xref: /llvm-project/clang/lib/AST/ByteCode/Compiler.cpp (revision 1714b113849ae5af5e9a3d2e36e18517b058c5ae)
1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Compiler.h"
10 #include "ByteCodeEmitter.h"
11 #include "Context.h"
12 #include "FixedPoint.h"
13 #include "Floating.h"
14 #include "Function.h"
15 #include "InterpShared.h"
16 #include "PrimType.h"
17 #include "Program.h"
18 #include "clang/AST/Attr.h"
19 
20 using namespace clang;
21 using namespace clang::interp;
22 
23 using APSInt = llvm::APSInt;
24 
25 namespace clang {
26 namespace interp {
27 
28 /// Scope used to handle temporaries in toplevel variable declarations.
29 template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
30 public:
31   DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
32       : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
33         OldInitializingDecl(Ctx->InitializingDecl) {
34     Ctx->InitializingDecl = VD;
35     Ctx->InitStack.push_back(InitLink::Decl(VD));
36   }
37 
38   void addExtended(const Scope::Local &Local) override {
39     return this->addLocal(Local);
40   }
41 
42   ~DeclScope() {
43     this->Ctx->InitializingDecl = OldInitializingDecl;
44     this->Ctx->InitStack.pop_back();
45   }
46 
47 private:
48   Program::DeclScope Scope;
49   const ValueDecl *OldInitializingDecl;
50 };
51 
52 /// Scope used to handle initialization methods.
53 template <class Emitter> class OptionScope final {
54 public:
55   /// Root constructor, compiling or discarding primitives.
56   OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
57               bool NewInitializing)
58       : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
59         OldInitializing(Ctx->Initializing) {
60     Ctx->DiscardResult = NewDiscardResult;
61     Ctx->Initializing = NewInitializing;
62   }
63 
64   ~OptionScope() {
65     Ctx->DiscardResult = OldDiscardResult;
66     Ctx->Initializing = OldInitializing;
67   }
68 
69 private:
70   /// Parent context.
71   Compiler<Emitter> *Ctx;
72   /// Old discard flag to restore.
73   bool OldDiscardResult;
74   bool OldInitializing;
75 };
76 
77 template <class Emitter>
78 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
79   switch (Kind) {
80   case K_This:
81     return Ctx->emitThis(E);
82   case K_Field:
83     // We're assuming there's a base pointer on the stack already.
84     return Ctx->emitGetPtrFieldPop(Offset, E);
85   case K_Temp:
86     return Ctx->emitGetPtrLocal(Offset, E);
87   case K_Decl:
88     return Ctx->visitDeclRef(D, E);
89   case K_Elem:
90     if (!Ctx->emitConstUint32(Offset, E))
91       return false;
92     return Ctx->emitArrayElemPtrPopUint32(E);
93   default:
94     llvm_unreachable("Unhandled InitLink kind");
95   }
96   return true;
97 }
98 
99 /// Scope managing label targets.
100 template <class Emitter> class LabelScope {
101 public:
102   virtual ~LabelScope() {}
103 
104 protected:
105   LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
106   /// Compiler instance.
107   Compiler<Emitter> *Ctx;
108 };
109 
110 /// Sets the context for break/continue statements.
111 template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
112 public:
113   using LabelTy = typename Compiler<Emitter>::LabelTy;
114   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
115 
116   LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
117       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
118         OldContinueLabel(Ctx->ContinueLabel),
119         OldBreakVarScope(Ctx->BreakVarScope),
120         OldContinueVarScope(Ctx->ContinueVarScope) {
121     this->Ctx->BreakLabel = BreakLabel;
122     this->Ctx->ContinueLabel = ContinueLabel;
123     this->Ctx->BreakVarScope = this->Ctx->VarScope;
124     this->Ctx->ContinueVarScope = this->Ctx->VarScope;
125   }
126 
127   ~LoopScope() {
128     this->Ctx->BreakLabel = OldBreakLabel;
129     this->Ctx->ContinueLabel = OldContinueLabel;
130     this->Ctx->ContinueVarScope = OldContinueVarScope;
131     this->Ctx->BreakVarScope = OldBreakVarScope;
132   }
133 
134 private:
135   OptLabelTy OldBreakLabel;
136   OptLabelTy OldContinueLabel;
137   VariableScope<Emitter> *OldBreakVarScope;
138   VariableScope<Emitter> *OldContinueVarScope;
139 };
140 
141 // Sets the context for a switch scope, mapping labels.
142 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
143 public:
144   using LabelTy = typename Compiler<Emitter>::LabelTy;
145   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
146   using CaseMap = typename Compiler<Emitter>::CaseMap;
147 
148   SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
149               OptLabelTy DefaultLabel)
150       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
151         OldDefaultLabel(this->Ctx->DefaultLabel),
152         OldCaseLabels(std::move(this->Ctx->CaseLabels)),
153         OldLabelVarScope(Ctx->BreakVarScope) {
154     this->Ctx->BreakLabel = BreakLabel;
155     this->Ctx->DefaultLabel = DefaultLabel;
156     this->Ctx->CaseLabels = std::move(CaseLabels);
157     this->Ctx->BreakVarScope = this->Ctx->VarScope;
158   }
159 
160   ~SwitchScope() {
161     this->Ctx->BreakLabel = OldBreakLabel;
162     this->Ctx->DefaultLabel = OldDefaultLabel;
163     this->Ctx->CaseLabels = std::move(OldCaseLabels);
164     this->Ctx->BreakVarScope = OldLabelVarScope;
165   }
166 
167 private:
168   OptLabelTy OldBreakLabel;
169   OptLabelTy OldDefaultLabel;
170   CaseMap OldCaseLabels;
171   VariableScope<Emitter> *OldLabelVarScope;
172 };
173 
174 template <class Emitter> class StmtExprScope final {
175 public:
176   StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
177     Ctx->InStmtExpr = true;
178   }
179 
180   ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
181 
182 private:
183   Compiler<Emitter> *Ctx;
184   bool OldFlag;
185 };
186 
187 } // namespace interp
188 } // namespace clang
189 
190 template <class Emitter>
191 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
192   const Expr *SubExpr = CE->getSubExpr();
193   switch (CE->getCastKind()) {
194 
195   case CK_LValueToRValue: {
196     if (DiscardResult)
197       return this->discard(SubExpr);
198 
199     std::optional<PrimType> SubExprT = classify(SubExpr->getType());
200     // Prepare storage for the result.
201     if (!Initializing && !SubExprT) {
202       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
203       if (!LocalIndex)
204         return false;
205       if (!this->emitGetPtrLocal(*LocalIndex, CE))
206         return false;
207     }
208 
209     if (!this->visit(SubExpr))
210       return false;
211 
212     if (SubExprT)
213       return this->emitLoadPop(*SubExprT, CE);
214 
215     // If the subexpr type is not primitive, we need to perform a copy here.
216     // This happens for example in C when dereferencing a pointer of struct
217     // type.
218     return this->emitMemcpy(CE);
219   }
220 
221   case CK_DerivedToBaseMemberPointer: {
222     assert(classifyPrim(CE->getType()) == PT_MemberPtr);
223     assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
224     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
225     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
226 
227     unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
228                                                QualType(FromMP->getClass(), 0));
229 
230     if (!this->delegate(SubExpr))
231       return false;
232 
233     return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
234   }
235 
236   case CK_BaseToDerivedMemberPointer: {
237     assert(classifyPrim(CE) == PT_MemberPtr);
238     assert(classifyPrim(SubExpr) == PT_MemberPtr);
239     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
240     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
241 
242     unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
243                                                QualType(ToMP->getClass(), 0));
244 
245     if (!this->delegate(SubExpr))
246       return false;
247     return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
248   }
249 
250   case CK_UncheckedDerivedToBase:
251   case CK_DerivedToBase: {
252     if (!this->delegate(SubExpr))
253       return false;
254 
255     const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
256       if (const auto *PT = dyn_cast<PointerType>(Ty))
257         return PT->getPointeeType()->getAsCXXRecordDecl();
258       return Ty->getAsCXXRecordDecl();
259     };
260 
261     // FIXME: We can express a series of non-virtual casts as a single
262     // GetPtrBasePop op.
263     QualType CurType = SubExpr->getType();
264     for (const CXXBaseSpecifier *B : CE->path()) {
265       if (B->isVirtual()) {
266         if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
267           return false;
268         CurType = B->getType();
269       } else {
270         unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
271         if (!this->emitGetPtrBasePop(DerivedOffset, CE))
272           return false;
273         CurType = B->getType();
274       }
275     }
276 
277     return true;
278   }
279 
280   case CK_BaseToDerived: {
281     if (!this->delegate(SubExpr))
282       return false;
283 
284     unsigned DerivedOffset =
285         collectBaseOffset(SubExpr->getType(), CE->getType());
286 
287     return this->emitGetPtrDerivedPop(DerivedOffset, CE);
288   }
289 
290   case CK_FloatingCast: {
291     // HLSL uses CK_FloatingCast to cast between vectors.
292     if (!SubExpr->getType()->isFloatingType() ||
293         !CE->getType()->isFloatingType())
294       return false;
295     if (DiscardResult)
296       return this->discard(SubExpr);
297     if (!this->visit(SubExpr))
298       return false;
299     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
300     return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
301   }
302 
303   case CK_IntegralToFloating: {
304     if (DiscardResult)
305       return this->discard(SubExpr);
306     std::optional<PrimType> FromT = classify(SubExpr->getType());
307     if (!FromT)
308       return false;
309 
310     if (!this->visit(SubExpr))
311       return false;
312 
313     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
314     return this->emitCastIntegralFloating(*FromT, TargetSemantics,
315                                           getFPOptions(CE), CE);
316   }
317 
318   case CK_FloatingToBoolean:
319   case CK_FloatingToIntegral: {
320     if (DiscardResult)
321       return this->discard(SubExpr);
322 
323     std::optional<PrimType> ToT = classify(CE->getType());
324 
325     if (!ToT)
326       return false;
327 
328     if (!this->visit(SubExpr))
329       return false;
330 
331     if (ToT == PT_IntAP)
332       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
333                                               getFPOptions(CE), CE);
334     if (ToT == PT_IntAPS)
335       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
336                                                getFPOptions(CE), CE);
337 
338     return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE);
339   }
340 
341   case CK_NullToPointer:
342   case CK_NullToMemberPointer: {
343     if (!this->discard(SubExpr))
344       return false;
345     if (DiscardResult)
346       return true;
347 
348     const Descriptor *Desc = nullptr;
349     const QualType PointeeType = CE->getType()->getPointeeType();
350     if (!PointeeType.isNull()) {
351       if (std::optional<PrimType> T = classify(PointeeType))
352         Desc = P.createDescriptor(SubExpr, *T);
353       else
354         Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
355                                   std::nullopt, true, false,
356                                   /*IsMutable=*/false, nullptr);
357     }
358     return this->emitNull(classifyPrim(CE->getType()), Desc, CE);
359   }
360 
361   case CK_PointerToIntegral: {
362     if (DiscardResult)
363       return this->discard(SubExpr);
364 
365     if (!this->visit(SubExpr))
366       return false;
367 
368     // If SubExpr doesn't result in a pointer, make it one.
369     if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
370       assert(isPtrType(FromT));
371       if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
372         return false;
373     }
374 
375     PrimType T = classifyPrim(CE->getType());
376     if (T == PT_IntAP)
377       return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
378                                              CE);
379     if (T == PT_IntAPS)
380       return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
381                                               CE);
382     return this->emitCastPointerIntegral(T, CE);
383   }
384 
385   case CK_ArrayToPointerDecay: {
386     if (!this->visit(SubExpr))
387       return false;
388     if (!this->emitArrayDecay(CE))
389       return false;
390     if (DiscardResult)
391       return this->emitPopPtr(CE);
392     return true;
393   }
394 
395   case CK_IntegralToPointer: {
396     QualType IntType = SubExpr->getType();
397     assert(IntType->isIntegralOrEnumerationType());
398     if (!this->visit(SubExpr))
399       return false;
400     // FIXME: I think the discard is wrong since the int->ptr cast might cause a
401     // diagnostic.
402     PrimType T = classifyPrim(IntType);
403     if (DiscardResult)
404       return this->emitPop(T, CE);
405 
406     QualType PtrType = CE->getType();
407     const Descriptor *Desc;
408     if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
409       Desc = P.createDescriptor(SubExpr, *T);
410     else if (PtrType->getPointeeType()->isVoidType())
411       Desc = nullptr;
412     else
413       Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
414                                 Descriptor::InlineDescMD, true, false,
415                                 /*IsMutable=*/false, nullptr);
416 
417     if (!this->emitGetIntPtr(T, Desc, CE))
418       return false;
419 
420     PrimType DestPtrT = classifyPrim(PtrType);
421     if (DestPtrT == PT_Ptr)
422       return true;
423 
424     // In case we're converting the integer to a non-Pointer.
425     return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
426   }
427 
428   case CK_AtomicToNonAtomic:
429   case CK_ConstructorConversion:
430   case CK_FunctionToPointerDecay:
431   case CK_NonAtomicToAtomic:
432   case CK_NoOp:
433   case CK_UserDefinedConversion:
434   case CK_AddressSpaceConversion:
435   case CK_CPointerToObjCPointerCast:
436     return this->delegate(SubExpr);
437 
438   case CK_BitCast: {
439     // Reject bitcasts to atomic types.
440     if (CE->getType()->isAtomicType()) {
441       if (!this->discard(SubExpr))
442         return false;
443       return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
444     }
445 
446     if (DiscardResult)
447       return this->discard(SubExpr);
448 
449     QualType SubExprTy = SubExpr->getType();
450     std::optional<PrimType> FromT = classify(SubExprTy);
451     std::optional<PrimType> ToT = classify(CE->getType());
452     if (!FromT || !ToT)
453       return false;
454 
455     assert(isPtrType(*FromT));
456     assert(isPtrType(*ToT));
457     if (FromT == ToT) {
458       if (CE->getType()->isVoidPointerType())
459         return this->delegate(SubExpr);
460 
461       if (!this->visit(SubExpr))
462         return false;
463       if (FromT == PT_Ptr)
464         return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
465       return true;
466     }
467 
468     if (!this->visit(SubExpr))
469       return false;
470     return this->emitDecayPtr(*FromT, *ToT, CE);
471   }
472 
473   case CK_IntegralToBoolean:
474   case CK_FixedPointToBoolean:
475   case CK_BooleanToSignedIntegral:
476   case CK_IntegralCast: {
477     if (DiscardResult)
478       return this->discard(SubExpr);
479     std::optional<PrimType> FromT = classify(SubExpr->getType());
480     std::optional<PrimType> ToT = classify(CE->getType());
481 
482     if (!FromT || !ToT)
483       return false;
484 
485     if (!this->visit(SubExpr))
486       return false;
487 
488     // Possibly diagnose casts to enum types if the target type does not
489     // have a fixed size.
490     if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
491       if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
492           ET && !ET->getDecl()->isFixed()) {
493         if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
494           return false;
495       }
496     }
497 
498     auto maybeNegate = [&]() -> bool {
499       if (CE->getCastKind() == CK_BooleanToSignedIntegral)
500         return this->emitNeg(*ToT, CE);
501       return true;
502     };
503 
504     if (ToT == PT_IntAP)
505       return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
506              maybeNegate();
507     if (ToT == PT_IntAPS)
508       return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
509              maybeNegate();
510 
511     if (FromT == ToT)
512       return true;
513     if (!this->emitCast(*FromT, *ToT, CE))
514       return false;
515 
516     return maybeNegate();
517   }
518 
519   case CK_PointerToBoolean:
520   case CK_MemberPointerToBoolean: {
521     PrimType PtrT = classifyPrim(SubExpr->getType());
522 
523     if (!this->visit(SubExpr))
524       return false;
525     return this->emitIsNonNull(PtrT, CE);
526   }
527 
528   case CK_IntegralComplexToBoolean:
529   case CK_FloatingComplexToBoolean: {
530     if (DiscardResult)
531       return this->discard(SubExpr);
532     if (!this->visit(SubExpr))
533       return false;
534     return this->emitComplexBoolCast(SubExpr);
535   }
536 
537   case CK_IntegralComplexToReal:
538   case CK_FloatingComplexToReal:
539     return this->emitComplexReal(SubExpr);
540 
541   case CK_IntegralRealToComplex:
542   case CK_FloatingRealToComplex: {
543     // We're creating a complex value here, so we need to
544     // allocate storage for it.
545     if (!Initializing) {
546       unsigned LocalIndex = allocateTemporary(CE);
547       if (!this->emitGetPtrLocal(LocalIndex, CE))
548         return false;
549     }
550 
551     // Init the complex value to {SubExpr, 0}.
552     if (!this->visitArrayElemInit(0, SubExpr))
553       return false;
554     // Zero-init the second element.
555     PrimType T = classifyPrim(SubExpr->getType());
556     if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
557       return false;
558     return this->emitInitElem(T, 1, SubExpr);
559   }
560 
561   case CK_IntegralComplexCast:
562   case CK_FloatingComplexCast:
563   case CK_IntegralComplexToFloatingComplex:
564   case CK_FloatingComplexToIntegralComplex: {
565     assert(CE->getType()->isAnyComplexType());
566     assert(SubExpr->getType()->isAnyComplexType());
567     if (DiscardResult)
568       return this->discard(SubExpr);
569 
570     if (!Initializing) {
571       std::optional<unsigned> LocalIndex = allocateLocal(CE);
572       if (!LocalIndex)
573         return false;
574       if (!this->emitGetPtrLocal(*LocalIndex, CE))
575         return false;
576     }
577 
578     // Location for the SubExpr.
579     // Since SubExpr is of complex type, visiting it results in a pointer
580     // anyway, so we just create a temporary pointer variable.
581     unsigned SubExprOffset = allocateLocalPrimitive(
582         SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
583     if (!this->visit(SubExpr))
584       return false;
585     if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
586       return false;
587 
588     PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
589     QualType DestElemType =
590         CE->getType()->getAs<ComplexType>()->getElementType();
591     PrimType DestElemT = classifyPrim(DestElemType);
592     // Cast both elements individually.
593     for (unsigned I = 0; I != 2; ++I) {
594       if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
595         return false;
596       if (!this->emitArrayElemPop(SourceElemT, I, CE))
597         return false;
598 
599       // Do the cast.
600       if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
601         return false;
602 
603       // Save the value.
604       if (!this->emitInitElem(DestElemT, I, CE))
605         return false;
606     }
607     return true;
608   }
609 
610   case CK_VectorSplat: {
611     assert(!classify(CE->getType()));
612     assert(classify(SubExpr->getType()));
613     assert(CE->getType()->isVectorType());
614 
615     if (DiscardResult)
616       return this->discard(SubExpr);
617 
618     if (!Initializing) {
619       std::optional<unsigned> LocalIndex = allocateLocal(CE);
620       if (!LocalIndex)
621         return false;
622       if (!this->emitGetPtrLocal(*LocalIndex, CE))
623         return false;
624     }
625 
626     const auto *VT = CE->getType()->getAs<VectorType>();
627     PrimType ElemT = classifyPrim(SubExpr->getType());
628     unsigned ElemOffset = allocateLocalPrimitive(
629         SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
630 
631     // Prepare a local variable for the scalar value.
632     if (!this->visit(SubExpr))
633       return false;
634     if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
635       return false;
636 
637     if (!this->emitSetLocal(ElemT, ElemOffset, CE))
638       return false;
639 
640     for (unsigned I = 0; I != VT->getNumElements(); ++I) {
641       if (!this->emitGetLocal(ElemT, ElemOffset, CE))
642         return false;
643       if (!this->emitInitElem(ElemT, I, CE))
644         return false;
645     }
646 
647     return true;
648   }
649 
650   case CK_HLSLVectorTruncation: {
651     assert(SubExpr->getType()->isVectorType());
652     if (std::optional<PrimType> ResultT = classify(CE)) {
653       assert(!DiscardResult);
654       // Result must be either a float or integer. Take the first element.
655       if (!this->visit(SubExpr))
656         return false;
657       return this->emitArrayElemPop(*ResultT, 0, CE);
658     }
659     // Otherwise, this truncates from one vector type to another.
660     assert(CE->getType()->isVectorType());
661 
662     if (!Initializing) {
663       unsigned LocalIndex = allocateTemporary(CE);
664       if (!this->emitGetPtrLocal(LocalIndex, CE))
665         return false;
666     }
667     unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements();
668     assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize);
669     if (!this->visit(SubExpr))
670       return false;
671     return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0,
672                                ToSize, CE);
673   };
674 
675   case CK_IntegralToFixedPoint: {
676     if (!this->visit(SubExpr))
677       return false;
678 
679     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
680     uint32_t I;
681     std::memcpy(&I, &Sem, sizeof(Sem));
682     return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), I,
683                                             CE);
684   }
685   case CK_FloatingToFixedPoint: {
686     if (!this->visit(SubExpr))
687       return false;
688 
689     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
690     uint32_t I;
691     std::memcpy(&I, &Sem, sizeof(Sem));
692     return this->emitCastFloatingFixedPoint(I, CE);
693   }
694   case CK_FixedPointToFloating: {
695     if (!this->visit(SubExpr))
696       return false;
697     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
698     return this->emitCastFixedPointFloating(TargetSemantics, CE);
699   }
700   case CK_FixedPointCast: {
701     if (!this->visit(SubExpr))
702       return false;
703     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
704     uint32_t I;
705     std::memcpy(&I, &Sem, sizeof(Sem));
706     return this->emitCastFixedPoint(I, CE);
707   }
708 
709   case CK_ToVoid:
710     return discard(SubExpr);
711 
712   default:
713     return this->emitInvalid(CE);
714   }
715   llvm_unreachable("Unhandled clang::CastKind enum");
716 }
717 
718 template <class Emitter>
719 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
720   if (DiscardResult)
721     return true;
722 
723   return this->emitConst(LE->getValue(), LE);
724 }
725 
726 template <class Emitter>
727 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
728   if (DiscardResult)
729     return true;
730 
731   return this->emitConstFloat(E->getValue(), E);
732 }
733 
734 template <class Emitter>
735 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
736   assert(E->getType()->isAnyComplexType());
737   if (DiscardResult)
738     return true;
739 
740   if (!Initializing) {
741     unsigned LocalIndex = allocateTemporary(E);
742     if (!this->emitGetPtrLocal(LocalIndex, E))
743       return false;
744   }
745 
746   const Expr *SubExpr = E->getSubExpr();
747   PrimType SubExprT = classifyPrim(SubExpr->getType());
748 
749   if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
750     return false;
751   if (!this->emitInitElem(SubExprT, 0, SubExpr))
752     return false;
753   return this->visitArrayElemInit(1, SubExpr);
754 }
755 
756 template <class Emitter>
757 bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) {
758   assert(E->getType()->isFixedPointType());
759   assert(classifyPrim(E) == PT_FixedPoint);
760 
761   auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
762   APInt Value = E->getValue();
763   return this->emitConstFixedPoint(FixedPoint(Value, Sem), E);
764 }
765 
766 template <class Emitter>
767 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
768   return this->delegate(E->getSubExpr());
769 }
770 
771 template <class Emitter>
772 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
773   // Need short-circuiting for these.
774   if (BO->isLogicalOp() && !BO->getType()->isVectorType())
775     return this->VisitLogicalBinOp(BO);
776 
777   const Expr *LHS = BO->getLHS();
778   const Expr *RHS = BO->getRHS();
779 
780   // Handle comma operators. Just discard the LHS
781   // and delegate to RHS.
782   if (BO->isCommaOp()) {
783     if (!this->discard(LHS))
784       return false;
785     if (RHS->getType()->isVoidType())
786       return this->discard(RHS);
787 
788     return this->delegate(RHS);
789   }
790 
791   if (BO->getType()->isAnyComplexType())
792     return this->VisitComplexBinOp(BO);
793   if (BO->getType()->isVectorType())
794     return this->VisitVectorBinOp(BO);
795   if ((LHS->getType()->isAnyComplexType() ||
796        RHS->getType()->isAnyComplexType()) &&
797       BO->isComparisonOp())
798     return this->emitComplexComparison(LHS, RHS, BO);
799   if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType())
800     return this->VisitFixedPointBinOp(BO);
801 
802   if (BO->isPtrMemOp()) {
803     if (!this->visit(LHS))
804       return false;
805 
806     if (!this->visit(RHS))
807       return false;
808 
809     if (!this->emitToMemberPtr(BO))
810       return false;
811 
812     if (classifyPrim(BO) == PT_MemberPtr)
813       return true;
814 
815     if (!this->emitCastMemberPtrPtr(BO))
816       return false;
817     return DiscardResult ? this->emitPopPtr(BO) : true;
818   }
819 
820   // Typecheck the args.
821   std::optional<PrimType> LT = classify(LHS);
822   std::optional<PrimType> RT = classify(RHS);
823   std::optional<PrimType> T = classify(BO->getType());
824 
825   // Special case for C++'s three-way/spaceship operator <=>, which
826   // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
827   // have a PrimType).
828   if (!T && BO->getOpcode() == BO_Cmp) {
829     if (DiscardResult)
830       return true;
831     const ComparisonCategoryInfo *CmpInfo =
832         Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
833     assert(CmpInfo);
834 
835     // We need a temporary variable holding our return value.
836     if (!Initializing) {
837       std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
838       if (!this->emitGetPtrLocal(*ResultIndex, BO))
839         return false;
840     }
841 
842     if (!visit(LHS) || !visit(RHS))
843       return false;
844 
845     return this->emitCMP3(*LT, CmpInfo, BO);
846   }
847 
848   if (!LT || !RT || !T)
849     return false;
850 
851   // Pointer arithmetic special case.
852   if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
853     if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
854       return this->VisitPointerArithBinOp(BO);
855   }
856 
857   // Assignmentes require us to evalute the RHS first.
858   if (BO->getOpcode() == BO_Assign) {
859     if (!visit(RHS) || !visit(LHS))
860       return false;
861     if (!this->emitFlip(*LT, *RT, BO))
862       return false;
863   } else {
864     if (!visit(LHS) || !visit(RHS))
865       return false;
866   }
867 
868   // For languages such as C, cast the result of one
869   // of our comparision opcodes to T (which is usually int).
870   auto MaybeCastToBool = [this, T, BO](bool Result) {
871     if (!Result)
872       return false;
873     if (DiscardResult)
874       return this->emitPop(*T, BO);
875     if (T != PT_Bool)
876       return this->emitCast(PT_Bool, *T, BO);
877     return true;
878   };
879 
880   auto Discard = [this, T, BO](bool Result) {
881     if (!Result)
882       return false;
883     return DiscardResult ? this->emitPop(*T, BO) : true;
884   };
885 
886   switch (BO->getOpcode()) {
887   case BO_EQ:
888     return MaybeCastToBool(this->emitEQ(*LT, BO));
889   case BO_NE:
890     return MaybeCastToBool(this->emitNE(*LT, BO));
891   case BO_LT:
892     return MaybeCastToBool(this->emitLT(*LT, BO));
893   case BO_LE:
894     return MaybeCastToBool(this->emitLE(*LT, BO));
895   case BO_GT:
896     return MaybeCastToBool(this->emitGT(*LT, BO));
897   case BO_GE:
898     return MaybeCastToBool(this->emitGE(*LT, BO));
899   case BO_Sub:
900     if (BO->getType()->isFloatingType())
901       return Discard(this->emitSubf(getFPOptions(BO), BO));
902     return Discard(this->emitSub(*T, BO));
903   case BO_Add:
904     if (BO->getType()->isFloatingType())
905       return Discard(this->emitAddf(getFPOptions(BO), BO));
906     return Discard(this->emitAdd(*T, BO));
907   case BO_Mul:
908     if (BO->getType()->isFloatingType())
909       return Discard(this->emitMulf(getFPOptions(BO), BO));
910     return Discard(this->emitMul(*T, BO));
911   case BO_Rem:
912     return Discard(this->emitRem(*T, BO));
913   case BO_Div:
914     if (BO->getType()->isFloatingType())
915       return Discard(this->emitDivf(getFPOptions(BO), BO));
916     return Discard(this->emitDiv(*T, BO));
917   case BO_Assign:
918     if (DiscardResult)
919       return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
920                                      : this->emitStorePop(*T, BO);
921     if (LHS->refersToBitField()) {
922       if (!this->emitStoreBitField(*T, BO))
923         return false;
924     } else {
925       if (!this->emitStore(*T, BO))
926         return false;
927     }
928     // Assignments aren't necessarily lvalues in C.
929     // Load from them in that case.
930     if (!BO->isLValue())
931       return this->emitLoadPop(*T, BO);
932     return true;
933   case BO_And:
934     return Discard(this->emitBitAnd(*T, BO));
935   case BO_Or:
936     return Discard(this->emitBitOr(*T, BO));
937   case BO_Shl:
938     return Discard(this->emitShl(*LT, *RT, BO));
939   case BO_Shr:
940     return Discard(this->emitShr(*LT, *RT, BO));
941   case BO_Xor:
942     return Discard(this->emitBitXor(*T, BO));
943   case BO_LOr:
944   case BO_LAnd:
945     llvm_unreachable("Already handled earlier");
946   default:
947     return false;
948   }
949 
950   llvm_unreachable("Unhandled binary op");
951 }
952 
953 /// Perform addition/subtraction of a pointer and an integer or
954 /// subtraction of two pointers.
955 template <class Emitter>
956 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
957   BinaryOperatorKind Op = E->getOpcode();
958   const Expr *LHS = E->getLHS();
959   const Expr *RHS = E->getRHS();
960 
961   if ((Op != BO_Add && Op != BO_Sub) ||
962       (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
963     return false;
964 
965   std::optional<PrimType> LT = classify(LHS);
966   std::optional<PrimType> RT = classify(RHS);
967 
968   if (!LT || !RT)
969     return false;
970 
971   // Visit the given pointer expression and optionally convert to a PT_Ptr.
972   auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
973     if (!this->visit(E))
974       return false;
975     if (T != PT_Ptr)
976       return this->emitDecayPtr(T, PT_Ptr, E);
977     return true;
978   };
979 
980   if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
981     if (Op != BO_Sub)
982       return false;
983 
984     assert(E->getType()->isIntegerType());
985     if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
986       return false;
987 
988     return this->emitSubPtr(classifyPrim(E->getType()), E);
989   }
990 
991   PrimType OffsetType;
992   if (LHS->getType()->isIntegerType()) {
993     if (!visitAsPointer(RHS, *RT))
994       return false;
995     if (!this->visit(LHS))
996       return false;
997     OffsetType = *LT;
998   } else if (RHS->getType()->isIntegerType()) {
999     if (!visitAsPointer(LHS, *LT))
1000       return false;
1001     if (!this->visit(RHS))
1002       return false;
1003     OffsetType = *RT;
1004   } else {
1005     return false;
1006   }
1007 
1008   // Do the operation and optionally transform to
1009   // result pointer type.
1010   if (Op == BO_Add) {
1011     if (!this->emitAddOffset(OffsetType, E))
1012       return false;
1013 
1014     if (classifyPrim(E) != PT_Ptr)
1015       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
1016     return true;
1017   } else if (Op == BO_Sub) {
1018     if (!this->emitSubOffset(OffsetType, E))
1019       return false;
1020 
1021     if (classifyPrim(E) != PT_Ptr)
1022       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
1023     return true;
1024   }
1025 
1026   return false;
1027 }
1028 
1029 template <class Emitter>
1030 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
1031   assert(E->isLogicalOp());
1032   BinaryOperatorKind Op = E->getOpcode();
1033   const Expr *LHS = E->getLHS();
1034   const Expr *RHS = E->getRHS();
1035   std::optional<PrimType> T = classify(E->getType());
1036 
1037   if (Op == BO_LOr) {
1038     // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
1039     LabelTy LabelTrue = this->getLabel();
1040     LabelTy LabelEnd = this->getLabel();
1041 
1042     if (!this->visitBool(LHS))
1043       return false;
1044     if (!this->jumpTrue(LabelTrue))
1045       return false;
1046 
1047     if (!this->visitBool(RHS))
1048       return false;
1049     if (!this->jump(LabelEnd))
1050       return false;
1051 
1052     this->emitLabel(LabelTrue);
1053     this->emitConstBool(true, E);
1054     this->fallthrough(LabelEnd);
1055     this->emitLabel(LabelEnd);
1056 
1057   } else {
1058     assert(Op == BO_LAnd);
1059     // Logical AND.
1060     // Visit LHS. Only visit RHS if LHS was TRUE.
1061     LabelTy LabelFalse = this->getLabel();
1062     LabelTy LabelEnd = this->getLabel();
1063 
1064     if (!this->visitBool(LHS))
1065       return false;
1066     if (!this->jumpFalse(LabelFalse))
1067       return false;
1068 
1069     if (!this->visitBool(RHS))
1070       return false;
1071     if (!this->jump(LabelEnd))
1072       return false;
1073 
1074     this->emitLabel(LabelFalse);
1075     this->emitConstBool(false, E);
1076     this->fallthrough(LabelEnd);
1077     this->emitLabel(LabelEnd);
1078   }
1079 
1080   if (DiscardResult)
1081     return this->emitPopBool(E);
1082 
1083   // For C, cast back to integer type.
1084   assert(T);
1085   if (T != PT_Bool)
1086     return this->emitCast(PT_Bool, *T, E);
1087   return true;
1088 }
1089 
1090 template <class Emitter>
1091 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
1092   // Prepare storage for result.
1093   if (!Initializing) {
1094     unsigned LocalIndex = allocateTemporary(E);
1095     if (!this->emitGetPtrLocal(LocalIndex, E))
1096       return false;
1097   }
1098 
1099   // Both LHS and RHS might _not_ be of complex type, but one of them
1100   // needs to be.
1101   const Expr *LHS = E->getLHS();
1102   const Expr *RHS = E->getRHS();
1103 
1104   PrimType ResultElemT = this->classifyComplexElementType(E->getType());
1105   unsigned ResultOffset = ~0u;
1106   if (!DiscardResult)
1107     ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
1108 
1109   // Save result pointer in ResultOffset
1110   if (!this->DiscardResult) {
1111     if (!this->emitDupPtr(E))
1112       return false;
1113     if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
1114       return false;
1115   }
1116   QualType LHSType = LHS->getType();
1117   if (const auto *AT = LHSType->getAs<AtomicType>())
1118     LHSType = AT->getValueType();
1119   QualType RHSType = RHS->getType();
1120   if (const auto *AT = RHSType->getAs<AtomicType>())
1121     RHSType = AT->getValueType();
1122 
1123   bool LHSIsComplex = LHSType->isAnyComplexType();
1124   unsigned LHSOffset;
1125   bool RHSIsComplex = RHSType->isAnyComplexType();
1126 
1127   // For ComplexComplex Mul, we have special ops to make their implementation
1128   // easier.
1129   BinaryOperatorKind Op = E->getOpcode();
1130   if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
1131     assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
1132            classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
1133     PrimType ElemT =
1134         classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
1135     if (!this->visit(LHS))
1136       return false;
1137     if (!this->visit(RHS))
1138       return false;
1139     return this->emitMulc(ElemT, E);
1140   }
1141 
1142   if (Op == BO_Div && RHSIsComplex) {
1143     QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
1144     PrimType ElemT = classifyPrim(ElemQT);
1145     // If the LHS is not complex, we still need to do the full complex
1146     // division, so just stub create a complex value and stub it out with
1147     // the LHS and a zero.
1148 
1149     if (!LHSIsComplex) {
1150       // This is using the RHS type for the fake-complex LHS.
1151       LHSOffset = allocateTemporary(RHS);
1152 
1153       if (!this->emitGetPtrLocal(LHSOffset, E))
1154         return false;
1155 
1156       if (!this->visit(LHS))
1157         return false;
1158       // real is LHS
1159       if (!this->emitInitElem(ElemT, 0, E))
1160         return false;
1161       // imag is zero
1162       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1163         return false;
1164       if (!this->emitInitElem(ElemT, 1, E))
1165         return false;
1166     } else {
1167       if (!this->visit(LHS))
1168         return false;
1169     }
1170 
1171     if (!this->visit(RHS))
1172       return false;
1173     return this->emitDivc(ElemT, E);
1174   }
1175 
1176   // Evaluate LHS and save value to LHSOffset.
1177   if (LHSType->isAnyComplexType()) {
1178     LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1179     if (!this->visit(LHS))
1180       return false;
1181     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1182       return false;
1183   } else {
1184     PrimType LHST = classifyPrim(LHSType);
1185     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
1186     if (!this->visit(LHS))
1187       return false;
1188     if (!this->emitSetLocal(LHST, LHSOffset, E))
1189       return false;
1190   }
1191 
1192   // Same with RHS.
1193   unsigned RHSOffset;
1194   if (RHSType->isAnyComplexType()) {
1195     RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1196     if (!this->visit(RHS))
1197       return false;
1198     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1199       return false;
1200   } else {
1201     PrimType RHST = classifyPrim(RHSType);
1202     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
1203     if (!this->visit(RHS))
1204       return false;
1205     if (!this->emitSetLocal(RHST, RHSOffset, E))
1206       return false;
1207   }
1208 
1209   // For both LHS and RHS, either load the value from the complex pointer, or
1210   // directly from the local variable. For index 1 (i.e. the imaginary part),
1211   // just load 0 and do the operation anyway.
1212   auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
1213                                  unsigned ElemIndex, unsigned Offset,
1214                                  const Expr *E) -> bool {
1215     if (IsComplex) {
1216       if (!this->emitGetLocal(PT_Ptr, Offset, E))
1217         return false;
1218       return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
1219                                     ElemIndex, E);
1220     }
1221     if (ElemIndex == 0 || !LoadZero)
1222       return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
1223     return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
1224                                       E);
1225   };
1226 
1227   // Now we can get pointers to the LHS and RHS from the offsets above.
1228   for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
1229     // Result pointer for the store later.
1230     if (!this->DiscardResult) {
1231       if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
1232         return false;
1233     }
1234 
1235     // The actual operation.
1236     switch (Op) {
1237     case BO_Add:
1238       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1239         return false;
1240 
1241       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1242         return false;
1243       if (ResultElemT == PT_Float) {
1244         if (!this->emitAddf(getFPOptions(E), E))
1245           return false;
1246       } else {
1247         if (!this->emitAdd(ResultElemT, E))
1248           return false;
1249       }
1250       break;
1251     case BO_Sub:
1252       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1253         return false;
1254 
1255       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1256         return false;
1257       if (ResultElemT == PT_Float) {
1258         if (!this->emitSubf(getFPOptions(E), E))
1259           return false;
1260       } else {
1261         if (!this->emitSub(ResultElemT, E))
1262           return false;
1263       }
1264       break;
1265     case BO_Mul:
1266       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1267         return false;
1268 
1269       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1270         return false;
1271 
1272       if (ResultElemT == PT_Float) {
1273         if (!this->emitMulf(getFPOptions(E), E))
1274           return false;
1275       } else {
1276         if (!this->emitMul(ResultElemT, E))
1277           return false;
1278       }
1279       break;
1280     case BO_Div:
1281       assert(!RHSIsComplex);
1282       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1283         return false;
1284 
1285       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1286         return false;
1287 
1288       if (ResultElemT == PT_Float) {
1289         if (!this->emitDivf(getFPOptions(E), E))
1290           return false;
1291       } else {
1292         if (!this->emitDiv(ResultElemT, E))
1293           return false;
1294       }
1295       break;
1296 
1297     default:
1298       return false;
1299     }
1300 
1301     if (!this->DiscardResult) {
1302       // Initialize array element with the value we just computed.
1303       if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
1304         return false;
1305     } else {
1306       if (!this->emitPop(ResultElemT, E))
1307         return false;
1308     }
1309   }
1310   return true;
1311 }
1312 
1313 template <class Emitter>
1314 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) {
1315   assert(!E->isCommaOp() &&
1316          "Comma op should be handled in VisitBinaryOperator");
1317   assert(E->getType()->isVectorType());
1318   assert(E->getLHS()->getType()->isVectorType());
1319   assert(E->getRHS()->getType()->isVectorType());
1320 
1321   // Prepare storage for result.
1322   if (!Initializing && !E->isCompoundAssignmentOp()) {
1323     unsigned LocalIndex = allocateTemporary(E);
1324     if (!this->emitGetPtrLocal(LocalIndex, E))
1325       return false;
1326   }
1327 
1328   const Expr *LHS = E->getLHS();
1329   const Expr *RHS = E->getRHS();
1330   const auto *VecTy = E->getType()->getAs<VectorType>();
1331   auto Op = E->isCompoundAssignmentOp()
1332                 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode())
1333                 : E->getOpcode();
1334 
1335   PrimType ElemT = this->classifyVectorElementType(LHS->getType());
1336   PrimType RHSElemT = this->classifyVectorElementType(RHS->getType());
1337   PrimType ResultElemT = this->classifyVectorElementType(E->getType());
1338 
1339   // Evaluate LHS and save value to LHSOffset.
1340   unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1341   if (!this->visit(LHS))
1342     return false;
1343   if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1344     return false;
1345 
1346   // Evaluate RHS and save value to RHSOffset.
1347   unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1348   if (!this->visit(RHS))
1349     return false;
1350   if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1351     return false;
1352 
1353   if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E))
1354     return false;
1355 
1356   // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the
1357   // integer promotion.
1358   bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp());
1359   QualType PromotTy =
1360       Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy);
1361   PrimType PromotT = classifyPrim(PromotTy);
1362   PrimType OpT = NeedIntPromot ? PromotT : ElemT;
1363 
1364   auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) {
1365     if (!this->emitGetLocal(PT_Ptr, Offset, E))
1366       return false;
1367     if (!this->emitArrayElemPop(ElemT, Index, E))
1368       return false;
1369     if (E->isLogicalOp()) {
1370       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
1371         return false;
1372       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1373         return false;
1374     } else if (NeedIntPromot) {
1375       if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E))
1376         return false;
1377     }
1378     return true;
1379   };
1380 
1381 #define EMIT_ARITH_OP(OP)                                                      \
1382   {                                                                            \
1383     if (ElemT == PT_Float) {                                                   \
1384       if (!this->emit##OP##f(getFPOptions(E), E))                              \
1385         return false;                                                          \
1386     } else {                                                                   \
1387       if (!this->emit##OP(ElemT, E))                                           \
1388         return false;                                                          \
1389     }                                                                          \
1390     break;                                                                     \
1391   }
1392 
1393   for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
1394     if (!getElem(LHSOffset, ElemT, I))
1395       return false;
1396     if (!getElem(RHSOffset, RHSElemT, I))
1397       return false;
1398     switch (Op) {
1399     case BO_Add:
1400       EMIT_ARITH_OP(Add)
1401     case BO_Sub:
1402       EMIT_ARITH_OP(Sub)
1403     case BO_Mul:
1404       EMIT_ARITH_OP(Mul)
1405     case BO_Div:
1406       EMIT_ARITH_OP(Div)
1407     case BO_Rem:
1408       if (!this->emitRem(ElemT, E))
1409         return false;
1410       break;
1411     case BO_And:
1412       if (!this->emitBitAnd(OpT, E))
1413         return false;
1414       break;
1415     case BO_Or:
1416       if (!this->emitBitOr(OpT, E))
1417         return false;
1418       break;
1419     case BO_Xor:
1420       if (!this->emitBitXor(OpT, E))
1421         return false;
1422       break;
1423     case BO_Shl:
1424       if (!this->emitShl(OpT, RHSElemT, E))
1425         return false;
1426       break;
1427     case BO_Shr:
1428       if (!this->emitShr(OpT, RHSElemT, E))
1429         return false;
1430       break;
1431     case BO_EQ:
1432       if (!this->emitEQ(ElemT, E))
1433         return false;
1434       break;
1435     case BO_NE:
1436       if (!this->emitNE(ElemT, E))
1437         return false;
1438       break;
1439     case BO_LE:
1440       if (!this->emitLE(ElemT, E))
1441         return false;
1442       break;
1443     case BO_LT:
1444       if (!this->emitLT(ElemT, E))
1445         return false;
1446       break;
1447     case BO_GE:
1448       if (!this->emitGE(ElemT, E))
1449         return false;
1450       break;
1451     case BO_GT:
1452       if (!this->emitGT(ElemT, E))
1453         return false;
1454       break;
1455     case BO_LAnd:
1456       // a && b is equivalent to a!=0 & b!=0
1457       if (!this->emitBitAnd(ResultElemT, E))
1458         return false;
1459       break;
1460     case BO_LOr:
1461       // a || b is equivalent to a!=0 | b!=0
1462       if (!this->emitBitOr(ResultElemT, E))
1463         return false;
1464       break;
1465     default:
1466       return this->emitInvalid(E);
1467     }
1468 
1469     // The result of the comparison is a vector of the same width and number
1470     // of elements as the comparison operands with a signed integral element
1471     // type.
1472     //
1473     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
1474     if (E->isComparisonOp()) {
1475       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1476         return false;
1477       if (!this->emitNeg(ResultElemT, E))
1478         return false;
1479     }
1480 
1481     // If we performed an integer promotion, we need to cast the compute result
1482     // into result vector element type.
1483     if (NeedIntPromot &&
1484         !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E))
1485       return false;
1486 
1487     // Initialize array element with the value we just computed.
1488     if (!this->emitInitElem(ResultElemT, I, E))
1489       return false;
1490   }
1491 
1492   if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E))
1493     return false;
1494   return true;
1495 }
1496 
1497 template <class Emitter>
1498 bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) {
1499   const Expr *LHS = E->getLHS();
1500   const Expr *RHS = E->getRHS();
1501 
1502   assert(LHS->getType()->isFixedPointType() ||
1503          RHS->getType()->isFixedPointType());
1504 
1505   auto LHSSema = Ctx.getASTContext().getFixedPointSemantics(LHS->getType());
1506   auto RHSSema = Ctx.getASTContext().getFixedPointSemantics(RHS->getType());
1507 
1508   if (!this->visit(LHS))
1509     return false;
1510   if (!LHS->getType()->isFixedPointType()) {
1511     uint32_t I;
1512     std::memcpy(&I, &LHSSema, sizeof(llvm::FixedPointSemantics));
1513     if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()), I, E))
1514       return false;
1515   }
1516 
1517   if (!this->visit(RHS))
1518     return false;
1519   if (!RHS->getType()->isFixedPointType()) {
1520     uint32_t I;
1521     std::memcpy(&I, &RHSSema, sizeof(llvm::FixedPointSemantics));
1522     if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()), I, E))
1523       return false;
1524   }
1525 
1526   // Convert the result to the target semantics.
1527   auto ConvertResult = [&](bool R) -> bool {
1528     if (!R)
1529       return false;
1530     auto ResultSema = Ctx.getASTContext().getFixedPointSemantics(E->getType());
1531     auto CommonSema = LHSSema.getCommonSemantics(RHSSema);
1532     if (ResultSema != CommonSema) {
1533       uint32_t I;
1534       std::memcpy(&I, &ResultSema, sizeof(ResultSema));
1535       return this->emitCastFixedPoint(I, E);
1536     }
1537     return true;
1538   };
1539 
1540   switch (E->getOpcode()) {
1541   case BO_EQ:
1542     return this->emitEQFixedPoint(E);
1543   case BO_NE:
1544     return this->emitNEFixedPoint(E);
1545 #if 0
1546   case BO_LT:
1547     return this->emitLTFixedPoint(E);
1548   case BO_LE:
1549     return this->emitLEFixedPoint(E);
1550   case BO_GT:
1551     return this->emitGTFixedPoint(E);
1552   case BO_GE:
1553     return this->emitGEFixedPoint(E);
1554 #endif
1555   case BO_Add:
1556     return ConvertResult(this->emitAddFixedPoint(E));
1557 
1558   default:
1559     return this->emitInvalid(E);
1560   }
1561 
1562   llvm_unreachable("unhandled binop opcode");
1563 }
1564 
1565 template <class Emitter>
1566 bool Compiler<Emitter>::VisitImplicitValueInitExpr(
1567     const ImplicitValueInitExpr *E) {
1568   QualType QT = E->getType();
1569 
1570   if (std::optional<PrimType> T = classify(QT))
1571     return this->visitZeroInitializer(*T, QT, E);
1572 
1573   if (QT->isRecordType()) {
1574     const RecordDecl *RD = QT->getAsRecordDecl();
1575     assert(RD);
1576     if (RD->isInvalidDecl())
1577       return false;
1578 
1579     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1580         CXXRD && CXXRD->getNumVBases() > 0) {
1581       // TODO: Diagnose.
1582       return false;
1583     }
1584 
1585     const Record *R = getRecord(QT);
1586     if (!R)
1587       return false;
1588 
1589     assert(Initializing);
1590     return this->visitZeroRecordInitializer(R, E);
1591   }
1592 
1593   if (QT->isIncompleteArrayType())
1594     return true;
1595 
1596   if (QT->isArrayType()) {
1597     const ArrayType *AT = QT->getAsArrayTypeUnsafe();
1598     assert(AT);
1599     const auto *CAT = cast<ConstantArrayType>(AT);
1600     size_t NumElems = CAT->getZExtSize();
1601     PrimType ElemT = classifyPrim(CAT->getElementType());
1602 
1603     for (size_t I = 0; I != NumElems; ++I) {
1604       if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E))
1605         return false;
1606       if (!this->emitInitElem(ElemT, I, E))
1607         return false;
1608     }
1609 
1610     return true;
1611   }
1612 
1613   if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
1614     assert(Initializing);
1615     QualType ElemQT = ComplexTy->getElementType();
1616     PrimType ElemT = classifyPrim(ElemQT);
1617     for (unsigned I = 0; I < 2; ++I) {
1618       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1619         return false;
1620       if (!this->emitInitElem(ElemT, I, E))
1621         return false;
1622     }
1623     return true;
1624   }
1625 
1626   if (const auto *VecT = E->getType()->getAs<VectorType>()) {
1627     unsigned NumVecElements = VecT->getNumElements();
1628     QualType ElemQT = VecT->getElementType();
1629     PrimType ElemT = classifyPrim(ElemQT);
1630 
1631     for (unsigned I = 0; I < NumVecElements; ++I) {
1632       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1633         return false;
1634       if (!this->emitInitElem(ElemT, I, E))
1635         return false;
1636     }
1637     return true;
1638   }
1639 
1640   return false;
1641 }
1642 
1643 template <class Emitter>
1644 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1645   const Expr *LHS = E->getLHS();
1646   const Expr *RHS = E->getRHS();
1647   const Expr *Index = E->getIdx();
1648 
1649   if (DiscardResult)
1650     return this->discard(LHS) && this->discard(RHS);
1651 
1652   // C++17's rules require us to evaluate the LHS first, regardless of which
1653   // side is the base.
1654   bool Success = true;
1655   for (const Expr *SubExpr : {LHS, RHS}) {
1656     if (!this->visit(SubExpr))
1657       Success = false;
1658   }
1659 
1660   if (!Success)
1661     return false;
1662 
1663   PrimType IndexT = classifyPrim(Index->getType());
1664   // If the index is first, we need to change that.
1665   if (LHS == Index) {
1666     if (!this->emitFlip(PT_Ptr, IndexT, E))
1667       return false;
1668   }
1669 
1670   return this->emitArrayElemPtrPop(IndexT, E);
1671 }
1672 
1673 template <class Emitter>
1674 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
1675                                       const Expr *ArrayFiller, const Expr *E) {
1676   QualType QT = E->getType();
1677   if (const auto *AT = QT->getAs<AtomicType>())
1678     QT = AT->getValueType();
1679 
1680   if (QT->isVoidType()) {
1681     if (Inits.size() == 0)
1682       return true;
1683     return this->emitInvalid(E);
1684   }
1685 
1686   // Handle discarding first.
1687   if (DiscardResult) {
1688     for (const Expr *Init : Inits) {
1689       if (!this->discard(Init))
1690         return false;
1691     }
1692     return true;
1693   }
1694 
1695   // Primitive values.
1696   if (std::optional<PrimType> T = classify(QT)) {
1697     assert(!DiscardResult);
1698     if (Inits.size() == 0)
1699       return this->visitZeroInitializer(*T, QT, E);
1700     assert(Inits.size() == 1);
1701     return this->delegate(Inits[0]);
1702   }
1703 
1704   if (QT->isRecordType()) {
1705     const Record *R = getRecord(QT);
1706 
1707     if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
1708       return this->delegate(Inits[0]);
1709 
1710     auto initPrimitiveField = [=](const Record::Field *FieldToInit,
1711                                   const Expr *Init, PrimType T) -> bool {
1712       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1713       if (!this->visit(Init))
1714         return false;
1715 
1716       if (FieldToInit->isBitField())
1717         return this->emitInitBitField(T, FieldToInit, E);
1718       return this->emitInitField(T, FieldToInit->Offset, E);
1719     };
1720 
1721     auto initCompositeField = [=](const Record::Field *FieldToInit,
1722                                   const Expr *Init) -> bool {
1723       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1724       InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
1725       // Non-primitive case. Get a pointer to the field-to-initialize
1726       // on the stack and recurse into visitInitializer().
1727       if (!this->emitGetPtrField(FieldToInit->Offset, Init))
1728         return false;
1729       if (!this->visitInitializer(Init))
1730         return false;
1731       return this->emitPopPtr(E);
1732     };
1733 
1734     if (R->isUnion()) {
1735       if (Inits.size() == 0) {
1736         if (!this->visitZeroRecordInitializer(R, E))
1737           return false;
1738       } else {
1739         const Expr *Init = Inits[0];
1740         const FieldDecl *FToInit = nullptr;
1741         if (const auto *ILE = dyn_cast<InitListExpr>(E))
1742           FToInit = ILE->getInitializedFieldInUnion();
1743         else
1744           FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
1745 
1746         const Record::Field *FieldToInit = R->getField(FToInit);
1747         if (std::optional<PrimType> T = classify(Init)) {
1748           if (!initPrimitiveField(FieldToInit, Init, *T))
1749             return false;
1750         } else {
1751           if (!initCompositeField(FieldToInit, Init))
1752             return false;
1753         }
1754       }
1755       return this->emitFinishInit(E);
1756     }
1757 
1758     assert(!R->isUnion());
1759     unsigned InitIndex = 0;
1760     for (const Expr *Init : Inits) {
1761       // Skip unnamed bitfields.
1762       while (InitIndex < R->getNumFields() &&
1763              R->getField(InitIndex)->Decl->isUnnamedBitField())
1764         ++InitIndex;
1765 
1766       if (std::optional<PrimType> T = classify(Init)) {
1767         const Record::Field *FieldToInit = R->getField(InitIndex);
1768         if (!initPrimitiveField(FieldToInit, Init, *T))
1769           return false;
1770         ++InitIndex;
1771       } else {
1772         // Initializer for a direct base class.
1773         if (const Record::Base *B = R->getBase(Init->getType())) {
1774           if (!this->emitGetPtrBase(B->Offset, Init))
1775             return false;
1776 
1777           if (!this->visitInitializer(Init))
1778             return false;
1779 
1780           if (!this->emitFinishInitPop(E))
1781             return false;
1782           // Base initializers don't increase InitIndex, since they don't count
1783           // into the Record's fields.
1784         } else {
1785           const Record::Field *FieldToInit = R->getField(InitIndex);
1786           if (!initCompositeField(FieldToInit, Init))
1787             return false;
1788           ++InitIndex;
1789         }
1790       }
1791     }
1792     return this->emitFinishInit(E);
1793   }
1794 
1795   if (QT->isArrayType()) {
1796     if (Inits.size() == 1 && QT == Inits[0]->getType())
1797       return this->delegate(Inits[0]);
1798 
1799     unsigned ElementIndex = 0;
1800     for (const Expr *Init : Inits) {
1801       if (const auto *EmbedS =
1802               dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1803         PrimType TargetT = classifyPrim(Init->getType());
1804 
1805         auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
1806           PrimType InitT = classifyPrim(Init->getType());
1807           if (!this->visit(Init))
1808             return false;
1809           if (InitT != TargetT) {
1810             if (!this->emitCast(InitT, TargetT, E))
1811               return false;
1812           }
1813           return this->emitInitElem(TargetT, ElemIndex, Init);
1814         };
1815         if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
1816           return false;
1817       } else {
1818         if (!this->visitArrayElemInit(ElementIndex, Init))
1819           return false;
1820         ++ElementIndex;
1821       }
1822     }
1823 
1824     // Expand the filler expression.
1825     // FIXME: This should go away.
1826     if (ArrayFiller) {
1827       const ConstantArrayType *CAT =
1828           Ctx.getASTContext().getAsConstantArrayType(QT);
1829       uint64_t NumElems = CAT->getZExtSize();
1830 
1831       for (; ElementIndex != NumElems; ++ElementIndex) {
1832         if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
1833           return false;
1834       }
1835     }
1836 
1837     return this->emitFinishInit(E);
1838   }
1839 
1840   if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
1841     unsigned NumInits = Inits.size();
1842 
1843     if (NumInits == 1)
1844       return this->delegate(Inits[0]);
1845 
1846     QualType ElemQT = ComplexTy->getElementType();
1847     PrimType ElemT = classifyPrim(ElemQT);
1848     if (NumInits == 0) {
1849       // Zero-initialize both elements.
1850       for (unsigned I = 0; I < 2; ++I) {
1851         if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1852           return false;
1853         if (!this->emitInitElem(ElemT, I, E))
1854           return false;
1855       }
1856     } else if (NumInits == 2) {
1857       unsigned InitIndex = 0;
1858       for (const Expr *Init : Inits) {
1859         if (!this->visit(Init))
1860           return false;
1861 
1862         if (!this->emitInitElem(ElemT, InitIndex, E))
1863           return false;
1864         ++InitIndex;
1865       }
1866     }
1867     return true;
1868   }
1869 
1870   if (const auto *VecT = QT->getAs<VectorType>()) {
1871     unsigned NumVecElements = VecT->getNumElements();
1872     assert(NumVecElements >= Inits.size());
1873 
1874     QualType ElemQT = VecT->getElementType();
1875     PrimType ElemT = classifyPrim(ElemQT);
1876 
1877     // All initializer elements.
1878     unsigned InitIndex = 0;
1879     for (const Expr *Init : Inits) {
1880       if (!this->visit(Init))
1881         return false;
1882 
1883       // If the initializer is of vector type itself, we have to deconstruct
1884       // that and initialize all the target fields from the initializer fields.
1885       if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
1886         if (!this->emitCopyArray(ElemT, 0, InitIndex,
1887                                  InitVecT->getNumElements(), E))
1888           return false;
1889         InitIndex += InitVecT->getNumElements();
1890       } else {
1891         if (!this->emitInitElem(ElemT, InitIndex, E))
1892           return false;
1893         ++InitIndex;
1894       }
1895     }
1896 
1897     assert(InitIndex <= NumVecElements);
1898 
1899     // Fill the rest with zeroes.
1900     for (; InitIndex != NumVecElements; ++InitIndex) {
1901       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1902         return false;
1903       if (!this->emitInitElem(ElemT, InitIndex, E))
1904         return false;
1905     }
1906     return true;
1907   }
1908 
1909   return false;
1910 }
1911 
1912 /// Pointer to the array(not the element!) must be on the stack when calling
1913 /// this.
1914 template <class Emitter>
1915 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
1916                                            const Expr *Init) {
1917   if (std::optional<PrimType> T = classify(Init->getType())) {
1918     // Visit the primitive element like normal.
1919     if (!this->visit(Init))
1920       return false;
1921     return this->emitInitElem(*T, ElemIndex, Init);
1922   }
1923 
1924   InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
1925   // Advance the pointer currently on the stack to the given
1926   // dimension.
1927   if (!this->emitConstUint32(ElemIndex, Init))
1928     return false;
1929   if (!this->emitArrayElemPtrUint32(Init))
1930     return false;
1931   if (!this->visitInitializer(Init))
1932     return false;
1933   return this->emitFinishInitPop(Init);
1934 }
1935 
1936 template <class Emitter>
1937 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
1938   return this->visitInitList(E->inits(), E->getArrayFiller(), E);
1939 }
1940 
1941 template <class Emitter>
1942 bool Compiler<Emitter>::VisitCXXParenListInitExpr(
1943     const CXXParenListInitExpr *E) {
1944   return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
1945 }
1946 
1947 template <class Emitter>
1948 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
1949     const SubstNonTypeTemplateParmExpr *E) {
1950   return this->delegate(E->getReplacement());
1951 }
1952 
1953 template <class Emitter>
1954 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
1955   std::optional<PrimType> T = classify(E->getType());
1956   if (T && E->hasAPValueResult()) {
1957     // Try to emit the APValue directly, without visiting the subexpr.
1958     // This will only fail if we can't emit the APValue, so won't emit any
1959     // diagnostics or any double values.
1960     if (DiscardResult)
1961       return true;
1962 
1963     if (this->visitAPValue(E->getAPValueResult(), *T, E))
1964       return true;
1965   }
1966   return this->delegate(E->getSubExpr());
1967 }
1968 
1969 template <class Emitter>
1970 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
1971   auto It = E->begin();
1972   return this->visit(*It);
1973 }
1974 
1975 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
1976                              UnaryExprOrTypeTrait Kind) {
1977   bool AlignOfReturnsPreferred =
1978       ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
1979 
1980   // C++ [expr.alignof]p3:
1981   //     When alignof is applied to a reference type, the result is the
1982   //     alignment of the referenced type.
1983   if (const auto *Ref = T->getAs<ReferenceType>())
1984     T = Ref->getPointeeType();
1985 
1986   if (T.getQualifiers().hasUnaligned())
1987     return CharUnits::One();
1988 
1989   // __alignof is defined to return the preferred alignment.
1990   // Before 8, clang returned the preferred alignment for alignof and
1991   // _Alignof as well.
1992   if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
1993     return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
1994 
1995   return ASTCtx.getTypeAlignInChars(T);
1996 }
1997 
1998 template <class Emitter>
1999 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
2000     const UnaryExprOrTypeTraitExpr *E) {
2001   UnaryExprOrTypeTrait Kind = E->getKind();
2002   const ASTContext &ASTCtx = Ctx.getASTContext();
2003 
2004   if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
2005     QualType ArgType = E->getTypeOfArgument();
2006 
2007     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2008     //   the result is the size of the referenced type."
2009     if (const auto *Ref = ArgType->getAs<ReferenceType>())
2010       ArgType = Ref->getPointeeType();
2011 
2012     CharUnits Size;
2013     if (ArgType->isVoidType() || ArgType->isFunctionType())
2014       Size = CharUnits::One();
2015     else {
2016       if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
2017         return false;
2018 
2019       if (Kind == UETT_SizeOf)
2020         Size = ASTCtx.getTypeSizeInChars(ArgType);
2021       else
2022         Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
2023     }
2024 
2025     if (DiscardResult)
2026       return true;
2027 
2028     return this->emitConst(Size.getQuantity(), E);
2029   }
2030 
2031   if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
2032     CharUnits Size;
2033 
2034     if (E->isArgumentType()) {
2035       QualType ArgType = E->getTypeOfArgument();
2036 
2037       Size = AlignOfType(ArgType, ASTCtx, Kind);
2038     } else {
2039       // Argument is an expression, not a type.
2040       const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
2041 
2042       // The kinds of expressions that we have special-case logic here for
2043       // should be kept up to date with the special checks for those
2044       // expressions in Sema.
2045 
2046       // alignof decl is always accepted, even if it doesn't make sense: we
2047       // default to 1 in those cases.
2048       if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
2049         Size = ASTCtx.getDeclAlign(DRE->getDecl(),
2050                                    /*RefAsPointee*/ true);
2051       else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
2052         Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
2053                                    /*RefAsPointee*/ true);
2054       else
2055         Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
2056     }
2057 
2058     if (DiscardResult)
2059       return true;
2060 
2061     return this->emitConst(Size.getQuantity(), E);
2062   }
2063 
2064   if (Kind == UETT_VectorElements) {
2065     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
2066       return this->emitConst(VT->getNumElements(), E);
2067     assert(E->getTypeOfArgument()->isSizelessVectorType());
2068     return this->emitSizelessVectorElementSize(E);
2069   }
2070 
2071   if (Kind == UETT_VecStep) {
2072     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
2073       unsigned N = VT->getNumElements();
2074 
2075       // The vec_step built-in functions that take a 3-component
2076       // vector return 4. (OpenCL 1.1 spec 6.11.12)
2077       if (N == 3)
2078         N = 4;
2079 
2080       return this->emitConst(N, E);
2081     }
2082     return this->emitConst(1, E);
2083   }
2084 
2085   return false;
2086 }
2087 
2088 template <class Emitter>
2089 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
2090   // 'Base.Member'
2091   const Expr *Base = E->getBase();
2092   const ValueDecl *Member = E->getMemberDecl();
2093 
2094   if (DiscardResult)
2095     return this->discard(Base);
2096 
2097   // MemberExprs are almost always lvalues, in which case we don't need to
2098   // do the load. But sometimes they aren't.
2099   const auto maybeLoadValue = [&]() -> bool {
2100     if (E->isGLValue())
2101       return true;
2102     if (std::optional<PrimType> T = classify(E))
2103       return this->emitLoadPop(*T, E);
2104     return false;
2105   };
2106 
2107   if (const auto *VD = dyn_cast<VarDecl>(Member)) {
2108     // I am almost confident in saying that a var decl must be static
2109     // and therefore registered as a global variable. But this will probably
2110     // turn out to be wrong some time in the future, as always.
2111     if (auto GlobalIndex = P.getGlobal(VD))
2112       return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
2113     return false;
2114   }
2115 
2116   if (!isa<FieldDecl>(Member)) {
2117     if (!this->discard(Base) && !this->emitSideEffect(E))
2118       return false;
2119 
2120     return this->visitDeclRef(Member, E);
2121   }
2122 
2123   if (Initializing) {
2124     if (!this->delegate(Base))
2125       return false;
2126   } else {
2127     if (!this->visit(Base))
2128       return false;
2129   }
2130 
2131   // Base above gives us a pointer on the stack.
2132   const auto *FD = cast<FieldDecl>(Member);
2133   const RecordDecl *RD = FD->getParent();
2134   const Record *R = getRecord(RD);
2135   if (!R)
2136     return false;
2137   const Record::Field *F = R->getField(FD);
2138   // Leave a pointer to the field on the stack.
2139   if (F->Decl->getType()->isReferenceType())
2140     return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
2141   return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
2142 }
2143 
2144 template <class Emitter>
2145 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
2146   // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
2147   // stand-alone, e.g. via EvaluateAsInt().
2148   if (!ArrayIndex)
2149     return false;
2150   return this->emitConst(*ArrayIndex, E);
2151 }
2152 
2153 template <class Emitter>
2154 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
2155   assert(Initializing);
2156   assert(!DiscardResult);
2157 
2158   // We visit the common opaque expression here once so we have its value
2159   // cached.
2160   if (!this->discard(E->getCommonExpr()))
2161     return false;
2162 
2163   // TODO: This compiles to quite a lot of bytecode if the array is larger.
2164   //   Investigate compiling this to a loop.
2165   const Expr *SubExpr = E->getSubExpr();
2166   size_t Size = E->getArraySize().getZExtValue();
2167 
2168   // So, every iteration, we execute an assignment here
2169   // where the LHS is on the stack (the target array)
2170   // and the RHS is our SubExpr.
2171   for (size_t I = 0; I != Size; ++I) {
2172     ArrayIndexScope<Emitter> IndexScope(this, I);
2173     BlockScope<Emitter> BS(this);
2174 
2175     if (!this->visitArrayElemInit(I, SubExpr))
2176       return false;
2177     if (!BS.destroyLocals())
2178       return false;
2179   }
2180   return true;
2181 }
2182 
2183 template <class Emitter>
2184 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2185   const Expr *SourceExpr = E->getSourceExpr();
2186   if (!SourceExpr)
2187     return false;
2188 
2189   if (Initializing)
2190     return this->visitInitializer(SourceExpr);
2191 
2192   PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
2193   if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
2194     return this->emitGetLocal(SubExprT, It->second, E);
2195 
2196   if (!this->visit(SourceExpr))
2197     return false;
2198 
2199   // At this point we either have the evaluated source expression or a pointer
2200   // to an object on the stack. We want to create a local variable that stores
2201   // this value.
2202   unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
2203   if (!this->emitSetLocal(SubExprT, LocalIndex, E))
2204     return false;
2205 
2206   // Here the local variable is created but the value is removed from the stack,
2207   // so we put it back if the caller needs it.
2208   if (!DiscardResult) {
2209     if (!this->emitGetLocal(SubExprT, LocalIndex, E))
2210       return false;
2211   }
2212 
2213   // This is cleaned up when the local variable is destroyed.
2214   OpaqueExprs.insert({E, LocalIndex});
2215 
2216   return true;
2217 }
2218 
2219 template <class Emitter>
2220 bool Compiler<Emitter>::VisitAbstractConditionalOperator(
2221     const AbstractConditionalOperator *E) {
2222   const Expr *Condition = E->getCond();
2223   const Expr *TrueExpr = E->getTrueExpr();
2224   const Expr *FalseExpr = E->getFalseExpr();
2225 
2226   LabelTy LabelEnd = this->getLabel();   // Label after the operator.
2227   LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
2228 
2229   if (!this->visitBool(Condition))
2230     return false;
2231 
2232   if (!this->jumpFalse(LabelFalse))
2233     return false;
2234 
2235   {
2236     LocalScope<Emitter> S(this);
2237     if (!this->delegate(TrueExpr))
2238       return false;
2239     if (!S.destroyLocals())
2240       return false;
2241   }
2242 
2243   if (!this->jump(LabelEnd))
2244     return false;
2245 
2246   this->emitLabel(LabelFalse);
2247 
2248   {
2249     LocalScope<Emitter> S(this);
2250     if (!this->delegate(FalseExpr))
2251       return false;
2252     if (!S.destroyLocals())
2253       return false;
2254   }
2255 
2256   this->fallthrough(LabelEnd);
2257   this->emitLabel(LabelEnd);
2258 
2259   return true;
2260 }
2261 
2262 template <class Emitter>
2263 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
2264   if (DiscardResult)
2265     return true;
2266 
2267   if (!Initializing) {
2268     unsigned StringIndex = P.createGlobalString(E);
2269     return this->emitGetPtrGlobal(StringIndex, E);
2270   }
2271 
2272   // We are initializing an array on the stack.
2273   const ConstantArrayType *CAT =
2274       Ctx.getASTContext().getAsConstantArrayType(E->getType());
2275   assert(CAT && "a string literal that's not a constant array?");
2276 
2277   // If the initializer string is too long, a diagnostic has already been
2278   // emitted. Read only the array length from the string literal.
2279   unsigned ArraySize = CAT->getZExtSize();
2280   unsigned N = std::min(ArraySize, E->getLength());
2281   size_t CharWidth = E->getCharByteWidth();
2282 
2283   for (unsigned I = 0; I != N; ++I) {
2284     uint32_t CodeUnit = E->getCodeUnit(I);
2285 
2286     if (CharWidth == 1) {
2287       this->emitConstSint8(CodeUnit, E);
2288       this->emitInitElemSint8(I, E);
2289     } else if (CharWidth == 2) {
2290       this->emitConstUint16(CodeUnit, E);
2291       this->emitInitElemUint16(I, E);
2292     } else if (CharWidth == 4) {
2293       this->emitConstUint32(CodeUnit, E);
2294       this->emitInitElemUint32(I, E);
2295     } else {
2296       llvm_unreachable("unsupported character width");
2297     }
2298   }
2299 
2300   // Fill up the rest of the char array with NUL bytes.
2301   for (unsigned I = N; I != ArraySize; ++I) {
2302     if (CharWidth == 1) {
2303       this->emitConstSint8(0, E);
2304       this->emitInitElemSint8(I, E);
2305     } else if (CharWidth == 2) {
2306       this->emitConstUint16(0, E);
2307       this->emitInitElemUint16(I, E);
2308     } else if (CharWidth == 4) {
2309       this->emitConstUint32(0, E);
2310       this->emitInitElemUint32(I, E);
2311     } else {
2312       llvm_unreachable("unsupported character width");
2313     }
2314   }
2315 
2316   return true;
2317 }
2318 
2319 template <class Emitter>
2320 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2321   if (std::optional<unsigned> I = P.getOrCreateDummy(E))
2322     return this->emitGetPtrGlobal(*I, E);
2323   return false;
2324 }
2325 
2326 template <class Emitter>
2327 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2328   auto &A = Ctx.getASTContext();
2329   std::string Str;
2330   A.getObjCEncodingForType(E->getEncodedType(), Str);
2331   StringLiteral *SL =
2332       StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
2333                             /*Pascal=*/false, E->getType(), E->getAtLoc());
2334   return this->delegate(SL);
2335 }
2336 
2337 template <class Emitter>
2338 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
2339     const SYCLUniqueStableNameExpr *E) {
2340   if (DiscardResult)
2341     return true;
2342 
2343   assert(!Initializing);
2344 
2345   auto &A = Ctx.getASTContext();
2346   std::string ResultStr = E->ComputeName(A);
2347 
2348   QualType CharTy = A.CharTy.withConst();
2349   APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
2350   QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
2351                                             ArraySizeModifier::Normal, 0);
2352 
2353   StringLiteral *SL =
2354       StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
2355                             /*Pascal=*/false, ArrayTy, E->getLocation());
2356 
2357   unsigned StringIndex = P.createGlobalString(SL);
2358   return this->emitGetPtrGlobal(StringIndex, E);
2359 }
2360 
2361 template <class Emitter>
2362 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
2363   if (DiscardResult)
2364     return true;
2365   return this->emitConst(E->getValue(), E);
2366 }
2367 
2368 template <class Emitter>
2369 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
2370     const CompoundAssignOperator *E) {
2371 
2372   const Expr *LHS = E->getLHS();
2373   const Expr *RHS = E->getRHS();
2374   QualType LHSType = LHS->getType();
2375   QualType LHSComputationType = E->getComputationLHSType();
2376   QualType ResultType = E->getComputationResultType();
2377   std::optional<PrimType> LT = classify(LHSComputationType);
2378   std::optional<PrimType> RT = classify(ResultType);
2379 
2380   assert(ResultType->isFloatingType());
2381 
2382   if (!LT || !RT)
2383     return false;
2384 
2385   PrimType LHST = classifyPrim(LHSType);
2386 
2387   // C++17 onwards require that we evaluate the RHS first.
2388   // Compute RHS and save it in a temporary variable so we can
2389   // load it again later.
2390   if (!visit(RHS))
2391     return false;
2392 
2393   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2394   if (!this->emitSetLocal(*RT, TempOffset, E))
2395     return false;
2396 
2397   // First, visit LHS.
2398   if (!visit(LHS))
2399     return false;
2400   if (!this->emitLoad(LHST, E))
2401     return false;
2402 
2403   // If necessary, convert LHS to its computation type.
2404   if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
2405                           LHSComputationType, E))
2406     return false;
2407 
2408   // Now load RHS.
2409   if (!this->emitGetLocal(*RT, TempOffset, E))
2410     return false;
2411 
2412   switch (E->getOpcode()) {
2413   case BO_AddAssign:
2414     if (!this->emitAddf(getFPOptions(E), E))
2415       return false;
2416     break;
2417   case BO_SubAssign:
2418     if (!this->emitSubf(getFPOptions(E), E))
2419       return false;
2420     break;
2421   case BO_MulAssign:
2422     if (!this->emitMulf(getFPOptions(E), E))
2423       return false;
2424     break;
2425   case BO_DivAssign:
2426     if (!this->emitDivf(getFPOptions(E), E))
2427       return false;
2428     break;
2429   default:
2430     return false;
2431   }
2432 
2433   if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
2434     return false;
2435 
2436   if (DiscardResult)
2437     return this->emitStorePop(LHST, E);
2438   return this->emitStore(LHST, E);
2439 }
2440 
2441 template <class Emitter>
2442 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
2443     const CompoundAssignOperator *E) {
2444   BinaryOperatorKind Op = E->getOpcode();
2445   const Expr *LHS = E->getLHS();
2446   const Expr *RHS = E->getRHS();
2447   std::optional<PrimType> LT = classify(LHS->getType());
2448   std::optional<PrimType> RT = classify(RHS->getType());
2449 
2450   if (Op != BO_AddAssign && Op != BO_SubAssign)
2451     return false;
2452 
2453   if (!LT || !RT)
2454     return false;
2455 
2456   if (!visit(LHS))
2457     return false;
2458 
2459   if (!this->emitLoad(*LT, LHS))
2460     return false;
2461 
2462   if (!visit(RHS))
2463     return false;
2464 
2465   if (Op == BO_AddAssign) {
2466     if (!this->emitAddOffset(*RT, E))
2467       return false;
2468   } else {
2469     if (!this->emitSubOffset(*RT, E))
2470       return false;
2471   }
2472 
2473   if (DiscardResult)
2474     return this->emitStorePopPtr(E);
2475   return this->emitStorePtr(E);
2476 }
2477 
2478 template <class Emitter>
2479 bool Compiler<Emitter>::VisitCompoundAssignOperator(
2480     const CompoundAssignOperator *E) {
2481   if (E->getType()->isVectorType())
2482     return VisitVectorBinOp(E);
2483 
2484   const Expr *LHS = E->getLHS();
2485   const Expr *RHS = E->getRHS();
2486   std::optional<PrimType> LHSComputationT =
2487       classify(E->getComputationLHSType());
2488   std::optional<PrimType> LT = classify(LHS->getType());
2489   std::optional<PrimType> RT = classify(RHS->getType());
2490   std::optional<PrimType> ResultT = classify(E->getType());
2491 
2492   if (!Ctx.getLangOpts().CPlusPlus14)
2493     return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
2494 
2495   if (!LT || !RT || !ResultT || !LHSComputationT)
2496     return false;
2497 
2498   // Handle floating point operations separately here, since they
2499   // require special care.
2500 
2501   if (ResultT == PT_Float || RT == PT_Float)
2502     return VisitFloatCompoundAssignOperator(E);
2503 
2504   if (E->getType()->isPointerType())
2505     return VisitPointerCompoundAssignOperator(E);
2506 
2507   assert(!E->getType()->isPointerType() && "Handled above");
2508   assert(!E->getType()->isFloatingType() && "Handled above");
2509 
2510   // C++17 onwards require that we evaluate the RHS first.
2511   // Compute RHS and save it in a temporary variable so we can
2512   // load it again later.
2513   // FIXME: Compound assignments are unsequenced in C, so we might
2514   //   have to figure out how to reject them.
2515   if (!visit(RHS))
2516     return false;
2517 
2518   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2519 
2520   if (!this->emitSetLocal(*RT, TempOffset, E))
2521     return false;
2522 
2523   // Get LHS pointer, load its value and cast it to the
2524   // computation type if necessary.
2525   if (!visit(LHS))
2526     return false;
2527   if (!this->emitLoad(*LT, E))
2528     return false;
2529   if (LT != LHSComputationT) {
2530     if (!this->emitCast(*LT, *LHSComputationT, E))
2531       return false;
2532   }
2533 
2534   // Get the RHS value on the stack.
2535   if (!this->emitGetLocal(*RT, TempOffset, E))
2536     return false;
2537 
2538   // Perform operation.
2539   switch (E->getOpcode()) {
2540   case BO_AddAssign:
2541     if (!this->emitAdd(*LHSComputationT, E))
2542       return false;
2543     break;
2544   case BO_SubAssign:
2545     if (!this->emitSub(*LHSComputationT, E))
2546       return false;
2547     break;
2548   case BO_MulAssign:
2549     if (!this->emitMul(*LHSComputationT, E))
2550       return false;
2551     break;
2552   case BO_DivAssign:
2553     if (!this->emitDiv(*LHSComputationT, E))
2554       return false;
2555     break;
2556   case BO_RemAssign:
2557     if (!this->emitRem(*LHSComputationT, E))
2558       return false;
2559     break;
2560   case BO_ShlAssign:
2561     if (!this->emitShl(*LHSComputationT, *RT, E))
2562       return false;
2563     break;
2564   case BO_ShrAssign:
2565     if (!this->emitShr(*LHSComputationT, *RT, E))
2566       return false;
2567     break;
2568   case BO_AndAssign:
2569     if (!this->emitBitAnd(*LHSComputationT, E))
2570       return false;
2571     break;
2572   case BO_XorAssign:
2573     if (!this->emitBitXor(*LHSComputationT, E))
2574       return false;
2575     break;
2576   case BO_OrAssign:
2577     if (!this->emitBitOr(*LHSComputationT, E))
2578       return false;
2579     break;
2580   default:
2581     llvm_unreachable("Unimplemented compound assign operator");
2582   }
2583 
2584   // And now cast from LHSComputationT to ResultT.
2585   if (ResultT != LHSComputationT) {
2586     if (!this->emitCast(*LHSComputationT, *ResultT, E))
2587       return false;
2588   }
2589 
2590   // And store the result in LHS.
2591   if (DiscardResult) {
2592     if (LHS->refersToBitField())
2593       return this->emitStoreBitFieldPop(*ResultT, E);
2594     return this->emitStorePop(*ResultT, E);
2595   }
2596   if (LHS->refersToBitField())
2597     return this->emitStoreBitField(*ResultT, E);
2598   return this->emitStore(*ResultT, E);
2599 }
2600 
2601 template <class Emitter>
2602 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
2603   LocalScope<Emitter> ES(this);
2604   const Expr *SubExpr = E->getSubExpr();
2605 
2606   return this->delegate(SubExpr) && ES.destroyLocals(E);
2607 }
2608 
2609 template <class Emitter>
2610 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
2611     const MaterializeTemporaryExpr *E) {
2612   const Expr *SubExpr = E->getSubExpr();
2613 
2614   if (Initializing) {
2615     // We already have a value, just initialize that.
2616     return this->delegate(SubExpr);
2617   }
2618   // If we don't end up using the materialized temporary anyway, don't
2619   // bother creating it.
2620   if (DiscardResult)
2621     return this->discard(SubExpr);
2622 
2623   // When we're initializing a global variable *or* the storage duration of
2624   // the temporary is explicitly static, create a global variable.
2625   std::optional<PrimType> SubExprT = classify(SubExpr);
2626   bool IsStatic = E->getStorageDuration() == SD_Static;
2627   if (IsStatic) {
2628     std::optional<unsigned> GlobalIndex = P.createGlobal(E);
2629     if (!GlobalIndex)
2630       return false;
2631 
2632     const LifetimeExtendedTemporaryDecl *TempDecl =
2633         E->getLifetimeExtendedTemporaryDecl();
2634     if (IsStatic)
2635       assert(TempDecl);
2636 
2637     if (SubExprT) {
2638       if (!this->visit(SubExpr))
2639         return false;
2640       if (IsStatic) {
2641         if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
2642           return false;
2643       } else {
2644         if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
2645           return false;
2646       }
2647       return this->emitGetPtrGlobal(*GlobalIndex, E);
2648     }
2649 
2650     if (!this->checkLiteralType(SubExpr))
2651       return false;
2652     // Non-primitive values.
2653     if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2654       return false;
2655     if (!this->visitInitializer(SubExpr))
2656       return false;
2657     if (IsStatic)
2658       return this->emitInitGlobalTempComp(TempDecl, E);
2659     return true;
2660   }
2661 
2662   // For everyhing else, use local variables.
2663   if (SubExprT) {
2664     unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true,
2665                                                  /*IsExtended=*/true);
2666     if (!this->visit(SubExpr))
2667       return false;
2668     if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
2669       return false;
2670     return this->emitGetPtrLocal(LocalIndex, E);
2671   } else {
2672 
2673     if (!this->checkLiteralType(SubExpr))
2674       return false;
2675 
2676     const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2677     if (std::optional<unsigned> LocalIndex =
2678             allocateLocal(Inner, E->getExtendingDecl())) {
2679       InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
2680       if (!this->emitGetPtrLocal(*LocalIndex, E))
2681         return false;
2682       return this->visitInitializer(SubExpr);
2683     }
2684   }
2685   return false;
2686 }
2687 
2688 template <class Emitter>
2689 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
2690     const CXXBindTemporaryExpr *E) {
2691   return this->delegate(E->getSubExpr());
2692 }
2693 
2694 template <class Emitter>
2695 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2696   const Expr *Init = E->getInitializer();
2697   if (DiscardResult)
2698     return this->discard(Init);
2699 
2700   if (Initializing) {
2701     // We already have a value, just initialize that.
2702     return this->visitInitializer(Init) && this->emitFinishInit(E);
2703   }
2704 
2705   std::optional<PrimType> T = classify(E->getType());
2706   if (E->isFileScope()) {
2707     // Avoid creating a variable if this is a primitive RValue anyway.
2708     if (T && !E->isLValue())
2709       return this->delegate(Init);
2710 
2711     if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
2712       if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2713         return false;
2714 
2715       if (T) {
2716         if (!this->visit(Init))
2717           return false;
2718         return this->emitInitGlobal(*T, *GlobalIndex, E);
2719       }
2720 
2721       return this->visitInitializer(Init) && this->emitFinishInit(E);
2722     }
2723 
2724     return false;
2725   }
2726 
2727   // Otherwise, use a local variable.
2728   if (T && !E->isLValue()) {
2729     // For primitive types, we just visit the initializer.
2730     return this->delegate(Init);
2731   } else {
2732     unsigned LocalIndex;
2733 
2734     if (T)
2735       LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
2736     else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
2737       LocalIndex = *MaybeIndex;
2738     else
2739       return false;
2740 
2741     if (!this->emitGetPtrLocal(LocalIndex, E))
2742       return false;
2743 
2744     if (T) {
2745       if (!this->visit(Init)) {
2746         return false;
2747       }
2748       return this->emitInit(*T, E);
2749     } else {
2750       if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
2751         return false;
2752     }
2753     return true;
2754   }
2755 
2756   return false;
2757 }
2758 
2759 template <class Emitter>
2760 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
2761   if (DiscardResult)
2762     return true;
2763   if (E->getType()->isBooleanType())
2764     return this->emitConstBool(E->getValue(), E);
2765   return this->emitConst(E->getValue(), E);
2766 }
2767 
2768 template <class Emitter>
2769 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
2770   if (DiscardResult)
2771     return true;
2772   return this->emitConst(E->getValue(), E);
2773 }
2774 
2775 template <class Emitter>
2776 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
2777   if (DiscardResult)
2778     return true;
2779 
2780   assert(Initializing);
2781   const Record *R = P.getOrCreateRecord(E->getLambdaClass());
2782 
2783   auto *CaptureInitIt = E->capture_init_begin();
2784   // Initialize all fields (which represent lambda captures) of the
2785   // record with their initializers.
2786   for (const Record::Field &F : R->fields()) {
2787     const Expr *Init = *CaptureInitIt;
2788     ++CaptureInitIt;
2789 
2790     if (!Init)
2791       continue;
2792 
2793     if (std::optional<PrimType> T = classify(Init)) {
2794       if (!this->visit(Init))
2795         return false;
2796 
2797       if (!this->emitInitField(*T, F.Offset, E))
2798         return false;
2799     } else {
2800       if (!this->emitGetPtrField(F.Offset, E))
2801         return false;
2802 
2803       if (!this->visitInitializer(Init))
2804         return false;
2805 
2806       if (!this->emitPopPtr(E))
2807         return false;
2808     }
2809   }
2810 
2811   return true;
2812 }
2813 
2814 template <class Emitter>
2815 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
2816   if (DiscardResult)
2817     return true;
2818 
2819   return this->delegate(E->getFunctionName());
2820 }
2821 
2822 template <class Emitter>
2823 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
2824   if (E->getSubExpr() && !this->discard(E->getSubExpr()))
2825     return false;
2826 
2827   return this->emitInvalid(E);
2828 }
2829 
2830 template <class Emitter>
2831 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
2832     const CXXReinterpretCastExpr *E) {
2833   const Expr *SubExpr = E->getSubExpr();
2834 
2835   std::optional<PrimType> FromT = classify(SubExpr);
2836   std::optional<PrimType> ToT = classify(E);
2837 
2838   if (!FromT || !ToT)
2839     return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E);
2840 
2841   if (FromT == PT_Ptr || ToT == PT_Ptr) {
2842     // Both types could be PT_Ptr because their expressions are glvalues.
2843     std::optional<PrimType> PointeeFromT;
2844     if (SubExpr->getType()->isPointerOrReferenceType())
2845       PointeeFromT = classify(SubExpr->getType()->getPointeeType());
2846     else
2847       PointeeFromT = classify(SubExpr->getType());
2848 
2849     std::optional<PrimType> PointeeToT;
2850     if (E->getType()->isPointerOrReferenceType())
2851       PointeeToT = classify(E->getType()->getPointeeType());
2852     else
2853       PointeeToT = classify(E->getType());
2854 
2855     bool Fatal = true;
2856     if (PointeeToT && PointeeFromT) {
2857       if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT))
2858         Fatal = false;
2859     }
2860 
2861     if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2862       return false;
2863 
2864     if (E->getCastKind() == CK_LValueBitCast)
2865       return this->delegate(SubExpr);
2866     return this->VisitCastExpr(E);
2867   }
2868 
2869   // Try to actually do the cast.
2870   bool Fatal = (ToT != FromT);
2871   if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2872     return false;
2873 
2874   return this->VisitCastExpr(E);
2875 }
2876 
2877 template <class Emitter>
2878 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
2879   assert(E->getType()->isBooleanType());
2880 
2881   if (DiscardResult)
2882     return true;
2883   return this->emitConstBool(E->getValue(), E);
2884 }
2885 
2886 template <class Emitter>
2887 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
2888   QualType T = E->getType();
2889   assert(!classify(T));
2890 
2891   if (T->isRecordType()) {
2892     const CXXConstructorDecl *Ctor = E->getConstructor();
2893 
2894     // Trivial copy/move constructor. Avoid copy.
2895     if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
2896         Ctor->isTrivial() &&
2897         E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
2898                                         T->getAsCXXRecordDecl()))
2899       return this->visitInitializer(E->getArg(0));
2900 
2901     // If we're discarding a construct expression, we still need
2902     // to allocate a variable and call the constructor and destructor.
2903     if (DiscardResult) {
2904       if (Ctor->isTrivial())
2905         return true;
2906       assert(!Initializing);
2907       std::optional<unsigned> LocalIndex = allocateLocal(E);
2908 
2909       if (!LocalIndex)
2910         return false;
2911 
2912       if (!this->emitGetPtrLocal(*LocalIndex, E))
2913         return false;
2914     }
2915 
2916     // Zero initialization.
2917     if (E->requiresZeroInitialization()) {
2918       const Record *R = getRecord(E->getType());
2919 
2920       if (!this->visitZeroRecordInitializer(R, E))
2921         return false;
2922 
2923       // If the constructor is trivial anyway, we're done.
2924       if (Ctor->isTrivial())
2925         return true;
2926     }
2927 
2928     const Function *Func = getFunction(Ctor);
2929 
2930     if (!Func)
2931       return false;
2932 
2933     assert(Func->hasThisPointer());
2934     assert(!Func->hasRVO());
2935 
2936     //  The This pointer is already on the stack because this is an initializer,
2937     //  but we need to dup() so the call() below has its own copy.
2938     if (!this->emitDupPtr(E))
2939       return false;
2940 
2941     // Constructor arguments.
2942     for (const auto *Arg : E->arguments()) {
2943       if (!this->visit(Arg))
2944         return false;
2945     }
2946 
2947     if (Func->isVariadic()) {
2948       uint32_t VarArgSize = 0;
2949       unsigned NumParams = Func->getNumWrittenParams();
2950       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
2951         VarArgSize +=
2952             align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
2953       }
2954       if (!this->emitCallVar(Func, VarArgSize, E))
2955         return false;
2956     } else {
2957       if (!this->emitCall(Func, 0, E)) {
2958         // When discarding, we don't need the result anyway, so clean up
2959         // the instance dup we did earlier in case surrounding code wants
2960         // to keep evaluating.
2961         if (DiscardResult)
2962           (void)this->emitPopPtr(E);
2963         return false;
2964       }
2965     }
2966 
2967     if (DiscardResult)
2968       return this->emitPopPtr(E);
2969     return this->emitFinishInit(E);
2970   }
2971 
2972   if (T->isArrayType()) {
2973     const ConstantArrayType *CAT =
2974         Ctx.getASTContext().getAsConstantArrayType(E->getType());
2975     if (!CAT)
2976       return false;
2977 
2978     size_t NumElems = CAT->getZExtSize();
2979     const Function *Func = getFunction(E->getConstructor());
2980     if (!Func || !Func->isConstexpr())
2981       return false;
2982 
2983     // FIXME(perf): We're calling the constructor once per array element here,
2984     //   in the old intepreter we had a special-case for trivial constructors.
2985     for (size_t I = 0; I != NumElems; ++I) {
2986       if (!this->emitConstUint64(I, E))
2987         return false;
2988       if (!this->emitArrayElemPtrUint64(E))
2989         return false;
2990 
2991       // Constructor arguments.
2992       for (const auto *Arg : E->arguments()) {
2993         if (!this->visit(Arg))
2994           return false;
2995       }
2996 
2997       if (!this->emitCall(Func, 0, E))
2998         return false;
2999     }
3000     return true;
3001   }
3002 
3003   return false;
3004 }
3005 
3006 template <class Emitter>
3007 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
3008   if (DiscardResult)
3009     return true;
3010 
3011   const APValue Val =
3012       E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
3013 
3014   // Things like __builtin_LINE().
3015   if (E->getType()->isIntegerType()) {
3016     assert(Val.isInt());
3017     const APSInt &I = Val.getInt();
3018     return this->emitConst(I, E);
3019   }
3020   // Otherwise, the APValue is an LValue, with only one element.
3021   // Theoretically, we don't need the APValue at all of course.
3022   assert(E->getType()->isPointerType());
3023   assert(Val.isLValue());
3024   const APValue::LValueBase &Base = Val.getLValueBase();
3025   if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
3026     return this->visit(LValueExpr);
3027 
3028   // Otherwise, we have a decl (which is the case for
3029   // __builtin_source_location).
3030   assert(Base.is<const ValueDecl *>());
3031   assert(Val.getLValuePath().size() == 0);
3032   const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
3033   assert(BaseDecl);
3034 
3035   auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
3036 
3037   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
3038   if (!GlobalIndex)
3039     return false;
3040 
3041   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3042     return false;
3043 
3044   const Record *R = getRecord(E->getType());
3045   const APValue &V = UGCD->getValue();
3046   for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
3047     const Record::Field *F = R->getField(I);
3048     const APValue &FieldValue = V.getStructField(I);
3049 
3050     PrimType FieldT = classifyPrim(F->Decl->getType());
3051 
3052     if (!this->visitAPValue(FieldValue, FieldT, E))
3053       return false;
3054     if (!this->emitInitField(FieldT, F->Offset, E))
3055       return false;
3056   }
3057 
3058   // Leave the pointer to the global on the stack.
3059   return true;
3060 }
3061 
3062 template <class Emitter>
3063 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
3064   unsigned N = E->getNumComponents();
3065   if (N == 0)
3066     return false;
3067 
3068   for (unsigned I = 0; I != N; ++I) {
3069     const OffsetOfNode &Node = E->getComponent(I);
3070     if (Node.getKind() == OffsetOfNode::Array) {
3071       const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
3072       PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
3073 
3074       if (DiscardResult) {
3075         if (!this->discard(ArrayIndexExpr))
3076           return false;
3077         continue;
3078       }
3079 
3080       if (!this->visit(ArrayIndexExpr))
3081         return false;
3082       // Cast to Sint64.
3083       if (IndexT != PT_Sint64) {
3084         if (!this->emitCast(IndexT, PT_Sint64, E))
3085           return false;
3086       }
3087     }
3088   }
3089 
3090   if (DiscardResult)
3091     return true;
3092 
3093   PrimType T = classifyPrim(E->getType());
3094   return this->emitOffsetOf(T, E, E);
3095 }
3096 
3097 template <class Emitter>
3098 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
3099     const CXXScalarValueInitExpr *E) {
3100   QualType Ty = E->getType();
3101 
3102   if (DiscardResult || Ty->isVoidType())
3103     return true;
3104 
3105   if (std::optional<PrimType> T = classify(Ty))
3106     return this->visitZeroInitializer(*T, Ty, E);
3107 
3108   if (const auto *CT = Ty->getAs<ComplexType>()) {
3109     if (!Initializing) {
3110       std::optional<unsigned> LocalIndex = allocateLocal(E);
3111       if (!LocalIndex)
3112         return false;
3113       if (!this->emitGetPtrLocal(*LocalIndex, E))
3114         return false;
3115     }
3116 
3117     // Initialize both fields to 0.
3118     QualType ElemQT = CT->getElementType();
3119     PrimType ElemT = classifyPrim(ElemQT);
3120 
3121     for (unsigned I = 0; I != 2; ++I) {
3122       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3123         return false;
3124       if (!this->emitInitElem(ElemT, I, E))
3125         return false;
3126     }
3127     return true;
3128   }
3129 
3130   if (const auto *VT = Ty->getAs<VectorType>()) {
3131     // FIXME: Code duplication with the _Complex case above.
3132     if (!Initializing) {
3133       std::optional<unsigned> LocalIndex = allocateLocal(E);
3134       if (!LocalIndex)
3135         return false;
3136       if (!this->emitGetPtrLocal(*LocalIndex, E))
3137         return false;
3138     }
3139 
3140     // Initialize all fields to 0.
3141     QualType ElemQT = VT->getElementType();
3142     PrimType ElemT = classifyPrim(ElemQT);
3143 
3144     for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
3145       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3146         return false;
3147       if (!this->emitInitElem(ElemT, I, E))
3148         return false;
3149     }
3150     return true;
3151   }
3152 
3153   return false;
3154 }
3155 
3156 template <class Emitter>
3157 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
3158   return this->emitConst(E->getPackLength(), E);
3159 }
3160 
3161 template <class Emitter>
3162 bool Compiler<Emitter>::VisitGenericSelectionExpr(
3163     const GenericSelectionExpr *E) {
3164   return this->delegate(E->getResultExpr());
3165 }
3166 
3167 template <class Emitter>
3168 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
3169   return this->delegate(E->getChosenSubExpr());
3170 }
3171 
3172 template <class Emitter>
3173 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
3174   if (DiscardResult)
3175     return true;
3176 
3177   return this->emitConst(E->getValue(), E);
3178 }
3179 
3180 template <class Emitter>
3181 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
3182     const CXXInheritedCtorInitExpr *E) {
3183   const CXXConstructorDecl *Ctor = E->getConstructor();
3184   assert(!Ctor->isTrivial() &&
3185          "Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
3186   const Function *F = this->getFunction(Ctor);
3187   assert(F);
3188   assert(!F->hasRVO());
3189   assert(F->hasThisPointer());
3190 
3191   if (!this->emitDupPtr(SourceInfo{}))
3192     return false;
3193 
3194   // Forward all arguments of the current function (which should be a
3195   // constructor itself) to the inherited ctor.
3196   // This is necessary because the calling code has pushed the pointer
3197   // of the correct base for  us already, but the arguments need
3198   // to come after.
3199   unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
3200   for (const ParmVarDecl *PD : Ctor->parameters()) {
3201     PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
3202 
3203     if (!this->emitGetParam(PT, Offset, E))
3204       return false;
3205     Offset += align(primSize(PT));
3206   }
3207 
3208   return this->emitCall(F, 0, E);
3209 }
3210 
3211 template <class Emitter>
3212 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
3213   assert(classifyPrim(E->getType()) == PT_Ptr);
3214   const Expr *Init = E->getInitializer();
3215   QualType ElementType = E->getAllocatedType();
3216   std::optional<PrimType> ElemT = classify(ElementType);
3217   unsigned PlacementArgs = E->getNumPlacementArgs();
3218   const FunctionDecl *OperatorNew = E->getOperatorNew();
3219   const Expr *PlacementDest = nullptr;
3220   bool IsNoThrow = false;
3221 
3222   if (PlacementArgs != 0) {
3223     // FIXME: There is no restriction on this, but it's not clear that any
3224     // other form makes any sense. We get here for cases such as:
3225     //
3226     //   new (std::align_val_t{N}) X(int)
3227     //
3228     // (which should presumably be valid only if N is a multiple of
3229     // alignof(int), and in any case can't be deallocated unless N is
3230     // alignof(X) and X has new-extended alignment).
3231     if (PlacementArgs == 1) {
3232       const Expr *Arg1 = E->getPlacementArg(0);
3233       if (Arg1->getType()->isNothrowT()) {
3234         if (!this->discard(Arg1))
3235           return false;
3236         IsNoThrow = true;
3237       } else {
3238         // Invalid unless we have C++26 or are in a std:: function.
3239         if (!this->emitInvalidNewDeleteExpr(E, E))
3240           return false;
3241 
3242         // If we have a placement-new destination, we'll later use that instead
3243         // of allocating.
3244         if (OperatorNew->isReservedGlobalPlacementOperator())
3245           PlacementDest = Arg1;
3246       }
3247     } else {
3248       // Always invalid.
3249       return this->emitInvalid(E);
3250     }
3251   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction())
3252     return this->emitInvalidNewDeleteExpr(E, E);
3253 
3254   const Descriptor *Desc;
3255   if (!PlacementDest) {
3256     if (ElemT) {
3257       if (E->isArray())
3258         Desc = nullptr; // We're not going to use it in this case.
3259       else
3260         Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
3261                                   /*IsConst=*/false, /*IsTemporary=*/false,
3262                                   /*IsMutable=*/false);
3263     } else {
3264       Desc = P.createDescriptor(
3265           E, ElementType.getTypePtr(),
3266           E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
3267           /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
3268     }
3269   }
3270 
3271   if (E->isArray()) {
3272     std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
3273     if (!ArraySizeExpr)
3274       return false;
3275 
3276     const Expr *Stripped = *ArraySizeExpr;
3277     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
3278          Stripped = ICE->getSubExpr())
3279       if (ICE->getCastKind() != CK_NoOp &&
3280           ICE->getCastKind() != CK_IntegralCast)
3281         break;
3282 
3283     PrimType SizeT = classifyPrim(Stripped->getType());
3284 
3285     if (PlacementDest) {
3286       if (!this->visit(PlacementDest))
3287         return false;
3288       if (!this->visit(Stripped))
3289         return false;
3290       if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E))
3291         return false;
3292     } else {
3293       if (!this->visit(Stripped))
3294         return false;
3295 
3296       if (ElemT) {
3297         // N primitive elements.
3298         if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
3299           return false;
3300       } else {
3301         // N Composite elements.
3302         if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
3303           return false;
3304       }
3305     }
3306 
3307     if (Init && !this->visitInitializer(Init))
3308       return false;
3309 
3310   } else {
3311     if (PlacementDest) {
3312       if (!this->visit(PlacementDest))
3313         return false;
3314       if (!this->emitCheckNewTypeMismatch(E, E))
3315         return false;
3316     } else {
3317       // Allocate just one element.
3318       if (!this->emitAlloc(Desc, E))
3319         return false;
3320     }
3321 
3322     if (Init) {
3323       if (ElemT) {
3324         if (!this->visit(Init))
3325           return false;
3326 
3327         if (!this->emitInit(*ElemT, E))
3328           return false;
3329       } else {
3330         // Composite.
3331         if (!this->visitInitializer(Init))
3332           return false;
3333       }
3334     }
3335   }
3336 
3337   if (DiscardResult)
3338     return this->emitPopPtr(E);
3339 
3340   return true;
3341 }
3342 
3343 template <class Emitter>
3344 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
3345   const Expr *Arg = E->getArgument();
3346 
3347   const FunctionDecl *OperatorDelete = E->getOperatorDelete();
3348 
3349   if (!OperatorDelete->isReplaceableGlobalAllocationFunction())
3350     return this->emitInvalidNewDeleteExpr(E, E);
3351 
3352   // Arg must be an lvalue.
3353   if (!this->visit(Arg))
3354     return false;
3355 
3356   return this->emitFree(E->isArrayForm(), E);
3357 }
3358 
3359 template <class Emitter>
3360 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
3361   const Function *Func = nullptr;
3362   if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E))
3363     Func = F;
3364 
3365   if (!Func)
3366     return false;
3367   return this->emitGetFnPtr(Func, E);
3368 }
3369 
3370 template <class Emitter>
3371 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
3372   assert(Ctx.getLangOpts().CPlusPlus);
3373   return this->emitConstBool(E->getValue(), E);
3374 }
3375 
3376 template <class Emitter>
3377 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
3378   if (DiscardResult)
3379     return true;
3380   assert(!Initializing);
3381 
3382   const MSGuidDecl *GuidDecl = E->getGuidDecl();
3383   const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
3384   assert(RD);
3385   // If the definiton of the result type is incomplete, just return a dummy.
3386   // If (and when) that is read from, we will fail, but not now.
3387   if (!RD->isCompleteDefinition()) {
3388     if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl))
3389       return this->emitGetPtrGlobal(*I, E);
3390     return false;
3391   }
3392 
3393   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
3394   if (!GlobalIndex)
3395     return false;
3396   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3397     return false;
3398 
3399   assert(this->getRecord(E->getType()));
3400 
3401   const APValue &V = GuidDecl->getAsAPValue();
3402   if (V.getKind() == APValue::None)
3403     return true;
3404 
3405   assert(V.isStruct());
3406   assert(V.getStructNumBases() == 0);
3407   if (!this->visitAPValueInitializer(V, E))
3408     return false;
3409 
3410   return this->emitFinishInit(E);
3411 }
3412 
3413 template <class Emitter>
3414 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
3415   assert(classifyPrim(E->getType()) == PT_Bool);
3416   if (DiscardResult)
3417     return true;
3418   return this->emitConstBool(E->isSatisfied(), E);
3419 }
3420 
3421 template <class Emitter>
3422 bool Compiler<Emitter>::VisitConceptSpecializationExpr(
3423     const ConceptSpecializationExpr *E) {
3424   assert(classifyPrim(E->getType()) == PT_Bool);
3425   if (DiscardResult)
3426     return true;
3427   return this->emitConstBool(E->isSatisfied(), E);
3428 }
3429 
3430 template <class Emitter>
3431 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
3432     const CXXRewrittenBinaryOperator *E) {
3433   return this->delegate(E->getSemanticForm());
3434 }
3435 
3436 template <class Emitter>
3437 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
3438 
3439   for (const Expr *SemE : E->semantics()) {
3440     if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
3441       if (SemE == E->getResultExpr())
3442         return false;
3443 
3444       if (OVE->isUnique())
3445         continue;
3446 
3447       if (!this->discard(OVE))
3448         return false;
3449     } else if (SemE == E->getResultExpr()) {
3450       if (!this->delegate(SemE))
3451         return false;
3452     } else {
3453       if (!this->discard(SemE))
3454         return false;
3455     }
3456   }
3457   return true;
3458 }
3459 
3460 template <class Emitter>
3461 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
3462   return this->delegate(E->getSelectedExpr());
3463 }
3464 
3465 template <class Emitter>
3466 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
3467   return this->emitError(E);
3468 }
3469 
3470 template <class Emitter>
3471 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
3472   assert(E->getType()->isVoidPointerType());
3473 
3474   unsigned Offset = allocateLocalPrimitive(
3475       E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3476 
3477   return this->emitGetLocal(PT_Ptr, Offset, E);
3478 }
3479 
3480 template <class Emitter>
3481 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
3482   assert(Initializing);
3483   const auto *VT = E->getType()->castAs<VectorType>();
3484   QualType ElemType = VT->getElementType();
3485   PrimType ElemT = classifyPrim(ElemType);
3486   const Expr *Src = E->getSrcExpr();
3487   PrimType SrcElemT =
3488       classifyPrim(Src->getType()->castAs<VectorType>()->getElementType());
3489 
3490   unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
3491   if (!this->visit(Src))
3492     return false;
3493   if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
3494     return false;
3495 
3496   for (unsigned I = 0; I != VT->getNumElements(); ++I) {
3497     if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
3498       return false;
3499     if (!this->emitArrayElemPop(SrcElemT, I, E))
3500       return false;
3501     if (SrcElemT != ElemT) {
3502       if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
3503         return false;
3504     }
3505     if (!this->emitInitElem(ElemT, I, E))
3506       return false;
3507   }
3508 
3509   return true;
3510 }
3511 
3512 template <class Emitter>
3513 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
3514   assert(Initializing);
3515   assert(E->getNumSubExprs() > 2);
3516 
3517   const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
3518   const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
3519   PrimType ElemT = classifyPrim(VT->getElementType());
3520   unsigned NumInputElems = VT->getNumElements();
3521   unsigned NumOutputElems = E->getNumSubExprs() - 2;
3522   assert(NumOutputElems > 0);
3523 
3524   // Save both input vectors to a local variable.
3525   unsigned VectorOffsets[2];
3526   for (unsigned I = 0; I != 2; ++I) {
3527     VectorOffsets[I] = this->allocateLocalPrimitive(
3528         Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3529     if (!this->visit(Vecs[I]))
3530       return false;
3531     if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
3532       return false;
3533   }
3534   for (unsigned I = 0; I != NumOutputElems; ++I) {
3535     APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
3536     if (ShuffleIndex == -1)
3537       return this->emitInvalid(E); // FIXME: Better diagnostic.
3538 
3539     assert(ShuffleIndex < (NumInputElems * 2));
3540     if (!this->emitGetLocal(PT_Ptr,
3541                             VectorOffsets[ShuffleIndex >= NumInputElems], E))
3542       return false;
3543     unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
3544     if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
3545       return false;
3546 
3547     if (!this->emitInitElem(ElemT, I, E))
3548       return false;
3549   }
3550 
3551   return true;
3552 }
3553 
3554 template <class Emitter>
3555 bool Compiler<Emitter>::VisitExtVectorElementExpr(
3556     const ExtVectorElementExpr *E) {
3557   const Expr *Base = E->getBase();
3558   assert(
3559       Base->getType()->isVectorType() ||
3560       Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
3561 
3562   SmallVector<uint32_t, 4> Indices;
3563   E->getEncodedElementAccess(Indices);
3564 
3565   if (Indices.size() == 1) {
3566     if (!this->visit(Base))
3567       return false;
3568 
3569     if (E->isGLValue()) {
3570       if (!this->emitConstUint32(Indices[0], E))
3571         return false;
3572       return this->emitArrayElemPtrPop(PT_Uint32, E);
3573     }
3574     // Else, also load the value.
3575     return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
3576   }
3577 
3578   // Create a local variable for the base.
3579   unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
3580                                                /*IsExtended=*/false);
3581   if (!this->visit(Base))
3582     return false;
3583   if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
3584     return false;
3585 
3586   // Now the vector variable for the return value.
3587   if (!Initializing) {
3588     std::optional<unsigned> ResultIndex;
3589     ResultIndex = allocateLocal(E);
3590     if (!ResultIndex)
3591       return false;
3592     if (!this->emitGetPtrLocal(*ResultIndex, E))
3593       return false;
3594   }
3595 
3596   assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
3597 
3598   PrimType ElemT =
3599       classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
3600   uint32_t DstIndex = 0;
3601   for (uint32_t I : Indices) {
3602     if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
3603       return false;
3604     if (!this->emitArrayElemPop(ElemT, I, E))
3605       return false;
3606     if (!this->emitInitElem(ElemT, DstIndex, E))
3607       return false;
3608     ++DstIndex;
3609   }
3610 
3611   // Leave the result pointer on the stack.
3612   assert(!DiscardResult);
3613   return true;
3614 }
3615 
3616 template <class Emitter>
3617 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
3618   const Expr *SubExpr = E->getSubExpr();
3619   if (!E->isExpressibleAsConstantInitializer())
3620     return this->discard(SubExpr) && this->emitInvalid(E);
3621 
3622   assert(classifyPrim(E) == PT_Ptr);
3623   if (std::optional<unsigned> I = P.getOrCreateDummy(E))
3624     return this->emitGetPtrGlobal(*I, E);
3625 
3626   return false;
3627 }
3628 
3629 template <class Emitter>
3630 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
3631     const CXXStdInitializerListExpr *E) {
3632   const Expr *SubExpr = E->getSubExpr();
3633   const ConstantArrayType *ArrayType =
3634       Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
3635   const Record *R = getRecord(E->getType());
3636   assert(Initializing);
3637   assert(SubExpr->isGLValue());
3638 
3639   if (!this->visit(SubExpr))
3640     return false;
3641   if (!this->emitConstUint8(0, E))
3642     return false;
3643   if (!this->emitArrayElemPtrPopUint8(E))
3644     return false;
3645   if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
3646     return false;
3647 
3648   PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
3649   if (isIntegralType(SecondFieldT)) {
3650     if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
3651                          SecondFieldT, E))
3652       return false;
3653     return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
3654   }
3655   assert(SecondFieldT == PT_Ptr);
3656 
3657   if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
3658     return false;
3659   if (!this->emitExpandPtr(E))
3660     return false;
3661   if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
3662     return false;
3663   if (!this->emitArrayElemPtrPop(PT_Uint64, E))
3664     return false;
3665   return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
3666 }
3667 
3668 template <class Emitter>
3669 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
3670   BlockScope<Emitter> BS(this);
3671   StmtExprScope<Emitter> SS(this);
3672 
3673   const CompoundStmt *CS = E->getSubStmt();
3674   const Stmt *Result = CS->getStmtExprResult();
3675   for (const Stmt *S : CS->body()) {
3676     if (S != Result) {
3677       if (!this->visitStmt(S))
3678         return false;
3679       continue;
3680     }
3681 
3682     assert(S == Result);
3683     if (const Expr *ResultExpr = dyn_cast<Expr>(S))
3684       return this->delegate(ResultExpr);
3685     return this->emitUnsupported(E);
3686   }
3687 
3688   return BS.destroyLocals();
3689 }
3690 
3691 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
3692   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
3693                              /*NewInitializing=*/false);
3694   return this->Visit(E);
3695 }
3696 
3697 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
3698   // We're basically doing:
3699   // OptionScope<Emitter> Scope(this, DicardResult, Initializing);
3700   // but that's unnecessary of course.
3701   return this->Visit(E);
3702 }
3703 
3704 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
3705   if (E->getType().isNull())
3706     return false;
3707 
3708   if (E->getType()->isVoidType())
3709     return this->discard(E);
3710 
3711   // Create local variable to hold the return value.
3712   if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
3713       !classify(E->getType())) {
3714     std::optional<unsigned> LocalIndex = allocateLocal(E);
3715     if (!LocalIndex)
3716       return false;
3717 
3718     if (!this->emitGetPtrLocal(*LocalIndex, E))
3719       return false;
3720     return this->visitInitializer(E);
3721   }
3722 
3723   //  Otherwise,we have a primitive return value, produce the value directly
3724   //  and push it on the stack.
3725   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3726                              /*NewInitializing=*/false);
3727   return this->Visit(E);
3728 }
3729 
3730 template <class Emitter>
3731 bool Compiler<Emitter>::visitInitializer(const Expr *E) {
3732   assert(!classify(E->getType()));
3733 
3734   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3735                              /*NewInitializing=*/true);
3736   return this->Visit(E);
3737 }
3738 
3739 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
3740   std::optional<PrimType> T = classify(E->getType());
3741   if (!T) {
3742     // Convert complex values to bool.
3743     if (E->getType()->isAnyComplexType()) {
3744       if (!this->visit(E))
3745         return false;
3746       return this->emitComplexBoolCast(E);
3747     }
3748     return false;
3749   }
3750 
3751   if (!this->visit(E))
3752     return false;
3753 
3754   if (T == PT_Bool)
3755     return true;
3756 
3757   // Convert pointers to bool.
3758   if (T == PT_Ptr || T == PT_FnPtr) {
3759     if (!this->emitNull(*T, nullptr, E))
3760       return false;
3761     return this->emitNE(*T, E);
3762   }
3763 
3764   // Or Floats.
3765   if (T == PT_Float)
3766     return this->emitCastFloatingIntegralBool(getFPOptions(E), E);
3767 
3768   // Or anything else we can.
3769   return this->emitCast(*T, PT_Bool, E);
3770 }
3771 
3772 template <class Emitter>
3773 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
3774                                              const Expr *E) {
3775   switch (T) {
3776   case PT_Bool:
3777     return this->emitZeroBool(E);
3778   case PT_Sint8:
3779     return this->emitZeroSint8(E);
3780   case PT_Uint8:
3781     return this->emitZeroUint8(E);
3782   case PT_Sint16:
3783     return this->emitZeroSint16(E);
3784   case PT_Uint16:
3785     return this->emitZeroUint16(E);
3786   case PT_Sint32:
3787     return this->emitZeroSint32(E);
3788   case PT_Uint32:
3789     return this->emitZeroUint32(E);
3790   case PT_Sint64:
3791     return this->emitZeroSint64(E);
3792   case PT_Uint64:
3793     return this->emitZeroUint64(E);
3794   case PT_IntAP:
3795     return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
3796   case PT_IntAPS:
3797     return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
3798   case PT_Ptr:
3799     return this->emitNullPtr(nullptr, E);
3800   case PT_FnPtr:
3801     return this->emitNullFnPtr(nullptr, E);
3802   case PT_MemberPtr:
3803     return this->emitNullMemberPtr(nullptr, E);
3804   case PT_Float:
3805     return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
3806   case PT_FixedPoint: {
3807     auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
3808     return this->emitConstFixedPoint(FixedPoint::Zero(Sem), E);
3809   }
3810     llvm_unreachable("Implement");
3811   }
3812   llvm_unreachable("unknown primitive type");
3813 }
3814 
3815 template <class Emitter>
3816 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
3817                                                    const Expr *E) {
3818   assert(E);
3819   assert(R);
3820   // Fields
3821   for (const Record::Field &Field : R->fields()) {
3822     if (Field.Decl->isUnnamedBitField())
3823       continue;
3824 
3825     const Descriptor *D = Field.Desc;
3826     if (D->isPrimitive()) {
3827       QualType QT = D->getType();
3828       PrimType T = classifyPrim(D->getType());
3829       if (!this->visitZeroInitializer(T, QT, E))
3830         return false;
3831       if (!this->emitInitField(T, Field.Offset, E))
3832         return false;
3833       if (R->isUnion())
3834         break;
3835       continue;
3836     }
3837 
3838     if (!this->emitGetPtrField(Field.Offset, E))
3839       return false;
3840 
3841     if (D->isPrimitiveArray()) {
3842       QualType ET = D->getElemQualType();
3843       PrimType T = classifyPrim(ET);
3844       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3845         if (!this->visitZeroInitializer(T, ET, E))
3846           return false;
3847         if (!this->emitInitElem(T, I, E))
3848           return false;
3849       }
3850     } else if (D->isCompositeArray()) {
3851       const Record *ElemRecord = D->ElemDesc->ElemRecord;
3852       assert(D->ElemDesc->ElemRecord);
3853       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3854         if (!this->emitConstUint32(I, E))
3855           return false;
3856         if (!this->emitArrayElemPtr(PT_Uint32, E))
3857           return false;
3858         if (!this->visitZeroRecordInitializer(ElemRecord, E))
3859           return false;
3860         if (!this->emitPopPtr(E))
3861           return false;
3862       }
3863     } else if (D->isRecord()) {
3864       if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
3865         return false;
3866     } else {
3867       assert(false);
3868     }
3869 
3870     if (!this->emitFinishInitPop(E))
3871       return false;
3872 
3873     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3874     // object's first non-static named data member is zero-initialized
3875     if (R->isUnion())
3876       break;
3877   }
3878 
3879   for (const Record::Base &B : R->bases()) {
3880     if (!this->emitGetPtrBase(B.Offset, E))
3881       return false;
3882     if (!this->visitZeroRecordInitializer(B.R, E))
3883       return false;
3884     if (!this->emitFinishInitPop(E))
3885       return false;
3886   }
3887 
3888   // FIXME: Virtual bases.
3889 
3890   return true;
3891 }
3892 
3893 template <class Emitter>
3894 template <typename T>
3895 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
3896   switch (Ty) {
3897   case PT_Sint8:
3898     return this->emitConstSint8(Value, E);
3899   case PT_Uint8:
3900     return this->emitConstUint8(Value, E);
3901   case PT_Sint16:
3902     return this->emitConstSint16(Value, E);
3903   case PT_Uint16:
3904     return this->emitConstUint16(Value, E);
3905   case PT_Sint32:
3906     return this->emitConstSint32(Value, E);
3907   case PT_Uint32:
3908     return this->emitConstUint32(Value, E);
3909   case PT_Sint64:
3910     return this->emitConstSint64(Value, E);
3911   case PT_Uint64:
3912     return this->emitConstUint64(Value, E);
3913   case PT_Bool:
3914     return this->emitConstBool(Value, E);
3915   case PT_Ptr:
3916   case PT_FnPtr:
3917   case PT_MemberPtr:
3918   case PT_Float:
3919   case PT_IntAP:
3920   case PT_IntAPS:
3921   case PT_FixedPoint:
3922     llvm_unreachable("Invalid integral type");
3923     break;
3924   }
3925   llvm_unreachable("unknown primitive type");
3926 }
3927 
3928 template <class Emitter>
3929 template <typename T>
3930 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
3931   return this->emitConst(Value, classifyPrim(E->getType()), E);
3932 }
3933 
3934 template <class Emitter>
3935 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
3936                                   const Expr *E) {
3937   if (Ty == PT_IntAPS)
3938     return this->emitConstIntAPS(Value, E);
3939   if (Ty == PT_IntAP)
3940     return this->emitConstIntAP(Value, E);
3941 
3942   if (Value.isSigned())
3943     return this->emitConst(Value.getSExtValue(), Ty, E);
3944   return this->emitConst(Value.getZExtValue(), Ty, E);
3945 }
3946 
3947 template <class Emitter>
3948 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
3949   return this->emitConst(Value, classifyPrim(E->getType()), E);
3950 }
3951 
3952 template <class Emitter>
3953 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
3954                                                    bool IsConst,
3955                                                    bool IsExtended) {
3956   // Make sure we don't accidentally register the same decl twice.
3957   if (const auto *VD =
3958           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3959     assert(!P.getGlobal(VD));
3960     assert(!Locals.contains(VD));
3961     (void)VD;
3962   }
3963 
3964   // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
3965   //   (int){12} in C. Consider using Expr::isTemporaryObject() instead
3966   //   or isa<MaterializeTemporaryExpr>().
3967   Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
3968                                      Src.is<const Expr *>());
3969   Scope::Local Local = this->createLocal(D);
3970   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
3971     Locals.insert({VD, Local});
3972   VarScope->add(Local, IsExtended);
3973   return Local.Offset;
3974 }
3975 
3976 template <class Emitter>
3977 std::optional<unsigned>
3978 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) {
3979   // Make sure we don't accidentally register the same decl twice.
3980   if ([[maybe_unused]] const auto *VD =
3981           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3982     assert(!P.getGlobal(VD));
3983     assert(!Locals.contains(VD));
3984   }
3985 
3986   QualType Ty;
3987   const ValueDecl *Key = nullptr;
3988   const Expr *Init = nullptr;
3989   bool IsTemporary = false;
3990   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3991     Key = VD;
3992     Ty = VD->getType();
3993 
3994     if (const auto *VarD = dyn_cast<VarDecl>(VD))
3995       Init = VarD->getInit();
3996   }
3997   if (auto *E = Src.dyn_cast<const Expr *>()) {
3998     IsTemporary = true;
3999     Ty = E->getType();
4000   }
4001 
4002   Descriptor *D = P.createDescriptor(
4003       Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
4004       IsTemporary, /*IsMutable=*/false, Init);
4005   if (!D)
4006     return std::nullopt;
4007 
4008   Scope::Local Local = this->createLocal(D);
4009   if (Key)
4010     Locals.insert({Key, Local});
4011   if (ExtendingDecl)
4012     VarScope->addExtended(Local, ExtendingDecl);
4013   else
4014     VarScope->add(Local, false);
4015   return Local.Offset;
4016 }
4017 
4018 template <class Emitter>
4019 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) {
4020   QualType Ty = E->getType();
4021   assert(!Ty->isRecordType());
4022 
4023   Descriptor *D = P.createDescriptor(
4024       E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
4025       /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
4026   assert(D);
4027 
4028   Scope::Local Local = this->createLocal(D);
4029   VariableScope<Emitter> *S = VarScope;
4030   assert(S);
4031   // Attach to topmost scope.
4032   while (S->getParent())
4033     S = S->getParent();
4034   assert(S && !S->getParent());
4035   S->addLocal(Local);
4036   return Local.Offset;
4037 }
4038 
4039 template <class Emitter>
4040 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
4041   if (const PointerType *PT = dyn_cast<PointerType>(Ty))
4042     return PT->getPointeeType()->getAs<RecordType>();
4043   return Ty->getAs<RecordType>();
4044 }
4045 
4046 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
4047   if (const auto *RecordTy = getRecordTy(Ty))
4048     return getRecord(RecordTy->getDecl());
4049   return nullptr;
4050 }
4051 
4052 template <class Emitter>
4053 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
4054   return P.getOrCreateRecord(RD);
4055 }
4056 
4057 template <class Emitter>
4058 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
4059   return Ctx.getOrCreateFunction(FD);
4060 }
4061 
4062 template <class Emitter>
4063 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) {
4064   LocalScope<Emitter> RootScope(this);
4065 
4066   auto maybeDestroyLocals = [&]() -> bool {
4067     if (DestroyToplevelScope)
4068       return RootScope.destroyLocals();
4069     return true;
4070   };
4071 
4072   // Void expressions.
4073   if (E->getType()->isVoidType()) {
4074     if (!visit(E))
4075       return false;
4076     return this->emitRetVoid(E) && maybeDestroyLocals();
4077   }
4078 
4079   // Expressions with a primitive return type.
4080   if (std::optional<PrimType> T = classify(E)) {
4081     if (!visit(E))
4082       return false;
4083 
4084     return this->emitRet(*T, E) && maybeDestroyLocals();
4085   }
4086 
4087   // Expressions with a composite return type.
4088   // For us, that means everything we don't
4089   // have a PrimType for.
4090   if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
4091     if (!this->emitGetPtrLocal(*LocalOffset, E))
4092       return false;
4093 
4094     if (!visitInitializer(E))
4095       return false;
4096 
4097     if (!this->emitFinishInit(E))
4098       return false;
4099     // We are destroying the locals AFTER the Ret op.
4100     // The Ret op needs to copy the (alive) values, but the
4101     // destructors may still turn the entire expression invalid.
4102     return this->emitRetValue(E) && maybeDestroyLocals();
4103   }
4104 
4105   (void)maybeDestroyLocals();
4106   return false;
4107 }
4108 
4109 template <class Emitter>
4110 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
4111 
4112   auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
4113 
4114   if (R.notCreated())
4115     return R;
4116 
4117   if (R)
4118     return true;
4119 
4120   if (!R && Context::shouldBeGloballyIndexed(VD)) {
4121     if (auto GlobalIndex = P.getGlobal(VD)) {
4122       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4123       GlobalInlineDescriptor &GD =
4124           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4125 
4126       GD.InitState = GlobalInitState::InitializerFailed;
4127       GlobalBlock->invokeDtor();
4128     }
4129   }
4130 
4131   return R;
4132 }
4133 
4134 /// Toplevel visitDeclAndReturn().
4135 /// We get here from evaluateAsInitializer().
4136 /// We need to evaluate the initializer and return its value.
4137 template <class Emitter>
4138 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
4139                                            bool ConstantContext) {
4140   std::optional<PrimType> VarT = classify(VD->getType());
4141 
4142   // We only create variables if we're evaluating in a constant context.
4143   // Otherwise, just evaluate the initializer and return it.
4144   if (!ConstantContext) {
4145     DeclScope<Emitter> LS(this, VD);
4146     if (!this->visit(VD->getAnyInitializer()))
4147       return false;
4148     return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals();
4149   }
4150 
4151   LocalScope<Emitter> VDScope(this, VD);
4152   if (!this->visitVarDecl(VD, /*Toplevel=*/true))
4153     return false;
4154 
4155   if (Context::shouldBeGloballyIndexed(VD)) {
4156     auto GlobalIndex = P.getGlobal(VD);
4157     assert(GlobalIndex); // visitVarDecl() didn't return false.
4158     if (VarT) {
4159       if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
4160         return false;
4161     } else {
4162       if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
4163         return false;
4164     }
4165   } else {
4166     auto Local = Locals.find(VD);
4167     assert(Local != Locals.end()); // Same here.
4168     if (VarT) {
4169       if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
4170         return false;
4171     } else {
4172       if (!this->emitGetPtrLocal(Local->second.Offset, VD))
4173         return false;
4174     }
4175   }
4176 
4177   // Return the value.
4178   if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
4179     // If the Ret above failed and this is a global variable, mark it as
4180     // uninitialized, even everything else succeeded.
4181     if (Context::shouldBeGloballyIndexed(VD)) {
4182       auto GlobalIndex = P.getGlobal(VD);
4183       assert(GlobalIndex);
4184       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4185       GlobalInlineDescriptor &GD =
4186           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4187 
4188       GD.InitState = GlobalInitState::InitializerFailed;
4189       GlobalBlock->invokeDtor();
4190     }
4191     return false;
4192   }
4193 
4194   return VDScope.destroyLocals();
4195 }
4196 
4197 template <class Emitter>
4198 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
4199                                                  bool Toplevel) {
4200   // We don't know what to do with these, so just return false.
4201   if (VD->getType().isNull())
4202     return false;
4203 
4204   // This case is EvalEmitter-only. If we won't create any instructions for the
4205   // initializer anyway, don't bother creating the variable in the first place.
4206   if (!this->isActive())
4207     return VarCreationState::NotCreated();
4208 
4209   const Expr *Init = VD->getInit();
4210   std::optional<PrimType> VarT = classify(VD->getType());
4211 
4212   if (Init && Init->isValueDependent())
4213     return false;
4214 
4215   if (Context::shouldBeGloballyIndexed(VD)) {
4216     auto checkDecl = [&]() -> bool {
4217       bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
4218       return !NeedsOp || this->emitCheckDecl(VD, VD);
4219     };
4220 
4221     auto initGlobal = [&](unsigned GlobalIndex) -> bool {
4222       assert(Init);
4223 
4224       if (VarT) {
4225         if (!this->visit(Init))
4226           return checkDecl() && false;
4227 
4228         return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
4229       }
4230 
4231       if (!checkDecl())
4232         return false;
4233 
4234       if (!this->emitGetPtrGlobal(GlobalIndex, Init))
4235         return false;
4236 
4237       if (!visitInitializer(Init))
4238         return false;
4239 
4240       if (!this->emitFinishInit(Init))
4241         return false;
4242 
4243       return this->emitPopPtr(Init);
4244     };
4245 
4246     DeclScope<Emitter> LocalScope(this, VD);
4247 
4248     // We've already seen and initialized this global.
4249     if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
4250       if (P.getPtrGlobal(*GlobalIndex).isInitialized())
4251         return checkDecl();
4252 
4253       // The previous attempt at initialization might've been unsuccessful,
4254       // so let's try this one.
4255       return Init && checkDecl() && initGlobal(*GlobalIndex);
4256     }
4257 
4258     std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
4259 
4260     if (!GlobalIndex)
4261       return false;
4262 
4263     return !Init || (checkDecl() && initGlobal(*GlobalIndex));
4264   } else {
4265     InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
4266 
4267     if (VarT) {
4268       unsigned Offset = this->allocateLocalPrimitive(
4269           VD, *VarT, VD->getType().isConstQualified());
4270       if (Init) {
4271         // If this is a toplevel declaration, create a scope for the
4272         // initializer.
4273         if (Toplevel) {
4274           LocalScope<Emitter> Scope(this);
4275           if (!this->visit(Init))
4276             return false;
4277           return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
4278         } else {
4279           if (!this->visit(Init))
4280             return false;
4281           return this->emitSetLocal(*VarT, Offset, VD);
4282         }
4283       }
4284     } else {
4285       if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
4286         if (!Init)
4287           return true;
4288 
4289         if (!this->emitGetPtrLocal(*Offset, Init))
4290           return false;
4291 
4292         if (!visitInitializer(Init))
4293           return false;
4294 
4295         if (!this->emitFinishInit(Init))
4296           return false;
4297 
4298         return this->emitPopPtr(Init);
4299       }
4300       return false;
4301     }
4302     return true;
4303   }
4304 
4305   return false;
4306 }
4307 
4308 template <class Emitter>
4309 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
4310                                      const Expr *E) {
4311   assert(!DiscardResult);
4312   if (Val.isInt())
4313     return this->emitConst(Val.getInt(), ValType, E);
4314   else if (Val.isFloat())
4315     return this->emitConstFloat(Val.getFloat(), E);
4316 
4317   if (Val.isLValue()) {
4318     if (Val.isNullPointer())
4319       return this->emitNull(ValType, nullptr, E);
4320     APValue::LValueBase Base = Val.getLValueBase();
4321     if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
4322       return this->visit(BaseExpr);
4323     else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
4324       return this->visitDeclRef(VD, E);
4325     }
4326   } else if (Val.isMemberPointer()) {
4327     if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
4328       return this->emitGetMemberPtr(MemberDecl, E);
4329     return this->emitNullMemberPtr(nullptr, E);
4330   }
4331 
4332   return false;
4333 }
4334 
4335 template <class Emitter>
4336 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
4337                                                 const Expr *E) {
4338 
4339   if (Val.isStruct()) {
4340     const Record *R = this->getRecord(E->getType());
4341     assert(R);
4342     for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
4343       const APValue &F = Val.getStructField(I);
4344       const Record::Field *RF = R->getField(I);
4345 
4346       if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
4347         PrimType T = classifyPrim(RF->Decl->getType());
4348         if (!this->visitAPValue(F, T, E))
4349           return false;
4350         if (!this->emitInitField(T, RF->Offset, E))
4351           return false;
4352       } else if (F.isArray()) {
4353         assert(RF->Desc->isPrimitiveArray());
4354         const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
4355         PrimType ElemT = classifyPrim(ArrType->getElementType());
4356         assert(ArrType);
4357 
4358         if (!this->emitGetPtrField(RF->Offset, E))
4359           return false;
4360 
4361         for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
4362           if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
4363             return false;
4364           if (!this->emitInitElem(ElemT, A, E))
4365             return false;
4366         }
4367 
4368         if (!this->emitPopPtr(E))
4369           return false;
4370       } else if (F.isStruct() || F.isUnion()) {
4371         if (!this->emitGetPtrField(RF->Offset, E))
4372           return false;
4373         if (!this->visitAPValueInitializer(F, E))
4374           return false;
4375         if (!this->emitPopPtr(E))
4376           return false;
4377       } else {
4378         assert(false && "I don't think this should be possible");
4379       }
4380     }
4381     return true;
4382   } else if (Val.isUnion()) {
4383     const FieldDecl *UnionField = Val.getUnionField();
4384     const Record *R = this->getRecord(UnionField->getParent());
4385     assert(R);
4386     const APValue &F = Val.getUnionValue();
4387     const Record::Field *RF = R->getField(UnionField);
4388     PrimType T = classifyPrim(RF->Decl->getType());
4389     if (!this->visitAPValue(F, T, E))
4390       return false;
4391     return this->emitInitField(T, RF->Offset, E);
4392   }
4393   // TODO: Other types.
4394 
4395   return false;
4396 }
4397 
4398 template <class Emitter>
4399 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E,
4400                                              unsigned BuiltinID) {
4401   const Function *Func = getFunction(E->getDirectCallee());
4402   if (!Func)
4403     return false;
4404 
4405   // For these, we're expected to ultimately return an APValue pointing
4406   // to the CallExpr. This is needed to get the correct codegen.
4407   if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
4408       BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString ||
4409       BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant ||
4410       BuiltinID == Builtin::BI__builtin_function_start) {
4411     if (std::optional<unsigned> GlobalOffset = P.getOrCreateDummy(E)) {
4412       if (!this->emitGetPtrGlobal(*GlobalOffset, E))
4413         return false;
4414 
4415       if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT))
4416         return this->emitDecayPtr(PT_Ptr, PT, E);
4417       return true;
4418     }
4419     return false;
4420   }
4421 
4422   QualType ReturnType = E->getType();
4423   std::optional<PrimType> ReturnT = classify(E);
4424 
4425   // Non-primitive return type. Prepare storage.
4426   if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
4427     std::optional<unsigned> LocalIndex = allocateLocal(E);
4428     if (!LocalIndex)
4429       return false;
4430     if (!this->emitGetPtrLocal(*LocalIndex, E))
4431       return false;
4432   }
4433 
4434   if (!Func->isUnevaluatedBuiltin()) {
4435     // Put arguments on the stack.
4436     for (const auto *Arg : E->arguments()) {
4437       if (!this->visit(Arg))
4438         return false;
4439     }
4440   }
4441 
4442   if (!this->emitCallBI(Func, E, BuiltinID, E))
4443     return false;
4444 
4445   if (DiscardResult && !ReturnType->isVoidType()) {
4446     assert(ReturnT);
4447     return this->emitPop(*ReturnT, E);
4448   }
4449 
4450   return true;
4451 }
4452 
4453 template <class Emitter>
4454 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
4455   if (unsigned BuiltinID = E->getBuiltinCallee())
4456     return VisitBuiltinCallExpr(E, BuiltinID);
4457 
4458   const FunctionDecl *FuncDecl = E->getDirectCallee();
4459   // Calls to replaceable operator new/operator delete.
4460   if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) {
4461     if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New ||
4462         FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
4463       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new);
4464     } else {
4465       assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete);
4466       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete);
4467     }
4468   }
4469 
4470   QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
4471   std::optional<PrimType> T = classify(ReturnType);
4472   bool HasRVO = !ReturnType->isVoidType() && !T;
4473 
4474   if (HasRVO) {
4475     if (DiscardResult) {
4476       // If we need to discard the return value but the function returns its
4477       // value via an RVO pointer, we need to create one such pointer just
4478       // for this call.
4479       if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4480         if (!this->emitGetPtrLocal(*LocalIndex, E))
4481           return false;
4482       }
4483     } else {
4484       // We need the result. Prepare a pointer to return or
4485       // dup the current one.
4486       if (!Initializing) {
4487         if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4488           if (!this->emitGetPtrLocal(*LocalIndex, E))
4489             return false;
4490         }
4491       }
4492       if (!this->emitDupPtr(E))
4493         return false;
4494     }
4495   }
4496 
4497   SmallVector<const Expr *, 8> Args(
4498       llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
4499 
4500   bool IsAssignmentOperatorCall = false;
4501   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
4502       OCE && OCE->isAssignmentOp()) {
4503     // Just like with regular assignments, we need to special-case assignment
4504     // operators here and evaluate the RHS (the second arg) before the LHS (the
4505     // first arg. We fix this by using a Flip op later.
4506     assert(Args.size() == 2);
4507     IsAssignmentOperatorCall = true;
4508     std::reverse(Args.begin(), Args.end());
4509   }
4510   // Calling a static operator will still
4511   // pass the instance, but we don't need it.
4512   // Discard it here.
4513   if (isa<CXXOperatorCallExpr>(E)) {
4514     if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
4515         MD && MD->isStatic()) {
4516       if (!this->discard(E->getArg(0)))
4517         return false;
4518       // Drop first arg.
4519       Args.erase(Args.begin());
4520     }
4521   }
4522 
4523   std::optional<unsigned> CalleeOffset;
4524   // Add the (optional, implicit) This pointer.
4525   if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
4526     if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
4527       // If we end up creating a CallPtr op for this, we need the base of the
4528       // member pointer as the instance pointer, and later extract the function
4529       // decl as the function pointer.
4530       const Expr *Callee = E->getCallee();
4531       CalleeOffset =
4532           this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
4533       if (!this->visit(Callee))
4534         return false;
4535       if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
4536         return false;
4537       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4538         return false;
4539       if (!this->emitGetMemberPtrBase(E))
4540         return false;
4541     } else if (!this->visit(MC->getImplicitObjectArgument())) {
4542       return false;
4543     }
4544   } else if (!FuncDecl) {
4545     const Expr *Callee = E->getCallee();
4546     CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false);
4547     if (!this->visit(Callee))
4548       return false;
4549     if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E))
4550       return false;
4551   }
4552 
4553   llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
4554   // Put arguments on the stack.
4555   unsigned ArgIndex = 0;
4556   for (const auto *Arg : Args) {
4557     if (!this->visit(Arg))
4558       return false;
4559 
4560     // If we know the callee already, check the known parametrs for nullability.
4561     if (FuncDecl && NonNullArgs[ArgIndex]) {
4562       PrimType ArgT = classify(Arg).value_or(PT_Ptr);
4563       if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
4564         if (!this->emitCheckNonNullArg(ArgT, Arg))
4565           return false;
4566       }
4567     }
4568     ++ArgIndex;
4569   }
4570 
4571   // Undo the argument reversal we did earlier.
4572   if (IsAssignmentOperatorCall) {
4573     assert(Args.size() == 2);
4574     PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
4575     PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
4576     if (!this->emitFlip(Arg2T, Arg1T, E))
4577       return false;
4578   }
4579 
4580   if (FuncDecl) {
4581     const Function *Func = getFunction(FuncDecl);
4582     if (!Func)
4583       return false;
4584     assert(HasRVO == Func->hasRVO());
4585 
4586     bool HasQualifier = false;
4587     if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
4588       HasQualifier = ME->hasQualifier();
4589 
4590     bool IsVirtual = false;
4591     if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
4592       IsVirtual = MD->isVirtual();
4593 
4594     // In any case call the function. The return value will end up on the stack
4595     // and if the function has RVO, we already have the pointer on the stack to
4596     // write the result into.
4597     if (IsVirtual && !HasQualifier) {
4598       uint32_t VarArgSize = 0;
4599       unsigned NumParams =
4600           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4601       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4602         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4603 
4604       if (!this->emitCallVirt(Func, VarArgSize, E))
4605         return false;
4606     } else if (Func->isVariadic()) {
4607       uint32_t VarArgSize = 0;
4608       unsigned NumParams =
4609           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4610       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4611         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4612       if (!this->emitCallVar(Func, VarArgSize, E))
4613         return false;
4614     } else {
4615       if (!this->emitCall(Func, 0, E))
4616         return false;
4617     }
4618   } else {
4619     // Indirect call. Visit the callee, which will leave a FunctionPointer on
4620     // the stack. Cleanup of the returned value if necessary will be done after
4621     // the function call completed.
4622 
4623     // Sum the size of all args from the call expr.
4624     uint32_t ArgSize = 0;
4625     for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
4626       ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4627 
4628     // Get the callee, either from a member pointer or function pointer saved in
4629     // CalleeOffset.
4630     if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
4631       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4632         return false;
4633       if (!this->emitGetMemberPtrDecl(E))
4634         return false;
4635     } else {
4636       if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E))
4637         return false;
4638     }
4639     if (!this->emitCallPtr(ArgSize, E, E))
4640       return false;
4641   }
4642 
4643   // Cleanup for discarded return values.
4644   if (DiscardResult && !ReturnType->isVoidType() && T)
4645     return this->emitPop(*T, E);
4646 
4647   return true;
4648 }
4649 
4650 template <class Emitter>
4651 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4652   SourceLocScope<Emitter> SLS(this, E);
4653 
4654   return this->delegate(E->getExpr());
4655 }
4656 
4657 template <class Emitter>
4658 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
4659   SourceLocScope<Emitter> SLS(this, E);
4660 
4661   const Expr *SubExpr = E->getExpr();
4662   if (std::optional<PrimType> T = classify(E->getExpr()))
4663     return this->visit(SubExpr);
4664 
4665   assert(Initializing);
4666   return this->visitInitializer(SubExpr);
4667 }
4668 
4669 template <class Emitter>
4670 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4671   if (DiscardResult)
4672     return true;
4673 
4674   return this->emitConstBool(E->getValue(), E);
4675 }
4676 
4677 template <class Emitter>
4678 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
4679     const CXXNullPtrLiteralExpr *E) {
4680   if (DiscardResult)
4681     return true;
4682 
4683   return this->emitNullPtr(nullptr, E);
4684 }
4685 
4686 template <class Emitter>
4687 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
4688   if (DiscardResult)
4689     return true;
4690 
4691   assert(E->getType()->isIntegerType());
4692 
4693   PrimType T = classifyPrim(E->getType());
4694   return this->emitZero(T, E);
4695 }
4696 
4697 template <class Emitter>
4698 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
4699   if (DiscardResult)
4700     return true;
4701 
4702   if (this->LambdaThisCapture.Offset > 0) {
4703     if (this->LambdaThisCapture.IsPtr)
4704       return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
4705     return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
4706   }
4707 
4708   // In some circumstances, the 'this' pointer does not actually refer to the
4709   // instance pointer of the current function frame, but e.g. to the declaration
4710   // currently being initialized. Here we emit the necessary instruction(s) for
4711   // this scenario.
4712   if (!InitStackActive || !E->isImplicit())
4713     return this->emitThis(E);
4714 
4715   if (InitStackActive && !InitStack.empty()) {
4716     unsigned StartIndex = 0;
4717     for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
4718       if (InitStack[StartIndex].Kind != InitLink::K_Field &&
4719           InitStack[StartIndex].Kind != InitLink::K_Elem)
4720         break;
4721     }
4722 
4723     for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) {
4724       if (!InitStack[I].template emit<Emitter>(this, E))
4725         return false;
4726     }
4727     return true;
4728   }
4729   return this->emitThis(E);
4730 }
4731 
4732 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
4733   switch (S->getStmtClass()) {
4734   case Stmt::CompoundStmtClass:
4735     return visitCompoundStmt(cast<CompoundStmt>(S));
4736   case Stmt::DeclStmtClass:
4737     return visitDeclStmt(cast<DeclStmt>(S));
4738   case Stmt::ReturnStmtClass:
4739     return visitReturnStmt(cast<ReturnStmt>(S));
4740   case Stmt::IfStmtClass:
4741     return visitIfStmt(cast<IfStmt>(S));
4742   case Stmt::WhileStmtClass:
4743     return visitWhileStmt(cast<WhileStmt>(S));
4744   case Stmt::DoStmtClass:
4745     return visitDoStmt(cast<DoStmt>(S));
4746   case Stmt::ForStmtClass:
4747     return visitForStmt(cast<ForStmt>(S));
4748   case Stmt::CXXForRangeStmtClass:
4749     return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
4750   case Stmt::BreakStmtClass:
4751     return visitBreakStmt(cast<BreakStmt>(S));
4752   case Stmt::ContinueStmtClass:
4753     return visitContinueStmt(cast<ContinueStmt>(S));
4754   case Stmt::SwitchStmtClass:
4755     return visitSwitchStmt(cast<SwitchStmt>(S));
4756   case Stmt::CaseStmtClass:
4757     return visitCaseStmt(cast<CaseStmt>(S));
4758   case Stmt::DefaultStmtClass:
4759     return visitDefaultStmt(cast<DefaultStmt>(S));
4760   case Stmt::AttributedStmtClass:
4761     return visitAttributedStmt(cast<AttributedStmt>(S));
4762   case Stmt::CXXTryStmtClass:
4763     return visitCXXTryStmt(cast<CXXTryStmt>(S));
4764   case Stmt::NullStmtClass:
4765     return true;
4766   // Always invalid statements.
4767   case Stmt::GCCAsmStmtClass:
4768   case Stmt::MSAsmStmtClass:
4769   case Stmt::GotoStmtClass:
4770     return this->emitInvalid(S);
4771   case Stmt::LabelStmtClass:
4772     return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
4773   default: {
4774     if (const auto *E = dyn_cast<Expr>(S))
4775       return this->discard(E);
4776     return false;
4777   }
4778   }
4779 }
4780 
4781 template <class Emitter>
4782 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
4783   BlockScope<Emitter> Scope(this);
4784   for (const auto *InnerStmt : S->body())
4785     if (!visitStmt(InnerStmt))
4786       return false;
4787   return Scope.destroyLocals();
4788 }
4789 
4790 template <class Emitter>
4791 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
4792   for (const auto *D : DS->decls()) {
4793     if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
4794             FunctionDecl>(D))
4795       continue;
4796 
4797     const auto *VD = dyn_cast<VarDecl>(D);
4798     if (!VD)
4799       return false;
4800     if (!this->visitVarDecl(VD))
4801       return false;
4802   }
4803 
4804   return true;
4805 }
4806 
4807 template <class Emitter>
4808 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
4809   if (this->InStmtExpr)
4810     return this->emitUnsupported(RS);
4811 
4812   if (const Expr *RE = RS->getRetValue()) {
4813     LocalScope<Emitter> RetScope(this);
4814     if (ReturnType) {
4815       // Primitive types are simply returned.
4816       if (!this->visit(RE))
4817         return false;
4818       this->emitCleanup();
4819       return this->emitRet(*ReturnType, RS);
4820     } else if (RE->getType()->isVoidType()) {
4821       if (!this->visit(RE))
4822         return false;
4823     } else {
4824       // RVO - construct the value in the return location.
4825       if (!this->emitRVOPtr(RE))
4826         return false;
4827       if (!this->visitInitializer(RE))
4828         return false;
4829       if (!this->emitPopPtr(RE))
4830         return false;
4831 
4832       this->emitCleanup();
4833       return this->emitRetVoid(RS);
4834     }
4835   }
4836 
4837   // Void return.
4838   this->emitCleanup();
4839   return this->emitRetVoid(RS);
4840 }
4841 
4842 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
4843   if (auto *CondInit = IS->getInit())
4844     if (!visitStmt(CondInit))
4845       return false;
4846 
4847   if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
4848     if (!visitDeclStmt(CondDecl))
4849       return false;
4850 
4851   // Compile condition.
4852   if (IS->isNonNegatedConsteval()) {
4853     if (!this->emitIsConstantContext(IS))
4854       return false;
4855   } else if (IS->isNegatedConsteval()) {
4856     if (!this->emitIsConstantContext(IS))
4857       return false;
4858     if (!this->emitInv(IS))
4859       return false;
4860   } else {
4861     if (!this->visitBool(IS->getCond()))
4862       return false;
4863   }
4864 
4865   if (const Stmt *Else = IS->getElse()) {
4866     LabelTy LabelElse = this->getLabel();
4867     LabelTy LabelEnd = this->getLabel();
4868     if (!this->jumpFalse(LabelElse))
4869       return false;
4870     if (!visitStmt(IS->getThen()))
4871       return false;
4872     if (!this->jump(LabelEnd))
4873       return false;
4874     this->emitLabel(LabelElse);
4875     if (!visitStmt(Else))
4876       return false;
4877     this->emitLabel(LabelEnd);
4878   } else {
4879     LabelTy LabelEnd = this->getLabel();
4880     if (!this->jumpFalse(LabelEnd))
4881       return false;
4882     if (!visitStmt(IS->getThen()))
4883       return false;
4884     this->emitLabel(LabelEnd);
4885   }
4886 
4887   return true;
4888 }
4889 
4890 template <class Emitter>
4891 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
4892   const Expr *Cond = S->getCond();
4893   const Stmt *Body = S->getBody();
4894 
4895   LabelTy CondLabel = this->getLabel(); // Label before the condition.
4896   LabelTy EndLabel = this->getLabel();  // Label after the loop.
4897   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4898 
4899   this->fallthrough(CondLabel);
4900   this->emitLabel(CondLabel);
4901 
4902   {
4903     LocalScope<Emitter> CondScope(this);
4904     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4905       if (!visitDeclStmt(CondDecl))
4906         return false;
4907 
4908     if (!this->visitBool(Cond))
4909       return false;
4910     if (!this->jumpFalse(EndLabel))
4911       return false;
4912 
4913     if (!this->visitStmt(Body))
4914       return false;
4915 
4916     if (!CondScope.destroyLocals())
4917       return false;
4918   }
4919   if (!this->jump(CondLabel))
4920     return false;
4921   this->fallthrough(EndLabel);
4922   this->emitLabel(EndLabel);
4923 
4924   return true;
4925 }
4926 
4927 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
4928   const Expr *Cond = S->getCond();
4929   const Stmt *Body = S->getBody();
4930 
4931   LabelTy StartLabel = this->getLabel();
4932   LabelTy EndLabel = this->getLabel();
4933   LabelTy CondLabel = this->getLabel();
4934   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4935 
4936   this->fallthrough(StartLabel);
4937   this->emitLabel(StartLabel);
4938 
4939   {
4940     LocalScope<Emitter> CondScope(this);
4941     if (!this->visitStmt(Body))
4942       return false;
4943     this->fallthrough(CondLabel);
4944     this->emitLabel(CondLabel);
4945     if (!this->visitBool(Cond))
4946       return false;
4947 
4948     if (!CondScope.destroyLocals())
4949       return false;
4950   }
4951   if (!this->jumpTrue(StartLabel))
4952     return false;
4953 
4954   this->fallthrough(EndLabel);
4955   this->emitLabel(EndLabel);
4956   return true;
4957 }
4958 
4959 template <class Emitter>
4960 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
4961   // for (Init; Cond; Inc) { Body }
4962   const Stmt *Init = S->getInit();
4963   const Expr *Cond = S->getCond();
4964   const Expr *Inc = S->getInc();
4965   const Stmt *Body = S->getBody();
4966 
4967   LabelTy EndLabel = this->getLabel();
4968   LabelTy CondLabel = this->getLabel();
4969   LabelTy IncLabel = this->getLabel();
4970   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4971 
4972   if (Init && !this->visitStmt(Init))
4973     return false;
4974 
4975   this->fallthrough(CondLabel);
4976   this->emitLabel(CondLabel);
4977 
4978   {
4979     LocalScope<Emitter> CondScope(this);
4980     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4981       if (!visitDeclStmt(CondDecl))
4982         return false;
4983 
4984     if (Cond) {
4985       if (!this->visitBool(Cond))
4986         return false;
4987       if (!this->jumpFalse(EndLabel))
4988         return false;
4989     }
4990 
4991     if (Body && !this->visitStmt(Body))
4992       return false;
4993 
4994     this->fallthrough(IncLabel);
4995     this->emitLabel(IncLabel);
4996     if (Inc && !this->discard(Inc))
4997       return false;
4998 
4999     if (!CondScope.destroyLocals())
5000       return false;
5001   }
5002   if (!this->jump(CondLabel))
5003     return false;
5004 
5005   this->fallthrough(EndLabel);
5006   this->emitLabel(EndLabel);
5007   return true;
5008 }
5009 
5010 template <class Emitter>
5011 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
5012   const Stmt *Init = S->getInit();
5013   const Expr *Cond = S->getCond();
5014   const Expr *Inc = S->getInc();
5015   const Stmt *Body = S->getBody();
5016   const Stmt *BeginStmt = S->getBeginStmt();
5017   const Stmt *RangeStmt = S->getRangeStmt();
5018   const Stmt *EndStmt = S->getEndStmt();
5019   const VarDecl *LoopVar = S->getLoopVariable();
5020 
5021   LabelTy EndLabel = this->getLabel();
5022   LabelTy CondLabel = this->getLabel();
5023   LabelTy IncLabel = this->getLabel();
5024   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
5025 
5026   // Emit declarations needed in the loop.
5027   if (Init && !this->visitStmt(Init))
5028     return false;
5029   if (!this->visitStmt(RangeStmt))
5030     return false;
5031   if (!this->visitStmt(BeginStmt))
5032     return false;
5033   if (!this->visitStmt(EndStmt))
5034     return false;
5035 
5036   // Now the condition as well as the loop variable assignment.
5037   this->fallthrough(CondLabel);
5038   this->emitLabel(CondLabel);
5039   if (!this->visitBool(Cond))
5040     return false;
5041   if (!this->jumpFalse(EndLabel))
5042     return false;
5043 
5044   if (!this->visitVarDecl(LoopVar))
5045     return false;
5046 
5047   // Body.
5048   {
5049     if (!this->visitStmt(Body))
5050       return false;
5051 
5052     this->fallthrough(IncLabel);
5053     this->emitLabel(IncLabel);
5054     if (!this->discard(Inc))
5055       return false;
5056   }
5057 
5058   if (!this->jump(CondLabel))
5059     return false;
5060 
5061   this->fallthrough(EndLabel);
5062   this->emitLabel(EndLabel);
5063   return true;
5064 }
5065 
5066 template <class Emitter>
5067 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
5068   if (!BreakLabel)
5069     return false;
5070 
5071   for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope;
5072        C = C->getParent())
5073     C->emitDestruction();
5074   return this->jump(*BreakLabel);
5075 }
5076 
5077 template <class Emitter>
5078 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
5079   if (!ContinueLabel)
5080     return false;
5081 
5082   for (VariableScope<Emitter> *C = VarScope;
5083        C && C->getParent() != ContinueVarScope; C = C->getParent())
5084     C->emitDestruction();
5085   return this->jump(*ContinueLabel);
5086 }
5087 
5088 template <class Emitter>
5089 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
5090   const Expr *Cond = S->getCond();
5091   PrimType CondT = this->classifyPrim(Cond->getType());
5092   LocalScope<Emitter> LS(this);
5093 
5094   LabelTy EndLabel = this->getLabel();
5095   OptLabelTy DefaultLabel = std::nullopt;
5096   unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
5097 
5098   if (const auto *CondInit = S->getInit())
5099     if (!visitStmt(CondInit))
5100       return false;
5101 
5102   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
5103     if (!visitDeclStmt(CondDecl))
5104       return false;
5105 
5106   // Initialize condition variable.
5107   if (!this->visit(Cond))
5108     return false;
5109   if (!this->emitSetLocal(CondT, CondVar, S))
5110     return false;
5111 
5112   CaseMap CaseLabels;
5113   // Create labels and comparison ops for all case statements.
5114   for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
5115        SC = SC->getNextSwitchCase()) {
5116     if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
5117       // FIXME: Implement ranges.
5118       if (CS->caseStmtIsGNURange())
5119         return false;
5120       CaseLabels[SC] = this->getLabel();
5121 
5122       const Expr *Value = CS->getLHS();
5123       PrimType ValueT = this->classifyPrim(Value->getType());
5124 
5125       // Compare the case statement's value to the switch condition.
5126       if (!this->emitGetLocal(CondT, CondVar, CS))
5127         return false;
5128       if (!this->visit(Value))
5129         return false;
5130 
5131       // Compare and jump to the case label.
5132       if (!this->emitEQ(ValueT, S))
5133         return false;
5134       if (!this->jumpTrue(CaseLabels[CS]))
5135         return false;
5136     } else {
5137       assert(!DefaultLabel);
5138       DefaultLabel = this->getLabel();
5139     }
5140   }
5141 
5142   // If none of the conditions above were true, fall through to the default
5143   // statement or jump after the switch statement.
5144   if (DefaultLabel) {
5145     if (!this->jump(*DefaultLabel))
5146       return false;
5147   } else {
5148     if (!this->jump(EndLabel))
5149       return false;
5150   }
5151 
5152   SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
5153   if (!this->visitStmt(S->getBody()))
5154     return false;
5155   this->emitLabel(EndLabel);
5156 
5157   return LS.destroyLocals();
5158 }
5159 
5160 template <class Emitter>
5161 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
5162   this->emitLabel(CaseLabels[S]);
5163   return this->visitStmt(S->getSubStmt());
5164 }
5165 
5166 template <class Emitter>
5167 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
5168   this->emitLabel(*DefaultLabel);
5169   return this->visitStmt(S->getSubStmt());
5170 }
5171 
5172 template <class Emitter>
5173 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
5174   if (this->Ctx.getLangOpts().CXXAssumptions &&
5175       !this->Ctx.getLangOpts().MSVCCompat) {
5176     for (const Attr *A : S->getAttrs()) {
5177       auto *AA = dyn_cast<CXXAssumeAttr>(A);
5178       if (!AA)
5179         continue;
5180 
5181       assert(isa<NullStmt>(S->getSubStmt()));
5182 
5183       const Expr *Assumption = AA->getAssumption();
5184       if (Assumption->isValueDependent())
5185         return false;
5186 
5187       if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
5188         continue;
5189 
5190       // Evaluate assumption.
5191       if (!this->visitBool(Assumption))
5192         return false;
5193 
5194       if (!this->emitAssume(Assumption))
5195         return false;
5196     }
5197   }
5198 
5199   // Ignore other attributes.
5200   return this->visitStmt(S->getSubStmt());
5201 }
5202 
5203 template <class Emitter>
5204 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
5205   // Ignore all handlers.
5206   return this->visitStmt(S->getTryBlock());
5207 }
5208 
5209 template <class Emitter>
5210 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
5211   assert(MD->isLambdaStaticInvoker());
5212   assert(MD->hasBody());
5213   assert(cast<CompoundStmt>(MD->getBody())->body_empty());
5214 
5215   const CXXRecordDecl *ClosureClass = MD->getParent();
5216   const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
5217   assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
5218   const Function *Func = this->getFunction(LambdaCallOp);
5219   if (!Func)
5220     return false;
5221   assert(Func->hasThisPointer());
5222   assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
5223 
5224   if (Func->hasRVO()) {
5225     if (!this->emitRVOPtr(MD))
5226       return false;
5227   }
5228 
5229   // The lambda call operator needs an instance pointer, but we don't have
5230   // one here, and we don't need one either because the lambda cannot have
5231   // any captures, as verified above. Emit a null pointer. This is then
5232   // special-cased when interpreting to not emit any misleading diagnostics.
5233   if (!this->emitNullPtr(nullptr, MD))
5234     return false;
5235 
5236   // Forward all arguments from the static invoker to the lambda call operator.
5237   for (const ParmVarDecl *PVD : MD->parameters()) {
5238     auto It = this->Params.find(PVD);
5239     assert(It != this->Params.end());
5240 
5241     // We do the lvalue-to-rvalue conversion manually here, so no need
5242     // to care about references.
5243     PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
5244     if (!this->emitGetParam(ParamType, It->second.Offset, MD))
5245       return false;
5246   }
5247 
5248   if (!this->emitCall(Func, 0, LambdaCallOp))
5249     return false;
5250 
5251   this->emitCleanup();
5252   if (ReturnType)
5253     return this->emitRet(*ReturnType, MD);
5254 
5255   // Nothing to do, since we emitted the RVO pointer above.
5256   return this->emitRetVoid(MD);
5257 }
5258 
5259 template <class Emitter>
5260 bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
5261   if (Ctx.getLangOpts().CPlusPlus23)
5262     return true;
5263 
5264   if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
5265     return true;
5266 
5267   return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
5268 }
5269 
5270 template <class Emitter>
5271 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
5272   assert(!ReturnType);
5273 
5274   auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
5275                                   const Expr *InitExpr) -> bool {
5276     // We don't know what to do with these, so just return false.
5277     if (InitExpr->getType().isNull())
5278       return false;
5279 
5280     if (std::optional<PrimType> T = this->classify(InitExpr)) {
5281       if (!this->visit(InitExpr))
5282         return false;
5283 
5284       if (F->isBitField())
5285         return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
5286       return this->emitInitThisField(*T, FieldOffset, InitExpr);
5287     }
5288     // Non-primitive case. Get a pointer to the field-to-initialize
5289     // on the stack and call visitInitialzer() for it.
5290     InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
5291     if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
5292       return false;
5293 
5294     if (!this->visitInitializer(InitExpr))
5295       return false;
5296 
5297     return this->emitFinishInitPop(InitExpr);
5298   };
5299 
5300   const RecordDecl *RD = Ctor->getParent();
5301   const Record *R = this->getRecord(RD);
5302   if (!R)
5303     return false;
5304 
5305   if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
5306     // union copy and move ctors are special.
5307     assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
5308     if (!this->emitThis(Ctor))
5309       return false;
5310 
5311     auto PVD = Ctor->getParamDecl(0);
5312     ParamOffset PO = this->Params[PVD]; // Must exist.
5313 
5314     if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
5315       return false;
5316 
5317     return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
5318            this->emitRetVoid(Ctor);
5319   }
5320 
5321   InitLinkScope<Emitter> InitScope(this, InitLink::This());
5322   for (const auto *Init : Ctor->inits()) {
5323     // Scope needed for the initializers.
5324     BlockScope<Emitter> Scope(this);
5325 
5326     const Expr *InitExpr = Init->getInit();
5327     if (const FieldDecl *Member = Init->getMember()) {
5328       const Record::Field *F = R->getField(Member);
5329 
5330       if (!emitFieldInitializer(F, F->Offset, InitExpr))
5331         return false;
5332     } else if (const Type *Base = Init->getBaseClass()) {
5333       const auto *BaseDecl = Base->getAsCXXRecordDecl();
5334       assert(BaseDecl);
5335 
5336       if (Init->isBaseVirtual()) {
5337         assert(R->getVirtualBase(BaseDecl));
5338         if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
5339           return false;
5340 
5341       } else {
5342         // Base class initializer.
5343         // Get This Base and call initializer on it.
5344         const Record::Base *B = R->getBase(BaseDecl);
5345         assert(B);
5346         if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
5347           return false;
5348       }
5349 
5350       if (!this->visitInitializer(InitExpr))
5351         return false;
5352       if (!this->emitFinishInitPop(InitExpr))
5353         return false;
5354     } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
5355       assert(IFD->getChainingSize() >= 2);
5356 
5357       unsigned NestedFieldOffset = 0;
5358       const Record::Field *NestedField = nullptr;
5359       for (const NamedDecl *ND : IFD->chain()) {
5360         const auto *FD = cast<FieldDecl>(ND);
5361         const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
5362         assert(FieldRecord);
5363 
5364         NestedField = FieldRecord->getField(FD);
5365         assert(NestedField);
5366 
5367         NestedFieldOffset += NestedField->Offset;
5368       }
5369       assert(NestedField);
5370 
5371       if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
5372         return false;
5373     } else {
5374       assert(Init->isDelegatingInitializer());
5375       if (!this->emitThis(InitExpr))
5376         return false;
5377       if (!this->visitInitializer(Init->getInit()))
5378         return false;
5379       if (!this->emitPopPtr(InitExpr))
5380         return false;
5381     }
5382 
5383     if (!Scope.destroyLocals())
5384       return false;
5385   }
5386 
5387   if (const auto *Body = Ctor->getBody())
5388     if (!visitStmt(Body))
5389       return false;
5390 
5391   return this->emitRetVoid(SourceInfo{});
5392 }
5393 
5394 template <class Emitter>
5395 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
5396   const RecordDecl *RD = Dtor->getParent();
5397   const Record *R = this->getRecord(RD);
5398   if (!R)
5399     return false;
5400 
5401   if (!Dtor->isTrivial() && Dtor->getBody()) {
5402     if (!this->visitStmt(Dtor->getBody()))
5403       return false;
5404   }
5405 
5406   if (!this->emitThis(Dtor))
5407     return false;
5408 
5409   assert(R);
5410   if (!R->isUnion()) {
5411     // First, destroy all fields.
5412     for (const Record::Field &Field : llvm::reverse(R->fields())) {
5413       const Descriptor *D = Field.Desc;
5414       if (!D->isPrimitive() && !D->isPrimitiveArray()) {
5415         if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
5416           return false;
5417         if (!this->emitDestruction(D, SourceInfo{}))
5418           return false;
5419         if (!this->emitPopPtr(SourceInfo{}))
5420           return false;
5421       }
5422     }
5423   }
5424 
5425   for (const Record::Base &Base : llvm::reverse(R->bases())) {
5426     if (Base.R->isAnonymousUnion())
5427       continue;
5428 
5429     if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
5430       return false;
5431     if (!this->emitRecordDestruction(Base.R, {}))
5432       return false;
5433     if (!this->emitPopPtr(SourceInfo{}))
5434       return false;
5435   }
5436 
5437   // FIXME: Virtual bases.
5438   return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
5439 }
5440 
5441 template <class Emitter>
5442 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
5443   // Classify the return type.
5444   ReturnType = this->classify(F->getReturnType());
5445 
5446   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
5447     return this->compileConstructor(Ctor);
5448   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
5449     return this->compileDestructor(Dtor);
5450 
5451   // Emit custom code if this is a lambda static invoker.
5452   if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
5453       MD && MD->isLambdaStaticInvoker())
5454     return this->emitLambdaStaticInvokerBody(MD);
5455 
5456   // Regular functions.
5457   if (const auto *Body = F->getBody())
5458     if (!visitStmt(Body))
5459       return false;
5460 
5461   // Emit a guard return to protect against a code path missing one.
5462   if (F->getReturnType()->isVoidType())
5463     return this->emitRetVoid(SourceInfo{});
5464   return this->emitNoRet(SourceInfo{});
5465 }
5466 
5467 template <class Emitter>
5468 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
5469   const Expr *SubExpr = E->getSubExpr();
5470   if (SubExpr->getType()->isAnyComplexType())
5471     return this->VisitComplexUnaryOperator(E);
5472   if (SubExpr->getType()->isVectorType())
5473     return this->VisitVectorUnaryOperator(E);
5474   std::optional<PrimType> T = classify(SubExpr->getType());
5475 
5476   switch (E->getOpcode()) {
5477   case UO_PostInc: { // x++
5478     if (!Ctx.getLangOpts().CPlusPlus14)
5479       return this->emitInvalid(E);
5480     if (!T)
5481       return this->emitError(E);
5482 
5483     if (!this->visit(SubExpr))
5484       return false;
5485 
5486     if (T == PT_Ptr || T == PT_FnPtr) {
5487       if (!this->emitIncPtr(E))
5488         return false;
5489 
5490       return DiscardResult ? this->emitPopPtr(E) : true;
5491     }
5492 
5493     if (T == PT_Float) {
5494       return DiscardResult ? this->emitIncfPop(getFPOptions(E), E)
5495                            : this->emitIncf(getFPOptions(E), E);
5496     }
5497 
5498     return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
5499   }
5500   case UO_PostDec: { // x--
5501     if (!Ctx.getLangOpts().CPlusPlus14)
5502       return this->emitInvalid(E);
5503     if (!T)
5504       return this->emitError(E);
5505 
5506     if (!this->visit(SubExpr))
5507       return false;
5508 
5509     if (T == PT_Ptr || T == PT_FnPtr) {
5510       if (!this->emitDecPtr(E))
5511         return false;
5512 
5513       return DiscardResult ? this->emitPopPtr(E) : true;
5514     }
5515 
5516     if (T == PT_Float) {
5517       return DiscardResult ? this->emitDecfPop(getFPOptions(E), E)
5518                            : this->emitDecf(getFPOptions(E), E);
5519     }
5520 
5521     return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
5522   }
5523   case UO_PreInc: { // ++x
5524     if (!Ctx.getLangOpts().CPlusPlus14)
5525       return this->emitInvalid(E);
5526     if (!T)
5527       return this->emitError(E);
5528 
5529     if (!this->visit(SubExpr))
5530       return false;
5531 
5532     if (T == PT_Ptr || T == PT_FnPtr) {
5533       if (!this->emitLoadPtr(E))
5534         return false;
5535       if (!this->emitConstUint8(1, E))
5536         return false;
5537       if (!this->emitAddOffsetUint8(E))
5538         return false;
5539       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5540     }
5541 
5542     // Post-inc and pre-inc are the same if the value is to be discarded.
5543     if (DiscardResult) {
5544       if (T == PT_Float)
5545         return this->emitIncfPop(getFPOptions(E), E);
5546       return this->emitIncPop(*T, E);
5547     }
5548 
5549     if (T == PT_Float) {
5550       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5551       if (!this->emitLoadFloat(E))
5552         return false;
5553       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5554         return false;
5555       if (!this->emitAddf(getFPOptions(E), E))
5556         return false;
5557       if (!this->emitStoreFloat(E))
5558         return false;
5559     } else {
5560       assert(isIntegralType(*T));
5561       if (!this->emitLoad(*T, E))
5562         return false;
5563       if (!this->emitConst(1, E))
5564         return false;
5565       if (!this->emitAdd(*T, E))
5566         return false;
5567       if (!this->emitStore(*T, E))
5568         return false;
5569     }
5570     return E->isGLValue() || this->emitLoadPop(*T, E);
5571   }
5572   case UO_PreDec: { // --x
5573     if (!Ctx.getLangOpts().CPlusPlus14)
5574       return this->emitInvalid(E);
5575     if (!T)
5576       return this->emitError(E);
5577 
5578     if (!this->visit(SubExpr))
5579       return false;
5580 
5581     if (T == PT_Ptr || T == PT_FnPtr) {
5582       if (!this->emitLoadPtr(E))
5583         return false;
5584       if (!this->emitConstUint8(1, E))
5585         return false;
5586       if (!this->emitSubOffsetUint8(E))
5587         return false;
5588       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5589     }
5590 
5591     // Post-dec and pre-dec are the same if the value is to be discarded.
5592     if (DiscardResult) {
5593       if (T == PT_Float)
5594         return this->emitDecfPop(getFPOptions(E), E);
5595       return this->emitDecPop(*T, E);
5596     }
5597 
5598     if (T == PT_Float) {
5599       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5600       if (!this->emitLoadFloat(E))
5601         return false;
5602       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5603         return false;
5604       if (!this->emitSubf(getFPOptions(E), E))
5605         return false;
5606       if (!this->emitStoreFloat(E))
5607         return false;
5608     } else {
5609       assert(isIntegralType(*T));
5610       if (!this->emitLoad(*T, E))
5611         return false;
5612       if (!this->emitConst(1, E))
5613         return false;
5614       if (!this->emitSub(*T, E))
5615         return false;
5616       if (!this->emitStore(*T, E))
5617         return false;
5618     }
5619     return E->isGLValue() || this->emitLoadPop(*T, E);
5620   }
5621   case UO_LNot: // !x
5622     if (!T)
5623       return this->emitError(E);
5624 
5625     if (DiscardResult)
5626       return this->discard(SubExpr);
5627 
5628     if (!this->visitBool(SubExpr))
5629       return false;
5630 
5631     if (!this->emitInv(E))
5632       return false;
5633 
5634     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5635       return this->emitCast(PT_Bool, ET, E);
5636     return true;
5637   case UO_Minus: // -x
5638     if (!T)
5639       return this->emitError(E);
5640 
5641     if (!this->visit(SubExpr))
5642       return false;
5643     return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
5644   case UO_Plus: // +x
5645     if (!T)
5646       return this->emitError(E);
5647 
5648     if (!this->visit(SubExpr)) // noop
5649       return false;
5650     return DiscardResult ? this->emitPop(*T, E) : true;
5651   case UO_AddrOf: // &x
5652     if (E->getType()->isMemberPointerType()) {
5653       // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5654       // member can be formed.
5655       return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
5656     }
5657     // We should already have a pointer when we get here.
5658     return this->delegate(SubExpr);
5659   case UO_Deref: // *x
5660     if (DiscardResult)
5661       return this->discard(SubExpr);
5662     return this->visit(SubExpr);
5663   case UO_Not: // ~x
5664     if (!T)
5665       return this->emitError(E);
5666 
5667     if (!this->visit(SubExpr))
5668       return false;
5669     return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
5670   case UO_Real: // __real x
5671     assert(T);
5672     return this->delegate(SubExpr);
5673   case UO_Imag: { // __imag x
5674     assert(T);
5675     if (!this->discard(SubExpr))
5676       return false;
5677     return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
5678   }
5679   case UO_Extension:
5680     return this->delegate(SubExpr);
5681   case UO_Coawait:
5682     assert(false && "Unhandled opcode");
5683   }
5684 
5685   return false;
5686 }
5687 
5688 template <class Emitter>
5689 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
5690   const Expr *SubExpr = E->getSubExpr();
5691   assert(SubExpr->getType()->isAnyComplexType());
5692 
5693   if (DiscardResult)
5694     return this->discard(SubExpr);
5695 
5696   std::optional<PrimType> ResT = classify(E);
5697   auto prepareResult = [=]() -> bool {
5698     if (!ResT && !Initializing) {
5699       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5700       if (!LocalIndex)
5701         return false;
5702       return this->emitGetPtrLocal(*LocalIndex, E);
5703     }
5704 
5705     return true;
5706   };
5707 
5708   // The offset of the temporary, if we created one.
5709   unsigned SubExprOffset = ~0u;
5710   auto createTemp = [=, &SubExprOffset]() -> bool {
5711     SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5712     if (!this->visit(SubExpr))
5713       return false;
5714     return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
5715   };
5716 
5717   PrimType ElemT = classifyComplexElementType(SubExpr->getType());
5718   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5719     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5720       return false;
5721     return this->emitArrayElemPop(ElemT, Index, E);
5722   };
5723 
5724   switch (E->getOpcode()) {
5725   case UO_Minus:
5726     if (!prepareResult())
5727       return false;
5728     if (!createTemp())
5729       return false;
5730     for (unsigned I = 0; I != 2; ++I) {
5731       if (!getElem(SubExprOffset, I))
5732         return false;
5733       if (!this->emitNeg(ElemT, E))
5734         return false;
5735       if (!this->emitInitElem(ElemT, I, E))
5736         return false;
5737     }
5738     break;
5739 
5740   case UO_Plus:   // +x
5741   case UO_AddrOf: // &x
5742   case UO_Deref:  // *x
5743     return this->delegate(SubExpr);
5744 
5745   case UO_LNot:
5746     if (!this->visit(SubExpr))
5747       return false;
5748     if (!this->emitComplexBoolCast(SubExpr))
5749       return false;
5750     if (!this->emitInv(E))
5751       return false;
5752     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5753       return this->emitCast(PT_Bool, ET, E);
5754     return true;
5755 
5756   case UO_Real:
5757     return this->emitComplexReal(SubExpr);
5758 
5759   case UO_Imag:
5760     if (!this->visit(SubExpr))
5761       return false;
5762 
5763     if (SubExpr->isLValue()) {
5764       if (!this->emitConstUint8(1, E))
5765         return false;
5766       return this->emitArrayElemPtrPopUint8(E);
5767     }
5768 
5769     // Since our _Complex implementation does not map to a primitive type,
5770     // we sometimes have to do the lvalue-to-rvalue conversion here manually.
5771     return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
5772 
5773   case UO_Not: // ~x
5774     if (!this->visit(SubExpr))
5775       return false;
5776     // Negate the imaginary component.
5777     if (!this->emitArrayElem(ElemT, 1, E))
5778       return false;
5779     if (!this->emitNeg(ElemT, E))
5780       return false;
5781     if (!this->emitInitElem(ElemT, 1, E))
5782       return false;
5783     return DiscardResult ? this->emitPopPtr(E) : true;
5784 
5785   case UO_Extension:
5786     return this->delegate(SubExpr);
5787 
5788   default:
5789     return this->emitInvalid(E);
5790   }
5791 
5792   return true;
5793 }
5794 
5795 template <class Emitter>
5796 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) {
5797   const Expr *SubExpr = E->getSubExpr();
5798   assert(SubExpr->getType()->isVectorType());
5799 
5800   if (DiscardResult)
5801     return this->discard(SubExpr);
5802 
5803   auto UnaryOp = E->getOpcode();
5804   if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot &&
5805       UnaryOp != UO_Not && UnaryOp != UO_AddrOf)
5806     return this->emitInvalid(E);
5807 
5808   // Nothing to do here.
5809   if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf)
5810     return this->delegate(SubExpr);
5811 
5812   if (!Initializing) {
5813     std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5814     if (!LocalIndex)
5815       return false;
5816     if (!this->emitGetPtrLocal(*LocalIndex, E))
5817       return false;
5818   }
5819 
5820   // The offset of the temporary, if we created one.
5821   unsigned SubExprOffset =
5822       this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5823   if (!this->visit(SubExpr))
5824     return false;
5825   if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E))
5826     return false;
5827 
5828   const auto *VecTy = SubExpr->getType()->getAs<VectorType>();
5829   PrimType ElemT = classifyVectorElementType(SubExpr->getType());
5830   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5831     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5832       return false;
5833     return this->emitArrayElemPop(ElemT, Index, E);
5834   };
5835 
5836   switch (UnaryOp) {
5837   case UO_Minus:
5838     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5839       if (!getElem(SubExprOffset, I))
5840         return false;
5841       if (!this->emitNeg(ElemT, E))
5842         return false;
5843       if (!this->emitInitElem(ElemT, I, E))
5844         return false;
5845     }
5846     break;
5847   case UO_LNot: { // !x
5848     // In C++, the logic operators !, &&, || are available for vectors. !v is
5849     // equivalent to v == 0.
5850     //
5851     // The result of the comparison is a vector of the same width and number of
5852     // elements as the comparison operands with a signed integral element type.
5853     //
5854     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
5855     QualType ResultVecTy = E->getType();
5856     PrimType ResultVecElemT =
5857         classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType());
5858     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5859       if (!getElem(SubExprOffset, I))
5860         return false;
5861       // operator ! on vectors returns -1 for 'truth', so negate it.
5862       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
5863         return false;
5864       if (!this->emitInv(E))
5865         return false;
5866       if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E))
5867         return false;
5868       if (!this->emitNeg(ElemT, E))
5869         return false;
5870       if (ElemT != ResultVecElemT &&
5871           !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E))
5872         return false;
5873       if (!this->emitInitElem(ResultVecElemT, I, E))
5874         return false;
5875     }
5876     break;
5877   }
5878   case UO_Not: // ~x
5879     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5880       if (!getElem(SubExprOffset, I))
5881         return false;
5882       if (ElemT == PT_Bool) {
5883         if (!this->emitInv(E))
5884           return false;
5885       } else {
5886         if (!this->emitComp(ElemT, E))
5887           return false;
5888       }
5889       if (!this->emitInitElem(ElemT, I, E))
5890         return false;
5891     }
5892     break;
5893   default:
5894     llvm_unreachable("Unsupported unary operators should be handled up front");
5895   }
5896   return true;
5897 }
5898 
5899 template <class Emitter>
5900 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
5901   if (DiscardResult)
5902     return true;
5903 
5904   if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
5905     return this->emitConst(ECD->getInitVal(), E);
5906   } else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
5907     return this->visit(BD->getBinding());
5908   } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
5909     const Function *F = getFunction(FuncDecl);
5910     return F && this->emitGetFnPtr(F, E);
5911   } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
5912     if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
5913       if (!this->emitGetPtrGlobal(*Index, E))
5914         return false;
5915       if (std::optional<PrimType> T = classify(E->getType())) {
5916         if (!this->visitAPValue(TPOD->getValue(), *T, E))
5917           return false;
5918         return this->emitInitGlobal(*T, *Index, E);
5919       }
5920       return this->visitAPValueInitializer(TPOD->getValue(), E);
5921     }
5922     return false;
5923   }
5924 
5925   // References are implemented via pointers, so when we see a DeclRefExpr
5926   // pointing to a reference, we need to get its value directly (i.e. the
5927   // pointer to the actual value) instead of a pointer to the pointer to the
5928   // value.
5929   bool IsReference = D->getType()->isReferenceType();
5930 
5931   // Check for local/global variables and parameters.
5932   if (auto It = Locals.find(D); It != Locals.end()) {
5933     const unsigned Offset = It->second.Offset;
5934     if (IsReference)
5935       return this->emitGetLocal(PT_Ptr, Offset, E);
5936     return this->emitGetPtrLocal(Offset, E);
5937   } else if (auto GlobalIndex = P.getGlobal(D)) {
5938     if (IsReference) {
5939       if (!Ctx.getLangOpts().CPlusPlus11)
5940         return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
5941       return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
5942     }
5943 
5944     return this->emitGetPtrGlobal(*GlobalIndex, E);
5945   } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
5946     if (auto It = this->Params.find(PVD); It != this->Params.end()) {
5947       if (IsReference || !It->second.IsPtr)
5948         return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
5949 
5950       return this->emitGetPtrParam(It->second.Offset, E);
5951     }
5952   }
5953 
5954   // In case we need to re-visit a declaration.
5955   auto revisit = [&](const VarDecl *VD) -> bool {
5956     auto VarState = this->visitDecl(VD);
5957 
5958     if (VarState.notCreated())
5959       return true;
5960     if (!VarState)
5961       return false;
5962     // Retry.
5963     return this->visitDeclRef(D, E);
5964   };
5965 
5966   // Handle lambda captures.
5967   if (auto It = this->LambdaCaptures.find(D);
5968       It != this->LambdaCaptures.end()) {
5969     auto [Offset, IsPtr] = It->second;
5970 
5971     if (IsPtr)
5972       return this->emitGetThisFieldPtr(Offset, E);
5973     return this->emitGetPtrThisField(Offset, E);
5974   } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
5975              DRE && DRE->refersToEnclosingVariableOrCapture()) {
5976     if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
5977       return revisit(VD);
5978   }
5979 
5980   if (D != InitializingDecl) {
5981     // Try to lazily visit (or emit dummy pointers for) declarations
5982     // we haven't seen yet.
5983     if (Ctx.getLangOpts().CPlusPlus) {
5984       if (const auto *VD = dyn_cast<VarDecl>(D)) {
5985         const auto typeShouldBeVisited = [&](QualType T) -> bool {
5986           if (T.isConstant(Ctx.getASTContext()))
5987             return true;
5988           if (const auto *RT = T->getAs<ReferenceType>())
5989             return RT->getPointeeType().isConstQualified();
5990           return false;
5991         };
5992 
5993         // DecompositionDecls are just proxies for us.
5994         if (isa<DecompositionDecl>(VD))
5995           return revisit(VD);
5996 
5997         if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) &&
5998             typeShouldBeVisited(VD->getType()))
5999           return revisit(VD);
6000 
6001         // FIXME: The evaluateValue() check here is a little ridiculous, since
6002         // it will ultimately call into Context::evaluateAsInitializer(). In
6003         // other words, we're evaluating the initializer, just to know if we can
6004         // evaluate the initializer.
6005         if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) &&
6006             VD->getInit() && !VD->getInit()->isValueDependent() &&
6007             VD->evaluateValue())
6008           return revisit(VD);
6009       }
6010     } else {
6011       if (const auto *VD = dyn_cast<VarDecl>(D);
6012           VD && VD->getAnyInitializer() &&
6013           VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
6014         return revisit(VD);
6015     }
6016   }
6017 
6018   if (std::optional<unsigned> I = P.getOrCreateDummy(D)) {
6019     if (!this->emitGetPtrGlobal(*I, E))
6020       return false;
6021     if (E->getType()->isVoidType())
6022       return true;
6023     // Convert the dummy pointer to another pointer type if we have to.
6024     if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
6025       if (isPtrType(PT))
6026         return this->emitDecayPtr(PT_Ptr, PT, E);
6027       return false;
6028     }
6029     return true;
6030   }
6031 
6032   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
6033     return this->emitInvalidDeclRef(DRE, E);
6034   return false;
6035 }
6036 
6037 template <class Emitter>
6038 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
6039   const auto *D = E->getDecl();
6040   return this->visitDeclRef(D, E);
6041 }
6042 
6043 template <class Emitter> void Compiler<Emitter>::emitCleanup() {
6044   for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
6045     C->emitDestruction();
6046 }
6047 
6048 template <class Emitter>
6049 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
6050                                               const QualType DerivedType) {
6051   const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
6052     if (const auto *R = Ty->getPointeeCXXRecordDecl())
6053       return R;
6054     return Ty->getAsCXXRecordDecl();
6055   };
6056   const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
6057   const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
6058 
6059   return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
6060 }
6061 
6062 /// Emit casts from a PrimType to another PrimType.
6063 template <class Emitter>
6064 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
6065                                      QualType ToQT, const Expr *E) {
6066 
6067   if (FromT == PT_Float) {
6068     // Floating to floating.
6069     if (ToT == PT_Float) {
6070       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6071       return this->emitCastFP(ToSem, getRoundingMode(E), E);
6072     }
6073 
6074     if (ToT == PT_IntAP)
6075       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT),
6076                                               getFPOptions(E), E);
6077     if (ToT == PT_IntAPS)
6078       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT),
6079                                                getFPOptions(E), E);
6080 
6081     // Float to integral.
6082     if (isIntegralType(ToT) || ToT == PT_Bool)
6083       return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E);
6084   }
6085 
6086   if (isIntegralType(FromT) || FromT == PT_Bool) {
6087     if (ToT == PT_IntAP)
6088       return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
6089     if (ToT == PT_IntAPS)
6090       return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
6091 
6092     // Integral to integral.
6093     if (isIntegralType(ToT) || ToT == PT_Bool)
6094       return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
6095 
6096     if (ToT == PT_Float) {
6097       // Integral to floating.
6098       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6099       return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E);
6100     }
6101   }
6102 
6103   return false;
6104 }
6105 
6106 /// Emits __real(SubExpr)
6107 template <class Emitter>
6108 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
6109   assert(SubExpr->getType()->isAnyComplexType());
6110 
6111   if (DiscardResult)
6112     return this->discard(SubExpr);
6113 
6114   if (!this->visit(SubExpr))
6115     return false;
6116   if (SubExpr->isLValue()) {
6117     if (!this->emitConstUint8(0, SubExpr))
6118       return false;
6119     return this->emitArrayElemPtrPopUint8(SubExpr);
6120   }
6121 
6122   // Rvalue, load the actual element.
6123   return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
6124                                 0, SubExpr);
6125 }
6126 
6127 template <class Emitter>
6128 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
6129   assert(!DiscardResult);
6130   PrimType ElemT = classifyComplexElementType(E->getType());
6131   // We emit the expression (__real(E) != 0 || __imag(E) != 0)
6132   // for us, that means (bool)E[0] || (bool)E[1]
6133   if (!this->emitArrayElem(ElemT, 0, E))
6134     return false;
6135   if (ElemT == PT_Float) {
6136     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6137       return false;
6138   } else {
6139     if (!this->emitCast(ElemT, PT_Bool, E))
6140       return false;
6141   }
6142 
6143   // We now have the bool value of E[0] on the stack.
6144   LabelTy LabelTrue = this->getLabel();
6145   if (!this->jumpTrue(LabelTrue))
6146     return false;
6147 
6148   if (!this->emitArrayElemPop(ElemT, 1, E))
6149     return false;
6150   if (ElemT == PT_Float) {
6151     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6152       return false;
6153   } else {
6154     if (!this->emitCast(ElemT, PT_Bool, E))
6155       return false;
6156   }
6157   // Leave the boolean value of E[1] on the stack.
6158   LabelTy EndLabel = this->getLabel();
6159   this->jump(EndLabel);
6160 
6161   this->emitLabel(LabelTrue);
6162   if (!this->emitPopPtr(E))
6163     return false;
6164   if (!this->emitConstBool(true, E))
6165     return false;
6166 
6167   this->fallthrough(EndLabel);
6168   this->emitLabel(EndLabel);
6169 
6170   return true;
6171 }
6172 
6173 template <class Emitter>
6174 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
6175                                               const BinaryOperator *E) {
6176   assert(E->isComparisonOp());
6177   assert(!Initializing);
6178   assert(!DiscardResult);
6179 
6180   PrimType ElemT;
6181   bool LHSIsComplex;
6182   unsigned LHSOffset;
6183   if (LHS->getType()->isAnyComplexType()) {
6184     LHSIsComplex = true;
6185     ElemT = classifyComplexElementType(LHS->getType());
6186     LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
6187                                        /*IsExtended=*/false);
6188     if (!this->visit(LHS))
6189       return false;
6190     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
6191       return false;
6192   } else {
6193     LHSIsComplex = false;
6194     PrimType LHST = classifyPrim(LHS->getType());
6195     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
6196     if (!this->visit(LHS))
6197       return false;
6198     if (!this->emitSetLocal(LHST, LHSOffset, E))
6199       return false;
6200   }
6201 
6202   bool RHSIsComplex;
6203   unsigned RHSOffset;
6204   if (RHS->getType()->isAnyComplexType()) {
6205     RHSIsComplex = true;
6206     ElemT = classifyComplexElementType(RHS->getType());
6207     RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
6208                                        /*IsExtended=*/false);
6209     if (!this->visit(RHS))
6210       return false;
6211     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
6212       return false;
6213   } else {
6214     RHSIsComplex = false;
6215     PrimType RHST = classifyPrim(RHS->getType());
6216     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
6217     if (!this->visit(RHS))
6218       return false;
6219     if (!this->emitSetLocal(RHST, RHSOffset, E))
6220       return false;
6221   }
6222 
6223   auto getElem = [&](unsigned LocalOffset, unsigned Index,
6224                      bool IsComplex) -> bool {
6225     if (IsComplex) {
6226       if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
6227         return false;
6228       return this->emitArrayElemPop(ElemT, Index, E);
6229     }
6230     return this->emitGetLocal(ElemT, LocalOffset, E);
6231   };
6232 
6233   for (unsigned I = 0; I != 2; ++I) {
6234     // Get both values.
6235     if (!getElem(LHSOffset, I, LHSIsComplex))
6236       return false;
6237     if (!getElem(RHSOffset, I, RHSIsComplex))
6238       return false;
6239     // And compare them.
6240     if (!this->emitEQ(ElemT, E))
6241       return false;
6242 
6243     if (!this->emitCastBoolUint8(E))
6244       return false;
6245   }
6246 
6247   // We now have two bool values on the stack. Compare those.
6248   if (!this->emitAddUint8(E))
6249     return false;
6250   if (!this->emitConstUint8(2, E))
6251     return false;
6252 
6253   if (E->getOpcode() == BO_EQ) {
6254     if (!this->emitEQUint8(E))
6255       return false;
6256   } else if (E->getOpcode() == BO_NE) {
6257     if (!this->emitNEUint8(E))
6258       return false;
6259   } else
6260     return false;
6261 
6262   // In C, this returns an int.
6263   if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
6264     return this->emitCast(PT_Bool, ResT, E);
6265   return true;
6266 }
6267 
6268 /// When calling this, we have a pointer of the local-to-destroy
6269 /// on the stack.
6270 /// Emit destruction of record types (or arrays of record types).
6271 template <class Emitter>
6272 bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) {
6273   assert(R);
6274   assert(!R->isAnonymousUnion());
6275   const CXXDestructorDecl *Dtor = R->getDestructor();
6276   if (!Dtor || Dtor->isTrivial())
6277     return true;
6278 
6279   assert(Dtor);
6280   const Function *DtorFunc = getFunction(Dtor);
6281   if (!DtorFunc)
6282     return false;
6283   assert(DtorFunc->hasThisPointer());
6284   assert(DtorFunc->getNumParams() == 1);
6285   if (!this->emitDupPtr(Loc))
6286     return false;
6287   return this->emitCall(DtorFunc, 0, Loc);
6288 }
6289 /// When calling this, we have a pointer of the local-to-destroy
6290 /// on the stack.
6291 /// Emit destruction of record types (or arrays of record types).
6292 template <class Emitter>
6293 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc,
6294                                         SourceInfo Loc) {
6295   assert(Desc);
6296   assert(!Desc->isPrimitive());
6297   assert(!Desc->isPrimitiveArray());
6298 
6299   // Arrays.
6300   if (Desc->isArray()) {
6301     const Descriptor *ElemDesc = Desc->ElemDesc;
6302     assert(ElemDesc);
6303 
6304     // Don't need to do anything for these.
6305     if (ElemDesc->isPrimitiveArray())
6306       return true;
6307 
6308     // If this is an array of record types, check if we need
6309     // to call the element destructors at all. If not, try
6310     // to save the work.
6311     if (const Record *ElemRecord = ElemDesc->ElemRecord) {
6312       if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
6313           !Dtor || Dtor->isTrivial())
6314         return true;
6315     }
6316 
6317     for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
6318       if (!this->emitConstUint64(I, Loc))
6319         return false;
6320       if (!this->emitArrayElemPtrUint64(Loc))
6321         return false;
6322       if (!this->emitDestruction(ElemDesc, Loc))
6323         return false;
6324       if (!this->emitPopPtr(Loc))
6325         return false;
6326     }
6327     return true;
6328   }
6329 
6330   assert(Desc->ElemRecord);
6331   if (Desc->ElemRecord->isAnonymousUnion())
6332     return true;
6333 
6334   return this->emitRecordDestruction(Desc->ElemRecord, Loc);
6335 }
6336 
6337 namespace clang {
6338 namespace interp {
6339 
6340 template class Compiler<ByteCodeEmitter>;
6341 template class Compiler<EvalEmitter>;
6342 
6343 } // namespace interp
6344 } // namespace clang
6345