LHS = E->getLHS();
2201   const Expr *RHS = E->getRHS();
2202   std::optional<PrimType> LT = classify(LHS->getType());
2203   std::optional<PrimType> RT = classify(RHS->getType());
2204 
2205   if (Op != BO_AddAssign && Op != BO_SubAssign)
2206     return false;
2207 
2208   if (!LT || !RT)
2209     return false;
2210 
2211   if (!visit(LHS))
2212     return false;
2213 
2214   if (!this->emitLoad(*LT, LHS))
2215     return false;
2216 
2217   if (!visit(RHS))
2218     return false;
2219 
2220   if (Op == BO_AddAssign) {
2221     if (!this->emitAddOffset(*RT, E))
2222       return false;
2223   } else {
2224     if (!this->emitSubOffset(*RT, E))
2225       return false;
2226   }
2227 
2228   if (DiscardResult)
2229     return this->emitStorePopPtr(E);
2230   return this->emitStorePtr(E);
2231 }
2232 
2233 template <class Emitter>
2234 bool Compiler<Emitter>::VisitCompoundAssignOperator(
2235     const CompoundAssignOperator *E) {
2236 
2237   const Expr *LHS = E->getLHS();
2238   const Expr *RHS = E->getRHS();
2239   std::optional<PrimType> LHSComputationT =
2240       classify(E->getComputationLHSType());
2241   std::optional<PrimType> LT = classify(LHS->getType());
2242   std::optional<PrimType> RT = classify(RHS->getType());
2243   std::optional<PrimType> ResultT = classify(E->getType());
2244 
2245   if (!Ctx.getLangOpts().CPlusPlus14)
2246     return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
2247 
2248   if (!LT || !RT || !ResultT || !LHSComputationT)
2249     return false;
2250 
2251   // Handle floating point operations separately here, since they
2252   // require special care.
2253 
2254   if (ResultT == PT_Float || RT == PT_Float)
2255     return VisitFloatCompoundAssignOperator(E);
2256 
2257   if (E->getType()->isPointerType())
2258     return VisitPointerCompoundAssignOperator(E);
2259 
2260   assert(!E->getType()->isPointerType() && "Handled above");
2261   assert(!E->getType()->isFloatingType() && "Handled above");
2262 
2263   // C++17 onwards require that we evaluate the RHS first.
2264   // Compute RHS and save it in a temporary variable so we can
2265   // load it again later.
2266   // FIXME: Compound assignments are unsequenced in C, so we might
2267   //   have to figure out how to reject them.
2268   if (!visit(RHS))
2269     return false;
2270 
2271   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2272 
2273   if (!this->emitSetLocal(*RT, TempOffset, E))
2274     return false;
2275 
2276   // Get LHS pointer, load its value and cast it to the
2277   // computation type if necessary.
2278   if (!visit(LHS))
2279     return false;
2280   if (!this->emitLoad(*LT, E))
2281     return false;
2282   if (LT != LHSComputationT) {
2283     if (!this->emitCast(*LT, *LHSComputationT, E))
2284       return false;
2285   }
2286 
2287   // Get the RHS value on the stack.
2288   if (!this->emitGetLocal(*RT, TempOffset, E))
2289     return false;
2290 
2291   // Perform operation.
2292   switch (E->getOpcode()) {
2293   case BO_AddAssign:
2294     if (!this->emitAdd(*LHSComputationT, E))
2295       return false;
2296     break;
2297   case BO_SubAssign:
2298     if (!this->emitSub(*LHSComputationT, E))
2299       return false;
2300     break;
2301   case BO_MulAssign:
2302     if (!this->emitMul(*LHSComputationT, E))
2303       return false;
2304     break;
2305   case BO_DivAssign:
2306     if (!this->emitDiv(*LHSComputationT, E))
2307       return false;
2308     break;
2309   case BO_RemAssign:
2310     if (!this->emitRem(*LHSComputationT, E))
2311       return false;
2312     break;
2313   case BO_ShlAssign:
2314     if (!this->emitShl(*LHSComputationT, *RT, E))
2315       return false;
2316     break;
2317   case BO_ShrAssign:
2318     if (!this->emitShr(*LHSComputationT, *RT, E))
2319       return false;
2320     break;
2321   case BO_AndAssign:
2322     if (!this->emitBitAnd(*LHSComputationT, E))
2323       return false;
2324     break;
2325   case BO_XorAssign:
2326     if (!this->emitBitXor(*LHSComputationT, E))
2327       return false;
2328     break;
2329   case BO_OrAssign:
2330     if (!this->emitBitOr(*LHSComputationT, E))
2331       return false;
2332     break;
2333   default:
2334     llvm_unreachable("Unimplemented compound assign operator");
2335   }
2336 
2337   // And now cast from LHSComputationT to ResultT.
2338   if (ResultT != LHSComputationT) {
2339     if (!this->emitCast(*LHSComputationT, *ResultT, E))
2340       return false;
2341   }
2342 
2343   // And store the result in LHS.
2344   if (DiscardResult) {
2345     if (LHS->refersToBitField())
2346       return this->emitStoreBitFieldPop(*ResultT, E);
2347     return this->emitStorePop(*ResultT, E);
2348   }
2349   if (LHS->refersToBitField())
2350     return this->emitStoreBitField(*ResultT, E);
2351   return this->emitStore(*ResultT, E);
2352 }
2353 
2354 template <class Emitter>
2355 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
2356   LocalScope<Emitter> ES(this);
2357   const Expr *SubExpr = E->getSubExpr();
2358 
2359   return this->delegate(SubExpr) && ES.destroyLocals(E);
2360 }
2361 
2362 template <class Emitter>
2363 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
2364     const MaterializeTemporaryExpr *E) {
2365   const Expr *SubExpr = E->getSubExpr();
2366 
2367   if (Initializing) {
2368     // We already have a value, just initialize that.
2369     return this->delegate(SubExpr);
2370   }
2371   // If we don't end up using the materialized temporary anyway, don't
2372   // bother creating it.
2373   if (DiscardResult)
2374     return this->discard(SubExpr);
2375 
2376   // When we're initializing a global variable *or* the storage duration of
2377   // the temporary is explicitly static, create a global variable.
2378   std::optional<PrimType> SubExprT = classify(SubExpr);
2379   bool IsStatic = E->getStorageDuration() == SD_Static;
2380   if (IsStatic) {
2381     std::optional<unsigned> GlobalIndex = P.createGlobal(E);
2382     if (!GlobalIndex)
2383       return false;
2384 
2385     const LifetimeExtendedTemporaryDecl *TempDecl =
2386         E->getLifetimeExtendedTemporaryDecl();
2387     if (IsStatic)
2388       assert(TempDecl);
2389 
2390     if (SubExprT) {
2391       if (!this->visit(SubExpr))
2392         return false;
2393       if (IsStatic) {
2394         if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
2395           return false;
2396       } else {
2397         if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
2398           return false;
2399       }
2400       return this->emitGetPtrGlobal(*GlobalIndex, E);
2401     }
2402 
2403     // Non-primitive values.
2404     if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2405       return false;
2406     if (!this->visitInitializer(SubExpr))
2407       return false;
2408     if (IsStatic)
2409       return this->emitInitGlobalTempComp(TempDecl, E);
2410     return true;
2411   }
2412 
2413   // For everyhing else, use local variables.
2414   if (SubExprT) {
2415     unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true,
2416                                                  /*IsExtended=*/true);
2417     if (!this->visit(SubExpr))
2418       return false;
2419     if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
2420       return false;
2421     return this->emitGetPtrLocal(LocalIndex, E);
2422   } else {
2423     const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2424     if (std::optional<unsigned> LocalIndex =
2425             allocateLocal(Inner, E->getExtendingDecl())) {
2426       InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
2427       if (!this->emitGetPtrLocal(*LocalIndex, E))
2428         return false;
2429       return this->visitInitializer(SubExpr);
2430     }
2431   }
2432   return false;
2433 }
2434 
2435 template <class Emitter>
2436 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
2437     const CXXBindTemporaryExpr *E) {
2438   return this->delegate(E->getSubExpr());
2439 }
2440 
2441 template <class Emitter>
2442 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2443   const Expr *Init = E->getInitializer();
2444   if (DiscardResult)
2445     return this->discard(Init);
2446 
2447   if (Initializing) {
2448     // We already have a value, just initialize that.
2449     return this->visitInitializer(Init) && this->emitFinishInit(E);
2450   }
2451 
2452   std::optional<PrimType> T = classify(E->getType());
2453   if (E->isFileScope()) {
2454     // Avoid creating a variable if this is a primitive RValue anyway.
2455     if (T && !E->isLValue())
2456       return this->delegate(Init);
2457 
2458     if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
2459       if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2460         return false;
2461 
2462       if (T) {
2463         if (!this->visit(Init))
2464           return false;
2465         return this->emitInitGlobal(*T, *GlobalIndex, E);
2466       }
2467 
2468       return this->visitInitializer(Init) && this->emitFinishInit(E);
2469     }
2470 
2471     return false;
2472   }
2473 
2474   // Otherwise, use a local variable.
2475   if (T && !E->isLValue()) {
2476     // For primitive types, we just visit the initializer.
2477     return this->delegate(Init);
2478   } else {
2479     unsigned LocalIndex;
2480 
2481     if (T)
2482       LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
2483     else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
2484       LocalIndex = *MaybeIndex;
2485     else
2486       return false;
2487 
2488     if (!this->emitGetPtrLocal(LocalIndex, E))
2489       return false;
2490 
2491     if (T) {
2492       if (!this->visit(Init)) {
2493         return false;
2494       }
2495       return this->emitInit(*T, E);
2496     } else {
2497       if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
2498         return false;
2499     }
2500     return true;
2501   }
2502 
2503   return false;
2504 }
2505 
2506 template <class Emitter>
2507 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
2508   if (DiscardResult)
2509     return true;
2510   if (E->getType()->isBooleanType())
2511     return this->emitConstBool(E->getValue(), E);
2512   return this->emitConst(E->getValue(), E);
2513 }
2514 
2515 template <class Emitter>
2516 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
2517   if (DiscardResult)
2518     return true;
2519   return this->emitConst(E->getValue(), E);
2520 }
2521 
2522 template <class Emitter>
2523 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
2524   if (DiscardResult)
2525     return true;
2526 
2527   assert(Initializing);
2528   const Record *R = P.getOrCreateRecord(E->getLambdaClass());
2529 
2530   auto *CaptureInitIt = E->capture_init_begin();
2531   // Initialize all fields (which represent lambda captures) of the
2532   // record with their initializers.
2533   for (const Record::Field &F : R->fields()) {
2534     const Expr *Init = *CaptureInitIt;
2535     ++CaptureInitIt;
2536 
2537     if (!Init)
2538       continue;
2539 
2540     if (std::optional<PrimType> T = classify(Init)) {
2541       if (!this->visit(Init))
2542         return false;
2543 
2544       if (!this->emitInitField(*T, F.Offset, E))
2545         return false;
2546     } else {
2547       if (!this->emitGetPtrField(F.Offset, E))
2548         return false;
2549 
2550       if (!this->visitInitializer(Init))
2551         return false;
2552 
2553       if (!this->emitPopPtr(E))
2554         return false;
2555     }
2556   }
2557 
2558   return true;
2559 }
2560 
2561 template <class Emitter>
2562 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
2563   if (DiscardResult)
2564     return true;
2565 
2566   return this->delegate(E->getFunctionName());
2567 }
2568 
2569 template <class Emitter>
2570 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
2571   if (E->getSubExpr() && !this->discard(E->getSubExpr()))
2572     return false;
2573 
2574   return this->emitInvalid(E);
2575 }
2576 
2577 template <class Emitter>
2578 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
2579     const CXXReinterpretCastExpr *E) {
2580   const Expr *SubExpr = E->getSubExpr();
2581 
2582   bool Fatal = false;
2583   std::optional<PrimType> FromT = classify(SubExpr);
2584   std::optional<PrimType> ToT = classify(E);
2585   if (!FromT || !ToT)
2586     Fatal = true;
2587   else
2588     Fatal = (ToT != FromT);
2589 
2590   if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2591     return false;
2592 
2593   return this->delegate(SubExpr);
2594 }
2595 
2596 template <class Emitter>
2597 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
2598   assert(E->getType()->isBooleanType());
2599 
2600   if (DiscardResult)
2601     return true;
2602   return this->emitConstBool(E->getValue(), E);
2603 }
2604 
2605 template <class Emitter>
2606 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
2607   QualType T = E->getType();
2608   assert(!classify(T));
2609 
2610   if (T->isRecordType()) {
2611     const CXXConstructorDecl *Ctor = E->getConstructor();
2612 
2613     // Trivial copy/move constructor. Avoid copy.
2614     if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
2615         Ctor->isTrivial() &&
2616         E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
2617                                         T->getAsCXXRecordDecl()))
2618       return this->visitInitializer(E->getArg(0));
2619 
2620     // If we're discarding a construct expression, we still need
2621     // to allocate a variable and call the constructor and destructor.
2622     if (DiscardResult) {
2623       if (Ctor->isTrivial())
2624         return true;
2625       assert(!Initializing);
2626       std::optional<unsigned> LocalIndex = allocateLocal(E);
2627 
2628       if (!LocalIndex)
2629         return false;
2630 
2631       if (!this->emitGetPtrLocal(*LocalIndex, E))
2632         return false;
2633     }
2634 
2635     // Zero initialization.
2636     if (E->requiresZeroInitialization()) {
2637       const Record *R = getRecord(E->getType());
2638 
2639       if (!this->visitZeroRecordInitializer(R, E))
2640         return false;
2641 
2642       // If the constructor is trivial anyway, we're done.
2643       if (Ctor->isTrivial())
2644         return true;
2645     }
2646 
2647     const Function *Func = getFunction(Ctor);
2648 
2649     if (!Func)
2650       return false;
2651 
2652     assert(Func->hasThisPointer());
2653     assert(!Func->hasRVO());
2654 
2655     //  The This pointer is already on the stack because this is an initializer,
2656     //  but we need to dup() so the call() below has its own copy.
2657     if (!this->emitDupPtr(E))
2658       return false;
2659 
2660     // Constructor arguments.
2661     for (const auto *Arg : E->arguments()) {
2662       if (!this->visit(Arg))
2663         return false;
2664     }
2665 
2666     if (Func->isVariadic()) {
2667       uint32_t VarArgSize = 0;
2668       unsigned NumParams = Func->getNumWrittenParams();
2669       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
2670         VarArgSize +=
2671             align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
2672       }
2673       if (!this->emitCallVar(Func, VarArgSize, E))
2674         return false;
2675     } else {
2676       if (!this->emitCall(Func, 0, E))
2677         return false;
2678     }
2679 
2680     if (DiscardResult)
2681       return this->emitPopPtr(E);
2682     return this->emitFinishInit(E);
2683   }
2684 
2685   if (T->isArrayType()) {
2686     const ConstantArrayType *CAT =
2687         Ctx.getASTContext().getAsConstantArrayType(E->getType());
2688     if (!CAT)
2689       return false;
2690 
2691     size_t NumElems = CAT->getZExtSize();
2692     const Function *Func = getFunction(E->getConstructor());
2693     if (!Func || !Func->isConstexpr())
2694       return false;
2695 
2696     // FIXME(perf): We're calling the constructor once per array element here,
2697     //   in the old intepreter we had a special-case for trivial constructors.
2698     for (size_t I = 0; I != NumElems; ++I) {
2699       if (!this->emitConstUint64(I, E))
2700         return false;
2701       if (!this->emitArrayElemPtrUint64(E))
2702         return false;
2703 
2704       // Constructor arguments.
2705       for (const auto *Arg : E->arguments()) {
2706         if (!this->visit(Arg))
2707           return false;
2708       }
2709 
2710       if (!this->emitCall(Func, 0, E))
2711         return false;
2712     }
2713     return true;
2714   }
2715 
2716   return false;
2717 }
2718 
2719 template <class Emitter>
2720 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
2721   if (DiscardResult)
2722     return true;
2723 
2724   const APValue Val =
2725       E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
2726 
2727   // Things like __builtin_LINE().
2728   if (E->getType()->isIntegerType()) {
2729     assert(Val.isInt());
2730     const APSInt &I = Val.getInt();
2731     return this->emitConst(I, E);
2732   }
2733   // Otherwise, the APValue is an LValue, with only one element.
2734   // Theoretically, we don't need the APValue at all of course.
2735   assert(E->getType()->isPointerType());
2736   assert(Val.isLValue());
2737   const APValue::LValueBase &Base = Val.getLValueBase();
2738   if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
2739     return this->visit(LValueExpr);
2740 
2741   // Otherwise, we have a decl (which is the case for
2742   // __builtin_source_location).
2743   assert(Base.is<const ValueDecl *>());
2744   assert(Val.getLValuePath().size() == 0);
2745   const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
2746   assert(BaseDecl);
2747 
2748   auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
2749 
2750   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
2751   if (!GlobalIndex)
2752     return false;
2753 
2754   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2755     return false;
2756 
2757   const Record *R = getRecord(E->getType());
2758   const APValue &V = UGCD->getValue();
2759   for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
2760     const Record::Field *F = R->getField(I);
2761     const APValue &FieldValue = V.getStructField(I);
2762 
2763     PrimType FieldT = classifyPrim(F->Decl->getType());
2764 
2765     if (!this->visitAPValue(FieldValue, FieldT, E))
2766       return false;
2767     if (!this->emitInitField(FieldT, F->Offset, E))
2768       return false;
2769   }
2770 
2771   // Leave the pointer to the global on the stack.
2772   return true;
2773 }
2774 
2775 template <class Emitter>
2776 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
2777   unsigned N = E->getNumComponents();
2778   if (N == 0)
2779     return false;
2780 
2781   for (unsigned I = 0; I != N; ++I) {
2782     const OffsetOfNode &Node = E->getComponent(I);
2783     if (Node.getKind() == OffsetOfNode::Array) {
2784       const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
2785       PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
2786 
2787       if (DiscardResult) {
2788         if (!this->discard(ArrayIndexExpr))
2789           return false;
2790         continue;
2791       }
2792 
2793       if (!this->visit(ArrayIndexExpr))
2794         return false;
2795       // Cast to Sint64.
2796       if (IndexT != PT_Sint64) {
2797         if (!this->emitCast(IndexT, PT_Sint64, E))
2798           return false;
2799       }
2800     }
2801   }
2802 
2803   if (DiscardResult)
2804     return true;
2805 
2806   PrimType T = classifyPrim(E->getType());
2807   return this->emitOffsetOf(T, E, E);
2808 }
2809 
2810 template <class Emitter>
2811 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
2812     const CXXScalarValueInitExpr *E) {
2813   QualType Ty = E->getType();
2814 
2815   if (DiscardResult || Ty->isVoidType())
2816     return true;
2817 
2818   if (std::optional<PrimType> T = classify(Ty))
2819     return this->visitZeroInitializer(*T, Ty, E);
2820 
2821   if (const auto *CT = Ty->getAs<ComplexType>()) {
2822     if (!Initializing) {
2823       std::optional<unsigned> LocalIndex = allocateLocal(E);
2824       if (!LocalIndex)
2825         return false;
2826       if (!this->emitGetPtrLocal(*LocalIndex, E))
2827         return false;
2828     }
2829 
2830     // Initialize both fields to 0.
2831     QualType ElemQT = CT->getElementType();
2832     PrimType ElemT = classifyPrim(ElemQT);
2833 
2834     for (unsigned I = 0; I != 2; ++I) {
2835       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
2836         return false;
2837       if (!this->emitInitElem(ElemT, I, E))
2838         return false;
2839     }
2840     return true;
2841   }
2842 
2843   if (const auto *VT = Ty->getAs<VectorType>()) {
2844     // FIXME: Code duplication with the _Complex case above.
2845     if (!Initializing) {
2846       std::optional<unsigned> LocalIndex = allocateLocal(E);
2847       if (!LocalIndex)
2848         return false;
2849       if (!this->emitGetPtrLocal(*LocalIndex, E))
2850         return false;
2851     }
2852 
2853     // Initialize all fields to 0.
2854     QualType ElemQT = VT->getElementType();
2855     PrimType ElemT = classifyPrim(ElemQT);
2856 
2857     for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
2858       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
2859         return false;
2860       if (!this->emitInitElem(ElemT, I, E))
2861         return false;
2862     }
2863     return true;
2864   }
2865 
2866   return false;
2867 }
2868 
2869 template <class Emitter>
2870 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
2871   return this->emitConst(E->getPackLength(), E);
2872 }
2873 
2874 template <class Emitter>
2875 bool Compiler<Emitter>::VisitGenericSelectionExpr(
2876     const GenericSelectionExpr *E) {
2877   return this->delegate(E->getResultExpr());
2878 }
2879 
2880 template <class Emitter>
2881 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
2882   return this->delegate(E->getChosenSubExpr());
2883 }
2884 
2885 template <class Emitter>
2886 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
2887   if (DiscardResult)
2888     return true;
2889 
2890   return this->emitConst(E->getValue(), E);
2891 }
2892 
2893 template <class Emitter>
2894 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
2895     const CXXInheritedCtorInitExpr *E) {
2896   const CXXConstructorDecl *Ctor = E->getConstructor();
2897   assert(!Ctor->isTrivial() &&
2898          "Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
2899   const Function *F = this->getFunction(Ctor);
2900   assert(F);
2901   assert(!F->hasRVO());
2902   assert(F->hasThisPointer());
2903 
2904   if (!this->emitDupPtr(SourceInfo{}))
2905     return false;
2906 
2907   // Forward all arguments of the current function (which should be a
2908   // constructor itself) to the inherited ctor.
2909   // This is necessary because the calling code has pushed the pointer
2910   // of the correct base for  us already, but the arguments need
2911   // to come after.
2912   unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
2913   for (const ParmVarDecl *PD : Ctor->parameters()) {
2914     PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
2915 
2916     if (!this->emitGetParam(PT, Offset, E))
2917       return false;
2918     Offset += align(primSize(PT));
2919   }
2920 
2921   return this->emitCall(F, 0, E);
2922 }
2923 
2924 template <class Emitter>
2925 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
2926   assert(classifyPrim(E->getType()) == PT_Ptr);
2927   const Expr *Init = E->getInitializer();
2928   QualType ElementType = E->getAllocatedType();
2929   std::optional<PrimType> ElemT = classify(ElementType);
2930   unsigned PlacementArgs = E->getNumPlacementArgs();
2931   bool IsNoThrow = false;
2932 
2933   // FIXME: Better diagnostic. diag::note_constexpr_new_placement
2934   if (PlacementArgs != 0) {
2935     // The only new-placement list we support is of the form (std::nothrow).
2936     //
2937     // FIXME: There is no restriction on this, but it's not clear that any
2938     // other form makes any sense. We get here for cases such as:
2939     //
2940     //   new (std::align_val_t{N}) X(int)
2941     //
2942     // (which should presumably be valid only if N is a multiple of
2943     // alignof(int), and in any case can't be deallocated unless N is
2944     // alignof(X) and X has new-extended alignment).
2945     if (PlacementArgs != 1 || !E->getPlacementArg(0)->getType()->isNothrowT())
2946       return this->emitInvalid(E);
2947 
2948     if (!this->discard(E->getPlacementArg(0)))
2949       return false;
2950     IsNoThrow = true;
2951   }
2952 
2953   const Descriptor *Desc;
2954   if (ElemT) {
2955     if (E->isArray())
2956       Desc = nullptr; // We're not going to use it in this case.
2957     else
2958       Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
2959                                 /*IsConst=*/false, /*IsTemporary=*/false,
2960                                 /*IsMutable=*/false);
2961   } else {
2962     Desc = P.createDescriptor(
2963         E, ElementType.getTypePtr(),
2964         E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
2965         /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
2966   }
2967 
2968   if (E->isArray()) {
2969     std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
2970     if (!ArraySizeExpr)
2971       return false;
2972 
2973     const Expr *Stripped = *ArraySizeExpr;
2974     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
2975          Stripped = ICE->getSubExpr())
2976       if (ICE->getCastKind() != CK_NoOp &&
2977           ICE->getCastKind() != CK_IntegralCast)
2978         break;
2979 
2980     PrimType SizeT = classifyPrim(Stripped->getType());
2981 
2982     if (!this->visit(Stripped))
2983       return false;
2984 
2985     if (ElemT) {
2986       // N primitive elements.
2987       if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
2988         return false;
2989     } else {
2990       // N Composite elements.
2991       if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
2992         return false;
2993     }
2994 
2995     if (Init && !this->visitInitializer(Init))
2996       return false;
2997 
2998   } else {
2999     // Allocate just one element.
3000     if (!this->emitAlloc(Desc, E))
3001       return false;
3002 
3003     if (Init) {
3004       if (ElemT) {
3005         if (!this->visit(Init))
3006           return false;
3007 
3008         if (!this->emitInit(*ElemT, E))
3009           return false;
3010       } else {
3011         // Composite.
3012         if (!this->visitInitializer(Init))
3013           return false;
3014       }
3015     }
3016   }
3017 
3018   if (DiscardResult)
3019     return this->emitPopPtr(E);
3020 
3021   return true;
3022 }
3023 
3024 template <class Emitter>
3025 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
3026   const Expr *Arg = E->getArgument();
3027 
3028   // Arg must be an lvalue.
3029   if (!this->visit(Arg))
3030     return false;
3031 
3032   return this->emitFree(E->isArrayForm(), E);
3033 }
3034 
3035 template <class Emitter>
3036 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
3037   const Function *Func = nullptr;
3038   if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E))
3039     Func = F;
3040 
3041   if (!Func)
3042     return false;
3043   return this->emitGetFnPtr(Func, E);
3044 }
3045 
3046 template <class Emitter>
3047 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
3048   assert(Ctx.getLangOpts().CPlusPlus);
3049   return this->emitConstBool(E->getValue(), E);
3050 }
3051 
3052 template <class Emitter>
3053 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
3054   if (DiscardResult)
3055     return true;
3056   assert(!Initializing);
3057 
3058   const MSGuidDecl *GuidDecl = E->getGuidDecl();
3059   const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
3060   assert(RD);
3061   // If the definiton of the result type is incomplete, just return a dummy.
3062   // If (and when) that is read from, we will fail, but not now.
3063   if (!RD->isCompleteDefinition()) {
3064     if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl))
3065       return this->emitGetPtrGlobal(*I, E);
3066     return false;
3067   }
3068 
3069   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
3070   if (!GlobalIndex)
3071     return false;
3072   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3073     return false;
3074 
3075   assert(this->getRecord(E->getType()));
3076 
3077   const APValue &V = GuidDecl->getAsAPValue();
3078   if (V.getKind() == APValue::None)
3079     return true;
3080 
3081   assert(V.isStruct());
3082   assert(V.getStructNumBases() == 0);
3083   if (!this->visitAPValueInitializer(V, E))
3084     return false;
3085 
3086   return this->emitFinishInit(E);
3087 }
3088 
3089 template <class Emitter>
3090 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
3091   assert(classifyPrim(E->getType()) == PT_Bool);
3092   if (DiscardResult)
3093     return true;
3094   return this->emitConstBool(E->isSatisfied(), E);
3095 }
3096 
3097 template <class Emitter>
3098 bool Compiler<Emitter>::VisitConceptSpecializationExpr(
3099     const ConceptSpecializationExpr *E) {
3100   assert(classifyPrim(E->getType()) == PT_Bool);
3101   if (DiscardResult)
3102     return true;
3103   return this->emitConstBool(E->isSatisfied(), E);
3104 }
3105 
3106 template <class Emitter>
3107 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
3108     const CXXRewrittenBinaryOperator *E) {
3109   return this->delegate(E->getSemanticForm());
3110 }
3111 
3112 template <class Emitter>
3113 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
3114 
3115   for (const Expr *SemE : E->semantics()) {
3116     if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
3117       if (SemE == E->getResultExpr())
3118         return false;
3119 
3120       if (OVE->isUnique())
3121         continue;
3122 
3123       if (!this->discard(OVE))
3124         return false;
3125     } else if (SemE == E->getResultExpr()) {
3126       if (!this->delegate(SemE))
3127         return false;
3128     } else {
3129       if (!this->discard(SemE))
3130         return false;
3131     }
3132   }
3133   return true;
3134 }
3135 
3136 template <class Emitter>
3137 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
3138   return this->delegate(E->getSelectedExpr());
3139 }
3140 
3141 template <class Emitter>
3142 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
3143   return this->emitError(E);
3144 }
3145 
3146 template <class Emitter>
3147 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
3148   assert(E->getType()->isVoidPointerType());
3149 
3150   unsigned Offset = allocateLocalPrimitive(
3151       E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3152 
3153   return this->emitGetLocal(PT_Ptr, Offset, E);
3154 }
3155 
3156 template <class Emitter>
3157 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
3158   assert(Initializing);
3159   const auto *VT = E->getType()->castAs<VectorType>();
3160   QualType ElemType = VT->getElementType();
3161   PrimType ElemT = classifyPrim(ElemType);
3162   const Expr *Src = E->getSrcExpr();
3163   PrimType SrcElemT =
3164       classifyPrim(Src->getType()->castAs<VectorType>()->getElementType());
3165 
3166   unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
3167   if (!this->visit(Src))
3168     return false;
3169   if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
3170     return false;
3171 
3172   for (unsigned I = 0; I != VT->getNumElements(); ++I) {
3173     if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
3174       return false;
3175     if (!this->emitArrayElemPop(SrcElemT, I, E))
3176       return false;
3177     if (SrcElemT != ElemT) {
3178       if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
3179         return false;
3180     }
3181     if (!this->emitInitElem(ElemT, I, E))
3182       return false;
3183   }
3184 
3185   return true;
3186 }
3187 
3188 template <class Emitter>
3189 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
3190   assert(Initializing);
3191   assert(E->getNumSubExprs() > 2);
3192 
3193   const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
3194   const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
3195   PrimType ElemT = classifyPrim(VT->getElementType());
3196   unsigned NumInputElems = VT->getNumElements();
3197   unsigned NumOutputElems = E->getNumSubExprs() - 2;
3198   assert(NumOutputElems > 0);
3199 
3200   // Save both input vectors to a local variable.
3201   unsigned VectorOffsets[2];
3202   for (unsigned I = 0; I != 2; ++I) {
3203     VectorOffsets[I] = this->allocateLocalPrimitive(
3204         Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3205     if (!this->visit(Vecs[I]))
3206       return false;
3207     if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
3208       return false;
3209   }
3210   for (unsigned I = 0; I != NumOutputElems; ++I) {
3211     APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
3212     if (ShuffleIndex == -1)
3213       return this->emitInvalid(E); // FIXME: Better diagnostic.
3214 
3215     assert(ShuffleIndex < (NumInputElems * 2));
3216     if (!this->emitGetLocal(PT_Ptr,
3217                             VectorOffsets[ShuffleIndex >= NumInputElems], E))
3218       return false;
3219     unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
3220     if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
3221       return false;
3222 
3223     if (!this->emitInitElem(ElemT, I, E))
3224       return false;
3225   }
3226 
3227   return true;
3228 }
3229 
3230 template <class Emitter>
3231 bool Compiler<Emitter>::VisitExtVectorElementExpr(
3232     const ExtVectorElementExpr *E) {
3233   const Expr *Base = E->getBase();
3234   assert(
3235       Base->getType()->isVectorType() ||
3236       Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
3237 
3238   SmallVector<uint32_t, 4> Indices;
3239   E->getEncodedElementAccess(Indices);
3240 
3241   if (Indices.size() == 1) {
3242     if (!this->visit(Base))
3243       return false;
3244 
3245     if (E->isGLValue()) {
3246       if (!this->emitConstUint32(Indices[0], E))
3247         return false;
3248       return this->emitArrayElemPtrPop(PT_Uint32, E);
3249     }
3250     // Else, also load the value.
3251     return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
3252   }
3253 
3254   // Create a local variable for the base.
3255   unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
3256                                                /*IsExtended=*/false);
3257   if (!this->visit(Base))
3258     return false;
3259   if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
3260     return false;
3261 
3262   // Now the vector variable for the return value.
3263   if (!Initializing) {
3264     std::optional<unsigned> ResultIndex;
3265     ResultIndex = allocateLocal(E);
3266     if (!ResultIndex)
3267       return false;
3268     if (!this->emitGetPtrLocal(*ResultIndex, E))
3269       return false;
3270   }
3271 
3272   assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
3273 
3274   PrimType ElemT =
3275       classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
3276   uint32_t DstIndex = 0;
3277   for (uint32_t I : Indices) {
3278     if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
3279       return false;
3280     if (!this->emitArrayElemPop(ElemT, I, E))
3281       return false;
3282     if (!this->emitInitElem(ElemT, DstIndex, E))
3283       return false;
3284     ++DstIndex;
3285   }
3286 
3287   // Leave the result pointer on the stack.
3288   assert(!DiscardResult);
3289   return true;
3290 }
3291 
3292 template <class Emitter>
3293 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
3294   const Expr *SubExpr = E->getSubExpr();
3295   if (!E->isExpressibleAsConstantInitializer())
3296     return this->discard(SubExpr) && this->emitInvalid(E);
3297 
3298   return this->delegate(SubExpr);
3299 }
3300 
3301 template <class Emitter>
3302 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
3303     const CXXStdInitializerListExpr *E) {
3304   const Expr *SubExpr = E->getSubExpr();
3305   const ConstantArrayType *ArrayType =
3306       Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
3307   const Record *R = getRecord(E->getType());
3308   assert(Initializing);
3309   assert(SubExpr->isGLValue());
3310 
3311   if (!this->visit(SubExpr))
3312     return false;
3313   if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
3314     return false;
3315 
3316   PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
3317   if (isIntegralType(SecondFieldT)) {
3318     if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
3319                          SecondFieldT, E))
3320       return false;
3321     return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
3322   }
3323   assert(SecondFieldT == PT_Ptr);
3324 
3325   if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
3326     return false;
3327   if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
3328     return false;
3329   if (!this->emitArrayElemPtrPop(PT_Uint64, E))
3330     return false;
3331   return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
3332 }
3333 
3334 template <class Emitter>
3335 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
3336   BlockScope<Emitter> BS(this);
3337   StmtExprScope<Emitter> SS(this);
3338 
3339   const CompoundStmt *CS = E->getSubStmt();
3340   const Stmt *Result = CS->getStmtExprResult();
3341   for (const Stmt *S : CS->body()) {
3342     if (S != Result) {
3343       if (!this->visitStmt(S))
3344         return false;
3345       continue;
3346     }
3347 
3348     assert(S == Result);
3349     if (const Expr *ResultExpr = dyn_cast<Expr>(S))
3350       return this->delegate(ResultExpr);
3351     return this->emitUnsupported(E);
3352   }
3353 
3354   return BS.destroyLocals();
3355 }
3356 
3357 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
3358   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
3359                              /*NewInitializing=*/false);
3360   return this->Visit(E);
3361 }
3362 
3363 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
3364   // We're basically doing:
3365   // OptionScope<Emitter> Scope(this, DicardResult, Initializing);
3366   // but that's unnecessary of course.
3367   return this->Visit(E);
3368 }
3369 
3370 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
3371   if (E->getType().isNull())
3372     return false;
3373 
3374   if (E->getType()->isVoidType())
3375     return this->discard(E);
3376 
3377   // Create local variable to hold the return value.
3378   if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
3379       !classify(E->getType())) {
3380     std::optional<unsigned> LocalIndex = allocateLocal(E);
3381     if (!LocalIndex)
3382       return false;
3383 
3384     if (!this->emitGetPtrLocal(*LocalIndex, E))
3385       return false;
3386     return this->visitInitializer(E);
3387   }
3388 
3389   //  Otherwise,we have a primitive return value, produce the value directly
3390   //  and push it on the stack.
3391   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3392                              /*NewInitializing=*/false);
3393   return this->Visit(E);
3394 }
3395 
3396 template <class Emitter>
3397 bool Compiler<Emitter>::visitInitializer(const Expr *E) {
3398   assert(!classify(E->getType()));
3399 
3400   if (!this->checkLiteralType(E))
3401     return false;
3402 
3403   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3404                              /*NewInitializing=*/true);
3405   return this->Visit(E);
3406 }
3407 
3408 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
3409   std::optional<PrimType> T = classify(E->getType());
3410   if (!T) {
3411     // Convert complex values to bool.
3412     if (E->getType()->isAnyComplexType()) {
3413       if (!this->visit(E))
3414         return false;
3415       return this->emitComplexBoolCast(E);
3416     }
3417     return false;
3418   }
3419 
3420   if (!this->visit(E))
3421     return false;
3422 
3423   if (T == PT_Bool)
3424     return true;
3425 
3426   // Convert pointers to bool.
3427   if (T == PT_Ptr || T == PT_FnPtr) {
3428     if (!this->emitNull(*T, nullptr, E))
3429       return false;
3430     return this->emitNE(*T, E);
3431   }
3432 
3433   // Or Floats.
3434   if (T == PT_Float)
3435     return this->emitCastFloatingIntegralBool(getFPOptions(E), E);
3436 
3437   // Or anything else we can.
3438   return this->emitCast(*T, PT_Bool, E);
3439 }
3440 
3441 template <class Emitter>
3442 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
3443                                              const Expr *E) {
3444   switch (T) {
3445   case PT_Bool:
3446     return this->emitZeroBool(E);
3447   case PT_Sint8:
3448     return this->emitZeroSint8(E);
3449   case PT_Uint8:
3450     return this->emitZeroUint8(E);
3451   case PT_Sint16:
3452     return this->emitZeroSint16(E);
3453   case PT_Uint16:
3454     return this->emitZeroUint16(E);
3455   case PT_Sint32:
3456     return this->emitZeroSint32(E);
3457   case PT_Uint32:
3458     return this->emitZeroUint32(E);
3459   case PT_Sint64:
3460     return this->emitZeroSint64(E);
3461   case PT_Uint64:
3462     return this->emitZeroUint64(E);
3463   case PT_IntAP:
3464     return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
3465   case PT_IntAPS:
3466     return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
3467   case PT_Ptr:
3468     return this->emitNullPtr(nullptr, E);
3469   case PT_FnPtr:
3470     return this->emitNullFnPtr(nullptr, E);
3471   case PT_MemberPtr:
3472     return this->emitNullMemberPtr(nullptr, E);
3473   case PT_Float: {
3474     return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
3475   }
3476   }
3477   llvm_unreachable("unknown primitive type");
3478 }
3479 
3480 template <class Emitter>
3481 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
3482                                                    const Expr *E) {
3483   assert(E);
3484   assert(R);
3485   // Fields
3486   for (const Record::Field &Field : R->fields()) {
3487     if (Field.Decl->isUnnamedBitField())
3488       continue;
3489 
3490     const Descriptor *D = Field.Desc;
3491     if (D->isPrimitive()) {
3492       QualType QT = D->getType();
3493       PrimType T = classifyPrim(D->getType());
3494       if (!this->visitZeroInitializer(T, QT, E))
3495         return false;
3496       if (!this->emitInitField(T, Field.Offset, E))
3497         return false;
3498       if (R->isUnion())
3499         break;
3500       continue;
3501     }
3502 
3503     if (!this->emitGetPtrField(Field.Offset, E))
3504       return false;
3505 
3506     if (D->isPrimitiveArray()) {
3507       QualType ET = D->getElemQualType();
3508       PrimType T = classifyPrim(ET);
3509       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3510         if (!this->visitZeroInitializer(T, ET, E))
3511           return false;
3512         if (!this->emitInitElem(T, I, E))
3513           return false;
3514       }
3515     } else if (D->isCompositeArray()) {
3516       const Record *ElemRecord = D->ElemDesc->ElemRecord;
3517       assert(D->ElemDesc->ElemRecord);
3518       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3519         if (!this->emitConstUint32(I, E))
3520           return false;
3521         if (!this->emitArrayElemPtr(PT_Uint32, E))
3522           return false;
3523         if (!this->visitZeroRecordInitializer(ElemRecord, E))
3524           return false;
3525         if (!this->emitPopPtr(E))
3526           return false;
3527       }
3528     } else if (D->isRecord()) {
3529       if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
3530         return false;
3531     } else {
3532       assert(false);
3533     }
3534 
3535     if (!this->emitFinishInitPop(E))
3536       return false;
3537 
3538     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3539     // object's first non-static named data member is zero-initialized
3540     if (R->isUnion())
3541       break;
3542   }
3543 
3544   for (const Record::Base &B : R->bases()) {
3545     if (!this->emitGetPtrBase(B.Offset, E))
3546       return false;
3547     if (!this->visitZeroRecordInitializer(B.R, E))
3548       return false;
3549     if (!this->emitFinishInitPop(E))
3550       return false;
3551   }
3552 
3553   // FIXME: Virtual bases.
3554 
3555   return true;
3556 }
3557 
3558 template <class Emitter>
3559 template <typename T>
3560 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
3561   switch (Ty) {
3562   case PT_Sint8:
3563     return this->emitConstSint8(Value, E);
3564   case PT_Uint8:
3565     return this->emitConstUint8(Value, E);
3566   case PT_Sint16:
3567     return this->emitConstSint16(Value, E);
3568   case PT_Uint16:
3569     return this->emitConstUint16(Value, E);
3570   case PT_Sint32:
3571     return this->emitConstSint32(Value, E);
3572   case PT_Uint32:
3573     return this->emitConstUint32(Value, E);
3574   case PT_Sint64:
3575     return this->emitConstSint64(Value, E);
3576   case PT_Uint64:
3577     return this->emitConstUint64(Value, E);
3578   case PT_Bool:
3579     return this->emitConstBool(Value, E);
3580   case PT_Ptr:
3581   case PT_FnPtr:
3582   case PT_MemberPtr:
3583   case PT_Float:
3584   case PT_IntAP:
3585   case PT_IntAPS:
3586     llvm_unreachable("Invalid integral type");
3587     break;
3588   }
3589   llvm_unreachable("unknown primitive type");
3590 }
3591 
3592 template <class Emitter>
3593 template <typename T>
3594 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
3595   return this->emitConst(Value, classifyPrim(E->getType()), E);
3596 }
3597 
3598 template <class Emitter>
3599 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
3600                                   const Expr *E) {
3601   if (Ty == PT_IntAPS)
3602     return this->emitConstIntAPS(Value, E);
3603   if (Ty == PT_IntAP)
3604     return this->emitConstIntAP(Value, E);
3605 
3606   if (Value.isSigned())
3607     return this->emitConst(Value.getSExtValue(), Ty, E);
3608   return this->emitConst(Value.getZExtValue(), Ty, E);
3609 }
3610 
3611 template <class Emitter>
3612 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
3613   return this->emitConst(Value, classifyPrim(E->getType()), E);
3614 }
3615 
3616 template <class Emitter>
3617 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
3618                                                    bool IsConst,
3619                                                    bool IsExtended) {
3620   // Make sure we don't accidentally register the same decl twice.
3621   if (const auto *VD =
3622           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3623     assert(!P.getGlobal(VD));
3624     assert(!Locals.contains(VD));
3625     (void)VD;
3626   }
3627 
3628   // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
3629   //   (int){12} in C. Consider using Expr::isTemporaryObject() instead
3630   //   or isa<MaterializeTemporaryExpr>().
3631   Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
3632                                      Src.is<const Expr *>());
3633   Scope::Local Local = this->createLocal(D);
3634   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
3635     Locals.insert({VD, Local});
3636   VarScope->add(Local, IsExtended);
3637   return Local.Offset;
3638 }
3639 
3640 template <class Emitter>
3641 std::optional<unsigned>
3642 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) {
3643   // Make sure we don't accidentally register the same decl twice.
3644   if ([[maybe_unused]] const auto *VD =
3645           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3646     assert(!P.getGlobal(VD));
3647     assert(!Locals.contains(VD));
3648   }
3649 
3650   QualType Ty;
3651   const ValueDecl *Key = nullptr;
3652   const Expr *Init = nullptr;
3653   bool IsTemporary = false;
3654   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3655     Key = VD;
3656     Ty = VD->getType();
3657 
3658     if (const auto *VarD = dyn_cast<VarDecl>(VD))
3659       Init = VarD->getInit();
3660   }
3661   if (auto *E = Src.dyn_cast<const Expr *>()) {
3662     IsTemporary = true;
3663     Ty = E->getType();
3664   }
3665 
3666   Descriptor *D = P.createDescriptor(
3667       Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
3668       IsTemporary, /*IsMutable=*/false, Init);
3669   if (!D)
3670     return std::nullopt;
3671 
3672   Scope::Local Local = this->createLocal(D);
3673   if (Key)
3674     Locals.insert({Key, Local});
3675   if (ExtendingDecl)
3676     VarScope->addExtended(Local, ExtendingDecl);
3677   else
3678     VarScope->add(Local, false);
3679   return Local.Offset;
3680 }
3681 
3682 template <class Emitter>
3683 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) {
3684   QualType Ty = E->getType();
3685   assert(!Ty->isRecordType());
3686 
3687   Descriptor *D = P.createDescriptor(
3688       E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
3689       /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
3690   assert(D);
3691 
3692   Scope::Local Local = this->createLocal(D);
3693   VariableScope<Emitter> *S = VarScope;
3694   assert(S);
3695   // Attach to topmost scope.
3696   while (S->getParent())
3697     S = S->getParent();
3698   assert(S && !S->getParent());
3699   S->addLocal(Local);
3700   return Local.Offset;
3701 }
3702 
3703 template <class Emitter>
3704 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
3705   if (const PointerType *PT = dyn_cast<PointerType>(Ty))
3706     return PT->getPointeeType()->getAs<RecordType>();
3707   return Ty->getAs<RecordType>();
3708 }
3709 
3710 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
3711   if (const auto *RecordTy = getRecordTy(Ty))
3712     return getRecord(RecordTy->getDecl());
3713   return nullptr;
3714 }
3715 
3716 template <class Emitter>
3717 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
3718   return P.getOrCreateRecord(RD);
3719 }
3720 
3721 template <class Emitter>
3722 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
3723   return Ctx.getOrCreateFunction(FD);
3724 }
3725 
3726 template <class Emitter> bool Compiler<Emitter>::visitExpr(const Expr *E) {
3727   LocalScope<Emitter> RootScope(this);
3728   // Void expressions.
3729   if (E->getType()->isVoidType()) {
3730     if (!visit(E))
3731       return false;
3732     return this->emitRetVoid(E) && RootScope.destroyLocals();
3733   }
3734 
3735   // Expressions with a primitive return type.
3736   if (std::optional<PrimType> T = classify(E)) {
3737     if (!visit(E))
3738       return false;
3739     return this->emitRet(*T, E) && RootScope.destroyLocals();
3740   }
3741 
3742   // Expressions with a composite return type.
3743   // For us, that means everything we don't
3744   // have a PrimType for.
3745   if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
3746     if (!this->emitGetPtrLocal(*LocalOffset, E))
3747       return false;
3748 
3749     if (!visitInitializer(E))
3750       return false;
3751 
3752     if (!this->emitFinishInit(E))
3753       return false;
3754     // We are destroying the locals AFTER the Ret op.
3755     // The Ret op needs to copy the (alive) values, but the
3756     // destructors may still turn the entire expression invalid.
3757     return this->emitRetValue(E) && RootScope.destroyLocals();
3758   }
3759 
3760   RootScope.destroyLocals();
3761   return false;
3762 }
3763 
3764 template <class Emitter>
3765 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
3766 
3767   auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
3768 
3769   if (R.notCreated())
3770     return R;
3771 
3772   if (R)
3773     return true;
3774 
3775   if (!R && Context::shouldBeGloballyIndexed(VD)) {
3776     if (auto GlobalIndex = P.getGlobal(VD)) {
3777       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
3778       GlobalInlineDescriptor &GD =
3779           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
3780 
3781       GD.InitState = GlobalInitState::InitializerFailed;
3782       GlobalBlock->invokeDtor();
3783     }
3784   }
3785 
3786   return R;
3787 }
3788 
3789 /// Toplevel visitDeclAndReturn().
3790 /// We get here from evaluateAsInitializer().
3791 /// We need to evaluate the initializer and return its value.
3792 template <class Emitter>
3793 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
3794                                            bool ConstantContext) {
3795   std::optional<PrimType> VarT = classify(VD->getType());
3796 
3797   // We only create variables if we're evaluating in a constant context.
3798   // Otherwise, just evaluate the initializer and return it.
3799   if (!ConstantContext) {
3800     DeclScope<Emitter> LS(this, VD);
3801     if (!this->visit(VD->getAnyInitializer()))
3802       return false;
3803     return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals();
3804   }
3805 
3806   LocalScope<Emitter> VDScope(this, VD);
3807   if (!this->visitVarDecl(VD, /*Toplevel=*/true))
3808     return false;
3809 
3810   if (Context::shouldBeGloballyIndexed(VD)) {
3811     auto GlobalIndex = P.getGlobal(VD);
3812     assert(GlobalIndex); // visitVarDecl() didn't return false.
3813     if (VarT) {
3814       if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
3815         return false;
3816     } else {
3817       if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
3818         return false;
3819     }
3820   } else {
3821     auto Local = Locals.find(VD);
3822     assert(Local != Locals.end()); // Same here.
3823     if (VarT) {
3824       if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
3825         return false;
3826     } else {
3827       if (!this->emitGetPtrLocal(Local->second.Offset, VD))
3828         return false;
3829     }
3830   }
3831 
3832   // Return the value.
3833   if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
3834     // If the Ret above failed and this is a global variable, mark it as
3835     // uninitialized, even everything else succeeded.
3836     if (Context::shouldBeGloballyIndexed(VD)) {
3837       auto GlobalIndex = P.getGlobal(VD);
3838       assert(GlobalIndex);
3839       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
3840       GlobalInlineDescriptor &GD =
3841           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
3842 
3843       GD.InitState = GlobalInitState::InitializerFailed;
3844       GlobalBlock->invokeDtor();
3845     }
3846     return false;
3847   }
3848 
3849   return VDScope.destroyLocals();
3850 }
3851 
3852 template <class Emitter>
3853 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
3854                                                  bool Toplevel) {
3855   // We don't know what to do with these, so just return false.
3856   if (VD->getType().isNull())
3857     return false;
3858 
3859   // This case is EvalEmitter-only. If we won't create any instructions for the
3860   // initializer anyway, don't bother creating the variable in the first place.
3861   if (!this->isActive())
3862     return VarCreationState::NotCreated();
3863 
3864   const Expr *Init = VD->getInit();
3865   std::optional<PrimType> VarT = classify(VD->getType());
3866 
3867   if (Init && Init->isValueDependent())
3868     return false;
3869 
3870   if (Context::shouldBeGloballyIndexed(VD)) {
3871     auto checkDecl = [&]() -> bool {
3872       bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
3873       return !NeedsOp || this->emitCheckDecl(VD, VD);
3874     };
3875 
3876     auto initGlobal = [&](unsigned GlobalIndex) -> bool {
3877       assert(Init);
3878 
3879       if (VarT) {
3880         if (!this->visit(Init))
3881           return checkDecl() && false;
3882 
3883         return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
3884       }
3885 
3886       if (!checkDecl())
3887         return false;
3888 
3889       if (!this->emitGetPtrGlobal(GlobalIndex, Init))
3890         return false;
3891 
3892       if (!visitInitializer(Init))
3893         return false;
3894 
3895       if (!this->emitFinishInit(Init))
3896         return false;
3897 
3898       return this->emitPopPtr(Init);
3899     };
3900 
3901     DeclScope<Emitter> LocalScope(this, VD);
3902 
3903     // We've already seen and initialized this global.
3904     if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
3905       if (P.getPtrGlobal(*GlobalIndex).isInitialized())
3906         return checkDecl();
3907 
3908       // The previous attempt at initialization might've been unsuccessful,
3909       // so let's try this one.
3910       return Init && checkDecl() && initGlobal(*GlobalIndex);
3911     }
3912 
3913     std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
3914 
3915     if (!GlobalIndex)
3916       return false;
3917 
3918     return !Init || (checkDecl() && initGlobal(*GlobalIndex));
3919   } else {
3920     InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
3921 
3922     if (VarT) {
3923       unsigned Offset = this->allocateLocalPrimitive(
3924           VD, *VarT, VD->getType().isConstQualified());
3925       if (Init) {
3926         // If this is a toplevel declaration, create a scope for the
3927         // initializer.
3928         if (Toplevel) {
3929           LocalScope<Emitter> Scope(this);
3930           if (!this->visit(Init))
3931             return false;
3932           return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
3933         } else {
3934           if (!this->visit(Init))
3935             return false;
3936           return this->emitSetLocal(*VarT, Offset, VD);
3937         }
3938       }
3939     } else {
3940       if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
3941         if (!Init)
3942           return true;
3943 
3944         if (!this->emitGetPtrLocal(*Offset, Init))
3945           return false;
3946 
3947         if (!visitInitializer(Init))
3948           return false;
3949 
3950         if (!this->emitFinishInit(Init))
3951           return false;
3952 
3953         return this->emitPopPtr(Init);
3954       }
3955       return false;
3956     }
3957     return true;
3958   }
3959 
3960   return false;
3961 }
3962 
3963 template <class Emitter>
3964 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
3965                                      const Expr *E) {
3966   assert(!DiscardResult);
3967   if (Val.isInt())
3968     return this->emitConst(Val.getInt(), ValType, E);
3969   else if (Val.isFloat())
3970     return this->emitConstFloat(Val.getFloat(), E);
3971 
3972   if (Val.isLValue()) {
3973     if (Val.isNullPointer())
3974       return this->emitNull(ValType, nullptr, E);
3975     APValue::LValueBase Base = Val.getLValueBase();
3976     if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
3977       return this->visit(BaseExpr);
3978     else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
3979       return this->visitDeclRef(VD, E);
3980     }
3981   } else if (Val.isMemberPointer()) {
3982     if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
3983       return this->emitGetMemberPtr(MemberDecl, E);
3984     return this->emitNullMemberPtr(nullptr, E);
3985   }
3986 
3987   return false;
3988 }
3989 
3990 template <class Emitter>
3991 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
3992                                                 const Expr *E) {
3993 
3994   if (Val.isStruct()) {
3995     const Record *R = this->getRecord(E->getType());
3996     assert(R);
3997     for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
3998       const APValue &F = Val.getStructField(I);
3999       const Record::Field *RF = R->getField(I);
4000 
4001       if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
4002         PrimType T = classifyPrim(RF->Decl->getType());
4003         if (!this->visitAPValue(F, T, E))
4004           return false;
4005         if (!this->emitInitField(T, RF->Offset, E))
4006           return false;
4007       } else if (F.isArray()) {
4008         assert(RF->Desc->isPrimitiveArray());
4009         const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
4010         PrimType ElemT = classifyPrim(ArrType->getElementType());
4011         assert(ArrType);
4012 
4013         if (!this->emitGetPtrField(RF->Offset, E))
4014           return false;
4015 
4016         for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
4017           if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
4018             return false;
4019           if (!this->emitInitElem(ElemT, A, E))
4020             return false;
4021         }
4022 
4023         if (!this->emitPopPtr(E))
4024           return false;
4025       } else if (F.isStruct() || F.isUnion()) {
4026         if (!this->emitGetPtrField(RF->Offset, E))
4027           return false;
4028         if (!this->visitAPValueInitializer(F, E))
4029           return false;
4030         if (!this->emitPopPtr(E))
4031           return false;
4032       } else {
4033         assert(false && "I don't think this should be possible");
4034       }
4035     }
4036     return true;
4037   } else if (Val.isUnion()) {
4038     const FieldDecl *UnionField = Val.getUnionField();
4039     const Record *R = this->getRecord(UnionField->getParent());
4040     assert(R);
4041     const APValue &F = Val.getUnionValue();
4042     const Record::Field *RF = R->getField(UnionField);
4043     PrimType T = classifyPrim(RF->Decl->getType());
4044     if (!this->visitAPValue(F, T, E))
4045       return false;
4046     return this->emitInitField(T, RF->Offset, E);
4047   }
4048   // TODO: Other types.
4049 
4050   return false;
4051 }
4052 
4053 template <class Emitter>
4054 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E) {
4055   const Function *Func = getFunction(E->getDirectCallee());
4056   if (!Func)
4057     return false;
4058 
4059   // For these, we're expected to ultimately return an APValue pointing
4060   // to the CallExpr. This is needed to get the correct codegen.
4061   unsigned Builtin = E->getBuiltinCallee();
4062   if (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
4063       Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
4064       Builtin == Builtin::BI__builtin_ptrauth_sign_constant ||
4065       Builtin == Builtin::BI__builtin_function_start) {
4066     if (std::optional<unsigned> GlobalOffset = P.createGlobal(E)) {
4067       if (!this->emitGetPtrGlobal(*GlobalOffset, E))
4068         return false;
4069 
4070       if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT))
4071         return this->emitDecayPtr(PT_Ptr, PT, E);
4072       return true;
4073     }
4074     return false;
4075   }
4076 
4077   QualType ReturnType = E->getType();
4078   std::optional<PrimType> ReturnT = classify(E);
4079 
4080   // Non-primitive return type. Prepare storage.
4081   if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
4082     std::optional<unsigned> LocalIndex = allocateLocal(E);
4083     if (!LocalIndex)
4084       return false;
4085     if (!this->emitGetPtrLocal(*LocalIndex, E))
4086       return false;
4087   }
4088 
4089   if (!Func->isUnevaluatedBuiltin()) {
4090     // Put arguments on the stack.
4091     for (const auto *Arg : E->arguments()) {
4092       if (!this->visit(Arg))
4093         return false;
4094     }
4095   }
4096 
4097   if (!this->emitCallBI(Func, E, E))
4098     return false;
4099 
4100   if (DiscardResult && !ReturnType->isVoidType()) {
4101     assert(ReturnT);
4102     return this->emitPop(*ReturnT, E);
4103   }
4104 
4105   return true;
4106 }
4107 
4108 template <class Emitter>
4109 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
4110   if (E->getBuiltinCallee())
4111     return VisitBuiltinCallExpr(E);
4112 
4113   QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
4114   std::optional<PrimType> T = classify(ReturnType);
4115   bool HasRVO = !ReturnType->isVoidType() && !T;
4116   const FunctionDecl *FuncDecl = E->getDirectCallee();
4117 
4118   if (HasRVO) {
4119     if (DiscardResult) {
4120       // If we need to discard the return value but the function returns its
4121       // value via an RVO pointer, we need to create one such pointer just
4122       // for this call.
4123       if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4124         if (!this->emitGetPtrLocal(*LocalIndex, E))
4125           return false;
4126       }
4127     } else {
4128       // We need the result. Prepare a pointer to return or
4129       // dup the current one.
4130       if (!Initializing) {
4131         if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4132           if (!this->emitGetPtrLocal(*LocalIndex, E))
4133             return false;
4134         }
4135       }
4136       if (!this->emitDupPtr(E))
4137         return false;
4138     }
4139   }
4140 
4141   SmallVector<const Expr *, 8> Args(
4142       llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
4143 
4144   bool IsAssignmentOperatorCall = false;
4145   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
4146       OCE && OCE->isAssignmentOp()) {
4147     // Just like with regular assignments, we need to special-case assignment
4148     // operators here and evaluate the RHS (the second arg) before the LHS (the
4149     // first arg. We fix this by using a Flip op later.
4150     assert(Args.size() == 2);
4151     IsAssignmentOperatorCall = true;
4152     std::reverse(Args.begin(), Args.end());
4153   }
4154   // Calling a static operator will still
4155   // pass the instance, but we don't need it.
4156   // Discard it here.
4157   if (isa<CXXOperatorCallExpr>(E)) {
4158     if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
4159         MD && MD->isStatic()) {
4160       if (!this->discard(E->getArg(0)))
4161         return false;
4162       // Drop first arg.
4163       Args.erase(Args.begin());
4164     }
4165   }
4166 
4167   std::optional<unsigned> CalleeOffset;
4168   // Add the (optional, implicit) This pointer.
4169   if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
4170     if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
4171       // If we end up creating a CallPtr op for this, we need the base of the
4172       // member pointer as the instance pointer, and later extract the function
4173       // decl as the function pointer.
4174       const Expr *Callee = E->getCallee();
4175       CalleeOffset =
4176           this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
4177       if (!this->visit(Callee))
4178         return false;
4179       if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
4180         return false;
4181       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4182         return false;
4183       if (!this->emitGetMemberPtrBase(E))
4184         return false;
4185     } else if (!this->visit(MC->getImplicitObjectArgument())) {
4186       return false;
4187     }
4188   } else if (!FuncDecl) {
4189     const Expr *Callee = E->getCallee();
4190     CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false);
4191     if (!this->visit(Callee))
4192       return false;
4193     if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E))
4194       return false;
4195   }
4196 
4197   llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
4198   // Put arguments on the stack.
4199   unsigned ArgIndex = 0;
4200   for (const auto *Arg : Args) {
4201     if (!this->visit(Arg))
4202       return false;
4203 
4204     // If we know the callee already, check the known parametrs for nullability.
4205     if (FuncDecl && NonNullArgs[ArgIndex]) {
4206       PrimType ArgT = classify(Arg).value_or(PT_Ptr);
4207       if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
4208         if (!this->emitCheckNonNullArg(ArgT, Arg))
4209           return false;
4210       }
4211     }
4212     ++ArgIndex;
4213   }
4214 
4215   // Undo the argument reversal we did earlier.
4216   if (IsAssignmentOperatorCall) {
4217     assert(Args.size() == 2);
4218     PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
4219     PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
4220     if (!this->emitFlip(Arg2T, Arg1T, E))
4221       return false;
4222   }
4223 
4224   if (FuncDecl) {
4225     const Function *Func = getFunction(FuncDecl);
4226     if (!Func)
4227       return false;
4228     assert(HasRVO == Func->hasRVO());
4229 
4230     bool HasQualifier = false;
4231     if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
4232       HasQualifier = ME->hasQualifier();
4233 
4234     bool IsVirtual = false;
4235     if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
4236       IsVirtual = MD->isVirtual();
4237 
4238     // In any case call the function. The return value will end up on the stack
4239     // and if the function has RVO, we already have the pointer on the stack to
4240     // write the result into.
4241     if (IsVirtual && !HasQualifier) {
4242       uint32_t VarArgSize = 0;
4243       unsigned NumParams =
4244           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4245       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4246         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4247 
4248       if (!this->emitCallVirt(Func, VarArgSize, E))
4249         return false;
4250     } else if (Func->isVariadic()) {
4251       uint32_t VarArgSize = 0;
4252       unsigned NumParams =
4253           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4254       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4255         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4256       if (!this->emitCallVar(Func, VarArgSize, E))
4257         return false;
4258     } else {
4259       if (!this->emitCall(Func, 0, E))
4260         return false;
4261     }
4262   } else {
4263     // Indirect call. Visit the callee, which will leave a FunctionPointer on
4264     // the stack. Cleanup of the returned value if necessary will be done after
4265     // the function call completed.
4266 
4267     // Sum the size of all args from the call expr.
4268     uint32_t ArgSize = 0;
4269     for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
4270       ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4271 
4272     // Get the callee, either from a member pointer or function pointer saved in
4273     // CalleeOffset.
4274     if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
4275       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4276         return false;
4277       if (!this->emitGetMemberPtrDecl(E))
4278         return false;
4279     } else {
4280       if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E))
4281         return false;
4282     }
4283     if (!this->emitCallPtr(ArgSize, E, E))
4284       return false;
4285   }
4286 
4287   // Cleanup for discarded return values.
4288   if (DiscardResult && !ReturnType->isVoidType() && T)
4289     return this->emitPop(*T, E);
4290 
4291   return true;
4292 }
4293 
4294 template <class Emitter>
4295 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4296   SourceLocScope<Emitter> SLS(this, E);
4297 
4298   return this->delegate(E->getExpr());
4299 }
4300 
4301 template <class Emitter>
4302 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
4303   SourceLocScope<Emitter> SLS(this, E);
4304 
4305   const Expr *SubExpr = E->getExpr();
4306   if (std::optional<PrimType> T = classify(E->getExpr()))
4307     return this->visit(SubExpr);
4308 
4309   assert(Initializing);
4310   return this->visitInitializer(SubExpr);
4311 }
4312 
4313 template <class Emitter>
4314 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4315   if (DiscardResult)
4316     return true;
4317 
4318   return this->emitConstBool(E->getValue(), E);
4319 }
4320 
4321 template <class Emitter>
4322 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
4323     const CXXNullPtrLiteralExpr *E) {
4324   if (DiscardResult)
4325     return true;
4326 
4327   return this->emitNullPtr(nullptr, E);
4328 }
4329 
4330 template <class Emitter>
4331 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
4332   if (DiscardResult)
4333     return true;
4334 
4335   assert(E->getType()->isIntegerType());
4336 
4337   PrimType T = classifyPrim(E->getType());
4338   return this->emitZero(T, E);
4339 }
4340 
4341 template <class Emitter>
4342 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
4343   if (DiscardResult)
4344     return true;
4345 
4346   if (this->LambdaThisCapture.Offset > 0) {
4347     if (this->LambdaThisCapture.IsPtr)
4348       return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
4349     return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
4350   }
4351 
4352   // In some circumstances, the 'this' pointer does not actually refer to the
4353   // instance pointer of the current function frame, but e.g. to the declaration
4354   // currently being initialized. Here we emit the necessary instruction(s) for
4355   // this scenario.
4356   if (!InitStackActive || !E->isImplicit())
4357     return this->emitThis(E);
4358 
4359   if (InitStackActive && !InitStack.empty()) {
4360     unsigned StartIndex = 0;
4361     for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
4362       if (InitStack[StartIndex].Kind != InitLink::K_Field &&
4363           InitStack[StartIndex].Kind != InitLink::K_Elem)
4364         break;
4365     }
4366 
4367     for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) {
4368       if (!InitStack[I].template emit<Emitter>(this, E))
4369         return false;
4370     }
4371     return true;
4372   }
4373   return this->emitThis(E);
4374 }
4375 
4376 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
4377   switch (S->getStmtClass()) {
4378   case Stmt::CompoundStmtClass:
4379     return visitCompoundStmt(cast<CompoundStmt>(S));
4380   case Stmt::DeclStmtClass:
4381     return visitDeclStmt(cast<DeclStmt>(S));
4382   case Stmt::ReturnStmtClass:
4383     return visitReturnStmt(cast<ReturnStmt>(S));
4384   case Stmt::IfStmtClass:
4385     return visitIfStmt(cast<IfStmt>(S));
4386   case Stmt::WhileStmtClass:
4387     return visitWhileStmt(cast<WhileStmt>(S));
4388   case Stmt::DoStmtClass:
4389     return visitDoStmt(cast<DoStmt>(S));
4390   case Stmt::ForStmtClass:
4391     return visitForStmt(cast<ForStmt>(S));
4392   case Stmt::CXXForRangeStmtClass:
4393     return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
4394   case Stmt::BreakStmtClass:
4395     return visitBreakStmt(cast<BreakStmt>(S));
4396   case Stmt::ContinueStmtClass:
4397     return visitContinueStmt(cast<ContinueStmt>(S));
4398   case Stmt::SwitchStmtClass:
4399     return visitSwitchStmt(cast<SwitchStmt>(S));
4400   case Stmt::CaseStmtClass:
4401     return visitCaseStmt(cast<CaseStmt>(S));
4402   case Stmt::DefaultStmtClass:
4403     return visitDefaultStmt(cast<DefaultStmt>(S));
4404   case Stmt::AttributedStmtClass:
4405     return visitAttributedStmt(cast<AttributedStmt>(S));
4406   case Stmt::CXXTryStmtClass:
4407     return visitCXXTryStmt(cast<CXXTryStmt>(S));
4408   case Stmt::NullStmtClass:
4409     return true;
4410   // Always invalid statements.
4411   case Stmt::GCCAsmStmtClass:
4412   case Stmt::MSAsmStmtClass:
4413   case Stmt::GotoStmtClass:
4414     return this->emitInvalid(S);
4415   case Stmt::LabelStmtClass:
4416     return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
4417   default: {
4418     if (const auto *E = dyn_cast<Expr>(S))
4419       return this->discard(E);
4420     return false;
4421   }
4422   }
4423 }
4424 
4425 template <class Emitter>
4426 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
4427   BlockScope<Emitter> Scope(this);
4428   for (const auto *InnerStmt : S->body())
4429     if (!visitStmt(InnerStmt))
4430       return false;
4431   return Scope.destroyLocals();
4432 }
4433 
4434 template <class Emitter>
4435 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
4436   for (const auto *D : DS->decls()) {
4437     if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
4438             FunctionDecl>(D))
4439       continue;
4440 
4441     const auto *VD = dyn_cast<VarDecl>(D);
4442     if (!VD)
4443       return false;
4444     if (!this->visitVarDecl(VD))
4445       return false;
4446   }
4447 
4448   return true;
4449 }
4450 
4451 template <class Emitter>
4452 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
4453   if (this->InStmtExpr)
4454     return this->emitUnsupported(RS);
4455 
4456   if (const Expr *RE = RS->getRetValue()) {
4457     LocalScope<Emitter> RetScope(this);
4458     if (ReturnType) {
4459       // Primitive types are simply returned.
4460       if (!this->visit(RE))
4461         return false;
4462       this->emitCleanup();
4463       return this->emitRet(*ReturnType, RS);
4464     } else if (RE->getType()->isVoidType()) {
4465       if (!this->visit(RE))
4466         return false;
4467     } else {
4468       // RVO - construct the value in the return location.
4469       if (!this->emitRVOPtr(RE))
4470         return false;
4471       if (!this->visitInitializer(RE))
4472         return false;
4473       if (!this->emitPopPtr(RE))
4474         return false;
4475 
4476       this->emitCleanup();
4477       return this->emitRetVoid(RS);
4478     }
4479   }
4480 
4481   // Void return.
4482   this->emitCleanup();
4483   return this->emitRetVoid(RS);
4484 }
4485 
4486 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
4487   if (auto *CondInit = IS->getInit())
4488     if (!visitStmt(CondInit))
4489       return false;
4490 
4491   if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
4492     if (!visitDeclStmt(CondDecl))
4493       return false;
4494 
4495   // Compile condition.
4496   if (IS->isNonNegatedConsteval()) {
4497     if (!this->emitIsConstantContext(IS))
4498       return false;
4499   } else if (IS->isNegatedConsteval()) {
4500     if (!this->emitIsConstantContext(IS))
4501       return false;
4502     if (!this->emitInv(IS))
4503       return false;
4504   } else {
4505     if (!this->visitBool(IS->getCond()))
4506       return false;
4507   }
4508 
4509   if (const Stmt *Else = IS->getElse()) {
4510     LabelTy LabelElse = this->getLabel();
4511     LabelTy LabelEnd = this->getLabel();
4512     if (!this->jumpFalse(LabelElse))
4513       return false;
4514     if (!visitStmt(IS->getThen()))
4515       return false;
4516     if (!this->jump(LabelEnd))
4517       return false;
4518     this->emitLabel(LabelElse);
4519     if (!visitStmt(Else))
4520       return false;
4521     this->emitLabel(LabelEnd);
4522   } else {
4523     LabelTy LabelEnd = this->getLabel();
4524     if (!this->jumpFalse(LabelEnd))
4525       return false;
4526     if (!visitStmt(IS->getThen()))
4527       return false;
4528     this->emitLabel(LabelEnd);
4529   }
4530 
4531   return true;
4532 }
4533 
4534 template <class Emitter>
4535 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
4536   const Expr *Cond = S->getCond();
4537   const Stmt *Body = S->getBody();
4538 
4539   LabelTy CondLabel = this->getLabel(); // Label before the condition.
4540   LabelTy EndLabel = this->getLabel();  // Label after the loop.
4541   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4542 
4543   this->fallthrough(CondLabel);
4544   this->emitLabel(CondLabel);
4545 
4546   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4547     if (!visitDeclStmt(CondDecl))
4548       return false;
4549 
4550   if (!this->visitBool(Cond))
4551     return false;
4552   if (!this->jumpFalse(EndLabel))
4553     return false;
4554 
4555   if (!this->visitStmt(Body))
4556     return false;
4557 
4558   if (!this->jump(CondLabel))
4559     return false;
4560   this->fallthrough(EndLabel);
4561   this->emitLabel(EndLabel);
4562 
4563   return true;
4564 }
4565 
4566 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
4567   const Expr *Cond = S->getCond();
4568   const Stmt *Body = S->getBody();
4569 
4570   LabelTy StartLabel = this->getLabel();
4571   LabelTy EndLabel = this->getLabel();
4572   LabelTy CondLabel = this->getLabel();
4573   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4574 
4575   this->fallthrough(StartLabel);
4576   this->emitLabel(StartLabel);
4577   {
4578     if (!this->visitStmt(Body))
4579       return false;
4580     this->fallthrough(CondLabel);
4581     this->emitLabel(CondLabel);
4582     if (!this->visitBool(Cond))
4583       return false;
4584   }
4585   if (!this->jumpTrue(StartLabel))
4586     return false;
4587 
4588   this->fallthrough(EndLabel);
4589   this->emitLabel(EndLabel);
4590   return true;
4591 }
4592 
4593 template <class Emitter>
4594 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
4595   // for (Init; Cond; Inc) { Body }
4596   const Stmt *Init = S->getInit();
4597   const Expr *Cond = S->getCond();
4598   const Expr *Inc = S->getInc();
4599   const Stmt *Body = S->getBody();
4600 
4601   LabelTy EndLabel = this->getLabel();
4602   LabelTy CondLabel = this->getLabel();
4603   LabelTy IncLabel = this->getLabel();
4604   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4605 
4606   if (Init && !this->visitStmt(Init))
4607     return false;
4608 
4609   this->fallthrough(CondLabel);
4610   this->emitLabel(CondLabel);
4611 
4612   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4613     if (!visitDeclStmt(CondDecl))
4614       return false;
4615 
4616   if (Cond) {
4617     if (!this->visitBool(Cond))
4618       return false;
4619     if (!this->jumpFalse(EndLabel))
4620       return false;
4621   }
4622 
4623   {
4624     if (Body && !this->visitStmt(Body))
4625       return false;
4626 
4627     this->fallthrough(IncLabel);
4628     this->emitLabel(IncLabel);
4629     if (Inc && !this->discard(Inc))
4630       return false;
4631   }
4632 
4633   if (!this->jump(CondLabel))
4634     return false;
4635   this->fallthrough(EndLabel);
4636   this->emitLabel(EndLabel);
4637   return true;
4638 }
4639 
4640 template <class Emitter>
4641 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
4642   const Stmt *Init = S->getInit();
4643   const Expr *Cond = S->getCond();
4644   const Expr *Inc = S->getInc();
4645   const Stmt *Body = S->getBody();
4646   const Stmt *BeginStmt = S->getBeginStmt();
4647   const Stmt *RangeStmt = S->getRangeStmt();
4648   const Stmt *EndStmt = S->getEndStmt();
4649   const VarDecl *LoopVar = S->getLoopVariable();
4650 
4651   LabelTy EndLabel = this->getLabel();
4652   LabelTy CondLabel = this->getLabel();
4653   LabelTy IncLabel = this->getLabel();
4654   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4655 
4656   // Emit declarations needed in the loop.
4657   if (Init && !this->visitStmt(Init))
4658     return false;
4659   if (!this->visitStmt(RangeStmt))
4660     return false;
4661   if (!this->visitStmt(BeginStmt))
4662     return false;
4663   if (!this->visitStmt(EndStmt))
4664     return false;
4665 
4666   // Now the condition as well as the loop variable assignment.
4667   this->fallthrough(CondLabel);
4668   this->emitLabel(CondLabel);
4669   if (!this->visitBool(Cond))
4670     return false;
4671   if (!this->jumpFalse(EndLabel))
4672     return false;
4673 
4674   if (!this->visitVarDecl(LoopVar))
4675     return false;
4676 
4677   // Body.
4678   {
4679     if (!this->visitStmt(Body))
4680       return false;
4681 
4682     this->fallthrough(IncLabel);
4683     this->emitLabel(IncLabel);
4684     if (!this->discard(Inc))
4685       return false;
4686   }
4687 
4688   if (!this->jump(CondLabel))
4689     return false;
4690 
4691   this->fallthrough(EndLabel);
4692   this->emitLabel(EndLabel);
4693   return true;
4694 }
4695 
4696 template <class Emitter>
4697 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
4698   if (!BreakLabel)
4699     return false;
4700 
4701   this->emitCleanup();
4702   return this->jump(*BreakLabel);
4703 }
4704 
4705 template <class Emitter>
4706 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
4707   if (!ContinueLabel)
4708     return false;
4709 
4710   this->emitCleanup();
4711   return this->jump(*ContinueLabel);
4712 }
4713 
4714 template <class Emitter>
4715 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
4716   const Expr *Cond = S->getCond();
4717   PrimType CondT = this->classifyPrim(Cond->getType());
4718 
4719   LabelTy EndLabel = this->getLabel();
4720   OptLabelTy DefaultLabel = std::nullopt;
4721   unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
4722 
4723   if (const auto *CondInit = S->getInit())
4724     if (!visitStmt(CondInit))
4725       return false;
4726 
4727   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4728     if (!visitDeclStmt(CondDecl))
4729       return false;
4730 
4731   // Initialize condition variable.
4732   if (!this->visit(Cond))
4733     return false;
4734   if (!this->emitSetLocal(CondT, CondVar, S))
4735     return false;
4736 
4737   CaseMap CaseLabels;
4738   // Create labels and comparison ops for all case statements.
4739   for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
4740        SC = SC->getNextSwitchCase()) {
4741     if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
4742       // FIXME: Implement ranges.
4743       if (CS->caseStmtIsGNURange())
4744         return false;
4745       CaseLabels[SC] = this->getLabel();
4746 
4747       const Expr *Value = CS->getLHS();
4748       PrimType ValueT = this->classifyPrim(Value->getType());
4749 
4750       // Compare the case statement's value to the switch condition.
4751       if (!this->emitGetLocal(CondT, CondVar, CS))
4752         return false;
4753       if (!this->visit(Value))
4754         return false;
4755 
4756       // Compare and jump to the case label.
4757       if (!this->emitEQ(ValueT, S))
4758         return false;
4759       if (!this->jumpTrue(CaseLabels[CS]))
4760         return false;
4761     } else {
4762       assert(!DefaultLabel);
4763       DefaultLabel = this->getLabel();
4764     }
4765   }
4766 
4767   // If none of the conditions above were true, fall through to the default
4768   // statement or jump after the switch statement.
4769   if (DefaultLabel) {
4770     if (!this->jump(*DefaultLabel))
4771       return false;
4772   } else {
4773     if (!this->jump(EndLabel))
4774       return false;
4775   }
4776 
4777   SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
4778   if (!this->visitStmt(S->getBody()))
4779     return false;
4780   this->emitLabel(EndLabel);
4781   return true;
4782 }
4783 
4784 template <class Emitter>
4785 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
4786   this->emitLabel(CaseLabels[S]);
4787   return this->visitStmt(S->getSubStmt());
4788 }
4789 
4790 template <class Emitter>
4791 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
4792   this->emitLabel(*DefaultLabel);
4793   return this->visitStmt(S->getSubStmt());
4794 }
4795 
4796 template <class Emitter>
4797 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
4798   if (this->Ctx.getLangOpts().CXXAssumptions &&
4799       !this->Ctx.getLangOpts().MSVCCompat) {
4800     for (const Attr *A : S->getAttrs()) {
4801       auto *AA = dyn_cast<CXXAssumeAttr>(A);
4802       if (!AA)
4803         continue;
4804 
4805       assert(isa<NullStmt>(S->getSubStmt()));
4806 
4807       const Expr *Assumption = AA->getAssumption();
4808       if (Assumption->isValueDependent())
4809         return false;
4810 
4811       if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
4812         continue;
4813 
4814       // Evaluate assumption.
4815       if (!this->visitBool(Assumption))
4816         return false;
4817 
4818       if (!this->emitAssume(Assumption))
4819         return false;
4820     }
4821   }
4822 
4823   // Ignore other attributes.
4824   return this->visitStmt(S->getSubStmt());
4825 }
4826 
4827 template <class Emitter>
4828 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
4829   // Ignore all handlers.
4830   return this->visitStmt(S->getTryBlock());
4831 }
4832 
4833 template <class Emitter>
4834 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
4835   assert(MD->isLambdaStaticInvoker());
4836   assert(MD->hasBody());
4837   assert(cast<CompoundStmt>(MD->getBody())->body_empty());
4838 
4839   const CXXRecordDecl *ClosureClass = MD->getParent();
4840   const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
4841   assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
4842   const Function *Func = this->getFunction(LambdaCallOp);
4843   if (!Func)
4844     return false;
4845   assert(Func->hasThisPointer());
4846   assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
4847 
4848   if (Func->hasRVO()) {
4849     if (!this->emitRVOPtr(MD))
4850       return false;
4851   }
4852 
4853   // The lambda call operator needs an instance pointer, but we don't have
4854   // one here, and we don't need one either because the lambda cannot have
4855   // any captures, as verified above. Emit a null pointer. This is then
4856   // special-cased when interpreting to not emit any misleading diagnostics.
4857   if (!this->emitNullPtr(nullptr, MD))
4858     return false;
4859 
4860   // Forward all arguments from the static invoker to the lambda call operator.
4861   for (const ParmVarDecl *PVD : MD->parameters()) {
4862     auto It = this->Params.find(PVD);
4863     assert(It != this->Params.end());
4864 
4865     // We do the lvalue-to-rvalue conversion manually here, so no need
4866     // to care about references.
4867     PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
4868     if (!this->emitGetParam(ParamType, It->second.Offset, MD))
4869       return false;
4870   }
4871 
4872   if (!this->emitCall(Func, 0, LambdaCallOp))
4873     return false;
4874 
4875   this->emitCleanup();
4876   if (ReturnType)
4877     return this->emitRet(*ReturnType, MD);
4878 
4879   // Nothing to do, since we emitted the RVO pointer above.
4880   return this->emitRetVoid(MD);
4881 }
4882 
4883 template <class Emitter>
4884 bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
4885   if (Ctx.getLangOpts().CPlusPlus23)
4886     return true;
4887 
4888   if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
4889     return true;
4890 
4891   return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
4892 }
4893 
4894 template <class Emitter>
4895 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
4896   assert(!ReturnType);
4897 
4898   auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
4899                                   const Expr *InitExpr) -> bool {
4900     // We don't know what to do with these, so just return false.
4901     if (InitExpr->getType().isNull())
4902       return false;
4903 
4904     if (std::optional<PrimType> T = this->classify(InitExpr)) {
4905       if (!this->visit(InitExpr))
4906         return false;
4907 
4908       if (F->isBitField())
4909         return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
4910       return this->emitInitThisField(*T, FieldOffset, InitExpr);
4911     }
4912     // Non-primitive case. Get a pointer to the field-to-initialize
4913     // on the stack and call visitInitialzer() for it.
4914     InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
4915     if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
4916       return false;
4917 
4918     if (!this->visitInitializer(InitExpr))
4919       return false;
4920 
4921     return this->emitFinishInitPop(InitExpr);
4922   };
4923 
4924   const RecordDecl *RD = Ctor->getParent();
4925   const Record *R = this->getRecord(RD);
4926   if (!R)
4927     return false;
4928 
4929   if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
4930     // union copy and move ctors are special.
4931     assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
4932     if (!this->emitThis(Ctor))
4933       return false;
4934 
4935     auto PVD = Ctor->getParamDecl(0);
4936     ParamOffset PO = this->Params[PVD]; // Must exist.
4937 
4938     if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
4939       return false;
4940 
4941     return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
4942            this->emitRetVoid(Ctor);
4943   }
4944 
4945   InitLinkScope<Emitter> InitScope(this, InitLink::This());
4946   for (const auto *Init : Ctor->inits()) {
4947     // Scope needed for the initializers.
4948     BlockScope<Emitter> Scope(this);
4949 
4950     const Expr *InitExpr = Init->getInit();
4951     if (const FieldDecl *Member = Init->getMember()) {
4952       const Record::Field *F = R->getField(Member);
4953 
4954       if (!emitFieldInitializer(F, F->Offset, InitExpr))
4955         return false;
4956     } else if (const Type *Base = Init->getBaseClass()) {
4957       const auto *BaseDecl = Base->getAsCXXRecordDecl();
4958       assert(BaseDecl);
4959 
4960       if (Init->isBaseVirtual()) {
4961         assert(R->getVirtualBase(BaseDecl));
4962         if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
4963           return false;
4964 
4965       } else {
4966         // Base class initializer.
4967         // Get This Base and call initializer on it.
4968         const Record::Base *B = R->getBase(BaseDecl);
4969         assert(B);
4970         if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
4971           return false;
4972       }
4973 
4974       if (!this->visitInitializer(InitExpr))
4975         return false;
4976       if (!this->emitFinishInitPop(InitExpr))
4977         return false;
4978     } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
4979       assert(IFD->getChainingSize() >= 2);
4980 
4981       unsigned NestedFieldOffset = 0;
4982       const Record::Field *NestedField = nullptr;
4983       for (const NamedDecl *ND : IFD->chain()) {
4984         const auto *FD = cast<FieldDecl>(ND);
4985         const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
4986         assert(FieldRecord);
4987 
4988         NestedField = FieldRecord->getField(FD);
4989         assert(NestedField);
4990 
4991         NestedFieldOffset += NestedField->Offset;
4992       }
4993       assert(NestedField);
4994 
4995       if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
4996         return false;
4997     } else {
4998       assert(Init->isDelegatingInitializer());
4999       if (!this->emitThis(InitExpr))
5000         return false;
5001       if (!this->visitInitializer(Init->getInit()))
5002         return false;
5003       if (!this->emitPopPtr(InitExpr))
5004         return false;
5005     }
5006 
5007     if (!Scope.destroyLocals())
5008       return false;
5009   }
5010 
5011   if (const auto *Body = Ctor->getBody())
5012     if (!visitStmt(Body))
5013       return false;
5014 
5015   return this->emitRetVoid(SourceInfo{});
5016 }
5017 
5018 template <class Emitter>
5019 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
5020   const RecordDecl *RD = Dtor->getParent();
5021   const Record *R = this->getRecord(RD);
5022   if (!R)
5023     return false;
5024 
5025   if (!Dtor->isTrivial() && Dtor->getBody()) {
5026     if (!this->visitStmt(Dtor->getBody()))
5027       return false;
5028   }
5029 
5030   if (!this->emitThis(Dtor))
5031     return false;
5032 
5033   assert(R);
5034   if (!R->isUnion()) {
5035     // First, destroy all fields.
5036     for (const Record::Field &Field : llvm::reverse(R->fields())) {
5037       const Descriptor *D = Field.Desc;
5038       if (!D->isPrimitive() && !D->isPrimitiveArray()) {
5039         if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
5040           return false;
5041         if (!this->emitDestruction(D))
5042           return false;
5043         if (!this->emitPopPtr(SourceInfo{}))
5044           return false;
5045       }
5046     }
5047   }
5048 
5049   for (const Record::Base &Base : llvm::reverse(R->bases())) {
5050     if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
5051       return false;
5052     if (!this->emitRecordDestruction(Base.R))
5053       return false;
5054     if (!this->emitPopPtr(SourceInfo{}))
5055       return false;
5056   }
5057 
5058   // FIXME: Virtual bases.
5059   return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
5060 }
5061 
5062 template <class Emitter>
5063 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
5064   // Classify the return type.
5065   ReturnType = this->classify(F->getReturnType());
5066 
5067   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
5068     return this->compileConstructor(Ctor);
5069   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
5070     return this->compileDestructor(Dtor);
5071 
5072   // Emit custom code if this is a lambda static invoker.
5073   if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
5074       MD && MD->isLambdaStaticInvoker())
5075     return this->emitLambdaStaticInvokerBody(MD);
5076 
5077   // Regular functions.
5078   if (const auto *Body = F->getBody())
5079     if (!visitStmt(Body))
5080       return false;
5081 
5082   // Emit a guard return to protect against a code path missing one.
5083   if (F->getReturnType()->isVoidType())
5084     return this->emitRetVoid(SourceInfo{});
5085   return this->emitNoRet(SourceInfo{});
5086 }
5087 
5088 template <class Emitter>
5089 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
5090   const Expr *SubExpr = E->getSubExpr();
5091   if (SubExpr->getType()->isAnyComplexType())
5092     return this->VisitComplexUnaryOperator(E);
5093   if (SubExpr->getType()->isVectorType())
5094     return this->VisitVectorUnaryOperator(E);
5095   std::optional<PrimType> T = classify(SubExpr->getType());
5096 
5097   switch (E->getOpcode()) {
5098   case UO_PostInc: { // x++
5099     if (!Ctx.getLangOpts().CPlusPlus14)
5100       return this->emitInvalid(E);
5101     if (!T)
5102       return this->emitError(E);
5103 
5104     if (!this->visit(SubExpr))
5105       return false;
5106 
5107     if (T == PT_Ptr || T == PT_FnPtr) {
5108       if (!this->emitIncPtr(E))
5109         return false;
5110 
5111       return DiscardResult ? this->emitPopPtr(E) : true;
5112     }
5113 
5114     if (T == PT_Float) {
5115       return DiscardResult ? this->emitIncfPop(getFPOptions(E), E)
5116                            : this->emitIncf(getFPOptions(E), E);
5117     }
5118 
5119     return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
5120   }
5121   case UO_PostDec: { // x--
5122     if (!Ctx.getLangOpts().CPlusPlus14)
5123       return this->emitInvalid(E);
5124     if (!T)
5125       return this->emitError(E);
5126 
5127     if (!this->visit(SubExpr))
5128       return false;
5129 
5130     if (T == PT_Ptr || T == PT_FnPtr) {
5131       if (!this->emitDecPtr(E))
5132         return false;
5133 
5134       return DiscardResult ? this->emitPopPtr(E) : true;
5135     }
5136 
5137     if (T == PT_Float) {
5138       return DiscardResult ? this->emitDecfPop(getFPOptions(E), E)
5139                            : this->emitDecf(getFPOptions(E), E);
5140     }
5141 
5142     return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
5143   }
5144   case UO_PreInc: { // ++x
5145     if (!Ctx.getLangOpts().CPlusPlus14)
5146       return this->emitInvalid(E);
5147     if (!T)
5148       return this->emitError(E);
5149 
5150     if (!this->visit(SubExpr))
5151       return false;
5152 
5153     if (T == PT_Ptr || T == PT_FnPtr) {
5154       if (!this->emitLoadPtr(E))
5155         return false;
5156       if (!this->emitConstUint8(1, E))
5157         return false;
5158       if (!this->emitAddOffsetUint8(E))
5159         return false;
5160       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5161     }
5162 
5163     // Post-inc and pre-inc are the same if the value is to be discarded.
5164     if (DiscardResult) {
5165       if (T == PT_Float)
5166         return this->emitIncfPop(getFPOptions(E), E);
5167       return this->emitIncPop(*T, E);
5168     }
5169 
5170     if (T == PT_Float) {
5171       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5172       if (!this->emitLoadFloat(E))
5173         return false;
5174       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5175         return false;
5176       if (!this->emitAddf(getFPOptions(E), E))
5177         return false;
5178       if (!this->emitStoreFloat(E))
5179         return false;
5180     } else {
5181       assert(isIntegralType(*T));
5182       if (!this->emitLoad(*T, E))
5183         return false;
5184       if (!this->emitConst(1, E))
5185         return false;
5186       if (!this->emitAdd(*T, E))
5187         return false;
5188       if (!this->emitStore(*T, E))
5189         return false;
5190     }
5191     return E->isGLValue() || this->emitLoadPop(*T, E);
5192   }
5193   case UO_PreDec: { // --x
5194     if (!Ctx.getLangOpts().CPlusPlus14)
5195       return this->emitInvalid(E);
5196     if (!T)
5197       return this->emitError(E);
5198 
5199     if (!this->visit(SubExpr))
5200       return false;
5201 
5202     if (T == PT_Ptr || T == PT_FnPtr) {
5203       if (!this->emitLoadPtr(E))
5204         return false;
5205       if (!this->emitConstUint8(1, E))
5206         return false;
5207       if (!this->emitSubOffsetUint8(E))
5208         return false;
5209       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5210     }
5211 
5212     // Post-dec and pre-dec are the same if the value is to be discarded.
5213     if (DiscardResult) {
5214       if (T == PT_Float)
5215         return this->emitDecfPop(getFPOptions(E), E);
5216       return this->emitDecPop(*T, E);
5217     }
5218 
5219     if (T == PT_Float) {
5220       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5221       if (!this->emitLoadFloat(E))
5222         return false;
5223       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5224         return false;
5225       if (!this->emitSubf(getFPOptions(E), E))
5226         return false;
5227       if (!this->emitStoreFloat(E))
5228         return false;
5229     } else {
5230       assert(isIntegralType(*T));
5231       if (!this->emitLoad(*T, E))
5232         return false;
5233       if (!this->emitConst(1, E))
5234         return false;
5235       if (!this->emitSub(*T, E))
5236         return false;
5237       if (!this->emitStore(*T, E))
5238         return false;
5239     }
5240     return E->isGLValue() || this->emitLoadPop(*T, E);
5241   }
5242   case UO_LNot: // !x
5243     if (!T)
5244       return this->emitError(E);
5245 
5246     if (DiscardResult)
5247       return this->discard(SubExpr);
5248 
5249     if (!this->visitBool(SubExpr))
5250       return false;
5251 
5252     if (!this->emitInv(E))
5253       return false;
5254 
5255     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5256       return this->emitCast(PT_Bool, ET, E);
5257     return true;
5258   case UO_Minus: // -x
5259     if (!T)
5260       return this->emitError(E);
5261 
5262     if (!this->visit(SubExpr))
5263       return false;
5264     return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
5265   case UO_Plus: // +x
5266     if (!T)
5267       return this->emitError(E);
5268 
5269     if (!this->visit(SubExpr)) // noop
5270       return false;
5271     return DiscardResult ? this->emitPop(*T, E) : true;
5272   case UO_AddrOf: // &x
5273     if (E->getType()->isMemberPointerType()) {
5274       // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5275       // member can be formed.
5276       return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
5277     }
5278     // We should already have a pointer when we get here.
5279     return this->delegate(SubExpr);
5280   case UO_Deref: // *x
5281     if (DiscardResult)
5282       return this->discard(SubExpr);
5283     return this->visit(SubExpr);
5284   case UO_Not: // ~x
5285     if (!T)
5286       return this->emitError(E);
5287 
5288     if (!this->visit(SubExpr))
5289       return false;
5290     return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
5291   case UO_Real: // __real x
5292     assert(T);
5293     return this->delegate(SubExpr);
5294   case UO_Imag: { // __imag x
5295     assert(T);
5296     if (!this->discard(SubExpr))
5297       return false;
5298     return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
5299   }
5300   case UO_Extension:
5301     return this->delegate(SubExpr);
5302   case UO_Coawait:
5303     assert(false && "Unhandled opcode");
5304   }
5305 
5306   return false;
5307 }
5308 
5309 template <class Emitter>
5310 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
5311   const Expr *SubExpr = E->getSubExpr();
5312   assert(SubExpr->getType()->isAnyComplexType());
5313 
5314   if (DiscardResult)
5315     return this->discard(SubExpr);
5316 
5317   std::optional<PrimType> ResT = classify(E);
5318   auto prepareResult = [=]() -> bool {
5319     if (!ResT && !Initializing) {
5320       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5321       if (!LocalIndex)
5322         return false;
5323       return this->emitGetPtrLocal(*LocalIndex, E);
5324     }
5325 
5326     return true;
5327   };
5328 
5329   // The offset of the temporary, if we created one.
5330   unsigned SubExprOffset = ~0u;
5331   auto createTemp = [=, &SubExprOffset]() -> bool {
5332     SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5333     if (!this->visit(SubExpr))
5334       return false;
5335     return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
5336   };
5337 
5338   PrimType ElemT = classifyComplexElementType(SubExpr->getType());
5339   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5340     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5341       return false;
5342     return this->emitArrayElemPop(ElemT, Index, E);
5343   };
5344 
5345   switch (E->getOpcode()) {
5346   case UO_Minus:
5347     if (!prepareResult())
5348       return false;
5349     if (!createTemp())
5350       return false;
5351     for (unsigned I = 0; I != 2; ++I) {
5352       if (!getElem(SubExprOffset, I))
5353         return false;
5354       if (!this->emitNeg(ElemT, E))
5355         return false;
5356       if (!this->emitInitElem(ElemT, I, E))
5357         return false;
5358     }
5359     break;
5360 
5361   case UO_Plus:   // +x
5362   case UO_AddrOf: // &x
5363   case UO_Deref:  // *x
5364     return this->delegate(SubExpr);
5365 
5366   case UO_LNot:
5367     if (!this->visit(SubExpr))
5368       return false;
5369     if (!this->emitComplexBoolCast(SubExpr))
5370       return false;
5371     if (!this->emitInv(E))
5372       return false;
5373     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5374       return this->emitCast(PT_Bool, ET, E);
5375     return true;
5376 
5377   case UO_Real:
5378     return this->emitComplexReal(SubExpr);
5379 
5380   case UO_Imag:
5381     if (!this->visit(SubExpr))
5382       return false;
5383 
5384     if (SubExpr->isLValue()) {
5385       if (!this->emitConstUint8(1, E))
5386         return false;
5387       return this->emitArrayElemPtrPopUint8(E);
5388     }
5389 
5390     // Since our _Complex implementation does not map to a primitive type,
5391     // we sometimes have to do the lvalue-to-rvalue conversion here manually.
5392     return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
5393 
5394   case UO_Not: // ~x
5395     if (!this->visit(SubExpr))
5396       return false;
5397     // Negate the imaginary component.
5398     if (!this->emitArrayElem(ElemT, 1, E))
5399       return false;
5400     if (!this->emitNeg(ElemT, E))
5401       return false;
5402     if (!this->emitInitElem(ElemT, 1, E))
5403       return false;
5404     return DiscardResult ? this->emitPopPtr(E) : true;
5405 
5406   case UO_Extension:
5407     return this->delegate(SubExpr);
5408 
5409   default:
5410     return this->emitInvalid(E);
5411   }
5412 
5413   return true;
5414 }
5415 
5416 template <class Emitter>
5417 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) {
5418   const Expr *SubExpr = E->getSubExpr();
5419   assert(SubExpr->getType()->isVectorType());
5420 
5421   if (DiscardResult)
5422     return this->discard(SubExpr);
5423 
5424   auto UnaryOp = E->getOpcode();
5425   if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot &&
5426       UnaryOp != UO_Not && UnaryOp != UO_AddrOf)
5427     return this->emitInvalid(E);
5428 
5429   // Nothing to do here.
5430   if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf)
5431     return this->delegate(SubExpr);
5432 
5433   if (!Initializing) {
5434     std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5435     if (!LocalIndex)
5436       return false;
5437     if (!this->emitGetPtrLocal(*LocalIndex, E))
5438       return false;
5439   }
5440 
5441   // The offset of the temporary, if we created one.
5442   unsigned SubExprOffset =
5443       this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5444   if (!this->visit(SubExpr))
5445     return false;
5446   if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E))
5447     return false;
5448 
5449   const auto *VecTy = SubExpr->getType()->getAs<VectorType>();
5450   PrimType ElemT = classifyVectorElementType(SubExpr->getType());
5451   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5452     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5453       return false;
5454     return this->emitArrayElemPop(ElemT, Index, E);
5455   };
5456 
5457   switch (UnaryOp) {
5458   case UO_Minus:
5459     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5460       if (!getElem(SubExprOffset, I))
5461         return false;
5462       if (!this->emitNeg(ElemT, E))
5463         return false;
5464       if (!this->emitInitElem(ElemT, I, E))
5465         return false;
5466     }
5467     break;
5468   case UO_LNot: { // !x
5469     // In C++, the logic operators !, &&, || are available for vectors. !v is
5470     // equivalent to v == 0.
5471     //
5472     // The result of the comparison is a vector of the same width and number of
5473     // elements as the comparison operands with a signed integral element type.
5474     //
5475     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
5476     QualType ResultVecTy = E->getType();
5477     PrimType ResultVecElemT =
5478         classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType());
5479     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5480       if (!getElem(SubExprOffset, I))
5481         return false;
5482       // operator ! on vectors returns -1 for 'truth', so negate it.
5483       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
5484         return false;
5485       if (!this->emitInv(E))
5486         return false;
5487       if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E))
5488         return false;
5489       if (!this->emitNeg(ElemT, E))
5490         return false;
5491       if (ElemT != ResultVecElemT &&
5492           !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E))
5493         return false;
5494       if (!this->emitInitElem(ResultVecElemT, I, E))
5495         return false;
5496     }
5497     break;
5498   }
5499   case UO_Not: // ~x
5500     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5501       if (!getElem(SubExprOffset, I))
5502         return false;
5503       if (ElemT == PT_Bool) {
5504         if (!this->emitInv(E))
5505           return false;
5506       } else {
5507         if (!this->emitComp(ElemT, E))
5508           return false;
5509       }
5510       if (!this->emitInitElem(ElemT, I, E))
5511         return false;
5512     }
5513     break;
5514   default:
5515     llvm_unreachable("Unsupported unary operators should be handled up front");
5516   }
5517   return true;
5518 }
5519 
5520 template <class Emitter>
5521 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
5522   if (DiscardResult)
5523     return true;
5524 
5525   if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
5526     return this->emitConst(ECD->getInitVal(), E);
5527   } else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
5528     return this->visit(BD->getBinding());
5529   } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
5530     const Function *F = getFunction(FuncDecl);
5531     return F && this->emitGetFnPtr(F, E);
5532   } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
5533     if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
5534       if (!this->emitGetPtrGlobal(*Index, E))
5535         return false;
5536       if (std::optional<PrimType> T = classify(E->getType())) {
5537         if (!this->visitAPValue(TPOD->getValue(), *T, E))
5538           return false;
5539         return this->emitInitGlobal(*T, *Index, E);
5540       }
5541       return this->visitAPValueInitializer(TPOD->getValue(), E);
5542     }
5543     return false;
5544   }
5545 
5546   // References are implemented via pointers, so when we see a DeclRefExpr
5547   // pointing to a reference, we need to get its value directly (i.e. the
5548   // pointer to the actual value) instead of a pointer to the pointer to the
5549   // value.
5550   bool IsReference = D->getType()->isReferenceType();
5551 
5552   // Check for local/global variables and parameters.
5553   if (auto It = Locals.find(D); It != Locals.end()) {
5554     const unsigned Offset = It->second.Offset;
5555     if (IsReference)
5556       return this->emitGetLocal(PT_Ptr, Offset, E);
5557     return this->emitGetPtrLocal(Offset, E);
5558   } else if (auto GlobalIndex = P.getGlobal(D)) {
5559     if (IsReference) {
5560       if (!Ctx.getLangOpts().CPlusPlus11)
5561         return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
5562       return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
5563     }
5564 
5565     return this->emitGetPtrGlobal(*GlobalIndex, E);
5566   } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
5567     if (auto It = this->Params.find(PVD); It != this->Params.end()) {
5568       if (IsReference || !It->second.IsPtr)
5569         return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
5570 
5571       return this->emitGetPtrParam(It->second.Offset, E);
5572     }
5573   }
5574 
5575   // In case we need to re-visit a declaration.
5576   auto revisit = [&](const VarDecl *VD) -> bool {
5577     auto VarState = this->visitDecl(VD);
5578 
5579     if (VarState.notCreated())
5580       return true;
5581     if (!VarState)
5582       return false;
5583     // Retry.
5584     return this->visitDeclRef(D, E);
5585   };
5586 
5587   // Handle lambda captures.
5588   if (auto It = this->LambdaCaptures.find(D);
5589       It != this->LambdaCaptures.end()) {
5590     auto [Offset, IsPtr] = It->second;
5591 
5592     if (IsPtr)
5593       return this->emitGetThisFieldPtr(Offset, E);
5594     return this->emitGetPtrThisField(Offset, E);
5595   } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
5596              DRE && DRE->refersToEnclosingVariableOrCapture()) {
5597     if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
5598       return revisit(VD);
5599   }
5600 
5601   if (D != InitializingDecl) {
5602     // Try to lazily visit (or emit dummy pointers for) declarations
5603     // we haven't seen yet.
5604     if (Ctx.getLangOpts().CPlusPlus) {
5605       if (const auto *VD = dyn_cast<VarDecl>(D)) {
5606         const auto typeShouldBeVisited = [&](QualType T) -> bool {
5607           if (T.isConstant(Ctx.getASTContext()))
5608             return true;
5609           if (const auto *RT = T->getAs<ReferenceType>())
5610             return RT->getPointeeType().isConstQualified();
5611           return false;
5612         };
5613 
5614         // DecompositionDecls are just proxies for us.
5615         if (isa<DecompositionDecl>(VD))
5616           return revisit(VD);
5617 
5618         // Visit local const variables like normal.
5619         if ((VD->hasGlobalStorage() || VD->isLocalVarDecl() ||
5620              VD->isStaticDataMember()) &&
5621             typeShouldBeVisited(VD->getType()))
5622           return revisit(VD);
5623       }
5624     } else {
5625       if (const auto *VD = dyn_cast<VarDecl>(D);
5626           VD && VD->getAnyInitializer() &&
5627           VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
5628         return revisit(VD);
5629     }
5630   }
5631 
5632   if (std::optional<unsigned> I = P.getOrCreateDummy(D)) {
5633     if (!this->emitGetPtrGlobal(*I, E))
5634       return false;
5635     if (E->getType()->isVoidType())
5636       return true;
5637     // Convert the dummy pointer to another pointer type if we have to.
5638     if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
5639       if (isPtrType(PT))
5640         return this->emitDecayPtr(PT_Ptr, PT, E);
5641       return false;
5642     }
5643     return true;
5644   }
5645 
5646   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
5647     return this->emitInvalidDeclRef(DRE, E);
5648   return false;
5649 }
5650 
5651 template <class Emitter>
5652 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
5653   const auto *D = E->getDecl();
5654   return this->visitDeclRef(D, E);
5655 }
5656 
5657 template <class Emitter> void Compiler<Emitter>::emitCleanup() {
5658   for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
5659     C->emitDestruction();
5660 }
5661 
5662 template <class Emitter>
5663 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
5664                                               const QualType DerivedType) {
5665   const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
5666     if (const auto *R = Ty->getPointeeCXXRecordDecl())
5667       return R;
5668     return Ty->getAsCXXRecordDecl();
5669   };
5670   const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
5671   const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
5672 
5673   return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
5674 }
5675 
5676 /// Emit casts from a PrimType to another PrimType.
5677 template <class Emitter>
5678 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
5679                                      QualType ToQT, const Expr *E) {
5680 
5681   if (FromT == PT_Float) {
5682     // Floating to floating.
5683     if (ToT == PT_Float) {
5684       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
5685       return this->emitCastFP(ToSem, getRoundingMode(E), E);
5686     }
5687 
5688     if (ToT == PT_IntAP)
5689       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT),
5690                                               getFPOptions(E), E);
5691     if (ToT == PT_IntAPS)
5692       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT),
5693                                                getFPOptions(E), E);
5694 
5695     // Float to integral.
5696     if (isIntegralType(ToT) || ToT == PT_Bool)
5697       return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E);
5698   }
5699 
5700   if (isIntegralType(FromT) || FromT == PT_Bool) {
5701     if (ToT == PT_IntAP)
5702       return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
5703     if (ToT == PT_IntAPS)
5704       return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
5705 
5706     // Integral to integral.
5707     if (isIntegralType(ToT) || ToT == PT_Bool)
5708       return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
5709 
5710     if (ToT == PT_Float) {
5711       // Integral to floating.
5712       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
5713       return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E);
5714     }
5715   }
5716 
5717   return false;
5718 }
5719 
5720 /// Emits __real(SubExpr)
5721 template <class Emitter>
5722 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
5723   assert(SubExpr->getType()->isAnyComplexType());
5724 
5725   if (DiscardResult)
5726     return this->discard(SubExpr);
5727 
5728   if (!this->visit(SubExpr))
5729     return false;
5730   if (SubExpr->isLValue()) {
5731     if (!this->emitConstUint8(0, SubExpr))
5732       return false;
5733     return this->emitArrayElemPtrPopUint8(SubExpr);
5734   }
5735 
5736   // Rvalue, load the actual element.
5737   return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
5738                                 0, SubExpr);
5739 }
5740 
5741 template <class Emitter>
5742 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
5743   assert(!DiscardResult);
5744   PrimType ElemT = classifyComplexElementType(E->getType());
5745   // We emit the expression (__real(E) != 0 || __imag(E) != 0)
5746   // for us, that means (bool)E[0] || (bool)E[1]
5747   if (!this->emitArrayElem(ElemT, 0, E))
5748     return false;
5749   if (ElemT == PT_Float) {
5750     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
5751       return false;
5752   } else {
5753     if (!this->emitCast(ElemT, PT_Bool, E))
5754       return false;
5755   }
5756 
5757   // We now have the bool value of E[0] on the stack.
5758   LabelTy LabelTrue = this->getLabel();
5759   if (!this->jumpTrue(LabelTrue))
5760     return false;
5761 
5762   if (!this->emitArrayElemPop(ElemT, 1, E))
5763     return false;
5764   if (ElemT == PT_Float) {
5765     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
5766       return false;
5767   } else {
5768     if (!this->emitCast(ElemT, PT_Bool, E))
5769       return false;
5770   }
5771   // Leave the boolean value of E[1] on the stack.
5772   LabelTy EndLabel = this->getLabel();
5773   this->jump(EndLabel);
5774 
5775   this->emitLabel(LabelTrue);
5776   if (!this->emitPopPtr(E))
5777     return false;
5778   if (!this->emitConstBool(true, E))
5779     return false;
5780 
5781   this->fallthrough(EndLabel);
5782   this->emitLabel(EndLabel);
5783 
5784   return true;
5785 }
5786 
5787 template <class Emitter>
5788 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
5789                                               const BinaryOperator *E) {
5790   assert(E->isComparisonOp());
5791   assert(!Initializing);
5792   assert(!DiscardResult);
5793 
5794   PrimType ElemT;
5795   bool LHSIsComplex;
5796   unsigned LHSOffset;
5797   if (LHS->getType()->isAnyComplexType()) {
5798     LHSIsComplex = true;
5799     ElemT = classifyComplexElementType(LHS->getType());
5800     LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
5801                                        /*IsExtended=*/false);
5802     if (!this->visit(LHS))
5803       return false;
5804     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
5805       return false;
5806   } else {
5807     LHSIsComplex = false;
5808     PrimType LHST = classifyPrim(LHS->getType());
5809     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
5810     if (!this->visit(LHS))
5811       return false;
5812     if (!this->emitSetLocal(LHST, LHSOffset, E))
5813       return false;
5814   }
5815 
5816   bool RHSIsComplex;
5817   unsigned RHSOffset;
5818   if (RHS->getType()->isAnyComplexType()) {
5819     RHSIsComplex = true;
5820     ElemT = classifyComplexElementType(RHS->getType());
5821     RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
5822                                        /*IsExtended=*/false);
5823     if (!this->visit(RHS))
5824       return false;
5825     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
5826       return false;
5827   } else {
5828     RHSIsComplex = false;
5829     PrimType RHST = classifyPrim(RHS->getType());
5830     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
5831     if (!this->visit(RHS))
5832       return false;
5833     if (!this->emitSetLocal(RHST, RHSOffset, E))
5834       return false;
5835   }
5836 
5837   auto getElem = [&](unsigned LocalOffset, unsigned Index,
5838                      bool IsComplex) -> bool {
5839     if (IsComplex) {
5840       if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
5841         return false;
5842       return this->emitArrayElemPop(ElemT, Index, E);
5843     }
5844     return this->emitGetLocal(ElemT, LocalOffset, E);
5845   };
5846 
5847   for (unsigned I = 0; I != 2; ++I) {
5848     // Get both values.
5849     if (!getElem(LHSOffset, I, LHSIsComplex))
5850       return false;
5851     if (!getElem(RHSOffset, I, RHSIsComplex))
5852       return false;
5853     // And compare them.
5854     if (!this->emitEQ(ElemT, E))
5855       return false;
5856 
5857     if (!this->emitCastBoolUint8(E))
5858       return false;
5859   }
5860 
5861   // We now have two bool values on the stack. Compare those.
5862   if (!this->emitAddUint8(E))
5863     return false;
5864   if (!this->emitConstUint8(2, E))
5865     return false;
5866 
5867   if (E->getOpcode() == BO_EQ) {
5868     if (!this->emitEQUint8(E))
5869       return false;
5870   } else if (E->getOpcode() == BO_NE) {
5871     if (!this->emitNEUint8(E))
5872       return false;
5873   } else
5874     return false;
5875 
5876   // In C, this returns an int.
5877   if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
5878     return this->emitCast(PT_Bool, ResT, E);
5879   return true;
5880 }
5881 
5882 /// When calling this, we have a pointer of the local-to-destroy
5883 /// on the stack.
5884 /// Emit destruction of record types (or arrays of record types).
5885 template <class Emitter>
5886 bool Compiler<Emitter>::emitRecordDestruction(const Record *R) {
5887   assert(R);
5888   const CXXDestructorDecl *Dtor = R->getDestructor();
5889   if (!Dtor || Dtor->isTrivial())
5890     return true;
5891 
5892   assert(Dtor);
5893   const Function *DtorFunc = getFunction(Dtor);
5894   if (!DtorFunc)
5895     return false;
5896   assert(DtorFunc->hasThisPointer());
5897   assert(DtorFunc->getNumParams() == 1);
5898   if (!this->emitDupPtr(SourceInfo{}))
5899     return false;
5900   return this->emitCall(DtorFunc, 0, SourceInfo{});
5901 }
5902 /// When calling this, we have a pointer of the local-to-destroy
5903 /// on the stack.
5904 /// Emit destruction of record types (or arrays of record types).
5905 template <class Emitter>
5906 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc) {
5907   assert(Desc);
5908   assert(!Desc->isPrimitive());
5909   assert(!Desc->isPrimitiveArray());
5910 
5911   // Arrays.
5912   if (Desc->isArray()) {
5913     const Descriptor *ElemDesc = Desc->ElemDesc;
5914     assert(ElemDesc);
5915 
5916     // Don't need to do anything for these.
5917     if (ElemDesc->isPrimitiveArray())
5918       return true;
5919 
5920     // If this is an array of record types, check if we need
5921     // to call the element destructors at all. If not, try
5922     // to save the work.
5923     if (const Record *ElemRecord = ElemDesc->ElemRecord) {
5924       if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
5925           !Dtor || Dtor->isTrivial())
5926         return true;
5927     }
5928 
5929     for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
5930       if (!this->emitConstUint64(I, SourceInfo{}))
5931         return false;
5932       if (!this->emitArrayElemPtrUint64(SourceInfo{}))
5933         return false;
5934       if (!this->emitDestruction(ElemDesc))
5935         return false;
5936       if (!this->emitPopPtr(SourceInfo{}))
5937         return false;
5938     }
5939     return true;
5940   }
5941 
5942   assert(Desc->ElemRecord);
5943   return this->emitRecordDestruction(Desc->ElemRecord);
5944 }
5945 
5946 namespace clang {
5947 namespace interp {
5948 
5949 template class Compiler<ByteCodeEmitter>;
5950 template class Compiler<EvalEmitter>;
5951 
5952 } // namespace interp
5953 } // namespace clang
5954