1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Compiler.h" 10 #include "ByteCodeEmitter.h" 11 #include "Context.h" 12 #include "FixedPoint.h" 13 #include "Floating.h" 14 #include "Function.h" 15 #include "InterpShared.h" 16 #include "PrimType.h" 17 #include "Program.h" 18 #include "clang/AST/Attr.h" 19 20 using namespace clang; 21 using namespace clang::interp; 22 23 using APSInt = llvm::APSInt; 24 25 namespace clang { 26 namespace interp { 27 28 /// Scope used to handle temporaries in toplevel variable declarations. 29 template <class Emitter> class DeclScope final : public LocalScope<Emitter> { 30 public: 31 DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD) 32 : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD), 33 OldInitializingDecl(Ctx->InitializingDecl) { 34 Ctx->InitializingDecl = VD; 35 Ctx->InitStack.push_back(InitLink::Decl(VD)); 36 } 37 38 void addExtended(const Scope::Local &Local) override { 39 return this->addLocal(Local); 40 } 41 42 ~DeclScope() { 43 this->Ctx->InitializingDecl = OldInitializingDecl; 44 this->Ctx->InitStack.pop_back(); 45 } 46 47 private: 48 Program::DeclScope Scope; 49 const ValueDecl *OldInitializingDecl; 50 }; 51 52 /// Scope used to handle initialization methods. 53 template <class Emitter> class OptionScope final { 54 public: 55 /// Root constructor, compiling or discarding primitives. 56 OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult, 57 bool NewInitializing) 58 : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), 59 OldInitializing(Ctx->Initializing) { 60 Ctx->DiscardResult = NewDiscardResult; 61 Ctx->Initializing = NewInitializing; 62 } 63 64 ~OptionScope() { 65 Ctx->DiscardResult = OldDiscardResult; 66 Ctx->Initializing = OldInitializing; 67 } 68 69 private: 70 /// Parent context. 71 Compiler<Emitter> *Ctx; 72 /// Old discard flag to restore. 73 bool OldDiscardResult; 74 bool OldInitializing; 75 }; 76 77 template <class Emitter> 78 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const { 79 switch (Kind) { 80 case K_This: 81 return Ctx->emitThis(E); 82 case K_Field: 83 // We're assuming there's a base pointer on the stack already. 84 return Ctx->emitGetPtrFieldPop(Offset, E); 85 case K_Temp: 86 return Ctx->emitGetPtrLocal(Offset, E); 87 case K_Decl: 88 return Ctx->visitDeclRef(D, E); 89 case K_Elem: 90 if (!Ctx->emitConstUint32(Offset, E)) 91 return false; 92 return Ctx->emitArrayElemPtrPopUint32(E); 93 case K_RVO: 94 return Ctx->emitRVOPtr(E); 95 case K_InitList: 96 return true; 97 default: 98 llvm_unreachable("Unhandled InitLink kind"); 99 } 100 return true; 101 } 102 103 /// Scope managing label targets. 104 template <class Emitter> class LabelScope { 105 public: 106 virtual ~LabelScope() {} 107 108 protected: 109 LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {} 110 /// Compiler instance. 111 Compiler<Emitter> *Ctx; 112 }; 113 114 /// Sets the context for break/continue statements. 115 template <class Emitter> class LoopScope final : public LabelScope<Emitter> { 116 public: 117 using LabelTy = typename Compiler<Emitter>::LabelTy; 118 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 119 120 LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel) 121 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 122 OldContinueLabel(Ctx->ContinueLabel), 123 OldBreakVarScope(Ctx->BreakVarScope), 124 OldContinueVarScope(Ctx->ContinueVarScope) { 125 this->Ctx->BreakLabel = BreakLabel; 126 this->Ctx->ContinueLabel = ContinueLabel; 127 this->Ctx->BreakVarScope = this->Ctx->VarScope; 128 this->Ctx->ContinueVarScope = this->Ctx->VarScope; 129 } 130 131 ~LoopScope() { 132 this->Ctx->BreakLabel = OldBreakLabel; 133 this->Ctx->ContinueLabel = OldContinueLabel; 134 this->Ctx->ContinueVarScope = OldContinueVarScope; 135 this->Ctx->BreakVarScope = OldBreakVarScope; 136 } 137 138 private: 139 OptLabelTy OldBreakLabel; 140 OptLabelTy OldContinueLabel; 141 VariableScope<Emitter> *OldBreakVarScope; 142 VariableScope<Emitter> *OldContinueVarScope; 143 }; 144 145 // Sets the context for a switch scope, mapping labels. 146 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> { 147 public: 148 using LabelTy = typename Compiler<Emitter>::LabelTy; 149 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 150 using CaseMap = typename Compiler<Emitter>::CaseMap; 151 152 SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel, 153 OptLabelTy DefaultLabel) 154 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 155 OldDefaultLabel(this->Ctx->DefaultLabel), 156 OldCaseLabels(std::move(this->Ctx->CaseLabels)), 157 OldLabelVarScope(Ctx->BreakVarScope) { 158 this->Ctx->BreakLabel = BreakLabel; 159 this->Ctx->DefaultLabel = DefaultLabel; 160 this->Ctx->CaseLabels = std::move(CaseLabels); 161 this->Ctx->BreakVarScope = this->Ctx->VarScope; 162 } 163 164 ~SwitchScope() { 165 this->Ctx->BreakLabel = OldBreakLabel; 166 this->Ctx->DefaultLabel = OldDefaultLabel; 167 this->Ctx->CaseLabels = std::move(OldCaseLabels); 168 this->Ctx->BreakVarScope = OldLabelVarScope; 169 } 170 171 private: 172 OptLabelTy OldBreakLabel; 173 OptLabelTy OldDefaultLabel; 174 CaseMap OldCaseLabels; 175 VariableScope<Emitter> *OldLabelVarScope; 176 }; 177 178 template <class Emitter> class StmtExprScope final { 179 public: 180 StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) { 181 Ctx->InStmtExpr = true; 182 } 183 184 ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; } 185 186 private: 187 Compiler<Emitter> *Ctx; 188 bool OldFlag; 189 }; 190 191 } // namespace interp 192 } // namespace clang 193 194 template <class Emitter> 195 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) { 196 const Expr *SubExpr = CE->getSubExpr(); 197 switch (CE->getCastKind()) { 198 199 case CK_LValueToRValue: { 200 if (DiscardResult) 201 return this->discard(SubExpr); 202 203 std::optional<PrimType> SubExprT = classify(SubExpr->getType()); 204 // Prepare storage for the result. 205 if (!Initializing && !SubExprT) { 206 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 207 if (!LocalIndex) 208 return false; 209 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 210 return false; 211 } 212 213 if (!this->visit(SubExpr)) 214 return false; 215 216 if (SubExprT) 217 return this->emitLoadPop(*SubExprT, CE); 218 219 // If the subexpr type is not primitive, we need to perform a copy here. 220 // This happens for example in C when dereferencing a pointer of struct 221 // type. 222 return this->emitMemcpy(CE); 223 } 224 225 case CK_DerivedToBaseMemberPointer: { 226 assert(classifyPrim(CE->getType()) == PT_MemberPtr); 227 assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr); 228 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 229 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 230 231 unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0), 232 QualType(FromMP->getClass(), 0)); 233 234 if (!this->delegate(SubExpr)) 235 return false; 236 237 return this->emitGetMemberPtrBasePop(DerivedOffset, CE); 238 } 239 240 case CK_BaseToDerivedMemberPointer: { 241 assert(classifyPrim(CE) == PT_MemberPtr); 242 assert(classifyPrim(SubExpr) == PT_MemberPtr); 243 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 244 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 245 246 unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0), 247 QualType(ToMP->getClass(), 0)); 248 249 if (!this->delegate(SubExpr)) 250 return false; 251 return this->emitGetMemberPtrBasePop(-DerivedOffset, CE); 252 } 253 254 case CK_UncheckedDerivedToBase: 255 case CK_DerivedToBase: { 256 if (!this->delegate(SubExpr)) 257 return false; 258 259 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 260 if (const auto *PT = dyn_cast<PointerType>(Ty)) 261 return PT->getPointeeType()->getAsCXXRecordDecl(); 262 return Ty->getAsCXXRecordDecl(); 263 }; 264 265 // FIXME: We can express a series of non-virtual casts as a single 266 // GetPtrBasePop op. 267 QualType CurType = SubExpr->getType(); 268 for (const CXXBaseSpecifier *B : CE->path()) { 269 if (B->isVirtual()) { 270 if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE)) 271 return false; 272 CurType = B->getType(); 273 } else { 274 unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType); 275 if (!this->emitGetPtrBasePop(DerivedOffset, CE)) 276 return false; 277 CurType = B->getType(); 278 } 279 } 280 281 return true; 282 } 283 284 case CK_BaseToDerived: { 285 if (!this->delegate(SubExpr)) 286 return false; 287 288 unsigned DerivedOffset = 289 collectBaseOffset(SubExpr->getType(), CE->getType()); 290 291 return this->emitGetPtrDerivedPop(DerivedOffset, CE); 292 } 293 294 case CK_FloatingCast: { 295 // HLSL uses CK_FloatingCast to cast between vectors. 296 if (!SubExpr->getType()->isFloatingType() || 297 !CE->getType()->isFloatingType()) 298 return false; 299 if (DiscardResult) 300 return this->discard(SubExpr); 301 if (!this->visit(SubExpr)) 302 return false; 303 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 304 return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE); 305 } 306 307 case CK_IntegralToFloating: { 308 if (DiscardResult) 309 return this->discard(SubExpr); 310 std::optional<PrimType> FromT = classify(SubExpr->getType()); 311 if (!FromT) 312 return false; 313 314 if (!this->visit(SubExpr)) 315 return false; 316 317 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 318 return this->emitCastIntegralFloating(*FromT, TargetSemantics, 319 getFPOptions(CE), CE); 320 } 321 322 case CK_FloatingToBoolean: 323 case CK_FloatingToIntegral: { 324 if (DiscardResult) 325 return this->discard(SubExpr); 326 327 std::optional<PrimType> ToT = classify(CE->getType()); 328 329 if (!ToT) 330 return false; 331 332 if (!this->visit(SubExpr)) 333 return false; 334 335 if (ToT == PT_IntAP) 336 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()), 337 getFPOptions(CE), CE); 338 if (ToT == PT_IntAPS) 339 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()), 340 getFPOptions(CE), CE); 341 342 return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE); 343 } 344 345 case CK_NullToPointer: 346 case CK_NullToMemberPointer: { 347 if (!this->discard(SubExpr)) 348 return false; 349 if (DiscardResult) 350 return true; 351 352 const Descriptor *Desc = nullptr; 353 const QualType PointeeType = CE->getType()->getPointeeType(); 354 if (!PointeeType.isNull()) { 355 if (std::optional<PrimType> T = classify(PointeeType)) 356 Desc = P.createDescriptor(SubExpr, *T); 357 else 358 Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(), 359 std::nullopt, true, false, 360 /*IsMutable=*/false, nullptr); 361 } 362 363 uint64_t Val = Ctx.getASTContext().getTargetNullPointerValue(CE->getType()); 364 return this->emitNull(classifyPrim(CE->getType()), Val, Desc, CE); 365 } 366 367 case CK_PointerToIntegral: { 368 if (DiscardResult) 369 return this->discard(SubExpr); 370 371 if (!this->visit(SubExpr)) 372 return false; 373 374 // If SubExpr doesn't result in a pointer, make it one. 375 if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) { 376 assert(isPtrType(FromT)); 377 if (!this->emitDecayPtr(FromT, PT_Ptr, CE)) 378 return false; 379 } 380 381 PrimType T = classifyPrim(CE->getType()); 382 if (T == PT_IntAP) 383 return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()), 384 CE); 385 if (T == PT_IntAPS) 386 return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()), 387 CE); 388 return this->emitCastPointerIntegral(T, CE); 389 } 390 391 case CK_ArrayToPointerDecay: { 392 if (!this->visit(SubExpr)) 393 return false; 394 if (!this->emitArrayDecay(CE)) 395 return false; 396 if (DiscardResult) 397 return this->emitPopPtr(CE); 398 return true; 399 } 400 401 case CK_IntegralToPointer: { 402 QualType IntType = SubExpr->getType(); 403 assert(IntType->isIntegralOrEnumerationType()); 404 if (!this->visit(SubExpr)) 405 return false; 406 // FIXME: I think the discard is wrong since the int->ptr cast might cause a 407 // diagnostic. 408 PrimType T = classifyPrim(IntType); 409 if (DiscardResult) 410 return this->emitPop(T, CE); 411 412 QualType PtrType = CE->getType(); 413 const Descriptor *Desc; 414 if (std::optional<PrimType> T = classify(PtrType->getPointeeType())) 415 Desc = P.createDescriptor(SubExpr, *T); 416 else if (PtrType->getPointeeType()->isVoidType()) 417 Desc = nullptr; 418 else 419 Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(), 420 Descriptor::InlineDescMD, true, false, 421 /*IsMutable=*/false, nullptr); 422 423 if (!this->emitGetIntPtr(T, Desc, CE)) 424 return false; 425 426 PrimType DestPtrT = classifyPrim(PtrType); 427 if (DestPtrT == PT_Ptr) 428 return true; 429 430 // In case we're converting the integer to a non-Pointer. 431 return this->emitDecayPtr(PT_Ptr, DestPtrT, CE); 432 } 433 434 case CK_AtomicToNonAtomic: 435 case CK_ConstructorConversion: 436 case CK_FunctionToPointerDecay: 437 case CK_NonAtomicToAtomic: 438 case CK_NoOp: 439 case CK_UserDefinedConversion: 440 case CK_AddressSpaceConversion: 441 case CK_CPointerToObjCPointerCast: 442 return this->delegate(SubExpr); 443 444 case CK_BitCast: { 445 // Reject bitcasts to atomic types. 446 if (CE->getType()->isAtomicType()) { 447 if (!this->discard(SubExpr)) 448 return false; 449 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE); 450 } 451 452 if (DiscardResult) 453 return this->discard(SubExpr); 454 455 QualType SubExprTy = SubExpr->getType(); 456 std::optional<PrimType> FromT = classify(SubExprTy); 457 // Casts from integer/vector to vector. 458 if (CE->getType()->isVectorType()) 459 return this->emitBuiltinBitCast(CE); 460 461 std::optional<PrimType> ToT = classify(CE->getType()); 462 if (!FromT || !ToT) 463 return false; 464 465 assert(isPtrType(*FromT)); 466 assert(isPtrType(*ToT)); 467 if (FromT == ToT) { 468 if (CE->getType()->isVoidPointerType()) 469 return this->delegate(SubExpr); 470 471 if (!this->visit(SubExpr)) 472 return false; 473 if (FromT == PT_Ptr) 474 return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE); 475 return true; 476 } 477 478 if (!this->visit(SubExpr)) 479 return false; 480 return this->emitDecayPtr(*FromT, *ToT, CE); 481 } 482 483 case CK_LValueToRValueBitCast: 484 return this->emitBuiltinBitCast(CE); 485 486 case CK_IntegralToBoolean: 487 case CK_FixedPointToBoolean: 488 case CK_BooleanToSignedIntegral: 489 case CK_IntegralCast: { 490 if (DiscardResult) 491 return this->discard(SubExpr); 492 std::optional<PrimType> FromT = classify(SubExpr->getType()); 493 std::optional<PrimType> ToT = classify(CE->getType()); 494 495 if (!FromT || !ToT) 496 return false; 497 498 if (!this->visit(SubExpr)) 499 return false; 500 501 // Possibly diagnose casts to enum types if the target type does not 502 // have a fixed size. 503 if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) { 504 if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>(); 505 ET && !ET->getDecl()->isFixed()) { 506 if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE)) 507 return false; 508 } 509 } 510 511 auto maybeNegate = [&]() -> bool { 512 if (CE->getCastKind() == CK_BooleanToSignedIntegral) 513 return this->emitNeg(*ToT, CE); 514 return true; 515 }; 516 517 if (ToT == PT_IntAP) 518 return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 519 maybeNegate(); 520 if (ToT == PT_IntAPS) 521 return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 522 maybeNegate(); 523 524 if (FromT == ToT) 525 return true; 526 if (!this->emitCast(*FromT, *ToT, CE)) 527 return false; 528 529 return maybeNegate(); 530 } 531 532 case CK_PointerToBoolean: 533 case CK_MemberPointerToBoolean: { 534 PrimType PtrT = classifyPrim(SubExpr->getType()); 535 536 if (!this->visit(SubExpr)) 537 return false; 538 return this->emitIsNonNull(PtrT, CE); 539 } 540 541 case CK_IntegralComplexToBoolean: 542 case CK_FloatingComplexToBoolean: { 543 if (DiscardResult) 544 return this->discard(SubExpr); 545 if (!this->visit(SubExpr)) 546 return false; 547 return this->emitComplexBoolCast(SubExpr); 548 } 549 550 case CK_IntegralComplexToReal: 551 case CK_FloatingComplexToReal: 552 return this->emitComplexReal(SubExpr); 553 554 case CK_IntegralRealToComplex: 555 case CK_FloatingRealToComplex: { 556 // We're creating a complex value here, so we need to 557 // allocate storage for it. 558 if (!Initializing) { 559 unsigned LocalIndex = allocateTemporary(CE); 560 if (!this->emitGetPtrLocal(LocalIndex, CE)) 561 return false; 562 } 563 564 // Init the complex value to {SubExpr, 0}. 565 if (!this->visitArrayElemInit(0, SubExpr)) 566 return false; 567 // Zero-init the second element. 568 PrimType T = classifyPrim(SubExpr->getType()); 569 if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr)) 570 return false; 571 return this->emitInitElem(T, 1, SubExpr); 572 } 573 574 case CK_IntegralComplexCast: 575 case CK_FloatingComplexCast: 576 case CK_IntegralComplexToFloatingComplex: 577 case CK_FloatingComplexToIntegralComplex: { 578 assert(CE->getType()->isAnyComplexType()); 579 assert(SubExpr->getType()->isAnyComplexType()); 580 if (DiscardResult) 581 return this->discard(SubExpr); 582 583 if (!Initializing) { 584 std::optional<unsigned> LocalIndex = allocateLocal(CE); 585 if (!LocalIndex) 586 return false; 587 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 588 return false; 589 } 590 591 // Location for the SubExpr. 592 // Since SubExpr is of complex type, visiting it results in a pointer 593 // anyway, so we just create a temporary pointer variable. 594 unsigned SubExprOffset = allocateLocalPrimitive( 595 SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 596 if (!this->visit(SubExpr)) 597 return false; 598 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE)) 599 return false; 600 601 PrimType SourceElemT = classifyComplexElementType(SubExpr->getType()); 602 QualType DestElemType = 603 CE->getType()->getAs<ComplexType>()->getElementType(); 604 PrimType DestElemT = classifyPrim(DestElemType); 605 // Cast both elements individually. 606 for (unsigned I = 0; I != 2; ++I) { 607 if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE)) 608 return false; 609 if (!this->emitArrayElemPop(SourceElemT, I, CE)) 610 return false; 611 612 // Do the cast. 613 if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE)) 614 return false; 615 616 // Save the value. 617 if (!this->emitInitElem(DestElemT, I, CE)) 618 return false; 619 } 620 return true; 621 } 622 623 case CK_VectorSplat: { 624 assert(!classify(CE->getType())); 625 assert(classify(SubExpr->getType())); 626 assert(CE->getType()->isVectorType()); 627 628 if (DiscardResult) 629 return this->discard(SubExpr); 630 631 if (!Initializing) { 632 std::optional<unsigned> LocalIndex = allocateLocal(CE); 633 if (!LocalIndex) 634 return false; 635 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 636 return false; 637 } 638 639 const auto *VT = CE->getType()->getAs<VectorType>(); 640 PrimType ElemT = classifyPrim(SubExpr->getType()); 641 unsigned ElemOffset = allocateLocalPrimitive( 642 SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false); 643 644 // Prepare a local variable for the scalar value. 645 if (!this->visit(SubExpr)) 646 return false; 647 if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE)) 648 return false; 649 650 if (!this->emitSetLocal(ElemT, ElemOffset, CE)) 651 return false; 652 653 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 654 if (!this->emitGetLocal(ElemT, ElemOffset, CE)) 655 return false; 656 if (!this->emitInitElem(ElemT, I, CE)) 657 return false; 658 } 659 660 return true; 661 } 662 663 case CK_HLSLVectorTruncation: { 664 assert(SubExpr->getType()->isVectorType()); 665 if (std::optional<PrimType> ResultT = classify(CE)) { 666 assert(!DiscardResult); 667 // Result must be either a float or integer. Take the first element. 668 if (!this->visit(SubExpr)) 669 return false; 670 return this->emitArrayElemPop(*ResultT, 0, CE); 671 } 672 // Otherwise, this truncates from one vector type to another. 673 assert(CE->getType()->isVectorType()); 674 675 if (!Initializing) { 676 unsigned LocalIndex = allocateTemporary(CE); 677 if (!this->emitGetPtrLocal(LocalIndex, CE)) 678 return false; 679 } 680 unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements(); 681 assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize); 682 if (!this->visit(SubExpr)) 683 return false; 684 return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0, 685 ToSize, CE); 686 }; 687 688 case CK_IntegralToFixedPoint: { 689 if (!this->visit(SubExpr)) 690 return false; 691 692 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 693 uint32_t I; 694 std::memcpy(&I, &Sem, sizeof(Sem)); 695 return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), I, 696 CE); 697 } 698 case CK_FloatingToFixedPoint: { 699 if (!this->visit(SubExpr)) 700 return false; 701 702 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 703 uint32_t I; 704 std::memcpy(&I, &Sem, sizeof(Sem)); 705 return this->emitCastFloatingFixedPoint(I, CE); 706 } 707 case CK_FixedPointToFloating: { 708 if (!this->visit(SubExpr)) 709 return false; 710 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 711 return this->emitCastFixedPointFloating(TargetSemantics, CE); 712 } 713 case CK_FixedPointToIntegral: { 714 if (!this->visit(SubExpr)) 715 return false; 716 return this->emitCastFixedPointIntegral(classifyPrim(CE->getType()), CE); 717 } 718 case CK_FixedPointCast: { 719 if (!this->visit(SubExpr)) 720 return false; 721 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 722 uint32_t I; 723 std::memcpy(&I, &Sem, sizeof(Sem)); 724 return this->emitCastFixedPoint(I, CE); 725 } 726 727 case CK_ToVoid: 728 return discard(SubExpr); 729 730 default: 731 return this->emitInvalid(CE); 732 } 733 llvm_unreachable("Unhandled clang::CastKind enum"); 734 } 735 736 template <class Emitter> 737 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) { 738 if (DiscardResult) 739 return true; 740 741 return this->emitConst(LE->getValue(), LE); 742 } 743 744 template <class Emitter> 745 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) { 746 if (DiscardResult) 747 return true; 748 749 return this->emitConstFloat(E->getValue(), E); 750 } 751 752 template <class Emitter> 753 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 754 assert(E->getType()->isAnyComplexType()); 755 if (DiscardResult) 756 return true; 757 758 if (!Initializing) { 759 unsigned LocalIndex = allocateTemporary(E); 760 if (!this->emitGetPtrLocal(LocalIndex, E)) 761 return false; 762 } 763 764 const Expr *SubExpr = E->getSubExpr(); 765 PrimType SubExprT = classifyPrim(SubExpr->getType()); 766 767 if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr)) 768 return false; 769 if (!this->emitInitElem(SubExprT, 0, SubExpr)) 770 return false; 771 return this->visitArrayElemInit(1, SubExpr); 772 } 773 774 template <class Emitter> 775 bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) { 776 assert(E->getType()->isFixedPointType()); 777 assert(classifyPrim(E) == PT_FixedPoint); 778 779 if (DiscardResult) 780 return true; 781 782 auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 783 APInt Value = E->getValue(); 784 return this->emitConstFixedPoint(FixedPoint(Value, Sem), E); 785 } 786 787 template <class Emitter> 788 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) { 789 return this->delegate(E->getSubExpr()); 790 } 791 792 template <class Emitter> 793 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) { 794 // Need short-circuiting for these. 795 if (BO->isLogicalOp() && !BO->getType()->isVectorType()) 796 return this->VisitLogicalBinOp(BO); 797 798 const Expr *LHS = BO->getLHS(); 799 const Expr *RHS = BO->getRHS(); 800 801 // Handle comma operators. Just discard the LHS 802 // and delegate to RHS. 803 if (BO->isCommaOp()) { 804 if (!this->discard(LHS)) 805 return false; 806 if (RHS->getType()->isVoidType()) 807 return this->discard(RHS); 808 809 return this->delegate(RHS); 810 } 811 812 if (BO->getType()->isAnyComplexType()) 813 return this->VisitComplexBinOp(BO); 814 if (BO->getType()->isVectorType()) 815 return this->VisitVectorBinOp(BO); 816 if ((LHS->getType()->isAnyComplexType() || 817 RHS->getType()->isAnyComplexType()) && 818 BO->isComparisonOp()) 819 return this->emitComplexComparison(LHS, RHS, BO); 820 if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType()) 821 return this->VisitFixedPointBinOp(BO); 822 823 if (BO->isPtrMemOp()) { 824 if (!this->visit(LHS)) 825 return false; 826 827 if (!this->visit(RHS)) 828 return false; 829 830 if (!this->emitToMemberPtr(BO)) 831 return false; 832 833 if (classifyPrim(BO) == PT_MemberPtr) 834 return true; 835 836 if (!this->emitCastMemberPtrPtr(BO)) 837 return false; 838 return DiscardResult ? this->emitPopPtr(BO) : true; 839 } 840 841 // Typecheck the args. 842 std::optional<PrimType> LT = classify(LHS); 843 std::optional<PrimType> RT = classify(RHS); 844 std::optional<PrimType> T = classify(BO->getType()); 845 846 // Special case for C++'s three-way/spaceship operator <=>, which 847 // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't 848 // have a PrimType). 849 if (!T && BO->getOpcode() == BO_Cmp) { 850 if (DiscardResult) 851 return true; 852 const ComparisonCategoryInfo *CmpInfo = 853 Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType()); 854 assert(CmpInfo); 855 856 // We need a temporary variable holding our return value. 857 if (!Initializing) { 858 std::optional<unsigned> ResultIndex = this->allocateLocal(BO); 859 if (!this->emitGetPtrLocal(*ResultIndex, BO)) 860 return false; 861 } 862 863 if (!visit(LHS) || !visit(RHS)) 864 return false; 865 866 return this->emitCMP3(*LT, CmpInfo, BO); 867 } 868 869 if (!LT || !RT || !T) 870 return false; 871 872 // Pointer arithmetic special case. 873 if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) { 874 if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT))) 875 return this->VisitPointerArithBinOp(BO); 876 } 877 878 // Assignmentes require us to evalute the RHS first. 879 if (BO->getOpcode() == BO_Assign) { 880 if (!visit(RHS) || !visit(LHS)) 881 return false; 882 if (!this->emitFlip(*LT, *RT, BO)) 883 return false; 884 } else { 885 if (!visit(LHS) || !visit(RHS)) 886 return false; 887 } 888 889 // For languages such as C, cast the result of one 890 // of our comparision opcodes to T (which is usually int). 891 auto MaybeCastToBool = [this, T, BO](bool Result) { 892 if (!Result) 893 return false; 894 if (DiscardResult) 895 return this->emitPop(*T, BO); 896 if (T != PT_Bool) 897 return this->emitCast(PT_Bool, *T, BO); 898 return true; 899 }; 900 901 auto Discard = [this, T, BO](bool Result) { 902 if (!Result) 903 return false; 904 return DiscardResult ? this->emitPop(*T, BO) : true; 905 }; 906 907 switch (BO->getOpcode()) { 908 case BO_EQ: 909 return MaybeCastToBool(this->emitEQ(*LT, BO)); 910 case BO_NE: 911 return MaybeCastToBool(this->emitNE(*LT, BO)); 912 case BO_LT: 913 return MaybeCastToBool(this->emitLT(*LT, BO)); 914 case BO_LE: 915 return MaybeCastToBool(this->emitLE(*LT, BO)); 916 case BO_GT: 917 return MaybeCastToBool(this->emitGT(*LT, BO)); 918 case BO_GE: 919 return MaybeCastToBool(this->emitGE(*LT, BO)); 920 case BO_Sub: 921 if (BO->getType()->isFloatingType()) 922 return Discard(this->emitSubf(getFPOptions(BO), BO)); 923 return Discard(this->emitSub(*T, BO)); 924 case BO_Add: 925 if (BO->getType()->isFloatingType()) 926 return Discard(this->emitAddf(getFPOptions(BO), BO)); 927 return Discard(this->emitAdd(*T, BO)); 928 case BO_Mul: 929 if (BO->getType()->isFloatingType()) 930 return Discard(this->emitMulf(getFPOptions(BO), BO)); 931 return Discard(this->emitMul(*T, BO)); 932 case BO_Rem: 933 return Discard(this->emitRem(*T, BO)); 934 case BO_Div: 935 if (BO->getType()->isFloatingType()) 936 return Discard(this->emitDivf(getFPOptions(BO), BO)); 937 return Discard(this->emitDiv(*T, BO)); 938 case BO_Assign: 939 if (DiscardResult) 940 return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO) 941 : this->emitStorePop(*T, BO); 942 if (LHS->refersToBitField()) { 943 if (!this->emitStoreBitField(*T, BO)) 944 return false; 945 } else { 946 if (!this->emitStore(*T, BO)) 947 return false; 948 } 949 // Assignments aren't necessarily lvalues in C. 950 // Load from them in that case. 951 if (!BO->isLValue()) 952 return this->emitLoadPop(*T, BO); 953 return true; 954 case BO_And: 955 return Discard(this->emitBitAnd(*T, BO)); 956 case BO_Or: 957 return Discard(this->emitBitOr(*T, BO)); 958 case BO_Shl: 959 return Discard(this->emitShl(*LT, *RT, BO)); 960 case BO_Shr: 961 return Discard(this->emitShr(*LT, *RT, BO)); 962 case BO_Xor: 963 return Discard(this->emitBitXor(*T, BO)); 964 case BO_LOr: 965 case BO_LAnd: 966 llvm_unreachable("Already handled earlier"); 967 default: 968 return false; 969 } 970 971 llvm_unreachable("Unhandled binary op"); 972 } 973 974 /// Perform addition/subtraction of a pointer and an integer or 975 /// subtraction of two pointers. 976 template <class Emitter> 977 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) { 978 BinaryOperatorKind Op = E->getOpcode(); 979 const Expr *LHS = E->getLHS(); 980 const Expr *RHS = E->getRHS(); 981 982 if ((Op != BO_Add && Op != BO_Sub) || 983 (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType())) 984 return false; 985 986 std::optional<PrimType> LT = classify(LHS); 987 std::optional<PrimType> RT = classify(RHS); 988 989 if (!LT || !RT) 990 return false; 991 992 // Visit the given pointer expression and optionally convert to a PT_Ptr. 993 auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool { 994 if (!this->visit(E)) 995 return false; 996 if (T != PT_Ptr) 997 return this->emitDecayPtr(T, PT_Ptr, E); 998 return true; 999 }; 1000 1001 if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) { 1002 if (Op != BO_Sub) 1003 return false; 1004 1005 assert(E->getType()->isIntegerType()); 1006 if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT)) 1007 return false; 1008 1009 PrimType IntT = classifyPrim(E->getType()); 1010 if (!this->emitSubPtr(IntT, E)) 1011 return false; 1012 return DiscardResult ? this->emitPop(IntT, E) : true; 1013 } 1014 1015 PrimType OffsetType; 1016 if (LHS->getType()->isIntegerType()) { 1017 if (!visitAsPointer(RHS, *RT)) 1018 return false; 1019 if (!this->visit(LHS)) 1020 return false; 1021 OffsetType = *LT; 1022 } else if (RHS->getType()->isIntegerType()) { 1023 if (!visitAsPointer(LHS, *LT)) 1024 return false; 1025 if (!this->visit(RHS)) 1026 return false; 1027 OffsetType = *RT; 1028 } else { 1029 return false; 1030 } 1031 1032 // Do the operation and optionally transform to 1033 // result pointer type. 1034 if (Op == BO_Add) { 1035 if (!this->emitAddOffset(OffsetType, E)) 1036 return false; 1037 1038 if (classifyPrim(E) != PT_Ptr) 1039 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 1040 return true; 1041 } else if (Op == BO_Sub) { 1042 if (!this->emitSubOffset(OffsetType, E)) 1043 return false; 1044 1045 if (classifyPrim(E) != PT_Ptr) 1046 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 1047 return true; 1048 } 1049 1050 return false; 1051 } 1052 1053 template <class Emitter> 1054 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) { 1055 assert(E->isLogicalOp()); 1056 BinaryOperatorKind Op = E->getOpcode(); 1057 const Expr *LHS = E->getLHS(); 1058 const Expr *RHS = E->getRHS(); 1059 std::optional<PrimType> T = classify(E->getType()); 1060 1061 if (Op == BO_LOr) { 1062 // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE. 1063 LabelTy LabelTrue = this->getLabel(); 1064 LabelTy LabelEnd = this->getLabel(); 1065 1066 if (!this->visitBool(LHS)) 1067 return false; 1068 if (!this->jumpTrue(LabelTrue)) 1069 return false; 1070 1071 if (!this->visitBool(RHS)) 1072 return false; 1073 if (!this->jump(LabelEnd)) 1074 return false; 1075 1076 this->emitLabel(LabelTrue); 1077 this->emitConstBool(true, E); 1078 this->fallthrough(LabelEnd); 1079 this->emitLabel(LabelEnd); 1080 1081 } else { 1082 assert(Op == BO_LAnd); 1083 // Logical AND. 1084 // Visit LHS. Only visit RHS if LHS was TRUE. 1085 LabelTy LabelFalse = this->getLabel(); 1086 LabelTy LabelEnd = this->getLabel(); 1087 1088 if (!this->visitBool(LHS)) 1089 return false; 1090 if (!this->jumpFalse(LabelFalse)) 1091 return false; 1092 1093 if (!this->visitBool(RHS)) 1094 return false; 1095 if (!this->jump(LabelEnd)) 1096 return false; 1097 1098 this->emitLabel(LabelFalse); 1099 this->emitConstBool(false, E); 1100 this->fallthrough(LabelEnd); 1101 this->emitLabel(LabelEnd); 1102 } 1103 1104 if (DiscardResult) 1105 return this->emitPopBool(E); 1106 1107 // For C, cast back to integer type. 1108 assert(T); 1109 if (T != PT_Bool) 1110 return this->emitCast(PT_Bool, *T, E); 1111 return true; 1112 } 1113 1114 template <class Emitter> 1115 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) { 1116 // Prepare storage for result. 1117 if (!Initializing) { 1118 unsigned LocalIndex = allocateTemporary(E); 1119 if (!this->emitGetPtrLocal(LocalIndex, E)) 1120 return false; 1121 } 1122 1123 // Both LHS and RHS might _not_ be of complex type, but one of them 1124 // needs to be. 1125 const Expr *LHS = E->getLHS(); 1126 const Expr *RHS = E->getRHS(); 1127 1128 PrimType ResultElemT = this->classifyComplexElementType(E->getType()); 1129 unsigned ResultOffset = ~0u; 1130 if (!DiscardResult) 1131 ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false); 1132 1133 // Save result pointer in ResultOffset 1134 if (!this->DiscardResult) { 1135 if (!this->emitDupPtr(E)) 1136 return false; 1137 if (!this->emitSetLocal(PT_Ptr, ResultOffset, E)) 1138 return false; 1139 } 1140 QualType LHSType = LHS->getType(); 1141 if (const auto *AT = LHSType->getAs<AtomicType>()) 1142 LHSType = AT->getValueType(); 1143 QualType RHSType = RHS->getType(); 1144 if (const auto *AT = RHSType->getAs<AtomicType>()) 1145 RHSType = AT->getValueType(); 1146 1147 bool LHSIsComplex = LHSType->isAnyComplexType(); 1148 unsigned LHSOffset; 1149 bool RHSIsComplex = RHSType->isAnyComplexType(); 1150 1151 // For ComplexComplex Mul, we have special ops to make their implementation 1152 // easier. 1153 BinaryOperatorKind Op = E->getOpcode(); 1154 if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) { 1155 assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) == 1156 classifyPrim(RHSType->getAs<ComplexType>()->getElementType())); 1157 PrimType ElemT = 1158 classifyPrim(LHSType->getAs<ComplexType>()->getElementType()); 1159 if (!this->visit(LHS)) 1160 return false; 1161 if (!this->visit(RHS)) 1162 return false; 1163 return this->emitMulc(ElemT, E); 1164 } 1165 1166 if (Op == BO_Div && RHSIsComplex) { 1167 QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType(); 1168 PrimType ElemT = classifyPrim(ElemQT); 1169 // If the LHS is not complex, we still need to do the full complex 1170 // division, so just stub create a complex value and stub it out with 1171 // the LHS and a zero. 1172 1173 if (!LHSIsComplex) { 1174 // This is using the RHS type for the fake-complex LHS. 1175 LHSOffset = allocateTemporary(RHS); 1176 1177 if (!this->emitGetPtrLocal(LHSOffset, E)) 1178 return false; 1179 1180 if (!this->visit(LHS)) 1181 return false; 1182 // real is LHS 1183 if (!this->emitInitElem(ElemT, 0, E)) 1184 return false; 1185 // imag is zero 1186 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1187 return false; 1188 if (!this->emitInitElem(ElemT, 1, E)) 1189 return false; 1190 } else { 1191 if (!this->visit(LHS)) 1192 return false; 1193 } 1194 1195 if (!this->visit(RHS)) 1196 return false; 1197 return this->emitDivc(ElemT, E); 1198 } 1199 1200 // Evaluate LHS and save value to LHSOffset. 1201 if (LHSType->isAnyComplexType()) { 1202 LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1203 if (!this->visit(LHS)) 1204 return false; 1205 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1206 return false; 1207 } else { 1208 PrimType LHST = classifyPrim(LHSType); 1209 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 1210 if (!this->visit(LHS)) 1211 return false; 1212 if (!this->emitSetLocal(LHST, LHSOffset, E)) 1213 return false; 1214 } 1215 1216 // Same with RHS. 1217 unsigned RHSOffset; 1218 if (RHSType->isAnyComplexType()) { 1219 RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1220 if (!this->visit(RHS)) 1221 return false; 1222 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1223 return false; 1224 } else { 1225 PrimType RHST = classifyPrim(RHSType); 1226 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 1227 if (!this->visit(RHS)) 1228 return false; 1229 if (!this->emitSetLocal(RHST, RHSOffset, E)) 1230 return false; 1231 } 1232 1233 // For both LHS and RHS, either load the value from the complex pointer, or 1234 // directly from the local variable. For index 1 (i.e. the imaginary part), 1235 // just load 0 and do the operation anyway. 1236 auto loadComplexValue = [this](bool IsComplex, bool LoadZero, 1237 unsigned ElemIndex, unsigned Offset, 1238 const Expr *E) -> bool { 1239 if (IsComplex) { 1240 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1241 return false; 1242 return this->emitArrayElemPop(classifyComplexElementType(E->getType()), 1243 ElemIndex, E); 1244 } 1245 if (ElemIndex == 0 || !LoadZero) 1246 return this->emitGetLocal(classifyPrim(E->getType()), Offset, E); 1247 return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(), 1248 E); 1249 }; 1250 1251 // Now we can get pointers to the LHS and RHS from the offsets above. 1252 for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) { 1253 // Result pointer for the store later. 1254 if (!this->DiscardResult) { 1255 if (!this->emitGetLocal(PT_Ptr, ResultOffset, E)) 1256 return false; 1257 } 1258 1259 // The actual operation. 1260 switch (Op) { 1261 case BO_Add: 1262 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1263 return false; 1264 1265 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1266 return false; 1267 if (ResultElemT == PT_Float) { 1268 if (!this->emitAddf(getFPOptions(E), E)) 1269 return false; 1270 } else { 1271 if (!this->emitAdd(ResultElemT, E)) 1272 return false; 1273 } 1274 break; 1275 case BO_Sub: 1276 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1277 return false; 1278 1279 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1280 return false; 1281 if (ResultElemT == PT_Float) { 1282 if (!this->emitSubf(getFPOptions(E), E)) 1283 return false; 1284 } else { 1285 if (!this->emitSub(ResultElemT, E)) 1286 return false; 1287 } 1288 break; 1289 case BO_Mul: 1290 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1291 return false; 1292 1293 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1294 return false; 1295 1296 if (ResultElemT == PT_Float) { 1297 if (!this->emitMulf(getFPOptions(E), E)) 1298 return false; 1299 } else { 1300 if (!this->emitMul(ResultElemT, E)) 1301 return false; 1302 } 1303 break; 1304 case BO_Div: 1305 assert(!RHSIsComplex); 1306 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1307 return false; 1308 1309 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1310 return false; 1311 1312 if (ResultElemT == PT_Float) { 1313 if (!this->emitDivf(getFPOptions(E), E)) 1314 return false; 1315 } else { 1316 if (!this->emitDiv(ResultElemT, E)) 1317 return false; 1318 } 1319 break; 1320 1321 default: 1322 return false; 1323 } 1324 1325 if (!this->DiscardResult) { 1326 // Initialize array element with the value we just computed. 1327 if (!this->emitInitElemPop(ResultElemT, ElemIndex, E)) 1328 return false; 1329 } else { 1330 if (!this->emitPop(ResultElemT, E)) 1331 return false; 1332 } 1333 } 1334 return true; 1335 } 1336 1337 template <class Emitter> 1338 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) { 1339 assert(!E->isCommaOp() && 1340 "Comma op should be handled in VisitBinaryOperator"); 1341 assert(E->getType()->isVectorType()); 1342 assert(E->getLHS()->getType()->isVectorType()); 1343 assert(E->getRHS()->getType()->isVectorType()); 1344 1345 // Prepare storage for result. 1346 if (!Initializing && !E->isCompoundAssignmentOp()) { 1347 unsigned LocalIndex = allocateTemporary(E); 1348 if (!this->emitGetPtrLocal(LocalIndex, E)) 1349 return false; 1350 } 1351 1352 const Expr *LHS = E->getLHS(); 1353 const Expr *RHS = E->getRHS(); 1354 const auto *VecTy = E->getType()->getAs<VectorType>(); 1355 auto Op = E->isCompoundAssignmentOp() 1356 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode()) 1357 : E->getOpcode(); 1358 1359 PrimType ElemT = this->classifyVectorElementType(LHS->getType()); 1360 PrimType RHSElemT = this->classifyVectorElementType(RHS->getType()); 1361 PrimType ResultElemT = this->classifyVectorElementType(E->getType()); 1362 1363 // Evaluate LHS and save value to LHSOffset. 1364 unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1365 if (!this->visit(LHS)) 1366 return false; 1367 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1368 return false; 1369 1370 // Evaluate RHS and save value to RHSOffset. 1371 unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1372 if (!this->visit(RHS)) 1373 return false; 1374 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1375 return false; 1376 1377 if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E)) 1378 return false; 1379 1380 // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the 1381 // integer promotion. 1382 bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp()); 1383 QualType PromotTy = 1384 Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy); 1385 PrimType PromotT = classifyPrim(PromotTy); 1386 PrimType OpT = NeedIntPromot ? PromotT : ElemT; 1387 1388 auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) { 1389 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1390 return false; 1391 if (!this->emitArrayElemPop(ElemT, Index, E)) 1392 return false; 1393 if (E->isLogicalOp()) { 1394 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 1395 return false; 1396 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1397 return false; 1398 } else if (NeedIntPromot) { 1399 if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E)) 1400 return false; 1401 } 1402 return true; 1403 }; 1404 1405 #define EMIT_ARITH_OP(OP) \ 1406 { \ 1407 if (ElemT == PT_Float) { \ 1408 if (!this->emit##OP##f(getFPOptions(E), E)) \ 1409 return false; \ 1410 } else { \ 1411 if (!this->emit##OP(ElemT, E)) \ 1412 return false; \ 1413 } \ 1414 break; \ 1415 } 1416 1417 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 1418 if (!getElem(LHSOffset, ElemT, I)) 1419 return false; 1420 if (!getElem(RHSOffset, RHSElemT, I)) 1421 return false; 1422 switch (Op) { 1423 case BO_Add: 1424 EMIT_ARITH_OP(Add) 1425 case BO_Sub: 1426 EMIT_ARITH_OP(Sub) 1427 case BO_Mul: 1428 EMIT_ARITH_OP(Mul) 1429 case BO_Div: 1430 EMIT_ARITH_OP(Div) 1431 case BO_Rem: 1432 if (!this->emitRem(ElemT, E)) 1433 return false; 1434 break; 1435 case BO_And: 1436 if (!this->emitBitAnd(OpT, E)) 1437 return false; 1438 break; 1439 case BO_Or: 1440 if (!this->emitBitOr(OpT, E)) 1441 return false; 1442 break; 1443 case BO_Xor: 1444 if (!this->emitBitXor(OpT, E)) 1445 return false; 1446 break; 1447 case BO_Shl: 1448 if (!this->emitShl(OpT, RHSElemT, E)) 1449 return false; 1450 break; 1451 case BO_Shr: 1452 if (!this->emitShr(OpT, RHSElemT, E)) 1453 return false; 1454 break; 1455 case BO_EQ: 1456 if (!this->emitEQ(ElemT, E)) 1457 return false; 1458 break; 1459 case BO_NE: 1460 if (!this->emitNE(ElemT, E)) 1461 return false; 1462 break; 1463 case BO_LE: 1464 if (!this->emitLE(ElemT, E)) 1465 return false; 1466 break; 1467 case BO_LT: 1468 if (!this->emitLT(ElemT, E)) 1469 return false; 1470 break; 1471 case BO_GE: 1472 if (!this->emitGE(ElemT, E)) 1473 return false; 1474 break; 1475 case BO_GT: 1476 if (!this->emitGT(ElemT, E)) 1477 return false; 1478 break; 1479 case BO_LAnd: 1480 // a && b is equivalent to a!=0 & b!=0 1481 if (!this->emitBitAnd(ResultElemT, E)) 1482 return false; 1483 break; 1484 case BO_LOr: 1485 // a || b is equivalent to a!=0 | b!=0 1486 if (!this->emitBitOr(ResultElemT, E)) 1487 return false; 1488 break; 1489 default: 1490 return this->emitInvalid(E); 1491 } 1492 1493 // The result of the comparison is a vector of the same width and number 1494 // of elements as the comparison operands with a signed integral element 1495 // type. 1496 // 1497 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 1498 if (E->isComparisonOp()) { 1499 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1500 return false; 1501 if (!this->emitNeg(ResultElemT, E)) 1502 return false; 1503 } 1504 1505 // If we performed an integer promotion, we need to cast the compute result 1506 // into result vector element type. 1507 if (NeedIntPromot && 1508 !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E)) 1509 return false; 1510 1511 // Initialize array element with the value we just computed. 1512 if (!this->emitInitElem(ResultElemT, I, E)) 1513 return false; 1514 } 1515 1516 if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E)) 1517 return false; 1518 return true; 1519 } 1520 1521 template <class Emitter> 1522 bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) { 1523 const Expr *LHS = E->getLHS(); 1524 const Expr *RHS = E->getRHS(); 1525 1526 assert(LHS->getType()->isFixedPointType() || 1527 RHS->getType()->isFixedPointType()); 1528 1529 auto LHSSema = Ctx.getASTContext().getFixedPointSemantics(LHS->getType()); 1530 auto RHSSema = Ctx.getASTContext().getFixedPointSemantics(RHS->getType()); 1531 1532 if (!this->visit(LHS)) 1533 return false; 1534 if (!LHS->getType()->isFixedPointType()) { 1535 uint32_t I; 1536 std::memcpy(&I, &LHSSema, sizeof(llvm::FixedPointSemantics)); 1537 if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()), I, E)) 1538 return false; 1539 } 1540 1541 if (!this->visit(RHS)) 1542 return false; 1543 if (!RHS->getType()->isFixedPointType()) { 1544 uint32_t I; 1545 std::memcpy(&I, &RHSSema, sizeof(llvm::FixedPointSemantics)); 1546 if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()), I, E)) 1547 return false; 1548 } 1549 1550 // Convert the result to the target semantics. 1551 auto ConvertResult = [&](bool R) -> bool { 1552 if (!R) 1553 return false; 1554 auto ResultSema = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 1555 auto CommonSema = LHSSema.getCommonSemantics(RHSSema); 1556 if (ResultSema != CommonSema) { 1557 uint32_t I; 1558 std::memcpy(&I, &ResultSema, sizeof(ResultSema)); 1559 return this->emitCastFixedPoint(I, E); 1560 } 1561 return true; 1562 }; 1563 1564 auto MaybeCastToBool = [&](bool Result) { 1565 if (!Result) 1566 return false; 1567 PrimType T = classifyPrim(E); 1568 if (DiscardResult) 1569 return this->emitPop(T, E); 1570 if (T != PT_Bool) 1571 return this->emitCast(PT_Bool, T, E); 1572 return true; 1573 }; 1574 1575 switch (E->getOpcode()) { 1576 case BO_EQ: 1577 return MaybeCastToBool(this->emitEQFixedPoint(E)); 1578 case BO_NE: 1579 return MaybeCastToBool(this->emitNEFixedPoint(E)); 1580 case BO_LT: 1581 return MaybeCastToBool(this->emitLTFixedPoint(E)); 1582 case BO_LE: 1583 return MaybeCastToBool(this->emitLEFixedPoint(E)); 1584 case BO_GT: 1585 return MaybeCastToBool(this->emitGTFixedPoint(E)); 1586 case BO_GE: 1587 return MaybeCastToBool(this->emitGEFixedPoint(E)); 1588 case BO_Add: 1589 return ConvertResult(this->emitAddFixedPoint(E)); 1590 case BO_Sub: 1591 return ConvertResult(this->emitSubFixedPoint(E)); 1592 case BO_Mul: 1593 return ConvertResult(this->emitMulFixedPoint(E)); 1594 case BO_Div: 1595 return ConvertResult(this->emitDivFixedPoint(E)); 1596 case BO_Shl: 1597 return ConvertResult(this->emitShiftFixedPoint(/*Left=*/true, E)); 1598 case BO_Shr: 1599 return ConvertResult(this->emitShiftFixedPoint(/*Left=*/false, E)); 1600 1601 default: 1602 return this->emitInvalid(E); 1603 } 1604 1605 llvm_unreachable("unhandled binop opcode"); 1606 } 1607 1608 template <class Emitter> 1609 bool Compiler<Emitter>::VisitFixedPointUnaryOperator(const UnaryOperator *E) { 1610 const Expr *SubExpr = E->getSubExpr(); 1611 assert(SubExpr->getType()->isFixedPointType()); 1612 1613 switch (E->getOpcode()) { 1614 case UO_Plus: 1615 return this->delegate(SubExpr); 1616 case UO_Minus: 1617 if (!this->visit(SubExpr)) 1618 return false; 1619 return this->emitNegFixedPoint(E); 1620 default: 1621 return false; 1622 } 1623 1624 llvm_unreachable("Unhandled unary opcode"); 1625 } 1626 1627 template <class Emitter> 1628 bool Compiler<Emitter>::VisitImplicitValueInitExpr( 1629 const ImplicitValueInitExpr *E) { 1630 QualType QT = E->getType(); 1631 1632 if (std::optional<PrimType> T = classify(QT)) 1633 return this->visitZeroInitializer(*T, QT, E); 1634 1635 if (QT->isRecordType()) { 1636 const RecordDecl *RD = QT->getAsRecordDecl(); 1637 assert(RD); 1638 if (RD->isInvalidDecl()) 1639 return false; 1640 1641 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1642 CXXRD && CXXRD->getNumVBases() > 0) { 1643 // TODO: Diagnose. 1644 return false; 1645 } 1646 1647 const Record *R = getRecord(QT); 1648 if (!R) 1649 return false; 1650 1651 assert(Initializing); 1652 return this->visitZeroRecordInitializer(R, E); 1653 } 1654 1655 if (QT->isIncompleteArrayType()) 1656 return true; 1657 1658 if (QT->isArrayType()) 1659 return this->visitZeroArrayInitializer(QT, E); 1660 1661 if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) { 1662 assert(Initializing); 1663 QualType ElemQT = ComplexTy->getElementType(); 1664 PrimType ElemT = classifyPrim(ElemQT); 1665 for (unsigned I = 0; I < 2; ++I) { 1666 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1667 return false; 1668 if (!this->emitInitElem(ElemT, I, E)) 1669 return false; 1670 } 1671 return true; 1672 } 1673 1674 if (const auto *VecT = E->getType()->getAs<VectorType>()) { 1675 unsigned NumVecElements = VecT->getNumElements(); 1676 QualType ElemQT = VecT->getElementType(); 1677 PrimType ElemT = classifyPrim(ElemQT); 1678 1679 for (unsigned I = 0; I < NumVecElements; ++I) { 1680 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1681 return false; 1682 if (!this->emitInitElem(ElemT, I, E)) 1683 return false; 1684 } 1685 return true; 1686 } 1687 1688 return false; 1689 } 1690 1691 template <class Emitter> 1692 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1693 const Expr *LHS = E->getLHS(); 1694 const Expr *RHS = E->getRHS(); 1695 const Expr *Index = E->getIdx(); 1696 1697 if (DiscardResult) 1698 return this->discard(LHS) && this->discard(RHS); 1699 1700 // C++17's rules require us to evaluate the LHS first, regardless of which 1701 // side is the base. 1702 bool Success = true; 1703 for (const Expr *SubExpr : {LHS, RHS}) { 1704 if (!this->visit(SubExpr)) 1705 Success = false; 1706 } 1707 1708 if (!Success) 1709 return false; 1710 1711 PrimType IndexT = classifyPrim(Index->getType()); 1712 // If the index is first, we need to change that. 1713 if (LHS == Index) { 1714 if (!this->emitFlip(PT_Ptr, IndexT, E)) 1715 return false; 1716 } 1717 1718 return this->emitArrayElemPtrPop(IndexT, E); 1719 } 1720 1721 template <class Emitter> 1722 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits, 1723 const Expr *ArrayFiller, const Expr *E) { 1724 InitLinkScope<Emitter> ILS(this, InitLink::InitList()); 1725 1726 QualType QT = E->getType(); 1727 if (const auto *AT = QT->getAs<AtomicType>()) 1728 QT = AT->getValueType(); 1729 1730 if (QT->isVoidType()) { 1731 if (Inits.size() == 0) 1732 return true; 1733 return this->emitInvalid(E); 1734 } 1735 1736 // Handle discarding first. 1737 if (DiscardResult) { 1738 for (const Expr *Init : Inits) { 1739 if (!this->discard(Init)) 1740 return false; 1741 } 1742 return true; 1743 } 1744 1745 // Primitive values. 1746 if (std::optional<PrimType> T = classify(QT)) { 1747 assert(!DiscardResult); 1748 if (Inits.size() == 0) 1749 return this->visitZeroInitializer(*T, QT, E); 1750 assert(Inits.size() == 1); 1751 return this->delegate(Inits[0]); 1752 } 1753 1754 if (QT->isRecordType()) { 1755 const Record *R = getRecord(QT); 1756 1757 if (Inits.size() == 1 && E->getType() == Inits[0]->getType()) 1758 return this->delegate(Inits[0]); 1759 1760 auto initPrimitiveField = [=](const Record::Field *FieldToInit, 1761 const Expr *Init, PrimType T) -> bool { 1762 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1763 InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset)); 1764 if (!this->visit(Init)) 1765 return false; 1766 1767 if (FieldToInit->isBitField()) 1768 return this->emitInitBitField(T, FieldToInit, E); 1769 return this->emitInitField(T, FieldToInit->Offset, E); 1770 }; 1771 1772 auto initCompositeField = [=](const Record::Field *FieldToInit, 1773 const Expr *Init) -> bool { 1774 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1775 InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset)); 1776 1777 // Non-primitive case. Get a pointer to the field-to-initialize 1778 // on the stack and recurse into visitInitializer(). 1779 if (!this->emitGetPtrField(FieldToInit->Offset, Init)) 1780 return false; 1781 if (!this->visitInitializer(Init)) 1782 return false; 1783 return this->emitPopPtr(E); 1784 }; 1785 1786 if (R->isUnion()) { 1787 if (Inits.size() == 0) { 1788 if (!this->visitZeroRecordInitializer(R, E)) 1789 return false; 1790 } else { 1791 const Expr *Init = Inits[0]; 1792 const FieldDecl *FToInit = nullptr; 1793 if (const auto *ILE = dyn_cast<InitListExpr>(E)) 1794 FToInit = ILE->getInitializedFieldInUnion(); 1795 else 1796 FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion(); 1797 1798 const Record::Field *FieldToInit = R->getField(FToInit); 1799 if (std::optional<PrimType> T = classify(Init)) { 1800 if (!initPrimitiveField(FieldToInit, Init, *T)) 1801 return false; 1802 } else { 1803 if (!initCompositeField(FieldToInit, Init)) 1804 return false; 1805 } 1806 } 1807 return this->emitFinishInit(E); 1808 } 1809 1810 assert(!R->isUnion()); 1811 unsigned InitIndex = 0; 1812 for (const Expr *Init : Inits) { 1813 // Skip unnamed bitfields. 1814 while (InitIndex < R->getNumFields() && 1815 R->getField(InitIndex)->Decl->isUnnamedBitField()) 1816 ++InitIndex; 1817 1818 if (std::optional<PrimType> T = classify(Init)) { 1819 const Record::Field *FieldToInit = R->getField(InitIndex); 1820 if (!initPrimitiveField(FieldToInit, Init, *T)) 1821 return false; 1822 ++InitIndex; 1823 } else { 1824 // Initializer for a direct base class. 1825 if (const Record::Base *B = R->getBase(Init->getType())) { 1826 if (!this->emitGetPtrBase(B->Offset, Init)) 1827 return false; 1828 1829 if (!this->visitInitializer(Init)) 1830 return false; 1831 1832 if (!this->emitFinishInitPop(E)) 1833 return false; 1834 // Base initializers don't increase InitIndex, since they don't count 1835 // into the Record's fields. 1836 } else { 1837 const Record::Field *FieldToInit = R->getField(InitIndex); 1838 if (!initCompositeField(FieldToInit, Init)) 1839 return false; 1840 ++InitIndex; 1841 } 1842 } 1843 } 1844 return this->emitFinishInit(E); 1845 } 1846 1847 if (QT->isArrayType()) { 1848 if (Inits.size() == 1 && QT == Inits[0]->getType()) 1849 return this->delegate(Inits[0]); 1850 1851 unsigned ElementIndex = 0; 1852 for (const Expr *Init : Inits) { 1853 if (const auto *EmbedS = 1854 dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 1855 PrimType TargetT = classifyPrim(Init->getType()); 1856 1857 auto Eval = [&](const Expr *Init, unsigned ElemIndex) { 1858 PrimType InitT = classifyPrim(Init->getType()); 1859 if (!this->visit(Init)) 1860 return false; 1861 if (InitT != TargetT) { 1862 if (!this->emitCast(InitT, TargetT, E)) 1863 return false; 1864 } 1865 return this->emitInitElem(TargetT, ElemIndex, Init); 1866 }; 1867 if (!EmbedS->doForEachDataElement(Eval, ElementIndex)) 1868 return false; 1869 } else { 1870 if (!this->visitArrayElemInit(ElementIndex, Init)) 1871 return false; 1872 ++ElementIndex; 1873 } 1874 } 1875 1876 // Expand the filler expression. 1877 // FIXME: This should go away. 1878 if (ArrayFiller) { 1879 const ConstantArrayType *CAT = 1880 Ctx.getASTContext().getAsConstantArrayType(QT); 1881 uint64_t NumElems = CAT->getZExtSize(); 1882 1883 for (; ElementIndex != NumElems; ++ElementIndex) { 1884 if (!this->visitArrayElemInit(ElementIndex, ArrayFiller)) 1885 return false; 1886 } 1887 } 1888 1889 return this->emitFinishInit(E); 1890 } 1891 1892 if (const auto *ComplexTy = QT->getAs<ComplexType>()) { 1893 unsigned NumInits = Inits.size(); 1894 1895 if (NumInits == 1) 1896 return this->delegate(Inits[0]); 1897 1898 QualType ElemQT = ComplexTy->getElementType(); 1899 PrimType ElemT = classifyPrim(ElemQT); 1900 if (NumInits == 0) { 1901 // Zero-initialize both elements. 1902 for (unsigned I = 0; I < 2; ++I) { 1903 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1904 return false; 1905 if (!this->emitInitElem(ElemT, I, E)) 1906 return false; 1907 } 1908 } else if (NumInits == 2) { 1909 unsigned InitIndex = 0; 1910 for (const Expr *Init : Inits) { 1911 if (!this->visit(Init)) 1912 return false; 1913 1914 if (!this->emitInitElem(ElemT, InitIndex, E)) 1915 return false; 1916 ++InitIndex; 1917 } 1918 } 1919 return true; 1920 } 1921 1922 if (const auto *VecT = QT->getAs<VectorType>()) { 1923 unsigned NumVecElements = VecT->getNumElements(); 1924 assert(NumVecElements >= Inits.size()); 1925 1926 QualType ElemQT = VecT->getElementType(); 1927 PrimType ElemT = classifyPrim(ElemQT); 1928 1929 // All initializer elements. 1930 unsigned InitIndex = 0; 1931 for (const Expr *Init : Inits) { 1932 if (!this->visit(Init)) 1933 return false; 1934 1935 // If the initializer is of vector type itself, we have to deconstruct 1936 // that and initialize all the target fields from the initializer fields. 1937 if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) { 1938 if (!this->emitCopyArray(ElemT, 0, InitIndex, 1939 InitVecT->getNumElements(), E)) 1940 return false; 1941 InitIndex += InitVecT->getNumElements(); 1942 } else { 1943 if (!this->emitInitElem(ElemT, InitIndex, E)) 1944 return false; 1945 ++InitIndex; 1946 } 1947 } 1948 1949 assert(InitIndex <= NumVecElements); 1950 1951 // Fill the rest with zeroes. 1952 for (; InitIndex != NumVecElements; ++InitIndex) { 1953 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1954 return false; 1955 if (!this->emitInitElem(ElemT, InitIndex, E)) 1956 return false; 1957 } 1958 return true; 1959 } 1960 1961 return false; 1962 } 1963 1964 /// Pointer to the array(not the element!) must be on the stack when calling 1965 /// this. 1966 template <class Emitter> 1967 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex, 1968 const Expr *Init) { 1969 if (std::optional<PrimType> T = classify(Init->getType())) { 1970 // Visit the primitive element like normal. 1971 if (!this->visit(Init)) 1972 return false; 1973 return this->emitInitElem(*T, ElemIndex, Init); 1974 } 1975 1976 InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex)); 1977 // Advance the pointer currently on the stack to the given 1978 // dimension. 1979 if (!this->emitConstUint32(ElemIndex, Init)) 1980 return false; 1981 if (!this->emitArrayElemPtrUint32(Init)) 1982 return false; 1983 if (!this->visitInitializer(Init)) 1984 return false; 1985 return this->emitFinishInitPop(Init); 1986 } 1987 1988 template <class Emitter> 1989 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) { 1990 return this->visitInitList(E->inits(), E->getArrayFiller(), E); 1991 } 1992 1993 template <class Emitter> 1994 bool Compiler<Emitter>::VisitCXXParenListInitExpr( 1995 const CXXParenListInitExpr *E) { 1996 return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E); 1997 } 1998 1999 template <class Emitter> 2000 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr( 2001 const SubstNonTypeTemplateParmExpr *E) { 2002 return this->delegate(E->getReplacement()); 2003 } 2004 2005 template <class Emitter> 2006 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) { 2007 std::optional<PrimType> T = classify(E->getType()); 2008 if (T && E->hasAPValueResult()) { 2009 // Try to emit the APValue directly, without visiting the subexpr. 2010 // This will only fail if we can't emit the APValue, so won't emit any 2011 // diagnostics or any double values. 2012 if (DiscardResult) 2013 return true; 2014 2015 if (this->visitAPValue(E->getAPValueResult(), *T, E)) 2016 return true; 2017 } 2018 return this->delegate(E->getSubExpr()); 2019 } 2020 2021 template <class Emitter> 2022 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) { 2023 auto It = E->begin(); 2024 return this->visit(*It); 2025 } 2026 2027 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx, 2028 UnaryExprOrTypeTrait Kind) { 2029 bool AlignOfReturnsPreferred = 2030 ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 2031 2032 // C++ [expr.alignof]p3: 2033 // When alignof is applied to a reference type, the result is the 2034 // alignment of the referenced type. 2035 if (const auto *Ref = T->getAs<ReferenceType>()) 2036 T = Ref->getPointeeType(); 2037 2038 if (T.getQualifiers().hasUnaligned()) 2039 return CharUnits::One(); 2040 2041 // __alignof is defined to return the preferred alignment. 2042 // Before 8, clang returned the preferred alignment for alignof and 2043 // _Alignof as well. 2044 if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 2045 return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T)); 2046 2047 return ASTCtx.getTypeAlignInChars(T); 2048 } 2049 2050 template <class Emitter> 2051 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr( 2052 const UnaryExprOrTypeTraitExpr *E) { 2053 UnaryExprOrTypeTrait Kind = E->getKind(); 2054 const ASTContext &ASTCtx = Ctx.getASTContext(); 2055 2056 if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) { 2057 QualType ArgType = E->getTypeOfArgument(); 2058 2059 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 2060 // the result is the size of the referenced type." 2061 if (const auto *Ref = ArgType->getAs<ReferenceType>()) 2062 ArgType = Ref->getPointeeType(); 2063 2064 CharUnits Size; 2065 if (ArgType->isVoidType() || ArgType->isFunctionType()) 2066 Size = CharUnits::One(); 2067 else { 2068 if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) 2069 return false; 2070 2071 if (Kind == UETT_SizeOf) 2072 Size = ASTCtx.getTypeSizeInChars(ArgType); 2073 else 2074 Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width; 2075 } 2076 2077 if (DiscardResult) 2078 return true; 2079 2080 return this->emitConst(Size.getQuantity(), E); 2081 } 2082 2083 if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) { 2084 CharUnits Size; 2085 2086 if (E->isArgumentType()) { 2087 QualType ArgType = E->getTypeOfArgument(); 2088 2089 Size = AlignOfType(ArgType, ASTCtx, Kind); 2090 } else { 2091 // Argument is an expression, not a type. 2092 const Expr *Arg = E->getArgumentExpr()->IgnoreParens(); 2093 2094 // The kinds of expressions that we have special-case logic here for 2095 // should be kept up to date with the special checks for those 2096 // expressions in Sema. 2097 2098 // alignof decl is always accepted, even if it doesn't make sense: we 2099 // default to 1 in those cases. 2100 if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg)) 2101 Size = ASTCtx.getDeclAlign(DRE->getDecl(), 2102 /*RefAsPointee*/ true); 2103 else if (const auto *ME = dyn_cast<MemberExpr>(Arg)) 2104 Size = ASTCtx.getDeclAlign(ME->getMemberDecl(), 2105 /*RefAsPointee*/ true); 2106 else 2107 Size = AlignOfType(Arg->getType(), ASTCtx, Kind); 2108 } 2109 2110 if (DiscardResult) 2111 return true; 2112 2113 return this->emitConst(Size.getQuantity(), E); 2114 } 2115 2116 if (Kind == UETT_VectorElements) { 2117 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) 2118 return this->emitConst(VT->getNumElements(), E); 2119 assert(E->getTypeOfArgument()->isSizelessVectorType()); 2120 return this->emitSizelessVectorElementSize(E); 2121 } 2122 2123 if (Kind == UETT_VecStep) { 2124 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) { 2125 unsigned N = VT->getNumElements(); 2126 2127 // The vec_step built-in functions that take a 3-component 2128 // vector return 4. (OpenCL 1.1 spec 6.11.12) 2129 if (N == 3) 2130 N = 4; 2131 2132 return this->emitConst(N, E); 2133 } 2134 return this->emitConst(1, E); 2135 } 2136 2137 if (Kind == UETT_OpenMPRequiredSimdAlign) { 2138 assert(E->isArgumentType()); 2139 unsigned Bits = ASTCtx.getOpenMPDefaultSimdAlign(E->getArgumentType()); 2140 2141 return this->emitConst(ASTCtx.toCharUnitsFromBits(Bits).getQuantity(), E); 2142 } 2143 2144 return false; 2145 } 2146 2147 template <class Emitter> 2148 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) { 2149 // 'Base.Member' 2150 const Expr *Base = E->getBase(); 2151 const ValueDecl *Member = E->getMemberDecl(); 2152 2153 if (DiscardResult) 2154 return this->discard(Base); 2155 2156 // MemberExprs are almost always lvalues, in which case we don't need to 2157 // do the load. But sometimes they aren't. 2158 const auto maybeLoadValue = [&]() -> bool { 2159 if (E->isGLValue()) 2160 return true; 2161 if (std::optional<PrimType> T = classify(E)) 2162 return this->emitLoadPop(*T, E); 2163 return false; 2164 }; 2165 2166 if (const auto *VD = dyn_cast<VarDecl>(Member)) { 2167 // I am almost confident in saying that a var decl must be static 2168 // and therefore registered as a global variable. But this will probably 2169 // turn out to be wrong some time in the future, as always. 2170 if (auto GlobalIndex = P.getGlobal(VD)) 2171 return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue(); 2172 return false; 2173 } 2174 2175 if (!isa<FieldDecl>(Member)) { 2176 if (!this->discard(Base) && !this->emitSideEffect(E)) 2177 return false; 2178 2179 return this->visitDeclRef(Member, E); 2180 } 2181 2182 if (Initializing) { 2183 if (!this->delegate(Base)) 2184 return false; 2185 } else { 2186 if (!this->visit(Base)) 2187 return false; 2188 } 2189 2190 // Base above gives us a pointer on the stack. 2191 const auto *FD = cast<FieldDecl>(Member); 2192 const RecordDecl *RD = FD->getParent(); 2193 const Record *R = getRecord(RD); 2194 if (!R) 2195 return false; 2196 const Record::Field *F = R->getField(FD); 2197 // Leave a pointer to the field on the stack. 2198 if (F->Decl->getType()->isReferenceType()) 2199 return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue(); 2200 return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue(); 2201 } 2202 2203 template <class Emitter> 2204 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 2205 // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated 2206 // stand-alone, e.g. via EvaluateAsInt(). 2207 if (!ArrayIndex) 2208 return false; 2209 return this->emitConst(*ArrayIndex, E); 2210 } 2211 2212 template <class Emitter> 2213 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 2214 assert(Initializing); 2215 assert(!DiscardResult); 2216 2217 // We visit the common opaque expression here once so we have its value 2218 // cached. 2219 if (!this->discard(E->getCommonExpr())) 2220 return false; 2221 2222 // TODO: This compiles to quite a lot of bytecode if the array is larger. 2223 // Investigate compiling this to a loop. 2224 const Expr *SubExpr = E->getSubExpr(); 2225 size_t Size = E->getArraySize().getZExtValue(); 2226 2227 // So, every iteration, we execute an assignment here 2228 // where the LHS is on the stack (the target array) 2229 // and the RHS is our SubExpr. 2230 for (size_t I = 0; I != Size; ++I) { 2231 ArrayIndexScope<Emitter> IndexScope(this, I); 2232 BlockScope<Emitter> BS(this); 2233 2234 if (!this->visitArrayElemInit(I, SubExpr)) 2235 return false; 2236 if (!BS.destroyLocals()) 2237 return false; 2238 } 2239 return true; 2240 } 2241 2242 template <class Emitter> 2243 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 2244 const Expr *SourceExpr = E->getSourceExpr(); 2245 if (!SourceExpr) 2246 return false; 2247 2248 if (Initializing) 2249 return this->visitInitializer(SourceExpr); 2250 2251 PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr); 2252 if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end()) 2253 return this->emitGetLocal(SubExprT, It->second, E); 2254 2255 if (!this->visit(SourceExpr)) 2256 return false; 2257 2258 // At this point we either have the evaluated source expression or a pointer 2259 // to an object on the stack. We want to create a local variable that stores 2260 // this value. 2261 unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true); 2262 if (!this->emitSetLocal(SubExprT, LocalIndex, E)) 2263 return false; 2264 2265 // Here the local variable is created but the value is removed from the stack, 2266 // so we put it back if the caller needs it. 2267 if (!DiscardResult) { 2268 if (!this->emitGetLocal(SubExprT, LocalIndex, E)) 2269 return false; 2270 } 2271 2272 // This is cleaned up when the local variable is destroyed. 2273 OpaqueExprs.insert({E, LocalIndex}); 2274 2275 return true; 2276 } 2277 2278 template <class Emitter> 2279 bool Compiler<Emitter>::VisitAbstractConditionalOperator( 2280 const AbstractConditionalOperator *E) { 2281 const Expr *Condition = E->getCond(); 2282 const Expr *TrueExpr = E->getTrueExpr(); 2283 const Expr *FalseExpr = E->getFalseExpr(); 2284 2285 LabelTy LabelEnd = this->getLabel(); // Label after the operator. 2286 LabelTy LabelFalse = this->getLabel(); // Label for the false expr. 2287 2288 if (!this->visitBool(Condition)) 2289 return false; 2290 2291 if (!this->jumpFalse(LabelFalse)) 2292 return false; 2293 2294 { 2295 LocalScope<Emitter> S(this); 2296 if (!this->delegate(TrueExpr)) 2297 return false; 2298 if (!S.destroyLocals()) 2299 return false; 2300 } 2301 2302 if (!this->jump(LabelEnd)) 2303 return false; 2304 2305 this->emitLabel(LabelFalse); 2306 2307 { 2308 LocalScope<Emitter> S(this); 2309 if (!this->delegate(FalseExpr)) 2310 return false; 2311 if (!S.destroyLocals()) 2312 return false; 2313 } 2314 2315 this->fallthrough(LabelEnd); 2316 this->emitLabel(LabelEnd); 2317 2318 return true; 2319 } 2320 2321 template <class Emitter> 2322 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) { 2323 if (DiscardResult) 2324 return true; 2325 2326 if (!Initializing) { 2327 unsigned StringIndex = P.createGlobalString(E); 2328 return this->emitGetPtrGlobal(StringIndex, E); 2329 } 2330 2331 // We are initializing an array on the stack. 2332 const ConstantArrayType *CAT = 2333 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 2334 assert(CAT && "a string literal that's not a constant array?"); 2335 2336 // If the initializer string is too long, a diagnostic has already been 2337 // emitted. Read only the array length from the string literal. 2338 unsigned ArraySize = CAT->getZExtSize(); 2339 unsigned N = std::min(ArraySize, E->getLength()); 2340 size_t CharWidth = E->getCharByteWidth(); 2341 2342 for (unsigned I = 0; I != N; ++I) { 2343 uint32_t CodeUnit = E->getCodeUnit(I); 2344 2345 if (CharWidth == 1) { 2346 this->emitConstSint8(CodeUnit, E); 2347 this->emitInitElemSint8(I, E); 2348 } else if (CharWidth == 2) { 2349 this->emitConstUint16(CodeUnit, E); 2350 this->emitInitElemUint16(I, E); 2351 } else if (CharWidth == 4) { 2352 this->emitConstUint32(CodeUnit, E); 2353 this->emitInitElemUint32(I, E); 2354 } else { 2355 llvm_unreachable("unsupported character width"); 2356 } 2357 } 2358 2359 // Fill up the rest of the char array with NUL bytes. 2360 for (unsigned I = N; I != ArraySize; ++I) { 2361 if (CharWidth == 1) { 2362 this->emitConstSint8(0, E); 2363 this->emitInitElemSint8(I, E); 2364 } else if (CharWidth == 2) { 2365 this->emitConstUint16(0, E); 2366 this->emitInitElemUint16(I, E); 2367 } else if (CharWidth == 4) { 2368 this->emitConstUint32(0, E); 2369 this->emitInitElemUint32(I, E); 2370 } else { 2371 llvm_unreachable("unsupported character width"); 2372 } 2373 } 2374 2375 return true; 2376 } 2377 2378 template <class Emitter> 2379 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 2380 if (DiscardResult) 2381 return true; 2382 return this->emitDummyPtr(E, E); 2383 } 2384 2385 template <class Emitter> 2386 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 2387 auto &A = Ctx.getASTContext(); 2388 std::string Str; 2389 A.getObjCEncodingForType(E->getEncodedType(), Str); 2390 StringLiteral *SL = 2391 StringLiteral::Create(A, Str, StringLiteralKind::Ordinary, 2392 /*Pascal=*/false, E->getType(), E->getAtLoc()); 2393 return this->delegate(SL); 2394 } 2395 2396 template <class Emitter> 2397 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr( 2398 const SYCLUniqueStableNameExpr *E) { 2399 if (DiscardResult) 2400 return true; 2401 2402 assert(!Initializing); 2403 2404 auto &A = Ctx.getASTContext(); 2405 std::string ResultStr = E->ComputeName(A); 2406 2407 QualType CharTy = A.CharTy.withConst(); 2408 APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1); 2409 QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr, 2410 ArraySizeModifier::Normal, 0); 2411 2412 StringLiteral *SL = 2413 StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary, 2414 /*Pascal=*/false, ArrayTy, E->getLocation()); 2415 2416 unsigned StringIndex = P.createGlobalString(SL); 2417 return this->emitGetPtrGlobal(StringIndex, E); 2418 } 2419 2420 template <class Emitter> 2421 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) { 2422 if (DiscardResult) 2423 return true; 2424 return this->emitConst(E->getValue(), E); 2425 } 2426 2427 template <class Emitter> 2428 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator( 2429 const CompoundAssignOperator *E) { 2430 2431 const Expr *LHS = E->getLHS(); 2432 const Expr *RHS = E->getRHS(); 2433 QualType LHSType = LHS->getType(); 2434 QualType LHSComputationType = E->getComputationLHSType(); 2435 QualType ResultType = E->getComputationResultType(); 2436 std::optional<PrimType> LT = classify(LHSComputationType); 2437 std::optional<PrimType> RT = classify(ResultType); 2438 2439 assert(ResultType->isFloatingType()); 2440 2441 if (!LT || !RT) 2442 return false; 2443 2444 PrimType LHST = classifyPrim(LHSType); 2445 2446 // C++17 onwards require that we evaluate the RHS first. 2447 // Compute RHS and save it in a temporary variable so we can 2448 // load it again later. 2449 if (!visit(RHS)) 2450 return false; 2451 2452 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2453 if (!this->emitSetLocal(*RT, TempOffset, E)) 2454 return false; 2455 2456 // First, visit LHS. 2457 if (!visit(LHS)) 2458 return false; 2459 if (!this->emitLoad(LHST, E)) 2460 return false; 2461 2462 // If necessary, convert LHS to its computation type. 2463 if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType), 2464 LHSComputationType, E)) 2465 return false; 2466 2467 // Now load RHS. 2468 if (!this->emitGetLocal(*RT, TempOffset, E)) 2469 return false; 2470 2471 switch (E->getOpcode()) { 2472 case BO_AddAssign: 2473 if (!this->emitAddf(getFPOptions(E), E)) 2474 return false; 2475 break; 2476 case BO_SubAssign: 2477 if (!this->emitSubf(getFPOptions(E), E)) 2478 return false; 2479 break; 2480 case BO_MulAssign: 2481 if (!this->emitMulf(getFPOptions(E), E)) 2482 return false; 2483 break; 2484 case BO_DivAssign: 2485 if (!this->emitDivf(getFPOptions(E), E)) 2486 return false; 2487 break; 2488 default: 2489 return false; 2490 } 2491 2492 if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E)) 2493 return false; 2494 2495 if (DiscardResult) 2496 return this->emitStorePop(LHST, E); 2497 return this->emitStore(LHST, E); 2498 } 2499 2500 template <class Emitter> 2501 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator( 2502 const CompoundAssignOperator *E) { 2503 BinaryOperatorKind Op = E->getOpcode(); 2504 const Expr *LHS = E->getLHS(); 2505 const Expr *RHS = E->getRHS(); 2506 std::optional<PrimType> LT = classify(LHS->getType()); 2507 std::optional<PrimType> RT = classify(RHS->getType()); 2508 2509 if (Op != BO_AddAssign && Op != BO_SubAssign) 2510 return false; 2511 2512 if (!LT || !RT) 2513 return false; 2514 2515 if (!visit(LHS)) 2516 return false; 2517 2518 if (!this->emitLoad(*LT, LHS)) 2519 return false; 2520 2521 if (!visit(RHS)) 2522 return false; 2523 2524 if (Op == BO_AddAssign) { 2525 if (!this->emitAddOffset(*RT, E)) 2526 return false; 2527 } else { 2528 if (!this->emitSubOffset(*RT, E)) 2529 return false; 2530 } 2531 2532 if (DiscardResult) 2533 return this->emitStorePopPtr(E); 2534 return this->emitStorePtr(E); 2535 } 2536 2537 template <class Emitter> 2538 bool Compiler<Emitter>::VisitCompoundAssignOperator( 2539 const CompoundAssignOperator *E) { 2540 if (E->getType()->isVectorType()) 2541 return VisitVectorBinOp(E); 2542 2543 const Expr *LHS = E->getLHS(); 2544 const Expr *RHS = E->getRHS(); 2545 std::optional<PrimType> LHSComputationT = 2546 classify(E->getComputationLHSType()); 2547 std::optional<PrimType> LT = classify(LHS->getType()); 2548 std::optional<PrimType> RT = classify(RHS->getType()); 2549 std::optional<PrimType> ResultT = classify(E->getType()); 2550 2551 if (!Ctx.getLangOpts().CPlusPlus14) 2552 return this->visit(RHS) && this->visit(LHS) && this->emitError(E); 2553 2554 if (!LT || !RT || !ResultT || !LHSComputationT) 2555 return false; 2556 2557 // Handle floating point operations separately here, since they 2558 // require special care. 2559 2560 if (ResultT == PT_Float || RT == PT_Float) 2561 return VisitFloatCompoundAssignOperator(E); 2562 2563 if (E->getType()->isPointerType()) 2564 return VisitPointerCompoundAssignOperator(E); 2565 2566 assert(!E->getType()->isPointerType() && "Handled above"); 2567 assert(!E->getType()->isFloatingType() && "Handled above"); 2568 2569 // C++17 onwards require that we evaluate the RHS first. 2570 // Compute RHS and save it in a temporary variable so we can 2571 // load it again later. 2572 // FIXME: Compound assignments are unsequenced in C, so we might 2573 // have to figure out how to reject them. 2574 if (!visit(RHS)) 2575 return false; 2576 2577 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2578 2579 if (!this->emitSetLocal(*RT, TempOffset, E)) 2580 return false; 2581 2582 // Get LHS pointer, load its value and cast it to the 2583 // computation type if necessary. 2584 if (!visit(LHS)) 2585 return false; 2586 if (!this->emitLoad(*LT, E)) 2587 return false; 2588 if (LT != LHSComputationT) { 2589 if (!this->emitCast(*LT, *LHSComputationT, E)) 2590 return false; 2591 } 2592 2593 // Get the RHS value on the stack. 2594 if (!this->emitGetLocal(*RT, TempOffset, E)) 2595 return false; 2596 2597 // Perform operation. 2598 switch (E->getOpcode()) { 2599 case BO_AddAssign: 2600 if (!this->emitAdd(*LHSComputationT, E)) 2601 return false; 2602 break; 2603 case BO_SubAssign: 2604 if (!this->emitSub(*LHSComputationT, E)) 2605 return false; 2606 break; 2607 case BO_MulAssign: 2608 if (!this->emitMul(*LHSComputationT, E)) 2609 return false; 2610 break; 2611 case BO_DivAssign: 2612 if (!this->emitDiv(*LHSComputationT, E)) 2613 return false; 2614 break; 2615 case BO_RemAssign: 2616 if (!this->emitRem(*LHSComputationT, E)) 2617 return false; 2618 break; 2619 case BO_ShlAssign: 2620 if (!this->emitShl(*LHSComputationT, *RT, E)) 2621 return false; 2622 break; 2623 case BO_ShrAssign: 2624 if (!this->emitShr(*LHSComputationT, *RT, E)) 2625 return false; 2626 break; 2627 case BO_AndAssign: 2628 if (!this->emitBitAnd(*LHSComputationT, E)) 2629 return false; 2630 break; 2631 case BO_XorAssign: 2632 if (!this->emitBitXor(*LHSComputationT, E)) 2633 return false; 2634 break; 2635 case BO_OrAssign: 2636 if (!this->emitBitOr(*LHSComputationT, E)) 2637 return false; 2638 break; 2639 default: 2640 llvm_unreachable("Unimplemented compound assign operator"); 2641 } 2642 2643 // And now cast from LHSComputationT to ResultT. 2644 if (ResultT != LHSComputationT) { 2645 if (!this->emitCast(*LHSComputationT, *ResultT, E)) 2646 return false; 2647 } 2648 2649 // And store the result in LHS. 2650 if (DiscardResult) { 2651 if (LHS->refersToBitField()) 2652 return this->emitStoreBitFieldPop(*ResultT, E); 2653 return this->emitStorePop(*ResultT, E); 2654 } 2655 if (LHS->refersToBitField()) 2656 return this->emitStoreBitField(*ResultT, E); 2657 return this->emitStore(*ResultT, E); 2658 } 2659 2660 template <class Emitter> 2661 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) { 2662 LocalScope<Emitter> ES(this); 2663 const Expr *SubExpr = E->getSubExpr(); 2664 2665 return this->delegate(SubExpr) && ES.destroyLocals(E); 2666 } 2667 2668 template <class Emitter> 2669 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr( 2670 const MaterializeTemporaryExpr *E) { 2671 const Expr *SubExpr = E->getSubExpr(); 2672 2673 if (Initializing) { 2674 // We already have a value, just initialize that. 2675 return this->delegate(SubExpr); 2676 } 2677 // If we don't end up using the materialized temporary anyway, don't 2678 // bother creating it. 2679 if (DiscardResult) 2680 return this->discard(SubExpr); 2681 2682 // When we're initializing a global variable *or* the storage duration of 2683 // the temporary is explicitly static, create a global variable. 2684 std::optional<PrimType> SubExprT = classify(SubExpr); 2685 bool IsStatic = E->getStorageDuration() == SD_Static; 2686 if (IsStatic) { 2687 std::optional<unsigned> GlobalIndex = P.createGlobal(E); 2688 if (!GlobalIndex) 2689 return false; 2690 2691 const LifetimeExtendedTemporaryDecl *TempDecl = 2692 E->getLifetimeExtendedTemporaryDecl(); 2693 if (IsStatic) 2694 assert(TempDecl); 2695 2696 if (SubExprT) { 2697 if (!this->visit(SubExpr)) 2698 return false; 2699 if (IsStatic) { 2700 if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E)) 2701 return false; 2702 } else { 2703 if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E)) 2704 return false; 2705 } 2706 return this->emitGetPtrGlobal(*GlobalIndex, E); 2707 } 2708 2709 if (!this->checkLiteralType(SubExpr)) 2710 return false; 2711 // Non-primitive values. 2712 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2713 return false; 2714 if (!this->visitInitializer(SubExpr)) 2715 return false; 2716 if (IsStatic) 2717 return this->emitInitGlobalTempComp(TempDecl, E); 2718 return true; 2719 } 2720 2721 // For everyhing else, use local variables. 2722 if (SubExprT) { 2723 unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true, 2724 /*IsExtended=*/true); 2725 if (!this->visit(SubExpr)) 2726 return false; 2727 if (!this->emitSetLocal(*SubExprT, LocalIndex, E)) 2728 return false; 2729 return this->emitGetPtrLocal(LocalIndex, E); 2730 } else { 2731 2732 if (!this->checkLiteralType(SubExpr)) 2733 return false; 2734 2735 const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); 2736 if (std::optional<unsigned> LocalIndex = 2737 allocateLocal(E, Inner->getType(), E->getExtendingDecl())) { 2738 InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); 2739 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2740 return false; 2741 return this->visitInitializer(SubExpr) && this->emitFinishInit(E); 2742 } 2743 } 2744 return false; 2745 } 2746 2747 template <class Emitter> 2748 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr( 2749 const CXXBindTemporaryExpr *E) { 2750 return this->delegate(E->getSubExpr()); 2751 } 2752 2753 template <class Emitter> 2754 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 2755 const Expr *Init = E->getInitializer(); 2756 if (DiscardResult) 2757 return this->discard(Init); 2758 2759 if (Initializing) { 2760 // We already have a value, just initialize that. 2761 return this->visitInitializer(Init) && this->emitFinishInit(E); 2762 } 2763 2764 std::optional<PrimType> T = classify(E->getType()); 2765 if (E->isFileScope()) { 2766 // Avoid creating a variable if this is a primitive RValue anyway. 2767 if (T && !E->isLValue()) 2768 return this->delegate(Init); 2769 2770 if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) { 2771 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2772 return false; 2773 2774 if (T) { 2775 if (!this->visit(Init)) 2776 return false; 2777 return this->emitInitGlobal(*T, *GlobalIndex, E); 2778 } 2779 2780 return this->visitInitializer(Init) && this->emitFinishInit(E); 2781 } 2782 2783 return false; 2784 } 2785 2786 // Otherwise, use a local variable. 2787 if (T && !E->isLValue()) { 2788 // For primitive types, we just visit the initializer. 2789 return this->delegate(Init); 2790 } else { 2791 unsigned LocalIndex; 2792 2793 if (T) 2794 LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false); 2795 else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init)) 2796 LocalIndex = *MaybeIndex; 2797 else 2798 return false; 2799 2800 if (!this->emitGetPtrLocal(LocalIndex, E)) 2801 return false; 2802 2803 if (T) { 2804 if (!this->visit(Init)) { 2805 return false; 2806 } 2807 return this->emitInit(*T, E); 2808 } else { 2809 if (!this->visitInitializer(Init) || !this->emitFinishInit(E)) 2810 return false; 2811 } 2812 return true; 2813 } 2814 2815 return false; 2816 } 2817 2818 template <class Emitter> 2819 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) { 2820 if (DiscardResult) 2821 return true; 2822 if (E->getType()->isBooleanType()) 2823 return this->emitConstBool(E->getValue(), E); 2824 return this->emitConst(E->getValue(), E); 2825 } 2826 2827 template <class Emitter> 2828 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 2829 if (DiscardResult) 2830 return true; 2831 return this->emitConst(E->getValue(), E); 2832 } 2833 2834 template <class Emitter> 2835 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) { 2836 if (DiscardResult) 2837 return true; 2838 2839 assert(Initializing); 2840 const Record *R = P.getOrCreateRecord(E->getLambdaClass()); 2841 2842 auto *CaptureInitIt = E->capture_init_begin(); 2843 // Initialize all fields (which represent lambda captures) of the 2844 // record with their initializers. 2845 for (const Record::Field &F : R->fields()) { 2846 const Expr *Init = *CaptureInitIt; 2847 ++CaptureInitIt; 2848 2849 if (!Init) 2850 continue; 2851 2852 if (std::optional<PrimType> T = classify(Init)) { 2853 if (!this->visit(Init)) 2854 return false; 2855 2856 if (!this->emitInitField(*T, F.Offset, E)) 2857 return false; 2858 } else { 2859 if (!this->emitGetPtrField(F.Offset, E)) 2860 return false; 2861 2862 if (!this->visitInitializer(Init)) 2863 return false; 2864 2865 if (!this->emitPopPtr(E)) 2866 return false; 2867 } 2868 } 2869 2870 return true; 2871 } 2872 2873 template <class Emitter> 2874 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) { 2875 if (DiscardResult) 2876 return true; 2877 2878 if (!Initializing) { 2879 unsigned StringIndex = P.createGlobalString(E->getFunctionName(), E); 2880 return this->emitGetPtrGlobal(StringIndex, E); 2881 } 2882 2883 return this->delegate(E->getFunctionName()); 2884 } 2885 2886 template <class Emitter> 2887 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) { 2888 if (E->getSubExpr() && !this->discard(E->getSubExpr())) 2889 return false; 2890 2891 return this->emitInvalid(E); 2892 } 2893 2894 template <class Emitter> 2895 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr( 2896 const CXXReinterpretCastExpr *E) { 2897 const Expr *SubExpr = E->getSubExpr(); 2898 2899 std::optional<PrimType> FromT = classify(SubExpr); 2900 std::optional<PrimType> ToT = classify(E); 2901 2902 if (!FromT || !ToT) 2903 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E); 2904 2905 if (FromT == PT_Ptr || ToT == PT_Ptr) { 2906 // Both types could be PT_Ptr because their expressions are glvalues. 2907 std::optional<PrimType> PointeeFromT; 2908 if (SubExpr->getType()->isPointerOrReferenceType()) 2909 PointeeFromT = classify(SubExpr->getType()->getPointeeType()); 2910 else 2911 PointeeFromT = classify(SubExpr->getType()); 2912 2913 std::optional<PrimType> PointeeToT; 2914 if (E->getType()->isPointerOrReferenceType()) 2915 PointeeToT = classify(E->getType()->getPointeeType()); 2916 else 2917 PointeeToT = classify(E->getType()); 2918 2919 bool Fatal = true; 2920 if (PointeeToT && PointeeFromT) { 2921 if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT)) 2922 Fatal = false; 2923 } 2924 2925 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2926 return false; 2927 2928 if (E->getCastKind() == CK_LValueBitCast) 2929 return this->delegate(SubExpr); 2930 return this->VisitCastExpr(E); 2931 } 2932 2933 // Try to actually do the cast. 2934 bool Fatal = (ToT != FromT); 2935 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2936 return false; 2937 2938 return this->VisitCastExpr(E); 2939 } 2940 2941 template <class Emitter> 2942 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 2943 assert(E->getType()->isBooleanType()); 2944 2945 if (DiscardResult) 2946 return true; 2947 return this->emitConstBool(E->getValue(), E); 2948 } 2949 2950 template <class Emitter> 2951 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) { 2952 QualType T = E->getType(); 2953 assert(!classify(T)); 2954 2955 if (T->isRecordType()) { 2956 const CXXConstructorDecl *Ctor = E->getConstructor(); 2957 2958 // Trivial copy/move constructor. Avoid copy. 2959 if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() && 2960 Ctor->isTrivial() && 2961 E->getArg(0)->isTemporaryObject(Ctx.getASTContext(), 2962 T->getAsCXXRecordDecl())) 2963 return this->visitInitializer(E->getArg(0)); 2964 2965 // If we're discarding a construct expression, we still need 2966 // to allocate a variable and call the constructor and destructor. 2967 if (DiscardResult) { 2968 if (Ctor->isTrivial()) 2969 return true; 2970 assert(!Initializing); 2971 std::optional<unsigned> LocalIndex = allocateLocal(E); 2972 2973 if (!LocalIndex) 2974 return false; 2975 2976 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2977 return false; 2978 } 2979 2980 // Zero initialization. 2981 if (E->requiresZeroInitialization()) { 2982 const Record *R = getRecord(E->getType()); 2983 2984 if (!this->visitZeroRecordInitializer(R, E)) 2985 return false; 2986 2987 // If the constructor is trivial anyway, we're done. 2988 if (Ctor->isTrivial()) 2989 return true; 2990 } 2991 2992 const Function *Func = getFunction(Ctor); 2993 2994 if (!Func) 2995 return false; 2996 2997 assert(Func->hasThisPointer()); 2998 assert(!Func->hasRVO()); 2999 3000 // The This pointer is already on the stack because this is an initializer, 3001 // but we need to dup() so the call() below has its own copy. 3002 if (!this->emitDupPtr(E)) 3003 return false; 3004 3005 // Constructor arguments. 3006 for (const auto *Arg : E->arguments()) { 3007 if (!this->visit(Arg)) 3008 return false; 3009 } 3010 3011 if (Func->isVariadic()) { 3012 uint32_t VarArgSize = 0; 3013 unsigned NumParams = Func->getNumWrittenParams(); 3014 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) { 3015 VarArgSize += 3016 align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr))); 3017 } 3018 if (!this->emitCallVar(Func, VarArgSize, E)) 3019 return false; 3020 } else { 3021 if (!this->emitCall(Func, 0, E)) { 3022 // When discarding, we don't need the result anyway, so clean up 3023 // the instance dup we did earlier in case surrounding code wants 3024 // to keep evaluating. 3025 if (DiscardResult) 3026 (void)this->emitPopPtr(E); 3027 return false; 3028 } 3029 } 3030 3031 if (DiscardResult) 3032 return this->emitPopPtr(E); 3033 return this->emitFinishInit(E); 3034 } 3035 3036 if (T->isArrayType()) { 3037 const ConstantArrayType *CAT = 3038 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 3039 if (!CAT) 3040 return false; 3041 3042 size_t NumElems = CAT->getZExtSize(); 3043 const Function *Func = getFunction(E->getConstructor()); 3044 if (!Func || !Func->isConstexpr()) 3045 return false; 3046 3047 // FIXME(perf): We're calling the constructor once per array element here, 3048 // in the old intepreter we had a special-case for trivial constructors. 3049 for (size_t I = 0; I != NumElems; ++I) { 3050 if (!this->emitConstUint64(I, E)) 3051 return false; 3052 if (!this->emitArrayElemPtrUint64(E)) 3053 return false; 3054 3055 // Constructor arguments. 3056 for (const auto *Arg : E->arguments()) { 3057 if (!this->visit(Arg)) 3058 return false; 3059 } 3060 3061 if (!this->emitCall(Func, 0, E)) 3062 return false; 3063 } 3064 return true; 3065 } 3066 3067 return false; 3068 } 3069 3070 template <class Emitter> 3071 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) { 3072 if (DiscardResult) 3073 return true; 3074 3075 const APValue Val = 3076 E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr); 3077 3078 // Things like __builtin_LINE(). 3079 if (E->getType()->isIntegerType()) { 3080 assert(Val.isInt()); 3081 const APSInt &I = Val.getInt(); 3082 return this->emitConst(I, E); 3083 } 3084 // Otherwise, the APValue is an LValue, with only one element. 3085 // Theoretically, we don't need the APValue at all of course. 3086 assert(E->getType()->isPointerType()); 3087 assert(Val.isLValue()); 3088 const APValue::LValueBase &Base = Val.getLValueBase(); 3089 if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>()) 3090 return this->visit(LValueExpr); 3091 3092 // Otherwise, we have a decl (which is the case for 3093 // __builtin_source_location). 3094 assert(Base.is<const ValueDecl *>()); 3095 assert(Val.getLValuePath().size() == 0); 3096 const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>(); 3097 assert(BaseDecl); 3098 3099 auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl); 3100 3101 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD); 3102 if (!GlobalIndex) 3103 return false; 3104 3105 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 3106 return false; 3107 3108 const Record *R = getRecord(E->getType()); 3109 const APValue &V = UGCD->getValue(); 3110 for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) { 3111 const Record::Field *F = R->getField(I); 3112 const APValue &FieldValue = V.getStructField(I); 3113 3114 PrimType FieldT = classifyPrim(F->Decl->getType()); 3115 3116 if (!this->visitAPValue(FieldValue, FieldT, E)) 3117 return false; 3118 if (!this->emitInitField(FieldT, F->Offset, E)) 3119 return false; 3120 } 3121 3122 // Leave the pointer to the global on the stack. 3123 return true; 3124 } 3125 3126 template <class Emitter> 3127 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) { 3128 unsigned N = E->getNumComponents(); 3129 if (N == 0) 3130 return false; 3131 3132 for (unsigned I = 0; I != N; ++I) { 3133 const OffsetOfNode &Node = E->getComponent(I); 3134 if (Node.getKind() == OffsetOfNode::Array) { 3135 const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex()); 3136 PrimType IndexT = classifyPrim(ArrayIndexExpr->getType()); 3137 3138 if (DiscardResult) { 3139 if (!this->discard(ArrayIndexExpr)) 3140 return false; 3141 continue; 3142 } 3143 3144 if (!this->visit(ArrayIndexExpr)) 3145 return false; 3146 // Cast to Sint64. 3147 if (IndexT != PT_Sint64) { 3148 if (!this->emitCast(IndexT, PT_Sint64, E)) 3149 return false; 3150 } 3151 } 3152 } 3153 3154 if (DiscardResult) 3155 return true; 3156 3157 PrimType T = classifyPrim(E->getType()); 3158 return this->emitOffsetOf(T, E, E); 3159 } 3160 3161 template <class Emitter> 3162 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr( 3163 const CXXScalarValueInitExpr *E) { 3164 QualType Ty = E->getType(); 3165 3166 if (DiscardResult || Ty->isVoidType()) 3167 return true; 3168 3169 if (std::optional<PrimType> T = classify(Ty)) 3170 return this->visitZeroInitializer(*T, Ty, E); 3171 3172 if (const auto *CT = Ty->getAs<ComplexType>()) { 3173 if (!Initializing) { 3174 std::optional<unsigned> LocalIndex = allocateLocal(E); 3175 if (!LocalIndex) 3176 return false; 3177 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3178 return false; 3179 } 3180 3181 // Initialize both fields to 0. 3182 QualType ElemQT = CT->getElementType(); 3183 PrimType ElemT = classifyPrim(ElemQT); 3184 3185 for (unsigned I = 0; I != 2; ++I) { 3186 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 3187 return false; 3188 if (!this->emitInitElem(ElemT, I, E)) 3189 return false; 3190 } 3191 return true; 3192 } 3193 3194 if (const auto *VT = Ty->getAs<VectorType>()) { 3195 // FIXME: Code duplication with the _Complex case above. 3196 if (!Initializing) { 3197 std::optional<unsigned> LocalIndex = allocateLocal(E); 3198 if (!LocalIndex) 3199 return false; 3200 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3201 return false; 3202 } 3203 3204 // Initialize all fields to 0. 3205 QualType ElemQT = VT->getElementType(); 3206 PrimType ElemT = classifyPrim(ElemQT); 3207 3208 for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) { 3209 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 3210 return false; 3211 if (!this->emitInitElem(ElemT, I, E)) 3212 return false; 3213 } 3214 return true; 3215 } 3216 3217 return false; 3218 } 3219 3220 template <class Emitter> 3221 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 3222 return this->emitConst(E->getPackLength(), E); 3223 } 3224 3225 template <class Emitter> 3226 bool Compiler<Emitter>::VisitGenericSelectionExpr( 3227 const GenericSelectionExpr *E) { 3228 return this->delegate(E->getResultExpr()); 3229 } 3230 3231 template <class Emitter> 3232 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) { 3233 return this->delegate(E->getChosenSubExpr()); 3234 } 3235 3236 template <class Emitter> 3237 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 3238 if (DiscardResult) 3239 return true; 3240 3241 return this->emitConst(E->getValue(), E); 3242 } 3243 3244 template <class Emitter> 3245 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr( 3246 const CXXInheritedCtorInitExpr *E) { 3247 const CXXConstructorDecl *Ctor = E->getConstructor(); 3248 assert(!Ctor->isTrivial() && 3249 "Trivial CXXInheritedCtorInitExpr, implement. (possible?)"); 3250 const Function *F = this->getFunction(Ctor); 3251 assert(F); 3252 assert(!F->hasRVO()); 3253 assert(F->hasThisPointer()); 3254 3255 if (!this->emitDupPtr(SourceInfo{})) 3256 return false; 3257 3258 // Forward all arguments of the current function (which should be a 3259 // constructor itself) to the inherited ctor. 3260 // This is necessary because the calling code has pushed the pointer 3261 // of the correct base for us already, but the arguments need 3262 // to come after. 3263 unsigned Offset = align(primSize(PT_Ptr)); // instance pointer. 3264 for (const ParmVarDecl *PD : Ctor->parameters()) { 3265 PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr); 3266 3267 if (!this->emitGetParam(PT, Offset, E)) 3268 return false; 3269 Offset += align(primSize(PT)); 3270 } 3271 3272 return this->emitCall(F, 0, E); 3273 } 3274 3275 template <class Emitter> 3276 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) { 3277 assert(classifyPrim(E->getType()) == PT_Ptr); 3278 const Expr *Init = E->getInitializer(); 3279 QualType ElementType = E->getAllocatedType(); 3280 std::optional<PrimType> ElemT = classify(ElementType); 3281 unsigned PlacementArgs = E->getNumPlacementArgs(); 3282 const FunctionDecl *OperatorNew = E->getOperatorNew(); 3283 const Expr *PlacementDest = nullptr; 3284 bool IsNoThrow = false; 3285 3286 if (PlacementArgs != 0) { 3287 // FIXME: There is no restriction on this, but it's not clear that any 3288 // other form makes any sense. We get here for cases such as: 3289 // 3290 // new (std::align_val_t{N}) X(int) 3291 // 3292 // (which should presumably be valid only if N is a multiple of 3293 // alignof(int), and in any case can't be deallocated unless N is 3294 // alignof(X) and X has new-extended alignment). 3295 if (PlacementArgs == 1) { 3296 const Expr *Arg1 = E->getPlacementArg(0); 3297 if (Arg1->getType()->isNothrowT()) { 3298 if (!this->discard(Arg1)) 3299 return false; 3300 IsNoThrow = true; 3301 } else { 3302 // Invalid unless we have C++26 or are in a std:: function. 3303 if (!this->emitInvalidNewDeleteExpr(E, E)) 3304 return false; 3305 3306 // If we have a placement-new destination, we'll later use that instead 3307 // of allocating. 3308 if (OperatorNew->isReservedGlobalPlacementOperator()) 3309 PlacementDest = Arg1; 3310 } 3311 } else { 3312 // Always invalid. 3313 return this->emitInvalid(E); 3314 } 3315 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) 3316 return this->emitInvalidNewDeleteExpr(E, E); 3317 3318 const Descriptor *Desc; 3319 if (!PlacementDest) { 3320 if (ElemT) { 3321 if (E->isArray()) 3322 Desc = nullptr; // We're not going to use it in this case. 3323 else 3324 Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD, 3325 /*IsConst=*/false, /*IsTemporary=*/false, 3326 /*IsMutable=*/false); 3327 } else { 3328 Desc = P.createDescriptor( 3329 E, ElementType.getTypePtr(), 3330 E->isArray() ? std::nullopt : Descriptor::InlineDescMD, 3331 /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init); 3332 } 3333 } 3334 3335 if (E->isArray()) { 3336 std::optional<const Expr *> ArraySizeExpr = E->getArraySize(); 3337 if (!ArraySizeExpr) 3338 return false; 3339 3340 const Expr *Stripped = *ArraySizeExpr; 3341 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 3342 Stripped = ICE->getSubExpr()) 3343 if (ICE->getCastKind() != CK_NoOp && 3344 ICE->getCastKind() != CK_IntegralCast) 3345 break; 3346 3347 PrimType SizeT = classifyPrim(Stripped->getType()); 3348 3349 if (PlacementDest) { 3350 if (!this->visit(PlacementDest)) 3351 return false; 3352 if (!this->visit(Stripped)) 3353 return false; 3354 if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E)) 3355 return false; 3356 } else { 3357 if (!this->visit(Stripped)) 3358 return false; 3359 3360 if (ElemT) { 3361 // N primitive elements. 3362 if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E)) 3363 return false; 3364 } else { 3365 // N Composite elements. 3366 if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E)) 3367 return false; 3368 } 3369 } 3370 3371 if (Init && !this->visitInitializer(Init)) 3372 return false; 3373 3374 } else { 3375 if (PlacementDest) { 3376 if (!this->visit(PlacementDest)) 3377 return false; 3378 if (!this->emitCheckNewTypeMismatch(E, E)) 3379 return false; 3380 } else { 3381 // Allocate just one element. 3382 if (!this->emitAlloc(Desc, E)) 3383 return false; 3384 } 3385 3386 if (Init) { 3387 if (ElemT) { 3388 if (!this->visit(Init)) 3389 return false; 3390 3391 if (!this->emitInit(*ElemT, E)) 3392 return false; 3393 } else { 3394 // Composite. 3395 if (!this->visitInitializer(Init)) 3396 return false; 3397 } 3398 } 3399 } 3400 3401 if (DiscardResult) 3402 return this->emitPopPtr(E); 3403 3404 return true; 3405 } 3406 3407 template <class Emitter> 3408 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 3409 const Expr *Arg = E->getArgument(); 3410 3411 const FunctionDecl *OperatorDelete = E->getOperatorDelete(); 3412 3413 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) 3414 return this->emitInvalidNewDeleteExpr(E, E); 3415 3416 // Arg must be an lvalue. 3417 if (!this->visit(Arg)) 3418 return false; 3419 3420 return this->emitFree(E->isArrayForm(), E->isGlobalDelete(), E); 3421 } 3422 3423 template <class Emitter> 3424 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) { 3425 if (DiscardResult) 3426 return true; 3427 3428 const Function *Func = nullptr; 3429 if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E)) 3430 Func = F; 3431 3432 if (!Func) 3433 return false; 3434 return this->emitGetFnPtr(Func, E); 3435 } 3436 3437 template <class Emitter> 3438 bool Compiler<Emitter>::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 3439 const Type *TypeInfoType = E->getType().getTypePtr(); 3440 3441 if (!E->isPotentiallyEvaluated()) { 3442 if (DiscardResult) 3443 return true; 3444 3445 if (E->isTypeOperand()) 3446 return this->emitGetTypeid( 3447 E->getTypeOperand(Ctx.getASTContext()).getTypePtr(), TypeInfoType, E); 3448 return this->emitGetTypeid(E->getExprOperand()->getType().getTypePtr(), 3449 TypeInfoType, E); 3450 } 3451 3452 // Otherwise, we need to evaluate the expression operand. 3453 assert(E->getExprOperand()); 3454 assert(E->getExprOperand()->isLValue()); 3455 3456 if (!Ctx.getLangOpts().CPlusPlus20 && !this->emitDiagTypeid(E)) 3457 return false; 3458 3459 if (!this->visit(E->getExprOperand())) 3460 return false; 3461 3462 if (!this->emitGetTypeidPtr(TypeInfoType, E)) 3463 return false; 3464 if (DiscardResult) 3465 return this->emitPopPtr(E); 3466 return true; 3467 } 3468 3469 template <class Emitter> 3470 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 3471 assert(Ctx.getLangOpts().CPlusPlus); 3472 return this->emitConstBool(E->getValue(), E); 3473 } 3474 3475 template <class Emitter> 3476 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 3477 if (DiscardResult) 3478 return true; 3479 assert(!Initializing); 3480 3481 const MSGuidDecl *GuidDecl = E->getGuidDecl(); 3482 const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl(); 3483 assert(RD); 3484 // If the definiton of the result type is incomplete, just return a dummy. 3485 // If (and when) that is read from, we will fail, but not now. 3486 if (!RD->isCompleteDefinition()) 3487 return this->emitDummyPtr(GuidDecl, E); 3488 3489 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl); 3490 if (!GlobalIndex) 3491 return false; 3492 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 3493 return false; 3494 3495 assert(this->getRecord(E->getType())); 3496 3497 const APValue &V = GuidDecl->getAsAPValue(); 3498 if (V.getKind() == APValue::None) 3499 return true; 3500 3501 assert(V.isStruct()); 3502 assert(V.getStructNumBases() == 0); 3503 if (!this->visitAPValueInitializer(V, E)) 3504 return false; 3505 3506 return this->emitFinishInit(E); 3507 } 3508 3509 template <class Emitter> 3510 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) { 3511 assert(classifyPrim(E->getType()) == PT_Bool); 3512 if (DiscardResult) 3513 return true; 3514 return this->emitConstBool(E->isSatisfied(), E); 3515 } 3516 3517 template <class Emitter> 3518 bool Compiler<Emitter>::VisitConceptSpecializationExpr( 3519 const ConceptSpecializationExpr *E) { 3520 assert(classifyPrim(E->getType()) == PT_Bool); 3521 if (DiscardResult) 3522 return true; 3523 return this->emitConstBool(E->isSatisfied(), E); 3524 } 3525 3526 template <class Emitter> 3527 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator( 3528 const CXXRewrittenBinaryOperator *E) { 3529 return this->delegate(E->getSemanticForm()); 3530 } 3531 3532 template <class Emitter> 3533 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) { 3534 3535 for (const Expr *SemE : E->semantics()) { 3536 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { 3537 if (SemE == E->getResultExpr()) 3538 return false; 3539 3540 if (OVE->isUnique()) 3541 continue; 3542 3543 if (!this->discard(OVE)) 3544 return false; 3545 } else if (SemE == E->getResultExpr()) { 3546 if (!this->delegate(SemE)) 3547 return false; 3548 } else { 3549 if (!this->discard(SemE)) 3550 return false; 3551 } 3552 } 3553 return true; 3554 } 3555 3556 template <class Emitter> 3557 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) { 3558 return this->delegate(E->getSelectedExpr()); 3559 } 3560 3561 template <class Emitter> 3562 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) { 3563 return this->emitError(E); 3564 } 3565 3566 template <class Emitter> 3567 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) { 3568 assert(E->getType()->isVoidPointerType()); 3569 3570 unsigned Offset = allocateLocalPrimitive( 3571 E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3572 3573 return this->emitGetLocal(PT_Ptr, Offset, E); 3574 } 3575 3576 template <class Emitter> 3577 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) { 3578 assert(Initializing); 3579 const auto *VT = E->getType()->castAs<VectorType>(); 3580 QualType ElemType = VT->getElementType(); 3581 PrimType ElemT = classifyPrim(ElemType); 3582 const Expr *Src = E->getSrcExpr(); 3583 QualType SrcType = Src->getType(); 3584 PrimType SrcElemT = classifyVectorElementType(SrcType); 3585 3586 unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false); 3587 if (!this->visit(Src)) 3588 return false; 3589 if (!this->emitSetLocal(PT_Ptr, SrcOffset, E)) 3590 return false; 3591 3592 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 3593 if (!this->emitGetLocal(PT_Ptr, SrcOffset, E)) 3594 return false; 3595 if (!this->emitArrayElemPop(SrcElemT, I, E)) 3596 return false; 3597 3598 // Cast to the desired result element type. 3599 if (SrcElemT != ElemT) { 3600 if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E)) 3601 return false; 3602 } else if (ElemType->isFloatingType() && SrcType != ElemType) { 3603 const auto *TargetSemantics = &Ctx.getFloatSemantics(ElemType); 3604 if (!this->emitCastFP(TargetSemantics, getRoundingMode(E), E)) 3605 return false; 3606 } 3607 if (!this->emitInitElem(ElemT, I, E)) 3608 return false; 3609 } 3610 3611 return true; 3612 } 3613 3614 template <class Emitter> 3615 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { 3616 assert(Initializing); 3617 assert(E->getNumSubExprs() > 2); 3618 3619 const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)}; 3620 const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>(); 3621 PrimType ElemT = classifyPrim(VT->getElementType()); 3622 unsigned NumInputElems = VT->getNumElements(); 3623 unsigned NumOutputElems = E->getNumSubExprs() - 2; 3624 assert(NumOutputElems > 0); 3625 3626 // Save both input vectors to a local variable. 3627 unsigned VectorOffsets[2]; 3628 for (unsigned I = 0; I != 2; ++I) { 3629 VectorOffsets[I] = this->allocateLocalPrimitive( 3630 Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3631 if (!this->visit(Vecs[I])) 3632 return false; 3633 if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E)) 3634 return false; 3635 } 3636 for (unsigned I = 0; I != NumOutputElems; ++I) { 3637 APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I); 3638 assert(ShuffleIndex >= -1); 3639 if (ShuffleIndex == -1) 3640 return this->emitInvalidShuffleVectorIndex(I, E); 3641 3642 assert(ShuffleIndex < (NumInputElems * 2)); 3643 if (!this->emitGetLocal(PT_Ptr, 3644 VectorOffsets[ShuffleIndex >= NumInputElems], E)) 3645 return false; 3646 unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems; 3647 if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E)) 3648 return false; 3649 3650 if (!this->emitInitElem(ElemT, I, E)) 3651 return false; 3652 } 3653 3654 return true; 3655 } 3656 3657 template <class Emitter> 3658 bool Compiler<Emitter>::VisitExtVectorElementExpr( 3659 const ExtVectorElementExpr *E) { 3660 const Expr *Base = E->getBase(); 3661 assert( 3662 Base->getType()->isVectorType() || 3663 Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType()); 3664 3665 SmallVector<uint32_t, 4> Indices; 3666 E->getEncodedElementAccess(Indices); 3667 3668 if (Indices.size() == 1) { 3669 if (!this->visit(Base)) 3670 return false; 3671 3672 if (E->isGLValue()) { 3673 if (!this->emitConstUint32(Indices[0], E)) 3674 return false; 3675 return this->emitArrayElemPtrPop(PT_Uint32, E); 3676 } 3677 // Else, also load the value. 3678 return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E); 3679 } 3680 3681 // Create a local variable for the base. 3682 unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true, 3683 /*IsExtended=*/false); 3684 if (!this->visit(Base)) 3685 return false; 3686 if (!this->emitSetLocal(PT_Ptr, BaseOffset, E)) 3687 return false; 3688 3689 // Now the vector variable for the return value. 3690 if (!Initializing) { 3691 std::optional<unsigned> ResultIndex; 3692 ResultIndex = allocateLocal(E); 3693 if (!ResultIndex) 3694 return false; 3695 if (!this->emitGetPtrLocal(*ResultIndex, E)) 3696 return false; 3697 } 3698 3699 assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements()); 3700 3701 PrimType ElemT = 3702 classifyPrim(E->getType()->getAs<VectorType>()->getElementType()); 3703 uint32_t DstIndex = 0; 3704 for (uint32_t I : Indices) { 3705 if (!this->emitGetLocal(PT_Ptr, BaseOffset, E)) 3706 return false; 3707 if (!this->emitArrayElemPop(ElemT, I, E)) 3708 return false; 3709 if (!this->emitInitElem(ElemT, DstIndex, E)) 3710 return false; 3711 ++DstIndex; 3712 } 3713 3714 // Leave the result pointer on the stack. 3715 assert(!DiscardResult); 3716 return true; 3717 } 3718 3719 template <class Emitter> 3720 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 3721 const Expr *SubExpr = E->getSubExpr(); 3722 if (!E->isExpressibleAsConstantInitializer()) 3723 return this->discard(SubExpr) && this->emitInvalid(E); 3724 3725 if (DiscardResult) 3726 return true; 3727 3728 assert(classifyPrim(E) == PT_Ptr); 3729 return this->emitDummyPtr(E, E); 3730 } 3731 3732 template <class Emitter> 3733 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr( 3734 const CXXStdInitializerListExpr *E) { 3735 const Expr *SubExpr = E->getSubExpr(); 3736 const ConstantArrayType *ArrayType = 3737 Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType()); 3738 const Record *R = getRecord(E->getType()); 3739 assert(Initializing); 3740 assert(SubExpr->isGLValue()); 3741 3742 if (!this->visit(SubExpr)) 3743 return false; 3744 if (!this->emitConstUint8(0, E)) 3745 return false; 3746 if (!this->emitArrayElemPtrPopUint8(E)) 3747 return false; 3748 if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E)) 3749 return false; 3750 3751 PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType()); 3752 if (isIntegralType(SecondFieldT)) { 3753 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), 3754 SecondFieldT, E)) 3755 return false; 3756 return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E); 3757 } 3758 assert(SecondFieldT == PT_Ptr); 3759 3760 if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E)) 3761 return false; 3762 if (!this->emitExpandPtr(E)) 3763 return false; 3764 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E)) 3765 return false; 3766 if (!this->emitArrayElemPtrPop(PT_Uint64, E)) 3767 return false; 3768 return this->emitInitFieldPtr(R->getField(1u)->Offset, E); 3769 } 3770 3771 template <class Emitter> 3772 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) { 3773 BlockScope<Emitter> BS(this); 3774 StmtExprScope<Emitter> SS(this); 3775 3776 const CompoundStmt *CS = E->getSubStmt(); 3777 const Stmt *Result = CS->getStmtExprResult(); 3778 for (const Stmt *S : CS->body()) { 3779 if (S != Result) { 3780 if (!this->visitStmt(S)) 3781 return false; 3782 continue; 3783 } 3784 3785 assert(S == Result); 3786 if (const Expr *ResultExpr = dyn_cast<Expr>(S)) 3787 return this->delegate(ResultExpr); 3788 return this->emitUnsupported(E); 3789 } 3790 3791 return BS.destroyLocals(); 3792 } 3793 3794 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) { 3795 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true, 3796 /*NewInitializing=*/false); 3797 return this->Visit(E); 3798 } 3799 3800 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) { 3801 // We're basically doing: 3802 // OptionScope<Emitter> Scope(this, DicardResult, Initializing); 3803 // but that's unnecessary of course. 3804 return this->Visit(E); 3805 } 3806 3807 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) { 3808 if (E->getType().isNull()) 3809 return false; 3810 3811 if (E->getType()->isVoidType()) 3812 return this->discard(E); 3813 3814 // Create local variable to hold the return value. 3815 if (!E->isGLValue() && !E->getType()->isAnyComplexType() && 3816 !classify(E->getType())) { 3817 std::optional<unsigned> LocalIndex = allocateLocal(E); 3818 if (!LocalIndex) 3819 return false; 3820 3821 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3822 return false; 3823 InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); 3824 return this->visitInitializer(E); 3825 } 3826 3827 // Otherwise,we have a primitive return value, produce the value directly 3828 // and push it on the stack. 3829 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3830 /*NewInitializing=*/false); 3831 return this->Visit(E); 3832 } 3833 3834 template <class Emitter> 3835 bool Compiler<Emitter>::visitInitializer(const Expr *E) { 3836 assert(!classify(E->getType())); 3837 3838 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3839 /*NewInitializing=*/true); 3840 return this->Visit(E); 3841 } 3842 3843 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) { 3844 std::optional<PrimType> T = classify(E->getType()); 3845 if (!T) { 3846 // Convert complex values to bool. 3847 if (E->getType()->isAnyComplexType()) { 3848 if (!this->visit(E)) 3849 return false; 3850 return this->emitComplexBoolCast(E); 3851 } 3852 return false; 3853 } 3854 3855 if (!this->visit(E)) 3856 return false; 3857 3858 if (T == PT_Bool) 3859 return true; 3860 3861 // Convert pointers to bool. 3862 if (T == PT_Ptr || T == PT_FnPtr) { 3863 if (!this->emitNull(*T, 0, nullptr, E)) 3864 return false; 3865 return this->emitNE(*T, E); 3866 } 3867 3868 // Or Floats. 3869 if (T == PT_Float) 3870 return this->emitCastFloatingIntegralBool(getFPOptions(E), E); 3871 3872 // Or anything else we can. 3873 return this->emitCast(*T, PT_Bool, E); 3874 } 3875 3876 template <class Emitter> 3877 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT, 3878 const Expr *E) { 3879 switch (T) { 3880 case PT_Bool: 3881 return this->emitZeroBool(E); 3882 case PT_Sint8: 3883 return this->emitZeroSint8(E); 3884 case PT_Uint8: 3885 return this->emitZeroUint8(E); 3886 case PT_Sint16: 3887 return this->emitZeroSint16(E); 3888 case PT_Uint16: 3889 return this->emitZeroUint16(E); 3890 case PT_Sint32: 3891 return this->emitZeroSint32(E); 3892 case PT_Uint32: 3893 return this->emitZeroUint32(E); 3894 case PT_Sint64: 3895 return this->emitZeroSint64(E); 3896 case PT_Uint64: 3897 return this->emitZeroUint64(E); 3898 case PT_IntAP: 3899 return this->emitZeroIntAP(Ctx.getBitWidth(QT), E); 3900 case PT_IntAPS: 3901 return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E); 3902 case PT_Ptr: 3903 return this->emitNullPtr(Ctx.getASTContext().getTargetNullPointerValue(QT), 3904 nullptr, E); 3905 case PT_FnPtr: 3906 return this->emitNullFnPtr(0, nullptr, E); 3907 case PT_MemberPtr: 3908 return this->emitNullMemberPtr(0, nullptr, E); 3909 case PT_Float: 3910 return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E); 3911 case PT_FixedPoint: { 3912 auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 3913 return this->emitConstFixedPoint(FixedPoint::zero(Sem), E); 3914 } 3915 llvm_unreachable("Implement"); 3916 } 3917 llvm_unreachable("unknown primitive type"); 3918 } 3919 3920 template <class Emitter> 3921 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R, 3922 const Expr *E) { 3923 assert(E); 3924 assert(R); 3925 // Fields 3926 for (const Record::Field &Field : R->fields()) { 3927 if (Field.Decl->isUnnamedBitField()) 3928 continue; 3929 3930 const Descriptor *D = Field.Desc; 3931 if (D->isPrimitive()) { 3932 QualType QT = D->getType(); 3933 PrimType T = classifyPrim(D->getType()); 3934 if (!this->visitZeroInitializer(T, QT, E)) 3935 return false; 3936 if (!this->emitInitField(T, Field.Offset, E)) 3937 return false; 3938 if (R->isUnion()) 3939 break; 3940 continue; 3941 } 3942 3943 if (!this->emitGetPtrField(Field.Offset, E)) 3944 return false; 3945 3946 if (D->isPrimitiveArray()) { 3947 QualType ET = D->getElemQualType(); 3948 PrimType T = classifyPrim(ET); 3949 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3950 if (!this->visitZeroInitializer(T, ET, E)) 3951 return false; 3952 if (!this->emitInitElem(T, I, E)) 3953 return false; 3954 } 3955 } else if (D->isCompositeArray()) { 3956 // Can't be a vector or complex field. 3957 if (!this->visitZeroArrayInitializer(D->getType(), E)) 3958 return false; 3959 } else if (D->isRecord()) { 3960 if (!this->visitZeroRecordInitializer(D->ElemRecord, E)) 3961 return false; 3962 } else { 3963 assert(false); 3964 } 3965 3966 if (!this->emitFinishInitPop(E)) 3967 return false; 3968 3969 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 3970 // object's first non-static named data member is zero-initialized 3971 if (R->isUnion()) 3972 break; 3973 } 3974 3975 for (const Record::Base &B : R->bases()) { 3976 if (!this->emitGetPtrBase(B.Offset, E)) 3977 return false; 3978 if (!this->visitZeroRecordInitializer(B.R, E)) 3979 return false; 3980 if (!this->emitFinishInitPop(E)) 3981 return false; 3982 } 3983 3984 // FIXME: Virtual bases. 3985 3986 return true; 3987 } 3988 3989 template <class Emitter> 3990 bool Compiler<Emitter>::visitZeroArrayInitializer(QualType T, const Expr *E) { 3991 assert(T->isArrayType() || T->isAnyComplexType() || T->isVectorType()); 3992 const ArrayType *AT = T->getAsArrayTypeUnsafe(); 3993 QualType ElemType = AT->getElementType(); 3994 size_t NumElems = cast<ConstantArrayType>(AT)->getZExtSize(); 3995 3996 if (std::optional<PrimType> ElemT = classify(ElemType)) { 3997 for (size_t I = 0; I != NumElems; ++I) { 3998 if (!this->visitZeroInitializer(*ElemT, ElemType, E)) 3999 return false; 4000 if (!this->emitInitElem(*ElemT, I, E)) 4001 return false; 4002 } 4003 return true; 4004 } else if (ElemType->isRecordType()) { 4005 const Record *R = getRecord(ElemType); 4006 4007 for (size_t I = 0; I != NumElems; ++I) { 4008 if (!this->emitConstUint32(I, E)) 4009 return false; 4010 if (!this->emitArrayElemPtr(PT_Uint32, E)) 4011 return false; 4012 if (!this->visitZeroRecordInitializer(R, E)) 4013 return false; 4014 if (!this->emitPopPtr(E)) 4015 return false; 4016 } 4017 return true; 4018 } else if (ElemType->isArrayType()) { 4019 for (size_t I = 0; I != NumElems; ++I) { 4020 if (!this->emitConstUint32(I, E)) 4021 return false; 4022 if (!this->emitArrayElemPtr(PT_Uint32, E)) 4023 return false; 4024 if (!this->visitZeroArrayInitializer(ElemType, E)) 4025 return false; 4026 if (!this->emitPopPtr(E)) 4027 return false; 4028 } 4029 return true; 4030 } 4031 4032 return false; 4033 } 4034 4035 template <class Emitter> 4036 template <typename T> 4037 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) { 4038 switch (Ty) { 4039 case PT_Sint8: 4040 return this->emitConstSint8(Value, E); 4041 case PT_Uint8: 4042 return this->emitConstUint8(Value, E); 4043 case PT_Sint16: 4044 return this->emitConstSint16(Value, E); 4045 case PT_Uint16: 4046 return this->emitConstUint16(Value, E); 4047 case PT_Sint32: 4048 return this->emitConstSint32(Value, E); 4049 case PT_Uint32: 4050 return this->emitConstUint32(Value, E); 4051 case PT_Sint64: 4052 return this->emitConstSint64(Value, E); 4053 case PT_Uint64: 4054 return this->emitConstUint64(Value, E); 4055 case PT_Bool: 4056 return this->emitConstBool(Value, E); 4057 case PT_Ptr: 4058 case PT_FnPtr: 4059 case PT_MemberPtr: 4060 case PT_Float: 4061 case PT_IntAP: 4062 case PT_IntAPS: 4063 case PT_FixedPoint: 4064 llvm_unreachable("Invalid integral type"); 4065 break; 4066 } 4067 llvm_unreachable("unknown primitive type"); 4068 } 4069 4070 template <class Emitter> 4071 template <typename T> 4072 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) { 4073 return this->emitConst(Value, classifyPrim(E->getType()), E); 4074 } 4075 4076 template <class Emitter> 4077 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty, 4078 const Expr *E) { 4079 if (Ty == PT_IntAPS) 4080 return this->emitConstIntAPS(Value, E); 4081 if (Ty == PT_IntAP) 4082 return this->emitConstIntAP(Value, E); 4083 4084 if (Value.isSigned()) 4085 return this->emitConst(Value.getSExtValue(), Ty, E); 4086 return this->emitConst(Value.getZExtValue(), Ty, E); 4087 } 4088 4089 template <class Emitter> 4090 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) { 4091 return this->emitConst(Value, classifyPrim(E->getType()), E); 4092 } 4093 4094 template <class Emitter> 4095 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty, 4096 bool IsConst, 4097 bool IsExtended) { 4098 // Make sure we don't accidentally register the same decl twice. 4099 if (const auto *VD = 4100 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 4101 assert(!P.getGlobal(VD)); 4102 assert(!Locals.contains(VD)); 4103 (void)VD; 4104 } 4105 4106 // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g. 4107 // (int){12} in C. Consider using Expr::isTemporaryObject() instead 4108 // or isa<MaterializeTemporaryExpr>(). 4109 Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst, 4110 isa<const Expr *>(Src)); 4111 Scope::Local Local = this->createLocal(D); 4112 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) 4113 Locals.insert({VD, Local}); 4114 VarScope->add(Local, IsExtended); 4115 return Local.Offset; 4116 } 4117 4118 template <class Emitter> 4119 std::optional<unsigned> 4120 Compiler<Emitter>::allocateLocal(DeclTy &&Src, QualType Ty, 4121 const ValueDecl *ExtendingDecl) { 4122 // Make sure we don't accidentally register the same decl twice. 4123 if ([[maybe_unused]] const auto *VD = 4124 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 4125 assert(!P.getGlobal(VD)); 4126 assert(!Locals.contains(VD)); 4127 } 4128 4129 const ValueDecl *Key = nullptr; 4130 const Expr *Init = nullptr; 4131 bool IsTemporary = false; 4132 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 4133 Key = VD; 4134 Ty = VD->getType(); 4135 4136 if (const auto *VarD = dyn_cast<VarDecl>(VD)) 4137 Init = VarD->getInit(); 4138 } 4139 if (auto *E = Src.dyn_cast<const Expr *>()) { 4140 IsTemporary = true; 4141 if (Ty.isNull()) 4142 Ty = E->getType(); 4143 } 4144 4145 Descriptor *D = P.createDescriptor( 4146 Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 4147 IsTemporary, /*IsMutable=*/false, Init); 4148 if (!D) 4149 return std::nullopt; 4150 4151 Scope::Local Local = this->createLocal(D); 4152 if (Key) 4153 Locals.insert({Key, Local}); 4154 if (ExtendingDecl) 4155 VarScope->addExtended(Local, ExtendingDecl); 4156 else 4157 VarScope->add(Local, false); 4158 return Local.Offset; 4159 } 4160 4161 template <class Emitter> 4162 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) { 4163 QualType Ty = E->getType(); 4164 assert(!Ty->isRecordType()); 4165 4166 Descriptor *D = P.createDescriptor( 4167 E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 4168 /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr); 4169 assert(D); 4170 4171 Scope::Local Local = this->createLocal(D); 4172 VariableScope<Emitter> *S = VarScope; 4173 assert(S); 4174 // Attach to topmost scope. 4175 while (S->getParent()) 4176 S = S->getParent(); 4177 assert(S && !S->getParent()); 4178 S->addLocal(Local); 4179 return Local.Offset; 4180 } 4181 4182 template <class Emitter> 4183 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) { 4184 if (const PointerType *PT = dyn_cast<PointerType>(Ty)) 4185 return PT->getPointeeType()->getAs<RecordType>(); 4186 return Ty->getAs<RecordType>(); 4187 } 4188 4189 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) { 4190 if (const auto *RecordTy = getRecordTy(Ty)) 4191 return getRecord(RecordTy->getDecl()); 4192 return nullptr; 4193 } 4194 4195 template <class Emitter> 4196 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) { 4197 return P.getOrCreateRecord(RD); 4198 } 4199 4200 template <class Emitter> 4201 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) { 4202 return Ctx.getOrCreateFunction(FD); 4203 } 4204 4205 template <class Emitter> 4206 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) { 4207 LocalScope<Emitter> RootScope(this); 4208 4209 // If we won't destroy the toplevel scope, check for memory leaks first. 4210 if (!DestroyToplevelScope) { 4211 if (!this->emitCheckAllocations(E)) 4212 return false; 4213 } 4214 4215 auto maybeDestroyLocals = [&]() -> bool { 4216 if (DestroyToplevelScope) 4217 return RootScope.destroyLocals() && this->emitCheckAllocations(E); 4218 return this->emitCheckAllocations(E); 4219 }; 4220 4221 // Void expressions. 4222 if (E->getType()->isVoidType()) { 4223 if (!visit(E)) 4224 return false; 4225 return this->emitRetVoid(E) && maybeDestroyLocals(); 4226 } 4227 4228 // Expressions with a primitive return type. 4229 if (std::optional<PrimType> T = classify(E)) { 4230 if (!visit(E)) 4231 return false; 4232 4233 return this->emitRet(*T, E) && maybeDestroyLocals(); 4234 } 4235 4236 // Expressions with a composite return type. 4237 // For us, that means everything we don't 4238 // have a PrimType for. 4239 if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) { 4240 if (!this->emitGetPtrLocal(*LocalOffset, E)) 4241 return false; 4242 4243 if (!visitInitializer(E)) 4244 return false; 4245 4246 if (!this->emitFinishInit(E)) 4247 return false; 4248 // We are destroying the locals AFTER the Ret op. 4249 // The Ret op needs to copy the (alive) values, but the 4250 // destructors may still turn the entire expression invalid. 4251 return this->emitRetValue(E) && maybeDestroyLocals(); 4252 } 4253 4254 return maybeDestroyLocals() && this->emitCheckAllocations(E) && false; 4255 } 4256 4257 template <class Emitter> 4258 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) { 4259 4260 auto R = this->visitVarDecl(VD, /*Toplevel=*/true); 4261 4262 if (R.notCreated()) 4263 return R; 4264 4265 if (R) 4266 return true; 4267 4268 if (!R && Context::shouldBeGloballyIndexed(VD)) { 4269 if (auto GlobalIndex = P.getGlobal(VD)) { 4270 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 4271 GlobalInlineDescriptor &GD = 4272 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 4273 4274 GD.InitState = GlobalInitState::InitializerFailed; 4275 GlobalBlock->invokeDtor(); 4276 } 4277 } 4278 4279 return R; 4280 } 4281 4282 /// Toplevel visitDeclAndReturn(). 4283 /// We get here from evaluateAsInitializer(). 4284 /// We need to evaluate the initializer and return its value. 4285 template <class Emitter> 4286 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD, 4287 bool ConstantContext) { 4288 std::optional<PrimType> VarT = classify(VD->getType()); 4289 4290 // We only create variables if we're evaluating in a constant context. 4291 // Otherwise, just evaluate the initializer and return it. 4292 if (!ConstantContext) { 4293 DeclScope<Emitter> LS(this, VD); 4294 if (!this->visit(VD->getAnyInitializer())) 4295 return false; 4296 return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals() && 4297 this->emitCheckAllocations(VD); 4298 } 4299 4300 LocalScope<Emitter> VDScope(this, VD); 4301 if (!this->visitVarDecl(VD, /*Toplevel=*/true)) 4302 return false; 4303 4304 if (Context::shouldBeGloballyIndexed(VD)) { 4305 auto GlobalIndex = P.getGlobal(VD); 4306 assert(GlobalIndex); // visitVarDecl() didn't return false. 4307 if (VarT) { 4308 if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD)) 4309 return false; 4310 } else { 4311 if (!this->emitGetPtrGlobal(*GlobalIndex, VD)) 4312 return false; 4313 } 4314 } else { 4315 auto Local = Locals.find(VD); 4316 assert(Local != Locals.end()); // Same here. 4317 if (VarT) { 4318 if (!this->emitGetLocal(*VarT, Local->second.Offset, VD)) 4319 return false; 4320 } else { 4321 if (!this->emitGetPtrLocal(Local->second.Offset, VD)) 4322 return false; 4323 } 4324 } 4325 4326 // Return the value. 4327 if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) { 4328 // If the Ret above failed and this is a global variable, mark it as 4329 // uninitialized, even everything else succeeded. 4330 if (Context::shouldBeGloballyIndexed(VD)) { 4331 auto GlobalIndex = P.getGlobal(VD); 4332 assert(GlobalIndex); 4333 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 4334 GlobalInlineDescriptor &GD = 4335 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 4336 4337 GD.InitState = GlobalInitState::InitializerFailed; 4338 GlobalBlock->invokeDtor(); 4339 } 4340 return false; 4341 } 4342 4343 return VDScope.destroyLocals() && this->emitCheckAllocations(VD); 4344 } 4345 4346 template <class Emitter> 4347 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD, 4348 bool Toplevel) { 4349 // We don't know what to do with these, so just return false. 4350 if (VD->getType().isNull()) 4351 return false; 4352 4353 // This case is EvalEmitter-only. If we won't create any instructions for the 4354 // initializer anyway, don't bother creating the variable in the first place. 4355 if (!this->isActive()) 4356 return VarCreationState::NotCreated(); 4357 4358 const Expr *Init = VD->getInit(); 4359 std::optional<PrimType> VarT = classify(VD->getType()); 4360 4361 if (Init && Init->isValueDependent()) 4362 return false; 4363 4364 if (Context::shouldBeGloballyIndexed(VD)) { 4365 auto checkDecl = [&]() -> bool { 4366 bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal(); 4367 return !NeedsOp || this->emitCheckDecl(VD, VD); 4368 }; 4369 4370 auto initGlobal = [&](unsigned GlobalIndex) -> bool { 4371 assert(Init); 4372 4373 if (VarT) { 4374 if (!this->visit(Init)) 4375 return checkDecl() && false; 4376 4377 return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD); 4378 } 4379 4380 if (!checkDecl()) 4381 return false; 4382 4383 if (!this->emitGetPtrGlobal(GlobalIndex, Init)) 4384 return false; 4385 4386 if (!visitInitializer(Init)) 4387 return false; 4388 4389 if (!this->emitFinishInit(Init)) 4390 return false; 4391 4392 return this->emitPopPtr(Init); 4393 }; 4394 4395 DeclScope<Emitter> LocalScope(this, VD); 4396 4397 // We've already seen and initialized this global. 4398 if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) { 4399 if (P.getPtrGlobal(*GlobalIndex).isInitialized()) 4400 return checkDecl(); 4401 4402 // The previous attempt at initialization might've been unsuccessful, 4403 // so let's try this one. 4404 return Init && checkDecl() && initGlobal(*GlobalIndex); 4405 } 4406 4407 std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init); 4408 4409 if (!GlobalIndex) 4410 return false; 4411 4412 return !Init || (checkDecl() && initGlobal(*GlobalIndex)); 4413 } else { 4414 InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD)); 4415 4416 if (VarT) { 4417 unsigned Offset = this->allocateLocalPrimitive( 4418 VD, *VarT, VD->getType().isConstQualified()); 4419 if (Init) { 4420 // If this is a toplevel declaration, create a scope for the 4421 // initializer. 4422 if (Toplevel) { 4423 LocalScope<Emitter> Scope(this); 4424 if (!this->visit(Init)) 4425 return false; 4426 return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals(); 4427 } else { 4428 if (!this->visit(Init)) 4429 return false; 4430 return this->emitSetLocal(*VarT, Offset, VD); 4431 } 4432 } 4433 } else { 4434 if (std::optional<unsigned> Offset = this->allocateLocal(VD)) { 4435 if (!Init) 4436 return true; 4437 4438 if (!this->emitGetPtrLocal(*Offset, Init)) 4439 return false; 4440 4441 if (!visitInitializer(Init)) 4442 return false; 4443 4444 if (!this->emitFinishInit(Init)) 4445 return false; 4446 4447 return this->emitPopPtr(Init); 4448 } 4449 return false; 4450 } 4451 return true; 4452 } 4453 4454 return false; 4455 } 4456 4457 template <class Emitter> 4458 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType, 4459 const Expr *E) { 4460 assert(!DiscardResult); 4461 if (Val.isInt()) 4462 return this->emitConst(Val.getInt(), ValType, E); 4463 else if (Val.isFloat()) 4464 return this->emitConstFloat(Val.getFloat(), E); 4465 4466 if (Val.isLValue()) { 4467 if (Val.isNullPointer()) 4468 return this->emitNull(ValType, 0, nullptr, E); 4469 APValue::LValueBase Base = Val.getLValueBase(); 4470 if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>()) 4471 return this->visit(BaseExpr); 4472 else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) { 4473 return this->visitDeclRef(VD, E); 4474 } 4475 } else if (Val.isMemberPointer()) { 4476 if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl()) 4477 return this->emitGetMemberPtr(MemberDecl, E); 4478 return this->emitNullMemberPtr(0, nullptr, E); 4479 } 4480 4481 return false; 4482 } 4483 4484 template <class Emitter> 4485 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val, 4486 const Expr *E) { 4487 4488 if (Val.isStruct()) { 4489 const Record *R = this->getRecord(E->getType()); 4490 assert(R); 4491 for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) { 4492 const APValue &F = Val.getStructField(I); 4493 const Record::Field *RF = R->getField(I); 4494 4495 if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) { 4496 PrimType T = classifyPrim(RF->Decl->getType()); 4497 if (!this->visitAPValue(F, T, E)) 4498 return false; 4499 if (!this->emitInitField(T, RF->Offset, E)) 4500 return false; 4501 } else if (F.isArray()) { 4502 assert(RF->Desc->isPrimitiveArray()); 4503 const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe(); 4504 PrimType ElemT = classifyPrim(ArrType->getElementType()); 4505 assert(ArrType); 4506 4507 if (!this->emitGetPtrField(RF->Offset, E)) 4508 return false; 4509 4510 for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) { 4511 if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E)) 4512 return false; 4513 if (!this->emitInitElem(ElemT, A, E)) 4514 return false; 4515 } 4516 4517 if (!this->emitPopPtr(E)) 4518 return false; 4519 } else if (F.isStruct() || F.isUnion()) { 4520 if (!this->emitGetPtrField(RF->Offset, E)) 4521 return false; 4522 if (!this->visitAPValueInitializer(F, E)) 4523 return false; 4524 if (!this->emitPopPtr(E)) 4525 return false; 4526 } else { 4527 assert(false && "I don't think this should be possible"); 4528 } 4529 } 4530 return true; 4531 } else if (Val.isUnion()) { 4532 const FieldDecl *UnionField = Val.getUnionField(); 4533 const Record *R = this->getRecord(UnionField->getParent()); 4534 assert(R); 4535 const APValue &F = Val.getUnionValue(); 4536 const Record::Field *RF = R->getField(UnionField); 4537 PrimType T = classifyPrim(RF->Decl->getType()); 4538 if (!this->visitAPValue(F, T, E)) 4539 return false; 4540 return this->emitInitField(T, RF->Offset, E); 4541 } 4542 // TODO: Other types. 4543 4544 return false; 4545 } 4546 4547 template <class Emitter> 4548 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E, 4549 unsigned BuiltinID) { 4550 const Function *Func = getFunction(E->getDirectCallee()); 4551 if (!Func) 4552 return false; 4553 4554 // For these, we're expected to ultimately return an APValue pointing 4555 // to the CallExpr. This is needed to get the correct codegen. 4556 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 4557 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString || 4558 BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant || 4559 BuiltinID == Builtin::BI__builtin_function_start) { 4560 if (DiscardResult) 4561 return true; 4562 return this->emitDummyPtr(E, E); 4563 } 4564 4565 QualType ReturnType = E->getType(); 4566 std::optional<PrimType> ReturnT = classify(E); 4567 4568 // Non-primitive return type. Prepare storage. 4569 if (!Initializing && !ReturnT && !ReturnType->isVoidType()) { 4570 std::optional<unsigned> LocalIndex = allocateLocal(E); 4571 if (!LocalIndex) 4572 return false; 4573 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4574 return false; 4575 } 4576 4577 if (!Func->isUnevaluatedBuiltin()) { 4578 // Put arguments on the stack. 4579 for (const auto *Arg : E->arguments()) { 4580 if (!this->visit(Arg)) 4581 return false; 4582 } 4583 } 4584 4585 if (!this->emitCallBI(Func, E, BuiltinID, E)) 4586 return false; 4587 4588 if (DiscardResult && !ReturnType->isVoidType()) { 4589 assert(ReturnT); 4590 return this->emitPop(*ReturnT, E); 4591 } 4592 4593 return true; 4594 } 4595 4596 template <class Emitter> 4597 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) { 4598 if (unsigned BuiltinID = E->getBuiltinCallee()) 4599 return VisitBuiltinCallExpr(E, BuiltinID); 4600 4601 const FunctionDecl *FuncDecl = E->getDirectCallee(); 4602 // Calls to replaceable operator new/operator delete. 4603 if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) { 4604 if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New || 4605 FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { 4606 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new); 4607 } else { 4608 assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete); 4609 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete); 4610 } 4611 } 4612 // Explicit calls to trivial destructors 4613 if (const auto *DD = dyn_cast_if_present<CXXDestructorDecl>(FuncDecl); 4614 DD && DD->isTrivial()) 4615 return true; 4616 4617 QualType ReturnType = E->getCallReturnType(Ctx.getASTContext()); 4618 std::optional<PrimType> T = classify(ReturnType); 4619 bool HasRVO = !ReturnType->isVoidType() && !T; 4620 4621 if (HasRVO) { 4622 if (DiscardResult) { 4623 // If we need to discard the return value but the function returns its 4624 // value via an RVO pointer, we need to create one such pointer just 4625 // for this call. 4626 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4627 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4628 return false; 4629 } 4630 } else { 4631 // We need the result. Prepare a pointer to return or 4632 // dup the current one. 4633 if (!Initializing) { 4634 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4635 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4636 return false; 4637 } 4638 } 4639 if (!this->emitDupPtr(E)) 4640 return false; 4641 } 4642 } 4643 4644 SmallVector<const Expr *, 8> Args( 4645 llvm::ArrayRef(E->getArgs(), E->getNumArgs())); 4646 4647 bool IsAssignmentOperatorCall = false; 4648 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); 4649 OCE && OCE->isAssignmentOp()) { 4650 // Just like with regular assignments, we need to special-case assignment 4651 // operators here and evaluate the RHS (the second arg) before the LHS (the 4652 // first arg. We fix this by using a Flip op later. 4653 assert(Args.size() == 2); 4654 IsAssignmentOperatorCall = true; 4655 std::reverse(Args.begin(), Args.end()); 4656 } 4657 // Calling a static operator will still 4658 // pass the instance, but we don't need it. 4659 // Discard it here. 4660 if (isa<CXXOperatorCallExpr>(E)) { 4661 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl); 4662 MD && MD->isStatic()) { 4663 if (!this->discard(E->getArg(0))) 4664 return false; 4665 // Drop first arg. 4666 Args.erase(Args.begin()); 4667 } 4668 } 4669 4670 std::optional<unsigned> CalleeOffset; 4671 // Add the (optional, implicit) This pointer. 4672 if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) { 4673 if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) { 4674 // If we end up creating a CallPtr op for this, we need the base of the 4675 // member pointer as the instance pointer, and later extract the function 4676 // decl as the function pointer. 4677 const Expr *Callee = E->getCallee(); 4678 CalleeOffset = 4679 this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false); 4680 if (!this->visit(Callee)) 4681 return false; 4682 if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E)) 4683 return false; 4684 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4685 return false; 4686 if (!this->emitGetMemberPtrBase(E)) 4687 return false; 4688 } else if (!this->visit(MC->getImplicitObjectArgument())) { 4689 return false; 4690 } 4691 } else if (!FuncDecl) { 4692 const Expr *Callee = E->getCallee(); 4693 CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false); 4694 if (!this->visit(Callee)) 4695 return false; 4696 if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E)) 4697 return false; 4698 } 4699 4700 llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args); 4701 // Put arguments on the stack. 4702 unsigned ArgIndex = 0; 4703 for (const auto *Arg : Args) { 4704 if (!this->visit(Arg)) 4705 return false; 4706 4707 // If we know the callee already, check the known parametrs for nullability. 4708 if (FuncDecl && NonNullArgs[ArgIndex]) { 4709 PrimType ArgT = classify(Arg).value_or(PT_Ptr); 4710 if (ArgT == PT_Ptr || ArgT == PT_FnPtr) { 4711 if (!this->emitCheckNonNullArg(ArgT, Arg)) 4712 return false; 4713 } 4714 } 4715 ++ArgIndex; 4716 } 4717 4718 // Undo the argument reversal we did earlier. 4719 if (IsAssignmentOperatorCall) { 4720 assert(Args.size() == 2); 4721 PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr); 4722 PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr); 4723 if (!this->emitFlip(Arg2T, Arg1T, E)) 4724 return false; 4725 } 4726 4727 if (FuncDecl) { 4728 const Function *Func = getFunction(FuncDecl); 4729 if (!Func) 4730 return false; 4731 assert(HasRVO == Func->hasRVO()); 4732 4733 bool HasQualifier = false; 4734 if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee())) 4735 HasQualifier = ME->hasQualifier(); 4736 4737 bool IsVirtual = false; 4738 if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) 4739 IsVirtual = MD->isVirtual(); 4740 4741 // In any case call the function. The return value will end up on the stack 4742 // and if the function has RVO, we already have the pointer on the stack to 4743 // write the result into. 4744 if (IsVirtual && !HasQualifier) { 4745 uint32_t VarArgSize = 0; 4746 unsigned NumParams = 4747 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4748 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4749 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4750 4751 if (!this->emitCallVirt(Func, VarArgSize, E)) 4752 return false; 4753 } else if (Func->isVariadic()) { 4754 uint32_t VarArgSize = 0; 4755 unsigned NumParams = 4756 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4757 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4758 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4759 if (!this->emitCallVar(Func, VarArgSize, E)) 4760 return false; 4761 } else { 4762 if (!this->emitCall(Func, 0, E)) 4763 return false; 4764 } 4765 } else { 4766 // Indirect call. Visit the callee, which will leave a FunctionPointer on 4767 // the stack. Cleanup of the returned value if necessary will be done after 4768 // the function call completed. 4769 4770 // Sum the size of all args from the call expr. 4771 uint32_t ArgSize = 0; 4772 for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) 4773 ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4774 4775 // Get the callee, either from a member pointer or function pointer saved in 4776 // CalleeOffset. 4777 if (isa<CXXMemberCallExpr>(E) && CalleeOffset) { 4778 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4779 return false; 4780 if (!this->emitGetMemberPtrDecl(E)) 4781 return false; 4782 } else { 4783 if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E)) 4784 return false; 4785 } 4786 if (!this->emitCallPtr(ArgSize, E, E)) 4787 return false; 4788 } 4789 4790 // Cleanup for discarded return values. 4791 if (DiscardResult && !ReturnType->isVoidType() && T) 4792 return this->emitPop(*T, E); 4793 4794 return true; 4795 } 4796 4797 template <class Emitter> 4798 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 4799 SourceLocScope<Emitter> SLS(this, E); 4800 4801 return this->delegate(E->getExpr()); 4802 } 4803 4804 template <class Emitter> 4805 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 4806 SourceLocScope<Emitter> SLS(this, E); 4807 4808 const Expr *SubExpr = E->getExpr(); 4809 if (std::optional<PrimType> T = classify(E->getExpr())) 4810 return this->visit(SubExpr); 4811 4812 assert(Initializing); 4813 return this->visitInitializer(SubExpr); 4814 } 4815 4816 template <class Emitter> 4817 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 4818 if (DiscardResult) 4819 return true; 4820 4821 return this->emitConstBool(E->getValue(), E); 4822 } 4823 4824 template <class Emitter> 4825 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr( 4826 const CXXNullPtrLiteralExpr *E) { 4827 if (DiscardResult) 4828 return true; 4829 4830 uint64_t Val = Ctx.getASTContext().getTargetNullPointerValue(E->getType()); 4831 return this->emitNullPtr(Val, nullptr, E); 4832 } 4833 4834 template <class Emitter> 4835 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) { 4836 if (DiscardResult) 4837 return true; 4838 4839 assert(E->getType()->isIntegerType()); 4840 4841 PrimType T = classifyPrim(E->getType()); 4842 return this->emitZero(T, E); 4843 } 4844 4845 template <class Emitter> 4846 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) { 4847 if (DiscardResult) 4848 return true; 4849 4850 if (this->LambdaThisCapture.Offset > 0) { 4851 if (this->LambdaThisCapture.IsPtr) 4852 return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E); 4853 return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E); 4854 } 4855 4856 // In some circumstances, the 'this' pointer does not actually refer to the 4857 // instance pointer of the current function frame, but e.g. to the declaration 4858 // currently being initialized. Here we emit the necessary instruction(s) for 4859 // this scenario. 4860 if (!InitStackActive) 4861 return this->emitThis(E); 4862 4863 if (!InitStack.empty()) { 4864 // If our init stack is, for example: 4865 // 0 Stack: 3 (decl) 4866 // 1 Stack: 6 (init list) 4867 // 2 Stack: 1 (field) 4868 // 3 Stack: 6 (init list) 4869 // 4 Stack: 1 (field) 4870 // 4871 // We want to find the LAST element in it that's an init list, 4872 // which is marked with the K_InitList marker. The index right 4873 // before that points to an init list. We need to find the 4874 // elements before the K_InitList element that point to a base 4875 // (e.g. a decl or This), optionally followed by field, elem, etc. 4876 // In the example above, we want to emit elements [0..2]. 4877 unsigned StartIndex = 0; 4878 unsigned EndIndex = 0; 4879 // Find the init list. 4880 for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) { 4881 if (InitStack[StartIndex].Kind == InitLink::K_InitList || 4882 InitStack[StartIndex].Kind == InitLink::K_This) { 4883 EndIndex = StartIndex; 4884 --StartIndex; 4885 break; 4886 } 4887 } 4888 4889 // Walk backwards to find the base. 4890 for (; StartIndex > 0; --StartIndex) { 4891 if (InitStack[StartIndex].Kind == InitLink::K_InitList) 4892 continue; 4893 4894 if (InitStack[StartIndex].Kind != InitLink::K_Field && 4895 InitStack[StartIndex].Kind != InitLink::K_Elem) 4896 break; 4897 } 4898 4899 // Emit the instructions. 4900 for (unsigned I = StartIndex; I != EndIndex; ++I) { 4901 if (InitStack[I].Kind == InitLink::K_InitList) 4902 continue; 4903 if (!InitStack[I].template emit<Emitter>(this, E)) 4904 return false; 4905 } 4906 return true; 4907 } 4908 return this->emitThis(E); 4909 } 4910 4911 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) { 4912 switch (S->getStmtClass()) { 4913 case Stmt::CompoundStmtClass: 4914 return visitCompoundStmt(cast<CompoundStmt>(S)); 4915 case Stmt::DeclStmtClass: 4916 return visitDeclStmt(cast<DeclStmt>(S)); 4917 case Stmt::ReturnStmtClass: 4918 return visitReturnStmt(cast<ReturnStmt>(S)); 4919 case Stmt::IfStmtClass: 4920 return visitIfStmt(cast<IfStmt>(S)); 4921 case Stmt::WhileStmtClass: 4922 return visitWhileStmt(cast<WhileStmt>(S)); 4923 case Stmt::DoStmtClass: 4924 return visitDoStmt(cast<DoStmt>(S)); 4925 case Stmt::ForStmtClass: 4926 return visitForStmt(cast<ForStmt>(S)); 4927 case Stmt::CXXForRangeStmtClass: 4928 return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); 4929 case Stmt::BreakStmtClass: 4930 return visitBreakStmt(cast<BreakStmt>(S)); 4931 case Stmt::ContinueStmtClass: 4932 return visitContinueStmt(cast<ContinueStmt>(S)); 4933 case Stmt::SwitchStmtClass: 4934 return visitSwitchStmt(cast<SwitchStmt>(S)); 4935 case Stmt::CaseStmtClass: 4936 return visitCaseStmt(cast<CaseStmt>(S)); 4937 case Stmt::DefaultStmtClass: 4938 return visitDefaultStmt(cast<DefaultStmt>(S)); 4939 case Stmt::AttributedStmtClass: 4940 return visitAttributedStmt(cast<AttributedStmt>(S)); 4941 case Stmt::CXXTryStmtClass: 4942 return visitCXXTryStmt(cast<CXXTryStmt>(S)); 4943 case Stmt::NullStmtClass: 4944 return true; 4945 // Always invalid statements. 4946 case Stmt::GCCAsmStmtClass: 4947 case Stmt::MSAsmStmtClass: 4948 case Stmt::GotoStmtClass: 4949 return this->emitInvalid(S); 4950 case Stmt::LabelStmtClass: 4951 return this->visitStmt(cast<LabelStmt>(S)->getSubStmt()); 4952 default: { 4953 if (const auto *E = dyn_cast<Expr>(S)) 4954 return this->discard(E); 4955 return false; 4956 } 4957 } 4958 } 4959 4960 template <class Emitter> 4961 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) { 4962 BlockScope<Emitter> Scope(this); 4963 for (const auto *InnerStmt : S->body()) 4964 if (!visitStmt(InnerStmt)) 4965 return false; 4966 return Scope.destroyLocals(); 4967 } 4968 4969 template <class Emitter> 4970 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) { 4971 for (const auto *D : DS->decls()) { 4972 if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl, 4973 FunctionDecl>(D)) 4974 continue; 4975 4976 const auto *VD = dyn_cast<VarDecl>(D); 4977 if (!VD) 4978 return false; 4979 if (!this->visitVarDecl(VD)) 4980 return false; 4981 } 4982 4983 return true; 4984 } 4985 4986 template <class Emitter> 4987 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) { 4988 if (this->InStmtExpr) 4989 return this->emitUnsupported(RS); 4990 4991 if (const Expr *RE = RS->getRetValue()) { 4992 LocalScope<Emitter> RetScope(this); 4993 if (ReturnType) { 4994 // Primitive types are simply returned. 4995 if (!this->visit(RE)) 4996 return false; 4997 this->emitCleanup(); 4998 return this->emitRet(*ReturnType, RS); 4999 } else if (RE->getType()->isVoidType()) { 5000 if (!this->visit(RE)) 5001 return false; 5002 } else { 5003 InitLinkScope<Emitter> ILS(this, InitLink::RVO()); 5004 // RVO - construct the value in the return location. 5005 if (!this->emitRVOPtr(RE)) 5006 return false; 5007 if (!this->visitInitializer(RE)) 5008 return false; 5009 if (!this->emitPopPtr(RE)) 5010 return false; 5011 5012 this->emitCleanup(); 5013 return this->emitRetVoid(RS); 5014 } 5015 } 5016 5017 // Void return. 5018 this->emitCleanup(); 5019 return this->emitRetVoid(RS); 5020 } 5021 5022 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) { 5023 if (auto *CondInit = IS->getInit()) 5024 if (!visitStmt(CondInit)) 5025 return false; 5026 5027 if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt()) 5028 if (!visitDeclStmt(CondDecl)) 5029 return false; 5030 5031 // Compile condition. 5032 if (IS->isNonNegatedConsteval()) { 5033 if (!this->emitIsConstantContext(IS)) 5034 return false; 5035 } else if (IS->isNegatedConsteval()) { 5036 if (!this->emitIsConstantContext(IS)) 5037 return false; 5038 if (!this->emitInv(IS)) 5039 return false; 5040 } else { 5041 if (!this->visitBool(IS->getCond())) 5042 return false; 5043 } 5044 5045 if (const Stmt *Else = IS->getElse()) { 5046 LabelTy LabelElse = this->getLabel(); 5047 LabelTy LabelEnd = this->getLabel(); 5048 if (!this->jumpFalse(LabelElse)) 5049 return false; 5050 { 5051 LocalScope<Emitter> ThenScope(this); 5052 if (!visitStmt(IS->getThen())) 5053 return false; 5054 if (!ThenScope.destroyLocals()) 5055 return false; 5056 } 5057 if (!this->jump(LabelEnd)) 5058 return false; 5059 this->emitLabel(LabelElse); 5060 { 5061 LocalScope<Emitter> ElseScope(this); 5062 if (!visitStmt(Else)) 5063 return false; 5064 if (!ElseScope.destroyLocals()) 5065 return false; 5066 } 5067 this->emitLabel(LabelEnd); 5068 } else { 5069 LabelTy LabelEnd = this->getLabel(); 5070 if (!this->jumpFalse(LabelEnd)) 5071 return false; 5072 { 5073 LocalScope<Emitter> ThenScope(this); 5074 if (!visitStmt(IS->getThen())) 5075 return false; 5076 if (!ThenScope.destroyLocals()) 5077 return false; 5078 } 5079 this->emitLabel(LabelEnd); 5080 } 5081 5082 return true; 5083 } 5084 5085 template <class Emitter> 5086 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) { 5087 const Expr *Cond = S->getCond(); 5088 const Stmt *Body = S->getBody(); 5089 5090 LabelTy CondLabel = this->getLabel(); // Label before the condition. 5091 LabelTy EndLabel = this->getLabel(); // Label after the loop. 5092 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 5093 5094 this->fallthrough(CondLabel); 5095 this->emitLabel(CondLabel); 5096 5097 { 5098 LocalScope<Emitter> CondScope(this); 5099 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 5100 if (!visitDeclStmt(CondDecl)) 5101 return false; 5102 5103 if (!this->visitBool(Cond)) 5104 return false; 5105 if (!this->jumpFalse(EndLabel)) 5106 return false; 5107 5108 if (!this->visitStmt(Body)) 5109 return false; 5110 5111 if (!CondScope.destroyLocals()) 5112 return false; 5113 } 5114 if (!this->jump(CondLabel)) 5115 return false; 5116 this->fallthrough(EndLabel); 5117 this->emitLabel(EndLabel); 5118 5119 return true; 5120 } 5121 5122 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) { 5123 const Expr *Cond = S->getCond(); 5124 const Stmt *Body = S->getBody(); 5125 5126 LabelTy StartLabel = this->getLabel(); 5127 LabelTy EndLabel = this->getLabel(); 5128 LabelTy CondLabel = this->getLabel(); 5129 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 5130 5131 this->fallthrough(StartLabel); 5132 this->emitLabel(StartLabel); 5133 5134 { 5135 LocalScope<Emitter> CondScope(this); 5136 if (!this->visitStmt(Body)) 5137 return false; 5138 this->fallthrough(CondLabel); 5139 this->emitLabel(CondLabel); 5140 if (!this->visitBool(Cond)) 5141 return false; 5142 5143 if (!CondScope.destroyLocals()) 5144 return false; 5145 } 5146 if (!this->jumpTrue(StartLabel)) 5147 return false; 5148 5149 this->fallthrough(EndLabel); 5150 this->emitLabel(EndLabel); 5151 return true; 5152 } 5153 5154 template <class Emitter> 5155 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) { 5156 // for (Init; Cond; Inc) { Body } 5157 const Stmt *Init = S->getInit(); 5158 const Expr *Cond = S->getCond(); 5159 const Expr *Inc = S->getInc(); 5160 const Stmt *Body = S->getBody(); 5161 5162 LabelTy EndLabel = this->getLabel(); 5163 LabelTy CondLabel = this->getLabel(); 5164 LabelTy IncLabel = this->getLabel(); 5165 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 5166 5167 if (Init && !this->visitStmt(Init)) 5168 return false; 5169 5170 this->fallthrough(CondLabel); 5171 this->emitLabel(CondLabel); 5172 5173 { 5174 LocalScope<Emitter> CondScope(this); 5175 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 5176 if (!visitDeclStmt(CondDecl)) 5177 return false; 5178 5179 if (Cond) { 5180 if (!this->visitBool(Cond)) 5181 return false; 5182 if (!this->jumpFalse(EndLabel)) 5183 return false; 5184 } 5185 5186 if (Body && !this->visitStmt(Body)) 5187 return false; 5188 5189 this->fallthrough(IncLabel); 5190 this->emitLabel(IncLabel); 5191 if (Inc && !this->discard(Inc)) 5192 return false; 5193 5194 if (!CondScope.destroyLocals()) 5195 return false; 5196 } 5197 if (!this->jump(CondLabel)) 5198 return false; 5199 5200 this->fallthrough(EndLabel); 5201 this->emitLabel(EndLabel); 5202 return true; 5203 } 5204 5205 template <class Emitter> 5206 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) { 5207 const Stmt *Init = S->getInit(); 5208 const Expr *Cond = S->getCond(); 5209 const Expr *Inc = S->getInc(); 5210 const Stmt *Body = S->getBody(); 5211 const Stmt *BeginStmt = S->getBeginStmt(); 5212 const Stmt *RangeStmt = S->getRangeStmt(); 5213 const Stmt *EndStmt = S->getEndStmt(); 5214 const VarDecl *LoopVar = S->getLoopVariable(); 5215 5216 LabelTy EndLabel = this->getLabel(); 5217 LabelTy CondLabel = this->getLabel(); 5218 LabelTy IncLabel = this->getLabel(); 5219 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 5220 5221 // Emit declarations needed in the loop. 5222 if (Init && !this->visitStmt(Init)) 5223 return false; 5224 if (!this->visitStmt(RangeStmt)) 5225 return false; 5226 if (!this->visitStmt(BeginStmt)) 5227 return false; 5228 if (!this->visitStmt(EndStmt)) 5229 return false; 5230 5231 // Now the condition as well as the loop variable assignment. 5232 this->fallthrough(CondLabel); 5233 this->emitLabel(CondLabel); 5234 if (!this->visitBool(Cond)) 5235 return false; 5236 if (!this->jumpFalse(EndLabel)) 5237 return false; 5238 5239 if (!this->visitVarDecl(LoopVar)) 5240 return false; 5241 5242 // Body. 5243 { 5244 if (!this->visitStmt(Body)) 5245 return false; 5246 5247 this->fallthrough(IncLabel); 5248 this->emitLabel(IncLabel); 5249 if (!this->discard(Inc)) 5250 return false; 5251 } 5252 5253 if (!this->jump(CondLabel)) 5254 return false; 5255 5256 this->fallthrough(EndLabel); 5257 this->emitLabel(EndLabel); 5258 return true; 5259 } 5260 5261 template <class Emitter> 5262 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) { 5263 if (!BreakLabel) 5264 return false; 5265 5266 for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope; 5267 C = C->getParent()) 5268 C->emitDestruction(); 5269 return this->jump(*BreakLabel); 5270 } 5271 5272 template <class Emitter> 5273 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) { 5274 if (!ContinueLabel) 5275 return false; 5276 5277 for (VariableScope<Emitter> *C = VarScope; 5278 C && C->getParent() != ContinueVarScope; C = C->getParent()) 5279 C->emitDestruction(); 5280 return this->jump(*ContinueLabel); 5281 } 5282 5283 template <class Emitter> 5284 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) { 5285 const Expr *Cond = S->getCond(); 5286 PrimType CondT = this->classifyPrim(Cond->getType()); 5287 LocalScope<Emitter> LS(this); 5288 5289 LabelTy EndLabel = this->getLabel(); 5290 OptLabelTy DefaultLabel = std::nullopt; 5291 unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false); 5292 5293 if (const auto *CondInit = S->getInit()) 5294 if (!visitStmt(CondInit)) 5295 return false; 5296 5297 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 5298 if (!visitDeclStmt(CondDecl)) 5299 return false; 5300 5301 // Initialize condition variable. 5302 if (!this->visit(Cond)) 5303 return false; 5304 if (!this->emitSetLocal(CondT, CondVar, S)) 5305 return false; 5306 5307 CaseMap CaseLabels; 5308 // Create labels and comparison ops for all case statements. 5309 for (const SwitchCase *SC = S->getSwitchCaseList(); SC; 5310 SC = SC->getNextSwitchCase()) { 5311 if (const auto *CS = dyn_cast<CaseStmt>(SC)) { 5312 // FIXME: Implement ranges. 5313 if (CS->caseStmtIsGNURange()) 5314 return false; 5315 CaseLabels[SC] = this->getLabel(); 5316 5317 const Expr *Value = CS->getLHS(); 5318 PrimType ValueT = this->classifyPrim(Value->getType()); 5319 5320 // Compare the case statement's value to the switch condition. 5321 if (!this->emitGetLocal(CondT, CondVar, CS)) 5322 return false; 5323 if (!this->visit(Value)) 5324 return false; 5325 5326 // Compare and jump to the case label. 5327 if (!this->emitEQ(ValueT, S)) 5328 return false; 5329 if (!this->jumpTrue(CaseLabels[CS])) 5330 return false; 5331 } else { 5332 assert(!DefaultLabel); 5333 DefaultLabel = this->getLabel(); 5334 } 5335 } 5336 5337 // If none of the conditions above were true, fall through to the default 5338 // statement or jump after the switch statement. 5339 if (DefaultLabel) { 5340 if (!this->jump(*DefaultLabel)) 5341 return false; 5342 } else { 5343 if (!this->jump(EndLabel)) 5344 return false; 5345 } 5346 5347 SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel); 5348 if (!this->visitStmt(S->getBody())) 5349 return false; 5350 this->emitLabel(EndLabel); 5351 5352 return LS.destroyLocals(); 5353 } 5354 5355 template <class Emitter> 5356 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) { 5357 this->emitLabel(CaseLabels[S]); 5358 return this->visitStmt(S->getSubStmt()); 5359 } 5360 5361 template <class Emitter> 5362 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) { 5363 this->emitLabel(*DefaultLabel); 5364 return this->visitStmt(S->getSubStmt()); 5365 } 5366 5367 template <class Emitter> 5368 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) { 5369 if (this->Ctx.getLangOpts().CXXAssumptions && 5370 !this->Ctx.getLangOpts().MSVCCompat) { 5371 for (const Attr *A : S->getAttrs()) { 5372 auto *AA = dyn_cast<CXXAssumeAttr>(A); 5373 if (!AA) 5374 continue; 5375 5376 assert(isa<NullStmt>(S->getSubStmt())); 5377 5378 const Expr *Assumption = AA->getAssumption(); 5379 if (Assumption->isValueDependent()) 5380 return false; 5381 5382 if (Assumption->HasSideEffects(this->Ctx.getASTContext())) 5383 continue; 5384 5385 // Evaluate assumption. 5386 if (!this->visitBool(Assumption)) 5387 return false; 5388 5389 if (!this->emitAssume(Assumption)) 5390 return false; 5391 } 5392 } 5393 5394 // Ignore other attributes. 5395 return this->visitStmt(S->getSubStmt()); 5396 } 5397 5398 template <class Emitter> 5399 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) { 5400 // Ignore all handlers. 5401 return this->visitStmt(S->getTryBlock()); 5402 } 5403 5404 template <class Emitter> 5405 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) { 5406 assert(MD->isLambdaStaticInvoker()); 5407 assert(MD->hasBody()); 5408 assert(cast<CompoundStmt>(MD->getBody())->body_empty()); 5409 5410 const CXXRecordDecl *ClosureClass = MD->getParent(); 5411 const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); 5412 assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); 5413 const Function *Func = this->getFunction(LambdaCallOp); 5414 if (!Func) 5415 return false; 5416 assert(Func->hasThisPointer()); 5417 assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO())); 5418 5419 if (Func->hasRVO()) { 5420 if (!this->emitRVOPtr(MD)) 5421 return false; 5422 } 5423 5424 // The lambda call operator needs an instance pointer, but we don't have 5425 // one here, and we don't need one either because the lambda cannot have 5426 // any captures, as verified above. Emit a null pointer. This is then 5427 // special-cased when interpreting to not emit any misleading diagnostics. 5428 if (!this->emitNullPtr(0, nullptr, MD)) 5429 return false; 5430 5431 // Forward all arguments from the static invoker to the lambda call operator. 5432 for (const ParmVarDecl *PVD : MD->parameters()) { 5433 auto It = this->Params.find(PVD); 5434 assert(It != this->Params.end()); 5435 5436 // We do the lvalue-to-rvalue conversion manually here, so no need 5437 // to care about references. 5438 PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr); 5439 if (!this->emitGetParam(ParamType, It->second.Offset, MD)) 5440 return false; 5441 } 5442 5443 if (!this->emitCall(Func, 0, LambdaCallOp)) 5444 return false; 5445 5446 this->emitCleanup(); 5447 if (ReturnType) 5448 return this->emitRet(*ReturnType, MD); 5449 5450 // Nothing to do, since we emitted the RVO pointer above. 5451 return this->emitRetVoid(MD); 5452 } 5453 5454 template <class Emitter> 5455 bool Compiler<Emitter>::checkLiteralType(const Expr *E) { 5456 if (Ctx.getLangOpts().CPlusPlus23) 5457 return true; 5458 5459 if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext())) 5460 return true; 5461 5462 return this->emitCheckLiteralType(E->getType().getTypePtr(), E); 5463 } 5464 5465 template <class Emitter> 5466 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) { 5467 assert(!ReturnType); 5468 5469 auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset, 5470 const Expr *InitExpr) -> bool { 5471 // We don't know what to do with these, so just return false. 5472 if (InitExpr->getType().isNull()) 5473 return false; 5474 5475 if (std::optional<PrimType> T = this->classify(InitExpr)) { 5476 if (!this->visit(InitExpr)) 5477 return false; 5478 5479 if (F->isBitField()) 5480 return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr); 5481 return this->emitInitThisField(*T, FieldOffset, InitExpr); 5482 } 5483 // Non-primitive case. Get a pointer to the field-to-initialize 5484 // on the stack and call visitInitialzer() for it. 5485 InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset)); 5486 if (!this->emitGetPtrThisField(FieldOffset, InitExpr)) 5487 return false; 5488 5489 if (!this->visitInitializer(InitExpr)) 5490 return false; 5491 5492 return this->emitFinishInitPop(InitExpr); 5493 }; 5494 5495 const RecordDecl *RD = Ctor->getParent(); 5496 const Record *R = this->getRecord(RD); 5497 if (!R) 5498 return false; 5499 5500 if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) { 5501 // union copy and move ctors are special. 5502 assert(cast<CompoundStmt>(Ctor->getBody())->body_empty()); 5503 if (!this->emitThis(Ctor)) 5504 return false; 5505 5506 auto PVD = Ctor->getParamDecl(0); 5507 ParamOffset PO = this->Params[PVD]; // Must exist. 5508 5509 if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor)) 5510 return false; 5511 5512 return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) && 5513 this->emitRetVoid(Ctor); 5514 } 5515 5516 InitLinkScope<Emitter> InitScope(this, InitLink::This()); 5517 for (const auto *Init : Ctor->inits()) { 5518 // Scope needed for the initializers. 5519 BlockScope<Emitter> Scope(this); 5520 5521 const Expr *InitExpr = Init->getInit(); 5522 if (const FieldDecl *Member = Init->getMember()) { 5523 const Record::Field *F = R->getField(Member); 5524 5525 if (!emitFieldInitializer(F, F->Offset, InitExpr)) 5526 return false; 5527 } else if (const Type *Base = Init->getBaseClass()) { 5528 const auto *BaseDecl = Base->getAsCXXRecordDecl(); 5529 assert(BaseDecl); 5530 5531 if (Init->isBaseVirtual()) { 5532 assert(R->getVirtualBase(BaseDecl)); 5533 if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr)) 5534 return false; 5535 5536 } else { 5537 // Base class initializer. 5538 // Get This Base and call initializer on it. 5539 const Record::Base *B = R->getBase(BaseDecl); 5540 assert(B); 5541 if (!this->emitGetPtrThisBase(B->Offset, InitExpr)) 5542 return false; 5543 } 5544 5545 if (!this->visitInitializer(InitExpr)) 5546 return false; 5547 if (!this->emitFinishInitPop(InitExpr)) 5548 return false; 5549 } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) { 5550 assert(IFD->getChainingSize() >= 2); 5551 5552 unsigned NestedFieldOffset = 0; 5553 const Record::Field *NestedField = nullptr; 5554 for (const NamedDecl *ND : IFD->chain()) { 5555 const auto *FD = cast<FieldDecl>(ND); 5556 const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); 5557 assert(FieldRecord); 5558 5559 NestedField = FieldRecord->getField(FD); 5560 assert(NestedField); 5561 5562 NestedFieldOffset += NestedField->Offset; 5563 } 5564 assert(NestedField); 5565 5566 if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr)) 5567 return false; 5568 } else { 5569 assert(Init->isDelegatingInitializer()); 5570 if (!this->emitThis(InitExpr)) 5571 return false; 5572 if (!this->visitInitializer(Init->getInit())) 5573 return false; 5574 if (!this->emitPopPtr(InitExpr)) 5575 return false; 5576 } 5577 5578 if (!Scope.destroyLocals()) 5579 return false; 5580 } 5581 5582 if (const auto *Body = Ctor->getBody()) 5583 if (!visitStmt(Body)) 5584 return false; 5585 5586 return this->emitRetVoid(SourceInfo{}); 5587 } 5588 5589 template <class Emitter> 5590 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) { 5591 const RecordDecl *RD = Dtor->getParent(); 5592 const Record *R = this->getRecord(RD); 5593 if (!R) 5594 return false; 5595 5596 if (!Dtor->isTrivial() && Dtor->getBody()) { 5597 if (!this->visitStmt(Dtor->getBody())) 5598 return false; 5599 } 5600 5601 if (!this->emitThis(Dtor)) 5602 return false; 5603 5604 assert(R); 5605 if (!R->isUnion()) { 5606 // First, destroy all fields. 5607 for (const Record::Field &Field : llvm::reverse(R->fields())) { 5608 const Descriptor *D = Field.Desc; 5609 if (!D->isPrimitive() && !D->isPrimitiveArray()) { 5610 if (!this->emitGetPtrField(Field.Offset, SourceInfo{})) 5611 return false; 5612 if (!this->emitDestruction(D, SourceInfo{})) 5613 return false; 5614 if (!this->emitPopPtr(SourceInfo{})) 5615 return false; 5616 } 5617 } 5618 } 5619 5620 for (const Record::Base &Base : llvm::reverse(R->bases())) { 5621 if (Base.R->isAnonymousUnion()) 5622 continue; 5623 5624 if (!this->emitGetPtrBase(Base.Offset, SourceInfo{})) 5625 return false; 5626 if (!this->emitRecordDestruction(Base.R, {})) 5627 return false; 5628 if (!this->emitPopPtr(SourceInfo{})) 5629 return false; 5630 } 5631 5632 // FIXME: Virtual bases. 5633 return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor); 5634 } 5635 5636 template <class Emitter> 5637 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) { 5638 // Classify the return type. 5639 ReturnType = this->classify(F->getReturnType()); 5640 5641 if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F)) 5642 return this->compileConstructor(Ctor); 5643 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F)) 5644 return this->compileDestructor(Dtor); 5645 5646 // Emit custom code if this is a lambda static invoker. 5647 if (const auto *MD = dyn_cast<CXXMethodDecl>(F); 5648 MD && MD->isLambdaStaticInvoker()) 5649 return this->emitLambdaStaticInvokerBody(MD); 5650 5651 // Regular functions. 5652 if (const auto *Body = F->getBody()) 5653 if (!visitStmt(Body)) 5654 return false; 5655 5656 // Emit a guard return to protect against a code path missing one. 5657 if (F->getReturnType()->isVoidType()) 5658 return this->emitRetVoid(SourceInfo{}); 5659 return this->emitNoRet(SourceInfo{}); 5660 } 5661 5662 template <class Emitter> 5663 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) { 5664 const Expr *SubExpr = E->getSubExpr(); 5665 if (SubExpr->getType()->isAnyComplexType()) 5666 return this->VisitComplexUnaryOperator(E); 5667 if (SubExpr->getType()->isVectorType()) 5668 return this->VisitVectorUnaryOperator(E); 5669 if (SubExpr->getType()->isFixedPointType()) 5670 return this->VisitFixedPointUnaryOperator(E); 5671 std::optional<PrimType> T = classify(SubExpr->getType()); 5672 5673 switch (E->getOpcode()) { 5674 case UO_PostInc: { // x++ 5675 if (!Ctx.getLangOpts().CPlusPlus14) 5676 return this->emitInvalid(E); 5677 if (!T) 5678 return this->emitError(E); 5679 5680 if (!this->visit(SubExpr)) 5681 return false; 5682 5683 if (T == PT_Ptr || T == PT_FnPtr) { 5684 if (!this->emitIncPtr(E)) 5685 return false; 5686 5687 return DiscardResult ? this->emitPopPtr(E) : true; 5688 } 5689 5690 if (T == PT_Float) { 5691 return DiscardResult ? this->emitIncfPop(getFPOptions(E), E) 5692 : this->emitIncf(getFPOptions(E), E); 5693 } 5694 5695 return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E); 5696 } 5697 case UO_PostDec: { // x-- 5698 if (!Ctx.getLangOpts().CPlusPlus14) 5699 return this->emitInvalid(E); 5700 if (!T) 5701 return this->emitError(E); 5702 5703 if (!this->visit(SubExpr)) 5704 return false; 5705 5706 if (T == PT_Ptr || T == PT_FnPtr) { 5707 if (!this->emitDecPtr(E)) 5708 return false; 5709 5710 return DiscardResult ? this->emitPopPtr(E) : true; 5711 } 5712 5713 if (T == PT_Float) { 5714 return DiscardResult ? this->emitDecfPop(getFPOptions(E), E) 5715 : this->emitDecf(getFPOptions(E), E); 5716 } 5717 5718 return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E); 5719 } 5720 case UO_PreInc: { // ++x 5721 if (!Ctx.getLangOpts().CPlusPlus14) 5722 return this->emitInvalid(E); 5723 if (!T) 5724 return this->emitError(E); 5725 5726 if (!this->visit(SubExpr)) 5727 return false; 5728 5729 if (T == PT_Ptr || T == PT_FnPtr) { 5730 if (!this->emitLoadPtr(E)) 5731 return false; 5732 if (!this->emitConstUint8(1, E)) 5733 return false; 5734 if (!this->emitAddOffsetUint8(E)) 5735 return false; 5736 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5737 } 5738 5739 // Post-inc and pre-inc are the same if the value is to be discarded. 5740 if (DiscardResult) { 5741 if (T == PT_Float) 5742 return this->emitIncfPop(getFPOptions(E), E); 5743 return this->emitIncPop(*T, E); 5744 } 5745 5746 if (T == PT_Float) { 5747 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5748 if (!this->emitLoadFloat(E)) 5749 return false; 5750 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5751 return false; 5752 if (!this->emitAddf(getFPOptions(E), E)) 5753 return false; 5754 if (!this->emitStoreFloat(E)) 5755 return false; 5756 } else { 5757 assert(isIntegralType(*T)); 5758 if (!this->emitLoad(*T, E)) 5759 return false; 5760 if (!this->emitConst(1, E)) 5761 return false; 5762 if (!this->emitAdd(*T, E)) 5763 return false; 5764 if (!this->emitStore(*T, E)) 5765 return false; 5766 } 5767 return E->isGLValue() || this->emitLoadPop(*T, E); 5768 } 5769 case UO_PreDec: { // --x 5770 if (!Ctx.getLangOpts().CPlusPlus14) 5771 return this->emitInvalid(E); 5772 if (!T) 5773 return this->emitError(E); 5774 5775 if (!this->visit(SubExpr)) 5776 return false; 5777 5778 if (T == PT_Ptr || T == PT_FnPtr) { 5779 if (!this->emitLoadPtr(E)) 5780 return false; 5781 if (!this->emitConstUint8(1, E)) 5782 return false; 5783 if (!this->emitSubOffsetUint8(E)) 5784 return false; 5785 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5786 } 5787 5788 // Post-dec and pre-dec are the same if the value is to be discarded. 5789 if (DiscardResult) { 5790 if (T == PT_Float) 5791 return this->emitDecfPop(getFPOptions(E), E); 5792 return this->emitDecPop(*T, E); 5793 } 5794 5795 if (T == PT_Float) { 5796 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5797 if (!this->emitLoadFloat(E)) 5798 return false; 5799 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5800 return false; 5801 if (!this->emitSubf(getFPOptions(E), E)) 5802 return false; 5803 if (!this->emitStoreFloat(E)) 5804 return false; 5805 } else { 5806 assert(isIntegralType(*T)); 5807 if (!this->emitLoad(*T, E)) 5808 return false; 5809 if (!this->emitConst(1, E)) 5810 return false; 5811 if (!this->emitSub(*T, E)) 5812 return false; 5813 if (!this->emitStore(*T, E)) 5814 return false; 5815 } 5816 return E->isGLValue() || this->emitLoadPop(*T, E); 5817 } 5818 case UO_LNot: // !x 5819 if (!T) 5820 return this->emitError(E); 5821 5822 if (DiscardResult) 5823 return this->discard(SubExpr); 5824 5825 if (!this->visitBool(SubExpr)) 5826 return false; 5827 5828 if (!this->emitInv(E)) 5829 return false; 5830 5831 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5832 return this->emitCast(PT_Bool, ET, E); 5833 return true; 5834 case UO_Minus: // -x 5835 if (!T) 5836 return this->emitError(E); 5837 5838 if (!this->visit(SubExpr)) 5839 return false; 5840 return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E); 5841 case UO_Plus: // +x 5842 if (!T) 5843 return this->emitError(E); 5844 5845 if (!this->visit(SubExpr)) // noop 5846 return false; 5847 return DiscardResult ? this->emitPop(*T, E) : true; 5848 case UO_AddrOf: // &x 5849 if (E->getType()->isMemberPointerType()) { 5850 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 5851 // member can be formed. 5852 return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E); 5853 } 5854 // We should already have a pointer when we get here. 5855 return this->delegate(SubExpr); 5856 case UO_Deref: // *x 5857 if (DiscardResult) { 5858 // assert(false); 5859 return this->discard(SubExpr); 5860 } 5861 5862 if (!this->visit(SubExpr)) 5863 return false; 5864 if (classifyPrim(SubExpr) == PT_Ptr) 5865 return this->emitNarrowPtr(E); 5866 return true; 5867 5868 case UO_Not: // ~x 5869 if (!T) 5870 return this->emitError(E); 5871 5872 if (!this->visit(SubExpr)) 5873 return false; 5874 return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E); 5875 case UO_Real: // __real x 5876 assert(T); 5877 return this->delegate(SubExpr); 5878 case UO_Imag: { // __imag x 5879 assert(T); 5880 if (!this->discard(SubExpr)) 5881 return false; 5882 return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr); 5883 } 5884 case UO_Extension: 5885 return this->delegate(SubExpr); 5886 case UO_Coawait: 5887 assert(false && "Unhandled opcode"); 5888 } 5889 5890 return false; 5891 } 5892 5893 template <class Emitter> 5894 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) { 5895 const Expr *SubExpr = E->getSubExpr(); 5896 assert(SubExpr->getType()->isAnyComplexType()); 5897 5898 if (DiscardResult) 5899 return this->discard(SubExpr); 5900 5901 std::optional<PrimType> ResT = classify(E); 5902 auto prepareResult = [=]() -> bool { 5903 if (!ResT && !Initializing) { 5904 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5905 if (!LocalIndex) 5906 return false; 5907 return this->emitGetPtrLocal(*LocalIndex, E); 5908 } 5909 5910 return true; 5911 }; 5912 5913 // The offset of the temporary, if we created one. 5914 unsigned SubExprOffset = ~0u; 5915 auto createTemp = [=, &SubExprOffset]() -> bool { 5916 SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5917 if (!this->visit(SubExpr)) 5918 return false; 5919 return this->emitSetLocal(PT_Ptr, SubExprOffset, E); 5920 }; 5921 5922 PrimType ElemT = classifyComplexElementType(SubExpr->getType()); 5923 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5924 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5925 return false; 5926 return this->emitArrayElemPop(ElemT, Index, E); 5927 }; 5928 5929 switch (E->getOpcode()) { 5930 case UO_Minus: 5931 if (!prepareResult()) 5932 return false; 5933 if (!createTemp()) 5934 return false; 5935 for (unsigned I = 0; I != 2; ++I) { 5936 if (!getElem(SubExprOffset, I)) 5937 return false; 5938 if (!this->emitNeg(ElemT, E)) 5939 return false; 5940 if (!this->emitInitElem(ElemT, I, E)) 5941 return false; 5942 } 5943 break; 5944 5945 case UO_Plus: // +x 5946 case UO_AddrOf: // &x 5947 case UO_Deref: // *x 5948 return this->delegate(SubExpr); 5949 5950 case UO_LNot: 5951 if (!this->visit(SubExpr)) 5952 return false; 5953 if (!this->emitComplexBoolCast(SubExpr)) 5954 return false; 5955 if (!this->emitInv(E)) 5956 return false; 5957 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5958 return this->emitCast(PT_Bool, ET, E); 5959 return true; 5960 5961 case UO_Real: 5962 return this->emitComplexReal(SubExpr); 5963 5964 case UO_Imag: 5965 if (!this->visit(SubExpr)) 5966 return false; 5967 5968 if (SubExpr->isLValue()) { 5969 if (!this->emitConstUint8(1, E)) 5970 return false; 5971 return this->emitArrayElemPtrPopUint8(E); 5972 } 5973 5974 // Since our _Complex implementation does not map to a primitive type, 5975 // we sometimes have to do the lvalue-to-rvalue conversion here manually. 5976 return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E); 5977 5978 case UO_Not: // ~x 5979 if (!this->visit(SubExpr)) 5980 return false; 5981 // Negate the imaginary component. 5982 if (!this->emitArrayElem(ElemT, 1, E)) 5983 return false; 5984 if (!this->emitNeg(ElemT, E)) 5985 return false; 5986 if (!this->emitInitElem(ElemT, 1, E)) 5987 return false; 5988 return DiscardResult ? this->emitPopPtr(E) : true; 5989 5990 case UO_Extension: 5991 return this->delegate(SubExpr); 5992 5993 default: 5994 return this->emitInvalid(E); 5995 } 5996 5997 return true; 5998 } 5999 6000 template <class Emitter> 6001 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) { 6002 const Expr *SubExpr = E->getSubExpr(); 6003 assert(SubExpr->getType()->isVectorType()); 6004 6005 if (DiscardResult) 6006 return this->discard(SubExpr); 6007 6008 auto UnaryOp = E->getOpcode(); 6009 if (UnaryOp == UO_Extension) 6010 return this->delegate(SubExpr); 6011 6012 if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot && 6013 UnaryOp != UO_Not && UnaryOp != UO_AddrOf) 6014 return this->emitInvalid(E); 6015 6016 // Nothing to do here. 6017 if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf) 6018 return this->delegate(SubExpr); 6019 6020 if (!Initializing) { 6021 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 6022 if (!LocalIndex) 6023 return false; 6024 if (!this->emitGetPtrLocal(*LocalIndex, E)) 6025 return false; 6026 } 6027 6028 // The offset of the temporary, if we created one. 6029 unsigned SubExprOffset = 6030 this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 6031 if (!this->visit(SubExpr)) 6032 return false; 6033 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E)) 6034 return false; 6035 6036 const auto *VecTy = SubExpr->getType()->getAs<VectorType>(); 6037 PrimType ElemT = classifyVectorElementType(SubExpr->getType()); 6038 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 6039 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 6040 return false; 6041 return this->emitArrayElemPop(ElemT, Index, E); 6042 }; 6043 6044 switch (UnaryOp) { 6045 case UO_Minus: 6046 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 6047 if (!getElem(SubExprOffset, I)) 6048 return false; 6049 if (!this->emitNeg(ElemT, E)) 6050 return false; 6051 if (!this->emitInitElem(ElemT, I, E)) 6052 return false; 6053 } 6054 break; 6055 case UO_LNot: { // !x 6056 // In C++, the logic operators !, &&, || are available for vectors. !v is 6057 // equivalent to v == 0. 6058 // 6059 // The result of the comparison is a vector of the same width and number of 6060 // elements as the comparison operands with a signed integral element type. 6061 // 6062 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 6063 QualType ResultVecTy = E->getType(); 6064 PrimType ResultVecElemT = 6065 classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType()); 6066 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 6067 if (!getElem(SubExprOffset, I)) 6068 return false; 6069 // operator ! on vectors returns -1 for 'truth', so negate it. 6070 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 6071 return false; 6072 if (!this->emitInv(E)) 6073 return false; 6074 if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E)) 6075 return false; 6076 if (!this->emitNeg(ElemT, E)) 6077 return false; 6078 if (ElemT != ResultVecElemT && 6079 !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E)) 6080 return false; 6081 if (!this->emitInitElem(ResultVecElemT, I, E)) 6082 return false; 6083 } 6084 break; 6085 } 6086 case UO_Not: // ~x 6087 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 6088 if (!getElem(SubExprOffset, I)) 6089 return false; 6090 if (ElemT == PT_Bool) { 6091 if (!this->emitInv(E)) 6092 return false; 6093 } else { 6094 if (!this->emitComp(ElemT, E)) 6095 return false; 6096 } 6097 if (!this->emitInitElem(ElemT, I, E)) 6098 return false; 6099 } 6100 break; 6101 default: 6102 llvm_unreachable("Unsupported unary operators should be handled up front"); 6103 } 6104 return true; 6105 } 6106 6107 template <class Emitter> 6108 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) { 6109 if (DiscardResult) 6110 return true; 6111 6112 if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) { 6113 return this->emitConst(ECD->getInitVal(), E); 6114 } else if (const auto *BD = dyn_cast<BindingDecl>(D)) { 6115 return this->visit(BD->getBinding()); 6116 } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) { 6117 const Function *F = getFunction(FuncDecl); 6118 return F && this->emitGetFnPtr(F, E); 6119 } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) { 6120 if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) { 6121 if (!this->emitGetPtrGlobal(*Index, E)) 6122 return false; 6123 if (std::optional<PrimType> T = classify(E->getType())) { 6124 if (!this->visitAPValue(TPOD->getValue(), *T, E)) 6125 return false; 6126 return this->emitInitGlobal(*T, *Index, E); 6127 } 6128 return this->visitAPValueInitializer(TPOD->getValue(), E); 6129 } 6130 return false; 6131 } 6132 6133 // References are implemented via pointers, so when we see a DeclRefExpr 6134 // pointing to a reference, we need to get its value directly (i.e. the 6135 // pointer to the actual value) instead of a pointer to the pointer to the 6136 // value. 6137 bool IsReference = D->getType()->isReferenceType(); 6138 6139 // Check for local/global variables and parameters. 6140 if (auto It = Locals.find(D); It != Locals.end()) { 6141 const unsigned Offset = It->second.Offset; 6142 if (IsReference) 6143 return this->emitGetLocal(PT_Ptr, Offset, E); 6144 return this->emitGetPtrLocal(Offset, E); 6145 } else if (auto GlobalIndex = P.getGlobal(D)) { 6146 if (IsReference) { 6147 if (!Ctx.getLangOpts().CPlusPlus11) 6148 return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E); 6149 return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E); 6150 } 6151 6152 return this->emitGetPtrGlobal(*GlobalIndex, E); 6153 } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { 6154 if (auto It = this->Params.find(PVD); It != this->Params.end()) { 6155 if (IsReference || !It->second.IsPtr) 6156 return this->emitGetParam(classifyPrim(E), It->second.Offset, E); 6157 6158 return this->emitGetPtrParam(It->second.Offset, E); 6159 } 6160 6161 if (D->getType()->isReferenceType()) 6162 return false; // FIXME: Do we need to emit InvalidDeclRef? 6163 } 6164 6165 // In case we need to re-visit a declaration. 6166 auto revisit = [&](const VarDecl *VD) -> bool { 6167 auto VarState = this->visitDecl(VD); 6168 6169 if (VarState.notCreated()) 6170 return true; 6171 if (!VarState) 6172 return false; 6173 // Retry. 6174 return this->visitDeclRef(D, E); 6175 }; 6176 6177 // Handle lambda captures. 6178 if (auto It = this->LambdaCaptures.find(D); 6179 It != this->LambdaCaptures.end()) { 6180 auto [Offset, IsPtr] = It->second; 6181 6182 if (IsPtr) 6183 return this->emitGetThisFieldPtr(Offset, E); 6184 return this->emitGetPtrThisField(Offset, E); 6185 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E); 6186 DRE && DRE->refersToEnclosingVariableOrCapture()) { 6187 if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture()) 6188 return revisit(VD); 6189 } 6190 6191 if (D != InitializingDecl) { 6192 // Try to lazily visit (or emit dummy pointers for) declarations 6193 // we haven't seen yet. 6194 if (Ctx.getLangOpts().CPlusPlus) { 6195 if (const auto *VD = dyn_cast<VarDecl>(D)) { 6196 const auto typeShouldBeVisited = [&](QualType T) -> bool { 6197 if (T.isConstant(Ctx.getASTContext())) 6198 return true; 6199 return T->isReferenceType(); 6200 }; 6201 6202 // DecompositionDecls are just proxies for us. 6203 if (isa<DecompositionDecl>(VD)) 6204 return revisit(VD); 6205 6206 if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) && 6207 typeShouldBeVisited(VD->getType())) 6208 return revisit(VD); 6209 6210 // FIXME: The evaluateValue() check here is a little ridiculous, since 6211 // it will ultimately call into Context::evaluateAsInitializer(). In 6212 // other words, we're evaluating the initializer, just to know if we can 6213 // evaluate the initializer. 6214 if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) && 6215 VD->getInit() && !VD->getInit()->isValueDependent()) { 6216 6217 if (VD->evaluateValue()) 6218 return revisit(VD); 6219 6220 if (!D->getType()->isReferenceType()) 6221 return this->emitDummyPtr(D, E); 6222 6223 return this->emitInvalidDeclRef(cast<DeclRefExpr>(E), 6224 /*InitializerFailed=*/true, E); 6225 } 6226 } 6227 } else { 6228 if (const auto *VD = dyn_cast<VarDecl>(D); 6229 VD && VD->getAnyInitializer() && 6230 VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak()) 6231 return revisit(VD); 6232 } 6233 } 6234 6235 return this->emitDummyPtr(D, E); 6236 } 6237 6238 template <class Emitter> 6239 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) { 6240 const auto *D = E->getDecl(); 6241 return this->visitDeclRef(D, E); 6242 } 6243 6244 template <class Emitter> void Compiler<Emitter>::emitCleanup() { 6245 for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent()) 6246 C->emitDestruction(); 6247 } 6248 6249 template <class Emitter> 6250 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType, 6251 const QualType DerivedType) { 6252 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 6253 if (const auto *R = Ty->getPointeeCXXRecordDecl()) 6254 return R; 6255 return Ty->getAsCXXRecordDecl(); 6256 }; 6257 const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType); 6258 const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType); 6259 6260 return Ctx.collectBaseOffset(BaseDecl, DerivedDecl); 6261 } 6262 6263 /// Emit casts from a PrimType to another PrimType. 6264 template <class Emitter> 6265 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT, 6266 QualType ToQT, const Expr *E) { 6267 6268 if (FromT == PT_Float) { 6269 // Floating to floating. 6270 if (ToT == PT_Float) { 6271 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 6272 return this->emitCastFP(ToSem, getRoundingMode(E), E); 6273 } 6274 6275 if (ToT == PT_IntAP) 6276 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), 6277 getFPOptions(E), E); 6278 if (ToT == PT_IntAPS) 6279 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), 6280 getFPOptions(E), E); 6281 6282 // Float to integral. 6283 if (isIntegralType(ToT) || ToT == PT_Bool) 6284 return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E); 6285 } 6286 6287 if (isIntegralType(FromT) || FromT == PT_Bool) { 6288 if (ToT == PT_IntAP) 6289 return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E); 6290 if (ToT == PT_IntAPS) 6291 return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E); 6292 6293 // Integral to integral. 6294 if (isIntegralType(ToT) || ToT == PT_Bool) 6295 return FromT != ToT ? this->emitCast(FromT, ToT, E) : true; 6296 6297 if (ToT == PT_Float) { 6298 // Integral to floating. 6299 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 6300 return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E); 6301 } 6302 } 6303 6304 return false; 6305 } 6306 6307 /// Emits __real(SubExpr) 6308 template <class Emitter> 6309 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) { 6310 assert(SubExpr->getType()->isAnyComplexType()); 6311 6312 if (DiscardResult) 6313 return this->discard(SubExpr); 6314 6315 if (!this->visit(SubExpr)) 6316 return false; 6317 if (SubExpr->isLValue()) { 6318 if (!this->emitConstUint8(0, SubExpr)) 6319 return false; 6320 return this->emitArrayElemPtrPopUint8(SubExpr); 6321 } 6322 6323 // Rvalue, load the actual element. 6324 return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()), 6325 0, SubExpr); 6326 } 6327 6328 template <class Emitter> 6329 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) { 6330 assert(!DiscardResult); 6331 PrimType ElemT = classifyComplexElementType(E->getType()); 6332 // We emit the expression (__real(E) != 0 || __imag(E) != 0) 6333 // for us, that means (bool)E[0] || (bool)E[1] 6334 if (!this->emitArrayElem(ElemT, 0, E)) 6335 return false; 6336 if (ElemT == PT_Float) { 6337 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 6338 return false; 6339 } else { 6340 if (!this->emitCast(ElemT, PT_Bool, E)) 6341 return false; 6342 } 6343 6344 // We now have the bool value of E[0] on the stack. 6345 LabelTy LabelTrue = this->getLabel(); 6346 if (!this->jumpTrue(LabelTrue)) 6347 return false; 6348 6349 if (!this->emitArrayElemPop(ElemT, 1, E)) 6350 return false; 6351 if (ElemT == PT_Float) { 6352 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 6353 return false; 6354 } else { 6355 if (!this->emitCast(ElemT, PT_Bool, E)) 6356 return false; 6357 } 6358 // Leave the boolean value of E[1] on the stack. 6359 LabelTy EndLabel = this->getLabel(); 6360 this->jump(EndLabel); 6361 6362 this->emitLabel(LabelTrue); 6363 if (!this->emitPopPtr(E)) 6364 return false; 6365 if (!this->emitConstBool(true, E)) 6366 return false; 6367 6368 this->fallthrough(EndLabel); 6369 this->emitLabel(EndLabel); 6370 6371 return true; 6372 } 6373 6374 template <class Emitter> 6375 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS, 6376 const BinaryOperator *E) { 6377 assert(E->isComparisonOp()); 6378 assert(!Initializing); 6379 assert(!DiscardResult); 6380 6381 PrimType ElemT; 6382 bool LHSIsComplex; 6383 unsigned LHSOffset; 6384 if (LHS->getType()->isAnyComplexType()) { 6385 LHSIsComplex = true; 6386 ElemT = classifyComplexElementType(LHS->getType()); 6387 LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true, 6388 /*IsExtended=*/false); 6389 if (!this->visit(LHS)) 6390 return false; 6391 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 6392 return false; 6393 } else { 6394 LHSIsComplex = false; 6395 PrimType LHST = classifyPrim(LHS->getType()); 6396 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 6397 if (!this->visit(LHS)) 6398 return false; 6399 if (!this->emitSetLocal(LHST, LHSOffset, E)) 6400 return false; 6401 } 6402 6403 bool RHSIsComplex; 6404 unsigned RHSOffset; 6405 if (RHS->getType()->isAnyComplexType()) { 6406 RHSIsComplex = true; 6407 ElemT = classifyComplexElementType(RHS->getType()); 6408 RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true, 6409 /*IsExtended=*/false); 6410 if (!this->visit(RHS)) 6411 return false; 6412 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 6413 return false; 6414 } else { 6415 RHSIsComplex = false; 6416 PrimType RHST = classifyPrim(RHS->getType()); 6417 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 6418 if (!this->visit(RHS)) 6419 return false; 6420 if (!this->emitSetLocal(RHST, RHSOffset, E)) 6421 return false; 6422 } 6423 6424 auto getElem = [&](unsigned LocalOffset, unsigned Index, 6425 bool IsComplex) -> bool { 6426 if (IsComplex) { 6427 if (!this->emitGetLocal(PT_Ptr, LocalOffset, E)) 6428 return false; 6429 return this->emitArrayElemPop(ElemT, Index, E); 6430 } 6431 return this->emitGetLocal(ElemT, LocalOffset, E); 6432 }; 6433 6434 for (unsigned I = 0; I != 2; ++I) { 6435 // Get both values. 6436 if (!getElem(LHSOffset, I, LHSIsComplex)) 6437 return false; 6438 if (!getElem(RHSOffset, I, RHSIsComplex)) 6439 return false; 6440 // And compare them. 6441 if (!this->emitEQ(ElemT, E)) 6442 return false; 6443 6444 if (!this->emitCastBoolUint8(E)) 6445 return false; 6446 } 6447 6448 // We now have two bool values on the stack. Compare those. 6449 if (!this->emitAddUint8(E)) 6450 return false; 6451 if (!this->emitConstUint8(2, E)) 6452 return false; 6453 6454 if (E->getOpcode() == BO_EQ) { 6455 if (!this->emitEQUint8(E)) 6456 return false; 6457 } else if (E->getOpcode() == BO_NE) { 6458 if (!this->emitNEUint8(E)) 6459 return false; 6460 } else 6461 return false; 6462 6463 // In C, this returns an int. 6464 if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool) 6465 return this->emitCast(PT_Bool, ResT, E); 6466 return true; 6467 } 6468 6469 /// When calling this, we have a pointer of the local-to-destroy 6470 /// on the stack. 6471 /// Emit destruction of record types (or arrays of record types). 6472 template <class Emitter> 6473 bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) { 6474 assert(R); 6475 assert(!R->isAnonymousUnion()); 6476 const CXXDestructorDecl *Dtor = R->getDestructor(); 6477 if (!Dtor || Dtor->isTrivial()) 6478 return true; 6479 6480 assert(Dtor); 6481 const Function *DtorFunc = getFunction(Dtor); 6482 if (!DtorFunc) 6483 return false; 6484 assert(DtorFunc->hasThisPointer()); 6485 assert(DtorFunc->getNumParams() == 1); 6486 if (!this->emitDupPtr(Loc)) 6487 return false; 6488 return this->emitCall(DtorFunc, 0, Loc); 6489 } 6490 /// When calling this, we have a pointer of the local-to-destroy 6491 /// on the stack. 6492 /// Emit destruction of record types (or arrays of record types). 6493 template <class Emitter> 6494 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc, 6495 SourceInfo Loc) { 6496 assert(Desc); 6497 assert(!Desc->isPrimitive()); 6498 assert(!Desc->isPrimitiveArray()); 6499 6500 // Arrays. 6501 if (Desc->isArray()) { 6502 const Descriptor *ElemDesc = Desc->ElemDesc; 6503 assert(ElemDesc); 6504 6505 // Don't need to do anything for these. 6506 if (ElemDesc->isPrimitiveArray()) 6507 return true; 6508 6509 // If this is an array of record types, check if we need 6510 // to call the element destructors at all. If not, try 6511 // to save the work. 6512 if (const Record *ElemRecord = ElemDesc->ElemRecord) { 6513 if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor(); 6514 !Dtor || Dtor->isTrivial()) 6515 return true; 6516 } 6517 6518 for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) { 6519 if (!this->emitConstUint64(I, Loc)) 6520 return false; 6521 if (!this->emitArrayElemPtrUint64(Loc)) 6522 return false; 6523 if (!this->emitDestruction(ElemDesc, Loc)) 6524 return false; 6525 if (!this->emitPopPtr(Loc)) 6526 return false; 6527 } 6528 return true; 6529 } 6530 6531 assert(Desc->ElemRecord); 6532 if (Desc->ElemRecord->isAnonymousUnion()) 6533 return true; 6534 6535 return this->emitRecordDestruction(Desc->ElemRecord, Loc); 6536 } 6537 6538 /// Create a dummy pointer for the given decl (or expr) and 6539 /// push a pointer to it on the stack. 6540 template <class Emitter> 6541 bool Compiler<Emitter>::emitDummyPtr(const DeclTy &D, const Expr *E) { 6542 assert(!DiscardResult && "Should've been checked before"); 6543 6544 unsigned DummyID = P.getOrCreateDummy(D); 6545 6546 if (!this->emitGetPtrGlobal(DummyID, E)) 6547 return false; 6548 if (E->getType()->isVoidType()) 6549 return true; 6550 6551 // Convert the dummy pointer to another pointer type if we have to. 6552 if (PrimType PT = classifyPrim(E); PT != PT_Ptr) { 6553 if (isPtrType(PT)) 6554 return this->emitDecayPtr(PT_Ptr, PT, E); 6555 return false; 6556 } 6557 return true; 6558 } 6559 6560 // This function is constexpr if and only if To, From, and the types of 6561 // all subobjects of To and From are types T such that... 6562 // (3.1) - is_union_v<T> is false; 6563 // (3.2) - is_pointer_v<T> is false; 6564 // (3.3) - is_member_pointer_v<T> is false; 6565 // (3.4) - is_volatile_v<T> is false; and 6566 // (3.5) - T has no non-static data members of reference type 6567 template <class Emitter> 6568 bool Compiler<Emitter>::emitBuiltinBitCast(const CastExpr *E) { 6569 const Expr *SubExpr = E->getSubExpr(); 6570 QualType FromType = SubExpr->getType(); 6571 QualType ToType = E->getType(); 6572 std::optional<PrimType> ToT = classify(ToType); 6573 6574 assert(!ToType->isReferenceType()); 6575 6576 // Prepare storage for the result in case we discard. 6577 if (DiscardResult && !Initializing && !ToT) { 6578 std::optional<unsigned> LocalIndex = allocateLocal(E); 6579 if (!LocalIndex) 6580 return false; 6581 if (!this->emitGetPtrLocal(*LocalIndex, E)) 6582 return false; 6583 } 6584 6585 // Get a pointer to the value-to-cast on the stack. 6586 // For CK_LValueToRValueBitCast, this is always an lvalue and 6587 // we later assume it to be one (i.e. a PT_Ptr). However, 6588 // we call this function for other utility methods where 6589 // a bitcast might be useful, so convert it to a PT_Ptr in that case. 6590 if (SubExpr->isGLValue() || FromType->isVectorType()) { 6591 if (!this->visit(SubExpr)) 6592 return false; 6593 } else if (std::optional<PrimType> FromT = classify(SubExpr)) { 6594 unsigned TempOffset = allocateLocalPrimitive( 6595 SubExpr, *FromT, /*IsConst=*/true, /*IsExtended=*/false); 6596 if (!this->visit(SubExpr)) 6597 return false; 6598 if (!this->emitSetLocal(*FromT, TempOffset, E)) 6599 return false; 6600 if (!this->emitGetPtrLocal(TempOffset, E)) 6601 return false; 6602 } else { 6603 return false; 6604 } 6605 6606 if (!ToT) { 6607 if (!this->emitBitCast(E)) 6608 return false; 6609 return DiscardResult ? this->emitPopPtr(E) : true; 6610 } 6611 assert(ToT); 6612 6613 const llvm::fltSemantics *TargetSemantics = nullptr; 6614 if (ToT == PT_Float) 6615 TargetSemantics = &Ctx.getFloatSemantics(ToType); 6616 6617 // Conversion to a primitive type. FromType can be another 6618 // primitive type, or a record/array. 6619 bool ToTypeIsUChar = (ToType->isSpecificBuiltinType(BuiltinType::UChar) || 6620 ToType->isSpecificBuiltinType(BuiltinType::Char_U)); 6621 uint32_t ResultBitWidth = std::max(Ctx.getBitWidth(ToType), 8u); 6622 6623 if (!this->emitBitCastPrim(*ToT, ToTypeIsUChar || ToType->isStdByteType(), 6624 ResultBitWidth, TargetSemantics, E)) 6625 return false; 6626 6627 if (DiscardResult) 6628 return this->emitPop(*ToT, E); 6629 6630 return true; 6631 } 6632 6633 namespace clang { 6634 namespace interp { 6635 6636 template class Compiler<ByteCodeEmitter>; 6637 template class Compiler<EvalEmitter>; 6638 6639 } // namespace interp 6640 } // namespace clang 6641