1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Compiler.h" 10 #include "ByteCodeEmitter.h" 11 #include "Context.h" 12 #include "FixedPoint.h" 13 #include "Floating.h" 14 #include "Function.h" 15 #include "InterpShared.h" 16 #include "PrimType.h" 17 #include "Program.h" 18 #include "clang/AST/Attr.h" 19 20 using namespace clang; 21 using namespace clang::interp; 22 23 using APSInt = llvm::APSInt; 24 25 namespace clang { 26 namespace interp { 27 28 /// Scope used to handle temporaries in toplevel variable declarations. 29 template <class Emitter> class DeclScope final : public LocalScope<Emitter> { 30 public: 31 DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD) 32 : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD), 33 OldInitializingDecl(Ctx->InitializingDecl) { 34 Ctx->InitializingDecl = VD; 35 Ctx->InitStack.push_back(InitLink::Decl(VD)); 36 } 37 38 void addExtended(const Scope::Local &Local) override { 39 return this->addLocal(Local); 40 } 41 42 ~DeclScope() { 43 this->Ctx->InitializingDecl = OldInitializingDecl; 44 this->Ctx->InitStack.pop_back(); 45 } 46 47 private: 48 Program::DeclScope Scope; 49 const ValueDecl *OldInitializingDecl; 50 }; 51 52 /// Scope used to handle initialization methods. 53 template <class Emitter> class OptionScope final { 54 public: 55 /// Root constructor, compiling or discarding primitives. 56 OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult, 57 bool NewInitializing) 58 : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), 59 OldInitializing(Ctx->Initializing) { 60 Ctx->DiscardResult = NewDiscardResult; 61 Ctx->Initializing = NewInitializing; 62 } 63 64 ~OptionScope() { 65 Ctx->DiscardResult = OldDiscardResult; 66 Ctx->Initializing = OldInitializing; 67 } 68 69 private: 70 /// Parent context. 71 Compiler<Emitter> *Ctx; 72 /// Old discard flag to restore. 73 bool OldDiscardResult; 74 bool OldInitializing; 75 }; 76 77 template <class Emitter> 78 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const { 79 switch (Kind) { 80 case K_This: 81 return Ctx->emitThis(E); 82 case K_Field: 83 // We're assuming there's a base pointer on the stack already. 84 return Ctx->emitGetPtrFieldPop(Offset, E); 85 case K_Temp: 86 return Ctx->emitGetPtrLocal(Offset, E); 87 case K_Decl: 88 return Ctx->visitDeclRef(D, E); 89 case K_Elem: 90 if (!Ctx->emitConstUint32(Offset, E)) 91 return false; 92 return Ctx->emitArrayElemPtrPopUint32(E); 93 default: 94 llvm_unreachable("Unhandled InitLink kind"); 95 } 96 return true; 97 } 98 99 /// Scope managing label targets. 100 template <class Emitter> class LabelScope { 101 public: 102 virtual ~LabelScope() {} 103 104 protected: 105 LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {} 106 /// Compiler instance. 107 Compiler<Emitter> *Ctx; 108 }; 109 110 /// Sets the context for break/continue statements. 111 template <class Emitter> class LoopScope final : public LabelScope<Emitter> { 112 public: 113 using LabelTy = typename Compiler<Emitter>::LabelTy; 114 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 115 116 LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel) 117 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 118 OldContinueLabel(Ctx->ContinueLabel), 119 OldBreakVarScope(Ctx->BreakVarScope), 120 OldContinueVarScope(Ctx->ContinueVarScope) { 121 this->Ctx->BreakLabel = BreakLabel; 122 this->Ctx->ContinueLabel = ContinueLabel; 123 this->Ctx->BreakVarScope = this->Ctx->VarScope; 124 this->Ctx->ContinueVarScope = this->Ctx->VarScope; 125 } 126 127 ~LoopScope() { 128 this->Ctx->BreakLabel = OldBreakLabel; 129 this->Ctx->ContinueLabel = OldContinueLabel; 130 this->Ctx->ContinueVarScope = OldContinueVarScope; 131 this->Ctx->BreakVarScope = OldBreakVarScope; 132 } 133 134 private: 135 OptLabelTy OldBreakLabel; 136 OptLabelTy OldContinueLabel; 137 VariableScope<Emitter> *OldBreakVarScope; 138 VariableScope<Emitter> *OldContinueVarScope; 139 }; 140 141 // Sets the context for a switch scope, mapping labels. 142 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> { 143 public: 144 using LabelTy = typename Compiler<Emitter>::LabelTy; 145 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 146 using CaseMap = typename Compiler<Emitter>::CaseMap; 147 148 SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel, 149 OptLabelTy DefaultLabel) 150 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 151 OldDefaultLabel(this->Ctx->DefaultLabel), 152 OldCaseLabels(std::move(this->Ctx->CaseLabels)), 153 OldLabelVarScope(Ctx->BreakVarScope) { 154 this->Ctx->BreakLabel = BreakLabel; 155 this->Ctx->DefaultLabel = DefaultLabel; 156 this->Ctx->CaseLabels = std::move(CaseLabels); 157 this->Ctx->BreakVarScope = this->Ctx->VarScope; 158 } 159 160 ~SwitchScope() { 161 this->Ctx->BreakLabel = OldBreakLabel; 162 this->Ctx->DefaultLabel = OldDefaultLabel; 163 this->Ctx->CaseLabels = std::move(OldCaseLabels); 164 this->Ctx->BreakVarScope = OldLabelVarScope; 165 } 166 167 private: 168 OptLabelTy OldBreakLabel; 169 OptLabelTy OldDefaultLabel; 170 CaseMap OldCaseLabels; 171 VariableScope<Emitter> *OldLabelVarScope; 172 }; 173 174 template <class Emitter> class StmtExprScope final { 175 public: 176 StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) { 177 Ctx->InStmtExpr = true; 178 } 179 180 ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; } 181 182 private: 183 Compiler<Emitter> *Ctx; 184 bool OldFlag; 185 }; 186 187 } // namespace interp 188 } // namespace clang 189 190 template <class Emitter> 191 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) { 192 const Expr *SubExpr = CE->getSubExpr(); 193 switch (CE->getCastKind()) { 194 195 case CK_LValueToRValue: { 196 if (DiscardResult) 197 return this->discard(SubExpr); 198 199 std::optional<PrimType> SubExprT = classify(SubExpr->getType()); 200 // Prepare storage for the result. 201 if (!Initializing && !SubExprT) { 202 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 203 if (!LocalIndex) 204 return false; 205 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 206 return false; 207 } 208 209 if (!this->visit(SubExpr)) 210 return false; 211 212 if (SubExprT) 213 return this->emitLoadPop(*SubExprT, CE); 214 215 // If the subexpr type is not primitive, we need to perform a copy here. 216 // This happens for example in C when dereferencing a pointer of struct 217 // type. 218 return this->emitMemcpy(CE); 219 } 220 221 case CK_DerivedToBaseMemberPointer: { 222 assert(classifyPrim(CE->getType()) == PT_MemberPtr); 223 assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr); 224 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 225 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 226 227 unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0), 228 QualType(FromMP->getClass(), 0)); 229 230 if (!this->delegate(SubExpr)) 231 return false; 232 233 return this->emitGetMemberPtrBasePop(DerivedOffset, CE); 234 } 235 236 case CK_BaseToDerivedMemberPointer: { 237 assert(classifyPrim(CE) == PT_MemberPtr); 238 assert(classifyPrim(SubExpr) == PT_MemberPtr); 239 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 240 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 241 242 unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0), 243 QualType(ToMP->getClass(), 0)); 244 245 if (!this->delegate(SubExpr)) 246 return false; 247 return this->emitGetMemberPtrBasePop(-DerivedOffset, CE); 248 } 249 250 case CK_UncheckedDerivedToBase: 251 case CK_DerivedToBase: { 252 if (!this->delegate(SubExpr)) 253 return false; 254 255 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 256 if (const auto *PT = dyn_cast<PointerType>(Ty)) 257 return PT->getPointeeType()->getAsCXXRecordDecl(); 258 return Ty->getAsCXXRecordDecl(); 259 }; 260 261 // FIXME: We can express a series of non-virtual casts as a single 262 // GetPtrBasePop op. 263 QualType CurType = SubExpr->getType(); 264 for (const CXXBaseSpecifier *B : CE->path()) { 265 if (B->isVirtual()) { 266 if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE)) 267 return false; 268 CurType = B->getType(); 269 } else { 270 unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType); 271 if (!this->emitGetPtrBasePop(DerivedOffset, CE)) 272 return false; 273 CurType = B->getType(); 274 } 275 } 276 277 return true; 278 } 279 280 case CK_BaseToDerived: { 281 if (!this->delegate(SubExpr)) 282 return false; 283 284 unsigned DerivedOffset = 285 collectBaseOffset(SubExpr->getType(), CE->getType()); 286 287 return this->emitGetPtrDerivedPop(DerivedOffset, CE); 288 } 289 290 case CK_FloatingCast: { 291 // HLSL uses CK_FloatingCast to cast between vectors. 292 if (!SubExpr->getType()->isFloatingType() || 293 !CE->getType()->isFloatingType()) 294 return false; 295 if (DiscardResult) 296 return this->discard(SubExpr); 297 if (!this->visit(SubExpr)) 298 return false; 299 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 300 return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE); 301 } 302 303 case CK_IntegralToFloating: { 304 if (DiscardResult) 305 return this->discard(SubExpr); 306 std::optional<PrimType> FromT = classify(SubExpr->getType()); 307 if (!FromT) 308 return false; 309 310 if (!this->visit(SubExpr)) 311 return false; 312 313 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 314 return this->emitCastIntegralFloating(*FromT, TargetSemantics, 315 getFPOptions(CE), CE); 316 } 317 318 case CK_FloatingToBoolean: 319 case CK_FloatingToIntegral: { 320 if (DiscardResult) 321 return this->discard(SubExpr); 322 323 std::optional<PrimType> ToT = classify(CE->getType()); 324 325 if (!ToT) 326 return false; 327 328 if (!this->visit(SubExpr)) 329 return false; 330 331 if (ToT == PT_IntAP) 332 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()), 333 getFPOptions(CE), CE); 334 if (ToT == PT_IntAPS) 335 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()), 336 getFPOptions(CE), CE); 337 338 return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE); 339 } 340 341 case CK_NullToPointer: 342 case CK_NullToMemberPointer: { 343 if (!this->discard(SubExpr)) 344 return false; 345 if (DiscardResult) 346 return true; 347 348 const Descriptor *Desc = nullptr; 349 const QualType PointeeType = CE->getType()->getPointeeType(); 350 if (!PointeeType.isNull()) { 351 if (std::optional<PrimType> T = classify(PointeeType)) 352 Desc = P.createDescriptor(SubExpr, *T); 353 else 354 Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(), 355 std::nullopt, true, false, 356 /*IsMutable=*/false, nullptr); 357 } 358 return this->emitNull(classifyPrim(CE->getType()), Desc, CE); 359 } 360 361 case CK_PointerToIntegral: { 362 if (DiscardResult) 363 return this->discard(SubExpr); 364 365 if (!this->visit(SubExpr)) 366 return false; 367 368 // If SubExpr doesn't result in a pointer, make it one. 369 if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) { 370 assert(isPtrType(FromT)); 371 if (!this->emitDecayPtr(FromT, PT_Ptr, CE)) 372 return false; 373 } 374 375 PrimType T = classifyPrim(CE->getType()); 376 if (T == PT_IntAP) 377 return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()), 378 CE); 379 if (T == PT_IntAPS) 380 return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()), 381 CE); 382 return this->emitCastPointerIntegral(T, CE); 383 } 384 385 case CK_ArrayToPointerDecay: { 386 if (!this->visit(SubExpr)) 387 return false; 388 if (!this->emitArrayDecay(CE)) 389 return false; 390 if (DiscardResult) 391 return this->emitPopPtr(CE); 392 return true; 393 } 394 395 case CK_IntegralToPointer: { 396 QualType IntType = SubExpr->getType(); 397 assert(IntType->isIntegralOrEnumerationType()); 398 if (!this->visit(SubExpr)) 399 return false; 400 // FIXME: I think the discard is wrong since the int->ptr cast might cause a 401 // diagnostic. 402 PrimType T = classifyPrim(IntType); 403 if (DiscardResult) 404 return this->emitPop(T, CE); 405 406 QualType PtrType = CE->getType(); 407 const Descriptor *Desc; 408 if (std::optional<PrimType> T = classify(PtrType->getPointeeType())) 409 Desc = P.createDescriptor(SubExpr, *T); 410 else if (PtrType->getPointeeType()->isVoidType()) 411 Desc = nullptr; 412 else 413 Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(), 414 Descriptor::InlineDescMD, true, false, 415 /*IsMutable=*/false, nullptr); 416 417 if (!this->emitGetIntPtr(T, Desc, CE)) 418 return false; 419 420 PrimType DestPtrT = classifyPrim(PtrType); 421 if (DestPtrT == PT_Ptr) 422 return true; 423 424 // In case we're converting the integer to a non-Pointer. 425 return this->emitDecayPtr(PT_Ptr, DestPtrT, CE); 426 } 427 428 case CK_AtomicToNonAtomic: 429 case CK_ConstructorConversion: 430 case CK_FunctionToPointerDecay: 431 case CK_NonAtomicToAtomic: 432 case CK_NoOp: 433 case CK_UserDefinedConversion: 434 case CK_AddressSpaceConversion: 435 case CK_CPointerToObjCPointerCast: 436 return this->delegate(SubExpr); 437 438 case CK_BitCast: { 439 // Reject bitcasts to atomic types. 440 if (CE->getType()->isAtomicType()) { 441 if (!this->discard(SubExpr)) 442 return false; 443 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE); 444 } 445 446 if (DiscardResult) 447 return this->discard(SubExpr); 448 449 QualType SubExprTy = SubExpr->getType(); 450 std::optional<PrimType> FromT = classify(SubExprTy); 451 std::optional<PrimType> ToT = classify(CE->getType()); 452 if (!FromT || !ToT) 453 return false; 454 455 assert(isPtrType(*FromT)); 456 assert(isPtrType(*ToT)); 457 if (FromT == ToT) { 458 if (CE->getType()->isVoidPointerType()) 459 return this->delegate(SubExpr); 460 461 if (!this->visit(SubExpr)) 462 return false; 463 if (FromT == PT_Ptr) 464 return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE); 465 return true; 466 } 467 468 if (!this->visit(SubExpr)) 469 return false; 470 return this->emitDecayPtr(*FromT, *ToT, CE); 471 } 472 473 case CK_IntegralToBoolean: 474 case CK_FixedPointToBoolean: 475 case CK_BooleanToSignedIntegral: 476 case CK_IntegralCast: { 477 if (DiscardResult) 478 return this->discard(SubExpr); 479 std::optional<PrimType> FromT = classify(SubExpr->getType()); 480 std::optional<PrimType> ToT = classify(CE->getType()); 481 482 if (!FromT || !ToT) 483 return false; 484 485 if (!this->visit(SubExpr)) 486 return false; 487 488 // Possibly diagnose casts to enum types if the target type does not 489 // have a fixed size. 490 if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) { 491 if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>(); 492 ET && !ET->getDecl()->isFixed()) { 493 if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE)) 494 return false; 495 } 496 } 497 498 auto maybeNegate = [&]() -> bool { 499 if (CE->getCastKind() == CK_BooleanToSignedIntegral) 500 return this->emitNeg(*ToT, CE); 501 return true; 502 }; 503 504 if (ToT == PT_IntAP) 505 return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 506 maybeNegate(); 507 if (ToT == PT_IntAPS) 508 return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 509 maybeNegate(); 510 511 if (FromT == ToT) 512 return true; 513 if (!this->emitCast(*FromT, *ToT, CE)) 514 return false; 515 516 return maybeNegate(); 517 } 518 519 case CK_PointerToBoolean: 520 case CK_MemberPointerToBoolean: { 521 PrimType PtrT = classifyPrim(SubExpr->getType()); 522 523 if (!this->visit(SubExpr)) 524 return false; 525 return this->emitIsNonNull(PtrT, CE); 526 } 527 528 case CK_IntegralComplexToBoolean: 529 case CK_FloatingComplexToBoolean: { 530 if (DiscardResult) 531 return this->discard(SubExpr); 532 if (!this->visit(SubExpr)) 533 return false; 534 return this->emitComplexBoolCast(SubExpr); 535 } 536 537 case CK_IntegralComplexToReal: 538 case CK_FloatingComplexToReal: 539 return this->emitComplexReal(SubExpr); 540 541 case CK_IntegralRealToComplex: 542 case CK_FloatingRealToComplex: { 543 // We're creating a complex value here, so we need to 544 // allocate storage for it. 545 if (!Initializing) { 546 unsigned LocalIndex = allocateTemporary(CE); 547 if (!this->emitGetPtrLocal(LocalIndex, CE)) 548 return false; 549 } 550 551 // Init the complex value to {SubExpr, 0}. 552 if (!this->visitArrayElemInit(0, SubExpr)) 553 return false; 554 // Zero-init the second element. 555 PrimType T = classifyPrim(SubExpr->getType()); 556 if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr)) 557 return false; 558 return this->emitInitElem(T, 1, SubExpr); 559 } 560 561 case CK_IntegralComplexCast: 562 case CK_FloatingComplexCast: 563 case CK_IntegralComplexToFloatingComplex: 564 case CK_FloatingComplexToIntegralComplex: { 565 assert(CE->getType()->isAnyComplexType()); 566 assert(SubExpr->getType()->isAnyComplexType()); 567 if (DiscardResult) 568 return this->discard(SubExpr); 569 570 if (!Initializing) { 571 std::optional<unsigned> LocalIndex = allocateLocal(CE); 572 if (!LocalIndex) 573 return false; 574 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 575 return false; 576 } 577 578 // Location for the SubExpr. 579 // Since SubExpr is of complex type, visiting it results in a pointer 580 // anyway, so we just create a temporary pointer variable. 581 unsigned SubExprOffset = allocateLocalPrimitive( 582 SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 583 if (!this->visit(SubExpr)) 584 return false; 585 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE)) 586 return false; 587 588 PrimType SourceElemT = classifyComplexElementType(SubExpr->getType()); 589 QualType DestElemType = 590 CE->getType()->getAs<ComplexType>()->getElementType(); 591 PrimType DestElemT = classifyPrim(DestElemType); 592 // Cast both elements individually. 593 for (unsigned I = 0; I != 2; ++I) { 594 if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE)) 595 return false; 596 if (!this->emitArrayElemPop(SourceElemT, I, CE)) 597 return false; 598 599 // Do the cast. 600 if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE)) 601 return false; 602 603 // Save the value. 604 if (!this->emitInitElem(DestElemT, I, CE)) 605 return false; 606 } 607 return true; 608 } 609 610 case CK_VectorSplat: { 611 assert(!classify(CE->getType())); 612 assert(classify(SubExpr->getType())); 613 assert(CE->getType()->isVectorType()); 614 615 if (DiscardResult) 616 return this->discard(SubExpr); 617 618 if (!Initializing) { 619 std::optional<unsigned> LocalIndex = allocateLocal(CE); 620 if (!LocalIndex) 621 return false; 622 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 623 return false; 624 } 625 626 const auto *VT = CE->getType()->getAs<VectorType>(); 627 PrimType ElemT = classifyPrim(SubExpr->getType()); 628 unsigned ElemOffset = allocateLocalPrimitive( 629 SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false); 630 631 // Prepare a local variable for the scalar value. 632 if (!this->visit(SubExpr)) 633 return false; 634 if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE)) 635 return false; 636 637 if (!this->emitSetLocal(ElemT, ElemOffset, CE)) 638 return false; 639 640 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 641 if (!this->emitGetLocal(ElemT, ElemOffset, CE)) 642 return false; 643 if (!this->emitInitElem(ElemT, I, CE)) 644 return false; 645 } 646 647 return true; 648 } 649 650 case CK_HLSLVectorTruncation: { 651 assert(SubExpr->getType()->isVectorType()); 652 if (std::optional<PrimType> ResultT = classify(CE)) { 653 assert(!DiscardResult); 654 // Result must be either a float or integer. Take the first element. 655 if (!this->visit(SubExpr)) 656 return false; 657 return this->emitArrayElemPop(*ResultT, 0, CE); 658 } 659 // Otherwise, this truncates from one vector type to another. 660 assert(CE->getType()->isVectorType()); 661 662 if (!Initializing) { 663 unsigned LocalIndex = allocateTemporary(CE); 664 if (!this->emitGetPtrLocal(LocalIndex, CE)) 665 return false; 666 } 667 unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements(); 668 assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize); 669 if (!this->visit(SubExpr)) 670 return false; 671 return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0, 672 ToSize, CE); 673 }; 674 675 case CK_IntegralToFixedPoint: { 676 if (!this->visit(SubExpr)) 677 return false; 678 679 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 680 uint32_t I; 681 std::memcpy(&I, &Sem, sizeof(Sem)); 682 return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), I, 683 CE); 684 } 685 case CK_FloatingToFixedPoint: { 686 if (!this->visit(SubExpr)) 687 return false; 688 689 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 690 uint32_t I; 691 std::memcpy(&I, &Sem, sizeof(Sem)); 692 return this->emitCastFloatingFixedPoint(I, CE); 693 } 694 case CK_FixedPointToFloating: { 695 if (!this->visit(SubExpr)) 696 return false; 697 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 698 return this->emitCastFixedPointFloating(TargetSemantics, CE); 699 } 700 case CK_FixedPointToIntegral: { 701 if (!this->visit(SubExpr)) 702 return false; 703 return this->emitCastFixedPointIntegral(classifyPrim(CE->getType()), CE); 704 } 705 case CK_FixedPointCast: { 706 if (!this->visit(SubExpr)) 707 return false; 708 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 709 uint32_t I; 710 std::memcpy(&I, &Sem, sizeof(Sem)); 711 return this->emitCastFixedPoint(I, CE); 712 } 713 714 case CK_ToVoid: 715 return discard(SubExpr); 716 717 default: 718 return this->emitInvalid(CE); 719 } 720 llvm_unreachable("Unhandled clang::CastKind enum"); 721 } 722 723 template <class Emitter> 724 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) { 725 if (DiscardResult) 726 return true; 727 728 return this->emitConst(LE->getValue(), LE); 729 } 730 731 template <class Emitter> 732 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) { 733 if (DiscardResult) 734 return true; 735 736 return this->emitConstFloat(E->getValue(), E); 737 } 738 739 template <class Emitter> 740 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 741 assert(E->getType()->isAnyComplexType()); 742 if (DiscardResult) 743 return true; 744 745 if (!Initializing) { 746 unsigned LocalIndex = allocateTemporary(E); 747 if (!this->emitGetPtrLocal(LocalIndex, E)) 748 return false; 749 } 750 751 const Expr *SubExpr = E->getSubExpr(); 752 PrimType SubExprT = classifyPrim(SubExpr->getType()); 753 754 if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr)) 755 return false; 756 if (!this->emitInitElem(SubExprT, 0, SubExpr)) 757 return false; 758 return this->visitArrayElemInit(1, SubExpr); 759 } 760 761 template <class Emitter> 762 bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) { 763 assert(E->getType()->isFixedPointType()); 764 assert(classifyPrim(E) == PT_FixedPoint); 765 766 if (DiscardResult) 767 return true; 768 769 auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 770 APInt Value = E->getValue(); 771 return this->emitConstFixedPoint(FixedPoint(Value, Sem), E); 772 } 773 774 template <class Emitter> 775 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) { 776 return this->delegate(E->getSubExpr()); 777 } 778 779 template <class Emitter> 780 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) { 781 // Need short-circuiting for these. 782 if (BO->isLogicalOp() && !BO->getType()->isVectorType()) 783 return this->VisitLogicalBinOp(BO); 784 785 const Expr *LHS = BO->getLHS(); 786 const Expr *RHS = BO->getRHS(); 787 788 // Handle comma operators. Just discard the LHS 789 // and delegate to RHS. 790 if (BO->isCommaOp()) { 791 if (!this->discard(LHS)) 792 return false; 793 if (RHS->getType()->isVoidType()) 794 return this->discard(RHS); 795 796 return this->delegate(RHS); 797 } 798 799 if (BO->getType()->isAnyComplexType()) 800 return this->VisitComplexBinOp(BO); 801 if (BO->getType()->isVectorType()) 802 return this->VisitVectorBinOp(BO); 803 if ((LHS->getType()->isAnyComplexType() || 804 RHS->getType()->isAnyComplexType()) && 805 BO->isComparisonOp()) 806 return this->emitComplexComparison(LHS, RHS, BO); 807 if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType()) 808 return this->VisitFixedPointBinOp(BO); 809 810 if (BO->isPtrMemOp()) { 811 if (!this->visit(LHS)) 812 return false; 813 814 if (!this->visit(RHS)) 815 return false; 816 817 if (!this->emitToMemberPtr(BO)) 818 return false; 819 820 if (classifyPrim(BO) == PT_MemberPtr) 821 return true; 822 823 if (!this->emitCastMemberPtrPtr(BO)) 824 return false; 825 return DiscardResult ? this->emitPopPtr(BO) : true; 826 } 827 828 // Typecheck the args. 829 std::optional<PrimType> LT = classify(LHS); 830 std::optional<PrimType> RT = classify(RHS); 831 std::optional<PrimType> T = classify(BO->getType()); 832 833 // Special case for C++'s three-way/spaceship operator <=>, which 834 // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't 835 // have a PrimType). 836 if (!T && BO->getOpcode() == BO_Cmp) { 837 if (DiscardResult) 838 return true; 839 const ComparisonCategoryInfo *CmpInfo = 840 Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType()); 841 assert(CmpInfo); 842 843 // We need a temporary variable holding our return value. 844 if (!Initializing) { 845 std::optional<unsigned> ResultIndex = this->allocateLocal(BO); 846 if (!this->emitGetPtrLocal(*ResultIndex, BO)) 847 return false; 848 } 849 850 if (!visit(LHS) || !visit(RHS)) 851 return false; 852 853 return this->emitCMP3(*LT, CmpInfo, BO); 854 } 855 856 if (!LT || !RT || !T) 857 return false; 858 859 // Pointer arithmetic special case. 860 if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) { 861 if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT))) 862 return this->VisitPointerArithBinOp(BO); 863 } 864 865 // Assignmentes require us to evalute the RHS first. 866 if (BO->getOpcode() == BO_Assign) { 867 if (!visit(RHS) || !visit(LHS)) 868 return false; 869 if (!this->emitFlip(*LT, *RT, BO)) 870 return false; 871 } else { 872 if (!visit(LHS) || !visit(RHS)) 873 return false; 874 } 875 876 // For languages such as C, cast the result of one 877 // of our comparision opcodes to T (which is usually int). 878 auto MaybeCastToBool = [this, T, BO](bool Result) { 879 if (!Result) 880 return false; 881 if (DiscardResult) 882 return this->emitPop(*T, BO); 883 if (T != PT_Bool) 884 return this->emitCast(PT_Bool, *T, BO); 885 return true; 886 }; 887 888 auto Discard = [this, T, BO](bool Result) { 889 if (!Result) 890 return false; 891 return DiscardResult ? this->emitPop(*T, BO) : true; 892 }; 893 894 switch (BO->getOpcode()) { 895 case BO_EQ: 896 return MaybeCastToBool(this->emitEQ(*LT, BO)); 897 case BO_NE: 898 return MaybeCastToBool(this->emitNE(*LT, BO)); 899 case BO_LT: 900 return MaybeCastToBool(this->emitLT(*LT, BO)); 901 case BO_LE: 902 return MaybeCastToBool(this->emitLE(*LT, BO)); 903 case BO_GT: 904 return MaybeCastToBool(this->emitGT(*LT, BO)); 905 case BO_GE: 906 return MaybeCastToBool(this->emitGE(*LT, BO)); 907 case BO_Sub: 908 if (BO->getType()->isFloatingType()) 909 return Discard(this->emitSubf(getFPOptions(BO), BO)); 910 return Discard(this->emitSub(*T, BO)); 911 case BO_Add: 912 if (BO->getType()->isFloatingType()) 913 return Discard(this->emitAddf(getFPOptions(BO), BO)); 914 return Discard(this->emitAdd(*T, BO)); 915 case BO_Mul: 916 if (BO->getType()->isFloatingType()) 917 return Discard(this->emitMulf(getFPOptions(BO), BO)); 918 return Discard(this->emitMul(*T, BO)); 919 case BO_Rem: 920 return Discard(this->emitRem(*T, BO)); 921 case BO_Div: 922 if (BO->getType()->isFloatingType()) 923 return Discard(this->emitDivf(getFPOptions(BO), BO)); 924 return Discard(this->emitDiv(*T, BO)); 925 case BO_Assign: 926 if (DiscardResult) 927 return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO) 928 : this->emitStorePop(*T, BO); 929 if (LHS->refersToBitField()) { 930 if (!this->emitStoreBitField(*T, BO)) 931 return false; 932 } else { 933 if (!this->emitStore(*T, BO)) 934 return false; 935 } 936 // Assignments aren't necessarily lvalues in C. 937 // Load from them in that case. 938 if (!BO->isLValue()) 939 return this->emitLoadPop(*T, BO); 940 return true; 941 case BO_And: 942 return Discard(this->emitBitAnd(*T, BO)); 943 case BO_Or: 944 return Discard(this->emitBitOr(*T, BO)); 945 case BO_Shl: 946 return Discard(this->emitShl(*LT, *RT, BO)); 947 case BO_Shr: 948 return Discard(this->emitShr(*LT, *RT, BO)); 949 case BO_Xor: 950 return Discard(this->emitBitXor(*T, BO)); 951 case BO_LOr: 952 case BO_LAnd: 953 llvm_unreachable("Already handled earlier"); 954 default: 955 return false; 956 } 957 958 llvm_unreachable("Unhandled binary op"); 959 } 960 961 /// Perform addition/subtraction of a pointer and an integer or 962 /// subtraction of two pointers. 963 template <class Emitter> 964 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) { 965 BinaryOperatorKind Op = E->getOpcode(); 966 const Expr *LHS = E->getLHS(); 967 const Expr *RHS = E->getRHS(); 968 969 if ((Op != BO_Add && Op != BO_Sub) || 970 (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType())) 971 return false; 972 973 std::optional<PrimType> LT = classify(LHS); 974 std::optional<PrimType> RT = classify(RHS); 975 976 if (!LT || !RT) 977 return false; 978 979 // Visit the given pointer expression and optionally convert to a PT_Ptr. 980 auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool { 981 if (!this->visit(E)) 982 return false; 983 if (T != PT_Ptr) 984 return this->emitDecayPtr(T, PT_Ptr, E); 985 return true; 986 }; 987 988 if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) { 989 if (Op != BO_Sub) 990 return false; 991 992 assert(E->getType()->isIntegerType()); 993 if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT)) 994 return false; 995 996 return this->emitSubPtr(classifyPrim(E->getType()), E); 997 } 998 999 PrimType OffsetType; 1000 if (LHS->getType()->isIntegerType()) { 1001 if (!visitAsPointer(RHS, *RT)) 1002 return false; 1003 if (!this->visit(LHS)) 1004 return false; 1005 OffsetType = *LT; 1006 } else if (RHS->getType()->isIntegerType()) { 1007 if (!visitAsPointer(LHS, *LT)) 1008 return false; 1009 if (!this->visit(RHS)) 1010 return false; 1011 OffsetType = *RT; 1012 } else { 1013 return false; 1014 } 1015 1016 // Do the operation and optionally transform to 1017 // result pointer type. 1018 if (Op == BO_Add) { 1019 if (!this->emitAddOffset(OffsetType, E)) 1020 return false; 1021 1022 if (classifyPrim(E) != PT_Ptr) 1023 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 1024 return true; 1025 } else if (Op == BO_Sub) { 1026 if (!this->emitSubOffset(OffsetType, E)) 1027 return false; 1028 1029 if (classifyPrim(E) != PT_Ptr) 1030 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 1031 return true; 1032 } 1033 1034 return false; 1035 } 1036 1037 template <class Emitter> 1038 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) { 1039 assert(E->isLogicalOp()); 1040 BinaryOperatorKind Op = E->getOpcode(); 1041 const Expr *LHS = E->getLHS(); 1042 const Expr *RHS = E->getRHS(); 1043 std::optional<PrimType> T = classify(E->getType()); 1044 1045 if (Op == BO_LOr) { 1046 // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE. 1047 LabelTy LabelTrue = this->getLabel(); 1048 LabelTy LabelEnd = this->getLabel(); 1049 1050 if (!this->visitBool(LHS)) 1051 return false; 1052 if (!this->jumpTrue(LabelTrue)) 1053 return false; 1054 1055 if (!this->visitBool(RHS)) 1056 return false; 1057 if (!this->jump(LabelEnd)) 1058 return false; 1059 1060 this->emitLabel(LabelTrue); 1061 this->emitConstBool(true, E); 1062 this->fallthrough(LabelEnd); 1063 this->emitLabel(LabelEnd); 1064 1065 } else { 1066 assert(Op == BO_LAnd); 1067 // Logical AND. 1068 // Visit LHS. Only visit RHS if LHS was TRUE. 1069 LabelTy LabelFalse = this->getLabel(); 1070 LabelTy LabelEnd = this->getLabel(); 1071 1072 if (!this->visitBool(LHS)) 1073 return false; 1074 if (!this->jumpFalse(LabelFalse)) 1075 return false; 1076 1077 if (!this->visitBool(RHS)) 1078 return false; 1079 if (!this->jump(LabelEnd)) 1080 return false; 1081 1082 this->emitLabel(LabelFalse); 1083 this->emitConstBool(false, E); 1084 this->fallthrough(LabelEnd); 1085 this->emitLabel(LabelEnd); 1086 } 1087 1088 if (DiscardResult) 1089 return this->emitPopBool(E); 1090 1091 // For C, cast back to integer type. 1092 assert(T); 1093 if (T != PT_Bool) 1094 return this->emitCast(PT_Bool, *T, E); 1095 return true; 1096 } 1097 1098 template <class Emitter> 1099 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) { 1100 // Prepare storage for result. 1101 if (!Initializing) { 1102 unsigned LocalIndex = allocateTemporary(E); 1103 if (!this->emitGetPtrLocal(LocalIndex, E)) 1104 return false; 1105 } 1106 1107 // Both LHS and RHS might _not_ be of complex type, but one of them 1108 // needs to be. 1109 const Expr *LHS = E->getLHS(); 1110 const Expr *RHS = E->getRHS(); 1111 1112 PrimType ResultElemT = this->classifyComplexElementType(E->getType()); 1113 unsigned ResultOffset = ~0u; 1114 if (!DiscardResult) 1115 ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false); 1116 1117 // Save result pointer in ResultOffset 1118 if (!this->DiscardResult) { 1119 if (!this->emitDupPtr(E)) 1120 return false; 1121 if (!this->emitSetLocal(PT_Ptr, ResultOffset, E)) 1122 return false; 1123 } 1124 QualType LHSType = LHS->getType(); 1125 if (const auto *AT = LHSType->getAs<AtomicType>()) 1126 LHSType = AT->getValueType(); 1127 QualType RHSType = RHS->getType(); 1128 if (const auto *AT = RHSType->getAs<AtomicType>()) 1129 RHSType = AT->getValueType(); 1130 1131 bool LHSIsComplex = LHSType->isAnyComplexType(); 1132 unsigned LHSOffset; 1133 bool RHSIsComplex = RHSType->isAnyComplexType(); 1134 1135 // For ComplexComplex Mul, we have special ops to make their implementation 1136 // easier. 1137 BinaryOperatorKind Op = E->getOpcode(); 1138 if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) { 1139 assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) == 1140 classifyPrim(RHSType->getAs<ComplexType>()->getElementType())); 1141 PrimType ElemT = 1142 classifyPrim(LHSType->getAs<ComplexType>()->getElementType()); 1143 if (!this->visit(LHS)) 1144 return false; 1145 if (!this->visit(RHS)) 1146 return false; 1147 return this->emitMulc(ElemT, E); 1148 } 1149 1150 if (Op == BO_Div && RHSIsComplex) { 1151 QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType(); 1152 PrimType ElemT = classifyPrim(ElemQT); 1153 // If the LHS is not complex, we still need to do the full complex 1154 // division, so just stub create a complex value and stub it out with 1155 // the LHS and a zero. 1156 1157 if (!LHSIsComplex) { 1158 // This is using the RHS type for the fake-complex LHS. 1159 LHSOffset = allocateTemporary(RHS); 1160 1161 if (!this->emitGetPtrLocal(LHSOffset, E)) 1162 return false; 1163 1164 if (!this->visit(LHS)) 1165 return false; 1166 // real is LHS 1167 if (!this->emitInitElem(ElemT, 0, E)) 1168 return false; 1169 // imag is zero 1170 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1171 return false; 1172 if (!this->emitInitElem(ElemT, 1, E)) 1173 return false; 1174 } else { 1175 if (!this->visit(LHS)) 1176 return false; 1177 } 1178 1179 if (!this->visit(RHS)) 1180 return false; 1181 return this->emitDivc(ElemT, E); 1182 } 1183 1184 // Evaluate LHS and save value to LHSOffset. 1185 if (LHSType->isAnyComplexType()) { 1186 LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1187 if (!this->visit(LHS)) 1188 return false; 1189 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1190 return false; 1191 } else { 1192 PrimType LHST = classifyPrim(LHSType); 1193 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 1194 if (!this->visit(LHS)) 1195 return false; 1196 if (!this->emitSetLocal(LHST, LHSOffset, E)) 1197 return false; 1198 } 1199 1200 // Same with RHS. 1201 unsigned RHSOffset; 1202 if (RHSType->isAnyComplexType()) { 1203 RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1204 if (!this->visit(RHS)) 1205 return false; 1206 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1207 return false; 1208 } else { 1209 PrimType RHST = classifyPrim(RHSType); 1210 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 1211 if (!this->visit(RHS)) 1212 return false; 1213 if (!this->emitSetLocal(RHST, RHSOffset, E)) 1214 return false; 1215 } 1216 1217 // For both LHS and RHS, either load the value from the complex pointer, or 1218 // directly from the local variable. For index 1 (i.e. the imaginary part), 1219 // just load 0 and do the operation anyway. 1220 auto loadComplexValue = [this](bool IsComplex, bool LoadZero, 1221 unsigned ElemIndex, unsigned Offset, 1222 const Expr *E) -> bool { 1223 if (IsComplex) { 1224 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1225 return false; 1226 return this->emitArrayElemPop(classifyComplexElementType(E->getType()), 1227 ElemIndex, E); 1228 } 1229 if (ElemIndex == 0 || !LoadZero) 1230 return this->emitGetLocal(classifyPrim(E->getType()), Offset, E); 1231 return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(), 1232 E); 1233 }; 1234 1235 // Now we can get pointers to the LHS and RHS from the offsets above. 1236 for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) { 1237 // Result pointer for the store later. 1238 if (!this->DiscardResult) { 1239 if (!this->emitGetLocal(PT_Ptr, ResultOffset, E)) 1240 return false; 1241 } 1242 1243 // The actual operation. 1244 switch (Op) { 1245 case BO_Add: 1246 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1247 return false; 1248 1249 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1250 return false; 1251 if (ResultElemT == PT_Float) { 1252 if (!this->emitAddf(getFPOptions(E), E)) 1253 return false; 1254 } else { 1255 if (!this->emitAdd(ResultElemT, E)) 1256 return false; 1257 } 1258 break; 1259 case BO_Sub: 1260 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1261 return false; 1262 1263 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1264 return false; 1265 if (ResultElemT == PT_Float) { 1266 if (!this->emitSubf(getFPOptions(E), E)) 1267 return false; 1268 } else { 1269 if (!this->emitSub(ResultElemT, E)) 1270 return false; 1271 } 1272 break; 1273 case BO_Mul: 1274 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1275 return false; 1276 1277 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1278 return false; 1279 1280 if (ResultElemT == PT_Float) { 1281 if (!this->emitMulf(getFPOptions(E), E)) 1282 return false; 1283 } else { 1284 if (!this->emitMul(ResultElemT, E)) 1285 return false; 1286 } 1287 break; 1288 case BO_Div: 1289 assert(!RHSIsComplex); 1290 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1291 return false; 1292 1293 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1294 return false; 1295 1296 if (ResultElemT == PT_Float) { 1297 if (!this->emitDivf(getFPOptions(E), E)) 1298 return false; 1299 } else { 1300 if (!this->emitDiv(ResultElemT, E)) 1301 return false; 1302 } 1303 break; 1304 1305 default: 1306 return false; 1307 } 1308 1309 if (!this->DiscardResult) { 1310 // Initialize array element with the value we just computed. 1311 if (!this->emitInitElemPop(ResultElemT, ElemIndex, E)) 1312 return false; 1313 } else { 1314 if (!this->emitPop(ResultElemT, E)) 1315 return false; 1316 } 1317 } 1318 return true; 1319 } 1320 1321 template <class Emitter> 1322 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) { 1323 assert(!E->isCommaOp() && 1324 "Comma op should be handled in VisitBinaryOperator"); 1325 assert(E->getType()->isVectorType()); 1326 assert(E->getLHS()->getType()->isVectorType()); 1327 assert(E->getRHS()->getType()->isVectorType()); 1328 1329 // Prepare storage for result. 1330 if (!Initializing && !E->isCompoundAssignmentOp()) { 1331 unsigned LocalIndex = allocateTemporary(E); 1332 if (!this->emitGetPtrLocal(LocalIndex, E)) 1333 return false; 1334 } 1335 1336 const Expr *LHS = E->getLHS(); 1337 const Expr *RHS = E->getRHS(); 1338 const auto *VecTy = E->getType()->getAs<VectorType>(); 1339 auto Op = E->isCompoundAssignmentOp() 1340 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode()) 1341 : E->getOpcode(); 1342 1343 PrimType ElemT = this->classifyVectorElementType(LHS->getType()); 1344 PrimType RHSElemT = this->classifyVectorElementType(RHS->getType()); 1345 PrimType ResultElemT = this->classifyVectorElementType(E->getType()); 1346 1347 // Evaluate LHS and save value to LHSOffset. 1348 unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1349 if (!this->visit(LHS)) 1350 return false; 1351 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1352 return false; 1353 1354 // Evaluate RHS and save value to RHSOffset. 1355 unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1356 if (!this->visit(RHS)) 1357 return false; 1358 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1359 return false; 1360 1361 if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E)) 1362 return false; 1363 1364 // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the 1365 // integer promotion. 1366 bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp()); 1367 QualType PromotTy = 1368 Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy); 1369 PrimType PromotT = classifyPrim(PromotTy); 1370 PrimType OpT = NeedIntPromot ? PromotT : ElemT; 1371 1372 auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) { 1373 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1374 return false; 1375 if (!this->emitArrayElemPop(ElemT, Index, E)) 1376 return false; 1377 if (E->isLogicalOp()) { 1378 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 1379 return false; 1380 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1381 return false; 1382 } else if (NeedIntPromot) { 1383 if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E)) 1384 return false; 1385 } 1386 return true; 1387 }; 1388 1389 #define EMIT_ARITH_OP(OP) \ 1390 { \ 1391 if (ElemT == PT_Float) { \ 1392 if (!this->emit##OP##f(getFPOptions(E), E)) \ 1393 return false; \ 1394 } else { \ 1395 if (!this->emit##OP(ElemT, E)) \ 1396 return false; \ 1397 } \ 1398 break; \ 1399 } 1400 1401 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 1402 if (!getElem(LHSOffset, ElemT, I)) 1403 return false; 1404 if (!getElem(RHSOffset, RHSElemT, I)) 1405 return false; 1406 switch (Op) { 1407 case BO_Add: 1408 EMIT_ARITH_OP(Add) 1409 case BO_Sub: 1410 EMIT_ARITH_OP(Sub) 1411 case BO_Mul: 1412 EMIT_ARITH_OP(Mul) 1413 case BO_Div: 1414 EMIT_ARITH_OP(Div) 1415 case BO_Rem: 1416 if (!this->emitRem(ElemT, E)) 1417 return false; 1418 break; 1419 case BO_And: 1420 if (!this->emitBitAnd(OpT, E)) 1421 return false; 1422 break; 1423 case BO_Or: 1424 if (!this->emitBitOr(OpT, E)) 1425 return false; 1426 break; 1427 case BO_Xor: 1428 if (!this->emitBitXor(OpT, E)) 1429 return false; 1430 break; 1431 case BO_Shl: 1432 if (!this->emitShl(OpT, RHSElemT, E)) 1433 return false; 1434 break; 1435 case BO_Shr: 1436 if (!this->emitShr(OpT, RHSElemT, E)) 1437 return false; 1438 break; 1439 case BO_EQ: 1440 if (!this->emitEQ(ElemT, E)) 1441 return false; 1442 break; 1443 case BO_NE: 1444 if (!this->emitNE(ElemT, E)) 1445 return false; 1446 break; 1447 case BO_LE: 1448 if (!this->emitLE(ElemT, E)) 1449 return false; 1450 break; 1451 case BO_LT: 1452 if (!this->emitLT(ElemT, E)) 1453 return false; 1454 break; 1455 case BO_GE: 1456 if (!this->emitGE(ElemT, E)) 1457 return false; 1458 break; 1459 case BO_GT: 1460 if (!this->emitGT(ElemT, E)) 1461 return false; 1462 break; 1463 case BO_LAnd: 1464 // a && b is equivalent to a!=0 & b!=0 1465 if (!this->emitBitAnd(ResultElemT, E)) 1466 return false; 1467 break; 1468 case BO_LOr: 1469 // a || b is equivalent to a!=0 | b!=0 1470 if (!this->emitBitOr(ResultElemT, E)) 1471 return false; 1472 break; 1473 default: 1474 return this->emitInvalid(E); 1475 } 1476 1477 // The result of the comparison is a vector of the same width and number 1478 // of elements as the comparison operands with a signed integral element 1479 // type. 1480 // 1481 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 1482 if (E->isComparisonOp()) { 1483 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1484 return false; 1485 if (!this->emitNeg(ResultElemT, E)) 1486 return false; 1487 } 1488 1489 // If we performed an integer promotion, we need to cast the compute result 1490 // into result vector element type. 1491 if (NeedIntPromot && 1492 !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E)) 1493 return false; 1494 1495 // Initialize array element with the value we just computed. 1496 if (!this->emitInitElem(ResultElemT, I, E)) 1497 return false; 1498 } 1499 1500 if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E)) 1501 return false; 1502 return true; 1503 } 1504 1505 template <class Emitter> 1506 bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) { 1507 const Expr *LHS = E->getLHS(); 1508 const Expr *RHS = E->getRHS(); 1509 1510 assert(LHS->getType()->isFixedPointType() || 1511 RHS->getType()->isFixedPointType()); 1512 1513 auto LHSSema = Ctx.getASTContext().getFixedPointSemantics(LHS->getType()); 1514 auto RHSSema = Ctx.getASTContext().getFixedPointSemantics(RHS->getType()); 1515 1516 if (!this->visit(LHS)) 1517 return false; 1518 if (!LHS->getType()->isFixedPointType()) { 1519 uint32_t I; 1520 std::memcpy(&I, &LHSSema, sizeof(llvm::FixedPointSemantics)); 1521 if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()), I, E)) 1522 return false; 1523 } 1524 1525 if (!this->visit(RHS)) 1526 return false; 1527 if (!RHS->getType()->isFixedPointType()) { 1528 uint32_t I; 1529 std::memcpy(&I, &RHSSema, sizeof(llvm::FixedPointSemantics)); 1530 if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()), I, E)) 1531 return false; 1532 } 1533 1534 // Convert the result to the target semantics. 1535 auto ConvertResult = [&](bool R) -> bool { 1536 if (!R) 1537 return false; 1538 auto ResultSema = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 1539 auto CommonSema = LHSSema.getCommonSemantics(RHSSema); 1540 if (ResultSema != CommonSema) { 1541 uint32_t I; 1542 std::memcpy(&I, &ResultSema, sizeof(ResultSema)); 1543 return this->emitCastFixedPoint(I, E); 1544 } 1545 return true; 1546 }; 1547 1548 auto MaybeCastToBool = [&](bool Result) { 1549 if (!Result) 1550 return false; 1551 PrimType T = classifyPrim(E); 1552 if (DiscardResult) 1553 return this->emitPop(T, E); 1554 if (T != PT_Bool) 1555 return this->emitCast(PT_Bool, T, E); 1556 return true; 1557 }; 1558 1559 switch (E->getOpcode()) { 1560 case BO_EQ: 1561 return MaybeCastToBool(this->emitEQFixedPoint(E)); 1562 case BO_NE: 1563 return MaybeCastToBool(this->emitNEFixedPoint(E)); 1564 case BO_LT: 1565 return MaybeCastToBool(this->emitLTFixedPoint(E)); 1566 case BO_LE: 1567 return MaybeCastToBool(this->emitLEFixedPoint(E)); 1568 case BO_GT: 1569 return MaybeCastToBool(this->emitGTFixedPoint(E)); 1570 case BO_GE: 1571 return MaybeCastToBool(this->emitGEFixedPoint(E)); 1572 case BO_Add: 1573 return ConvertResult(this->emitAddFixedPoint(E)); 1574 case BO_Sub: 1575 return ConvertResult(this->emitSubFixedPoint(E)); 1576 case BO_Mul: 1577 return ConvertResult(this->emitMulFixedPoint(E)); 1578 case BO_Div: 1579 return ConvertResult(this->emitDivFixedPoint(E)); 1580 case BO_Shl: 1581 return ConvertResult(this->emitShiftFixedPoint(/*Left=*/true, E)); 1582 case BO_Shr: 1583 return ConvertResult(this->emitShiftFixedPoint(/*Left=*/false, E)); 1584 1585 default: 1586 return this->emitInvalid(E); 1587 } 1588 1589 llvm_unreachable("unhandled binop opcode"); 1590 } 1591 1592 template <class Emitter> 1593 bool Compiler<Emitter>::VisitFixedPointUnaryOperator(const UnaryOperator *E) { 1594 const Expr *SubExpr = E->getSubExpr(); 1595 assert(SubExpr->getType()->isFixedPointType()); 1596 1597 switch (E->getOpcode()) { 1598 case UO_Plus: 1599 return this->delegate(SubExpr); 1600 case UO_Minus: 1601 if (!this->visit(SubExpr)) 1602 return false; 1603 return this->emitNegFixedPoint(E); 1604 default: 1605 return false; 1606 } 1607 1608 llvm_unreachable("Unhandled unary opcode"); 1609 } 1610 1611 template <class Emitter> 1612 bool Compiler<Emitter>::VisitImplicitValueInitExpr( 1613 const ImplicitValueInitExpr *E) { 1614 QualType QT = E->getType(); 1615 1616 if (std::optional<PrimType> T = classify(QT)) 1617 return this->visitZeroInitializer(*T, QT, E); 1618 1619 if (QT->isRecordType()) { 1620 const RecordDecl *RD = QT->getAsRecordDecl(); 1621 assert(RD); 1622 if (RD->isInvalidDecl()) 1623 return false; 1624 1625 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1626 CXXRD && CXXRD->getNumVBases() > 0) { 1627 // TODO: Diagnose. 1628 return false; 1629 } 1630 1631 const Record *R = getRecord(QT); 1632 if (!R) 1633 return false; 1634 1635 assert(Initializing); 1636 return this->visitZeroRecordInitializer(R, E); 1637 } 1638 1639 if (QT->isIncompleteArrayType()) 1640 return true; 1641 1642 if (QT->isArrayType()) { 1643 const ArrayType *AT = QT->getAsArrayTypeUnsafe(); 1644 assert(AT); 1645 const auto *CAT = cast<ConstantArrayType>(AT); 1646 size_t NumElems = CAT->getZExtSize(); 1647 PrimType ElemT = classifyPrim(CAT->getElementType()); 1648 1649 for (size_t I = 0; I != NumElems; ++I) { 1650 if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E)) 1651 return false; 1652 if (!this->emitInitElem(ElemT, I, E)) 1653 return false; 1654 } 1655 1656 return true; 1657 } 1658 1659 if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) { 1660 assert(Initializing); 1661 QualType ElemQT = ComplexTy->getElementType(); 1662 PrimType ElemT = classifyPrim(ElemQT); 1663 for (unsigned I = 0; I < 2; ++I) { 1664 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1665 return false; 1666 if (!this->emitInitElem(ElemT, I, E)) 1667 return false; 1668 } 1669 return true; 1670 } 1671 1672 if (const auto *VecT = E->getType()->getAs<VectorType>()) { 1673 unsigned NumVecElements = VecT->getNumElements(); 1674 QualType ElemQT = VecT->getElementType(); 1675 PrimType ElemT = classifyPrim(ElemQT); 1676 1677 for (unsigned I = 0; I < NumVecElements; ++I) { 1678 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1679 return false; 1680 if (!this->emitInitElem(ElemT, I, E)) 1681 return false; 1682 } 1683 return true; 1684 } 1685 1686 return false; 1687 } 1688 1689 template <class Emitter> 1690 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1691 const Expr *LHS = E->getLHS(); 1692 const Expr *RHS = E->getRHS(); 1693 const Expr *Index = E->getIdx(); 1694 1695 if (DiscardResult) 1696 return this->discard(LHS) && this->discard(RHS); 1697 1698 // C++17's rules require us to evaluate the LHS first, regardless of which 1699 // side is the base. 1700 bool Success = true; 1701 for (const Expr *SubExpr : {LHS, RHS}) { 1702 if (!this->visit(SubExpr)) 1703 Success = false; 1704 } 1705 1706 if (!Success) 1707 return false; 1708 1709 PrimType IndexT = classifyPrim(Index->getType()); 1710 // If the index is first, we need to change that. 1711 if (LHS == Index) { 1712 if (!this->emitFlip(PT_Ptr, IndexT, E)) 1713 return false; 1714 } 1715 1716 return this->emitArrayElemPtrPop(IndexT, E); 1717 } 1718 1719 template <class Emitter> 1720 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits, 1721 const Expr *ArrayFiller, const Expr *E) { 1722 QualType QT = E->getType(); 1723 if (const auto *AT = QT->getAs<AtomicType>()) 1724 QT = AT->getValueType(); 1725 1726 if (QT->isVoidType()) { 1727 if (Inits.size() == 0) 1728 return true; 1729 return this->emitInvalid(E); 1730 } 1731 1732 // Handle discarding first. 1733 if (DiscardResult) { 1734 for (const Expr *Init : Inits) { 1735 if (!this->discard(Init)) 1736 return false; 1737 } 1738 return true; 1739 } 1740 1741 // Primitive values. 1742 if (std::optional<PrimType> T = classify(QT)) { 1743 assert(!DiscardResult); 1744 if (Inits.size() == 0) 1745 return this->visitZeroInitializer(*T, QT, E); 1746 assert(Inits.size() == 1); 1747 return this->delegate(Inits[0]); 1748 } 1749 1750 if (QT->isRecordType()) { 1751 const Record *R = getRecord(QT); 1752 1753 if (Inits.size() == 1 && E->getType() == Inits[0]->getType()) 1754 return this->delegate(Inits[0]); 1755 1756 auto initPrimitiveField = [=](const Record::Field *FieldToInit, 1757 const Expr *Init, PrimType T) -> bool { 1758 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1759 if (!this->visit(Init)) 1760 return false; 1761 1762 if (FieldToInit->isBitField()) 1763 return this->emitInitBitField(T, FieldToInit, E); 1764 return this->emitInitField(T, FieldToInit->Offset, E); 1765 }; 1766 1767 auto initCompositeField = [=](const Record::Field *FieldToInit, 1768 const Expr *Init) -> bool { 1769 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1770 InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset)); 1771 // Non-primitive case. Get a pointer to the field-to-initialize 1772 // on the stack and recurse into visitInitializer(). 1773 if (!this->emitGetPtrField(FieldToInit->Offset, Init)) 1774 return false; 1775 if (!this->visitInitializer(Init)) 1776 return false; 1777 return this->emitPopPtr(E); 1778 }; 1779 1780 if (R->isUnion()) { 1781 if (Inits.size() == 0) { 1782 if (!this->visitZeroRecordInitializer(R, E)) 1783 return false; 1784 } else { 1785 const Expr *Init = Inits[0]; 1786 const FieldDecl *FToInit = nullptr; 1787 if (const auto *ILE = dyn_cast<InitListExpr>(E)) 1788 FToInit = ILE->getInitializedFieldInUnion(); 1789 else 1790 FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion(); 1791 1792 const Record::Field *FieldToInit = R->getField(FToInit); 1793 if (std::optional<PrimType> T = classify(Init)) { 1794 if (!initPrimitiveField(FieldToInit, Init, *T)) 1795 return false; 1796 } else { 1797 if (!initCompositeField(FieldToInit, Init)) 1798 return false; 1799 } 1800 } 1801 return this->emitFinishInit(E); 1802 } 1803 1804 assert(!R->isUnion()); 1805 unsigned InitIndex = 0; 1806 for (const Expr *Init : Inits) { 1807 // Skip unnamed bitfields. 1808 while (InitIndex < R->getNumFields() && 1809 R->getField(InitIndex)->Decl->isUnnamedBitField()) 1810 ++InitIndex; 1811 1812 if (std::optional<PrimType> T = classify(Init)) { 1813 const Record::Field *FieldToInit = R->getField(InitIndex); 1814 if (!initPrimitiveField(FieldToInit, Init, *T)) 1815 return false; 1816 ++InitIndex; 1817 } else { 1818 // Initializer for a direct base class. 1819 if (const Record::Base *B = R->getBase(Init->getType())) { 1820 if (!this->emitGetPtrBase(B->Offset, Init)) 1821 return false; 1822 1823 if (!this->visitInitializer(Init)) 1824 return false; 1825 1826 if (!this->emitFinishInitPop(E)) 1827 return false; 1828 // Base initializers don't increase InitIndex, since they don't count 1829 // into the Record's fields. 1830 } else { 1831 const Record::Field *FieldToInit = R->getField(InitIndex); 1832 if (!initCompositeField(FieldToInit, Init)) 1833 return false; 1834 ++InitIndex; 1835 } 1836 } 1837 } 1838 return this->emitFinishInit(E); 1839 } 1840 1841 if (QT->isArrayType()) { 1842 if (Inits.size() == 1 && QT == Inits[0]->getType()) 1843 return this->delegate(Inits[0]); 1844 1845 unsigned ElementIndex = 0; 1846 for (const Expr *Init : Inits) { 1847 if (const auto *EmbedS = 1848 dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 1849 PrimType TargetT = classifyPrim(Init->getType()); 1850 1851 auto Eval = [&](const Expr *Init, unsigned ElemIndex) { 1852 PrimType InitT = classifyPrim(Init->getType()); 1853 if (!this->visit(Init)) 1854 return false; 1855 if (InitT != TargetT) { 1856 if (!this->emitCast(InitT, TargetT, E)) 1857 return false; 1858 } 1859 return this->emitInitElem(TargetT, ElemIndex, Init); 1860 }; 1861 if (!EmbedS->doForEachDataElement(Eval, ElementIndex)) 1862 return false; 1863 } else { 1864 if (!this->visitArrayElemInit(ElementIndex, Init)) 1865 return false; 1866 ++ElementIndex; 1867 } 1868 } 1869 1870 // Expand the filler expression. 1871 // FIXME: This should go away. 1872 if (ArrayFiller) { 1873 const ConstantArrayType *CAT = 1874 Ctx.getASTContext().getAsConstantArrayType(QT); 1875 uint64_t NumElems = CAT->getZExtSize(); 1876 1877 for (; ElementIndex != NumElems; ++ElementIndex) { 1878 if (!this->visitArrayElemInit(ElementIndex, ArrayFiller)) 1879 return false; 1880 } 1881 } 1882 1883 return this->emitFinishInit(E); 1884 } 1885 1886 if (const auto *ComplexTy = QT->getAs<ComplexType>()) { 1887 unsigned NumInits = Inits.size(); 1888 1889 if (NumInits == 1) 1890 return this->delegate(Inits[0]); 1891 1892 QualType ElemQT = ComplexTy->getElementType(); 1893 PrimType ElemT = classifyPrim(ElemQT); 1894 if (NumInits == 0) { 1895 // Zero-initialize both elements. 1896 for (unsigned I = 0; I < 2; ++I) { 1897 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1898 return false; 1899 if (!this->emitInitElem(ElemT, I, E)) 1900 return false; 1901 } 1902 } else if (NumInits == 2) { 1903 unsigned InitIndex = 0; 1904 for (const Expr *Init : Inits) { 1905 if (!this->visit(Init)) 1906 return false; 1907 1908 if (!this->emitInitElem(ElemT, InitIndex, E)) 1909 return false; 1910 ++InitIndex; 1911 } 1912 } 1913 return true; 1914 } 1915 1916 if (const auto *VecT = QT->getAs<VectorType>()) { 1917 unsigned NumVecElements = VecT->getNumElements(); 1918 assert(NumVecElements >= Inits.size()); 1919 1920 QualType ElemQT = VecT->getElementType(); 1921 PrimType ElemT = classifyPrim(ElemQT); 1922 1923 // All initializer elements. 1924 unsigned InitIndex = 0; 1925 for (const Expr *Init : Inits) { 1926 if (!this->visit(Init)) 1927 return false; 1928 1929 // If the initializer is of vector type itself, we have to deconstruct 1930 // that and initialize all the target fields from the initializer fields. 1931 if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) { 1932 if (!this->emitCopyArray(ElemT, 0, InitIndex, 1933 InitVecT->getNumElements(), E)) 1934 return false; 1935 InitIndex += InitVecT->getNumElements(); 1936 } else { 1937 if (!this->emitInitElem(ElemT, InitIndex, E)) 1938 return false; 1939 ++InitIndex; 1940 } 1941 } 1942 1943 assert(InitIndex <= NumVecElements); 1944 1945 // Fill the rest with zeroes. 1946 for (; InitIndex != NumVecElements; ++InitIndex) { 1947 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1948 return false; 1949 if (!this->emitInitElem(ElemT, InitIndex, E)) 1950 return false; 1951 } 1952 return true; 1953 } 1954 1955 return false; 1956 } 1957 1958 /// Pointer to the array(not the element!) must be on the stack when calling 1959 /// this. 1960 template <class Emitter> 1961 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex, 1962 const Expr *Init) { 1963 if (std::optional<PrimType> T = classify(Init->getType())) { 1964 // Visit the primitive element like normal. 1965 if (!this->visit(Init)) 1966 return false; 1967 return this->emitInitElem(*T, ElemIndex, Init); 1968 } 1969 1970 InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex)); 1971 // Advance the pointer currently on the stack to the given 1972 // dimension. 1973 if (!this->emitConstUint32(ElemIndex, Init)) 1974 return false; 1975 if (!this->emitArrayElemPtrUint32(Init)) 1976 return false; 1977 if (!this->visitInitializer(Init)) 1978 return false; 1979 return this->emitFinishInitPop(Init); 1980 } 1981 1982 template <class Emitter> 1983 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) { 1984 return this->visitInitList(E->inits(), E->getArrayFiller(), E); 1985 } 1986 1987 template <class Emitter> 1988 bool Compiler<Emitter>::VisitCXXParenListInitExpr( 1989 const CXXParenListInitExpr *E) { 1990 return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E); 1991 } 1992 1993 template <class Emitter> 1994 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr( 1995 const SubstNonTypeTemplateParmExpr *E) { 1996 return this->delegate(E->getReplacement()); 1997 } 1998 1999 template <class Emitter> 2000 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) { 2001 std::optional<PrimType> T = classify(E->getType()); 2002 if (T && E->hasAPValueResult()) { 2003 // Try to emit the APValue directly, without visiting the subexpr. 2004 // This will only fail if we can't emit the APValue, so won't emit any 2005 // diagnostics or any double values. 2006 if (DiscardResult) 2007 return true; 2008 2009 if (this->visitAPValue(E->getAPValueResult(), *T, E)) 2010 return true; 2011 } 2012 return this->delegate(E->getSubExpr()); 2013 } 2014 2015 template <class Emitter> 2016 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) { 2017 auto It = E->begin(); 2018 return this->visit(*It); 2019 } 2020 2021 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx, 2022 UnaryExprOrTypeTrait Kind) { 2023 bool AlignOfReturnsPreferred = 2024 ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 2025 2026 // C++ [expr.alignof]p3: 2027 // When alignof is applied to a reference type, the result is the 2028 // alignment of the referenced type. 2029 if (const auto *Ref = T->getAs<ReferenceType>()) 2030 T = Ref->getPointeeType(); 2031 2032 if (T.getQualifiers().hasUnaligned()) 2033 return CharUnits::One(); 2034 2035 // __alignof is defined to return the preferred alignment. 2036 // Before 8, clang returned the preferred alignment for alignof and 2037 // _Alignof as well. 2038 if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 2039 return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T)); 2040 2041 return ASTCtx.getTypeAlignInChars(T); 2042 } 2043 2044 template <class Emitter> 2045 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr( 2046 const UnaryExprOrTypeTraitExpr *E) { 2047 UnaryExprOrTypeTrait Kind = E->getKind(); 2048 const ASTContext &ASTCtx = Ctx.getASTContext(); 2049 2050 if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) { 2051 QualType ArgType = E->getTypeOfArgument(); 2052 2053 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 2054 // the result is the size of the referenced type." 2055 if (const auto *Ref = ArgType->getAs<ReferenceType>()) 2056 ArgType = Ref->getPointeeType(); 2057 2058 CharUnits Size; 2059 if (ArgType->isVoidType() || ArgType->isFunctionType()) 2060 Size = CharUnits::One(); 2061 else { 2062 if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) 2063 return false; 2064 2065 if (Kind == UETT_SizeOf) 2066 Size = ASTCtx.getTypeSizeInChars(ArgType); 2067 else 2068 Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width; 2069 } 2070 2071 if (DiscardResult) 2072 return true; 2073 2074 return this->emitConst(Size.getQuantity(), E); 2075 } 2076 2077 if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) { 2078 CharUnits Size; 2079 2080 if (E->isArgumentType()) { 2081 QualType ArgType = E->getTypeOfArgument(); 2082 2083 Size = AlignOfType(ArgType, ASTCtx, Kind); 2084 } else { 2085 // Argument is an expression, not a type. 2086 const Expr *Arg = E->getArgumentExpr()->IgnoreParens(); 2087 2088 // The kinds of expressions that we have special-case logic here for 2089 // should be kept up to date with the special checks for those 2090 // expressions in Sema. 2091 2092 // alignof decl is always accepted, even if it doesn't make sense: we 2093 // default to 1 in those cases. 2094 if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg)) 2095 Size = ASTCtx.getDeclAlign(DRE->getDecl(), 2096 /*RefAsPointee*/ true); 2097 else if (const auto *ME = dyn_cast<MemberExpr>(Arg)) 2098 Size = ASTCtx.getDeclAlign(ME->getMemberDecl(), 2099 /*RefAsPointee*/ true); 2100 else 2101 Size = AlignOfType(Arg->getType(), ASTCtx, Kind); 2102 } 2103 2104 if (DiscardResult) 2105 return true; 2106 2107 return this->emitConst(Size.getQuantity(), E); 2108 } 2109 2110 if (Kind == UETT_VectorElements) { 2111 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) 2112 return this->emitConst(VT->getNumElements(), E); 2113 assert(E->getTypeOfArgument()->isSizelessVectorType()); 2114 return this->emitSizelessVectorElementSize(E); 2115 } 2116 2117 if (Kind == UETT_VecStep) { 2118 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) { 2119 unsigned N = VT->getNumElements(); 2120 2121 // The vec_step built-in functions that take a 3-component 2122 // vector return 4. (OpenCL 1.1 spec 6.11.12) 2123 if (N == 3) 2124 N = 4; 2125 2126 return this->emitConst(N, E); 2127 } 2128 return this->emitConst(1, E); 2129 } 2130 2131 if (Kind == UETT_OpenMPRequiredSimdAlign) { 2132 assert(E->isArgumentType()); 2133 unsigned Bits = ASTCtx.getOpenMPDefaultSimdAlign(E->getArgumentType()); 2134 2135 return this->emitConst(ASTCtx.toCharUnitsFromBits(Bits).getQuantity(), E); 2136 } 2137 2138 return false; 2139 } 2140 2141 template <class Emitter> 2142 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) { 2143 // 'Base.Member' 2144 const Expr *Base = E->getBase(); 2145 const ValueDecl *Member = E->getMemberDecl(); 2146 2147 if (DiscardResult) 2148 return this->discard(Base); 2149 2150 // MemberExprs are almost always lvalues, in which case we don't need to 2151 // do the load. But sometimes they aren't. 2152 const auto maybeLoadValue = [&]() -> bool { 2153 if (E->isGLValue()) 2154 return true; 2155 if (std::optional<PrimType> T = classify(E)) 2156 return this->emitLoadPop(*T, E); 2157 return false; 2158 }; 2159 2160 if (const auto *VD = dyn_cast<VarDecl>(Member)) { 2161 // I am almost confident in saying that a var decl must be static 2162 // and therefore registered as a global variable. But this will probably 2163 // turn out to be wrong some time in the future, as always. 2164 if (auto GlobalIndex = P.getGlobal(VD)) 2165 return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue(); 2166 return false; 2167 } 2168 2169 if (!isa<FieldDecl>(Member)) { 2170 if (!this->discard(Base) && !this->emitSideEffect(E)) 2171 return false; 2172 2173 return this->visitDeclRef(Member, E); 2174 } 2175 2176 if (Initializing) { 2177 if (!this->delegate(Base)) 2178 return false; 2179 } else { 2180 if (!this->visit(Base)) 2181 return false; 2182 } 2183 2184 // Base above gives us a pointer on the stack. 2185 const auto *FD = cast<FieldDecl>(Member); 2186 const RecordDecl *RD = FD->getParent(); 2187 const Record *R = getRecord(RD); 2188 if (!R) 2189 return false; 2190 const Record::Field *F = R->getField(FD); 2191 // Leave a pointer to the field on the stack. 2192 if (F->Decl->getType()->isReferenceType()) 2193 return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue(); 2194 return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue(); 2195 } 2196 2197 template <class Emitter> 2198 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 2199 // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated 2200 // stand-alone, e.g. via EvaluateAsInt(). 2201 if (!ArrayIndex) 2202 return false; 2203 return this->emitConst(*ArrayIndex, E); 2204 } 2205 2206 template <class Emitter> 2207 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 2208 assert(Initializing); 2209 assert(!DiscardResult); 2210 2211 // We visit the common opaque expression here once so we have its value 2212 // cached. 2213 if (!this->discard(E->getCommonExpr())) 2214 return false; 2215 2216 // TODO: This compiles to quite a lot of bytecode if the array is larger. 2217 // Investigate compiling this to a loop. 2218 const Expr *SubExpr = E->getSubExpr(); 2219 size_t Size = E->getArraySize().getZExtValue(); 2220 2221 // So, every iteration, we execute an assignment here 2222 // where the LHS is on the stack (the target array) 2223 // and the RHS is our SubExpr. 2224 for (size_t I = 0; I != Size; ++I) { 2225 ArrayIndexScope<Emitter> IndexScope(this, I); 2226 BlockScope<Emitter> BS(this); 2227 2228 if (!this->visitArrayElemInit(I, SubExpr)) 2229 return false; 2230 if (!BS.destroyLocals()) 2231 return false; 2232 } 2233 return true; 2234 } 2235 2236 template <class Emitter> 2237 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 2238 const Expr *SourceExpr = E->getSourceExpr(); 2239 if (!SourceExpr) 2240 return false; 2241 2242 if (Initializing) 2243 return this->visitInitializer(SourceExpr); 2244 2245 PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr); 2246 if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end()) 2247 return this->emitGetLocal(SubExprT, It->second, E); 2248 2249 if (!this->visit(SourceExpr)) 2250 return false; 2251 2252 // At this point we either have the evaluated source expression or a pointer 2253 // to an object on the stack. We want to create a local variable that stores 2254 // this value. 2255 unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true); 2256 if (!this->emitSetLocal(SubExprT, LocalIndex, E)) 2257 return false; 2258 2259 // Here the local variable is created but the value is removed from the stack, 2260 // so we put it back if the caller needs it. 2261 if (!DiscardResult) { 2262 if (!this->emitGetLocal(SubExprT, LocalIndex, E)) 2263 return false; 2264 } 2265 2266 // This is cleaned up when the local variable is destroyed. 2267 OpaqueExprs.insert({E, LocalIndex}); 2268 2269 return true; 2270 } 2271 2272 template <class Emitter> 2273 bool Compiler<Emitter>::VisitAbstractConditionalOperator( 2274 const AbstractConditionalOperator *E) { 2275 const Expr *Condition = E->getCond(); 2276 const Expr *TrueExpr = E->getTrueExpr(); 2277 const Expr *FalseExpr = E->getFalseExpr(); 2278 2279 LabelTy LabelEnd = this->getLabel(); // Label after the operator. 2280 LabelTy LabelFalse = this->getLabel(); // Label for the false expr. 2281 2282 if (!this->visitBool(Condition)) 2283 return false; 2284 2285 if (!this->jumpFalse(LabelFalse)) 2286 return false; 2287 2288 { 2289 LocalScope<Emitter> S(this); 2290 if (!this->delegate(TrueExpr)) 2291 return false; 2292 if (!S.destroyLocals()) 2293 return false; 2294 } 2295 2296 if (!this->jump(LabelEnd)) 2297 return false; 2298 2299 this->emitLabel(LabelFalse); 2300 2301 { 2302 LocalScope<Emitter> S(this); 2303 if (!this->delegate(FalseExpr)) 2304 return false; 2305 if (!S.destroyLocals()) 2306 return false; 2307 } 2308 2309 this->fallthrough(LabelEnd); 2310 this->emitLabel(LabelEnd); 2311 2312 return true; 2313 } 2314 2315 template <class Emitter> 2316 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) { 2317 if (DiscardResult) 2318 return true; 2319 2320 if (!Initializing) { 2321 unsigned StringIndex = P.createGlobalString(E); 2322 return this->emitGetPtrGlobal(StringIndex, E); 2323 } 2324 2325 // We are initializing an array on the stack. 2326 const ConstantArrayType *CAT = 2327 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 2328 assert(CAT && "a string literal that's not a constant array?"); 2329 2330 // If the initializer string is too long, a diagnostic has already been 2331 // emitted. Read only the array length from the string literal. 2332 unsigned ArraySize = CAT->getZExtSize(); 2333 unsigned N = std::min(ArraySize, E->getLength()); 2334 size_t CharWidth = E->getCharByteWidth(); 2335 2336 for (unsigned I = 0; I != N; ++I) { 2337 uint32_t CodeUnit = E->getCodeUnit(I); 2338 2339 if (CharWidth == 1) { 2340 this->emitConstSint8(CodeUnit, E); 2341 this->emitInitElemSint8(I, E); 2342 } else if (CharWidth == 2) { 2343 this->emitConstUint16(CodeUnit, E); 2344 this->emitInitElemUint16(I, E); 2345 } else if (CharWidth == 4) { 2346 this->emitConstUint32(CodeUnit, E); 2347 this->emitInitElemUint32(I, E); 2348 } else { 2349 llvm_unreachable("unsupported character width"); 2350 } 2351 } 2352 2353 // Fill up the rest of the char array with NUL bytes. 2354 for (unsigned I = N; I != ArraySize; ++I) { 2355 if (CharWidth == 1) { 2356 this->emitConstSint8(0, E); 2357 this->emitInitElemSint8(I, E); 2358 } else if (CharWidth == 2) { 2359 this->emitConstUint16(0, E); 2360 this->emitInitElemUint16(I, E); 2361 } else if (CharWidth == 4) { 2362 this->emitConstUint32(0, E); 2363 this->emitInitElemUint32(I, E); 2364 } else { 2365 llvm_unreachable("unsupported character width"); 2366 } 2367 } 2368 2369 return true; 2370 } 2371 2372 template <class Emitter> 2373 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 2374 if (std::optional<unsigned> I = P.getOrCreateDummy(E)) 2375 return this->emitGetPtrGlobal(*I, E); 2376 return false; 2377 } 2378 2379 template <class Emitter> 2380 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 2381 auto &A = Ctx.getASTContext(); 2382 std::string Str; 2383 A.getObjCEncodingForType(E->getEncodedType(), Str); 2384 StringLiteral *SL = 2385 StringLiteral::Create(A, Str, StringLiteralKind::Ordinary, 2386 /*Pascal=*/false, E->getType(), E->getAtLoc()); 2387 return this->delegate(SL); 2388 } 2389 2390 template <class Emitter> 2391 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr( 2392 const SYCLUniqueStableNameExpr *E) { 2393 if (DiscardResult) 2394 return true; 2395 2396 assert(!Initializing); 2397 2398 auto &A = Ctx.getASTContext(); 2399 std::string ResultStr = E->ComputeName(A); 2400 2401 QualType CharTy = A.CharTy.withConst(); 2402 APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1); 2403 QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr, 2404 ArraySizeModifier::Normal, 0); 2405 2406 StringLiteral *SL = 2407 StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary, 2408 /*Pascal=*/false, ArrayTy, E->getLocation()); 2409 2410 unsigned StringIndex = P.createGlobalString(SL); 2411 return this->emitGetPtrGlobal(StringIndex, E); 2412 } 2413 2414 template <class Emitter> 2415 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) { 2416 if (DiscardResult) 2417 return true; 2418 return this->emitConst(E->getValue(), E); 2419 } 2420 2421 template <class Emitter> 2422 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator( 2423 const CompoundAssignOperator *E) { 2424 2425 const Expr *LHS = E->getLHS(); 2426 const Expr *RHS = E->getRHS(); 2427 QualType LHSType = LHS->getType(); 2428 QualType LHSComputationType = E->getComputationLHSType(); 2429 QualType ResultType = E->getComputationResultType(); 2430 std::optional<PrimType> LT = classify(LHSComputationType); 2431 std::optional<PrimType> RT = classify(ResultType); 2432 2433 assert(ResultType->isFloatingType()); 2434 2435 if (!LT || !RT) 2436 return false; 2437 2438 PrimType LHST = classifyPrim(LHSType); 2439 2440 // C++17 onwards require that we evaluate the RHS first. 2441 // Compute RHS and save it in a temporary variable so we can 2442 // load it again later. 2443 if (!visit(RHS)) 2444 return false; 2445 2446 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2447 if (!this->emitSetLocal(*RT, TempOffset, E)) 2448 return false; 2449 2450 // First, visit LHS. 2451 if (!visit(LHS)) 2452 return false; 2453 if (!this->emitLoad(LHST, E)) 2454 return false; 2455 2456 // If necessary, convert LHS to its computation type. 2457 if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType), 2458 LHSComputationType, E)) 2459 return false; 2460 2461 // Now load RHS. 2462 if (!this->emitGetLocal(*RT, TempOffset, E)) 2463 return false; 2464 2465 switch (E->getOpcode()) { 2466 case BO_AddAssign: 2467 if (!this->emitAddf(getFPOptions(E), E)) 2468 return false; 2469 break; 2470 case BO_SubAssign: 2471 if (!this->emitSubf(getFPOptions(E), E)) 2472 return false; 2473 break; 2474 case BO_MulAssign: 2475 if (!this->emitMulf(getFPOptions(E), E)) 2476 return false; 2477 break; 2478 case BO_DivAssign: 2479 if (!this->emitDivf(getFPOptions(E), E)) 2480 return false; 2481 break; 2482 default: 2483 return false; 2484 } 2485 2486 if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E)) 2487 return false; 2488 2489 if (DiscardResult) 2490 return this->emitStorePop(LHST, E); 2491 return this->emitStore(LHST, E); 2492 } 2493 2494 template <class Emitter> 2495 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator( 2496 const CompoundAssignOperator *E) { 2497 BinaryOperatorKind Op = E->getOpcode(); 2498 const Expr *LHS = E->getLHS(); 2499 const Expr *RHS = E->getRHS(); 2500 std::optional<PrimType> LT = classify(LHS->getType()); 2501 std::optional<PrimType> RT = classify(RHS->getType()); 2502 2503 if (Op != BO_AddAssign && Op != BO_SubAssign) 2504 return false; 2505 2506 if (!LT || !RT) 2507 return false; 2508 2509 if (!visit(LHS)) 2510 return false; 2511 2512 if (!this->emitLoad(*LT, LHS)) 2513 return false; 2514 2515 if (!visit(RHS)) 2516 return false; 2517 2518 if (Op == BO_AddAssign) { 2519 if (!this->emitAddOffset(*RT, E)) 2520 return false; 2521 } else { 2522 if (!this->emitSubOffset(*RT, E)) 2523 return false; 2524 } 2525 2526 if (DiscardResult) 2527 return this->emitStorePopPtr(E); 2528 return this->emitStorePtr(E); 2529 } 2530 2531 template <class Emitter> 2532 bool Compiler<Emitter>::VisitCompoundAssignOperator( 2533 const CompoundAssignOperator *E) { 2534 if (E->getType()->isVectorType()) 2535 return VisitVectorBinOp(E); 2536 2537 const Expr *LHS = E->getLHS(); 2538 const Expr *RHS = E->getRHS(); 2539 std::optional<PrimType> LHSComputationT = 2540 classify(E->getComputationLHSType()); 2541 std::optional<PrimType> LT = classify(LHS->getType()); 2542 std::optional<PrimType> RT = classify(RHS->getType()); 2543 std::optional<PrimType> ResultT = classify(E->getType()); 2544 2545 if (!Ctx.getLangOpts().CPlusPlus14) 2546 return this->visit(RHS) && this->visit(LHS) && this->emitError(E); 2547 2548 if (!LT || !RT || !ResultT || !LHSComputationT) 2549 return false; 2550 2551 // Handle floating point operations separately here, since they 2552 // require special care. 2553 2554 if (ResultT == PT_Float || RT == PT_Float) 2555 return VisitFloatCompoundAssignOperator(E); 2556 2557 if (E->getType()->isPointerType()) 2558 return VisitPointerCompoundAssignOperator(E); 2559 2560 assert(!E->getType()->isPointerType() && "Handled above"); 2561 assert(!E->getType()->isFloatingType() && "Handled above"); 2562 2563 // C++17 onwards require that we evaluate the RHS first. 2564 // Compute RHS and save it in a temporary variable so we can 2565 // load it again later. 2566 // FIXME: Compound assignments are unsequenced in C, so we might 2567 // have to figure out how to reject them. 2568 if (!visit(RHS)) 2569 return false; 2570 2571 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2572 2573 if (!this->emitSetLocal(*RT, TempOffset, E)) 2574 return false; 2575 2576 // Get LHS pointer, load its value and cast it to the 2577 // computation type if necessary. 2578 if (!visit(LHS)) 2579 return false; 2580 if (!this->emitLoad(*LT, E)) 2581 return false; 2582 if (LT != LHSComputationT) { 2583 if (!this->emitCast(*LT, *LHSComputationT, E)) 2584 return false; 2585 } 2586 2587 // Get the RHS value on the stack. 2588 if (!this->emitGetLocal(*RT, TempOffset, E)) 2589 return false; 2590 2591 // Perform operation. 2592 switch (E->getOpcode()) { 2593 case BO_AddAssign: 2594 if (!this->emitAdd(*LHSComputationT, E)) 2595 return false; 2596 break; 2597 case BO_SubAssign: 2598 if (!this->emitSub(*LHSComputationT, E)) 2599 return false; 2600 break; 2601 case BO_MulAssign: 2602 if (!this->emitMul(*LHSComputationT, E)) 2603 return false; 2604 break; 2605 case BO_DivAssign: 2606 if (!this->emitDiv(*LHSComputationT, E)) 2607 return false; 2608 break; 2609 case BO_RemAssign: 2610 if (!this->emitRem(*LHSComputationT, E)) 2611 return false; 2612 break; 2613 case BO_ShlAssign: 2614 if (!this->emitShl(*LHSComputationT, *RT, E)) 2615 return false; 2616 break; 2617 case BO_ShrAssign: 2618 if (!this->emitShr(*LHSComputationT, *RT, E)) 2619 return false; 2620 break; 2621 case BO_AndAssign: 2622 if (!this->emitBitAnd(*LHSComputationT, E)) 2623 return false; 2624 break; 2625 case BO_XorAssign: 2626 if (!this->emitBitXor(*LHSComputationT, E)) 2627 return false; 2628 break; 2629 case BO_OrAssign: 2630 if (!this->emitBitOr(*LHSComputationT, E)) 2631 return false; 2632 break; 2633 default: 2634 llvm_unreachable("Unimplemented compound assign operator"); 2635 } 2636 2637 // And now cast from LHSComputationT to ResultT. 2638 if (ResultT != LHSComputationT) { 2639 if (!this->emitCast(*LHSComputationT, *ResultT, E)) 2640 return false; 2641 } 2642 2643 // And store the result in LHS. 2644 if (DiscardResult) { 2645 if (LHS->refersToBitField()) 2646 return this->emitStoreBitFieldPop(*ResultT, E); 2647 return this->emitStorePop(*ResultT, E); 2648 } 2649 if (LHS->refersToBitField()) 2650 return this->emitStoreBitField(*ResultT, E); 2651 return this->emitStore(*ResultT, E); 2652 } 2653 2654 template <class Emitter> 2655 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) { 2656 LocalScope<Emitter> ES(this); 2657 const Expr *SubExpr = E->getSubExpr(); 2658 2659 return this->delegate(SubExpr) && ES.destroyLocals(E); 2660 } 2661 2662 template <class Emitter> 2663 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr( 2664 const MaterializeTemporaryExpr *E) { 2665 const Expr *SubExpr = E->getSubExpr(); 2666 2667 if (Initializing) { 2668 // We already have a value, just initialize that. 2669 return this->delegate(SubExpr); 2670 } 2671 // If we don't end up using the materialized temporary anyway, don't 2672 // bother creating it. 2673 if (DiscardResult) 2674 return this->discard(SubExpr); 2675 2676 // When we're initializing a global variable *or* the storage duration of 2677 // the temporary is explicitly static, create a global variable. 2678 std::optional<PrimType> SubExprT = classify(SubExpr); 2679 bool IsStatic = E->getStorageDuration() == SD_Static; 2680 if (IsStatic) { 2681 std::optional<unsigned> GlobalIndex = P.createGlobal(E); 2682 if (!GlobalIndex) 2683 return false; 2684 2685 const LifetimeExtendedTemporaryDecl *TempDecl = 2686 E->getLifetimeExtendedTemporaryDecl(); 2687 if (IsStatic) 2688 assert(TempDecl); 2689 2690 if (SubExprT) { 2691 if (!this->visit(SubExpr)) 2692 return false; 2693 if (IsStatic) { 2694 if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E)) 2695 return false; 2696 } else { 2697 if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E)) 2698 return false; 2699 } 2700 return this->emitGetPtrGlobal(*GlobalIndex, E); 2701 } 2702 2703 if (!this->checkLiteralType(SubExpr)) 2704 return false; 2705 // Non-primitive values. 2706 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2707 return false; 2708 if (!this->visitInitializer(SubExpr)) 2709 return false; 2710 if (IsStatic) 2711 return this->emitInitGlobalTempComp(TempDecl, E); 2712 return true; 2713 } 2714 2715 // For everyhing else, use local variables. 2716 if (SubExprT) { 2717 unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true, 2718 /*IsExtended=*/true); 2719 if (!this->visit(SubExpr)) 2720 return false; 2721 if (!this->emitSetLocal(*SubExprT, LocalIndex, E)) 2722 return false; 2723 return this->emitGetPtrLocal(LocalIndex, E); 2724 } else { 2725 2726 if (!this->checkLiteralType(SubExpr)) 2727 return false; 2728 2729 const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); 2730 if (std::optional<unsigned> LocalIndex = 2731 allocateLocal(E, Inner->getType(), E->getExtendingDecl())) { 2732 InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); 2733 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2734 return false; 2735 return this->visitInitializer(SubExpr); 2736 } 2737 } 2738 return false; 2739 } 2740 2741 template <class Emitter> 2742 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr( 2743 const CXXBindTemporaryExpr *E) { 2744 return this->delegate(E->getSubExpr()); 2745 } 2746 2747 template <class Emitter> 2748 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 2749 const Expr *Init = E->getInitializer(); 2750 if (DiscardResult) 2751 return this->discard(Init); 2752 2753 if (Initializing) { 2754 // We already have a value, just initialize that. 2755 return this->visitInitializer(Init) && this->emitFinishInit(E); 2756 } 2757 2758 std::optional<PrimType> T = classify(E->getType()); 2759 if (E->isFileScope()) { 2760 // Avoid creating a variable if this is a primitive RValue anyway. 2761 if (T && !E->isLValue()) 2762 return this->delegate(Init); 2763 2764 if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) { 2765 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2766 return false; 2767 2768 if (T) { 2769 if (!this->visit(Init)) 2770 return false; 2771 return this->emitInitGlobal(*T, *GlobalIndex, E); 2772 } 2773 2774 return this->visitInitializer(Init) && this->emitFinishInit(E); 2775 } 2776 2777 return false; 2778 } 2779 2780 // Otherwise, use a local variable. 2781 if (T && !E->isLValue()) { 2782 // For primitive types, we just visit the initializer. 2783 return this->delegate(Init); 2784 } else { 2785 unsigned LocalIndex; 2786 2787 if (T) 2788 LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false); 2789 else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init)) 2790 LocalIndex = *MaybeIndex; 2791 else 2792 return false; 2793 2794 if (!this->emitGetPtrLocal(LocalIndex, E)) 2795 return false; 2796 2797 if (T) { 2798 if (!this->visit(Init)) { 2799 return false; 2800 } 2801 return this->emitInit(*T, E); 2802 } else { 2803 if (!this->visitInitializer(Init) || !this->emitFinishInit(E)) 2804 return false; 2805 } 2806 return true; 2807 } 2808 2809 return false; 2810 } 2811 2812 template <class Emitter> 2813 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) { 2814 if (DiscardResult) 2815 return true; 2816 if (E->getType()->isBooleanType()) 2817 return this->emitConstBool(E->getValue(), E); 2818 return this->emitConst(E->getValue(), E); 2819 } 2820 2821 template <class Emitter> 2822 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 2823 if (DiscardResult) 2824 return true; 2825 return this->emitConst(E->getValue(), E); 2826 } 2827 2828 template <class Emitter> 2829 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) { 2830 if (DiscardResult) 2831 return true; 2832 2833 assert(Initializing); 2834 const Record *R = P.getOrCreateRecord(E->getLambdaClass()); 2835 2836 auto *CaptureInitIt = E->capture_init_begin(); 2837 // Initialize all fields (which represent lambda captures) of the 2838 // record with their initializers. 2839 for (const Record::Field &F : R->fields()) { 2840 const Expr *Init = *CaptureInitIt; 2841 ++CaptureInitIt; 2842 2843 if (!Init) 2844 continue; 2845 2846 if (std::optional<PrimType> T = classify(Init)) { 2847 if (!this->visit(Init)) 2848 return false; 2849 2850 if (!this->emitInitField(*T, F.Offset, E)) 2851 return false; 2852 } else { 2853 if (!this->emitGetPtrField(F.Offset, E)) 2854 return false; 2855 2856 if (!this->visitInitializer(Init)) 2857 return false; 2858 2859 if (!this->emitPopPtr(E)) 2860 return false; 2861 } 2862 } 2863 2864 return true; 2865 } 2866 2867 template <class Emitter> 2868 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) { 2869 if (DiscardResult) 2870 return true; 2871 2872 if (!Initializing) { 2873 unsigned StringIndex = P.createGlobalString(E->getFunctionName(), E); 2874 return this->emitGetPtrGlobal(StringIndex, E); 2875 } 2876 2877 return this->delegate(E->getFunctionName()); 2878 } 2879 2880 template <class Emitter> 2881 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) { 2882 if (E->getSubExpr() && !this->discard(E->getSubExpr())) 2883 return false; 2884 2885 return this->emitInvalid(E); 2886 } 2887 2888 template <class Emitter> 2889 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr( 2890 const CXXReinterpretCastExpr *E) { 2891 const Expr *SubExpr = E->getSubExpr(); 2892 2893 std::optional<PrimType> FromT = classify(SubExpr); 2894 std::optional<PrimType> ToT = classify(E); 2895 2896 if (!FromT || !ToT) 2897 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E); 2898 2899 if (FromT == PT_Ptr || ToT == PT_Ptr) { 2900 // Both types could be PT_Ptr because their expressions are glvalues. 2901 std::optional<PrimType> PointeeFromT; 2902 if (SubExpr->getType()->isPointerOrReferenceType()) 2903 PointeeFromT = classify(SubExpr->getType()->getPointeeType()); 2904 else 2905 PointeeFromT = classify(SubExpr->getType()); 2906 2907 std::optional<PrimType> PointeeToT; 2908 if (E->getType()->isPointerOrReferenceType()) 2909 PointeeToT = classify(E->getType()->getPointeeType()); 2910 else 2911 PointeeToT = classify(E->getType()); 2912 2913 bool Fatal = true; 2914 if (PointeeToT && PointeeFromT) { 2915 if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT)) 2916 Fatal = false; 2917 } 2918 2919 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2920 return false; 2921 2922 if (E->getCastKind() == CK_LValueBitCast) 2923 return this->delegate(SubExpr); 2924 return this->VisitCastExpr(E); 2925 } 2926 2927 // Try to actually do the cast. 2928 bool Fatal = (ToT != FromT); 2929 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2930 return false; 2931 2932 return this->VisitCastExpr(E); 2933 } 2934 2935 template <class Emitter> 2936 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 2937 assert(E->getType()->isBooleanType()); 2938 2939 if (DiscardResult) 2940 return true; 2941 return this->emitConstBool(E->getValue(), E); 2942 } 2943 2944 template <class Emitter> 2945 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) { 2946 QualType T = E->getType(); 2947 assert(!classify(T)); 2948 2949 if (T->isRecordType()) { 2950 const CXXConstructorDecl *Ctor = E->getConstructor(); 2951 2952 // Trivial copy/move constructor. Avoid copy. 2953 if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() && 2954 Ctor->isTrivial() && 2955 E->getArg(0)->isTemporaryObject(Ctx.getASTContext(), 2956 T->getAsCXXRecordDecl())) 2957 return this->visitInitializer(E->getArg(0)); 2958 2959 // If we're discarding a construct expression, we still need 2960 // to allocate a variable and call the constructor and destructor. 2961 if (DiscardResult) { 2962 if (Ctor->isTrivial()) 2963 return true; 2964 assert(!Initializing); 2965 std::optional<unsigned> LocalIndex = allocateLocal(E); 2966 2967 if (!LocalIndex) 2968 return false; 2969 2970 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2971 return false; 2972 } 2973 2974 // Zero initialization. 2975 if (E->requiresZeroInitialization()) { 2976 const Record *R = getRecord(E->getType()); 2977 2978 if (!this->visitZeroRecordInitializer(R, E)) 2979 return false; 2980 2981 // If the constructor is trivial anyway, we're done. 2982 if (Ctor->isTrivial()) 2983 return true; 2984 } 2985 2986 const Function *Func = getFunction(Ctor); 2987 2988 if (!Func) 2989 return false; 2990 2991 assert(Func->hasThisPointer()); 2992 assert(!Func->hasRVO()); 2993 2994 // The This pointer is already on the stack because this is an initializer, 2995 // but we need to dup() so the call() below has its own copy. 2996 if (!this->emitDupPtr(E)) 2997 return false; 2998 2999 // Constructor arguments. 3000 for (const auto *Arg : E->arguments()) { 3001 if (!this->visit(Arg)) 3002 return false; 3003 } 3004 3005 if (Func->isVariadic()) { 3006 uint32_t VarArgSize = 0; 3007 unsigned NumParams = Func->getNumWrittenParams(); 3008 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) { 3009 VarArgSize += 3010 align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr))); 3011 } 3012 if (!this->emitCallVar(Func, VarArgSize, E)) 3013 return false; 3014 } else { 3015 if (!this->emitCall(Func, 0, E)) { 3016 // When discarding, we don't need the result anyway, so clean up 3017 // the instance dup we did earlier in case surrounding code wants 3018 // to keep evaluating. 3019 if (DiscardResult) 3020 (void)this->emitPopPtr(E); 3021 return false; 3022 } 3023 } 3024 3025 if (DiscardResult) 3026 return this->emitPopPtr(E); 3027 return this->emitFinishInit(E); 3028 } 3029 3030 if (T->isArrayType()) { 3031 const ConstantArrayType *CAT = 3032 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 3033 if (!CAT) 3034 return false; 3035 3036 size_t NumElems = CAT->getZExtSize(); 3037 const Function *Func = getFunction(E->getConstructor()); 3038 if (!Func || !Func->isConstexpr()) 3039 return false; 3040 3041 // FIXME(perf): We're calling the constructor once per array element here, 3042 // in the old intepreter we had a special-case for trivial constructors. 3043 for (size_t I = 0; I != NumElems; ++I) { 3044 if (!this->emitConstUint64(I, E)) 3045 return false; 3046 if (!this->emitArrayElemPtrUint64(E)) 3047 return false; 3048 3049 // Constructor arguments. 3050 for (const auto *Arg : E->arguments()) { 3051 if (!this->visit(Arg)) 3052 return false; 3053 } 3054 3055 if (!this->emitCall(Func, 0, E)) 3056 return false; 3057 } 3058 return true; 3059 } 3060 3061 return false; 3062 } 3063 3064 template <class Emitter> 3065 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) { 3066 if (DiscardResult) 3067 return true; 3068 3069 const APValue Val = 3070 E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr); 3071 3072 // Things like __builtin_LINE(). 3073 if (E->getType()->isIntegerType()) { 3074 assert(Val.isInt()); 3075 const APSInt &I = Val.getInt(); 3076 return this->emitConst(I, E); 3077 } 3078 // Otherwise, the APValue is an LValue, with only one element. 3079 // Theoretically, we don't need the APValue at all of course. 3080 assert(E->getType()->isPointerType()); 3081 assert(Val.isLValue()); 3082 const APValue::LValueBase &Base = Val.getLValueBase(); 3083 if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>()) 3084 return this->visit(LValueExpr); 3085 3086 // Otherwise, we have a decl (which is the case for 3087 // __builtin_source_location). 3088 assert(Base.is<const ValueDecl *>()); 3089 assert(Val.getLValuePath().size() == 0); 3090 const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>(); 3091 assert(BaseDecl); 3092 3093 auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl); 3094 3095 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD); 3096 if (!GlobalIndex) 3097 return false; 3098 3099 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 3100 return false; 3101 3102 const Record *R = getRecord(E->getType()); 3103 const APValue &V = UGCD->getValue(); 3104 for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) { 3105 const Record::Field *F = R->getField(I); 3106 const APValue &FieldValue = V.getStructField(I); 3107 3108 PrimType FieldT = classifyPrim(F->Decl->getType()); 3109 3110 if (!this->visitAPValue(FieldValue, FieldT, E)) 3111 return false; 3112 if (!this->emitInitField(FieldT, F->Offset, E)) 3113 return false; 3114 } 3115 3116 // Leave the pointer to the global on the stack. 3117 return true; 3118 } 3119 3120 template <class Emitter> 3121 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) { 3122 unsigned N = E->getNumComponents(); 3123 if (N == 0) 3124 return false; 3125 3126 for (unsigned I = 0; I != N; ++I) { 3127 const OffsetOfNode &Node = E->getComponent(I); 3128 if (Node.getKind() == OffsetOfNode::Array) { 3129 const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex()); 3130 PrimType IndexT = classifyPrim(ArrayIndexExpr->getType()); 3131 3132 if (DiscardResult) { 3133 if (!this->discard(ArrayIndexExpr)) 3134 return false; 3135 continue; 3136 } 3137 3138 if (!this->visit(ArrayIndexExpr)) 3139 return false; 3140 // Cast to Sint64. 3141 if (IndexT != PT_Sint64) { 3142 if (!this->emitCast(IndexT, PT_Sint64, E)) 3143 return false; 3144 } 3145 } 3146 } 3147 3148 if (DiscardResult) 3149 return true; 3150 3151 PrimType T = classifyPrim(E->getType()); 3152 return this->emitOffsetOf(T, E, E); 3153 } 3154 3155 template <class Emitter> 3156 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr( 3157 const CXXScalarValueInitExpr *E) { 3158 QualType Ty = E->getType(); 3159 3160 if (DiscardResult || Ty->isVoidType()) 3161 return true; 3162 3163 if (std::optional<PrimType> T = classify(Ty)) 3164 return this->visitZeroInitializer(*T, Ty, E); 3165 3166 if (const auto *CT = Ty->getAs<ComplexType>()) { 3167 if (!Initializing) { 3168 std::optional<unsigned> LocalIndex = allocateLocal(E); 3169 if (!LocalIndex) 3170 return false; 3171 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3172 return false; 3173 } 3174 3175 // Initialize both fields to 0. 3176 QualType ElemQT = CT->getElementType(); 3177 PrimType ElemT = classifyPrim(ElemQT); 3178 3179 for (unsigned I = 0; I != 2; ++I) { 3180 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 3181 return false; 3182 if (!this->emitInitElem(ElemT, I, E)) 3183 return false; 3184 } 3185 return true; 3186 } 3187 3188 if (const auto *VT = Ty->getAs<VectorType>()) { 3189 // FIXME: Code duplication with the _Complex case above. 3190 if (!Initializing) { 3191 std::optional<unsigned> LocalIndex = allocateLocal(E); 3192 if (!LocalIndex) 3193 return false; 3194 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3195 return false; 3196 } 3197 3198 // Initialize all fields to 0. 3199 QualType ElemQT = VT->getElementType(); 3200 PrimType ElemT = classifyPrim(ElemQT); 3201 3202 for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) { 3203 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 3204 return false; 3205 if (!this->emitInitElem(ElemT, I, E)) 3206 return false; 3207 } 3208 return true; 3209 } 3210 3211 return false; 3212 } 3213 3214 template <class Emitter> 3215 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 3216 return this->emitConst(E->getPackLength(), E); 3217 } 3218 3219 template <class Emitter> 3220 bool Compiler<Emitter>::VisitGenericSelectionExpr( 3221 const GenericSelectionExpr *E) { 3222 return this->delegate(E->getResultExpr()); 3223 } 3224 3225 template <class Emitter> 3226 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) { 3227 return this->delegate(E->getChosenSubExpr()); 3228 } 3229 3230 template <class Emitter> 3231 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 3232 if (DiscardResult) 3233 return true; 3234 3235 return this->emitConst(E->getValue(), E); 3236 } 3237 3238 template <class Emitter> 3239 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr( 3240 const CXXInheritedCtorInitExpr *E) { 3241 const CXXConstructorDecl *Ctor = E->getConstructor(); 3242 assert(!Ctor->isTrivial() && 3243 "Trivial CXXInheritedCtorInitExpr, implement. (possible?)"); 3244 const Function *F = this->getFunction(Ctor); 3245 assert(F); 3246 assert(!F->hasRVO()); 3247 assert(F->hasThisPointer()); 3248 3249 if (!this->emitDupPtr(SourceInfo{})) 3250 return false; 3251 3252 // Forward all arguments of the current function (which should be a 3253 // constructor itself) to the inherited ctor. 3254 // This is necessary because the calling code has pushed the pointer 3255 // of the correct base for us already, but the arguments need 3256 // to come after. 3257 unsigned Offset = align(primSize(PT_Ptr)); // instance pointer. 3258 for (const ParmVarDecl *PD : Ctor->parameters()) { 3259 PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr); 3260 3261 if (!this->emitGetParam(PT, Offset, E)) 3262 return false; 3263 Offset += align(primSize(PT)); 3264 } 3265 3266 return this->emitCall(F, 0, E); 3267 } 3268 3269 template <class Emitter> 3270 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) { 3271 assert(classifyPrim(E->getType()) == PT_Ptr); 3272 const Expr *Init = E->getInitializer(); 3273 QualType ElementType = E->getAllocatedType(); 3274 std::optional<PrimType> ElemT = classify(ElementType); 3275 unsigned PlacementArgs = E->getNumPlacementArgs(); 3276 const FunctionDecl *OperatorNew = E->getOperatorNew(); 3277 const Expr *PlacementDest = nullptr; 3278 bool IsNoThrow = false; 3279 3280 if (PlacementArgs != 0) { 3281 // FIXME: There is no restriction on this, but it's not clear that any 3282 // other form makes any sense. We get here for cases such as: 3283 // 3284 // new (std::align_val_t{N}) X(int) 3285 // 3286 // (which should presumably be valid only if N is a multiple of 3287 // alignof(int), and in any case can't be deallocated unless N is 3288 // alignof(X) and X has new-extended alignment). 3289 if (PlacementArgs == 1) { 3290 const Expr *Arg1 = E->getPlacementArg(0); 3291 if (Arg1->getType()->isNothrowT()) { 3292 if (!this->discard(Arg1)) 3293 return false; 3294 IsNoThrow = true; 3295 } else { 3296 // Invalid unless we have C++26 or are in a std:: function. 3297 if (!this->emitInvalidNewDeleteExpr(E, E)) 3298 return false; 3299 3300 // If we have a placement-new destination, we'll later use that instead 3301 // of allocating. 3302 if (OperatorNew->isReservedGlobalPlacementOperator()) 3303 PlacementDest = Arg1; 3304 } 3305 } else { 3306 // Always invalid. 3307 return this->emitInvalid(E); 3308 } 3309 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) 3310 return this->emitInvalidNewDeleteExpr(E, E); 3311 3312 const Descriptor *Desc; 3313 if (!PlacementDest) { 3314 if (ElemT) { 3315 if (E->isArray()) 3316 Desc = nullptr; // We're not going to use it in this case. 3317 else 3318 Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD, 3319 /*IsConst=*/false, /*IsTemporary=*/false, 3320 /*IsMutable=*/false); 3321 } else { 3322 Desc = P.createDescriptor( 3323 E, ElementType.getTypePtr(), 3324 E->isArray() ? std::nullopt : Descriptor::InlineDescMD, 3325 /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init); 3326 } 3327 } 3328 3329 if (E->isArray()) { 3330 std::optional<const Expr *> ArraySizeExpr = E->getArraySize(); 3331 if (!ArraySizeExpr) 3332 return false; 3333 3334 const Expr *Stripped = *ArraySizeExpr; 3335 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 3336 Stripped = ICE->getSubExpr()) 3337 if (ICE->getCastKind() != CK_NoOp && 3338 ICE->getCastKind() != CK_IntegralCast) 3339 break; 3340 3341 PrimType SizeT = classifyPrim(Stripped->getType()); 3342 3343 if (PlacementDest) { 3344 if (!this->visit(PlacementDest)) 3345 return false; 3346 if (!this->visit(Stripped)) 3347 return false; 3348 if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E)) 3349 return false; 3350 } else { 3351 if (!this->visit(Stripped)) 3352 return false; 3353 3354 if (ElemT) { 3355 // N primitive elements. 3356 if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E)) 3357 return false; 3358 } else { 3359 // N Composite elements. 3360 if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E)) 3361 return false; 3362 } 3363 } 3364 3365 if (Init && !this->visitInitializer(Init)) 3366 return false; 3367 3368 } else { 3369 if (PlacementDest) { 3370 if (!this->visit(PlacementDest)) 3371 return false; 3372 if (!this->emitCheckNewTypeMismatch(E, E)) 3373 return false; 3374 } else { 3375 // Allocate just one element. 3376 if (!this->emitAlloc(Desc, E)) 3377 return false; 3378 } 3379 3380 if (Init) { 3381 if (ElemT) { 3382 if (!this->visit(Init)) 3383 return false; 3384 3385 if (!this->emitInit(*ElemT, E)) 3386 return false; 3387 } else { 3388 // Composite. 3389 if (!this->visitInitializer(Init)) 3390 return false; 3391 } 3392 } 3393 } 3394 3395 if (DiscardResult) 3396 return this->emitPopPtr(E); 3397 3398 return true; 3399 } 3400 3401 template <class Emitter> 3402 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 3403 const Expr *Arg = E->getArgument(); 3404 3405 const FunctionDecl *OperatorDelete = E->getOperatorDelete(); 3406 3407 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) 3408 return this->emitInvalidNewDeleteExpr(E, E); 3409 3410 // Arg must be an lvalue. 3411 if (!this->visit(Arg)) 3412 return false; 3413 3414 return this->emitFree(E->isArrayForm(), E->isGlobalDelete(), E); 3415 } 3416 3417 template <class Emitter> 3418 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) { 3419 if (DiscardResult) 3420 return true; 3421 3422 const Function *Func = nullptr; 3423 if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E)) 3424 Func = F; 3425 3426 if (!Func) 3427 return false; 3428 return this->emitGetFnPtr(Func, E); 3429 } 3430 3431 template <class Emitter> 3432 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 3433 assert(Ctx.getLangOpts().CPlusPlus); 3434 return this->emitConstBool(E->getValue(), E); 3435 } 3436 3437 template <class Emitter> 3438 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 3439 if (DiscardResult) 3440 return true; 3441 assert(!Initializing); 3442 3443 const MSGuidDecl *GuidDecl = E->getGuidDecl(); 3444 const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl(); 3445 assert(RD); 3446 // If the definiton of the result type is incomplete, just return a dummy. 3447 // If (and when) that is read from, we will fail, but not now. 3448 if (!RD->isCompleteDefinition()) { 3449 if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl)) 3450 return this->emitGetPtrGlobal(*I, E); 3451 return false; 3452 } 3453 3454 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl); 3455 if (!GlobalIndex) 3456 return false; 3457 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 3458 return false; 3459 3460 assert(this->getRecord(E->getType())); 3461 3462 const APValue &V = GuidDecl->getAsAPValue(); 3463 if (V.getKind() == APValue::None) 3464 return true; 3465 3466 assert(V.isStruct()); 3467 assert(V.getStructNumBases() == 0); 3468 if (!this->visitAPValueInitializer(V, E)) 3469 return false; 3470 3471 return this->emitFinishInit(E); 3472 } 3473 3474 template <class Emitter> 3475 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) { 3476 assert(classifyPrim(E->getType()) == PT_Bool); 3477 if (DiscardResult) 3478 return true; 3479 return this->emitConstBool(E->isSatisfied(), E); 3480 } 3481 3482 template <class Emitter> 3483 bool Compiler<Emitter>::VisitConceptSpecializationExpr( 3484 const ConceptSpecializationExpr *E) { 3485 assert(classifyPrim(E->getType()) == PT_Bool); 3486 if (DiscardResult) 3487 return true; 3488 return this->emitConstBool(E->isSatisfied(), E); 3489 } 3490 3491 template <class Emitter> 3492 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator( 3493 const CXXRewrittenBinaryOperator *E) { 3494 return this->delegate(E->getSemanticForm()); 3495 } 3496 3497 template <class Emitter> 3498 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) { 3499 3500 for (const Expr *SemE : E->semantics()) { 3501 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { 3502 if (SemE == E->getResultExpr()) 3503 return false; 3504 3505 if (OVE->isUnique()) 3506 continue; 3507 3508 if (!this->discard(OVE)) 3509 return false; 3510 } else if (SemE == E->getResultExpr()) { 3511 if (!this->delegate(SemE)) 3512 return false; 3513 } else { 3514 if (!this->discard(SemE)) 3515 return false; 3516 } 3517 } 3518 return true; 3519 } 3520 3521 template <class Emitter> 3522 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) { 3523 return this->delegate(E->getSelectedExpr()); 3524 } 3525 3526 template <class Emitter> 3527 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) { 3528 return this->emitError(E); 3529 } 3530 3531 template <class Emitter> 3532 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) { 3533 assert(E->getType()->isVoidPointerType()); 3534 3535 unsigned Offset = allocateLocalPrimitive( 3536 E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3537 3538 return this->emitGetLocal(PT_Ptr, Offset, E); 3539 } 3540 3541 template <class Emitter> 3542 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) { 3543 assert(Initializing); 3544 const auto *VT = E->getType()->castAs<VectorType>(); 3545 QualType ElemType = VT->getElementType(); 3546 PrimType ElemT = classifyPrim(ElemType); 3547 const Expr *Src = E->getSrcExpr(); 3548 QualType SrcType = Src->getType(); 3549 PrimType SrcElemT = classifyVectorElementType(SrcType); 3550 3551 unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false); 3552 if (!this->visit(Src)) 3553 return false; 3554 if (!this->emitSetLocal(PT_Ptr, SrcOffset, E)) 3555 return false; 3556 3557 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 3558 if (!this->emitGetLocal(PT_Ptr, SrcOffset, E)) 3559 return false; 3560 if (!this->emitArrayElemPop(SrcElemT, I, E)) 3561 return false; 3562 3563 // Cast to the desired result element type. 3564 if (SrcElemT != ElemT) { 3565 if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E)) 3566 return false; 3567 } else if (ElemType->isFloatingType() && SrcType != ElemType) { 3568 const auto *TargetSemantics = &Ctx.getFloatSemantics(ElemType); 3569 if (!this->emitCastFP(TargetSemantics, getRoundingMode(E), E)) 3570 return false; 3571 } 3572 if (!this->emitInitElem(ElemT, I, E)) 3573 return false; 3574 } 3575 3576 return true; 3577 } 3578 3579 template <class Emitter> 3580 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { 3581 assert(Initializing); 3582 assert(E->getNumSubExprs() > 2); 3583 3584 const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)}; 3585 const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>(); 3586 PrimType ElemT = classifyPrim(VT->getElementType()); 3587 unsigned NumInputElems = VT->getNumElements(); 3588 unsigned NumOutputElems = E->getNumSubExprs() - 2; 3589 assert(NumOutputElems > 0); 3590 3591 // Save both input vectors to a local variable. 3592 unsigned VectorOffsets[2]; 3593 for (unsigned I = 0; I != 2; ++I) { 3594 VectorOffsets[I] = this->allocateLocalPrimitive( 3595 Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3596 if (!this->visit(Vecs[I])) 3597 return false; 3598 if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E)) 3599 return false; 3600 } 3601 for (unsigned I = 0; I != NumOutputElems; ++I) { 3602 APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I); 3603 assert(ShuffleIndex >= -1); 3604 if (ShuffleIndex == -1) 3605 return this->emitInvalidShuffleVectorIndex(I, E); 3606 3607 assert(ShuffleIndex < (NumInputElems * 2)); 3608 if (!this->emitGetLocal(PT_Ptr, 3609 VectorOffsets[ShuffleIndex >= NumInputElems], E)) 3610 return false; 3611 unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems; 3612 if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E)) 3613 return false; 3614 3615 if (!this->emitInitElem(ElemT, I, E)) 3616 return false; 3617 } 3618 3619 return true; 3620 } 3621 3622 template <class Emitter> 3623 bool Compiler<Emitter>::VisitExtVectorElementExpr( 3624 const ExtVectorElementExpr *E) { 3625 const Expr *Base = E->getBase(); 3626 assert( 3627 Base->getType()->isVectorType() || 3628 Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType()); 3629 3630 SmallVector<uint32_t, 4> Indices; 3631 E->getEncodedElementAccess(Indices); 3632 3633 if (Indices.size() == 1) { 3634 if (!this->visit(Base)) 3635 return false; 3636 3637 if (E->isGLValue()) { 3638 if (!this->emitConstUint32(Indices[0], E)) 3639 return false; 3640 return this->emitArrayElemPtrPop(PT_Uint32, E); 3641 } 3642 // Else, also load the value. 3643 return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E); 3644 } 3645 3646 // Create a local variable for the base. 3647 unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true, 3648 /*IsExtended=*/false); 3649 if (!this->visit(Base)) 3650 return false; 3651 if (!this->emitSetLocal(PT_Ptr, BaseOffset, E)) 3652 return false; 3653 3654 // Now the vector variable for the return value. 3655 if (!Initializing) { 3656 std::optional<unsigned> ResultIndex; 3657 ResultIndex = allocateLocal(E); 3658 if (!ResultIndex) 3659 return false; 3660 if (!this->emitGetPtrLocal(*ResultIndex, E)) 3661 return false; 3662 } 3663 3664 assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements()); 3665 3666 PrimType ElemT = 3667 classifyPrim(E->getType()->getAs<VectorType>()->getElementType()); 3668 uint32_t DstIndex = 0; 3669 for (uint32_t I : Indices) { 3670 if (!this->emitGetLocal(PT_Ptr, BaseOffset, E)) 3671 return false; 3672 if (!this->emitArrayElemPop(ElemT, I, E)) 3673 return false; 3674 if (!this->emitInitElem(ElemT, DstIndex, E)) 3675 return false; 3676 ++DstIndex; 3677 } 3678 3679 // Leave the result pointer on the stack. 3680 assert(!DiscardResult); 3681 return true; 3682 } 3683 3684 template <class Emitter> 3685 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 3686 const Expr *SubExpr = E->getSubExpr(); 3687 if (!E->isExpressibleAsConstantInitializer()) 3688 return this->discard(SubExpr) && this->emitInvalid(E); 3689 3690 assert(classifyPrim(E) == PT_Ptr); 3691 if (std::optional<unsigned> I = P.getOrCreateDummy(E)) 3692 return this->emitGetPtrGlobal(*I, E); 3693 3694 return false; 3695 } 3696 3697 template <class Emitter> 3698 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr( 3699 const CXXStdInitializerListExpr *E) { 3700 const Expr *SubExpr = E->getSubExpr(); 3701 const ConstantArrayType *ArrayType = 3702 Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType()); 3703 const Record *R = getRecord(E->getType()); 3704 assert(Initializing); 3705 assert(SubExpr->isGLValue()); 3706 3707 if (!this->visit(SubExpr)) 3708 return false; 3709 if (!this->emitConstUint8(0, E)) 3710 return false; 3711 if (!this->emitArrayElemPtrPopUint8(E)) 3712 return false; 3713 if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E)) 3714 return false; 3715 3716 PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType()); 3717 if (isIntegralType(SecondFieldT)) { 3718 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), 3719 SecondFieldT, E)) 3720 return false; 3721 return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E); 3722 } 3723 assert(SecondFieldT == PT_Ptr); 3724 3725 if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E)) 3726 return false; 3727 if (!this->emitExpandPtr(E)) 3728 return false; 3729 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E)) 3730 return false; 3731 if (!this->emitArrayElemPtrPop(PT_Uint64, E)) 3732 return false; 3733 return this->emitInitFieldPtr(R->getField(1u)->Offset, E); 3734 } 3735 3736 template <class Emitter> 3737 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) { 3738 BlockScope<Emitter> BS(this); 3739 StmtExprScope<Emitter> SS(this); 3740 3741 const CompoundStmt *CS = E->getSubStmt(); 3742 const Stmt *Result = CS->getStmtExprResult(); 3743 for (const Stmt *S : CS->body()) { 3744 if (S != Result) { 3745 if (!this->visitStmt(S)) 3746 return false; 3747 continue; 3748 } 3749 3750 assert(S == Result); 3751 if (const Expr *ResultExpr = dyn_cast<Expr>(S)) 3752 return this->delegate(ResultExpr); 3753 return this->emitUnsupported(E); 3754 } 3755 3756 return BS.destroyLocals(); 3757 } 3758 3759 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) { 3760 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true, 3761 /*NewInitializing=*/false); 3762 return this->Visit(E); 3763 } 3764 3765 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) { 3766 // We're basically doing: 3767 // OptionScope<Emitter> Scope(this, DicardResult, Initializing); 3768 // but that's unnecessary of course. 3769 return this->Visit(E); 3770 } 3771 3772 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) { 3773 if (E->getType().isNull()) 3774 return false; 3775 3776 if (E->getType()->isVoidType()) 3777 return this->discard(E); 3778 3779 // Create local variable to hold the return value. 3780 if (!E->isGLValue() && !E->getType()->isAnyComplexType() && 3781 !classify(E->getType())) { 3782 std::optional<unsigned> LocalIndex = allocateLocal(E); 3783 if (!LocalIndex) 3784 return false; 3785 3786 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3787 return false; 3788 return this->visitInitializer(E); 3789 } 3790 3791 // Otherwise,we have a primitive return value, produce the value directly 3792 // and push it on the stack. 3793 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3794 /*NewInitializing=*/false); 3795 return this->Visit(E); 3796 } 3797 3798 template <class Emitter> 3799 bool Compiler<Emitter>::visitInitializer(const Expr *E) { 3800 assert(!classify(E->getType())); 3801 3802 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3803 /*NewInitializing=*/true); 3804 return this->Visit(E); 3805 } 3806 3807 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) { 3808 std::optional<PrimType> T = classify(E->getType()); 3809 if (!T) { 3810 // Convert complex values to bool. 3811 if (E->getType()->isAnyComplexType()) { 3812 if (!this->visit(E)) 3813 return false; 3814 return this->emitComplexBoolCast(E); 3815 } 3816 return false; 3817 } 3818 3819 if (!this->visit(E)) 3820 return false; 3821 3822 if (T == PT_Bool) 3823 return true; 3824 3825 // Convert pointers to bool. 3826 if (T == PT_Ptr || T == PT_FnPtr) { 3827 if (!this->emitNull(*T, nullptr, E)) 3828 return false; 3829 return this->emitNE(*T, E); 3830 } 3831 3832 // Or Floats. 3833 if (T == PT_Float) 3834 return this->emitCastFloatingIntegralBool(getFPOptions(E), E); 3835 3836 // Or anything else we can. 3837 return this->emitCast(*T, PT_Bool, E); 3838 } 3839 3840 template <class Emitter> 3841 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT, 3842 const Expr *E) { 3843 switch (T) { 3844 case PT_Bool: 3845 return this->emitZeroBool(E); 3846 case PT_Sint8: 3847 return this->emitZeroSint8(E); 3848 case PT_Uint8: 3849 return this->emitZeroUint8(E); 3850 case PT_Sint16: 3851 return this->emitZeroSint16(E); 3852 case PT_Uint16: 3853 return this->emitZeroUint16(E); 3854 case PT_Sint32: 3855 return this->emitZeroSint32(E); 3856 case PT_Uint32: 3857 return this->emitZeroUint32(E); 3858 case PT_Sint64: 3859 return this->emitZeroSint64(E); 3860 case PT_Uint64: 3861 return this->emitZeroUint64(E); 3862 case PT_IntAP: 3863 return this->emitZeroIntAP(Ctx.getBitWidth(QT), E); 3864 case PT_IntAPS: 3865 return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E); 3866 case PT_Ptr: 3867 return this->emitNullPtr(nullptr, E); 3868 case PT_FnPtr: 3869 return this->emitNullFnPtr(nullptr, E); 3870 case PT_MemberPtr: 3871 return this->emitNullMemberPtr(nullptr, E); 3872 case PT_Float: 3873 return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E); 3874 case PT_FixedPoint: { 3875 auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 3876 return this->emitConstFixedPoint(FixedPoint::zero(Sem), E); 3877 } 3878 llvm_unreachable("Implement"); 3879 } 3880 llvm_unreachable("unknown primitive type"); 3881 } 3882 3883 template <class Emitter> 3884 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R, 3885 const Expr *E) { 3886 assert(E); 3887 assert(R); 3888 // Fields 3889 for (const Record::Field &Field : R->fields()) { 3890 if (Field.Decl->isUnnamedBitField()) 3891 continue; 3892 3893 const Descriptor *D = Field.Desc; 3894 if (D->isPrimitive()) { 3895 QualType QT = D->getType(); 3896 PrimType T = classifyPrim(D->getType()); 3897 if (!this->visitZeroInitializer(T, QT, E)) 3898 return false; 3899 if (!this->emitInitField(T, Field.Offset, E)) 3900 return false; 3901 if (R->isUnion()) 3902 break; 3903 continue; 3904 } 3905 3906 if (!this->emitGetPtrField(Field.Offset, E)) 3907 return false; 3908 3909 if (D->isPrimitiveArray()) { 3910 QualType ET = D->getElemQualType(); 3911 PrimType T = classifyPrim(ET); 3912 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3913 if (!this->visitZeroInitializer(T, ET, E)) 3914 return false; 3915 if (!this->emitInitElem(T, I, E)) 3916 return false; 3917 } 3918 } else if (D->isCompositeArray()) { 3919 const Record *ElemRecord = D->ElemDesc->ElemRecord; 3920 assert(D->ElemDesc->ElemRecord); 3921 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3922 if (!this->emitConstUint32(I, E)) 3923 return false; 3924 if (!this->emitArrayElemPtr(PT_Uint32, E)) 3925 return false; 3926 if (!this->visitZeroRecordInitializer(ElemRecord, E)) 3927 return false; 3928 if (!this->emitPopPtr(E)) 3929 return false; 3930 } 3931 } else if (D->isRecord()) { 3932 if (!this->visitZeroRecordInitializer(D->ElemRecord, E)) 3933 return false; 3934 } else { 3935 assert(false); 3936 } 3937 3938 if (!this->emitFinishInitPop(E)) 3939 return false; 3940 3941 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 3942 // object's first non-static named data member is zero-initialized 3943 if (R->isUnion()) 3944 break; 3945 } 3946 3947 for (const Record::Base &B : R->bases()) { 3948 if (!this->emitGetPtrBase(B.Offset, E)) 3949 return false; 3950 if (!this->visitZeroRecordInitializer(B.R, E)) 3951 return false; 3952 if (!this->emitFinishInitPop(E)) 3953 return false; 3954 } 3955 3956 // FIXME: Virtual bases. 3957 3958 return true; 3959 } 3960 3961 template <class Emitter> 3962 template <typename T> 3963 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) { 3964 switch (Ty) { 3965 case PT_Sint8: 3966 return this->emitConstSint8(Value, E); 3967 case PT_Uint8: 3968 return this->emitConstUint8(Value, E); 3969 case PT_Sint16: 3970 return this->emitConstSint16(Value, E); 3971 case PT_Uint16: 3972 return this->emitConstUint16(Value, E); 3973 case PT_Sint32: 3974 return this->emitConstSint32(Value, E); 3975 case PT_Uint32: 3976 return this->emitConstUint32(Value, E); 3977 case PT_Sint64: 3978 return this->emitConstSint64(Value, E); 3979 case PT_Uint64: 3980 return this->emitConstUint64(Value, E); 3981 case PT_Bool: 3982 return this->emitConstBool(Value, E); 3983 case PT_Ptr: 3984 case PT_FnPtr: 3985 case PT_MemberPtr: 3986 case PT_Float: 3987 case PT_IntAP: 3988 case PT_IntAPS: 3989 case PT_FixedPoint: 3990 llvm_unreachable("Invalid integral type"); 3991 break; 3992 } 3993 llvm_unreachable("unknown primitive type"); 3994 } 3995 3996 template <class Emitter> 3997 template <typename T> 3998 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) { 3999 return this->emitConst(Value, classifyPrim(E->getType()), E); 4000 } 4001 4002 template <class Emitter> 4003 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty, 4004 const Expr *E) { 4005 if (Ty == PT_IntAPS) 4006 return this->emitConstIntAPS(Value, E); 4007 if (Ty == PT_IntAP) 4008 return this->emitConstIntAP(Value, E); 4009 4010 if (Value.isSigned()) 4011 return this->emitConst(Value.getSExtValue(), Ty, E); 4012 return this->emitConst(Value.getZExtValue(), Ty, E); 4013 } 4014 4015 template <class Emitter> 4016 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) { 4017 return this->emitConst(Value, classifyPrim(E->getType()), E); 4018 } 4019 4020 template <class Emitter> 4021 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty, 4022 bool IsConst, 4023 bool IsExtended) { 4024 // Make sure we don't accidentally register the same decl twice. 4025 if (const auto *VD = 4026 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 4027 assert(!P.getGlobal(VD)); 4028 assert(!Locals.contains(VD)); 4029 (void)VD; 4030 } 4031 4032 // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g. 4033 // (int){12} in C. Consider using Expr::isTemporaryObject() instead 4034 // or isa<MaterializeTemporaryExpr>(). 4035 Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst, 4036 Src.is<const Expr *>()); 4037 Scope::Local Local = this->createLocal(D); 4038 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) 4039 Locals.insert({VD, Local}); 4040 VarScope->add(Local, IsExtended); 4041 return Local.Offset; 4042 } 4043 4044 template <class Emitter> 4045 std::optional<unsigned> 4046 Compiler<Emitter>::allocateLocal(DeclTy &&Src, QualType Ty, 4047 const ValueDecl *ExtendingDecl) { 4048 // Make sure we don't accidentally register the same decl twice. 4049 if ([[maybe_unused]] const auto *VD = 4050 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 4051 assert(!P.getGlobal(VD)); 4052 assert(!Locals.contains(VD)); 4053 } 4054 4055 const ValueDecl *Key = nullptr; 4056 const Expr *Init = nullptr; 4057 bool IsTemporary = false; 4058 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 4059 Key = VD; 4060 Ty = VD->getType(); 4061 4062 if (const auto *VarD = dyn_cast<VarDecl>(VD)) 4063 Init = VarD->getInit(); 4064 } 4065 if (auto *E = Src.dyn_cast<const Expr *>()) { 4066 IsTemporary = true; 4067 if (Ty.isNull()) 4068 Ty = E->getType(); 4069 } 4070 4071 Descriptor *D = P.createDescriptor( 4072 Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 4073 IsTemporary, /*IsMutable=*/false, Init); 4074 if (!D) 4075 return std::nullopt; 4076 4077 Scope::Local Local = this->createLocal(D); 4078 if (Key) 4079 Locals.insert({Key, Local}); 4080 if (ExtendingDecl) 4081 VarScope->addExtended(Local, ExtendingDecl); 4082 else 4083 VarScope->add(Local, false); 4084 return Local.Offset; 4085 } 4086 4087 template <class Emitter> 4088 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) { 4089 QualType Ty = E->getType(); 4090 assert(!Ty->isRecordType()); 4091 4092 Descriptor *D = P.createDescriptor( 4093 E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 4094 /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr); 4095 assert(D); 4096 4097 Scope::Local Local = this->createLocal(D); 4098 VariableScope<Emitter> *S = VarScope; 4099 assert(S); 4100 // Attach to topmost scope. 4101 while (S->getParent()) 4102 S = S->getParent(); 4103 assert(S && !S->getParent()); 4104 S->addLocal(Local); 4105 return Local.Offset; 4106 } 4107 4108 template <class Emitter> 4109 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) { 4110 if (const PointerType *PT = dyn_cast<PointerType>(Ty)) 4111 return PT->getPointeeType()->getAs<RecordType>(); 4112 return Ty->getAs<RecordType>(); 4113 } 4114 4115 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) { 4116 if (const auto *RecordTy = getRecordTy(Ty)) 4117 return getRecord(RecordTy->getDecl()); 4118 return nullptr; 4119 } 4120 4121 template <class Emitter> 4122 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) { 4123 return P.getOrCreateRecord(RD); 4124 } 4125 4126 template <class Emitter> 4127 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) { 4128 return Ctx.getOrCreateFunction(FD); 4129 } 4130 4131 template <class Emitter> 4132 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) { 4133 LocalScope<Emitter> RootScope(this); 4134 4135 auto maybeDestroyLocals = [&]() -> bool { 4136 if (DestroyToplevelScope) 4137 return RootScope.destroyLocals(); 4138 return true; 4139 }; 4140 4141 // Void expressions. 4142 if (E->getType()->isVoidType()) { 4143 if (!visit(E)) 4144 return false; 4145 return this->emitRetVoid(E) && maybeDestroyLocals(); 4146 } 4147 4148 // Expressions with a primitive return type. 4149 if (std::optional<PrimType> T = classify(E)) { 4150 if (!visit(E)) 4151 return false; 4152 4153 return this->emitRet(*T, E) && maybeDestroyLocals(); 4154 } 4155 4156 // Expressions with a composite return type. 4157 // For us, that means everything we don't 4158 // have a PrimType for. 4159 if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) { 4160 if (!this->emitGetPtrLocal(*LocalOffset, E)) 4161 return false; 4162 4163 if (!visitInitializer(E)) 4164 return false; 4165 4166 if (!this->emitFinishInit(E)) 4167 return false; 4168 // We are destroying the locals AFTER the Ret op. 4169 // The Ret op needs to copy the (alive) values, but the 4170 // destructors may still turn the entire expression invalid. 4171 return this->emitRetValue(E) && maybeDestroyLocals(); 4172 } 4173 4174 (void)maybeDestroyLocals(); 4175 return false; 4176 } 4177 4178 template <class Emitter> 4179 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) { 4180 4181 auto R = this->visitVarDecl(VD, /*Toplevel=*/true); 4182 4183 if (R.notCreated()) 4184 return R; 4185 4186 if (R) 4187 return true; 4188 4189 if (!R && Context::shouldBeGloballyIndexed(VD)) { 4190 if (auto GlobalIndex = P.getGlobal(VD)) { 4191 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 4192 GlobalInlineDescriptor &GD = 4193 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 4194 4195 GD.InitState = GlobalInitState::InitializerFailed; 4196 GlobalBlock->invokeDtor(); 4197 } 4198 } 4199 4200 return R; 4201 } 4202 4203 /// Toplevel visitDeclAndReturn(). 4204 /// We get here from evaluateAsInitializer(). 4205 /// We need to evaluate the initializer and return its value. 4206 template <class Emitter> 4207 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD, 4208 bool ConstantContext) { 4209 std::optional<PrimType> VarT = classify(VD->getType()); 4210 4211 // We only create variables if we're evaluating in a constant context. 4212 // Otherwise, just evaluate the initializer and return it. 4213 if (!ConstantContext) { 4214 DeclScope<Emitter> LS(this, VD); 4215 if (!this->visit(VD->getAnyInitializer())) 4216 return false; 4217 return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals(); 4218 } 4219 4220 LocalScope<Emitter> VDScope(this, VD); 4221 if (!this->visitVarDecl(VD, /*Toplevel=*/true)) 4222 return false; 4223 4224 if (Context::shouldBeGloballyIndexed(VD)) { 4225 auto GlobalIndex = P.getGlobal(VD); 4226 assert(GlobalIndex); // visitVarDecl() didn't return false. 4227 if (VarT) { 4228 if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD)) 4229 return false; 4230 } else { 4231 if (!this->emitGetPtrGlobal(*GlobalIndex, VD)) 4232 return false; 4233 } 4234 } else { 4235 auto Local = Locals.find(VD); 4236 assert(Local != Locals.end()); // Same here. 4237 if (VarT) { 4238 if (!this->emitGetLocal(*VarT, Local->second.Offset, VD)) 4239 return false; 4240 } else { 4241 if (!this->emitGetPtrLocal(Local->second.Offset, VD)) 4242 return false; 4243 } 4244 } 4245 4246 // Return the value. 4247 if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) { 4248 // If the Ret above failed and this is a global variable, mark it as 4249 // uninitialized, even everything else succeeded. 4250 if (Context::shouldBeGloballyIndexed(VD)) { 4251 auto GlobalIndex = P.getGlobal(VD); 4252 assert(GlobalIndex); 4253 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 4254 GlobalInlineDescriptor &GD = 4255 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 4256 4257 GD.InitState = GlobalInitState::InitializerFailed; 4258 GlobalBlock->invokeDtor(); 4259 } 4260 return false; 4261 } 4262 4263 return VDScope.destroyLocals(); 4264 } 4265 4266 template <class Emitter> 4267 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD, 4268 bool Toplevel) { 4269 // We don't know what to do with these, so just return false. 4270 if (VD->getType().isNull()) 4271 return false; 4272 4273 // This case is EvalEmitter-only. If we won't create any instructions for the 4274 // initializer anyway, don't bother creating the variable in the first place. 4275 if (!this->isActive()) 4276 return VarCreationState::NotCreated(); 4277 4278 const Expr *Init = VD->getInit(); 4279 std::optional<PrimType> VarT = classify(VD->getType()); 4280 4281 if (Init && Init->isValueDependent()) 4282 return false; 4283 4284 if (Context::shouldBeGloballyIndexed(VD)) { 4285 auto checkDecl = [&]() -> bool { 4286 bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal(); 4287 return !NeedsOp || this->emitCheckDecl(VD, VD); 4288 }; 4289 4290 auto initGlobal = [&](unsigned GlobalIndex) -> bool { 4291 assert(Init); 4292 4293 if (VarT) { 4294 if (!this->visit(Init)) 4295 return checkDecl() && false; 4296 4297 return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD); 4298 } 4299 4300 if (!checkDecl()) 4301 return false; 4302 4303 if (!this->emitGetPtrGlobal(GlobalIndex, Init)) 4304 return false; 4305 4306 if (!visitInitializer(Init)) 4307 return false; 4308 4309 if (!this->emitFinishInit(Init)) 4310 return false; 4311 4312 return this->emitPopPtr(Init); 4313 }; 4314 4315 DeclScope<Emitter> LocalScope(this, VD); 4316 4317 // We've already seen and initialized this global. 4318 if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) { 4319 if (P.getPtrGlobal(*GlobalIndex).isInitialized()) 4320 return checkDecl(); 4321 4322 // The previous attempt at initialization might've been unsuccessful, 4323 // so let's try this one. 4324 return Init && checkDecl() && initGlobal(*GlobalIndex); 4325 } 4326 4327 std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init); 4328 4329 if (!GlobalIndex) 4330 return false; 4331 4332 return !Init || (checkDecl() && initGlobal(*GlobalIndex)); 4333 } else { 4334 InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD)); 4335 4336 if (VarT) { 4337 unsigned Offset = this->allocateLocalPrimitive( 4338 VD, *VarT, VD->getType().isConstQualified()); 4339 if (Init) { 4340 // If this is a toplevel declaration, create a scope for the 4341 // initializer. 4342 if (Toplevel) { 4343 LocalScope<Emitter> Scope(this); 4344 if (!this->visit(Init)) 4345 return false; 4346 return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals(); 4347 } else { 4348 if (!this->visit(Init)) 4349 return false; 4350 return this->emitSetLocal(*VarT, Offset, VD); 4351 } 4352 } 4353 } else { 4354 if (std::optional<unsigned> Offset = this->allocateLocal(VD)) { 4355 if (!Init) 4356 return true; 4357 4358 if (!this->emitGetPtrLocal(*Offset, Init)) 4359 return false; 4360 4361 if (!visitInitializer(Init)) 4362 return false; 4363 4364 if (!this->emitFinishInit(Init)) 4365 return false; 4366 4367 return this->emitPopPtr(Init); 4368 } 4369 return false; 4370 } 4371 return true; 4372 } 4373 4374 return false; 4375 } 4376 4377 template <class Emitter> 4378 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType, 4379 const Expr *E) { 4380 assert(!DiscardResult); 4381 if (Val.isInt()) 4382 return this->emitConst(Val.getInt(), ValType, E); 4383 else if (Val.isFloat()) 4384 return this->emitConstFloat(Val.getFloat(), E); 4385 4386 if (Val.isLValue()) { 4387 if (Val.isNullPointer()) 4388 return this->emitNull(ValType, nullptr, E); 4389 APValue::LValueBase Base = Val.getLValueBase(); 4390 if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>()) 4391 return this->visit(BaseExpr); 4392 else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) { 4393 return this->visitDeclRef(VD, E); 4394 } 4395 } else if (Val.isMemberPointer()) { 4396 if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl()) 4397 return this->emitGetMemberPtr(MemberDecl, E); 4398 return this->emitNullMemberPtr(nullptr, E); 4399 } 4400 4401 return false; 4402 } 4403 4404 template <class Emitter> 4405 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val, 4406 const Expr *E) { 4407 4408 if (Val.isStruct()) { 4409 const Record *R = this->getRecord(E->getType()); 4410 assert(R); 4411 for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) { 4412 const APValue &F = Val.getStructField(I); 4413 const Record::Field *RF = R->getField(I); 4414 4415 if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) { 4416 PrimType T = classifyPrim(RF->Decl->getType()); 4417 if (!this->visitAPValue(F, T, E)) 4418 return false; 4419 if (!this->emitInitField(T, RF->Offset, E)) 4420 return false; 4421 } else if (F.isArray()) { 4422 assert(RF->Desc->isPrimitiveArray()); 4423 const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe(); 4424 PrimType ElemT = classifyPrim(ArrType->getElementType()); 4425 assert(ArrType); 4426 4427 if (!this->emitGetPtrField(RF->Offset, E)) 4428 return false; 4429 4430 for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) { 4431 if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E)) 4432 return false; 4433 if (!this->emitInitElem(ElemT, A, E)) 4434 return false; 4435 } 4436 4437 if (!this->emitPopPtr(E)) 4438 return false; 4439 } else if (F.isStruct() || F.isUnion()) { 4440 if (!this->emitGetPtrField(RF->Offset, E)) 4441 return false; 4442 if (!this->visitAPValueInitializer(F, E)) 4443 return false; 4444 if (!this->emitPopPtr(E)) 4445 return false; 4446 } else { 4447 assert(false && "I don't think this should be possible"); 4448 } 4449 } 4450 return true; 4451 } else if (Val.isUnion()) { 4452 const FieldDecl *UnionField = Val.getUnionField(); 4453 const Record *R = this->getRecord(UnionField->getParent()); 4454 assert(R); 4455 const APValue &F = Val.getUnionValue(); 4456 const Record::Field *RF = R->getField(UnionField); 4457 PrimType T = classifyPrim(RF->Decl->getType()); 4458 if (!this->visitAPValue(F, T, E)) 4459 return false; 4460 return this->emitInitField(T, RF->Offset, E); 4461 } 4462 // TODO: Other types. 4463 4464 return false; 4465 } 4466 4467 template <class Emitter> 4468 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E, 4469 unsigned BuiltinID) { 4470 const Function *Func = getFunction(E->getDirectCallee()); 4471 if (!Func) 4472 return false; 4473 4474 // For these, we're expected to ultimately return an APValue pointing 4475 // to the CallExpr. This is needed to get the correct codegen. 4476 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 4477 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString || 4478 BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant || 4479 BuiltinID == Builtin::BI__builtin_function_start) { 4480 if (std::optional<unsigned> GlobalOffset = P.getOrCreateDummy(E)) { 4481 if (!this->emitGetPtrGlobal(*GlobalOffset, E)) 4482 return false; 4483 4484 if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT)) 4485 return this->emitDecayPtr(PT_Ptr, PT, E); 4486 return true; 4487 } 4488 return false; 4489 } 4490 4491 QualType ReturnType = E->getType(); 4492 std::optional<PrimType> ReturnT = classify(E); 4493 4494 // Non-primitive return type. Prepare storage. 4495 if (!Initializing && !ReturnT && !ReturnType->isVoidType()) { 4496 std::optional<unsigned> LocalIndex = allocateLocal(E); 4497 if (!LocalIndex) 4498 return false; 4499 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4500 return false; 4501 } 4502 4503 if (!Func->isUnevaluatedBuiltin()) { 4504 // Put arguments on the stack. 4505 for (const auto *Arg : E->arguments()) { 4506 if (!this->visit(Arg)) 4507 return false; 4508 } 4509 } 4510 4511 if (!this->emitCallBI(Func, E, BuiltinID, E)) 4512 return false; 4513 4514 if (DiscardResult && !ReturnType->isVoidType()) { 4515 assert(ReturnT); 4516 return this->emitPop(*ReturnT, E); 4517 } 4518 4519 return true; 4520 } 4521 4522 template <class Emitter> 4523 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) { 4524 if (unsigned BuiltinID = E->getBuiltinCallee()) 4525 return VisitBuiltinCallExpr(E, BuiltinID); 4526 4527 const FunctionDecl *FuncDecl = E->getDirectCallee(); 4528 // Calls to replaceable operator new/operator delete. 4529 if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) { 4530 if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New || 4531 FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { 4532 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new); 4533 } else { 4534 assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete); 4535 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete); 4536 } 4537 } 4538 4539 QualType ReturnType = E->getCallReturnType(Ctx.getASTContext()); 4540 std::optional<PrimType> T = classify(ReturnType); 4541 bool HasRVO = !ReturnType->isVoidType() && !T; 4542 4543 if (HasRVO) { 4544 if (DiscardResult) { 4545 // If we need to discard the return value but the function returns its 4546 // value via an RVO pointer, we need to create one such pointer just 4547 // for this call. 4548 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4549 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4550 return false; 4551 } 4552 } else { 4553 // We need the result. Prepare a pointer to return or 4554 // dup the current one. 4555 if (!Initializing) { 4556 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4557 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4558 return false; 4559 } 4560 } 4561 if (!this->emitDupPtr(E)) 4562 return false; 4563 } 4564 } 4565 4566 SmallVector<const Expr *, 8> Args( 4567 llvm::ArrayRef(E->getArgs(), E->getNumArgs())); 4568 4569 bool IsAssignmentOperatorCall = false; 4570 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); 4571 OCE && OCE->isAssignmentOp()) { 4572 // Just like with regular assignments, we need to special-case assignment 4573 // operators here and evaluate the RHS (the second arg) before the LHS (the 4574 // first arg. We fix this by using a Flip op later. 4575 assert(Args.size() == 2); 4576 IsAssignmentOperatorCall = true; 4577 std::reverse(Args.begin(), Args.end()); 4578 } 4579 // Calling a static operator will still 4580 // pass the instance, but we don't need it. 4581 // Discard it here. 4582 if (isa<CXXOperatorCallExpr>(E)) { 4583 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl); 4584 MD && MD->isStatic()) { 4585 if (!this->discard(E->getArg(0))) 4586 return false; 4587 // Drop first arg. 4588 Args.erase(Args.begin()); 4589 } 4590 } 4591 4592 std::optional<unsigned> CalleeOffset; 4593 // Add the (optional, implicit) This pointer. 4594 if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) { 4595 if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) { 4596 // If we end up creating a CallPtr op for this, we need the base of the 4597 // member pointer as the instance pointer, and later extract the function 4598 // decl as the function pointer. 4599 const Expr *Callee = E->getCallee(); 4600 CalleeOffset = 4601 this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false); 4602 if (!this->visit(Callee)) 4603 return false; 4604 if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E)) 4605 return false; 4606 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4607 return false; 4608 if (!this->emitGetMemberPtrBase(E)) 4609 return false; 4610 } else if (!this->visit(MC->getImplicitObjectArgument())) { 4611 return false; 4612 } 4613 } else if (!FuncDecl) { 4614 const Expr *Callee = E->getCallee(); 4615 CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false); 4616 if (!this->visit(Callee)) 4617 return false; 4618 if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E)) 4619 return false; 4620 } 4621 4622 llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args); 4623 // Put arguments on the stack. 4624 unsigned ArgIndex = 0; 4625 for (const auto *Arg : Args) { 4626 if (!this->visit(Arg)) 4627 return false; 4628 4629 // If we know the callee already, check the known parametrs for nullability. 4630 if (FuncDecl && NonNullArgs[ArgIndex]) { 4631 PrimType ArgT = classify(Arg).value_or(PT_Ptr); 4632 if (ArgT == PT_Ptr || ArgT == PT_FnPtr) { 4633 if (!this->emitCheckNonNullArg(ArgT, Arg)) 4634 return false; 4635 } 4636 } 4637 ++ArgIndex; 4638 } 4639 4640 // Undo the argument reversal we did earlier. 4641 if (IsAssignmentOperatorCall) { 4642 assert(Args.size() == 2); 4643 PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr); 4644 PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr); 4645 if (!this->emitFlip(Arg2T, Arg1T, E)) 4646 return false; 4647 } 4648 4649 if (FuncDecl) { 4650 const Function *Func = getFunction(FuncDecl); 4651 if (!Func) 4652 return false; 4653 assert(HasRVO == Func->hasRVO()); 4654 4655 bool HasQualifier = false; 4656 if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee())) 4657 HasQualifier = ME->hasQualifier(); 4658 4659 bool IsVirtual = false; 4660 if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) 4661 IsVirtual = MD->isVirtual(); 4662 4663 // In any case call the function. The return value will end up on the stack 4664 // and if the function has RVO, we already have the pointer on the stack to 4665 // write the result into. 4666 if (IsVirtual && !HasQualifier) { 4667 uint32_t VarArgSize = 0; 4668 unsigned NumParams = 4669 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4670 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4671 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4672 4673 if (!this->emitCallVirt(Func, VarArgSize, E)) 4674 return false; 4675 } else if (Func->isVariadic()) { 4676 uint32_t VarArgSize = 0; 4677 unsigned NumParams = 4678 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4679 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4680 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4681 if (!this->emitCallVar(Func, VarArgSize, E)) 4682 return false; 4683 } else { 4684 if (!this->emitCall(Func, 0, E)) 4685 return false; 4686 } 4687 } else { 4688 // Indirect call. Visit the callee, which will leave a FunctionPointer on 4689 // the stack. Cleanup of the returned value if necessary will be done after 4690 // the function call completed. 4691 4692 // Sum the size of all args from the call expr. 4693 uint32_t ArgSize = 0; 4694 for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) 4695 ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4696 4697 // Get the callee, either from a member pointer or function pointer saved in 4698 // CalleeOffset. 4699 if (isa<CXXMemberCallExpr>(E) && CalleeOffset) { 4700 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4701 return false; 4702 if (!this->emitGetMemberPtrDecl(E)) 4703 return false; 4704 } else { 4705 if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E)) 4706 return false; 4707 } 4708 if (!this->emitCallPtr(ArgSize, E, E)) 4709 return false; 4710 } 4711 4712 // Cleanup for discarded return values. 4713 if (DiscardResult && !ReturnType->isVoidType() && T) 4714 return this->emitPop(*T, E); 4715 4716 return true; 4717 } 4718 4719 template <class Emitter> 4720 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 4721 SourceLocScope<Emitter> SLS(this, E); 4722 4723 return this->delegate(E->getExpr()); 4724 } 4725 4726 template <class Emitter> 4727 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 4728 SourceLocScope<Emitter> SLS(this, E); 4729 4730 const Expr *SubExpr = E->getExpr(); 4731 if (std::optional<PrimType> T = classify(E->getExpr())) 4732 return this->visit(SubExpr); 4733 4734 assert(Initializing); 4735 return this->visitInitializer(SubExpr); 4736 } 4737 4738 template <class Emitter> 4739 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 4740 if (DiscardResult) 4741 return true; 4742 4743 return this->emitConstBool(E->getValue(), E); 4744 } 4745 4746 template <class Emitter> 4747 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr( 4748 const CXXNullPtrLiteralExpr *E) { 4749 if (DiscardResult) 4750 return true; 4751 4752 return this->emitNullPtr(nullptr, E); 4753 } 4754 4755 template <class Emitter> 4756 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) { 4757 if (DiscardResult) 4758 return true; 4759 4760 assert(E->getType()->isIntegerType()); 4761 4762 PrimType T = classifyPrim(E->getType()); 4763 return this->emitZero(T, E); 4764 } 4765 4766 template <class Emitter> 4767 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) { 4768 if (DiscardResult) 4769 return true; 4770 4771 if (this->LambdaThisCapture.Offset > 0) { 4772 if (this->LambdaThisCapture.IsPtr) 4773 return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E); 4774 return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E); 4775 } 4776 4777 // In some circumstances, the 'this' pointer does not actually refer to the 4778 // instance pointer of the current function frame, but e.g. to the declaration 4779 // currently being initialized. Here we emit the necessary instruction(s) for 4780 // this scenario. 4781 if (!InitStackActive || !E->isImplicit()) 4782 return this->emitThis(E); 4783 4784 if (InitStackActive && !InitStack.empty()) { 4785 unsigned StartIndex = 0; 4786 for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) { 4787 if (InitStack[StartIndex].Kind != InitLink::K_Field && 4788 InitStack[StartIndex].Kind != InitLink::K_Elem) 4789 break; 4790 } 4791 4792 for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) { 4793 if (!InitStack[I].template emit<Emitter>(this, E)) 4794 return false; 4795 } 4796 return true; 4797 } 4798 return this->emitThis(E); 4799 } 4800 4801 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) { 4802 switch (S->getStmtClass()) { 4803 case Stmt::CompoundStmtClass: 4804 return visitCompoundStmt(cast<CompoundStmt>(S)); 4805 case Stmt::DeclStmtClass: 4806 return visitDeclStmt(cast<DeclStmt>(S)); 4807 case Stmt::ReturnStmtClass: 4808 return visitReturnStmt(cast<ReturnStmt>(S)); 4809 case Stmt::IfStmtClass: 4810 return visitIfStmt(cast<IfStmt>(S)); 4811 case Stmt::WhileStmtClass: 4812 return visitWhileStmt(cast<WhileStmt>(S)); 4813 case Stmt::DoStmtClass: 4814 return visitDoStmt(cast<DoStmt>(S)); 4815 case Stmt::ForStmtClass: 4816 return visitForStmt(cast<ForStmt>(S)); 4817 case Stmt::CXXForRangeStmtClass: 4818 return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); 4819 case Stmt::BreakStmtClass: 4820 return visitBreakStmt(cast<BreakStmt>(S)); 4821 case Stmt::ContinueStmtClass: 4822 return visitContinueStmt(cast<ContinueStmt>(S)); 4823 case Stmt::SwitchStmtClass: 4824 return visitSwitchStmt(cast<SwitchStmt>(S)); 4825 case Stmt::CaseStmtClass: 4826 return visitCaseStmt(cast<CaseStmt>(S)); 4827 case Stmt::DefaultStmtClass: 4828 return visitDefaultStmt(cast<DefaultStmt>(S)); 4829 case Stmt::AttributedStmtClass: 4830 return visitAttributedStmt(cast<AttributedStmt>(S)); 4831 case Stmt::CXXTryStmtClass: 4832 return visitCXXTryStmt(cast<CXXTryStmt>(S)); 4833 case Stmt::NullStmtClass: 4834 return true; 4835 // Always invalid statements. 4836 case Stmt::GCCAsmStmtClass: 4837 case Stmt::MSAsmStmtClass: 4838 case Stmt::GotoStmtClass: 4839 return this->emitInvalid(S); 4840 case Stmt::LabelStmtClass: 4841 return this->visitStmt(cast<LabelStmt>(S)->getSubStmt()); 4842 default: { 4843 if (const auto *E = dyn_cast<Expr>(S)) 4844 return this->discard(E); 4845 return false; 4846 } 4847 } 4848 } 4849 4850 template <class Emitter> 4851 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) { 4852 BlockScope<Emitter> Scope(this); 4853 for (const auto *InnerStmt : S->body()) 4854 if (!visitStmt(InnerStmt)) 4855 return false; 4856 return Scope.destroyLocals(); 4857 } 4858 4859 template <class Emitter> 4860 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) { 4861 for (const auto *D : DS->decls()) { 4862 if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl, 4863 FunctionDecl>(D)) 4864 continue; 4865 4866 const auto *VD = dyn_cast<VarDecl>(D); 4867 if (!VD) 4868 return false; 4869 if (!this->visitVarDecl(VD)) 4870 return false; 4871 } 4872 4873 return true; 4874 } 4875 4876 template <class Emitter> 4877 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) { 4878 if (this->InStmtExpr) 4879 return this->emitUnsupported(RS); 4880 4881 if (const Expr *RE = RS->getRetValue()) { 4882 LocalScope<Emitter> RetScope(this); 4883 if (ReturnType) { 4884 // Primitive types are simply returned. 4885 if (!this->visit(RE)) 4886 return false; 4887 this->emitCleanup(); 4888 return this->emitRet(*ReturnType, RS); 4889 } else if (RE->getType()->isVoidType()) { 4890 if (!this->visit(RE)) 4891 return false; 4892 } else { 4893 // RVO - construct the value in the return location. 4894 if (!this->emitRVOPtr(RE)) 4895 return false; 4896 if (!this->visitInitializer(RE)) 4897 return false; 4898 if (!this->emitPopPtr(RE)) 4899 return false; 4900 4901 this->emitCleanup(); 4902 return this->emitRetVoid(RS); 4903 } 4904 } 4905 4906 // Void return. 4907 this->emitCleanup(); 4908 return this->emitRetVoid(RS); 4909 } 4910 4911 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) { 4912 if (auto *CondInit = IS->getInit()) 4913 if (!visitStmt(CondInit)) 4914 return false; 4915 4916 if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt()) 4917 if (!visitDeclStmt(CondDecl)) 4918 return false; 4919 4920 // Compile condition. 4921 if (IS->isNonNegatedConsteval()) { 4922 if (!this->emitIsConstantContext(IS)) 4923 return false; 4924 } else if (IS->isNegatedConsteval()) { 4925 if (!this->emitIsConstantContext(IS)) 4926 return false; 4927 if (!this->emitInv(IS)) 4928 return false; 4929 } else { 4930 if (!this->visitBool(IS->getCond())) 4931 return false; 4932 } 4933 4934 if (const Stmt *Else = IS->getElse()) { 4935 LabelTy LabelElse = this->getLabel(); 4936 LabelTy LabelEnd = this->getLabel(); 4937 if (!this->jumpFalse(LabelElse)) 4938 return false; 4939 if (!visitStmt(IS->getThen())) 4940 return false; 4941 if (!this->jump(LabelEnd)) 4942 return false; 4943 this->emitLabel(LabelElse); 4944 if (!visitStmt(Else)) 4945 return false; 4946 this->emitLabel(LabelEnd); 4947 } else { 4948 LabelTy LabelEnd = this->getLabel(); 4949 if (!this->jumpFalse(LabelEnd)) 4950 return false; 4951 if (!visitStmt(IS->getThen())) 4952 return false; 4953 this->emitLabel(LabelEnd); 4954 } 4955 4956 return true; 4957 } 4958 4959 template <class Emitter> 4960 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) { 4961 const Expr *Cond = S->getCond(); 4962 const Stmt *Body = S->getBody(); 4963 4964 LabelTy CondLabel = this->getLabel(); // Label before the condition. 4965 LabelTy EndLabel = this->getLabel(); // Label after the loop. 4966 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4967 4968 this->fallthrough(CondLabel); 4969 this->emitLabel(CondLabel); 4970 4971 { 4972 LocalScope<Emitter> CondScope(this); 4973 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4974 if (!visitDeclStmt(CondDecl)) 4975 return false; 4976 4977 if (!this->visitBool(Cond)) 4978 return false; 4979 if (!this->jumpFalse(EndLabel)) 4980 return false; 4981 4982 if (!this->visitStmt(Body)) 4983 return false; 4984 4985 if (!CondScope.destroyLocals()) 4986 return false; 4987 } 4988 if (!this->jump(CondLabel)) 4989 return false; 4990 this->fallthrough(EndLabel); 4991 this->emitLabel(EndLabel); 4992 4993 return true; 4994 } 4995 4996 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) { 4997 const Expr *Cond = S->getCond(); 4998 const Stmt *Body = S->getBody(); 4999 5000 LabelTy StartLabel = this->getLabel(); 5001 LabelTy EndLabel = this->getLabel(); 5002 LabelTy CondLabel = this->getLabel(); 5003 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 5004 5005 this->fallthrough(StartLabel); 5006 this->emitLabel(StartLabel); 5007 5008 { 5009 LocalScope<Emitter> CondScope(this); 5010 if (!this->visitStmt(Body)) 5011 return false; 5012 this->fallthrough(CondLabel); 5013 this->emitLabel(CondLabel); 5014 if (!this->visitBool(Cond)) 5015 return false; 5016 5017 if (!CondScope.destroyLocals()) 5018 return false; 5019 } 5020 if (!this->jumpTrue(StartLabel)) 5021 return false; 5022 5023 this->fallthrough(EndLabel); 5024 this->emitLabel(EndLabel); 5025 return true; 5026 } 5027 5028 template <class Emitter> 5029 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) { 5030 // for (Init; Cond; Inc) { Body } 5031 const Stmt *Init = S->getInit(); 5032 const Expr *Cond = S->getCond(); 5033 const Expr *Inc = S->getInc(); 5034 const Stmt *Body = S->getBody(); 5035 5036 LabelTy EndLabel = this->getLabel(); 5037 LabelTy CondLabel = this->getLabel(); 5038 LabelTy IncLabel = this->getLabel(); 5039 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 5040 5041 if (Init && !this->visitStmt(Init)) 5042 return false; 5043 5044 this->fallthrough(CondLabel); 5045 this->emitLabel(CondLabel); 5046 5047 { 5048 LocalScope<Emitter> CondScope(this); 5049 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 5050 if (!visitDeclStmt(CondDecl)) 5051 return false; 5052 5053 if (Cond) { 5054 if (!this->visitBool(Cond)) 5055 return false; 5056 if (!this->jumpFalse(EndLabel)) 5057 return false; 5058 } 5059 5060 if (Body && !this->visitStmt(Body)) 5061 return false; 5062 5063 this->fallthrough(IncLabel); 5064 this->emitLabel(IncLabel); 5065 if (Inc && !this->discard(Inc)) 5066 return false; 5067 5068 if (!CondScope.destroyLocals()) 5069 return false; 5070 } 5071 if (!this->jump(CondLabel)) 5072 return false; 5073 5074 this->fallthrough(EndLabel); 5075 this->emitLabel(EndLabel); 5076 return true; 5077 } 5078 5079 template <class Emitter> 5080 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) { 5081 const Stmt *Init = S->getInit(); 5082 const Expr *Cond = S->getCond(); 5083 const Expr *Inc = S->getInc(); 5084 const Stmt *Body = S->getBody(); 5085 const Stmt *BeginStmt = S->getBeginStmt(); 5086 const Stmt *RangeStmt = S->getRangeStmt(); 5087 const Stmt *EndStmt = S->getEndStmt(); 5088 const VarDecl *LoopVar = S->getLoopVariable(); 5089 5090 LabelTy EndLabel = this->getLabel(); 5091 LabelTy CondLabel = this->getLabel(); 5092 LabelTy IncLabel = this->getLabel(); 5093 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 5094 5095 // Emit declarations needed in the loop. 5096 if (Init && !this->visitStmt(Init)) 5097 return false; 5098 if (!this->visitStmt(RangeStmt)) 5099 return false; 5100 if (!this->visitStmt(BeginStmt)) 5101 return false; 5102 if (!this->visitStmt(EndStmt)) 5103 return false; 5104 5105 // Now the condition as well as the loop variable assignment. 5106 this->fallthrough(CondLabel); 5107 this->emitLabel(CondLabel); 5108 if (!this->visitBool(Cond)) 5109 return false; 5110 if (!this->jumpFalse(EndLabel)) 5111 return false; 5112 5113 if (!this->visitVarDecl(LoopVar)) 5114 return false; 5115 5116 // Body. 5117 { 5118 if (!this->visitStmt(Body)) 5119 return false; 5120 5121 this->fallthrough(IncLabel); 5122 this->emitLabel(IncLabel); 5123 if (!this->discard(Inc)) 5124 return false; 5125 } 5126 5127 if (!this->jump(CondLabel)) 5128 return false; 5129 5130 this->fallthrough(EndLabel); 5131 this->emitLabel(EndLabel); 5132 return true; 5133 } 5134 5135 template <class Emitter> 5136 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) { 5137 if (!BreakLabel) 5138 return false; 5139 5140 for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope; 5141 C = C->getParent()) 5142 C->emitDestruction(); 5143 return this->jump(*BreakLabel); 5144 } 5145 5146 template <class Emitter> 5147 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) { 5148 if (!ContinueLabel) 5149 return false; 5150 5151 for (VariableScope<Emitter> *C = VarScope; 5152 C && C->getParent() != ContinueVarScope; C = C->getParent()) 5153 C->emitDestruction(); 5154 return this->jump(*ContinueLabel); 5155 } 5156 5157 template <class Emitter> 5158 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) { 5159 const Expr *Cond = S->getCond(); 5160 PrimType CondT = this->classifyPrim(Cond->getType()); 5161 LocalScope<Emitter> LS(this); 5162 5163 LabelTy EndLabel = this->getLabel(); 5164 OptLabelTy DefaultLabel = std::nullopt; 5165 unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false); 5166 5167 if (const auto *CondInit = S->getInit()) 5168 if (!visitStmt(CondInit)) 5169 return false; 5170 5171 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 5172 if (!visitDeclStmt(CondDecl)) 5173 return false; 5174 5175 // Initialize condition variable. 5176 if (!this->visit(Cond)) 5177 return false; 5178 if (!this->emitSetLocal(CondT, CondVar, S)) 5179 return false; 5180 5181 CaseMap CaseLabels; 5182 // Create labels and comparison ops for all case statements. 5183 for (const SwitchCase *SC = S->getSwitchCaseList(); SC; 5184 SC = SC->getNextSwitchCase()) { 5185 if (const auto *CS = dyn_cast<CaseStmt>(SC)) { 5186 // FIXME: Implement ranges. 5187 if (CS->caseStmtIsGNURange()) 5188 return false; 5189 CaseLabels[SC] = this->getLabel(); 5190 5191 const Expr *Value = CS->getLHS(); 5192 PrimType ValueT = this->classifyPrim(Value->getType()); 5193 5194 // Compare the case statement's value to the switch condition. 5195 if (!this->emitGetLocal(CondT, CondVar, CS)) 5196 return false; 5197 if (!this->visit(Value)) 5198 return false; 5199 5200 // Compare and jump to the case label. 5201 if (!this->emitEQ(ValueT, S)) 5202 return false; 5203 if (!this->jumpTrue(CaseLabels[CS])) 5204 return false; 5205 } else { 5206 assert(!DefaultLabel); 5207 DefaultLabel = this->getLabel(); 5208 } 5209 } 5210 5211 // If none of the conditions above were true, fall through to the default 5212 // statement or jump after the switch statement. 5213 if (DefaultLabel) { 5214 if (!this->jump(*DefaultLabel)) 5215 return false; 5216 } else { 5217 if (!this->jump(EndLabel)) 5218 return false; 5219 } 5220 5221 SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel); 5222 if (!this->visitStmt(S->getBody())) 5223 return false; 5224 this->emitLabel(EndLabel); 5225 5226 return LS.destroyLocals(); 5227 } 5228 5229 template <class Emitter> 5230 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) { 5231 this->emitLabel(CaseLabels[S]); 5232 return this->visitStmt(S->getSubStmt()); 5233 } 5234 5235 template <class Emitter> 5236 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) { 5237 this->emitLabel(*DefaultLabel); 5238 return this->visitStmt(S->getSubStmt()); 5239 } 5240 5241 template <class Emitter> 5242 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) { 5243 if (this->Ctx.getLangOpts().CXXAssumptions && 5244 !this->Ctx.getLangOpts().MSVCCompat) { 5245 for (const Attr *A : S->getAttrs()) { 5246 auto *AA = dyn_cast<CXXAssumeAttr>(A); 5247 if (!AA) 5248 continue; 5249 5250 assert(isa<NullStmt>(S->getSubStmt())); 5251 5252 const Expr *Assumption = AA->getAssumption(); 5253 if (Assumption->isValueDependent()) 5254 return false; 5255 5256 if (Assumption->HasSideEffects(this->Ctx.getASTContext())) 5257 continue; 5258 5259 // Evaluate assumption. 5260 if (!this->visitBool(Assumption)) 5261 return false; 5262 5263 if (!this->emitAssume(Assumption)) 5264 return false; 5265 } 5266 } 5267 5268 // Ignore other attributes. 5269 return this->visitStmt(S->getSubStmt()); 5270 } 5271 5272 template <class Emitter> 5273 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) { 5274 // Ignore all handlers. 5275 return this->visitStmt(S->getTryBlock()); 5276 } 5277 5278 template <class Emitter> 5279 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) { 5280 assert(MD->isLambdaStaticInvoker()); 5281 assert(MD->hasBody()); 5282 assert(cast<CompoundStmt>(MD->getBody())->body_empty()); 5283 5284 const CXXRecordDecl *ClosureClass = MD->getParent(); 5285 const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); 5286 assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); 5287 const Function *Func = this->getFunction(LambdaCallOp); 5288 if (!Func) 5289 return false; 5290 assert(Func->hasThisPointer()); 5291 assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO())); 5292 5293 if (Func->hasRVO()) { 5294 if (!this->emitRVOPtr(MD)) 5295 return false; 5296 } 5297 5298 // The lambda call operator needs an instance pointer, but we don't have 5299 // one here, and we don't need one either because the lambda cannot have 5300 // any captures, as verified above. Emit a null pointer. This is then 5301 // special-cased when interpreting to not emit any misleading diagnostics. 5302 if (!this->emitNullPtr(nullptr, MD)) 5303 return false; 5304 5305 // Forward all arguments from the static invoker to the lambda call operator. 5306 for (const ParmVarDecl *PVD : MD->parameters()) { 5307 auto It = this->Params.find(PVD); 5308 assert(It != this->Params.end()); 5309 5310 // We do the lvalue-to-rvalue conversion manually here, so no need 5311 // to care about references. 5312 PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr); 5313 if (!this->emitGetParam(ParamType, It->second.Offset, MD)) 5314 return false; 5315 } 5316 5317 if (!this->emitCall(Func, 0, LambdaCallOp)) 5318 return false; 5319 5320 this->emitCleanup(); 5321 if (ReturnType) 5322 return this->emitRet(*ReturnType, MD); 5323 5324 // Nothing to do, since we emitted the RVO pointer above. 5325 return this->emitRetVoid(MD); 5326 } 5327 5328 template <class Emitter> 5329 bool Compiler<Emitter>::checkLiteralType(const Expr *E) { 5330 if (Ctx.getLangOpts().CPlusPlus23) 5331 return true; 5332 5333 if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext())) 5334 return true; 5335 5336 return this->emitCheckLiteralType(E->getType().getTypePtr(), E); 5337 } 5338 5339 template <class Emitter> 5340 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) { 5341 assert(!ReturnType); 5342 5343 auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset, 5344 const Expr *InitExpr) -> bool { 5345 // We don't know what to do with these, so just return false. 5346 if (InitExpr->getType().isNull()) 5347 return false; 5348 5349 if (std::optional<PrimType> T = this->classify(InitExpr)) { 5350 if (!this->visit(InitExpr)) 5351 return false; 5352 5353 if (F->isBitField()) 5354 return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr); 5355 return this->emitInitThisField(*T, FieldOffset, InitExpr); 5356 } 5357 // Non-primitive case. Get a pointer to the field-to-initialize 5358 // on the stack and call visitInitialzer() for it. 5359 InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset)); 5360 if (!this->emitGetPtrThisField(FieldOffset, InitExpr)) 5361 return false; 5362 5363 if (!this->visitInitializer(InitExpr)) 5364 return false; 5365 5366 return this->emitFinishInitPop(InitExpr); 5367 }; 5368 5369 const RecordDecl *RD = Ctor->getParent(); 5370 const Record *R = this->getRecord(RD); 5371 if (!R) 5372 return false; 5373 5374 if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) { 5375 // union copy and move ctors are special. 5376 assert(cast<CompoundStmt>(Ctor->getBody())->body_empty()); 5377 if (!this->emitThis(Ctor)) 5378 return false; 5379 5380 auto PVD = Ctor->getParamDecl(0); 5381 ParamOffset PO = this->Params[PVD]; // Must exist. 5382 5383 if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor)) 5384 return false; 5385 5386 return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) && 5387 this->emitRetVoid(Ctor); 5388 } 5389 5390 InitLinkScope<Emitter> InitScope(this, InitLink::This()); 5391 for (const auto *Init : Ctor->inits()) { 5392 // Scope needed for the initializers. 5393 BlockScope<Emitter> Scope(this); 5394 5395 const Expr *InitExpr = Init->getInit(); 5396 if (const FieldDecl *Member = Init->getMember()) { 5397 const Record::Field *F = R->getField(Member); 5398 5399 if (!emitFieldInitializer(F, F->Offset, InitExpr)) 5400 return false; 5401 } else if (const Type *Base = Init->getBaseClass()) { 5402 const auto *BaseDecl = Base->getAsCXXRecordDecl(); 5403 assert(BaseDecl); 5404 5405 if (Init->isBaseVirtual()) { 5406 assert(R->getVirtualBase(BaseDecl)); 5407 if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr)) 5408 return false; 5409 5410 } else { 5411 // Base class initializer. 5412 // Get This Base and call initializer on it. 5413 const Record::Base *B = R->getBase(BaseDecl); 5414 assert(B); 5415 if (!this->emitGetPtrThisBase(B->Offset, InitExpr)) 5416 return false; 5417 } 5418 5419 if (!this->visitInitializer(InitExpr)) 5420 return false; 5421 if (!this->emitFinishInitPop(InitExpr)) 5422 return false; 5423 } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) { 5424 assert(IFD->getChainingSize() >= 2); 5425 5426 unsigned NestedFieldOffset = 0; 5427 const Record::Field *NestedField = nullptr; 5428 for (const NamedDecl *ND : IFD->chain()) { 5429 const auto *FD = cast<FieldDecl>(ND); 5430 const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); 5431 assert(FieldRecord); 5432 5433 NestedField = FieldRecord->getField(FD); 5434 assert(NestedField); 5435 5436 NestedFieldOffset += NestedField->Offset; 5437 } 5438 assert(NestedField); 5439 5440 if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr)) 5441 return false; 5442 } else { 5443 assert(Init->isDelegatingInitializer()); 5444 if (!this->emitThis(InitExpr)) 5445 return false; 5446 if (!this->visitInitializer(Init->getInit())) 5447 return false; 5448 if (!this->emitPopPtr(InitExpr)) 5449 return false; 5450 } 5451 5452 if (!Scope.destroyLocals()) 5453 return false; 5454 } 5455 5456 if (const auto *Body = Ctor->getBody()) 5457 if (!visitStmt(Body)) 5458 return false; 5459 5460 return this->emitRetVoid(SourceInfo{}); 5461 } 5462 5463 template <class Emitter> 5464 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) { 5465 const RecordDecl *RD = Dtor->getParent(); 5466 const Record *R = this->getRecord(RD); 5467 if (!R) 5468 return false; 5469 5470 if (!Dtor->isTrivial() && Dtor->getBody()) { 5471 if (!this->visitStmt(Dtor->getBody())) 5472 return false; 5473 } 5474 5475 if (!this->emitThis(Dtor)) 5476 return false; 5477 5478 assert(R); 5479 if (!R->isUnion()) { 5480 // First, destroy all fields. 5481 for (const Record::Field &Field : llvm::reverse(R->fields())) { 5482 const Descriptor *D = Field.Desc; 5483 if (!D->isPrimitive() && !D->isPrimitiveArray()) { 5484 if (!this->emitGetPtrField(Field.Offset, SourceInfo{})) 5485 return false; 5486 if (!this->emitDestruction(D, SourceInfo{})) 5487 return false; 5488 if (!this->emitPopPtr(SourceInfo{})) 5489 return false; 5490 } 5491 } 5492 } 5493 5494 for (const Record::Base &Base : llvm::reverse(R->bases())) { 5495 if (Base.R->isAnonymousUnion()) 5496 continue; 5497 5498 if (!this->emitGetPtrBase(Base.Offset, SourceInfo{})) 5499 return false; 5500 if (!this->emitRecordDestruction(Base.R, {})) 5501 return false; 5502 if (!this->emitPopPtr(SourceInfo{})) 5503 return false; 5504 } 5505 5506 // FIXME: Virtual bases. 5507 return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor); 5508 } 5509 5510 template <class Emitter> 5511 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) { 5512 // Classify the return type. 5513 ReturnType = this->classify(F->getReturnType()); 5514 5515 if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F)) 5516 return this->compileConstructor(Ctor); 5517 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F)) 5518 return this->compileDestructor(Dtor); 5519 5520 // Emit custom code if this is a lambda static invoker. 5521 if (const auto *MD = dyn_cast<CXXMethodDecl>(F); 5522 MD && MD->isLambdaStaticInvoker()) 5523 return this->emitLambdaStaticInvokerBody(MD); 5524 5525 // Regular functions. 5526 if (const auto *Body = F->getBody()) 5527 if (!visitStmt(Body)) 5528 return false; 5529 5530 // Emit a guard return to protect against a code path missing one. 5531 if (F->getReturnType()->isVoidType()) 5532 return this->emitRetVoid(SourceInfo{}); 5533 return this->emitNoRet(SourceInfo{}); 5534 } 5535 5536 template <class Emitter> 5537 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) { 5538 const Expr *SubExpr = E->getSubExpr(); 5539 if (SubExpr->getType()->isAnyComplexType()) 5540 return this->VisitComplexUnaryOperator(E); 5541 if (SubExpr->getType()->isVectorType()) 5542 return this->VisitVectorUnaryOperator(E); 5543 if (SubExpr->getType()->isFixedPointType()) 5544 return this->VisitFixedPointUnaryOperator(E); 5545 std::optional<PrimType> T = classify(SubExpr->getType()); 5546 5547 switch (E->getOpcode()) { 5548 case UO_PostInc: { // x++ 5549 if (!Ctx.getLangOpts().CPlusPlus14) 5550 return this->emitInvalid(E); 5551 if (!T) 5552 return this->emitError(E); 5553 5554 if (!this->visit(SubExpr)) 5555 return false; 5556 5557 if (T == PT_Ptr || T == PT_FnPtr) { 5558 if (!this->emitIncPtr(E)) 5559 return false; 5560 5561 return DiscardResult ? this->emitPopPtr(E) : true; 5562 } 5563 5564 if (T == PT_Float) { 5565 return DiscardResult ? this->emitIncfPop(getFPOptions(E), E) 5566 : this->emitIncf(getFPOptions(E), E); 5567 } 5568 5569 return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E); 5570 } 5571 case UO_PostDec: { // x-- 5572 if (!Ctx.getLangOpts().CPlusPlus14) 5573 return this->emitInvalid(E); 5574 if (!T) 5575 return this->emitError(E); 5576 5577 if (!this->visit(SubExpr)) 5578 return false; 5579 5580 if (T == PT_Ptr || T == PT_FnPtr) { 5581 if (!this->emitDecPtr(E)) 5582 return false; 5583 5584 return DiscardResult ? this->emitPopPtr(E) : true; 5585 } 5586 5587 if (T == PT_Float) { 5588 return DiscardResult ? this->emitDecfPop(getFPOptions(E), E) 5589 : this->emitDecf(getFPOptions(E), E); 5590 } 5591 5592 return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E); 5593 } 5594 case UO_PreInc: { // ++x 5595 if (!Ctx.getLangOpts().CPlusPlus14) 5596 return this->emitInvalid(E); 5597 if (!T) 5598 return this->emitError(E); 5599 5600 if (!this->visit(SubExpr)) 5601 return false; 5602 5603 if (T == PT_Ptr || T == PT_FnPtr) { 5604 if (!this->emitLoadPtr(E)) 5605 return false; 5606 if (!this->emitConstUint8(1, E)) 5607 return false; 5608 if (!this->emitAddOffsetUint8(E)) 5609 return false; 5610 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5611 } 5612 5613 // Post-inc and pre-inc are the same if the value is to be discarded. 5614 if (DiscardResult) { 5615 if (T == PT_Float) 5616 return this->emitIncfPop(getFPOptions(E), E); 5617 return this->emitIncPop(*T, E); 5618 } 5619 5620 if (T == PT_Float) { 5621 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5622 if (!this->emitLoadFloat(E)) 5623 return false; 5624 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5625 return false; 5626 if (!this->emitAddf(getFPOptions(E), E)) 5627 return false; 5628 if (!this->emitStoreFloat(E)) 5629 return false; 5630 } else { 5631 assert(isIntegralType(*T)); 5632 if (!this->emitLoad(*T, E)) 5633 return false; 5634 if (!this->emitConst(1, E)) 5635 return false; 5636 if (!this->emitAdd(*T, E)) 5637 return false; 5638 if (!this->emitStore(*T, E)) 5639 return false; 5640 } 5641 return E->isGLValue() || this->emitLoadPop(*T, E); 5642 } 5643 case UO_PreDec: { // --x 5644 if (!Ctx.getLangOpts().CPlusPlus14) 5645 return this->emitInvalid(E); 5646 if (!T) 5647 return this->emitError(E); 5648 5649 if (!this->visit(SubExpr)) 5650 return false; 5651 5652 if (T == PT_Ptr || T == PT_FnPtr) { 5653 if (!this->emitLoadPtr(E)) 5654 return false; 5655 if (!this->emitConstUint8(1, E)) 5656 return false; 5657 if (!this->emitSubOffsetUint8(E)) 5658 return false; 5659 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5660 } 5661 5662 // Post-dec and pre-dec are the same if the value is to be discarded. 5663 if (DiscardResult) { 5664 if (T == PT_Float) 5665 return this->emitDecfPop(getFPOptions(E), E); 5666 return this->emitDecPop(*T, E); 5667 } 5668 5669 if (T == PT_Float) { 5670 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5671 if (!this->emitLoadFloat(E)) 5672 return false; 5673 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5674 return false; 5675 if (!this->emitSubf(getFPOptions(E), E)) 5676 return false; 5677 if (!this->emitStoreFloat(E)) 5678 return false; 5679 } else { 5680 assert(isIntegralType(*T)); 5681 if (!this->emitLoad(*T, E)) 5682 return false; 5683 if (!this->emitConst(1, E)) 5684 return false; 5685 if (!this->emitSub(*T, E)) 5686 return false; 5687 if (!this->emitStore(*T, E)) 5688 return false; 5689 } 5690 return E->isGLValue() || this->emitLoadPop(*T, E); 5691 } 5692 case UO_LNot: // !x 5693 if (!T) 5694 return this->emitError(E); 5695 5696 if (DiscardResult) 5697 return this->discard(SubExpr); 5698 5699 if (!this->visitBool(SubExpr)) 5700 return false; 5701 5702 if (!this->emitInv(E)) 5703 return false; 5704 5705 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5706 return this->emitCast(PT_Bool, ET, E); 5707 return true; 5708 case UO_Minus: // -x 5709 if (!T) 5710 return this->emitError(E); 5711 5712 if (!this->visit(SubExpr)) 5713 return false; 5714 return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E); 5715 case UO_Plus: // +x 5716 if (!T) 5717 return this->emitError(E); 5718 5719 if (!this->visit(SubExpr)) // noop 5720 return false; 5721 return DiscardResult ? this->emitPop(*T, E) : true; 5722 case UO_AddrOf: // &x 5723 if (E->getType()->isMemberPointerType()) { 5724 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 5725 // member can be formed. 5726 return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E); 5727 } 5728 // We should already have a pointer when we get here. 5729 return this->delegate(SubExpr); 5730 case UO_Deref: // *x 5731 if (DiscardResult) 5732 return this->discard(SubExpr); 5733 return this->visit(SubExpr); 5734 case UO_Not: // ~x 5735 if (!T) 5736 return this->emitError(E); 5737 5738 if (!this->visit(SubExpr)) 5739 return false; 5740 return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E); 5741 case UO_Real: // __real x 5742 assert(T); 5743 return this->delegate(SubExpr); 5744 case UO_Imag: { // __imag x 5745 assert(T); 5746 if (!this->discard(SubExpr)) 5747 return false; 5748 return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr); 5749 } 5750 case UO_Extension: 5751 return this->delegate(SubExpr); 5752 case UO_Coawait: 5753 assert(false && "Unhandled opcode"); 5754 } 5755 5756 return false; 5757 } 5758 5759 template <class Emitter> 5760 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) { 5761 const Expr *SubExpr = E->getSubExpr(); 5762 assert(SubExpr->getType()->isAnyComplexType()); 5763 5764 if (DiscardResult) 5765 return this->discard(SubExpr); 5766 5767 std::optional<PrimType> ResT = classify(E); 5768 auto prepareResult = [=]() -> bool { 5769 if (!ResT && !Initializing) { 5770 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5771 if (!LocalIndex) 5772 return false; 5773 return this->emitGetPtrLocal(*LocalIndex, E); 5774 } 5775 5776 return true; 5777 }; 5778 5779 // The offset of the temporary, if we created one. 5780 unsigned SubExprOffset = ~0u; 5781 auto createTemp = [=, &SubExprOffset]() -> bool { 5782 SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5783 if (!this->visit(SubExpr)) 5784 return false; 5785 return this->emitSetLocal(PT_Ptr, SubExprOffset, E); 5786 }; 5787 5788 PrimType ElemT = classifyComplexElementType(SubExpr->getType()); 5789 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5790 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5791 return false; 5792 return this->emitArrayElemPop(ElemT, Index, E); 5793 }; 5794 5795 switch (E->getOpcode()) { 5796 case UO_Minus: 5797 if (!prepareResult()) 5798 return false; 5799 if (!createTemp()) 5800 return false; 5801 for (unsigned I = 0; I != 2; ++I) { 5802 if (!getElem(SubExprOffset, I)) 5803 return false; 5804 if (!this->emitNeg(ElemT, E)) 5805 return false; 5806 if (!this->emitInitElem(ElemT, I, E)) 5807 return false; 5808 } 5809 break; 5810 5811 case UO_Plus: // +x 5812 case UO_AddrOf: // &x 5813 case UO_Deref: // *x 5814 return this->delegate(SubExpr); 5815 5816 case UO_LNot: 5817 if (!this->visit(SubExpr)) 5818 return false; 5819 if (!this->emitComplexBoolCast(SubExpr)) 5820 return false; 5821 if (!this->emitInv(E)) 5822 return false; 5823 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5824 return this->emitCast(PT_Bool, ET, E); 5825 return true; 5826 5827 case UO_Real: 5828 return this->emitComplexReal(SubExpr); 5829 5830 case UO_Imag: 5831 if (!this->visit(SubExpr)) 5832 return false; 5833 5834 if (SubExpr->isLValue()) { 5835 if (!this->emitConstUint8(1, E)) 5836 return false; 5837 return this->emitArrayElemPtrPopUint8(E); 5838 } 5839 5840 // Since our _Complex implementation does not map to a primitive type, 5841 // we sometimes have to do the lvalue-to-rvalue conversion here manually. 5842 return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E); 5843 5844 case UO_Not: // ~x 5845 if (!this->visit(SubExpr)) 5846 return false; 5847 // Negate the imaginary component. 5848 if (!this->emitArrayElem(ElemT, 1, E)) 5849 return false; 5850 if (!this->emitNeg(ElemT, E)) 5851 return false; 5852 if (!this->emitInitElem(ElemT, 1, E)) 5853 return false; 5854 return DiscardResult ? this->emitPopPtr(E) : true; 5855 5856 case UO_Extension: 5857 return this->delegate(SubExpr); 5858 5859 default: 5860 return this->emitInvalid(E); 5861 } 5862 5863 return true; 5864 } 5865 5866 template <class Emitter> 5867 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) { 5868 const Expr *SubExpr = E->getSubExpr(); 5869 assert(SubExpr->getType()->isVectorType()); 5870 5871 if (DiscardResult) 5872 return this->discard(SubExpr); 5873 5874 auto UnaryOp = E->getOpcode(); 5875 if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot && 5876 UnaryOp != UO_Not && UnaryOp != UO_AddrOf) 5877 return this->emitInvalid(E); 5878 5879 // Nothing to do here. 5880 if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf) 5881 return this->delegate(SubExpr); 5882 5883 if (!Initializing) { 5884 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5885 if (!LocalIndex) 5886 return false; 5887 if (!this->emitGetPtrLocal(*LocalIndex, E)) 5888 return false; 5889 } 5890 5891 // The offset of the temporary, if we created one. 5892 unsigned SubExprOffset = 5893 this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5894 if (!this->visit(SubExpr)) 5895 return false; 5896 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E)) 5897 return false; 5898 5899 const auto *VecTy = SubExpr->getType()->getAs<VectorType>(); 5900 PrimType ElemT = classifyVectorElementType(SubExpr->getType()); 5901 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5902 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5903 return false; 5904 return this->emitArrayElemPop(ElemT, Index, E); 5905 }; 5906 5907 switch (UnaryOp) { 5908 case UO_Minus: 5909 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5910 if (!getElem(SubExprOffset, I)) 5911 return false; 5912 if (!this->emitNeg(ElemT, E)) 5913 return false; 5914 if (!this->emitInitElem(ElemT, I, E)) 5915 return false; 5916 } 5917 break; 5918 case UO_LNot: { // !x 5919 // In C++, the logic operators !, &&, || are available for vectors. !v is 5920 // equivalent to v == 0. 5921 // 5922 // The result of the comparison is a vector of the same width and number of 5923 // elements as the comparison operands with a signed integral element type. 5924 // 5925 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 5926 QualType ResultVecTy = E->getType(); 5927 PrimType ResultVecElemT = 5928 classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType()); 5929 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5930 if (!getElem(SubExprOffset, I)) 5931 return false; 5932 // operator ! on vectors returns -1 for 'truth', so negate it. 5933 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 5934 return false; 5935 if (!this->emitInv(E)) 5936 return false; 5937 if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E)) 5938 return false; 5939 if (!this->emitNeg(ElemT, E)) 5940 return false; 5941 if (ElemT != ResultVecElemT && 5942 !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E)) 5943 return false; 5944 if (!this->emitInitElem(ResultVecElemT, I, E)) 5945 return false; 5946 } 5947 break; 5948 } 5949 case UO_Not: // ~x 5950 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5951 if (!getElem(SubExprOffset, I)) 5952 return false; 5953 if (ElemT == PT_Bool) { 5954 if (!this->emitInv(E)) 5955 return false; 5956 } else { 5957 if (!this->emitComp(ElemT, E)) 5958 return false; 5959 } 5960 if (!this->emitInitElem(ElemT, I, E)) 5961 return false; 5962 } 5963 break; 5964 default: 5965 llvm_unreachable("Unsupported unary operators should be handled up front"); 5966 } 5967 return true; 5968 } 5969 5970 template <class Emitter> 5971 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) { 5972 if (DiscardResult) 5973 return true; 5974 5975 if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) { 5976 return this->emitConst(ECD->getInitVal(), E); 5977 } else if (const auto *BD = dyn_cast<BindingDecl>(D)) { 5978 return this->visit(BD->getBinding()); 5979 } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) { 5980 const Function *F = getFunction(FuncDecl); 5981 return F && this->emitGetFnPtr(F, E); 5982 } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) { 5983 if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) { 5984 if (!this->emitGetPtrGlobal(*Index, E)) 5985 return false; 5986 if (std::optional<PrimType> T = classify(E->getType())) { 5987 if (!this->visitAPValue(TPOD->getValue(), *T, E)) 5988 return false; 5989 return this->emitInitGlobal(*T, *Index, E); 5990 } 5991 return this->visitAPValueInitializer(TPOD->getValue(), E); 5992 } 5993 return false; 5994 } 5995 5996 // References are implemented via pointers, so when we see a DeclRefExpr 5997 // pointing to a reference, we need to get its value directly (i.e. the 5998 // pointer to the actual value) instead of a pointer to the pointer to the 5999 // value. 6000 bool IsReference = D->getType()->isReferenceType(); 6001 6002 // Check for local/global variables and parameters. 6003 if (auto It = Locals.find(D); It != Locals.end()) { 6004 const unsigned Offset = It->second.Offset; 6005 if (IsReference) 6006 return this->emitGetLocal(PT_Ptr, Offset, E); 6007 return this->emitGetPtrLocal(Offset, E); 6008 } else if (auto GlobalIndex = P.getGlobal(D)) { 6009 if (IsReference) { 6010 if (!Ctx.getLangOpts().CPlusPlus11) 6011 return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E); 6012 return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E); 6013 } 6014 6015 return this->emitGetPtrGlobal(*GlobalIndex, E); 6016 } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { 6017 if (auto It = this->Params.find(PVD); It != this->Params.end()) { 6018 if (IsReference || !It->second.IsPtr) 6019 return this->emitGetParam(classifyPrim(E), It->second.Offset, E); 6020 6021 return this->emitGetPtrParam(It->second.Offset, E); 6022 } 6023 6024 if (D->getType()->isReferenceType()) 6025 return false; // FIXME: Do we need to emit InvalidDeclRef? 6026 } 6027 6028 // In case we need to re-visit a declaration. 6029 auto revisit = [&](const VarDecl *VD) -> bool { 6030 auto VarState = this->visitDecl(VD); 6031 6032 if (VarState.notCreated()) 6033 return true; 6034 if (!VarState) 6035 return false; 6036 // Retry. 6037 return this->visitDeclRef(D, E); 6038 }; 6039 6040 // Handle lambda captures. 6041 if (auto It = this->LambdaCaptures.find(D); 6042 It != this->LambdaCaptures.end()) { 6043 auto [Offset, IsPtr] = It->second; 6044 6045 if (IsPtr) 6046 return this->emitGetThisFieldPtr(Offset, E); 6047 return this->emitGetPtrThisField(Offset, E); 6048 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E); 6049 DRE && DRE->refersToEnclosingVariableOrCapture()) { 6050 if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture()) 6051 return revisit(VD); 6052 } 6053 6054 if (D != InitializingDecl) { 6055 // Try to lazily visit (or emit dummy pointers for) declarations 6056 // we haven't seen yet. 6057 if (Ctx.getLangOpts().CPlusPlus) { 6058 if (const auto *VD = dyn_cast<VarDecl>(D)) { 6059 const auto typeShouldBeVisited = [&](QualType T) -> bool { 6060 if (T.isConstant(Ctx.getASTContext())) 6061 return true; 6062 return T->isReferenceType(); 6063 }; 6064 6065 // DecompositionDecls are just proxies for us. 6066 if (isa<DecompositionDecl>(VD)) 6067 return revisit(VD); 6068 6069 if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) && 6070 typeShouldBeVisited(VD->getType())) 6071 return revisit(VD); 6072 6073 // FIXME: The evaluateValue() check here is a little ridiculous, since 6074 // it will ultimately call into Context::evaluateAsInitializer(). In 6075 // other words, we're evaluating the initializer, just to know if we can 6076 // evaluate the initializer. 6077 if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) && 6078 VD->getInit() && !VD->getInit()->isValueDependent()) { 6079 6080 if (VD->evaluateValue()) 6081 return revisit(VD); 6082 return this->emitInvalidDeclRef(cast<DeclRefExpr>(E), E); 6083 } 6084 } 6085 } else { 6086 if (const auto *VD = dyn_cast<VarDecl>(D); 6087 VD && VD->getAnyInitializer() && 6088 VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak()) 6089 return revisit(VD); 6090 } 6091 } 6092 6093 if (std::optional<unsigned> I = P.getOrCreateDummy(D)) { 6094 if (!this->emitGetPtrGlobal(*I, E)) 6095 return false; 6096 if (E->getType()->isVoidType()) 6097 return true; 6098 // Convert the dummy pointer to another pointer type if we have to. 6099 if (PrimType PT = classifyPrim(E); PT != PT_Ptr) { 6100 if (isPtrType(PT)) 6101 return this->emitDecayPtr(PT_Ptr, PT, E); 6102 return false; 6103 } 6104 return true; 6105 } 6106 6107 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 6108 return this->emitInvalidDeclRef(DRE, E); 6109 return false; 6110 } 6111 6112 template <class Emitter> 6113 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) { 6114 const auto *D = E->getDecl(); 6115 return this->visitDeclRef(D, E); 6116 } 6117 6118 template <class Emitter> void Compiler<Emitter>::emitCleanup() { 6119 for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent()) 6120 C->emitDestruction(); 6121 } 6122 6123 template <class Emitter> 6124 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType, 6125 const QualType DerivedType) { 6126 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 6127 if (const auto *R = Ty->getPointeeCXXRecordDecl()) 6128 return R; 6129 return Ty->getAsCXXRecordDecl(); 6130 }; 6131 const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType); 6132 const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType); 6133 6134 return Ctx.collectBaseOffset(BaseDecl, DerivedDecl); 6135 } 6136 6137 /// Emit casts from a PrimType to another PrimType. 6138 template <class Emitter> 6139 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT, 6140 QualType ToQT, const Expr *E) { 6141 6142 if (FromT == PT_Float) { 6143 // Floating to floating. 6144 if (ToT == PT_Float) { 6145 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 6146 return this->emitCastFP(ToSem, getRoundingMode(E), E); 6147 } 6148 6149 if (ToT == PT_IntAP) 6150 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), 6151 getFPOptions(E), E); 6152 if (ToT == PT_IntAPS) 6153 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), 6154 getFPOptions(E), E); 6155 6156 // Float to integral. 6157 if (isIntegralType(ToT) || ToT == PT_Bool) 6158 return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E); 6159 } 6160 6161 if (isIntegralType(FromT) || FromT == PT_Bool) { 6162 if (ToT == PT_IntAP) 6163 return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E); 6164 if (ToT == PT_IntAPS) 6165 return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E); 6166 6167 // Integral to integral. 6168 if (isIntegralType(ToT) || ToT == PT_Bool) 6169 return FromT != ToT ? this->emitCast(FromT, ToT, E) : true; 6170 6171 if (ToT == PT_Float) { 6172 // Integral to floating. 6173 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 6174 return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E); 6175 } 6176 } 6177 6178 return false; 6179 } 6180 6181 /// Emits __real(SubExpr) 6182 template <class Emitter> 6183 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) { 6184 assert(SubExpr->getType()->isAnyComplexType()); 6185 6186 if (DiscardResult) 6187 return this->discard(SubExpr); 6188 6189 if (!this->visit(SubExpr)) 6190 return false; 6191 if (SubExpr->isLValue()) { 6192 if (!this->emitConstUint8(0, SubExpr)) 6193 return false; 6194 return this->emitArrayElemPtrPopUint8(SubExpr); 6195 } 6196 6197 // Rvalue, load the actual element. 6198 return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()), 6199 0, SubExpr); 6200 } 6201 6202 template <class Emitter> 6203 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) { 6204 assert(!DiscardResult); 6205 PrimType ElemT = classifyComplexElementType(E->getType()); 6206 // We emit the expression (__real(E) != 0 || __imag(E) != 0) 6207 // for us, that means (bool)E[0] || (bool)E[1] 6208 if (!this->emitArrayElem(ElemT, 0, E)) 6209 return false; 6210 if (ElemT == PT_Float) { 6211 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 6212 return false; 6213 } else { 6214 if (!this->emitCast(ElemT, PT_Bool, E)) 6215 return false; 6216 } 6217 6218 // We now have the bool value of E[0] on the stack. 6219 LabelTy LabelTrue = this->getLabel(); 6220 if (!this->jumpTrue(LabelTrue)) 6221 return false; 6222 6223 if (!this->emitArrayElemPop(ElemT, 1, E)) 6224 return false; 6225 if (ElemT == PT_Float) { 6226 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 6227 return false; 6228 } else { 6229 if (!this->emitCast(ElemT, PT_Bool, E)) 6230 return false; 6231 } 6232 // Leave the boolean value of E[1] on the stack. 6233 LabelTy EndLabel = this->getLabel(); 6234 this->jump(EndLabel); 6235 6236 this->emitLabel(LabelTrue); 6237 if (!this->emitPopPtr(E)) 6238 return false; 6239 if (!this->emitConstBool(true, E)) 6240 return false; 6241 6242 this->fallthrough(EndLabel); 6243 this->emitLabel(EndLabel); 6244 6245 return true; 6246 } 6247 6248 template <class Emitter> 6249 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS, 6250 const BinaryOperator *E) { 6251 assert(E->isComparisonOp()); 6252 assert(!Initializing); 6253 assert(!DiscardResult); 6254 6255 PrimType ElemT; 6256 bool LHSIsComplex; 6257 unsigned LHSOffset; 6258 if (LHS->getType()->isAnyComplexType()) { 6259 LHSIsComplex = true; 6260 ElemT = classifyComplexElementType(LHS->getType()); 6261 LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true, 6262 /*IsExtended=*/false); 6263 if (!this->visit(LHS)) 6264 return false; 6265 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 6266 return false; 6267 } else { 6268 LHSIsComplex = false; 6269 PrimType LHST = classifyPrim(LHS->getType()); 6270 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 6271 if (!this->visit(LHS)) 6272 return false; 6273 if (!this->emitSetLocal(LHST, LHSOffset, E)) 6274 return false; 6275 } 6276 6277 bool RHSIsComplex; 6278 unsigned RHSOffset; 6279 if (RHS->getType()->isAnyComplexType()) { 6280 RHSIsComplex = true; 6281 ElemT = classifyComplexElementType(RHS->getType()); 6282 RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true, 6283 /*IsExtended=*/false); 6284 if (!this->visit(RHS)) 6285 return false; 6286 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 6287 return false; 6288 } else { 6289 RHSIsComplex = false; 6290 PrimType RHST = classifyPrim(RHS->getType()); 6291 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 6292 if (!this->visit(RHS)) 6293 return false; 6294 if (!this->emitSetLocal(RHST, RHSOffset, E)) 6295 return false; 6296 } 6297 6298 auto getElem = [&](unsigned LocalOffset, unsigned Index, 6299 bool IsComplex) -> bool { 6300 if (IsComplex) { 6301 if (!this->emitGetLocal(PT_Ptr, LocalOffset, E)) 6302 return false; 6303 return this->emitArrayElemPop(ElemT, Index, E); 6304 } 6305 return this->emitGetLocal(ElemT, LocalOffset, E); 6306 }; 6307 6308 for (unsigned I = 0; I != 2; ++I) { 6309 // Get both values. 6310 if (!getElem(LHSOffset, I, LHSIsComplex)) 6311 return false; 6312 if (!getElem(RHSOffset, I, RHSIsComplex)) 6313 return false; 6314 // And compare them. 6315 if (!this->emitEQ(ElemT, E)) 6316 return false; 6317 6318 if (!this->emitCastBoolUint8(E)) 6319 return false; 6320 } 6321 6322 // We now have two bool values on the stack. Compare those. 6323 if (!this->emitAddUint8(E)) 6324 return false; 6325 if (!this->emitConstUint8(2, E)) 6326 return false; 6327 6328 if (E->getOpcode() == BO_EQ) { 6329 if (!this->emitEQUint8(E)) 6330 return false; 6331 } else if (E->getOpcode() == BO_NE) { 6332 if (!this->emitNEUint8(E)) 6333 return false; 6334 } else 6335 return false; 6336 6337 // In C, this returns an int. 6338 if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool) 6339 return this->emitCast(PT_Bool, ResT, E); 6340 return true; 6341 } 6342 6343 /// When calling this, we have a pointer of the local-to-destroy 6344 /// on the stack. 6345 /// Emit destruction of record types (or arrays of record types). 6346 template <class Emitter> 6347 bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) { 6348 assert(R); 6349 assert(!R->isAnonymousUnion()); 6350 const CXXDestructorDecl *Dtor = R->getDestructor(); 6351 if (!Dtor || Dtor->isTrivial()) 6352 return true; 6353 6354 assert(Dtor); 6355 const Function *DtorFunc = getFunction(Dtor); 6356 if (!DtorFunc) 6357 return false; 6358 assert(DtorFunc->hasThisPointer()); 6359 assert(DtorFunc->getNumParams() == 1); 6360 if (!this->emitDupPtr(Loc)) 6361 return false; 6362 return this->emitCall(DtorFunc, 0, Loc); 6363 } 6364 /// When calling this, we have a pointer of the local-to-destroy 6365 /// on the stack. 6366 /// Emit destruction of record types (or arrays of record types). 6367 template <class Emitter> 6368 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc, 6369 SourceInfo Loc) { 6370 assert(Desc); 6371 assert(!Desc->isPrimitive()); 6372 assert(!Desc->isPrimitiveArray()); 6373 6374 // Arrays. 6375 if (Desc->isArray()) { 6376 const Descriptor *ElemDesc = Desc->ElemDesc; 6377 assert(ElemDesc); 6378 6379 // Don't need to do anything for these. 6380 if (ElemDesc->isPrimitiveArray()) 6381 return true; 6382 6383 // If this is an array of record types, check if we need 6384 // to call the element destructors at all. If not, try 6385 // to save the work. 6386 if (const Record *ElemRecord = ElemDesc->ElemRecord) { 6387 if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor(); 6388 !Dtor || Dtor->isTrivial()) 6389 return true; 6390 } 6391 6392 for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) { 6393 if (!this->emitConstUint64(I, Loc)) 6394 return false; 6395 if (!this->emitArrayElemPtrUint64(Loc)) 6396 return false; 6397 if (!this->emitDestruction(ElemDesc, Loc)) 6398 return false; 6399 if (!this->emitPopPtr(Loc)) 6400 return false; 6401 } 6402 return true; 6403 } 6404 6405 assert(Desc->ElemRecord); 6406 if (Desc->ElemRecord->isAnonymousUnion()) 6407 return true; 6408 6409 return this->emitRecordDestruction(Desc->ElemRecord, Loc); 6410 } 6411 6412 namespace clang { 6413 namespace interp { 6414 6415 template class Compiler<ByteCodeEmitter>; 6416 template class Compiler<EvalEmitter>; 6417 6418 } // namespace interp 6419 } // namespace clang 6420