1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Compiler.h" 10 #include "ByteCodeEmitter.h" 11 #include "Context.h" 12 #include "Floating.h" 13 #include "Function.h" 14 #include "InterpShared.h" 15 #include "PrimType.h" 16 #include "Program.h" 17 #include "clang/AST/Attr.h" 18 19 using namespace clang; 20 using namespace clang::interp; 21 22 using APSInt = llvm::APSInt; 23 24 namespace clang { 25 namespace interp { 26 27 /// Scope used to handle temporaries in toplevel variable declarations. 28 template <class Emitter> class DeclScope final : public LocalScope<Emitter> { 29 public: 30 DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD) 31 : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD), 32 OldInitializingDecl(Ctx->InitializingDecl) { 33 Ctx->InitializingDecl = VD; 34 Ctx->InitStack.push_back(InitLink::Decl(VD)); 35 } 36 37 void addExtended(const Scope::Local &Local) override { 38 return this->addLocal(Local); 39 } 40 41 ~DeclScope() { 42 this->Ctx->InitializingDecl = OldInitializingDecl; 43 this->Ctx->InitStack.pop_back(); 44 } 45 46 private: 47 Program::DeclScope Scope; 48 const ValueDecl *OldInitializingDecl; 49 }; 50 51 /// Scope used to handle initialization methods. 52 template <class Emitter> class OptionScope final { 53 public: 54 /// Root constructor, compiling or discarding primitives. 55 OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult, 56 bool NewInitializing) 57 : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), 58 OldInitializing(Ctx->Initializing) { 59 Ctx->DiscardResult = NewDiscardResult; 60 Ctx->Initializing = NewInitializing; 61 } 62 63 ~OptionScope() { 64 Ctx->DiscardResult = OldDiscardResult; 65 Ctx->Initializing = OldInitializing; 66 } 67 68 private: 69 /// Parent context. 70 Compiler<Emitter> *Ctx; 71 /// Old discard flag to restore. 72 bool OldDiscardResult; 73 bool OldInitializing; 74 }; 75 76 template <class Emitter> 77 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const { 78 switch (Kind) { 79 case K_This: 80 return Ctx->emitThis(E); 81 case K_Field: 82 // We're assuming there's a base pointer on the stack already. 83 return Ctx->emitGetPtrFieldPop(Offset, E); 84 case K_Temp: 85 return Ctx->emitGetPtrLocal(Offset, E); 86 case K_Decl: 87 return Ctx->visitDeclRef(D, E); 88 case K_Elem: 89 if (!Ctx->emitConstUint32(Offset, E)) 90 return false; 91 return Ctx->emitArrayElemPtrPopUint32(E); 92 default: 93 llvm_unreachable("Unhandled InitLink kind"); 94 } 95 return true; 96 } 97 98 /// Scope managing label targets. 99 template <class Emitter> class LabelScope { 100 public: 101 virtual ~LabelScope() {} 102 103 protected: 104 LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {} 105 /// Compiler instance. 106 Compiler<Emitter> *Ctx; 107 }; 108 109 /// Sets the context for break/continue statements. 110 template <class Emitter> class LoopScope final : public LabelScope<Emitter> { 111 public: 112 using LabelTy = typename Compiler<Emitter>::LabelTy; 113 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 114 115 LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel) 116 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 117 OldContinueLabel(Ctx->ContinueLabel), 118 OldBreakVarScope(Ctx->BreakVarScope), 119 OldContinueVarScope(Ctx->ContinueVarScope) { 120 this->Ctx->BreakLabel = BreakLabel; 121 this->Ctx->ContinueLabel = ContinueLabel; 122 this->Ctx->BreakVarScope = this->Ctx->VarScope; 123 this->Ctx->ContinueVarScope = this->Ctx->VarScope; 124 } 125 126 ~LoopScope() { 127 this->Ctx->BreakLabel = OldBreakLabel; 128 this->Ctx->ContinueLabel = OldContinueLabel; 129 this->Ctx->ContinueVarScope = OldContinueVarScope; 130 this->Ctx->BreakVarScope = OldBreakVarScope; 131 } 132 133 private: 134 OptLabelTy OldBreakLabel; 135 OptLabelTy OldContinueLabel; 136 VariableScope<Emitter> *OldBreakVarScope; 137 VariableScope<Emitter> *OldContinueVarScope; 138 }; 139 140 // Sets the context for a switch scope, mapping labels. 141 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> { 142 public: 143 using LabelTy = typename Compiler<Emitter>::LabelTy; 144 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 145 using CaseMap = typename Compiler<Emitter>::CaseMap; 146 147 SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel, 148 OptLabelTy DefaultLabel) 149 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 150 OldDefaultLabel(this->Ctx->DefaultLabel), 151 OldCaseLabels(std::move(this->Ctx->CaseLabels)), 152 OldLabelVarScope(Ctx->BreakVarScope) { 153 this->Ctx->BreakLabel = BreakLabel; 154 this->Ctx->DefaultLabel = DefaultLabel; 155 this->Ctx->CaseLabels = std::move(CaseLabels); 156 this->Ctx->BreakVarScope = this->Ctx->VarScope; 157 } 158 159 ~SwitchScope() { 160 this->Ctx->BreakLabel = OldBreakLabel; 161 this->Ctx->DefaultLabel = OldDefaultLabel; 162 this->Ctx->CaseLabels = std::move(OldCaseLabels); 163 this->Ctx->BreakVarScope = OldLabelVarScope; 164 } 165 166 private: 167 OptLabelTy OldBreakLabel; 168 OptLabelTy OldDefaultLabel; 169 CaseMap OldCaseLabels; 170 VariableScope<Emitter> *OldLabelVarScope; 171 }; 172 173 template <class Emitter> class StmtExprScope final { 174 public: 175 StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) { 176 Ctx->InStmtExpr = true; 177 } 178 179 ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; } 180 181 private: 182 Compiler<Emitter> *Ctx; 183 bool OldFlag; 184 }; 185 186 } // namespace interp 187 } // namespace clang 188 189 template <class Emitter> 190 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) { 191 const Expr *SubExpr = CE->getSubExpr(); 192 switch (CE->getCastKind()) { 193 194 case CK_LValueToRValue: { 195 if (DiscardResult) 196 return this->discard(SubExpr); 197 198 std::optional<PrimType> SubExprT = classify(SubExpr->getType()); 199 // Prepare storage for the result. 200 if (!Initializing && !SubExprT) { 201 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 202 if (!LocalIndex) 203 return false; 204 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 205 return false; 206 } 207 208 if (!this->visit(SubExpr)) 209 return false; 210 211 if (SubExprT) 212 return this->emitLoadPop(*SubExprT, CE); 213 214 // If the subexpr type is not primitive, we need to perform a copy here. 215 // This happens for example in C when dereferencing a pointer of struct 216 // type. 217 return this->emitMemcpy(CE); 218 } 219 220 case CK_DerivedToBaseMemberPointer: { 221 assert(classifyPrim(CE->getType()) == PT_MemberPtr); 222 assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr); 223 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 224 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 225 226 unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0), 227 QualType(FromMP->getClass(), 0)); 228 229 if (!this->delegate(SubExpr)) 230 return false; 231 232 return this->emitGetMemberPtrBasePop(DerivedOffset, CE); 233 } 234 235 case CK_BaseToDerivedMemberPointer: { 236 assert(classifyPrim(CE) == PT_MemberPtr); 237 assert(classifyPrim(SubExpr) == PT_MemberPtr); 238 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 239 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 240 241 unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0), 242 QualType(ToMP->getClass(), 0)); 243 244 if (!this->delegate(SubExpr)) 245 return false; 246 return this->emitGetMemberPtrBasePop(-DerivedOffset, CE); 247 } 248 249 case CK_UncheckedDerivedToBase: 250 case CK_DerivedToBase: { 251 if (!this->delegate(SubExpr)) 252 return false; 253 254 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 255 if (const auto *PT = dyn_cast<PointerType>(Ty)) 256 return PT->getPointeeType()->getAsCXXRecordDecl(); 257 return Ty->getAsCXXRecordDecl(); 258 }; 259 260 // FIXME: We can express a series of non-virtual casts as a single 261 // GetPtrBasePop op. 262 QualType CurType = SubExpr->getType(); 263 for (const CXXBaseSpecifier *B : CE->path()) { 264 if (B->isVirtual()) { 265 if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE)) 266 return false; 267 CurType = B->getType(); 268 } else { 269 unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType); 270 if (!this->emitGetPtrBasePop(DerivedOffset, CE)) 271 return false; 272 CurType = B->getType(); 273 } 274 } 275 276 return true; 277 } 278 279 case CK_BaseToDerived: { 280 if (!this->delegate(SubExpr)) 281 return false; 282 283 unsigned DerivedOffset = 284 collectBaseOffset(SubExpr->getType(), CE->getType()); 285 286 return this->emitGetPtrDerivedPop(DerivedOffset, CE); 287 } 288 289 case CK_FloatingCast: { 290 // HLSL uses CK_FloatingCast to cast between vectors. 291 if (!SubExpr->getType()->isFloatingType() || 292 !CE->getType()->isFloatingType()) 293 return false; 294 if (DiscardResult) 295 return this->discard(SubExpr); 296 if (!this->visit(SubExpr)) 297 return false; 298 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 299 return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE); 300 } 301 302 case CK_IntegralToFloating: { 303 if (DiscardResult) 304 return this->discard(SubExpr); 305 std::optional<PrimType> FromT = classify(SubExpr->getType()); 306 if (!FromT) 307 return false; 308 309 if (!this->visit(SubExpr)) 310 return false; 311 312 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 313 return this->emitCastIntegralFloating(*FromT, TargetSemantics, 314 getFPOptions(CE), CE); 315 } 316 317 case CK_FloatingToBoolean: 318 case CK_FloatingToIntegral: { 319 if (DiscardResult) 320 return this->discard(SubExpr); 321 322 std::optional<PrimType> ToT = classify(CE->getType()); 323 324 if (!ToT) 325 return false; 326 327 if (!this->visit(SubExpr)) 328 return false; 329 330 if (ToT == PT_IntAP) 331 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()), 332 getFPOptions(CE), CE); 333 if (ToT == PT_IntAPS) 334 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()), 335 getFPOptions(CE), CE); 336 337 return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE); 338 } 339 340 case CK_NullToPointer: 341 case CK_NullToMemberPointer: { 342 if (!this->discard(SubExpr)) 343 return false; 344 if (DiscardResult) 345 return true; 346 347 const Descriptor *Desc = nullptr; 348 const QualType PointeeType = CE->getType()->getPointeeType(); 349 if (!PointeeType.isNull()) { 350 if (std::optional<PrimType> T = classify(PointeeType)) 351 Desc = P.createDescriptor(SubExpr, *T); 352 else 353 Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(), 354 std::nullopt, true, false, 355 /*IsMutable=*/false, nullptr); 356 } 357 return this->emitNull(classifyPrim(CE->getType()), Desc, CE); 358 } 359 360 case CK_PointerToIntegral: { 361 if (DiscardResult) 362 return this->discard(SubExpr); 363 364 if (!this->visit(SubExpr)) 365 return false; 366 367 // If SubExpr doesn't result in a pointer, make it one. 368 if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) { 369 assert(isPtrType(FromT)); 370 if (!this->emitDecayPtr(FromT, PT_Ptr, CE)) 371 return false; 372 } 373 374 PrimType T = classifyPrim(CE->getType()); 375 if (T == PT_IntAP) 376 return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()), 377 CE); 378 if (T == PT_IntAPS) 379 return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()), 380 CE); 381 return this->emitCastPointerIntegral(T, CE); 382 } 383 384 case CK_ArrayToPointerDecay: { 385 if (!this->visit(SubExpr)) 386 return false; 387 if (!this->emitArrayDecay(CE)) 388 return false; 389 if (DiscardResult) 390 return this->emitPopPtr(CE); 391 return true; 392 } 393 394 case CK_IntegralToPointer: { 395 QualType IntType = SubExpr->getType(); 396 assert(IntType->isIntegralOrEnumerationType()); 397 if (!this->visit(SubExpr)) 398 return false; 399 // FIXME: I think the discard is wrong since the int->ptr cast might cause a 400 // diagnostic. 401 PrimType T = classifyPrim(IntType); 402 if (DiscardResult) 403 return this->emitPop(T, CE); 404 405 QualType PtrType = CE->getType(); 406 const Descriptor *Desc; 407 if (std::optional<PrimType> T = classify(PtrType->getPointeeType())) 408 Desc = P.createDescriptor(SubExpr, *T); 409 else if (PtrType->getPointeeType()->isVoidType()) 410 Desc = nullptr; 411 else 412 Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(), 413 Descriptor::InlineDescMD, true, false, 414 /*IsMutable=*/false, nullptr); 415 416 if (!this->emitGetIntPtr(T, Desc, CE)) 417 return false; 418 419 PrimType DestPtrT = classifyPrim(PtrType); 420 if (DestPtrT == PT_Ptr) 421 return true; 422 423 // In case we're converting the integer to a non-Pointer. 424 return this->emitDecayPtr(PT_Ptr, DestPtrT, CE); 425 } 426 427 case CK_AtomicToNonAtomic: 428 case CK_ConstructorConversion: 429 case CK_FunctionToPointerDecay: 430 case CK_NonAtomicToAtomic: 431 case CK_NoOp: 432 case CK_UserDefinedConversion: 433 case CK_AddressSpaceConversion: 434 return this->delegate(SubExpr); 435 436 case CK_BitCast: { 437 // Reject bitcasts to atomic types. 438 if (CE->getType()->isAtomicType()) { 439 if (!this->discard(SubExpr)) 440 return false; 441 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE); 442 } 443 444 if (DiscardResult) 445 return this->discard(SubExpr); 446 447 QualType SubExprTy = SubExpr->getType(); 448 std::optional<PrimType> FromT = classify(SubExprTy); 449 std::optional<PrimType> ToT = classify(CE->getType()); 450 if (!FromT || !ToT) 451 return false; 452 453 assert(isPtrType(*FromT)); 454 assert(isPtrType(*ToT)); 455 if (FromT == ToT) { 456 if (CE->getType()->isVoidPointerType()) 457 return this->delegate(SubExpr); 458 459 if (!this->visit(SubExpr)) 460 return false; 461 if (FromT == PT_Ptr) 462 return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE); 463 return true; 464 } 465 466 if (!this->visit(SubExpr)) 467 return false; 468 return this->emitDecayPtr(*FromT, *ToT, CE); 469 } 470 471 case CK_IntegralToBoolean: 472 case CK_BooleanToSignedIntegral: 473 case CK_IntegralCast: { 474 if (DiscardResult) 475 return this->discard(SubExpr); 476 std::optional<PrimType> FromT = classify(SubExpr->getType()); 477 std::optional<PrimType> ToT = classify(CE->getType()); 478 479 if (!FromT || !ToT) 480 return false; 481 482 if (!this->visit(SubExpr)) 483 return false; 484 485 // Possibly diagnose casts to enum types if the target type does not 486 // have a fixed size. 487 if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) { 488 if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>(); 489 ET && !ET->getDecl()->isFixed()) { 490 if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE)) 491 return false; 492 } 493 } 494 495 auto maybeNegate = [&]() -> bool { 496 if (CE->getCastKind() == CK_BooleanToSignedIntegral) 497 return this->emitNeg(*ToT, CE); 498 return true; 499 }; 500 501 if (ToT == PT_IntAP) 502 return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 503 maybeNegate(); 504 if (ToT == PT_IntAPS) 505 return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 506 maybeNegate(); 507 508 if (FromT == ToT) 509 return true; 510 if (!this->emitCast(*FromT, *ToT, CE)) 511 return false; 512 513 return maybeNegate(); 514 } 515 516 case CK_PointerToBoolean: 517 case CK_MemberPointerToBoolean: { 518 PrimType PtrT = classifyPrim(SubExpr->getType()); 519 520 if (!this->visit(SubExpr)) 521 return false; 522 return this->emitIsNonNull(PtrT, CE); 523 } 524 525 case CK_IntegralComplexToBoolean: 526 case CK_FloatingComplexToBoolean: { 527 if (DiscardResult) 528 return this->discard(SubExpr); 529 if (!this->visit(SubExpr)) 530 return false; 531 return this->emitComplexBoolCast(SubExpr); 532 } 533 534 case CK_IntegralComplexToReal: 535 case CK_FloatingComplexToReal: 536 return this->emitComplexReal(SubExpr); 537 538 case CK_IntegralRealToComplex: 539 case CK_FloatingRealToComplex: { 540 // We're creating a complex value here, so we need to 541 // allocate storage for it. 542 if (!Initializing) { 543 unsigned LocalIndex = allocateTemporary(CE); 544 if (!this->emitGetPtrLocal(LocalIndex, CE)) 545 return false; 546 } 547 548 // Init the complex value to {SubExpr, 0}. 549 if (!this->visitArrayElemInit(0, SubExpr)) 550 return false; 551 // Zero-init the second element. 552 PrimType T = classifyPrim(SubExpr->getType()); 553 if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr)) 554 return false; 555 return this->emitInitElem(T, 1, SubExpr); 556 } 557 558 case CK_IntegralComplexCast: 559 case CK_FloatingComplexCast: 560 case CK_IntegralComplexToFloatingComplex: 561 case CK_FloatingComplexToIntegralComplex: { 562 assert(CE->getType()->isAnyComplexType()); 563 assert(SubExpr->getType()->isAnyComplexType()); 564 if (DiscardResult) 565 return this->discard(SubExpr); 566 567 if (!Initializing) { 568 std::optional<unsigned> LocalIndex = allocateLocal(CE); 569 if (!LocalIndex) 570 return false; 571 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 572 return false; 573 } 574 575 // Location for the SubExpr. 576 // Since SubExpr is of complex type, visiting it results in a pointer 577 // anyway, so we just create a temporary pointer variable. 578 unsigned SubExprOffset = allocateLocalPrimitive( 579 SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 580 if (!this->visit(SubExpr)) 581 return false; 582 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE)) 583 return false; 584 585 PrimType SourceElemT = classifyComplexElementType(SubExpr->getType()); 586 QualType DestElemType = 587 CE->getType()->getAs<ComplexType>()->getElementType(); 588 PrimType DestElemT = classifyPrim(DestElemType); 589 // Cast both elements individually. 590 for (unsigned I = 0; I != 2; ++I) { 591 if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE)) 592 return false; 593 if (!this->emitArrayElemPop(SourceElemT, I, CE)) 594 return false; 595 596 // Do the cast. 597 if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE)) 598 return false; 599 600 // Save the value. 601 if (!this->emitInitElem(DestElemT, I, CE)) 602 return false; 603 } 604 return true; 605 } 606 607 case CK_VectorSplat: { 608 assert(!classify(CE->getType())); 609 assert(classify(SubExpr->getType())); 610 assert(CE->getType()->isVectorType()); 611 612 if (DiscardResult) 613 return this->discard(SubExpr); 614 615 if (!Initializing) { 616 std::optional<unsigned> LocalIndex = allocateLocal(CE); 617 if (!LocalIndex) 618 return false; 619 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 620 return false; 621 } 622 623 const auto *VT = CE->getType()->getAs<VectorType>(); 624 PrimType ElemT = classifyPrim(SubExpr->getType()); 625 unsigned ElemOffset = allocateLocalPrimitive( 626 SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false); 627 628 // Prepare a local variable for the scalar value. 629 if (!this->visit(SubExpr)) 630 return false; 631 if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE)) 632 return false; 633 634 if (!this->emitSetLocal(ElemT, ElemOffset, CE)) 635 return false; 636 637 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 638 if (!this->emitGetLocal(ElemT, ElemOffset, CE)) 639 return false; 640 if (!this->emitInitElem(ElemT, I, CE)) 641 return false; 642 } 643 644 return true; 645 } 646 647 case CK_HLSLVectorTruncation: { 648 assert(SubExpr->getType()->isVectorType()); 649 if (std::optional<PrimType> ResultT = classify(CE)) { 650 assert(!DiscardResult); 651 // Result must be either a float or integer. Take the first element. 652 if (!this->visit(SubExpr)) 653 return false; 654 return this->emitArrayElemPop(*ResultT, 0, CE); 655 } 656 // Otherwise, this truncates from one vector type to another. 657 assert(CE->getType()->isVectorType()); 658 659 if (!Initializing) { 660 unsigned LocalIndex = allocateTemporary(CE); 661 if (!this->emitGetPtrLocal(LocalIndex, CE)) 662 return false; 663 } 664 unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements(); 665 assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize); 666 if (!this->visit(SubExpr)) 667 return false; 668 return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0, 669 ToSize, CE); 670 }; 671 672 case CK_ToVoid: 673 return discard(SubExpr); 674 675 default: 676 return this->emitInvalid(CE); 677 } 678 llvm_unreachable("Unhandled clang::CastKind enum"); 679 } 680 681 template <class Emitter> 682 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) { 683 if (DiscardResult) 684 return true; 685 686 return this->emitConst(LE->getValue(), LE); 687 } 688 689 template <class Emitter> 690 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) { 691 if (DiscardResult) 692 return true; 693 694 return this->emitConstFloat(E->getValue(), E); 695 } 696 697 template <class Emitter> 698 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 699 assert(E->getType()->isAnyComplexType()); 700 if (DiscardResult) 701 return true; 702 703 if (!Initializing) { 704 unsigned LocalIndex = allocateTemporary(E); 705 if (!this->emitGetPtrLocal(LocalIndex, E)) 706 return false; 707 } 708 709 const Expr *SubExpr = E->getSubExpr(); 710 PrimType SubExprT = classifyPrim(SubExpr->getType()); 711 712 if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr)) 713 return false; 714 if (!this->emitInitElem(SubExprT, 0, SubExpr)) 715 return false; 716 return this->visitArrayElemInit(1, SubExpr); 717 } 718 719 template <class Emitter> 720 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) { 721 return this->delegate(E->getSubExpr()); 722 } 723 724 template <class Emitter> 725 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) { 726 // Need short-circuiting for these. 727 if (BO->getType()->isVectorType()) 728 return this->VisitVectorBinOp(BO); 729 if (BO->isLogicalOp()) 730 return this->VisitLogicalBinOp(BO); 731 732 const Expr *LHS = BO->getLHS(); 733 const Expr *RHS = BO->getRHS(); 734 735 // Handle comma operators. Just discard the LHS 736 // and delegate to RHS. 737 if (BO->isCommaOp()) { 738 if (!this->discard(LHS)) 739 return false; 740 if (RHS->getType()->isVoidType()) 741 return this->discard(RHS); 742 743 return this->delegate(RHS); 744 } 745 746 if (BO->getType()->isAnyComplexType()) 747 return this->VisitComplexBinOp(BO); 748 if ((LHS->getType()->isAnyComplexType() || 749 RHS->getType()->isAnyComplexType()) && 750 BO->isComparisonOp()) 751 return this->emitComplexComparison(LHS, RHS, BO); 752 753 if (BO->isPtrMemOp()) { 754 if (!this->visit(LHS)) 755 return false; 756 757 if (!this->visit(RHS)) 758 return false; 759 760 if (!this->emitToMemberPtr(BO)) 761 return false; 762 763 if (classifyPrim(BO) == PT_MemberPtr) 764 return true; 765 766 if (!this->emitCastMemberPtrPtr(BO)) 767 return false; 768 return DiscardResult ? this->emitPopPtr(BO) : true; 769 } 770 771 // Typecheck the args. 772 std::optional<PrimType> LT = classify(LHS); 773 std::optional<PrimType> RT = classify(RHS); 774 std::optional<PrimType> T = classify(BO->getType()); 775 776 // Special case for C++'s three-way/spaceship operator <=>, which 777 // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't 778 // have a PrimType). 779 if (!T && BO->getOpcode() == BO_Cmp) { 780 if (DiscardResult) 781 return true; 782 const ComparisonCategoryInfo *CmpInfo = 783 Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType()); 784 assert(CmpInfo); 785 786 // We need a temporary variable holding our return value. 787 if (!Initializing) { 788 std::optional<unsigned> ResultIndex = this->allocateLocal(BO); 789 if (!this->emitGetPtrLocal(*ResultIndex, BO)) 790 return false; 791 } 792 793 if (!visit(LHS) || !visit(RHS)) 794 return false; 795 796 return this->emitCMP3(*LT, CmpInfo, BO); 797 } 798 799 if (!LT || !RT || !T) 800 return false; 801 802 // Pointer arithmetic special case. 803 if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) { 804 if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT))) 805 return this->VisitPointerArithBinOp(BO); 806 } 807 808 // Assignmentes require us to evalute the RHS first. 809 if (BO->getOpcode() == BO_Assign) { 810 if (!visit(RHS) || !visit(LHS)) 811 return false; 812 if (!this->emitFlip(*LT, *RT, BO)) 813 return false; 814 } else { 815 if (!visit(LHS) || !visit(RHS)) 816 return false; 817 } 818 819 // For languages such as C, cast the result of one 820 // of our comparision opcodes to T (which is usually int). 821 auto MaybeCastToBool = [this, T, BO](bool Result) { 822 if (!Result) 823 return false; 824 if (DiscardResult) 825 return this->emitPop(*T, BO); 826 if (T != PT_Bool) 827 return this->emitCast(PT_Bool, *T, BO); 828 return true; 829 }; 830 831 auto Discard = [this, T, BO](bool Result) { 832 if (!Result) 833 return false; 834 return DiscardResult ? this->emitPop(*T, BO) : true; 835 }; 836 837 switch (BO->getOpcode()) { 838 case BO_EQ: 839 return MaybeCastToBool(this->emitEQ(*LT, BO)); 840 case BO_NE: 841 return MaybeCastToBool(this->emitNE(*LT, BO)); 842 case BO_LT: 843 return MaybeCastToBool(this->emitLT(*LT, BO)); 844 case BO_LE: 845 return MaybeCastToBool(this->emitLE(*LT, BO)); 846 case BO_GT: 847 return MaybeCastToBool(this->emitGT(*LT, BO)); 848 case BO_GE: 849 return MaybeCastToBool(this->emitGE(*LT, BO)); 850 case BO_Sub: 851 if (BO->getType()->isFloatingType()) 852 return Discard(this->emitSubf(getFPOptions(BO), BO)); 853 return Discard(this->emitSub(*T, BO)); 854 case BO_Add: 855 if (BO->getType()->isFloatingType()) 856 return Discard(this->emitAddf(getFPOptions(BO), BO)); 857 return Discard(this->emitAdd(*T, BO)); 858 case BO_Mul: 859 if (BO->getType()->isFloatingType()) 860 return Discard(this->emitMulf(getFPOptions(BO), BO)); 861 return Discard(this->emitMul(*T, BO)); 862 case BO_Rem: 863 return Discard(this->emitRem(*T, BO)); 864 case BO_Div: 865 if (BO->getType()->isFloatingType()) 866 return Discard(this->emitDivf(getFPOptions(BO), BO)); 867 return Discard(this->emitDiv(*T, BO)); 868 case BO_Assign: 869 if (DiscardResult) 870 return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO) 871 : this->emitStorePop(*T, BO); 872 if (LHS->refersToBitField()) { 873 if (!this->emitStoreBitField(*T, BO)) 874 return false; 875 } else { 876 if (!this->emitStore(*T, BO)) 877 return false; 878 } 879 // Assignments aren't necessarily lvalues in C. 880 // Load from them in that case. 881 if (!BO->isLValue()) 882 return this->emitLoadPop(*T, BO); 883 return true; 884 case BO_And: 885 return Discard(this->emitBitAnd(*T, BO)); 886 case BO_Or: 887 return Discard(this->emitBitOr(*T, BO)); 888 case BO_Shl: 889 return Discard(this->emitShl(*LT, *RT, BO)); 890 case BO_Shr: 891 return Discard(this->emitShr(*LT, *RT, BO)); 892 case BO_Xor: 893 return Discard(this->emitBitXor(*T, BO)); 894 case BO_LOr: 895 case BO_LAnd: 896 llvm_unreachable("Already handled earlier"); 897 default: 898 return false; 899 } 900 901 llvm_unreachable("Unhandled binary op"); 902 } 903 904 /// Perform addition/subtraction of a pointer and an integer or 905 /// subtraction of two pointers. 906 template <class Emitter> 907 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) { 908 BinaryOperatorKind Op = E->getOpcode(); 909 const Expr *LHS = E->getLHS(); 910 const Expr *RHS = E->getRHS(); 911 912 if ((Op != BO_Add && Op != BO_Sub) || 913 (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType())) 914 return false; 915 916 std::optional<PrimType> LT = classify(LHS); 917 std::optional<PrimType> RT = classify(RHS); 918 919 if (!LT || !RT) 920 return false; 921 922 // Visit the given pointer expression and optionally convert to a PT_Ptr. 923 auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool { 924 if (!this->visit(E)) 925 return false; 926 if (T != PT_Ptr) 927 return this->emitDecayPtr(T, PT_Ptr, E); 928 return true; 929 }; 930 931 if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) { 932 if (Op != BO_Sub) 933 return false; 934 935 assert(E->getType()->isIntegerType()); 936 if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT)) 937 return false; 938 939 return this->emitSubPtr(classifyPrim(E->getType()), E); 940 } 941 942 PrimType OffsetType; 943 if (LHS->getType()->isIntegerType()) { 944 if (!visitAsPointer(RHS, *RT)) 945 return false; 946 if (!this->visit(LHS)) 947 return false; 948 OffsetType = *LT; 949 } else if (RHS->getType()->isIntegerType()) { 950 if (!visitAsPointer(LHS, *LT)) 951 return false; 952 if (!this->visit(RHS)) 953 return false; 954 OffsetType = *RT; 955 } else { 956 return false; 957 } 958 959 // Do the operation and optionally transform to 960 // result pointer type. 961 if (Op == BO_Add) { 962 if (!this->emitAddOffset(OffsetType, E)) 963 return false; 964 965 if (classifyPrim(E) != PT_Ptr) 966 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 967 return true; 968 } else if (Op == BO_Sub) { 969 if (!this->emitSubOffset(OffsetType, E)) 970 return false; 971 972 if (classifyPrim(E) != PT_Ptr) 973 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 974 return true; 975 } 976 977 return false; 978 } 979 980 template <class Emitter> 981 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) { 982 assert(E->isLogicalOp()); 983 BinaryOperatorKind Op = E->getOpcode(); 984 const Expr *LHS = E->getLHS(); 985 const Expr *RHS = E->getRHS(); 986 std::optional<PrimType> T = classify(E->getType()); 987 988 if (Op == BO_LOr) { 989 // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE. 990 LabelTy LabelTrue = this->getLabel(); 991 LabelTy LabelEnd = this->getLabel(); 992 993 if (!this->visitBool(LHS)) 994 return false; 995 if (!this->jumpTrue(LabelTrue)) 996 return false; 997 998 if (!this->visitBool(RHS)) 999 return false; 1000 if (!this->jump(LabelEnd)) 1001 return false; 1002 1003 this->emitLabel(LabelTrue); 1004 this->emitConstBool(true, E); 1005 this->fallthrough(LabelEnd); 1006 this->emitLabel(LabelEnd); 1007 1008 } else { 1009 assert(Op == BO_LAnd); 1010 // Logical AND. 1011 // Visit LHS. Only visit RHS if LHS was TRUE. 1012 LabelTy LabelFalse = this->getLabel(); 1013 LabelTy LabelEnd = this->getLabel(); 1014 1015 if (!this->visitBool(LHS)) 1016 return false; 1017 if (!this->jumpFalse(LabelFalse)) 1018 return false; 1019 1020 if (!this->visitBool(RHS)) 1021 return false; 1022 if (!this->jump(LabelEnd)) 1023 return false; 1024 1025 this->emitLabel(LabelFalse); 1026 this->emitConstBool(false, E); 1027 this->fallthrough(LabelEnd); 1028 this->emitLabel(LabelEnd); 1029 } 1030 1031 if (DiscardResult) 1032 return this->emitPopBool(E); 1033 1034 // For C, cast back to integer type. 1035 assert(T); 1036 if (T != PT_Bool) 1037 return this->emitCast(PT_Bool, *T, E); 1038 return true; 1039 } 1040 1041 template <class Emitter> 1042 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) { 1043 // Prepare storage for result. 1044 if (!Initializing) { 1045 unsigned LocalIndex = allocateTemporary(E); 1046 if (!this->emitGetPtrLocal(LocalIndex, E)) 1047 return false; 1048 } 1049 1050 // Both LHS and RHS might _not_ be of complex type, but one of them 1051 // needs to be. 1052 const Expr *LHS = E->getLHS(); 1053 const Expr *RHS = E->getRHS(); 1054 1055 PrimType ResultElemT = this->classifyComplexElementType(E->getType()); 1056 unsigned ResultOffset = ~0u; 1057 if (!DiscardResult) 1058 ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false); 1059 1060 // Save result pointer in ResultOffset 1061 if (!this->DiscardResult) { 1062 if (!this->emitDupPtr(E)) 1063 return false; 1064 if (!this->emitSetLocal(PT_Ptr, ResultOffset, E)) 1065 return false; 1066 } 1067 QualType LHSType = LHS->getType(); 1068 if (const auto *AT = LHSType->getAs<AtomicType>()) 1069 LHSType = AT->getValueType(); 1070 QualType RHSType = RHS->getType(); 1071 if (const auto *AT = RHSType->getAs<AtomicType>()) 1072 RHSType = AT->getValueType(); 1073 1074 bool LHSIsComplex = LHSType->isAnyComplexType(); 1075 unsigned LHSOffset; 1076 bool RHSIsComplex = RHSType->isAnyComplexType(); 1077 1078 // For ComplexComplex Mul, we have special ops to make their implementation 1079 // easier. 1080 BinaryOperatorKind Op = E->getOpcode(); 1081 if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) { 1082 assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) == 1083 classifyPrim(RHSType->getAs<ComplexType>()->getElementType())); 1084 PrimType ElemT = 1085 classifyPrim(LHSType->getAs<ComplexType>()->getElementType()); 1086 if (!this->visit(LHS)) 1087 return false; 1088 if (!this->visit(RHS)) 1089 return false; 1090 return this->emitMulc(ElemT, E); 1091 } 1092 1093 if (Op == BO_Div && RHSIsComplex) { 1094 QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType(); 1095 PrimType ElemT = classifyPrim(ElemQT); 1096 // If the LHS is not complex, we still need to do the full complex 1097 // division, so just stub create a complex value and stub it out with 1098 // the LHS and a zero. 1099 1100 if (!LHSIsComplex) { 1101 // This is using the RHS type for the fake-complex LHS. 1102 LHSOffset = allocateTemporary(RHS); 1103 1104 if (!this->emitGetPtrLocal(LHSOffset, E)) 1105 return false; 1106 1107 if (!this->visit(LHS)) 1108 return false; 1109 // real is LHS 1110 if (!this->emitInitElem(ElemT, 0, E)) 1111 return false; 1112 // imag is zero 1113 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1114 return false; 1115 if (!this->emitInitElem(ElemT, 1, E)) 1116 return false; 1117 } else { 1118 if (!this->visit(LHS)) 1119 return false; 1120 } 1121 1122 if (!this->visit(RHS)) 1123 return false; 1124 return this->emitDivc(ElemT, E); 1125 } 1126 1127 // Evaluate LHS and save value to LHSOffset. 1128 if (LHSType->isAnyComplexType()) { 1129 LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1130 if (!this->visit(LHS)) 1131 return false; 1132 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1133 return false; 1134 } else { 1135 PrimType LHST = classifyPrim(LHSType); 1136 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 1137 if (!this->visit(LHS)) 1138 return false; 1139 if (!this->emitSetLocal(LHST, LHSOffset, E)) 1140 return false; 1141 } 1142 1143 // Same with RHS. 1144 unsigned RHSOffset; 1145 if (RHSType->isAnyComplexType()) { 1146 RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1147 if (!this->visit(RHS)) 1148 return false; 1149 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1150 return false; 1151 } else { 1152 PrimType RHST = classifyPrim(RHSType); 1153 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 1154 if (!this->visit(RHS)) 1155 return false; 1156 if (!this->emitSetLocal(RHST, RHSOffset, E)) 1157 return false; 1158 } 1159 1160 // For both LHS and RHS, either load the value from the complex pointer, or 1161 // directly from the local variable. For index 1 (i.e. the imaginary part), 1162 // just load 0 and do the operation anyway. 1163 auto loadComplexValue = [this](bool IsComplex, bool LoadZero, 1164 unsigned ElemIndex, unsigned Offset, 1165 const Expr *E) -> bool { 1166 if (IsComplex) { 1167 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1168 return false; 1169 return this->emitArrayElemPop(classifyComplexElementType(E->getType()), 1170 ElemIndex, E); 1171 } 1172 if (ElemIndex == 0 || !LoadZero) 1173 return this->emitGetLocal(classifyPrim(E->getType()), Offset, E); 1174 return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(), 1175 E); 1176 }; 1177 1178 // Now we can get pointers to the LHS and RHS from the offsets above. 1179 for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) { 1180 // Result pointer for the store later. 1181 if (!this->DiscardResult) { 1182 if (!this->emitGetLocal(PT_Ptr, ResultOffset, E)) 1183 return false; 1184 } 1185 1186 // The actual operation. 1187 switch (Op) { 1188 case BO_Add: 1189 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1190 return false; 1191 1192 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1193 return false; 1194 if (ResultElemT == PT_Float) { 1195 if (!this->emitAddf(getFPOptions(E), E)) 1196 return false; 1197 } else { 1198 if (!this->emitAdd(ResultElemT, E)) 1199 return false; 1200 } 1201 break; 1202 case BO_Sub: 1203 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1204 return false; 1205 1206 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1207 return false; 1208 if (ResultElemT == PT_Float) { 1209 if (!this->emitSubf(getFPOptions(E), E)) 1210 return false; 1211 } else { 1212 if (!this->emitSub(ResultElemT, E)) 1213 return false; 1214 } 1215 break; 1216 case BO_Mul: 1217 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1218 return false; 1219 1220 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1221 return false; 1222 1223 if (ResultElemT == PT_Float) { 1224 if (!this->emitMulf(getFPOptions(E), E)) 1225 return false; 1226 } else { 1227 if (!this->emitMul(ResultElemT, E)) 1228 return false; 1229 } 1230 break; 1231 case BO_Div: 1232 assert(!RHSIsComplex); 1233 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1234 return false; 1235 1236 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1237 return false; 1238 1239 if (ResultElemT == PT_Float) { 1240 if (!this->emitDivf(getFPOptions(E), E)) 1241 return false; 1242 } else { 1243 if (!this->emitDiv(ResultElemT, E)) 1244 return false; 1245 } 1246 break; 1247 1248 default: 1249 return false; 1250 } 1251 1252 if (!this->DiscardResult) { 1253 // Initialize array element with the value we just computed. 1254 if (!this->emitInitElemPop(ResultElemT, ElemIndex, E)) 1255 return false; 1256 } else { 1257 if (!this->emitPop(ResultElemT, E)) 1258 return false; 1259 } 1260 } 1261 return true; 1262 } 1263 1264 template <class Emitter> 1265 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) { 1266 assert(E->getType()->isVectorType()); 1267 assert(E->getLHS()->getType()->isVectorType()); 1268 assert(E->getRHS()->getType()->isVectorType()); 1269 1270 // FIXME: Current only support comparison binary operator, add support for 1271 // other binary operator. 1272 if (!E->isComparisonOp() && !E->isLogicalOp()) 1273 return this->emitInvalid(E); 1274 // Prepare storage for result. 1275 if (!Initializing) { 1276 unsigned LocalIndex = allocateTemporary(E); 1277 if (!this->emitGetPtrLocal(LocalIndex, E)) 1278 return false; 1279 } 1280 1281 const Expr *LHS = E->getLHS(); 1282 const Expr *RHS = E->getRHS(); 1283 const auto *VecTy = E->getType()->getAs<VectorType>(); 1284 1285 // The LHS and RHS of a comparison operator must have the same type. So we 1286 // just use LHS vector element type here. 1287 PrimType ElemT = this->classifyVectorElementType(LHS->getType()); 1288 PrimType ResultElemT = this->classifyVectorElementType(E->getType()); 1289 1290 // Evaluate LHS and save value to LHSOffset. 1291 unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1292 if (!this->visit(LHS)) 1293 return false; 1294 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1295 return false; 1296 1297 // Evaluate RHS and save value to RHSOffset. 1298 unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1299 if (!this->visit(RHS)) 1300 return false; 1301 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1302 return false; 1303 1304 auto getElem = [=](unsigned Offset, unsigned Index) { 1305 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1306 return false; 1307 if (!this->emitArrayElemPop(ElemT, Index, E)) 1308 return false; 1309 if (E->isLogicalOp()) { 1310 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 1311 return false; 1312 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1313 return false; 1314 } 1315 return true; 1316 }; 1317 1318 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 1319 if (!getElem(LHSOffset, I)) 1320 return false; 1321 if (!getElem(RHSOffset, I)) 1322 return false; 1323 switch (E->getOpcode()) { 1324 case BO_EQ: 1325 if (!this->emitEQ(ElemT, E)) 1326 return false; 1327 break; 1328 case BO_NE: 1329 if (!this->emitNE(ElemT, E)) 1330 return false; 1331 break; 1332 case BO_LE: 1333 if (!this->emitLE(ElemT, E)) 1334 return false; 1335 break; 1336 case BO_LT: 1337 if (!this->emitLT(ElemT, E)) 1338 return false; 1339 break; 1340 case BO_GE: 1341 if (!this->emitGE(ElemT, E)) 1342 return false; 1343 break; 1344 case BO_GT: 1345 if (!this->emitGT(ElemT, E)) 1346 return false; 1347 break; 1348 case BO_LAnd: 1349 // a && b is equivalent to a!=0 & b!=0 1350 if (!this->emitBitAnd(ResultElemT, E)) 1351 return false; 1352 break; 1353 case BO_LOr: 1354 // a || b is equivalent to a!=0 | b!=0 1355 if (!this->emitBitOr(ResultElemT, E)) 1356 return false; 1357 break; 1358 default: 1359 llvm_unreachable("Unsupported binary operator"); 1360 } 1361 1362 // The result of the comparison is a vector of the same width and number 1363 // of elements as the comparison operands with a signed integral element 1364 // type. 1365 // 1366 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 1367 if (E->isComparisonOp()) { 1368 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1369 return false; 1370 if (!this->emitNeg(ResultElemT, E)) 1371 return false; 1372 } 1373 1374 // Initialize array element with the value we just computed. 1375 if (!this->emitInitElem(ResultElemT, I, E)) 1376 return false; 1377 } 1378 return true; 1379 } 1380 1381 template <class Emitter> 1382 bool Compiler<Emitter>::VisitImplicitValueInitExpr( 1383 const ImplicitValueInitExpr *E) { 1384 QualType QT = E->getType(); 1385 1386 if (std::optional<PrimType> T = classify(QT)) 1387 return this->visitZeroInitializer(*T, QT, E); 1388 1389 if (QT->isRecordType()) { 1390 const RecordDecl *RD = QT->getAsRecordDecl(); 1391 assert(RD); 1392 if (RD->isInvalidDecl()) 1393 return false; 1394 1395 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1396 CXXRD && CXXRD->getNumVBases() > 0) { 1397 // TODO: Diagnose. 1398 return false; 1399 } 1400 1401 const Record *R = getRecord(QT); 1402 if (!R) 1403 return false; 1404 1405 assert(Initializing); 1406 return this->visitZeroRecordInitializer(R, E); 1407 } 1408 1409 if (QT->isIncompleteArrayType()) 1410 return true; 1411 1412 if (QT->isArrayType()) { 1413 const ArrayType *AT = QT->getAsArrayTypeUnsafe(); 1414 assert(AT); 1415 const auto *CAT = cast<ConstantArrayType>(AT); 1416 size_t NumElems = CAT->getZExtSize(); 1417 PrimType ElemT = classifyPrim(CAT->getElementType()); 1418 1419 for (size_t I = 0; I != NumElems; ++I) { 1420 if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E)) 1421 return false; 1422 if (!this->emitInitElem(ElemT, I, E)) 1423 return false; 1424 } 1425 1426 return true; 1427 } 1428 1429 if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) { 1430 assert(Initializing); 1431 QualType ElemQT = ComplexTy->getElementType(); 1432 PrimType ElemT = classifyPrim(ElemQT); 1433 for (unsigned I = 0; I < 2; ++I) { 1434 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1435 return false; 1436 if (!this->emitInitElem(ElemT, I, E)) 1437 return false; 1438 } 1439 return true; 1440 } 1441 1442 if (const auto *VecT = E->getType()->getAs<VectorType>()) { 1443 unsigned NumVecElements = VecT->getNumElements(); 1444 QualType ElemQT = VecT->getElementType(); 1445 PrimType ElemT = classifyPrim(ElemQT); 1446 1447 for (unsigned I = 0; I < NumVecElements; ++I) { 1448 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1449 return false; 1450 if (!this->emitInitElem(ElemT, I, E)) 1451 return false; 1452 } 1453 return true; 1454 } 1455 1456 return false; 1457 } 1458 1459 template <class Emitter> 1460 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1461 const Expr *LHS = E->getLHS(); 1462 const Expr *RHS = E->getRHS(); 1463 const Expr *Index = E->getIdx(); 1464 1465 if (DiscardResult) 1466 return this->discard(LHS) && this->discard(RHS); 1467 1468 // C++17's rules require us to evaluate the LHS first, regardless of which 1469 // side is the base. 1470 bool Success = true; 1471 for (const Expr *SubExpr : {LHS, RHS}) { 1472 if (!this->visit(SubExpr)) 1473 Success = false; 1474 } 1475 1476 if (!Success) 1477 return false; 1478 1479 PrimType IndexT = classifyPrim(Index->getType()); 1480 // If the index is first, we need to change that. 1481 if (LHS == Index) { 1482 if (!this->emitFlip(PT_Ptr, IndexT, E)) 1483 return false; 1484 } 1485 1486 return this->emitArrayElemPtrPop(IndexT, E); 1487 } 1488 1489 template <class Emitter> 1490 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits, 1491 const Expr *ArrayFiller, const Expr *E) { 1492 QualType QT = E->getType(); 1493 if (const auto *AT = QT->getAs<AtomicType>()) 1494 QT = AT->getValueType(); 1495 1496 if (QT->isVoidType()) { 1497 if (Inits.size() == 0) 1498 return true; 1499 return this->emitInvalid(E); 1500 } 1501 1502 // Handle discarding first. 1503 if (DiscardResult) { 1504 for (const Expr *Init : Inits) { 1505 if (!this->discard(Init)) 1506 return false; 1507 } 1508 return true; 1509 } 1510 1511 // Primitive values. 1512 if (std::optional<PrimType> T = classify(QT)) { 1513 assert(!DiscardResult); 1514 if (Inits.size() == 0) 1515 return this->visitZeroInitializer(*T, QT, E); 1516 assert(Inits.size() == 1); 1517 return this->delegate(Inits[0]); 1518 } 1519 1520 if (QT->isRecordType()) { 1521 const Record *R = getRecord(QT); 1522 1523 if (Inits.size() == 1 && E->getType() == Inits[0]->getType()) 1524 return this->delegate(Inits[0]); 1525 1526 auto initPrimitiveField = [=](const Record::Field *FieldToInit, 1527 const Expr *Init, PrimType T) -> bool { 1528 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1529 if (!this->visit(Init)) 1530 return false; 1531 1532 if (FieldToInit->isBitField()) 1533 return this->emitInitBitField(T, FieldToInit, E); 1534 return this->emitInitField(T, FieldToInit->Offset, E); 1535 }; 1536 1537 auto initCompositeField = [=](const Record::Field *FieldToInit, 1538 const Expr *Init) -> bool { 1539 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1540 InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset)); 1541 // Non-primitive case. Get a pointer to the field-to-initialize 1542 // on the stack and recurse into visitInitializer(). 1543 if (!this->emitGetPtrField(FieldToInit->Offset, Init)) 1544 return false; 1545 if (!this->visitInitializer(Init)) 1546 return false; 1547 return this->emitPopPtr(E); 1548 }; 1549 1550 if (R->isUnion()) { 1551 if (Inits.size() == 0) { 1552 if (!this->visitZeroRecordInitializer(R, E)) 1553 return false; 1554 } else { 1555 const Expr *Init = Inits[0]; 1556 const FieldDecl *FToInit = nullptr; 1557 if (const auto *ILE = dyn_cast<InitListExpr>(E)) 1558 FToInit = ILE->getInitializedFieldInUnion(); 1559 else 1560 FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion(); 1561 1562 const Record::Field *FieldToInit = R->getField(FToInit); 1563 if (std::optional<PrimType> T = classify(Init)) { 1564 if (!initPrimitiveField(FieldToInit, Init, *T)) 1565 return false; 1566 } else { 1567 if (!initCompositeField(FieldToInit, Init)) 1568 return false; 1569 } 1570 } 1571 return this->emitFinishInit(E); 1572 } 1573 1574 assert(!R->isUnion()); 1575 unsigned InitIndex = 0; 1576 for (const Expr *Init : Inits) { 1577 // Skip unnamed bitfields. 1578 while (InitIndex < R->getNumFields() && 1579 R->getField(InitIndex)->Decl->isUnnamedBitField()) 1580 ++InitIndex; 1581 1582 if (std::optional<PrimType> T = classify(Init)) { 1583 const Record::Field *FieldToInit = R->getField(InitIndex); 1584 if (!initPrimitiveField(FieldToInit, Init, *T)) 1585 return false; 1586 ++InitIndex; 1587 } else { 1588 // Initializer for a direct base class. 1589 if (const Record::Base *B = R->getBase(Init->getType())) { 1590 if (!this->emitGetPtrBase(B->Offset, Init)) 1591 return false; 1592 1593 if (!this->visitInitializer(Init)) 1594 return false; 1595 1596 if (!this->emitFinishInitPop(E)) 1597 return false; 1598 // Base initializers don't increase InitIndex, since they don't count 1599 // into the Record's fields. 1600 } else { 1601 const Record::Field *FieldToInit = R->getField(InitIndex); 1602 if (!initCompositeField(FieldToInit, Init)) 1603 return false; 1604 ++InitIndex; 1605 } 1606 } 1607 } 1608 return this->emitFinishInit(E); 1609 } 1610 1611 if (QT->isArrayType()) { 1612 if (Inits.size() == 1 && QT == Inits[0]->getType()) 1613 return this->delegate(Inits[0]); 1614 1615 unsigned ElementIndex = 0; 1616 for (const Expr *Init : Inits) { 1617 if (const auto *EmbedS = 1618 dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 1619 PrimType TargetT = classifyPrim(Init->getType()); 1620 1621 auto Eval = [&](const Expr *Init, unsigned ElemIndex) { 1622 PrimType InitT = classifyPrim(Init->getType()); 1623 if (!this->visit(Init)) 1624 return false; 1625 if (InitT != TargetT) { 1626 if (!this->emitCast(InitT, TargetT, E)) 1627 return false; 1628 } 1629 return this->emitInitElem(TargetT, ElemIndex, Init); 1630 }; 1631 if (!EmbedS->doForEachDataElement(Eval, ElementIndex)) 1632 return false; 1633 } else { 1634 if (!this->visitArrayElemInit(ElementIndex, Init)) 1635 return false; 1636 ++ElementIndex; 1637 } 1638 } 1639 1640 // Expand the filler expression. 1641 // FIXME: This should go away. 1642 if (ArrayFiller) { 1643 const ConstantArrayType *CAT = 1644 Ctx.getASTContext().getAsConstantArrayType(QT); 1645 uint64_t NumElems = CAT->getZExtSize(); 1646 1647 for (; ElementIndex != NumElems; ++ElementIndex) { 1648 if (!this->visitArrayElemInit(ElementIndex, ArrayFiller)) 1649 return false; 1650 } 1651 } 1652 1653 return this->emitFinishInit(E); 1654 } 1655 1656 if (const auto *ComplexTy = QT->getAs<ComplexType>()) { 1657 unsigned NumInits = Inits.size(); 1658 1659 if (NumInits == 1) 1660 return this->delegate(Inits[0]); 1661 1662 QualType ElemQT = ComplexTy->getElementType(); 1663 PrimType ElemT = classifyPrim(ElemQT); 1664 if (NumInits == 0) { 1665 // Zero-initialize both elements. 1666 for (unsigned I = 0; I < 2; ++I) { 1667 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1668 return false; 1669 if (!this->emitInitElem(ElemT, I, E)) 1670 return false; 1671 } 1672 } else if (NumInits == 2) { 1673 unsigned InitIndex = 0; 1674 for (const Expr *Init : Inits) { 1675 if (!this->visit(Init)) 1676 return false; 1677 1678 if (!this->emitInitElem(ElemT, InitIndex, E)) 1679 return false; 1680 ++InitIndex; 1681 } 1682 } 1683 return true; 1684 } 1685 1686 if (const auto *VecT = QT->getAs<VectorType>()) { 1687 unsigned NumVecElements = VecT->getNumElements(); 1688 assert(NumVecElements >= Inits.size()); 1689 1690 QualType ElemQT = VecT->getElementType(); 1691 PrimType ElemT = classifyPrim(ElemQT); 1692 1693 // All initializer elements. 1694 unsigned InitIndex = 0; 1695 for (const Expr *Init : Inits) { 1696 if (!this->visit(Init)) 1697 return false; 1698 1699 // If the initializer is of vector type itself, we have to deconstruct 1700 // that and initialize all the target fields from the initializer fields. 1701 if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) { 1702 if (!this->emitCopyArray(ElemT, 0, InitIndex, 1703 InitVecT->getNumElements(), E)) 1704 return false; 1705 InitIndex += InitVecT->getNumElements(); 1706 } else { 1707 if (!this->emitInitElem(ElemT, InitIndex, E)) 1708 return false; 1709 ++InitIndex; 1710 } 1711 } 1712 1713 assert(InitIndex <= NumVecElements); 1714 1715 // Fill the rest with zeroes. 1716 for (; InitIndex != NumVecElements; ++InitIndex) { 1717 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1718 return false; 1719 if (!this->emitInitElem(ElemT, InitIndex, E)) 1720 return false; 1721 } 1722 return true; 1723 } 1724 1725 return false; 1726 } 1727 1728 /// Pointer to the array(not the element!) must be on the stack when calling 1729 /// this. 1730 template <class Emitter> 1731 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex, 1732 const Expr *Init) { 1733 if (std::optional<PrimType> T = classify(Init->getType())) { 1734 // Visit the primitive element like normal. 1735 if (!this->visit(Init)) 1736 return false; 1737 return this->emitInitElem(*T, ElemIndex, Init); 1738 } 1739 1740 InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex)); 1741 // Advance the pointer currently on the stack to the given 1742 // dimension. 1743 if (!this->emitConstUint32(ElemIndex, Init)) 1744 return false; 1745 if (!this->emitArrayElemPtrUint32(Init)) 1746 return false; 1747 if (!this->visitInitializer(Init)) 1748 return false; 1749 return this->emitFinishInitPop(Init); 1750 } 1751 1752 template <class Emitter> 1753 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) { 1754 return this->visitInitList(E->inits(), E->getArrayFiller(), E); 1755 } 1756 1757 template <class Emitter> 1758 bool Compiler<Emitter>::VisitCXXParenListInitExpr( 1759 const CXXParenListInitExpr *E) { 1760 return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E); 1761 } 1762 1763 template <class Emitter> 1764 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr( 1765 const SubstNonTypeTemplateParmExpr *E) { 1766 return this->delegate(E->getReplacement()); 1767 } 1768 1769 template <class Emitter> 1770 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) { 1771 std::optional<PrimType> T = classify(E->getType()); 1772 if (T && E->hasAPValueResult()) { 1773 // Try to emit the APValue directly, without visiting the subexpr. 1774 // This will only fail if we can't emit the APValue, so won't emit any 1775 // diagnostics or any double values. 1776 if (DiscardResult) 1777 return true; 1778 1779 if (this->visitAPValue(E->getAPValueResult(), *T, E)) 1780 return true; 1781 } 1782 return this->delegate(E->getSubExpr()); 1783 } 1784 1785 template <class Emitter> 1786 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) { 1787 auto It = E->begin(); 1788 return this->visit(*It); 1789 } 1790 1791 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx, 1792 UnaryExprOrTypeTrait Kind) { 1793 bool AlignOfReturnsPreferred = 1794 ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 1795 1796 // C++ [expr.alignof]p3: 1797 // When alignof is applied to a reference type, the result is the 1798 // alignment of the referenced type. 1799 if (const auto *Ref = T->getAs<ReferenceType>()) 1800 T = Ref->getPointeeType(); 1801 1802 if (T.getQualifiers().hasUnaligned()) 1803 return CharUnits::One(); 1804 1805 // __alignof is defined to return the preferred alignment. 1806 // Before 8, clang returned the preferred alignment for alignof and 1807 // _Alignof as well. 1808 if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 1809 return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T)); 1810 1811 return ASTCtx.getTypeAlignInChars(T); 1812 } 1813 1814 template <class Emitter> 1815 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr( 1816 const UnaryExprOrTypeTraitExpr *E) { 1817 UnaryExprOrTypeTrait Kind = E->getKind(); 1818 const ASTContext &ASTCtx = Ctx.getASTContext(); 1819 1820 if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) { 1821 QualType ArgType = E->getTypeOfArgument(); 1822 1823 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 1824 // the result is the size of the referenced type." 1825 if (const auto *Ref = ArgType->getAs<ReferenceType>()) 1826 ArgType = Ref->getPointeeType(); 1827 1828 CharUnits Size; 1829 if (ArgType->isVoidType() || ArgType->isFunctionType()) 1830 Size = CharUnits::One(); 1831 else { 1832 if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) 1833 return false; 1834 1835 if (Kind == UETT_SizeOf) 1836 Size = ASTCtx.getTypeSizeInChars(ArgType); 1837 else 1838 Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width; 1839 } 1840 1841 if (DiscardResult) 1842 return true; 1843 1844 return this->emitConst(Size.getQuantity(), E); 1845 } 1846 1847 if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) { 1848 CharUnits Size; 1849 1850 if (E->isArgumentType()) { 1851 QualType ArgType = E->getTypeOfArgument(); 1852 1853 Size = AlignOfType(ArgType, ASTCtx, Kind); 1854 } else { 1855 // Argument is an expression, not a type. 1856 const Expr *Arg = E->getArgumentExpr()->IgnoreParens(); 1857 1858 // The kinds of expressions that we have special-case logic here for 1859 // should be kept up to date with the special checks for those 1860 // expressions in Sema. 1861 1862 // alignof decl is always accepted, even if it doesn't make sense: we 1863 // default to 1 in those cases. 1864 if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg)) 1865 Size = ASTCtx.getDeclAlign(DRE->getDecl(), 1866 /*RefAsPointee*/ true); 1867 else if (const auto *ME = dyn_cast<MemberExpr>(Arg)) 1868 Size = ASTCtx.getDeclAlign(ME->getMemberDecl(), 1869 /*RefAsPointee*/ true); 1870 else 1871 Size = AlignOfType(Arg->getType(), ASTCtx, Kind); 1872 } 1873 1874 if (DiscardResult) 1875 return true; 1876 1877 return this->emitConst(Size.getQuantity(), E); 1878 } 1879 1880 if (Kind == UETT_VectorElements) { 1881 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) 1882 return this->emitConst(VT->getNumElements(), E); 1883 assert(E->getTypeOfArgument()->isSizelessVectorType()); 1884 return this->emitSizelessVectorElementSize(E); 1885 } 1886 1887 if (Kind == UETT_VecStep) { 1888 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) { 1889 unsigned N = VT->getNumElements(); 1890 1891 // The vec_step built-in functions that take a 3-component 1892 // vector return 4. (OpenCL 1.1 spec 6.11.12) 1893 if (N == 3) 1894 N = 4; 1895 1896 return this->emitConst(N, E); 1897 } 1898 return this->emitConst(1, E); 1899 } 1900 1901 return false; 1902 } 1903 1904 template <class Emitter> 1905 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) { 1906 // 'Base.Member' 1907 const Expr *Base = E->getBase(); 1908 const ValueDecl *Member = E->getMemberDecl(); 1909 1910 if (DiscardResult) 1911 return this->discard(Base); 1912 1913 // MemberExprs are almost always lvalues, in which case we don't need to 1914 // do the load. But sometimes they aren't. 1915 const auto maybeLoadValue = [&]() -> bool { 1916 if (E->isGLValue()) 1917 return true; 1918 if (std::optional<PrimType> T = classify(E)) 1919 return this->emitLoadPop(*T, E); 1920 return false; 1921 }; 1922 1923 if (const auto *VD = dyn_cast<VarDecl>(Member)) { 1924 // I am almost confident in saying that a var decl must be static 1925 // and therefore registered as a global variable. But this will probably 1926 // turn out to be wrong some time in the future, as always. 1927 if (auto GlobalIndex = P.getGlobal(VD)) 1928 return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue(); 1929 return false; 1930 } 1931 1932 if (!isa<FieldDecl>(Member)) { 1933 if (!this->discard(Base) && !this->emitSideEffect(E)) 1934 return false; 1935 1936 return this->visitDeclRef(Member, E); 1937 } 1938 1939 if (Initializing) { 1940 if (!this->delegate(Base)) 1941 return false; 1942 } else { 1943 if (!this->visit(Base)) 1944 return false; 1945 } 1946 1947 // Base above gives us a pointer on the stack. 1948 const auto *FD = cast<FieldDecl>(Member); 1949 const RecordDecl *RD = FD->getParent(); 1950 const Record *R = getRecord(RD); 1951 if (!R) 1952 return false; 1953 const Record::Field *F = R->getField(FD); 1954 // Leave a pointer to the field on the stack. 1955 if (F->Decl->getType()->isReferenceType()) 1956 return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue(); 1957 return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue(); 1958 } 1959 1960 template <class Emitter> 1961 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 1962 // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated 1963 // stand-alone, e.g. via EvaluateAsInt(). 1964 if (!ArrayIndex) 1965 return false; 1966 return this->emitConst(*ArrayIndex, E); 1967 } 1968 1969 template <class Emitter> 1970 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 1971 assert(Initializing); 1972 assert(!DiscardResult); 1973 1974 // We visit the common opaque expression here once so we have its value 1975 // cached. 1976 if (!this->discard(E->getCommonExpr())) 1977 return false; 1978 1979 // TODO: This compiles to quite a lot of bytecode if the array is larger. 1980 // Investigate compiling this to a loop. 1981 const Expr *SubExpr = E->getSubExpr(); 1982 size_t Size = E->getArraySize().getZExtValue(); 1983 1984 // So, every iteration, we execute an assignment here 1985 // where the LHS is on the stack (the target array) 1986 // and the RHS is our SubExpr. 1987 for (size_t I = 0; I != Size; ++I) { 1988 ArrayIndexScope<Emitter> IndexScope(this, I); 1989 BlockScope<Emitter> BS(this); 1990 1991 if (!this->visitArrayElemInit(I, SubExpr)) 1992 return false; 1993 if (!BS.destroyLocals()) 1994 return false; 1995 } 1996 return true; 1997 } 1998 1999 template <class Emitter> 2000 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 2001 const Expr *SourceExpr = E->getSourceExpr(); 2002 if (!SourceExpr) 2003 return false; 2004 2005 if (Initializing) 2006 return this->visitInitializer(SourceExpr); 2007 2008 PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr); 2009 if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end()) 2010 return this->emitGetLocal(SubExprT, It->second, E); 2011 2012 if (!this->visit(SourceExpr)) 2013 return false; 2014 2015 // At this point we either have the evaluated source expression or a pointer 2016 // to an object on the stack. We want to create a local variable that stores 2017 // this value. 2018 unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true); 2019 if (!this->emitSetLocal(SubExprT, LocalIndex, E)) 2020 return false; 2021 2022 // Here the local variable is created but the value is removed from the stack, 2023 // so we put it back if the caller needs it. 2024 if (!DiscardResult) { 2025 if (!this->emitGetLocal(SubExprT, LocalIndex, E)) 2026 return false; 2027 } 2028 2029 // This is cleaned up when the local variable is destroyed. 2030 OpaqueExprs.insert({E, LocalIndex}); 2031 2032 return true; 2033 } 2034 2035 template <class Emitter> 2036 bool Compiler<Emitter>::VisitAbstractConditionalOperator( 2037 const AbstractConditionalOperator *E) { 2038 const Expr *Condition = E->getCond(); 2039 const Expr *TrueExpr = E->getTrueExpr(); 2040 const Expr *FalseExpr = E->getFalseExpr(); 2041 2042 LabelTy LabelEnd = this->getLabel(); // Label after the operator. 2043 LabelTy LabelFalse = this->getLabel(); // Label for the false expr. 2044 2045 if (!this->visitBool(Condition)) 2046 return false; 2047 2048 if (!this->jumpFalse(LabelFalse)) 2049 return false; 2050 2051 { 2052 LocalScope<Emitter> S(this); 2053 if (!this->delegate(TrueExpr)) 2054 return false; 2055 if (!S.destroyLocals()) 2056 return false; 2057 } 2058 2059 if (!this->jump(LabelEnd)) 2060 return false; 2061 2062 this->emitLabel(LabelFalse); 2063 2064 { 2065 LocalScope<Emitter> S(this); 2066 if (!this->delegate(FalseExpr)) 2067 return false; 2068 if (!S.destroyLocals()) 2069 return false; 2070 } 2071 2072 this->fallthrough(LabelEnd); 2073 this->emitLabel(LabelEnd); 2074 2075 return true; 2076 } 2077 2078 template <class Emitter> 2079 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) { 2080 if (DiscardResult) 2081 return true; 2082 2083 if (!Initializing) { 2084 unsigned StringIndex = P.createGlobalString(E); 2085 return this->emitGetPtrGlobal(StringIndex, E); 2086 } 2087 2088 // We are initializing an array on the stack. 2089 const ConstantArrayType *CAT = 2090 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 2091 assert(CAT && "a string literal that's not a constant array?"); 2092 2093 // If the initializer string is too long, a diagnostic has already been 2094 // emitted. Read only the array length from the string literal. 2095 unsigned ArraySize = CAT->getZExtSize(); 2096 unsigned N = std::min(ArraySize, E->getLength()); 2097 size_t CharWidth = E->getCharByteWidth(); 2098 2099 for (unsigned I = 0; I != N; ++I) { 2100 uint32_t CodeUnit = E->getCodeUnit(I); 2101 2102 if (CharWidth == 1) { 2103 this->emitConstSint8(CodeUnit, E); 2104 this->emitInitElemSint8(I, E); 2105 } else if (CharWidth == 2) { 2106 this->emitConstUint16(CodeUnit, E); 2107 this->emitInitElemUint16(I, E); 2108 } else if (CharWidth == 4) { 2109 this->emitConstUint32(CodeUnit, E); 2110 this->emitInitElemUint32(I, E); 2111 } else { 2112 llvm_unreachable("unsupported character width"); 2113 } 2114 } 2115 2116 // Fill up the rest of the char array with NUL bytes. 2117 for (unsigned I = N; I != ArraySize; ++I) { 2118 if (CharWidth == 1) { 2119 this->emitConstSint8(0, E); 2120 this->emitInitElemSint8(I, E); 2121 } else if (CharWidth == 2) { 2122 this->emitConstUint16(0, E); 2123 this->emitInitElemUint16(I, E); 2124 } else if (CharWidth == 4) { 2125 this->emitConstUint32(0, E); 2126 this->emitInitElemUint32(I, E); 2127 } else { 2128 llvm_unreachable("unsupported character width"); 2129 } 2130 } 2131 2132 return true; 2133 } 2134 2135 template <class Emitter> 2136 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 2137 return this->delegate(E->getString()); 2138 } 2139 2140 template <class Emitter> 2141 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 2142 auto &A = Ctx.getASTContext(); 2143 std::string Str; 2144 A.getObjCEncodingForType(E->getEncodedType(), Str); 2145 StringLiteral *SL = 2146 StringLiteral::Create(A, Str, StringLiteralKind::Ordinary, 2147 /*Pascal=*/false, E->getType(), E->getAtLoc()); 2148 return this->delegate(SL); 2149 } 2150 2151 template <class Emitter> 2152 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr( 2153 const SYCLUniqueStableNameExpr *E) { 2154 if (DiscardResult) 2155 return true; 2156 2157 assert(!Initializing); 2158 2159 auto &A = Ctx.getASTContext(); 2160 std::string ResultStr = E->ComputeName(A); 2161 2162 QualType CharTy = A.CharTy.withConst(); 2163 APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1); 2164 QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr, 2165 ArraySizeModifier::Normal, 0); 2166 2167 StringLiteral *SL = 2168 StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary, 2169 /*Pascal=*/false, ArrayTy, E->getLocation()); 2170 2171 unsigned StringIndex = P.createGlobalString(SL); 2172 return this->emitGetPtrGlobal(StringIndex, E); 2173 } 2174 2175 template <class Emitter> 2176 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) { 2177 if (DiscardResult) 2178 return true; 2179 return this->emitConst(E->getValue(), E); 2180 } 2181 2182 template <class Emitter> 2183 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator( 2184 const CompoundAssignOperator *E) { 2185 2186 const Expr *LHS = E->getLHS(); 2187 const Expr *RHS = E->getRHS(); 2188 QualType LHSType = LHS->getType(); 2189 QualType LHSComputationType = E->getComputationLHSType(); 2190 QualType ResultType = E->getComputationResultType(); 2191 std::optional<PrimType> LT = classify(LHSComputationType); 2192 std::optional<PrimType> RT = classify(ResultType); 2193 2194 assert(ResultType->isFloatingType()); 2195 2196 if (!LT || !RT) 2197 return false; 2198 2199 PrimType LHST = classifyPrim(LHSType); 2200 2201 // C++17 onwards require that we evaluate the RHS first. 2202 // Compute RHS and save it in a temporary variable so we can 2203 // load it again later. 2204 if (!visit(RHS)) 2205 return false; 2206 2207 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2208 if (!this->emitSetLocal(*RT, TempOffset, E)) 2209 return false; 2210 2211 // First, visit LHS. 2212 if (!visit(LHS)) 2213 return false; 2214 if (!this->emitLoad(LHST, E)) 2215 return false; 2216 2217 // If necessary, convert LHS to its computation type. 2218 if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType), 2219 LHSComputationType, E)) 2220 return false; 2221 2222 // Now load RHS. 2223 if (!this->emitGetLocal(*RT, TempOffset, E)) 2224 return false; 2225 2226 switch (E->getOpcode()) { 2227 case BO_AddAssign: 2228 if (!this->emitAddf(getFPOptions(E), E)) 2229 return false; 2230 break; 2231 case BO_SubAssign: 2232 if (!this->emitSubf(getFPOptions(E), E)) 2233 return false; 2234 break; 2235 case BO_MulAssign: 2236 if (!this->emitMulf(getFPOptions(E), E)) 2237 return false; 2238 break; 2239 case BO_DivAssign: 2240 if (!this->emitDivf(getFPOptions(E), E)) 2241 return false; 2242 break; 2243 default: 2244 return false; 2245 } 2246 2247 if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E)) 2248 return false; 2249 2250 if (DiscardResult) 2251 return this->emitStorePop(LHST, E); 2252 return this->emitStore(LHST, E); 2253 } 2254 2255 template <class Emitter> 2256 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator( 2257 const CompoundAssignOperator *E) { 2258 BinaryOperatorKind Op = E->getOpcode(); 2259 const Expr *LHS = E->getLHS(); 2260 const Expr *RHS = E->getRHS(); 2261 std::optional<PrimType> LT = classify(LHS->getType()); 2262 std::optional<PrimType> RT = classify(RHS->getType()); 2263 2264 if (Op != BO_AddAssign && Op != BO_SubAssign) 2265 return false; 2266 2267 if (!LT || !RT) 2268 return false; 2269 2270 if (!visit(LHS)) 2271 return false; 2272 2273 if (!this->emitLoad(*LT, LHS)) 2274 return false; 2275 2276 if (!visit(RHS)) 2277 return false; 2278 2279 if (Op == BO_AddAssign) { 2280 if (!this->emitAddOffset(*RT, E)) 2281 return false; 2282 } else { 2283 if (!this->emitSubOffset(*RT, E)) 2284 return false; 2285 } 2286 2287 if (DiscardResult) 2288 return this->emitStorePopPtr(E); 2289 return this->emitStorePtr(E); 2290 } 2291 2292 template <class Emitter> 2293 bool Compiler<Emitter>::VisitCompoundAssignOperator( 2294 const CompoundAssignOperator *E) { 2295 2296 const Expr *LHS = E->getLHS(); 2297 const Expr *RHS = E->getRHS(); 2298 std::optional<PrimType> LHSComputationT = 2299 classify(E->getComputationLHSType()); 2300 std::optional<PrimType> LT = classify(LHS->getType()); 2301 std::optional<PrimType> RT = classify(RHS->getType()); 2302 std::optional<PrimType> ResultT = classify(E->getType()); 2303 2304 if (!Ctx.getLangOpts().CPlusPlus14) 2305 return this->visit(RHS) && this->visit(LHS) && this->emitError(E); 2306 2307 if (!LT || !RT || !ResultT || !LHSComputationT) 2308 return false; 2309 2310 // Handle floating point operations separately here, since they 2311 // require special care. 2312 2313 if (ResultT == PT_Float || RT == PT_Float) 2314 return VisitFloatCompoundAssignOperator(E); 2315 2316 if (E->getType()->isPointerType()) 2317 return VisitPointerCompoundAssignOperator(E); 2318 2319 assert(!E->getType()->isPointerType() && "Handled above"); 2320 assert(!E->getType()->isFloatingType() && "Handled above"); 2321 2322 // C++17 onwards require that we evaluate the RHS first. 2323 // Compute RHS and save it in a temporary variable so we can 2324 // load it again later. 2325 // FIXME: Compound assignments are unsequenced in C, so we might 2326 // have to figure out how to reject them. 2327 if (!visit(RHS)) 2328 return false; 2329 2330 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2331 2332 if (!this->emitSetLocal(*RT, TempOffset, E)) 2333 return false; 2334 2335 // Get LHS pointer, load its value and cast it to the 2336 // computation type if necessary. 2337 if (!visit(LHS)) 2338 return false; 2339 if (!this->emitLoad(*LT, E)) 2340 return false; 2341 if (LT != LHSComputationT) { 2342 if (!this->emitCast(*LT, *LHSComputationT, E)) 2343 return false; 2344 } 2345 2346 // Get the RHS value on the stack. 2347 if (!this->emitGetLocal(*RT, TempOffset, E)) 2348 return false; 2349 2350 // Perform operation. 2351 switch (E->getOpcode()) { 2352 case BO_AddAssign: 2353 if (!this->emitAdd(*LHSComputationT, E)) 2354 return false; 2355 break; 2356 case BO_SubAssign: 2357 if (!this->emitSub(*LHSComputationT, E)) 2358 return false; 2359 break; 2360 case BO_MulAssign: 2361 if (!this->emitMul(*LHSComputationT, E)) 2362 return false; 2363 break; 2364 case BO_DivAssign: 2365 if (!this->emitDiv(*LHSComputationT, E)) 2366 return false; 2367 break; 2368 case BO_RemAssign: 2369 if (!this->emitRem(*LHSComputationT, E)) 2370 return false; 2371 break; 2372 case BO_ShlAssign: 2373 if (!this->emitShl(*LHSComputationT, *RT, E)) 2374 return false; 2375 break; 2376 case BO_ShrAssign: 2377 if (!this->emitShr(*LHSComputationT, *RT, E)) 2378 return false; 2379 break; 2380 case BO_AndAssign: 2381 if (!this->emitBitAnd(*LHSComputationT, E)) 2382 return false; 2383 break; 2384 case BO_XorAssign: 2385 if (!this->emitBitXor(*LHSComputationT, E)) 2386 return false; 2387 break; 2388 case BO_OrAssign: 2389 if (!this->emitBitOr(*LHSComputationT, E)) 2390 return false; 2391 break; 2392 default: 2393 llvm_unreachable("Unimplemented compound assign operator"); 2394 } 2395 2396 // And now cast from LHSComputationT to ResultT. 2397 if (ResultT != LHSComputationT) { 2398 if (!this->emitCast(*LHSComputationT, *ResultT, E)) 2399 return false; 2400 } 2401 2402 // And store the result in LHS. 2403 if (DiscardResult) { 2404 if (LHS->refersToBitField()) 2405 return this->emitStoreBitFieldPop(*ResultT, E); 2406 return this->emitStorePop(*ResultT, E); 2407 } 2408 if (LHS->refersToBitField()) 2409 return this->emitStoreBitField(*ResultT, E); 2410 return this->emitStore(*ResultT, E); 2411 } 2412 2413 template <class Emitter> 2414 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) { 2415 LocalScope<Emitter> ES(this); 2416 const Expr *SubExpr = E->getSubExpr(); 2417 2418 return this->delegate(SubExpr) && ES.destroyLocals(E); 2419 } 2420 2421 template <class Emitter> 2422 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr( 2423 const MaterializeTemporaryExpr *E) { 2424 const Expr *SubExpr = E->getSubExpr(); 2425 2426 if (Initializing) { 2427 // We already have a value, just initialize that. 2428 return this->delegate(SubExpr); 2429 } 2430 // If we don't end up using the materialized temporary anyway, don't 2431 // bother creating it. 2432 if (DiscardResult) 2433 return this->discard(SubExpr); 2434 2435 // When we're initializing a global variable *or* the storage duration of 2436 // the temporary is explicitly static, create a global variable. 2437 std::optional<PrimType> SubExprT = classify(SubExpr); 2438 bool IsStatic = E->getStorageDuration() == SD_Static; 2439 if (IsStatic) { 2440 std::optional<unsigned> GlobalIndex = P.createGlobal(E); 2441 if (!GlobalIndex) 2442 return false; 2443 2444 const LifetimeExtendedTemporaryDecl *TempDecl = 2445 E->getLifetimeExtendedTemporaryDecl(); 2446 if (IsStatic) 2447 assert(TempDecl); 2448 2449 if (SubExprT) { 2450 if (!this->visit(SubExpr)) 2451 return false; 2452 if (IsStatic) { 2453 if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E)) 2454 return false; 2455 } else { 2456 if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E)) 2457 return false; 2458 } 2459 return this->emitGetPtrGlobal(*GlobalIndex, E); 2460 } 2461 2462 // Non-primitive values. 2463 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2464 return false; 2465 if (!this->visitInitializer(SubExpr)) 2466 return false; 2467 if (IsStatic) 2468 return this->emitInitGlobalTempComp(TempDecl, E); 2469 return true; 2470 } 2471 2472 // For everyhing else, use local variables. 2473 if (SubExprT) { 2474 unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true, 2475 /*IsExtended=*/true); 2476 if (!this->visit(SubExpr)) 2477 return false; 2478 if (!this->emitSetLocal(*SubExprT, LocalIndex, E)) 2479 return false; 2480 return this->emitGetPtrLocal(LocalIndex, E); 2481 } else { 2482 const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); 2483 if (std::optional<unsigned> LocalIndex = 2484 allocateLocal(Inner, E->getExtendingDecl())) { 2485 InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); 2486 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2487 return false; 2488 return this->visitInitializer(SubExpr); 2489 } 2490 } 2491 return false; 2492 } 2493 2494 template <class Emitter> 2495 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr( 2496 const CXXBindTemporaryExpr *E) { 2497 return this->delegate(E->getSubExpr()); 2498 } 2499 2500 template <class Emitter> 2501 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 2502 const Expr *Init = E->getInitializer(); 2503 if (DiscardResult) 2504 return this->discard(Init); 2505 2506 if (Initializing) { 2507 // We already have a value, just initialize that. 2508 return this->visitInitializer(Init) && this->emitFinishInit(E); 2509 } 2510 2511 std::optional<PrimType> T = classify(E->getType()); 2512 if (E->isFileScope()) { 2513 // Avoid creating a variable if this is a primitive RValue anyway. 2514 if (T && !E->isLValue()) 2515 return this->delegate(Init); 2516 2517 if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) { 2518 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2519 return false; 2520 2521 if (T) { 2522 if (!this->visit(Init)) 2523 return false; 2524 return this->emitInitGlobal(*T, *GlobalIndex, E); 2525 } 2526 2527 return this->visitInitializer(Init) && this->emitFinishInit(E); 2528 } 2529 2530 return false; 2531 } 2532 2533 // Otherwise, use a local variable. 2534 if (T && !E->isLValue()) { 2535 // For primitive types, we just visit the initializer. 2536 return this->delegate(Init); 2537 } else { 2538 unsigned LocalIndex; 2539 2540 if (T) 2541 LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false); 2542 else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init)) 2543 LocalIndex = *MaybeIndex; 2544 else 2545 return false; 2546 2547 if (!this->emitGetPtrLocal(LocalIndex, E)) 2548 return false; 2549 2550 if (T) { 2551 if (!this->visit(Init)) { 2552 return false; 2553 } 2554 return this->emitInit(*T, E); 2555 } else { 2556 if (!this->visitInitializer(Init) || !this->emitFinishInit(E)) 2557 return false; 2558 } 2559 return true; 2560 } 2561 2562 return false; 2563 } 2564 2565 template <class Emitter> 2566 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) { 2567 if (DiscardResult) 2568 return true; 2569 if (E->getType()->isBooleanType()) 2570 return this->emitConstBool(E->getValue(), E); 2571 return this->emitConst(E->getValue(), E); 2572 } 2573 2574 template <class Emitter> 2575 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 2576 if (DiscardResult) 2577 return true; 2578 return this->emitConst(E->getValue(), E); 2579 } 2580 2581 template <class Emitter> 2582 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) { 2583 if (DiscardResult) 2584 return true; 2585 2586 assert(Initializing); 2587 const Record *R = P.getOrCreateRecord(E->getLambdaClass()); 2588 2589 auto *CaptureInitIt = E->capture_init_begin(); 2590 // Initialize all fields (which represent lambda captures) of the 2591 // record with their initializers. 2592 for (const Record::Field &F : R->fields()) { 2593 const Expr *Init = *CaptureInitIt; 2594 ++CaptureInitIt; 2595 2596 if (!Init) 2597 continue; 2598 2599 if (std::optional<PrimType> T = classify(Init)) { 2600 if (!this->visit(Init)) 2601 return false; 2602 2603 if (!this->emitInitField(*T, F.Offset, E)) 2604 return false; 2605 } else { 2606 if (!this->emitGetPtrField(F.Offset, E)) 2607 return false; 2608 2609 if (!this->visitInitializer(Init)) 2610 return false; 2611 2612 if (!this->emitPopPtr(E)) 2613 return false; 2614 } 2615 } 2616 2617 return true; 2618 } 2619 2620 template <class Emitter> 2621 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) { 2622 if (DiscardResult) 2623 return true; 2624 2625 return this->delegate(E->getFunctionName()); 2626 } 2627 2628 template <class Emitter> 2629 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) { 2630 if (E->getSubExpr() && !this->discard(E->getSubExpr())) 2631 return false; 2632 2633 return this->emitInvalid(E); 2634 } 2635 2636 template <class Emitter> 2637 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr( 2638 const CXXReinterpretCastExpr *E) { 2639 const Expr *SubExpr = E->getSubExpr(); 2640 2641 std::optional<PrimType> FromT = classify(SubExpr); 2642 std::optional<PrimType> ToT = classify(E); 2643 2644 if (!FromT || !ToT) 2645 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E); 2646 2647 if (FromT == PT_Ptr || ToT == PT_Ptr) { 2648 // Both types could be PT_Ptr because their expressions are glvalues. 2649 std::optional<PrimType> PointeeFromT; 2650 if (SubExpr->getType()->isPointerOrReferenceType()) 2651 PointeeFromT = classify(SubExpr->getType()->getPointeeType()); 2652 else 2653 PointeeFromT = classify(SubExpr->getType()); 2654 2655 std::optional<PrimType> PointeeToT; 2656 if (E->getType()->isPointerOrReferenceType()) 2657 PointeeToT = classify(E->getType()->getPointeeType()); 2658 else 2659 PointeeToT = classify(E->getType()); 2660 2661 bool Fatal = true; 2662 if (PointeeToT && PointeeFromT) { 2663 if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT)) 2664 Fatal = false; 2665 } 2666 2667 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2668 return false; 2669 2670 if (E->getCastKind() == CK_LValueBitCast) 2671 return this->delegate(SubExpr); 2672 return this->VisitCastExpr(E); 2673 } 2674 2675 // Try to actually do the cast. 2676 bool Fatal = (ToT != FromT); 2677 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2678 return false; 2679 2680 return this->VisitCastExpr(E); 2681 } 2682 2683 template <class Emitter> 2684 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 2685 assert(E->getType()->isBooleanType()); 2686 2687 if (DiscardResult) 2688 return true; 2689 return this->emitConstBool(E->getValue(), E); 2690 } 2691 2692 template <class Emitter> 2693 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) { 2694 QualType T = E->getType(); 2695 assert(!classify(T)); 2696 2697 if (T->isRecordType()) { 2698 const CXXConstructorDecl *Ctor = E->getConstructor(); 2699 2700 // Trivial copy/move constructor. Avoid copy. 2701 if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() && 2702 Ctor->isTrivial() && 2703 E->getArg(0)->isTemporaryObject(Ctx.getASTContext(), 2704 T->getAsCXXRecordDecl())) 2705 return this->visitInitializer(E->getArg(0)); 2706 2707 // If we're discarding a construct expression, we still need 2708 // to allocate a variable and call the constructor and destructor. 2709 if (DiscardResult) { 2710 if (Ctor->isTrivial()) 2711 return true; 2712 assert(!Initializing); 2713 std::optional<unsigned> LocalIndex = allocateLocal(E); 2714 2715 if (!LocalIndex) 2716 return false; 2717 2718 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2719 return false; 2720 } 2721 2722 // Zero initialization. 2723 if (E->requiresZeroInitialization()) { 2724 const Record *R = getRecord(E->getType()); 2725 2726 if (!this->visitZeroRecordInitializer(R, E)) 2727 return false; 2728 2729 // If the constructor is trivial anyway, we're done. 2730 if (Ctor->isTrivial()) 2731 return true; 2732 } 2733 2734 const Function *Func = getFunction(Ctor); 2735 2736 if (!Func) 2737 return false; 2738 2739 assert(Func->hasThisPointer()); 2740 assert(!Func->hasRVO()); 2741 2742 // The This pointer is already on the stack because this is an initializer, 2743 // but we need to dup() so the call() below has its own copy. 2744 if (!this->emitDupPtr(E)) 2745 return false; 2746 2747 // Constructor arguments. 2748 for (const auto *Arg : E->arguments()) { 2749 if (!this->visit(Arg)) 2750 return false; 2751 } 2752 2753 if (Func->isVariadic()) { 2754 uint32_t VarArgSize = 0; 2755 unsigned NumParams = Func->getNumWrittenParams(); 2756 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) { 2757 VarArgSize += 2758 align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr))); 2759 } 2760 if (!this->emitCallVar(Func, VarArgSize, E)) 2761 return false; 2762 } else { 2763 if (!this->emitCall(Func, 0, E)) { 2764 // When discarding, we don't need the result anyway, so clean up 2765 // the instance dup we did earlier in case surrounding code wants 2766 // to keep evaluating. 2767 if (DiscardResult) 2768 (void)this->emitPopPtr(E); 2769 return false; 2770 } 2771 } 2772 2773 if (DiscardResult) 2774 return this->emitPopPtr(E); 2775 return this->emitFinishInit(E); 2776 } 2777 2778 if (T->isArrayType()) { 2779 const ConstantArrayType *CAT = 2780 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 2781 if (!CAT) 2782 return false; 2783 2784 size_t NumElems = CAT->getZExtSize(); 2785 const Function *Func = getFunction(E->getConstructor()); 2786 if (!Func || !Func->isConstexpr()) 2787 return false; 2788 2789 // FIXME(perf): We're calling the constructor once per array element here, 2790 // in the old intepreter we had a special-case for trivial constructors. 2791 for (size_t I = 0; I != NumElems; ++I) { 2792 if (!this->emitConstUint64(I, E)) 2793 return false; 2794 if (!this->emitArrayElemPtrUint64(E)) 2795 return false; 2796 2797 // Constructor arguments. 2798 for (const auto *Arg : E->arguments()) { 2799 if (!this->visit(Arg)) 2800 return false; 2801 } 2802 2803 if (!this->emitCall(Func, 0, E)) 2804 return false; 2805 } 2806 return true; 2807 } 2808 2809 return false; 2810 } 2811 2812 template <class Emitter> 2813 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) { 2814 if (DiscardResult) 2815 return true; 2816 2817 const APValue Val = 2818 E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr); 2819 2820 // Things like __builtin_LINE(). 2821 if (E->getType()->isIntegerType()) { 2822 assert(Val.isInt()); 2823 const APSInt &I = Val.getInt(); 2824 return this->emitConst(I, E); 2825 } 2826 // Otherwise, the APValue is an LValue, with only one element. 2827 // Theoretically, we don't need the APValue at all of course. 2828 assert(E->getType()->isPointerType()); 2829 assert(Val.isLValue()); 2830 const APValue::LValueBase &Base = Val.getLValueBase(); 2831 if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>()) 2832 return this->visit(LValueExpr); 2833 2834 // Otherwise, we have a decl (which is the case for 2835 // __builtin_source_location). 2836 assert(Base.is<const ValueDecl *>()); 2837 assert(Val.getLValuePath().size() == 0); 2838 const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>(); 2839 assert(BaseDecl); 2840 2841 auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl); 2842 2843 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD); 2844 if (!GlobalIndex) 2845 return false; 2846 2847 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2848 return false; 2849 2850 const Record *R = getRecord(E->getType()); 2851 const APValue &V = UGCD->getValue(); 2852 for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) { 2853 const Record::Field *F = R->getField(I); 2854 const APValue &FieldValue = V.getStructField(I); 2855 2856 PrimType FieldT = classifyPrim(F->Decl->getType()); 2857 2858 if (!this->visitAPValue(FieldValue, FieldT, E)) 2859 return false; 2860 if (!this->emitInitField(FieldT, F->Offset, E)) 2861 return false; 2862 } 2863 2864 // Leave the pointer to the global on the stack. 2865 return true; 2866 } 2867 2868 template <class Emitter> 2869 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) { 2870 unsigned N = E->getNumComponents(); 2871 if (N == 0) 2872 return false; 2873 2874 for (unsigned I = 0; I != N; ++I) { 2875 const OffsetOfNode &Node = E->getComponent(I); 2876 if (Node.getKind() == OffsetOfNode::Array) { 2877 const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex()); 2878 PrimType IndexT = classifyPrim(ArrayIndexExpr->getType()); 2879 2880 if (DiscardResult) { 2881 if (!this->discard(ArrayIndexExpr)) 2882 return false; 2883 continue; 2884 } 2885 2886 if (!this->visit(ArrayIndexExpr)) 2887 return false; 2888 // Cast to Sint64. 2889 if (IndexT != PT_Sint64) { 2890 if (!this->emitCast(IndexT, PT_Sint64, E)) 2891 return false; 2892 } 2893 } 2894 } 2895 2896 if (DiscardResult) 2897 return true; 2898 2899 PrimType T = classifyPrim(E->getType()); 2900 return this->emitOffsetOf(T, E, E); 2901 } 2902 2903 template <class Emitter> 2904 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr( 2905 const CXXScalarValueInitExpr *E) { 2906 QualType Ty = E->getType(); 2907 2908 if (DiscardResult || Ty->isVoidType()) 2909 return true; 2910 2911 if (std::optional<PrimType> T = classify(Ty)) 2912 return this->visitZeroInitializer(*T, Ty, E); 2913 2914 if (const auto *CT = Ty->getAs<ComplexType>()) { 2915 if (!Initializing) { 2916 std::optional<unsigned> LocalIndex = allocateLocal(E); 2917 if (!LocalIndex) 2918 return false; 2919 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2920 return false; 2921 } 2922 2923 // Initialize both fields to 0. 2924 QualType ElemQT = CT->getElementType(); 2925 PrimType ElemT = classifyPrim(ElemQT); 2926 2927 for (unsigned I = 0; I != 2; ++I) { 2928 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 2929 return false; 2930 if (!this->emitInitElem(ElemT, I, E)) 2931 return false; 2932 } 2933 return true; 2934 } 2935 2936 if (const auto *VT = Ty->getAs<VectorType>()) { 2937 // FIXME: Code duplication with the _Complex case above. 2938 if (!Initializing) { 2939 std::optional<unsigned> LocalIndex = allocateLocal(E); 2940 if (!LocalIndex) 2941 return false; 2942 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2943 return false; 2944 } 2945 2946 // Initialize all fields to 0. 2947 QualType ElemQT = VT->getElementType(); 2948 PrimType ElemT = classifyPrim(ElemQT); 2949 2950 for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) { 2951 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 2952 return false; 2953 if (!this->emitInitElem(ElemT, I, E)) 2954 return false; 2955 } 2956 return true; 2957 } 2958 2959 return false; 2960 } 2961 2962 template <class Emitter> 2963 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 2964 return this->emitConst(E->getPackLength(), E); 2965 } 2966 2967 template <class Emitter> 2968 bool Compiler<Emitter>::VisitGenericSelectionExpr( 2969 const GenericSelectionExpr *E) { 2970 return this->delegate(E->getResultExpr()); 2971 } 2972 2973 template <class Emitter> 2974 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) { 2975 return this->delegate(E->getChosenSubExpr()); 2976 } 2977 2978 template <class Emitter> 2979 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 2980 if (DiscardResult) 2981 return true; 2982 2983 return this->emitConst(E->getValue(), E); 2984 } 2985 2986 template <class Emitter> 2987 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr( 2988 const CXXInheritedCtorInitExpr *E) { 2989 const CXXConstructorDecl *Ctor = E->getConstructor(); 2990 assert(!Ctor->isTrivial() && 2991 "Trivial CXXInheritedCtorInitExpr, implement. (possible?)"); 2992 const Function *F = this->getFunction(Ctor); 2993 assert(F); 2994 assert(!F->hasRVO()); 2995 assert(F->hasThisPointer()); 2996 2997 if (!this->emitDupPtr(SourceInfo{})) 2998 return false; 2999 3000 // Forward all arguments of the current function (which should be a 3001 // constructor itself) to the inherited ctor. 3002 // This is necessary because the calling code has pushed the pointer 3003 // of the correct base for us already, but the arguments need 3004 // to come after. 3005 unsigned Offset = align(primSize(PT_Ptr)); // instance pointer. 3006 for (const ParmVarDecl *PD : Ctor->parameters()) { 3007 PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr); 3008 3009 if (!this->emitGetParam(PT, Offset, E)) 3010 return false; 3011 Offset += align(primSize(PT)); 3012 } 3013 3014 return this->emitCall(F, 0, E); 3015 } 3016 3017 template <class Emitter> 3018 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) { 3019 assert(classifyPrim(E->getType()) == PT_Ptr); 3020 const Expr *Init = E->getInitializer(); 3021 QualType ElementType = E->getAllocatedType(); 3022 std::optional<PrimType> ElemT = classify(ElementType); 3023 unsigned PlacementArgs = E->getNumPlacementArgs(); 3024 bool IsNoThrow = false; 3025 3026 // FIXME: Better diagnostic. diag::note_constexpr_new_placement 3027 if (PlacementArgs != 0) { 3028 // The only new-placement list we support is of the form (std::nothrow). 3029 // 3030 // FIXME: There is no restriction on this, but it's not clear that any 3031 // other form makes any sense. We get here for cases such as: 3032 // 3033 // new (std::align_val_t{N}) X(int) 3034 // 3035 // (which should presumably be valid only if N is a multiple of 3036 // alignof(int), and in any case can't be deallocated unless N is 3037 // alignof(X) and X has new-extended alignment). 3038 if (PlacementArgs != 1 || !E->getPlacementArg(0)->getType()->isNothrowT()) 3039 return this->emitInvalid(E); 3040 3041 if (!this->discard(E->getPlacementArg(0))) 3042 return false; 3043 IsNoThrow = true; 3044 } 3045 3046 const Descriptor *Desc; 3047 if (ElemT) { 3048 if (E->isArray()) 3049 Desc = nullptr; // We're not going to use it in this case. 3050 else 3051 Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD, 3052 /*IsConst=*/false, /*IsTemporary=*/false, 3053 /*IsMutable=*/false); 3054 } else { 3055 Desc = P.createDescriptor( 3056 E, ElementType.getTypePtr(), 3057 E->isArray() ? std::nullopt : Descriptor::InlineDescMD, 3058 /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init); 3059 } 3060 3061 if (E->isArray()) { 3062 std::optional<const Expr *> ArraySizeExpr = E->getArraySize(); 3063 if (!ArraySizeExpr) 3064 return false; 3065 3066 const Expr *Stripped = *ArraySizeExpr; 3067 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 3068 Stripped = ICE->getSubExpr()) 3069 if (ICE->getCastKind() != CK_NoOp && 3070 ICE->getCastKind() != CK_IntegralCast) 3071 break; 3072 3073 PrimType SizeT = classifyPrim(Stripped->getType()); 3074 3075 if (!this->visit(Stripped)) 3076 return false; 3077 3078 if (ElemT) { 3079 // N primitive elements. 3080 if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E)) 3081 return false; 3082 } else { 3083 // N Composite elements. 3084 if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E)) 3085 return false; 3086 } 3087 3088 if (Init && !this->visitInitializer(Init)) 3089 return false; 3090 3091 } else { 3092 // Allocate just one element. 3093 if (!this->emitAlloc(Desc, E)) 3094 return false; 3095 3096 if (Init) { 3097 if (ElemT) { 3098 if (!this->visit(Init)) 3099 return false; 3100 3101 if (!this->emitInit(*ElemT, E)) 3102 return false; 3103 } else { 3104 // Composite. 3105 if (!this->visitInitializer(Init)) 3106 return false; 3107 } 3108 } 3109 } 3110 3111 if (DiscardResult) 3112 return this->emitPopPtr(E); 3113 3114 return true; 3115 } 3116 3117 template <class Emitter> 3118 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 3119 const Expr *Arg = E->getArgument(); 3120 3121 // Arg must be an lvalue. 3122 if (!this->visit(Arg)) 3123 return false; 3124 3125 return this->emitFree(E->isArrayForm(), E); 3126 } 3127 3128 template <class Emitter> 3129 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) { 3130 const Function *Func = nullptr; 3131 if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E)) 3132 Func = F; 3133 3134 if (!Func) 3135 return false; 3136 return this->emitGetFnPtr(Func, E); 3137 } 3138 3139 template <class Emitter> 3140 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 3141 assert(Ctx.getLangOpts().CPlusPlus); 3142 return this->emitConstBool(E->getValue(), E); 3143 } 3144 3145 template <class Emitter> 3146 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 3147 if (DiscardResult) 3148 return true; 3149 assert(!Initializing); 3150 3151 const MSGuidDecl *GuidDecl = E->getGuidDecl(); 3152 const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl(); 3153 assert(RD); 3154 // If the definiton of the result type is incomplete, just return a dummy. 3155 // If (and when) that is read from, we will fail, but not now. 3156 if (!RD->isCompleteDefinition()) { 3157 if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl)) 3158 return this->emitGetPtrGlobal(*I, E); 3159 return false; 3160 } 3161 3162 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl); 3163 if (!GlobalIndex) 3164 return false; 3165 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 3166 return false; 3167 3168 assert(this->getRecord(E->getType())); 3169 3170 const APValue &V = GuidDecl->getAsAPValue(); 3171 if (V.getKind() == APValue::None) 3172 return true; 3173 3174 assert(V.isStruct()); 3175 assert(V.getStructNumBases() == 0); 3176 if (!this->visitAPValueInitializer(V, E)) 3177 return false; 3178 3179 return this->emitFinishInit(E); 3180 } 3181 3182 template <class Emitter> 3183 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) { 3184 assert(classifyPrim(E->getType()) == PT_Bool); 3185 if (DiscardResult) 3186 return true; 3187 return this->emitConstBool(E->isSatisfied(), E); 3188 } 3189 3190 template <class Emitter> 3191 bool Compiler<Emitter>::VisitConceptSpecializationExpr( 3192 const ConceptSpecializationExpr *E) { 3193 assert(classifyPrim(E->getType()) == PT_Bool); 3194 if (DiscardResult) 3195 return true; 3196 return this->emitConstBool(E->isSatisfied(), E); 3197 } 3198 3199 template <class Emitter> 3200 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator( 3201 const CXXRewrittenBinaryOperator *E) { 3202 return this->delegate(E->getSemanticForm()); 3203 } 3204 3205 template <class Emitter> 3206 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) { 3207 3208 for (const Expr *SemE : E->semantics()) { 3209 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { 3210 if (SemE == E->getResultExpr()) 3211 return false; 3212 3213 if (OVE->isUnique()) 3214 continue; 3215 3216 if (!this->discard(OVE)) 3217 return false; 3218 } else if (SemE == E->getResultExpr()) { 3219 if (!this->delegate(SemE)) 3220 return false; 3221 } else { 3222 if (!this->discard(SemE)) 3223 return false; 3224 } 3225 } 3226 return true; 3227 } 3228 3229 template <class Emitter> 3230 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) { 3231 return this->delegate(E->getSelectedExpr()); 3232 } 3233 3234 template <class Emitter> 3235 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) { 3236 return this->emitError(E); 3237 } 3238 3239 template <class Emitter> 3240 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) { 3241 assert(E->getType()->isVoidPointerType()); 3242 3243 unsigned Offset = allocateLocalPrimitive( 3244 E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3245 3246 return this->emitGetLocal(PT_Ptr, Offset, E); 3247 } 3248 3249 template <class Emitter> 3250 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) { 3251 assert(Initializing); 3252 const auto *VT = E->getType()->castAs<VectorType>(); 3253 QualType ElemType = VT->getElementType(); 3254 PrimType ElemT = classifyPrim(ElemType); 3255 const Expr *Src = E->getSrcExpr(); 3256 PrimType SrcElemT = 3257 classifyPrim(Src->getType()->castAs<VectorType>()->getElementType()); 3258 3259 unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false); 3260 if (!this->visit(Src)) 3261 return false; 3262 if (!this->emitSetLocal(PT_Ptr, SrcOffset, E)) 3263 return false; 3264 3265 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 3266 if (!this->emitGetLocal(PT_Ptr, SrcOffset, E)) 3267 return false; 3268 if (!this->emitArrayElemPop(SrcElemT, I, E)) 3269 return false; 3270 if (SrcElemT != ElemT) { 3271 if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E)) 3272 return false; 3273 } 3274 if (!this->emitInitElem(ElemT, I, E)) 3275 return false; 3276 } 3277 3278 return true; 3279 } 3280 3281 template <class Emitter> 3282 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { 3283 assert(Initializing); 3284 assert(E->getNumSubExprs() > 2); 3285 3286 const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)}; 3287 const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>(); 3288 PrimType ElemT = classifyPrim(VT->getElementType()); 3289 unsigned NumInputElems = VT->getNumElements(); 3290 unsigned NumOutputElems = E->getNumSubExprs() - 2; 3291 assert(NumOutputElems > 0); 3292 3293 // Save both input vectors to a local variable. 3294 unsigned VectorOffsets[2]; 3295 for (unsigned I = 0; I != 2; ++I) { 3296 VectorOffsets[I] = this->allocateLocalPrimitive( 3297 Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3298 if (!this->visit(Vecs[I])) 3299 return false; 3300 if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E)) 3301 return false; 3302 } 3303 for (unsigned I = 0; I != NumOutputElems; ++I) { 3304 APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I); 3305 if (ShuffleIndex == -1) 3306 return this->emitInvalid(E); // FIXME: Better diagnostic. 3307 3308 assert(ShuffleIndex < (NumInputElems * 2)); 3309 if (!this->emitGetLocal(PT_Ptr, 3310 VectorOffsets[ShuffleIndex >= NumInputElems], E)) 3311 return false; 3312 unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems; 3313 if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E)) 3314 return false; 3315 3316 if (!this->emitInitElem(ElemT, I, E)) 3317 return false; 3318 } 3319 3320 return true; 3321 } 3322 3323 template <class Emitter> 3324 bool Compiler<Emitter>::VisitExtVectorElementExpr( 3325 const ExtVectorElementExpr *E) { 3326 const Expr *Base = E->getBase(); 3327 assert( 3328 Base->getType()->isVectorType() || 3329 Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType()); 3330 3331 SmallVector<uint32_t, 4> Indices; 3332 E->getEncodedElementAccess(Indices); 3333 3334 if (Indices.size() == 1) { 3335 if (!this->visit(Base)) 3336 return false; 3337 3338 if (E->isGLValue()) { 3339 if (!this->emitConstUint32(Indices[0], E)) 3340 return false; 3341 return this->emitArrayElemPtrPop(PT_Uint32, E); 3342 } 3343 // Else, also load the value. 3344 return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E); 3345 } 3346 3347 // Create a local variable for the base. 3348 unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true, 3349 /*IsExtended=*/false); 3350 if (!this->visit(Base)) 3351 return false; 3352 if (!this->emitSetLocal(PT_Ptr, BaseOffset, E)) 3353 return false; 3354 3355 // Now the vector variable for the return value. 3356 if (!Initializing) { 3357 std::optional<unsigned> ResultIndex; 3358 ResultIndex = allocateLocal(E); 3359 if (!ResultIndex) 3360 return false; 3361 if (!this->emitGetPtrLocal(*ResultIndex, E)) 3362 return false; 3363 } 3364 3365 assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements()); 3366 3367 PrimType ElemT = 3368 classifyPrim(E->getType()->getAs<VectorType>()->getElementType()); 3369 uint32_t DstIndex = 0; 3370 for (uint32_t I : Indices) { 3371 if (!this->emitGetLocal(PT_Ptr, BaseOffset, E)) 3372 return false; 3373 if (!this->emitArrayElemPop(ElemT, I, E)) 3374 return false; 3375 if (!this->emitInitElem(ElemT, DstIndex, E)) 3376 return false; 3377 ++DstIndex; 3378 } 3379 3380 // Leave the result pointer on the stack. 3381 assert(!DiscardResult); 3382 return true; 3383 } 3384 3385 template <class Emitter> 3386 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 3387 const Expr *SubExpr = E->getSubExpr(); 3388 if (!E->isExpressibleAsConstantInitializer()) 3389 return this->discard(SubExpr) && this->emitInvalid(E); 3390 3391 assert(classifyPrim(E) == PT_Ptr); 3392 if (std::optional<unsigned> I = P.getOrCreateDummy(E)) 3393 return this->emitGetPtrGlobal(*I, E); 3394 3395 return false; 3396 } 3397 3398 template <class Emitter> 3399 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr( 3400 const CXXStdInitializerListExpr *E) { 3401 const Expr *SubExpr = E->getSubExpr(); 3402 const ConstantArrayType *ArrayType = 3403 Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType()); 3404 const Record *R = getRecord(E->getType()); 3405 assert(Initializing); 3406 assert(SubExpr->isGLValue()); 3407 3408 if (!this->visit(SubExpr)) 3409 return false; 3410 if (!this->emitConstUint8(0, E)) 3411 return false; 3412 if (!this->emitArrayElemPtrPopUint8(E)) 3413 return false; 3414 if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E)) 3415 return false; 3416 3417 PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType()); 3418 if (isIntegralType(SecondFieldT)) { 3419 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), 3420 SecondFieldT, E)) 3421 return false; 3422 return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E); 3423 } 3424 assert(SecondFieldT == PT_Ptr); 3425 3426 if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E)) 3427 return false; 3428 if (!this->emitExpandPtr(E)) 3429 return false; 3430 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E)) 3431 return false; 3432 if (!this->emitArrayElemPtrPop(PT_Uint64, E)) 3433 return false; 3434 return this->emitInitFieldPtr(R->getField(1u)->Offset, E); 3435 } 3436 3437 template <class Emitter> 3438 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) { 3439 BlockScope<Emitter> BS(this); 3440 StmtExprScope<Emitter> SS(this); 3441 3442 const CompoundStmt *CS = E->getSubStmt(); 3443 const Stmt *Result = CS->getStmtExprResult(); 3444 for (const Stmt *S : CS->body()) { 3445 if (S != Result) { 3446 if (!this->visitStmt(S)) 3447 return false; 3448 continue; 3449 } 3450 3451 assert(S == Result); 3452 if (const Expr *ResultExpr = dyn_cast<Expr>(S)) 3453 return this->delegate(ResultExpr); 3454 return this->emitUnsupported(E); 3455 } 3456 3457 return BS.destroyLocals(); 3458 } 3459 3460 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) { 3461 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true, 3462 /*NewInitializing=*/false); 3463 return this->Visit(E); 3464 } 3465 3466 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) { 3467 // We're basically doing: 3468 // OptionScope<Emitter> Scope(this, DicardResult, Initializing); 3469 // but that's unnecessary of course. 3470 return this->Visit(E); 3471 } 3472 3473 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) { 3474 if (E->getType().isNull()) 3475 return false; 3476 3477 if (E->getType()->isVoidType()) 3478 return this->discard(E); 3479 3480 // Create local variable to hold the return value. 3481 if (!E->isGLValue() && !E->getType()->isAnyComplexType() && 3482 !classify(E->getType())) { 3483 std::optional<unsigned> LocalIndex = allocateLocal(E); 3484 if (!LocalIndex) 3485 return false; 3486 3487 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3488 return false; 3489 return this->visitInitializer(E); 3490 } 3491 3492 // Otherwise,we have a primitive return value, produce the value directly 3493 // and push it on the stack. 3494 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3495 /*NewInitializing=*/false); 3496 return this->Visit(E); 3497 } 3498 3499 template <class Emitter> 3500 bool Compiler<Emitter>::visitInitializer(const Expr *E) { 3501 assert(!classify(E->getType())); 3502 3503 if (!this->checkLiteralType(E)) 3504 return false; 3505 3506 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3507 /*NewInitializing=*/true); 3508 return this->Visit(E); 3509 } 3510 3511 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) { 3512 std::optional<PrimType> T = classify(E->getType()); 3513 if (!T) { 3514 // Convert complex values to bool. 3515 if (E->getType()->isAnyComplexType()) { 3516 if (!this->visit(E)) 3517 return false; 3518 return this->emitComplexBoolCast(E); 3519 } 3520 return false; 3521 } 3522 3523 if (!this->visit(E)) 3524 return false; 3525 3526 if (T == PT_Bool) 3527 return true; 3528 3529 // Convert pointers to bool. 3530 if (T == PT_Ptr || T == PT_FnPtr) { 3531 if (!this->emitNull(*T, nullptr, E)) 3532 return false; 3533 return this->emitNE(*T, E); 3534 } 3535 3536 // Or Floats. 3537 if (T == PT_Float) 3538 return this->emitCastFloatingIntegralBool(getFPOptions(E), E); 3539 3540 // Or anything else we can. 3541 return this->emitCast(*T, PT_Bool, E); 3542 } 3543 3544 template <class Emitter> 3545 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT, 3546 const Expr *E) { 3547 switch (T) { 3548 case PT_Bool: 3549 return this->emitZeroBool(E); 3550 case PT_Sint8: 3551 return this->emitZeroSint8(E); 3552 case PT_Uint8: 3553 return this->emitZeroUint8(E); 3554 case PT_Sint16: 3555 return this->emitZeroSint16(E); 3556 case PT_Uint16: 3557 return this->emitZeroUint16(E); 3558 case PT_Sint32: 3559 return this->emitZeroSint32(E); 3560 case PT_Uint32: 3561 return this->emitZeroUint32(E); 3562 case PT_Sint64: 3563 return this->emitZeroSint64(E); 3564 case PT_Uint64: 3565 return this->emitZeroUint64(E); 3566 case PT_IntAP: 3567 return this->emitZeroIntAP(Ctx.getBitWidth(QT), E); 3568 case PT_IntAPS: 3569 return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E); 3570 case PT_Ptr: 3571 return this->emitNullPtr(nullptr, E); 3572 case PT_FnPtr: 3573 return this->emitNullFnPtr(nullptr, E); 3574 case PT_MemberPtr: 3575 return this->emitNullMemberPtr(nullptr, E); 3576 case PT_Float: { 3577 return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E); 3578 } 3579 } 3580 llvm_unreachable("unknown primitive type"); 3581 } 3582 3583 template <class Emitter> 3584 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R, 3585 const Expr *E) { 3586 assert(E); 3587 assert(R); 3588 // Fields 3589 for (const Record::Field &Field : R->fields()) { 3590 if (Field.Decl->isUnnamedBitField()) 3591 continue; 3592 3593 const Descriptor *D = Field.Desc; 3594 if (D->isPrimitive()) { 3595 QualType QT = D->getType(); 3596 PrimType T = classifyPrim(D->getType()); 3597 if (!this->visitZeroInitializer(T, QT, E)) 3598 return false; 3599 if (!this->emitInitField(T, Field.Offset, E)) 3600 return false; 3601 if (R->isUnion()) 3602 break; 3603 continue; 3604 } 3605 3606 if (!this->emitGetPtrField(Field.Offset, E)) 3607 return false; 3608 3609 if (D->isPrimitiveArray()) { 3610 QualType ET = D->getElemQualType(); 3611 PrimType T = classifyPrim(ET); 3612 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3613 if (!this->visitZeroInitializer(T, ET, E)) 3614 return false; 3615 if (!this->emitInitElem(T, I, E)) 3616 return false; 3617 } 3618 } else if (D->isCompositeArray()) { 3619 const Record *ElemRecord = D->ElemDesc->ElemRecord; 3620 assert(D->ElemDesc->ElemRecord); 3621 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3622 if (!this->emitConstUint32(I, E)) 3623 return false; 3624 if (!this->emitArrayElemPtr(PT_Uint32, E)) 3625 return false; 3626 if (!this->visitZeroRecordInitializer(ElemRecord, E)) 3627 return false; 3628 if (!this->emitPopPtr(E)) 3629 return false; 3630 } 3631 } else if (D->isRecord()) { 3632 if (!this->visitZeroRecordInitializer(D->ElemRecord, E)) 3633 return false; 3634 } else { 3635 assert(false); 3636 } 3637 3638 if (!this->emitFinishInitPop(E)) 3639 return false; 3640 3641 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 3642 // object's first non-static named data member is zero-initialized 3643 if (R->isUnion()) 3644 break; 3645 } 3646 3647 for (const Record::Base &B : R->bases()) { 3648 if (!this->emitGetPtrBase(B.Offset, E)) 3649 return false; 3650 if (!this->visitZeroRecordInitializer(B.R, E)) 3651 return false; 3652 if (!this->emitFinishInitPop(E)) 3653 return false; 3654 } 3655 3656 // FIXME: Virtual bases. 3657 3658 return true; 3659 } 3660 3661 template <class Emitter> 3662 template <typename T> 3663 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) { 3664 switch (Ty) { 3665 case PT_Sint8: 3666 return this->emitConstSint8(Value, E); 3667 case PT_Uint8: 3668 return this->emitConstUint8(Value, E); 3669 case PT_Sint16: 3670 return this->emitConstSint16(Value, E); 3671 case PT_Uint16: 3672 return this->emitConstUint16(Value, E); 3673 case PT_Sint32: 3674 return this->emitConstSint32(Value, E); 3675 case PT_Uint32: 3676 return this->emitConstUint32(Value, E); 3677 case PT_Sint64: 3678 return this->emitConstSint64(Value, E); 3679 case PT_Uint64: 3680 return this->emitConstUint64(Value, E); 3681 case PT_Bool: 3682 return this->emitConstBool(Value, E); 3683 case PT_Ptr: 3684 case PT_FnPtr: 3685 case PT_MemberPtr: 3686 case PT_Float: 3687 case PT_IntAP: 3688 case PT_IntAPS: 3689 llvm_unreachable("Invalid integral type"); 3690 break; 3691 } 3692 llvm_unreachable("unknown primitive type"); 3693 } 3694 3695 template <class Emitter> 3696 template <typename T> 3697 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) { 3698 return this->emitConst(Value, classifyPrim(E->getType()), E); 3699 } 3700 3701 template <class Emitter> 3702 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty, 3703 const Expr *E) { 3704 if (Ty == PT_IntAPS) 3705 return this->emitConstIntAPS(Value, E); 3706 if (Ty == PT_IntAP) 3707 return this->emitConstIntAP(Value, E); 3708 3709 if (Value.isSigned()) 3710 return this->emitConst(Value.getSExtValue(), Ty, E); 3711 return this->emitConst(Value.getZExtValue(), Ty, E); 3712 } 3713 3714 template <class Emitter> 3715 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) { 3716 return this->emitConst(Value, classifyPrim(E->getType()), E); 3717 } 3718 3719 template <class Emitter> 3720 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty, 3721 bool IsConst, 3722 bool IsExtended) { 3723 // Make sure we don't accidentally register the same decl twice. 3724 if (const auto *VD = 3725 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3726 assert(!P.getGlobal(VD)); 3727 assert(!Locals.contains(VD)); 3728 (void)VD; 3729 } 3730 3731 // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g. 3732 // (int){12} in C. Consider using Expr::isTemporaryObject() instead 3733 // or isa<MaterializeTemporaryExpr>(). 3734 Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst, 3735 Src.is<const Expr *>()); 3736 Scope::Local Local = this->createLocal(D); 3737 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) 3738 Locals.insert({VD, Local}); 3739 VarScope->add(Local, IsExtended); 3740 return Local.Offset; 3741 } 3742 3743 template <class Emitter> 3744 std::optional<unsigned> 3745 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) { 3746 // Make sure we don't accidentally register the same decl twice. 3747 if ([[maybe_unused]] const auto *VD = 3748 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3749 assert(!P.getGlobal(VD)); 3750 assert(!Locals.contains(VD)); 3751 } 3752 3753 QualType Ty; 3754 const ValueDecl *Key = nullptr; 3755 const Expr *Init = nullptr; 3756 bool IsTemporary = false; 3757 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3758 Key = VD; 3759 Ty = VD->getType(); 3760 3761 if (const auto *VarD = dyn_cast<VarDecl>(VD)) 3762 Init = VarD->getInit(); 3763 } 3764 if (auto *E = Src.dyn_cast<const Expr *>()) { 3765 IsTemporary = true; 3766 Ty = E->getType(); 3767 } 3768 3769 Descriptor *D = P.createDescriptor( 3770 Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 3771 IsTemporary, /*IsMutable=*/false, Init); 3772 if (!D) 3773 return std::nullopt; 3774 3775 Scope::Local Local = this->createLocal(D); 3776 if (Key) 3777 Locals.insert({Key, Local}); 3778 if (ExtendingDecl) 3779 VarScope->addExtended(Local, ExtendingDecl); 3780 else 3781 VarScope->add(Local, false); 3782 return Local.Offset; 3783 } 3784 3785 template <class Emitter> 3786 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) { 3787 QualType Ty = E->getType(); 3788 assert(!Ty->isRecordType()); 3789 3790 Descriptor *D = P.createDescriptor( 3791 E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 3792 /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr); 3793 assert(D); 3794 3795 Scope::Local Local = this->createLocal(D); 3796 VariableScope<Emitter> *S = VarScope; 3797 assert(S); 3798 // Attach to topmost scope. 3799 while (S->getParent()) 3800 S = S->getParent(); 3801 assert(S && !S->getParent()); 3802 S->addLocal(Local); 3803 return Local.Offset; 3804 } 3805 3806 template <class Emitter> 3807 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) { 3808 if (const PointerType *PT = dyn_cast<PointerType>(Ty)) 3809 return PT->getPointeeType()->getAs<RecordType>(); 3810 return Ty->getAs<RecordType>(); 3811 } 3812 3813 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) { 3814 if (const auto *RecordTy = getRecordTy(Ty)) 3815 return getRecord(RecordTy->getDecl()); 3816 return nullptr; 3817 } 3818 3819 template <class Emitter> 3820 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) { 3821 return P.getOrCreateRecord(RD); 3822 } 3823 3824 template <class Emitter> 3825 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) { 3826 return Ctx.getOrCreateFunction(FD); 3827 } 3828 3829 template <class Emitter> 3830 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) { 3831 LocalScope<Emitter> RootScope(this); 3832 3833 auto maybeDestroyLocals = [&]() -> bool { 3834 if (DestroyToplevelScope) 3835 return RootScope.destroyLocals(); 3836 return true; 3837 }; 3838 3839 // Void expressions. 3840 if (E->getType()->isVoidType()) { 3841 if (!visit(E)) 3842 return false; 3843 return this->emitRetVoid(E) && maybeDestroyLocals(); 3844 } 3845 3846 // Expressions with a primitive return type. 3847 if (std::optional<PrimType> T = classify(E)) { 3848 if (!visit(E)) 3849 return false; 3850 3851 return this->emitRet(*T, E) && maybeDestroyLocals(); 3852 } 3853 3854 // Expressions with a composite return type. 3855 // For us, that means everything we don't 3856 // have a PrimType for. 3857 if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) { 3858 if (!this->emitGetPtrLocal(*LocalOffset, E)) 3859 return false; 3860 3861 if (!visitInitializer(E)) 3862 return false; 3863 3864 if (!this->emitFinishInit(E)) 3865 return false; 3866 // We are destroying the locals AFTER the Ret op. 3867 // The Ret op needs to copy the (alive) values, but the 3868 // destructors may still turn the entire expression invalid. 3869 return this->emitRetValue(E) && maybeDestroyLocals(); 3870 } 3871 3872 (void)maybeDestroyLocals(); 3873 return false; 3874 } 3875 3876 template <class Emitter> 3877 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) { 3878 3879 auto R = this->visitVarDecl(VD, /*Toplevel=*/true); 3880 3881 if (R.notCreated()) 3882 return R; 3883 3884 if (R) 3885 return true; 3886 3887 if (!R && Context::shouldBeGloballyIndexed(VD)) { 3888 if (auto GlobalIndex = P.getGlobal(VD)) { 3889 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 3890 GlobalInlineDescriptor &GD = 3891 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 3892 3893 GD.InitState = GlobalInitState::InitializerFailed; 3894 GlobalBlock->invokeDtor(); 3895 } 3896 } 3897 3898 return R; 3899 } 3900 3901 /// Toplevel visitDeclAndReturn(). 3902 /// We get here from evaluateAsInitializer(). 3903 /// We need to evaluate the initializer and return its value. 3904 template <class Emitter> 3905 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD, 3906 bool ConstantContext) { 3907 std::optional<PrimType> VarT = classify(VD->getType()); 3908 3909 // We only create variables if we're evaluating in a constant context. 3910 // Otherwise, just evaluate the initializer and return it. 3911 if (!ConstantContext) { 3912 DeclScope<Emitter> LS(this, VD); 3913 if (!this->visit(VD->getAnyInitializer())) 3914 return false; 3915 return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals(); 3916 } 3917 3918 LocalScope<Emitter> VDScope(this, VD); 3919 if (!this->visitVarDecl(VD, /*Toplevel=*/true)) 3920 return false; 3921 3922 if (Context::shouldBeGloballyIndexed(VD)) { 3923 auto GlobalIndex = P.getGlobal(VD); 3924 assert(GlobalIndex); // visitVarDecl() didn't return false. 3925 if (VarT) { 3926 if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD)) 3927 return false; 3928 } else { 3929 if (!this->emitGetPtrGlobal(*GlobalIndex, VD)) 3930 return false; 3931 } 3932 } else { 3933 auto Local = Locals.find(VD); 3934 assert(Local != Locals.end()); // Same here. 3935 if (VarT) { 3936 if (!this->emitGetLocal(*VarT, Local->second.Offset, VD)) 3937 return false; 3938 } else { 3939 if (!this->emitGetPtrLocal(Local->second.Offset, VD)) 3940 return false; 3941 } 3942 } 3943 3944 // Return the value. 3945 if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) { 3946 // If the Ret above failed and this is a global variable, mark it as 3947 // uninitialized, even everything else succeeded. 3948 if (Context::shouldBeGloballyIndexed(VD)) { 3949 auto GlobalIndex = P.getGlobal(VD); 3950 assert(GlobalIndex); 3951 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 3952 GlobalInlineDescriptor &GD = 3953 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 3954 3955 GD.InitState = GlobalInitState::InitializerFailed; 3956 GlobalBlock->invokeDtor(); 3957 } 3958 return false; 3959 } 3960 3961 return VDScope.destroyLocals(); 3962 } 3963 3964 template <class Emitter> 3965 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD, 3966 bool Toplevel) { 3967 // We don't know what to do with these, so just return false. 3968 if (VD->getType().isNull()) 3969 return false; 3970 3971 // This case is EvalEmitter-only. If we won't create any instructions for the 3972 // initializer anyway, don't bother creating the variable in the first place. 3973 if (!this->isActive()) 3974 return VarCreationState::NotCreated(); 3975 3976 const Expr *Init = VD->getInit(); 3977 std::optional<PrimType> VarT = classify(VD->getType()); 3978 3979 if (Init && Init->isValueDependent()) 3980 return false; 3981 3982 if (Context::shouldBeGloballyIndexed(VD)) { 3983 auto checkDecl = [&]() -> bool { 3984 bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal(); 3985 return !NeedsOp || this->emitCheckDecl(VD, VD); 3986 }; 3987 3988 auto initGlobal = [&](unsigned GlobalIndex) -> bool { 3989 assert(Init); 3990 3991 if (VarT) { 3992 if (!this->visit(Init)) 3993 return checkDecl() && false; 3994 3995 return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD); 3996 } 3997 3998 if (!checkDecl()) 3999 return false; 4000 4001 if (!this->emitGetPtrGlobal(GlobalIndex, Init)) 4002 return false; 4003 4004 if (!visitInitializer(Init)) 4005 return false; 4006 4007 if (!this->emitFinishInit(Init)) 4008 return false; 4009 4010 return this->emitPopPtr(Init); 4011 }; 4012 4013 DeclScope<Emitter> LocalScope(this, VD); 4014 4015 // We've already seen and initialized this global. 4016 if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) { 4017 if (P.getPtrGlobal(*GlobalIndex).isInitialized()) 4018 return checkDecl(); 4019 4020 // The previous attempt at initialization might've been unsuccessful, 4021 // so let's try this one. 4022 return Init && checkDecl() && initGlobal(*GlobalIndex); 4023 } 4024 4025 std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init); 4026 4027 if (!GlobalIndex) 4028 return false; 4029 4030 return !Init || (checkDecl() && initGlobal(*GlobalIndex)); 4031 } else { 4032 InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD)); 4033 4034 if (VarT) { 4035 unsigned Offset = this->allocateLocalPrimitive( 4036 VD, *VarT, VD->getType().isConstQualified()); 4037 if (Init) { 4038 // If this is a toplevel declaration, create a scope for the 4039 // initializer. 4040 if (Toplevel) { 4041 LocalScope<Emitter> Scope(this); 4042 if (!this->visit(Init)) 4043 return false; 4044 return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals(); 4045 } else { 4046 if (!this->visit(Init)) 4047 return false; 4048 return this->emitSetLocal(*VarT, Offset, VD); 4049 } 4050 } 4051 } else { 4052 if (std::optional<unsigned> Offset = this->allocateLocal(VD)) { 4053 if (!Init) 4054 return true; 4055 4056 if (!this->emitGetPtrLocal(*Offset, Init)) 4057 return false; 4058 4059 if (!visitInitializer(Init)) 4060 return false; 4061 4062 if (!this->emitFinishInit(Init)) 4063 return false; 4064 4065 return this->emitPopPtr(Init); 4066 } 4067 return false; 4068 } 4069 return true; 4070 } 4071 4072 return false; 4073 } 4074 4075 template <class Emitter> 4076 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType, 4077 const Expr *E) { 4078 assert(!DiscardResult); 4079 if (Val.isInt()) 4080 return this->emitConst(Val.getInt(), ValType, E); 4081 else if (Val.isFloat()) 4082 return this->emitConstFloat(Val.getFloat(), E); 4083 4084 if (Val.isLValue()) { 4085 if (Val.isNullPointer()) 4086 return this->emitNull(ValType, nullptr, E); 4087 APValue::LValueBase Base = Val.getLValueBase(); 4088 if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>()) 4089 return this->visit(BaseExpr); 4090 else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) { 4091 return this->visitDeclRef(VD, E); 4092 } 4093 } else if (Val.isMemberPointer()) { 4094 if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl()) 4095 return this->emitGetMemberPtr(MemberDecl, E); 4096 return this->emitNullMemberPtr(nullptr, E); 4097 } 4098 4099 return false; 4100 } 4101 4102 template <class Emitter> 4103 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val, 4104 const Expr *E) { 4105 4106 if (Val.isStruct()) { 4107 const Record *R = this->getRecord(E->getType()); 4108 assert(R); 4109 for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) { 4110 const APValue &F = Val.getStructField(I); 4111 const Record::Field *RF = R->getField(I); 4112 4113 if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) { 4114 PrimType T = classifyPrim(RF->Decl->getType()); 4115 if (!this->visitAPValue(F, T, E)) 4116 return false; 4117 if (!this->emitInitField(T, RF->Offset, E)) 4118 return false; 4119 } else if (F.isArray()) { 4120 assert(RF->Desc->isPrimitiveArray()); 4121 const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe(); 4122 PrimType ElemT = classifyPrim(ArrType->getElementType()); 4123 assert(ArrType); 4124 4125 if (!this->emitGetPtrField(RF->Offset, E)) 4126 return false; 4127 4128 for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) { 4129 if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E)) 4130 return false; 4131 if (!this->emitInitElem(ElemT, A, E)) 4132 return false; 4133 } 4134 4135 if (!this->emitPopPtr(E)) 4136 return false; 4137 } else if (F.isStruct() || F.isUnion()) { 4138 if (!this->emitGetPtrField(RF->Offset, E)) 4139 return false; 4140 if (!this->visitAPValueInitializer(F, E)) 4141 return false; 4142 if (!this->emitPopPtr(E)) 4143 return false; 4144 } else { 4145 assert(false && "I don't think this should be possible"); 4146 } 4147 } 4148 return true; 4149 } else if (Val.isUnion()) { 4150 const FieldDecl *UnionField = Val.getUnionField(); 4151 const Record *R = this->getRecord(UnionField->getParent()); 4152 assert(R); 4153 const APValue &F = Val.getUnionValue(); 4154 const Record::Field *RF = R->getField(UnionField); 4155 PrimType T = classifyPrim(RF->Decl->getType()); 4156 if (!this->visitAPValue(F, T, E)) 4157 return false; 4158 return this->emitInitField(T, RF->Offset, E); 4159 } 4160 // TODO: Other types. 4161 4162 return false; 4163 } 4164 4165 template <class Emitter> 4166 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E, 4167 unsigned BuiltinID) { 4168 const Function *Func = getFunction(E->getDirectCallee()); 4169 if (!Func) 4170 return false; 4171 4172 // For these, we're expected to ultimately return an APValue pointing 4173 // to the CallExpr. This is needed to get the correct codegen. 4174 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 4175 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString || 4176 BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant || 4177 BuiltinID == Builtin::BI__builtin_function_start) { 4178 if (std::optional<unsigned> GlobalOffset = P.getOrCreateDummy(E)) { 4179 if (!this->emitGetPtrGlobal(*GlobalOffset, E)) 4180 return false; 4181 4182 if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT)) 4183 return this->emitDecayPtr(PT_Ptr, PT, E); 4184 return true; 4185 } 4186 return false; 4187 } 4188 4189 QualType ReturnType = E->getType(); 4190 std::optional<PrimType> ReturnT = classify(E); 4191 4192 // Non-primitive return type. Prepare storage. 4193 if (!Initializing && !ReturnT && !ReturnType->isVoidType()) { 4194 std::optional<unsigned> LocalIndex = allocateLocal(E); 4195 if (!LocalIndex) 4196 return false; 4197 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4198 return false; 4199 } 4200 4201 if (!Func->isUnevaluatedBuiltin()) { 4202 // Put arguments on the stack. 4203 for (const auto *Arg : E->arguments()) { 4204 if (!this->visit(Arg)) 4205 return false; 4206 } 4207 } 4208 4209 if (!this->emitCallBI(Func, E, BuiltinID, E)) 4210 return false; 4211 4212 if (DiscardResult && !ReturnType->isVoidType()) { 4213 assert(ReturnT); 4214 return this->emitPop(*ReturnT, E); 4215 } 4216 4217 return true; 4218 } 4219 4220 template <class Emitter> 4221 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) { 4222 if (unsigned BuiltinID = E->getBuiltinCallee()) 4223 return VisitBuiltinCallExpr(E, BuiltinID); 4224 4225 const FunctionDecl *FuncDecl = E->getDirectCallee(); 4226 // Calls to replaceable operator new/operator delete. 4227 if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) { 4228 if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New || 4229 FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { 4230 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new); 4231 } else { 4232 assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete); 4233 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete); 4234 } 4235 } 4236 4237 QualType ReturnType = E->getCallReturnType(Ctx.getASTContext()); 4238 std::optional<PrimType> T = classify(ReturnType); 4239 bool HasRVO = !ReturnType->isVoidType() && !T; 4240 4241 if (HasRVO) { 4242 if (DiscardResult) { 4243 // If we need to discard the return value but the function returns its 4244 // value via an RVO pointer, we need to create one such pointer just 4245 // for this call. 4246 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4247 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4248 return false; 4249 } 4250 } else { 4251 // We need the result. Prepare a pointer to return or 4252 // dup the current one. 4253 if (!Initializing) { 4254 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4255 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4256 return false; 4257 } 4258 } 4259 if (!this->emitDupPtr(E)) 4260 return false; 4261 } 4262 } 4263 4264 SmallVector<const Expr *, 8> Args( 4265 llvm::ArrayRef(E->getArgs(), E->getNumArgs())); 4266 4267 bool IsAssignmentOperatorCall = false; 4268 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); 4269 OCE && OCE->isAssignmentOp()) { 4270 // Just like with regular assignments, we need to special-case assignment 4271 // operators here and evaluate the RHS (the second arg) before the LHS (the 4272 // first arg. We fix this by using a Flip op later. 4273 assert(Args.size() == 2); 4274 IsAssignmentOperatorCall = true; 4275 std::reverse(Args.begin(), Args.end()); 4276 } 4277 // Calling a static operator will still 4278 // pass the instance, but we don't need it. 4279 // Discard it here. 4280 if (isa<CXXOperatorCallExpr>(E)) { 4281 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl); 4282 MD && MD->isStatic()) { 4283 if (!this->discard(E->getArg(0))) 4284 return false; 4285 // Drop first arg. 4286 Args.erase(Args.begin()); 4287 } 4288 } 4289 4290 std::optional<unsigned> CalleeOffset; 4291 // Add the (optional, implicit) This pointer. 4292 if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) { 4293 if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) { 4294 // If we end up creating a CallPtr op for this, we need the base of the 4295 // member pointer as the instance pointer, and later extract the function 4296 // decl as the function pointer. 4297 const Expr *Callee = E->getCallee(); 4298 CalleeOffset = 4299 this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false); 4300 if (!this->visit(Callee)) 4301 return false; 4302 if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E)) 4303 return false; 4304 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4305 return false; 4306 if (!this->emitGetMemberPtrBase(E)) 4307 return false; 4308 } else if (!this->visit(MC->getImplicitObjectArgument())) { 4309 return false; 4310 } 4311 } else if (!FuncDecl) { 4312 const Expr *Callee = E->getCallee(); 4313 CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false); 4314 if (!this->visit(Callee)) 4315 return false; 4316 if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E)) 4317 return false; 4318 } 4319 4320 llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args); 4321 // Put arguments on the stack. 4322 unsigned ArgIndex = 0; 4323 for (const auto *Arg : Args) { 4324 if (!this->visit(Arg)) 4325 return false; 4326 4327 // If we know the callee already, check the known parametrs for nullability. 4328 if (FuncDecl && NonNullArgs[ArgIndex]) { 4329 PrimType ArgT = classify(Arg).value_or(PT_Ptr); 4330 if (ArgT == PT_Ptr || ArgT == PT_FnPtr) { 4331 if (!this->emitCheckNonNullArg(ArgT, Arg)) 4332 return false; 4333 } 4334 } 4335 ++ArgIndex; 4336 } 4337 4338 // Undo the argument reversal we did earlier. 4339 if (IsAssignmentOperatorCall) { 4340 assert(Args.size() == 2); 4341 PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr); 4342 PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr); 4343 if (!this->emitFlip(Arg2T, Arg1T, E)) 4344 return false; 4345 } 4346 4347 if (FuncDecl) { 4348 const Function *Func = getFunction(FuncDecl); 4349 if (!Func) 4350 return false; 4351 assert(HasRVO == Func->hasRVO()); 4352 4353 bool HasQualifier = false; 4354 if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee())) 4355 HasQualifier = ME->hasQualifier(); 4356 4357 bool IsVirtual = false; 4358 if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) 4359 IsVirtual = MD->isVirtual(); 4360 4361 // In any case call the function. The return value will end up on the stack 4362 // and if the function has RVO, we already have the pointer on the stack to 4363 // write the result into. 4364 if (IsVirtual && !HasQualifier) { 4365 uint32_t VarArgSize = 0; 4366 unsigned NumParams = 4367 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4368 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4369 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4370 4371 if (!this->emitCallVirt(Func, VarArgSize, E)) 4372 return false; 4373 } else if (Func->isVariadic()) { 4374 uint32_t VarArgSize = 0; 4375 unsigned NumParams = 4376 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4377 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4378 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4379 if (!this->emitCallVar(Func, VarArgSize, E)) 4380 return false; 4381 } else { 4382 if (!this->emitCall(Func, 0, E)) 4383 return false; 4384 } 4385 } else { 4386 // Indirect call. Visit the callee, which will leave a FunctionPointer on 4387 // the stack. Cleanup of the returned value if necessary will be done after 4388 // the function call completed. 4389 4390 // Sum the size of all args from the call expr. 4391 uint32_t ArgSize = 0; 4392 for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) 4393 ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4394 4395 // Get the callee, either from a member pointer or function pointer saved in 4396 // CalleeOffset. 4397 if (isa<CXXMemberCallExpr>(E) && CalleeOffset) { 4398 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4399 return false; 4400 if (!this->emitGetMemberPtrDecl(E)) 4401 return false; 4402 } else { 4403 if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E)) 4404 return false; 4405 } 4406 if (!this->emitCallPtr(ArgSize, E, E)) 4407 return false; 4408 } 4409 4410 // Cleanup for discarded return values. 4411 if (DiscardResult && !ReturnType->isVoidType() && T) 4412 return this->emitPop(*T, E); 4413 4414 return true; 4415 } 4416 4417 template <class Emitter> 4418 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 4419 SourceLocScope<Emitter> SLS(this, E); 4420 4421 return this->delegate(E->getExpr()); 4422 } 4423 4424 template <class Emitter> 4425 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 4426 SourceLocScope<Emitter> SLS(this, E); 4427 4428 const Expr *SubExpr = E->getExpr(); 4429 if (std::optional<PrimType> T = classify(E->getExpr())) 4430 return this->visit(SubExpr); 4431 4432 assert(Initializing); 4433 return this->visitInitializer(SubExpr); 4434 } 4435 4436 template <class Emitter> 4437 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 4438 if (DiscardResult) 4439 return true; 4440 4441 return this->emitConstBool(E->getValue(), E); 4442 } 4443 4444 template <class Emitter> 4445 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr( 4446 const CXXNullPtrLiteralExpr *E) { 4447 if (DiscardResult) 4448 return true; 4449 4450 return this->emitNullPtr(nullptr, E); 4451 } 4452 4453 template <class Emitter> 4454 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) { 4455 if (DiscardResult) 4456 return true; 4457 4458 assert(E->getType()->isIntegerType()); 4459 4460 PrimType T = classifyPrim(E->getType()); 4461 return this->emitZero(T, E); 4462 } 4463 4464 template <class Emitter> 4465 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) { 4466 if (DiscardResult) 4467 return true; 4468 4469 if (this->LambdaThisCapture.Offset > 0) { 4470 if (this->LambdaThisCapture.IsPtr) 4471 return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E); 4472 return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E); 4473 } 4474 4475 // In some circumstances, the 'this' pointer does not actually refer to the 4476 // instance pointer of the current function frame, but e.g. to the declaration 4477 // currently being initialized. Here we emit the necessary instruction(s) for 4478 // this scenario. 4479 if (!InitStackActive || !E->isImplicit()) 4480 return this->emitThis(E); 4481 4482 if (InitStackActive && !InitStack.empty()) { 4483 unsigned StartIndex = 0; 4484 for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) { 4485 if (InitStack[StartIndex].Kind != InitLink::K_Field && 4486 InitStack[StartIndex].Kind != InitLink::K_Elem) 4487 break; 4488 } 4489 4490 for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) { 4491 if (!InitStack[I].template emit<Emitter>(this, E)) 4492 return false; 4493 } 4494 return true; 4495 } 4496 return this->emitThis(E); 4497 } 4498 4499 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) { 4500 switch (S->getStmtClass()) { 4501 case Stmt::CompoundStmtClass: 4502 return visitCompoundStmt(cast<CompoundStmt>(S)); 4503 case Stmt::DeclStmtClass: 4504 return visitDeclStmt(cast<DeclStmt>(S)); 4505 case Stmt::ReturnStmtClass: 4506 return visitReturnStmt(cast<ReturnStmt>(S)); 4507 case Stmt::IfStmtClass: 4508 return visitIfStmt(cast<IfStmt>(S)); 4509 case Stmt::WhileStmtClass: 4510 return visitWhileStmt(cast<WhileStmt>(S)); 4511 case Stmt::DoStmtClass: 4512 return visitDoStmt(cast<DoStmt>(S)); 4513 case Stmt::ForStmtClass: 4514 return visitForStmt(cast<ForStmt>(S)); 4515 case Stmt::CXXForRangeStmtClass: 4516 return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); 4517 case Stmt::BreakStmtClass: 4518 return visitBreakStmt(cast<BreakStmt>(S)); 4519 case Stmt::ContinueStmtClass: 4520 return visitContinueStmt(cast<ContinueStmt>(S)); 4521 case Stmt::SwitchStmtClass: 4522 return visitSwitchStmt(cast<SwitchStmt>(S)); 4523 case Stmt::CaseStmtClass: 4524 return visitCaseStmt(cast<CaseStmt>(S)); 4525 case Stmt::DefaultStmtClass: 4526 return visitDefaultStmt(cast<DefaultStmt>(S)); 4527 case Stmt::AttributedStmtClass: 4528 return visitAttributedStmt(cast<AttributedStmt>(S)); 4529 case Stmt::CXXTryStmtClass: 4530 return visitCXXTryStmt(cast<CXXTryStmt>(S)); 4531 case Stmt::NullStmtClass: 4532 return true; 4533 // Always invalid statements. 4534 case Stmt::GCCAsmStmtClass: 4535 case Stmt::MSAsmStmtClass: 4536 case Stmt::GotoStmtClass: 4537 return this->emitInvalid(S); 4538 case Stmt::LabelStmtClass: 4539 return this->visitStmt(cast<LabelStmt>(S)->getSubStmt()); 4540 default: { 4541 if (const auto *E = dyn_cast<Expr>(S)) 4542 return this->discard(E); 4543 return false; 4544 } 4545 } 4546 } 4547 4548 template <class Emitter> 4549 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) { 4550 BlockScope<Emitter> Scope(this); 4551 for (const auto *InnerStmt : S->body()) 4552 if (!visitStmt(InnerStmt)) 4553 return false; 4554 return Scope.destroyLocals(); 4555 } 4556 4557 template <class Emitter> 4558 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) { 4559 for (const auto *D : DS->decls()) { 4560 if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl, 4561 FunctionDecl>(D)) 4562 continue; 4563 4564 const auto *VD = dyn_cast<VarDecl>(D); 4565 if (!VD) 4566 return false; 4567 if (!this->visitVarDecl(VD)) 4568 return false; 4569 } 4570 4571 return true; 4572 } 4573 4574 template <class Emitter> 4575 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) { 4576 if (this->InStmtExpr) 4577 return this->emitUnsupported(RS); 4578 4579 if (const Expr *RE = RS->getRetValue()) { 4580 LocalScope<Emitter> RetScope(this); 4581 if (ReturnType) { 4582 // Primitive types are simply returned. 4583 if (!this->visit(RE)) 4584 return false; 4585 this->emitCleanup(); 4586 return this->emitRet(*ReturnType, RS); 4587 } else if (RE->getType()->isVoidType()) { 4588 if (!this->visit(RE)) 4589 return false; 4590 } else { 4591 // RVO - construct the value in the return location. 4592 if (!this->emitRVOPtr(RE)) 4593 return false; 4594 if (!this->visitInitializer(RE)) 4595 return false; 4596 if (!this->emitPopPtr(RE)) 4597 return false; 4598 4599 this->emitCleanup(); 4600 return this->emitRetVoid(RS); 4601 } 4602 } 4603 4604 // Void return. 4605 this->emitCleanup(); 4606 return this->emitRetVoid(RS); 4607 } 4608 4609 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) { 4610 if (auto *CondInit = IS->getInit()) 4611 if (!visitStmt(CondInit)) 4612 return false; 4613 4614 if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt()) 4615 if (!visitDeclStmt(CondDecl)) 4616 return false; 4617 4618 // Compile condition. 4619 if (IS->isNonNegatedConsteval()) { 4620 if (!this->emitIsConstantContext(IS)) 4621 return false; 4622 } else if (IS->isNegatedConsteval()) { 4623 if (!this->emitIsConstantContext(IS)) 4624 return false; 4625 if (!this->emitInv(IS)) 4626 return false; 4627 } else { 4628 if (!this->visitBool(IS->getCond())) 4629 return false; 4630 } 4631 4632 if (const Stmt *Else = IS->getElse()) { 4633 LabelTy LabelElse = this->getLabel(); 4634 LabelTy LabelEnd = this->getLabel(); 4635 if (!this->jumpFalse(LabelElse)) 4636 return false; 4637 if (!visitStmt(IS->getThen())) 4638 return false; 4639 if (!this->jump(LabelEnd)) 4640 return false; 4641 this->emitLabel(LabelElse); 4642 if (!visitStmt(Else)) 4643 return false; 4644 this->emitLabel(LabelEnd); 4645 } else { 4646 LabelTy LabelEnd = this->getLabel(); 4647 if (!this->jumpFalse(LabelEnd)) 4648 return false; 4649 if (!visitStmt(IS->getThen())) 4650 return false; 4651 this->emitLabel(LabelEnd); 4652 } 4653 4654 return true; 4655 } 4656 4657 template <class Emitter> 4658 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) { 4659 const Expr *Cond = S->getCond(); 4660 const Stmt *Body = S->getBody(); 4661 4662 LabelTy CondLabel = this->getLabel(); // Label before the condition. 4663 LabelTy EndLabel = this->getLabel(); // Label after the loop. 4664 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4665 4666 this->fallthrough(CondLabel); 4667 this->emitLabel(CondLabel); 4668 4669 { 4670 LocalScope<Emitter> CondScope(this); 4671 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4672 if (!visitDeclStmt(CondDecl)) 4673 return false; 4674 4675 if (!this->visitBool(Cond)) 4676 return false; 4677 if (!this->jumpFalse(EndLabel)) 4678 return false; 4679 4680 if (!this->visitStmt(Body)) 4681 return false; 4682 4683 if (!CondScope.destroyLocals()) 4684 return false; 4685 } 4686 if (!this->jump(CondLabel)) 4687 return false; 4688 this->fallthrough(EndLabel); 4689 this->emitLabel(EndLabel); 4690 4691 return true; 4692 } 4693 4694 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) { 4695 const Expr *Cond = S->getCond(); 4696 const Stmt *Body = S->getBody(); 4697 4698 LabelTy StartLabel = this->getLabel(); 4699 LabelTy EndLabel = this->getLabel(); 4700 LabelTy CondLabel = this->getLabel(); 4701 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4702 4703 this->fallthrough(StartLabel); 4704 this->emitLabel(StartLabel); 4705 4706 { 4707 LocalScope<Emitter> CondScope(this); 4708 if (!this->visitStmt(Body)) 4709 return false; 4710 this->fallthrough(CondLabel); 4711 this->emitLabel(CondLabel); 4712 if (!this->visitBool(Cond)) 4713 return false; 4714 4715 if (!CondScope.destroyLocals()) 4716 return false; 4717 } 4718 if (!this->jumpTrue(StartLabel)) 4719 return false; 4720 4721 this->fallthrough(EndLabel); 4722 this->emitLabel(EndLabel); 4723 return true; 4724 } 4725 4726 template <class Emitter> 4727 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) { 4728 // for (Init; Cond; Inc) { Body } 4729 const Stmt *Init = S->getInit(); 4730 const Expr *Cond = S->getCond(); 4731 const Expr *Inc = S->getInc(); 4732 const Stmt *Body = S->getBody(); 4733 4734 LabelTy EndLabel = this->getLabel(); 4735 LabelTy CondLabel = this->getLabel(); 4736 LabelTy IncLabel = this->getLabel(); 4737 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 4738 4739 if (Init && !this->visitStmt(Init)) 4740 return false; 4741 4742 this->fallthrough(CondLabel); 4743 this->emitLabel(CondLabel); 4744 4745 { 4746 LocalScope<Emitter> CondScope(this); 4747 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4748 if (!visitDeclStmt(CondDecl)) 4749 return false; 4750 4751 if (Cond) { 4752 if (!this->visitBool(Cond)) 4753 return false; 4754 if (!this->jumpFalse(EndLabel)) 4755 return false; 4756 } 4757 4758 if (Body && !this->visitStmt(Body)) 4759 return false; 4760 4761 this->fallthrough(IncLabel); 4762 this->emitLabel(IncLabel); 4763 if (Inc && !this->discard(Inc)) 4764 return false; 4765 4766 if (!CondScope.destroyLocals()) 4767 return false; 4768 } 4769 if (!this->jump(CondLabel)) 4770 return false; 4771 4772 this->fallthrough(EndLabel); 4773 this->emitLabel(EndLabel); 4774 return true; 4775 } 4776 4777 template <class Emitter> 4778 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) { 4779 const Stmt *Init = S->getInit(); 4780 const Expr *Cond = S->getCond(); 4781 const Expr *Inc = S->getInc(); 4782 const Stmt *Body = S->getBody(); 4783 const Stmt *BeginStmt = S->getBeginStmt(); 4784 const Stmt *RangeStmt = S->getRangeStmt(); 4785 const Stmt *EndStmt = S->getEndStmt(); 4786 const VarDecl *LoopVar = S->getLoopVariable(); 4787 4788 LabelTy EndLabel = this->getLabel(); 4789 LabelTy CondLabel = this->getLabel(); 4790 LabelTy IncLabel = this->getLabel(); 4791 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 4792 4793 // Emit declarations needed in the loop. 4794 if (Init && !this->visitStmt(Init)) 4795 return false; 4796 if (!this->visitStmt(RangeStmt)) 4797 return false; 4798 if (!this->visitStmt(BeginStmt)) 4799 return false; 4800 if (!this->visitStmt(EndStmt)) 4801 return false; 4802 4803 // Now the condition as well as the loop variable assignment. 4804 this->fallthrough(CondLabel); 4805 this->emitLabel(CondLabel); 4806 if (!this->visitBool(Cond)) 4807 return false; 4808 if (!this->jumpFalse(EndLabel)) 4809 return false; 4810 4811 if (!this->visitVarDecl(LoopVar)) 4812 return false; 4813 4814 // Body. 4815 { 4816 if (!this->visitStmt(Body)) 4817 return false; 4818 4819 this->fallthrough(IncLabel); 4820 this->emitLabel(IncLabel); 4821 if (!this->discard(Inc)) 4822 return false; 4823 } 4824 4825 if (!this->jump(CondLabel)) 4826 return false; 4827 4828 this->fallthrough(EndLabel); 4829 this->emitLabel(EndLabel); 4830 return true; 4831 } 4832 4833 template <class Emitter> 4834 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) { 4835 if (!BreakLabel) 4836 return false; 4837 4838 for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope; 4839 C = C->getParent()) 4840 C->emitDestruction(); 4841 return this->jump(*BreakLabel); 4842 } 4843 4844 template <class Emitter> 4845 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) { 4846 if (!ContinueLabel) 4847 return false; 4848 4849 for (VariableScope<Emitter> *C = VarScope; 4850 C && C->getParent() != ContinueVarScope; C = C->getParent()) 4851 C->emitDestruction(); 4852 return this->jump(*ContinueLabel); 4853 } 4854 4855 template <class Emitter> 4856 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) { 4857 const Expr *Cond = S->getCond(); 4858 PrimType CondT = this->classifyPrim(Cond->getType()); 4859 LocalScope<Emitter> LS(this); 4860 4861 LabelTy EndLabel = this->getLabel(); 4862 OptLabelTy DefaultLabel = std::nullopt; 4863 unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false); 4864 4865 if (const auto *CondInit = S->getInit()) 4866 if (!visitStmt(CondInit)) 4867 return false; 4868 4869 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4870 if (!visitDeclStmt(CondDecl)) 4871 return false; 4872 4873 // Initialize condition variable. 4874 if (!this->visit(Cond)) 4875 return false; 4876 if (!this->emitSetLocal(CondT, CondVar, S)) 4877 return false; 4878 4879 CaseMap CaseLabels; 4880 // Create labels and comparison ops for all case statements. 4881 for (const SwitchCase *SC = S->getSwitchCaseList(); SC; 4882 SC = SC->getNextSwitchCase()) { 4883 if (const auto *CS = dyn_cast<CaseStmt>(SC)) { 4884 // FIXME: Implement ranges. 4885 if (CS->caseStmtIsGNURange()) 4886 return false; 4887 CaseLabels[SC] = this->getLabel(); 4888 4889 const Expr *Value = CS->getLHS(); 4890 PrimType ValueT = this->classifyPrim(Value->getType()); 4891 4892 // Compare the case statement's value to the switch condition. 4893 if (!this->emitGetLocal(CondT, CondVar, CS)) 4894 return false; 4895 if (!this->visit(Value)) 4896 return false; 4897 4898 // Compare and jump to the case label. 4899 if (!this->emitEQ(ValueT, S)) 4900 return false; 4901 if (!this->jumpTrue(CaseLabels[CS])) 4902 return false; 4903 } else { 4904 assert(!DefaultLabel); 4905 DefaultLabel = this->getLabel(); 4906 } 4907 } 4908 4909 // If none of the conditions above were true, fall through to the default 4910 // statement or jump after the switch statement. 4911 if (DefaultLabel) { 4912 if (!this->jump(*DefaultLabel)) 4913 return false; 4914 } else { 4915 if (!this->jump(EndLabel)) 4916 return false; 4917 } 4918 4919 SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel); 4920 if (!this->visitStmt(S->getBody())) 4921 return false; 4922 this->emitLabel(EndLabel); 4923 4924 return LS.destroyLocals(); 4925 } 4926 4927 template <class Emitter> 4928 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) { 4929 this->emitLabel(CaseLabels[S]); 4930 return this->visitStmt(S->getSubStmt()); 4931 } 4932 4933 template <class Emitter> 4934 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) { 4935 this->emitLabel(*DefaultLabel); 4936 return this->visitStmt(S->getSubStmt()); 4937 } 4938 4939 template <class Emitter> 4940 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) { 4941 if (this->Ctx.getLangOpts().CXXAssumptions && 4942 !this->Ctx.getLangOpts().MSVCCompat) { 4943 for (const Attr *A : S->getAttrs()) { 4944 auto *AA = dyn_cast<CXXAssumeAttr>(A); 4945 if (!AA) 4946 continue; 4947 4948 assert(isa<NullStmt>(S->getSubStmt())); 4949 4950 const Expr *Assumption = AA->getAssumption(); 4951 if (Assumption->isValueDependent()) 4952 return false; 4953 4954 if (Assumption->HasSideEffects(this->Ctx.getASTContext())) 4955 continue; 4956 4957 // Evaluate assumption. 4958 if (!this->visitBool(Assumption)) 4959 return false; 4960 4961 if (!this->emitAssume(Assumption)) 4962 return false; 4963 } 4964 } 4965 4966 // Ignore other attributes. 4967 return this->visitStmt(S->getSubStmt()); 4968 } 4969 4970 template <class Emitter> 4971 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) { 4972 // Ignore all handlers. 4973 return this->visitStmt(S->getTryBlock()); 4974 } 4975 4976 template <class Emitter> 4977 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) { 4978 assert(MD->isLambdaStaticInvoker()); 4979 assert(MD->hasBody()); 4980 assert(cast<CompoundStmt>(MD->getBody())->body_empty()); 4981 4982 const CXXRecordDecl *ClosureClass = MD->getParent(); 4983 const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); 4984 assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); 4985 const Function *Func = this->getFunction(LambdaCallOp); 4986 if (!Func) 4987 return false; 4988 assert(Func->hasThisPointer()); 4989 assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO())); 4990 4991 if (Func->hasRVO()) { 4992 if (!this->emitRVOPtr(MD)) 4993 return false; 4994 } 4995 4996 // The lambda call operator needs an instance pointer, but we don't have 4997 // one here, and we don't need one either because the lambda cannot have 4998 // any captures, as verified above. Emit a null pointer. This is then 4999 // special-cased when interpreting to not emit any misleading diagnostics. 5000 if (!this->emitNullPtr(nullptr, MD)) 5001 return false; 5002 5003 // Forward all arguments from the static invoker to the lambda call operator. 5004 for (const ParmVarDecl *PVD : MD->parameters()) { 5005 auto It = this->Params.find(PVD); 5006 assert(It != this->Params.end()); 5007 5008 // We do the lvalue-to-rvalue conversion manually here, so no need 5009 // to care about references. 5010 PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr); 5011 if (!this->emitGetParam(ParamType, It->second.Offset, MD)) 5012 return false; 5013 } 5014 5015 if (!this->emitCall(Func, 0, LambdaCallOp)) 5016 return false; 5017 5018 this->emitCleanup(); 5019 if (ReturnType) 5020 return this->emitRet(*ReturnType, MD); 5021 5022 // Nothing to do, since we emitted the RVO pointer above. 5023 return this->emitRetVoid(MD); 5024 } 5025 5026 template <class Emitter> 5027 bool Compiler<Emitter>::checkLiteralType(const Expr *E) { 5028 if (Ctx.getLangOpts().CPlusPlus23) 5029 return true; 5030 5031 if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext())) 5032 return true; 5033 5034 return this->emitCheckLiteralType(E->getType().getTypePtr(), E); 5035 } 5036 5037 template <class Emitter> 5038 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) { 5039 assert(!ReturnType); 5040 5041 auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset, 5042 const Expr *InitExpr) -> bool { 5043 // We don't know what to do with these, so just return false. 5044 if (InitExpr->getType().isNull()) 5045 return false; 5046 5047 if (std::optional<PrimType> T = this->classify(InitExpr)) { 5048 if (!this->visit(InitExpr)) 5049 return false; 5050 5051 if (F->isBitField()) 5052 return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr); 5053 return this->emitInitThisField(*T, FieldOffset, InitExpr); 5054 } 5055 // Non-primitive case. Get a pointer to the field-to-initialize 5056 // on the stack and call visitInitialzer() for it. 5057 InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset)); 5058 if (!this->emitGetPtrThisField(FieldOffset, InitExpr)) 5059 return false; 5060 5061 if (!this->visitInitializer(InitExpr)) 5062 return false; 5063 5064 return this->emitFinishInitPop(InitExpr); 5065 }; 5066 5067 const RecordDecl *RD = Ctor->getParent(); 5068 const Record *R = this->getRecord(RD); 5069 if (!R) 5070 return false; 5071 5072 if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) { 5073 // union copy and move ctors are special. 5074 assert(cast<CompoundStmt>(Ctor->getBody())->body_empty()); 5075 if (!this->emitThis(Ctor)) 5076 return false; 5077 5078 auto PVD = Ctor->getParamDecl(0); 5079 ParamOffset PO = this->Params[PVD]; // Must exist. 5080 5081 if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor)) 5082 return false; 5083 5084 return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) && 5085 this->emitRetVoid(Ctor); 5086 } 5087 5088 InitLinkScope<Emitter> InitScope(this, InitLink::This()); 5089 for (const auto *Init : Ctor->inits()) { 5090 // Scope needed for the initializers. 5091 BlockScope<Emitter> Scope(this); 5092 5093 const Expr *InitExpr = Init->getInit(); 5094 if (const FieldDecl *Member = Init->getMember()) { 5095 const Record::Field *F = R->getField(Member); 5096 5097 if (!emitFieldInitializer(F, F->Offset, InitExpr)) 5098 return false; 5099 } else if (const Type *Base = Init->getBaseClass()) { 5100 const auto *BaseDecl = Base->getAsCXXRecordDecl(); 5101 assert(BaseDecl); 5102 5103 if (Init->isBaseVirtual()) { 5104 assert(R->getVirtualBase(BaseDecl)); 5105 if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr)) 5106 return false; 5107 5108 } else { 5109 // Base class initializer. 5110 // Get This Base and call initializer on it. 5111 const Record::Base *B = R->getBase(BaseDecl); 5112 assert(B); 5113 if (!this->emitGetPtrThisBase(B->Offset, InitExpr)) 5114 return false; 5115 } 5116 5117 if (!this->visitInitializer(InitExpr)) 5118 return false; 5119 if (!this->emitFinishInitPop(InitExpr)) 5120 return false; 5121 } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) { 5122 assert(IFD->getChainingSize() >= 2); 5123 5124 unsigned NestedFieldOffset = 0; 5125 const Record::Field *NestedField = nullptr; 5126 for (const NamedDecl *ND : IFD->chain()) { 5127 const auto *FD = cast<FieldDecl>(ND); 5128 const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); 5129 assert(FieldRecord); 5130 5131 NestedField = FieldRecord->getField(FD); 5132 assert(NestedField); 5133 5134 NestedFieldOffset += NestedField->Offset; 5135 } 5136 assert(NestedField); 5137 5138 if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr)) 5139 return false; 5140 } else { 5141 assert(Init->isDelegatingInitializer()); 5142 if (!this->emitThis(InitExpr)) 5143 return false; 5144 if (!this->visitInitializer(Init->getInit())) 5145 return false; 5146 if (!this->emitPopPtr(InitExpr)) 5147 return false; 5148 } 5149 5150 if (!Scope.destroyLocals()) 5151 return false; 5152 } 5153 5154 if (const auto *Body = Ctor->getBody()) 5155 if (!visitStmt(Body)) 5156 return false; 5157 5158 return this->emitRetVoid(SourceInfo{}); 5159 } 5160 5161 template <class Emitter> 5162 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) { 5163 const RecordDecl *RD = Dtor->getParent(); 5164 const Record *R = this->getRecord(RD); 5165 if (!R) 5166 return false; 5167 5168 if (!Dtor->isTrivial() && Dtor->getBody()) { 5169 if (!this->visitStmt(Dtor->getBody())) 5170 return false; 5171 } 5172 5173 if (!this->emitThis(Dtor)) 5174 return false; 5175 5176 assert(R); 5177 if (!R->isUnion()) { 5178 // First, destroy all fields. 5179 for (const Record::Field &Field : llvm::reverse(R->fields())) { 5180 const Descriptor *D = Field.Desc; 5181 if (!D->isPrimitive() && !D->isPrimitiveArray()) { 5182 if (!this->emitGetPtrField(Field.Offset, SourceInfo{})) 5183 return false; 5184 if (!this->emitDestruction(D)) 5185 return false; 5186 if (!this->emitPopPtr(SourceInfo{})) 5187 return false; 5188 } 5189 } 5190 } 5191 5192 for (const Record::Base &Base : llvm::reverse(R->bases())) { 5193 if (!this->emitGetPtrBase(Base.Offset, SourceInfo{})) 5194 return false; 5195 if (!this->emitRecordDestruction(Base.R)) 5196 return false; 5197 if (!this->emitPopPtr(SourceInfo{})) 5198 return false; 5199 } 5200 5201 // FIXME: Virtual bases. 5202 return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor); 5203 } 5204 5205 template <class Emitter> 5206 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) { 5207 // Classify the return type. 5208 ReturnType = this->classify(F->getReturnType()); 5209 5210 if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F)) 5211 return this->compileConstructor(Ctor); 5212 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F)) 5213 return this->compileDestructor(Dtor); 5214 5215 // Emit custom code if this is a lambda static invoker. 5216 if (const auto *MD = dyn_cast<CXXMethodDecl>(F); 5217 MD && MD->isLambdaStaticInvoker()) 5218 return this->emitLambdaStaticInvokerBody(MD); 5219 5220 // Regular functions. 5221 if (const auto *Body = F->getBody()) 5222 if (!visitStmt(Body)) 5223 return false; 5224 5225 // Emit a guard return to protect against a code path missing one. 5226 if (F->getReturnType()->isVoidType()) 5227 return this->emitRetVoid(SourceInfo{}); 5228 return this->emitNoRet(SourceInfo{}); 5229 } 5230 5231 template <class Emitter> 5232 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) { 5233 const Expr *SubExpr = E->getSubExpr(); 5234 if (SubExpr->getType()->isAnyComplexType()) 5235 return this->VisitComplexUnaryOperator(E); 5236 if (SubExpr->getType()->isVectorType()) 5237 return this->VisitVectorUnaryOperator(E); 5238 std::optional<PrimType> T = classify(SubExpr->getType()); 5239 5240 switch (E->getOpcode()) { 5241 case UO_PostInc: { // x++ 5242 if (!Ctx.getLangOpts().CPlusPlus14) 5243 return this->emitInvalid(E); 5244 if (!T) 5245 return this->emitError(E); 5246 5247 if (!this->visit(SubExpr)) 5248 return false; 5249 5250 if (T == PT_Ptr || T == PT_FnPtr) { 5251 if (!this->emitIncPtr(E)) 5252 return false; 5253 5254 return DiscardResult ? this->emitPopPtr(E) : true; 5255 } 5256 5257 if (T == PT_Float) { 5258 return DiscardResult ? this->emitIncfPop(getFPOptions(E), E) 5259 : this->emitIncf(getFPOptions(E), E); 5260 } 5261 5262 return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E); 5263 } 5264 case UO_PostDec: { // x-- 5265 if (!Ctx.getLangOpts().CPlusPlus14) 5266 return this->emitInvalid(E); 5267 if (!T) 5268 return this->emitError(E); 5269 5270 if (!this->visit(SubExpr)) 5271 return false; 5272 5273 if (T == PT_Ptr || T == PT_FnPtr) { 5274 if (!this->emitDecPtr(E)) 5275 return false; 5276 5277 return DiscardResult ? this->emitPopPtr(E) : true; 5278 } 5279 5280 if (T == PT_Float) { 5281 return DiscardResult ? this->emitDecfPop(getFPOptions(E), E) 5282 : this->emitDecf(getFPOptions(E), E); 5283 } 5284 5285 return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E); 5286 } 5287 case UO_PreInc: { // ++x 5288 if (!Ctx.getLangOpts().CPlusPlus14) 5289 return this->emitInvalid(E); 5290 if (!T) 5291 return this->emitError(E); 5292 5293 if (!this->visit(SubExpr)) 5294 return false; 5295 5296 if (T == PT_Ptr || T == PT_FnPtr) { 5297 if (!this->emitLoadPtr(E)) 5298 return false; 5299 if (!this->emitConstUint8(1, E)) 5300 return false; 5301 if (!this->emitAddOffsetUint8(E)) 5302 return false; 5303 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5304 } 5305 5306 // Post-inc and pre-inc are the same if the value is to be discarded. 5307 if (DiscardResult) { 5308 if (T == PT_Float) 5309 return this->emitIncfPop(getFPOptions(E), E); 5310 return this->emitIncPop(*T, E); 5311 } 5312 5313 if (T == PT_Float) { 5314 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5315 if (!this->emitLoadFloat(E)) 5316 return false; 5317 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5318 return false; 5319 if (!this->emitAddf(getFPOptions(E), E)) 5320 return false; 5321 if (!this->emitStoreFloat(E)) 5322 return false; 5323 } else { 5324 assert(isIntegralType(*T)); 5325 if (!this->emitLoad(*T, E)) 5326 return false; 5327 if (!this->emitConst(1, E)) 5328 return false; 5329 if (!this->emitAdd(*T, E)) 5330 return false; 5331 if (!this->emitStore(*T, E)) 5332 return false; 5333 } 5334 return E->isGLValue() || this->emitLoadPop(*T, E); 5335 } 5336 case UO_PreDec: { // --x 5337 if (!Ctx.getLangOpts().CPlusPlus14) 5338 return this->emitInvalid(E); 5339 if (!T) 5340 return this->emitError(E); 5341 5342 if (!this->visit(SubExpr)) 5343 return false; 5344 5345 if (T == PT_Ptr || T == PT_FnPtr) { 5346 if (!this->emitLoadPtr(E)) 5347 return false; 5348 if (!this->emitConstUint8(1, E)) 5349 return false; 5350 if (!this->emitSubOffsetUint8(E)) 5351 return false; 5352 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5353 } 5354 5355 // Post-dec and pre-dec are the same if the value is to be discarded. 5356 if (DiscardResult) { 5357 if (T == PT_Float) 5358 return this->emitDecfPop(getFPOptions(E), E); 5359 return this->emitDecPop(*T, E); 5360 } 5361 5362 if (T == PT_Float) { 5363 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5364 if (!this->emitLoadFloat(E)) 5365 return false; 5366 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5367 return false; 5368 if (!this->emitSubf(getFPOptions(E), E)) 5369 return false; 5370 if (!this->emitStoreFloat(E)) 5371 return false; 5372 } else { 5373 assert(isIntegralType(*T)); 5374 if (!this->emitLoad(*T, E)) 5375 return false; 5376 if (!this->emitConst(1, E)) 5377 return false; 5378 if (!this->emitSub(*T, E)) 5379 return false; 5380 if (!this->emitStore(*T, E)) 5381 return false; 5382 } 5383 return E->isGLValue() || this->emitLoadPop(*T, E); 5384 } 5385 case UO_LNot: // !x 5386 if (!T) 5387 return this->emitError(E); 5388 5389 if (DiscardResult) 5390 return this->discard(SubExpr); 5391 5392 if (!this->visitBool(SubExpr)) 5393 return false; 5394 5395 if (!this->emitInv(E)) 5396 return false; 5397 5398 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5399 return this->emitCast(PT_Bool, ET, E); 5400 return true; 5401 case UO_Minus: // -x 5402 if (!T) 5403 return this->emitError(E); 5404 5405 if (!this->visit(SubExpr)) 5406 return false; 5407 return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E); 5408 case UO_Plus: // +x 5409 if (!T) 5410 return this->emitError(E); 5411 5412 if (!this->visit(SubExpr)) // noop 5413 return false; 5414 return DiscardResult ? this->emitPop(*T, E) : true; 5415 case UO_AddrOf: // &x 5416 if (E->getType()->isMemberPointerType()) { 5417 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 5418 // member can be formed. 5419 return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E); 5420 } 5421 // We should already have a pointer when we get here. 5422 return this->delegate(SubExpr); 5423 case UO_Deref: // *x 5424 if (DiscardResult) 5425 return this->discard(SubExpr); 5426 return this->visit(SubExpr); 5427 case UO_Not: // ~x 5428 if (!T) 5429 return this->emitError(E); 5430 5431 if (!this->visit(SubExpr)) 5432 return false; 5433 return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E); 5434 case UO_Real: // __real x 5435 assert(T); 5436 return this->delegate(SubExpr); 5437 case UO_Imag: { // __imag x 5438 assert(T); 5439 if (!this->discard(SubExpr)) 5440 return false; 5441 return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr); 5442 } 5443 case UO_Extension: 5444 return this->delegate(SubExpr); 5445 case UO_Coawait: 5446 assert(false && "Unhandled opcode"); 5447 } 5448 5449 return false; 5450 } 5451 5452 template <class Emitter> 5453 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) { 5454 const Expr *SubExpr = E->getSubExpr(); 5455 assert(SubExpr->getType()->isAnyComplexType()); 5456 5457 if (DiscardResult) 5458 return this->discard(SubExpr); 5459 5460 std::optional<PrimType> ResT = classify(E); 5461 auto prepareResult = [=]() -> bool { 5462 if (!ResT && !Initializing) { 5463 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5464 if (!LocalIndex) 5465 return false; 5466 return this->emitGetPtrLocal(*LocalIndex, E); 5467 } 5468 5469 return true; 5470 }; 5471 5472 // The offset of the temporary, if we created one. 5473 unsigned SubExprOffset = ~0u; 5474 auto createTemp = [=, &SubExprOffset]() -> bool { 5475 SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5476 if (!this->visit(SubExpr)) 5477 return false; 5478 return this->emitSetLocal(PT_Ptr, SubExprOffset, E); 5479 }; 5480 5481 PrimType ElemT = classifyComplexElementType(SubExpr->getType()); 5482 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5483 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5484 return false; 5485 return this->emitArrayElemPop(ElemT, Index, E); 5486 }; 5487 5488 switch (E->getOpcode()) { 5489 case UO_Minus: 5490 if (!prepareResult()) 5491 return false; 5492 if (!createTemp()) 5493 return false; 5494 for (unsigned I = 0; I != 2; ++I) { 5495 if (!getElem(SubExprOffset, I)) 5496 return false; 5497 if (!this->emitNeg(ElemT, E)) 5498 return false; 5499 if (!this->emitInitElem(ElemT, I, E)) 5500 return false; 5501 } 5502 break; 5503 5504 case UO_Plus: // +x 5505 case UO_AddrOf: // &x 5506 case UO_Deref: // *x 5507 return this->delegate(SubExpr); 5508 5509 case UO_LNot: 5510 if (!this->visit(SubExpr)) 5511 return false; 5512 if (!this->emitComplexBoolCast(SubExpr)) 5513 return false; 5514 if (!this->emitInv(E)) 5515 return false; 5516 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5517 return this->emitCast(PT_Bool, ET, E); 5518 return true; 5519 5520 case UO_Real: 5521 return this->emitComplexReal(SubExpr); 5522 5523 case UO_Imag: 5524 if (!this->visit(SubExpr)) 5525 return false; 5526 5527 if (SubExpr->isLValue()) { 5528 if (!this->emitConstUint8(1, E)) 5529 return false; 5530 return this->emitArrayElemPtrPopUint8(E); 5531 } 5532 5533 // Since our _Complex implementation does not map to a primitive type, 5534 // we sometimes have to do the lvalue-to-rvalue conversion here manually. 5535 return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E); 5536 5537 case UO_Not: // ~x 5538 if (!this->visit(SubExpr)) 5539 return false; 5540 // Negate the imaginary component. 5541 if (!this->emitArrayElem(ElemT, 1, E)) 5542 return false; 5543 if (!this->emitNeg(ElemT, E)) 5544 return false; 5545 if (!this->emitInitElem(ElemT, 1, E)) 5546 return false; 5547 return DiscardResult ? this->emitPopPtr(E) : true; 5548 5549 case UO_Extension: 5550 return this->delegate(SubExpr); 5551 5552 default: 5553 return this->emitInvalid(E); 5554 } 5555 5556 return true; 5557 } 5558 5559 template <class Emitter> 5560 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) { 5561 const Expr *SubExpr = E->getSubExpr(); 5562 assert(SubExpr->getType()->isVectorType()); 5563 5564 if (DiscardResult) 5565 return this->discard(SubExpr); 5566 5567 auto UnaryOp = E->getOpcode(); 5568 if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot && 5569 UnaryOp != UO_Not && UnaryOp != UO_AddrOf) 5570 return this->emitInvalid(E); 5571 5572 // Nothing to do here. 5573 if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf) 5574 return this->delegate(SubExpr); 5575 5576 if (!Initializing) { 5577 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5578 if (!LocalIndex) 5579 return false; 5580 if (!this->emitGetPtrLocal(*LocalIndex, E)) 5581 return false; 5582 } 5583 5584 // The offset of the temporary, if we created one. 5585 unsigned SubExprOffset = 5586 this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5587 if (!this->visit(SubExpr)) 5588 return false; 5589 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E)) 5590 return false; 5591 5592 const auto *VecTy = SubExpr->getType()->getAs<VectorType>(); 5593 PrimType ElemT = classifyVectorElementType(SubExpr->getType()); 5594 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5595 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5596 return false; 5597 return this->emitArrayElemPop(ElemT, Index, E); 5598 }; 5599 5600 switch (UnaryOp) { 5601 case UO_Minus: 5602 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5603 if (!getElem(SubExprOffset, I)) 5604 return false; 5605 if (!this->emitNeg(ElemT, E)) 5606 return false; 5607 if (!this->emitInitElem(ElemT, I, E)) 5608 return false; 5609 } 5610 break; 5611 case UO_LNot: { // !x 5612 // In C++, the logic operators !, &&, || are available for vectors. !v is 5613 // equivalent to v == 0. 5614 // 5615 // The result of the comparison is a vector of the same width and number of 5616 // elements as the comparison operands with a signed integral element type. 5617 // 5618 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 5619 QualType ResultVecTy = E->getType(); 5620 PrimType ResultVecElemT = 5621 classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType()); 5622 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5623 if (!getElem(SubExprOffset, I)) 5624 return false; 5625 // operator ! on vectors returns -1 for 'truth', so negate it. 5626 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 5627 return false; 5628 if (!this->emitInv(E)) 5629 return false; 5630 if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E)) 5631 return false; 5632 if (!this->emitNeg(ElemT, E)) 5633 return false; 5634 if (ElemT != ResultVecElemT && 5635 !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E)) 5636 return false; 5637 if (!this->emitInitElem(ResultVecElemT, I, E)) 5638 return false; 5639 } 5640 break; 5641 } 5642 case UO_Not: // ~x 5643 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5644 if (!getElem(SubExprOffset, I)) 5645 return false; 5646 if (ElemT == PT_Bool) { 5647 if (!this->emitInv(E)) 5648 return false; 5649 } else { 5650 if (!this->emitComp(ElemT, E)) 5651 return false; 5652 } 5653 if (!this->emitInitElem(ElemT, I, E)) 5654 return false; 5655 } 5656 break; 5657 default: 5658 llvm_unreachable("Unsupported unary operators should be handled up front"); 5659 } 5660 return true; 5661 } 5662 5663 template <class Emitter> 5664 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) { 5665 if (DiscardResult) 5666 return true; 5667 5668 if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) { 5669 return this->emitConst(ECD->getInitVal(), E); 5670 } else if (const auto *BD = dyn_cast<BindingDecl>(D)) { 5671 return this->visit(BD->getBinding()); 5672 } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) { 5673 const Function *F = getFunction(FuncDecl); 5674 return F && this->emitGetFnPtr(F, E); 5675 } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) { 5676 if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) { 5677 if (!this->emitGetPtrGlobal(*Index, E)) 5678 return false; 5679 if (std::optional<PrimType> T = classify(E->getType())) { 5680 if (!this->visitAPValue(TPOD->getValue(), *T, E)) 5681 return false; 5682 return this->emitInitGlobal(*T, *Index, E); 5683 } 5684 return this->visitAPValueInitializer(TPOD->getValue(), E); 5685 } 5686 return false; 5687 } 5688 5689 // References are implemented via pointers, so when we see a DeclRefExpr 5690 // pointing to a reference, we need to get its value directly (i.e. the 5691 // pointer to the actual value) instead of a pointer to the pointer to the 5692 // value. 5693 bool IsReference = D->getType()->isReferenceType(); 5694 5695 // Check for local/global variables and parameters. 5696 if (auto It = Locals.find(D); It != Locals.end()) { 5697 const unsigned Offset = It->second.Offset; 5698 if (IsReference) 5699 return this->emitGetLocal(PT_Ptr, Offset, E); 5700 return this->emitGetPtrLocal(Offset, E); 5701 } else if (auto GlobalIndex = P.getGlobal(D)) { 5702 if (IsReference) { 5703 if (!Ctx.getLangOpts().CPlusPlus11) 5704 return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E); 5705 return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E); 5706 } 5707 5708 return this->emitGetPtrGlobal(*GlobalIndex, E); 5709 } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { 5710 if (auto It = this->Params.find(PVD); It != this->Params.end()) { 5711 if (IsReference || !It->second.IsPtr) 5712 return this->emitGetParam(classifyPrim(E), It->second.Offset, E); 5713 5714 return this->emitGetPtrParam(It->second.Offset, E); 5715 } 5716 } 5717 5718 // In case we need to re-visit a declaration. 5719 auto revisit = [&](const VarDecl *VD) -> bool { 5720 auto VarState = this->visitDecl(VD); 5721 5722 if (VarState.notCreated()) 5723 return true; 5724 if (!VarState) 5725 return false; 5726 // Retry. 5727 return this->visitDeclRef(D, E); 5728 }; 5729 5730 // Handle lambda captures. 5731 if (auto It = this->LambdaCaptures.find(D); 5732 It != this->LambdaCaptures.end()) { 5733 auto [Offset, IsPtr] = It->second; 5734 5735 if (IsPtr) 5736 return this->emitGetThisFieldPtr(Offset, E); 5737 return this->emitGetPtrThisField(Offset, E); 5738 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E); 5739 DRE && DRE->refersToEnclosingVariableOrCapture()) { 5740 if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture()) 5741 return revisit(VD); 5742 } 5743 5744 if (D != InitializingDecl) { 5745 // Try to lazily visit (or emit dummy pointers for) declarations 5746 // we haven't seen yet. 5747 if (Ctx.getLangOpts().CPlusPlus) { 5748 if (const auto *VD = dyn_cast<VarDecl>(D)) { 5749 const auto typeShouldBeVisited = [&](QualType T) -> bool { 5750 if (T.isConstant(Ctx.getASTContext())) 5751 return true; 5752 if (const auto *RT = T->getAs<ReferenceType>()) 5753 return RT->getPointeeType().isConstQualified(); 5754 return false; 5755 }; 5756 5757 // DecompositionDecls are just proxies for us. 5758 if (isa<DecompositionDecl>(VD)) 5759 return revisit(VD); 5760 5761 if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) && 5762 typeShouldBeVisited(VD->getType())) 5763 return revisit(VD); 5764 5765 // FIXME: The evaluateValue() check here is a little ridiculous, since 5766 // it will ultimately call into Context::evaluateAsInitializer(). In 5767 // other words, we're evaluating the initializer, just to know if we can 5768 // evaluate the initializer. 5769 if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) && 5770 VD->getInit() && !VD->getInit()->isValueDependent() && 5771 VD->evaluateValue()) 5772 return revisit(VD); 5773 } 5774 } else { 5775 if (const auto *VD = dyn_cast<VarDecl>(D); 5776 VD && VD->getAnyInitializer() && 5777 VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak()) 5778 return revisit(VD); 5779 } 5780 } 5781 5782 if (std::optional<unsigned> I = P.getOrCreateDummy(D)) { 5783 if (!this->emitGetPtrGlobal(*I, E)) 5784 return false; 5785 if (E->getType()->isVoidType()) 5786 return true; 5787 // Convert the dummy pointer to another pointer type if we have to. 5788 if (PrimType PT = classifyPrim(E); PT != PT_Ptr) { 5789 if (isPtrType(PT)) 5790 return this->emitDecayPtr(PT_Ptr, PT, E); 5791 return false; 5792 } 5793 return true; 5794 } 5795 5796 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 5797 return this->emitInvalidDeclRef(DRE, E); 5798 return false; 5799 } 5800 5801 template <class Emitter> 5802 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) { 5803 const auto *D = E->getDecl(); 5804 return this->visitDeclRef(D, E); 5805 } 5806 5807 template <class Emitter> void Compiler<Emitter>::emitCleanup() { 5808 for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent()) 5809 C->emitDestruction(); 5810 } 5811 5812 template <class Emitter> 5813 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType, 5814 const QualType DerivedType) { 5815 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 5816 if (const auto *R = Ty->getPointeeCXXRecordDecl()) 5817 return R; 5818 return Ty->getAsCXXRecordDecl(); 5819 }; 5820 const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType); 5821 const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType); 5822 5823 return Ctx.collectBaseOffset(BaseDecl, DerivedDecl); 5824 } 5825 5826 /// Emit casts from a PrimType to another PrimType. 5827 template <class Emitter> 5828 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT, 5829 QualType ToQT, const Expr *E) { 5830 5831 if (FromT == PT_Float) { 5832 // Floating to floating. 5833 if (ToT == PT_Float) { 5834 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 5835 return this->emitCastFP(ToSem, getRoundingMode(E), E); 5836 } 5837 5838 if (ToT == PT_IntAP) 5839 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), 5840 getFPOptions(E), E); 5841 if (ToT == PT_IntAPS) 5842 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), 5843 getFPOptions(E), E); 5844 5845 // Float to integral. 5846 if (isIntegralType(ToT) || ToT == PT_Bool) 5847 return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E); 5848 } 5849 5850 if (isIntegralType(FromT) || FromT == PT_Bool) { 5851 if (ToT == PT_IntAP) 5852 return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E); 5853 if (ToT == PT_IntAPS) 5854 return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E); 5855 5856 // Integral to integral. 5857 if (isIntegralType(ToT) || ToT == PT_Bool) 5858 return FromT != ToT ? this->emitCast(FromT, ToT, E) : true; 5859 5860 if (ToT == PT_Float) { 5861 // Integral to floating. 5862 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 5863 return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E); 5864 } 5865 } 5866 5867 return false; 5868 } 5869 5870 /// Emits __real(SubExpr) 5871 template <class Emitter> 5872 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) { 5873 assert(SubExpr->getType()->isAnyComplexType()); 5874 5875 if (DiscardResult) 5876 return this->discard(SubExpr); 5877 5878 if (!this->visit(SubExpr)) 5879 return false; 5880 if (SubExpr->isLValue()) { 5881 if (!this->emitConstUint8(0, SubExpr)) 5882 return false; 5883 return this->emitArrayElemPtrPopUint8(SubExpr); 5884 } 5885 5886 // Rvalue, load the actual element. 5887 return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()), 5888 0, SubExpr); 5889 } 5890 5891 template <class Emitter> 5892 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) { 5893 assert(!DiscardResult); 5894 PrimType ElemT = classifyComplexElementType(E->getType()); 5895 // We emit the expression (__real(E) != 0 || __imag(E) != 0) 5896 // for us, that means (bool)E[0] || (bool)E[1] 5897 if (!this->emitArrayElem(ElemT, 0, E)) 5898 return false; 5899 if (ElemT == PT_Float) { 5900 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 5901 return false; 5902 } else { 5903 if (!this->emitCast(ElemT, PT_Bool, E)) 5904 return false; 5905 } 5906 5907 // We now have the bool value of E[0] on the stack. 5908 LabelTy LabelTrue = this->getLabel(); 5909 if (!this->jumpTrue(LabelTrue)) 5910 return false; 5911 5912 if (!this->emitArrayElemPop(ElemT, 1, E)) 5913 return false; 5914 if (ElemT == PT_Float) { 5915 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 5916 return false; 5917 } else { 5918 if (!this->emitCast(ElemT, PT_Bool, E)) 5919 return false; 5920 } 5921 // Leave the boolean value of E[1] on the stack. 5922 LabelTy EndLabel = this->getLabel(); 5923 this->jump(EndLabel); 5924 5925 this->emitLabel(LabelTrue); 5926 if (!this->emitPopPtr(E)) 5927 return false; 5928 if (!this->emitConstBool(true, E)) 5929 return false; 5930 5931 this->fallthrough(EndLabel); 5932 this->emitLabel(EndLabel); 5933 5934 return true; 5935 } 5936 5937 template <class Emitter> 5938 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS, 5939 const BinaryOperator *E) { 5940 assert(E->isComparisonOp()); 5941 assert(!Initializing); 5942 assert(!DiscardResult); 5943 5944 PrimType ElemT; 5945 bool LHSIsComplex; 5946 unsigned LHSOffset; 5947 if (LHS->getType()->isAnyComplexType()) { 5948 LHSIsComplex = true; 5949 ElemT = classifyComplexElementType(LHS->getType()); 5950 LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true, 5951 /*IsExtended=*/false); 5952 if (!this->visit(LHS)) 5953 return false; 5954 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 5955 return false; 5956 } else { 5957 LHSIsComplex = false; 5958 PrimType LHST = classifyPrim(LHS->getType()); 5959 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 5960 if (!this->visit(LHS)) 5961 return false; 5962 if (!this->emitSetLocal(LHST, LHSOffset, E)) 5963 return false; 5964 } 5965 5966 bool RHSIsComplex; 5967 unsigned RHSOffset; 5968 if (RHS->getType()->isAnyComplexType()) { 5969 RHSIsComplex = true; 5970 ElemT = classifyComplexElementType(RHS->getType()); 5971 RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true, 5972 /*IsExtended=*/false); 5973 if (!this->visit(RHS)) 5974 return false; 5975 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 5976 return false; 5977 } else { 5978 RHSIsComplex = false; 5979 PrimType RHST = classifyPrim(RHS->getType()); 5980 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 5981 if (!this->visit(RHS)) 5982 return false; 5983 if (!this->emitSetLocal(RHST, RHSOffset, E)) 5984 return false; 5985 } 5986 5987 auto getElem = [&](unsigned LocalOffset, unsigned Index, 5988 bool IsComplex) -> bool { 5989 if (IsComplex) { 5990 if (!this->emitGetLocal(PT_Ptr, LocalOffset, E)) 5991 return false; 5992 return this->emitArrayElemPop(ElemT, Index, E); 5993 } 5994 return this->emitGetLocal(ElemT, LocalOffset, E); 5995 }; 5996 5997 for (unsigned I = 0; I != 2; ++I) { 5998 // Get both values. 5999 if (!getElem(LHSOffset, I, LHSIsComplex)) 6000 return false; 6001 if (!getElem(RHSOffset, I, RHSIsComplex)) 6002 return false; 6003 // And compare them. 6004 if (!this->emitEQ(ElemT, E)) 6005 return false; 6006 6007 if (!this->emitCastBoolUint8(E)) 6008 return false; 6009 } 6010 6011 // We now have two bool values on the stack. Compare those. 6012 if (!this->emitAddUint8(E)) 6013 return false; 6014 if (!this->emitConstUint8(2, E)) 6015 return false; 6016 6017 if (E->getOpcode() == BO_EQ) { 6018 if (!this->emitEQUint8(E)) 6019 return false; 6020 } else if (E->getOpcode() == BO_NE) { 6021 if (!this->emitNEUint8(E)) 6022 return false; 6023 } else 6024 return false; 6025 6026 // In C, this returns an int. 6027 if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool) 6028 return this->emitCast(PT_Bool, ResT, E); 6029 return true; 6030 } 6031 6032 /// When calling this, we have a pointer of the local-to-destroy 6033 /// on the stack. 6034 /// Emit destruction of record types (or arrays of record types). 6035 template <class Emitter> 6036 bool Compiler<Emitter>::emitRecordDestruction(const Record *R) { 6037 assert(R); 6038 const CXXDestructorDecl *Dtor = R->getDestructor(); 6039 if (!Dtor || Dtor->isTrivial()) 6040 return true; 6041 6042 assert(Dtor); 6043 const Function *DtorFunc = getFunction(Dtor); 6044 if (!DtorFunc) 6045 return false; 6046 assert(DtorFunc->hasThisPointer()); 6047 assert(DtorFunc->getNumParams() == 1); 6048 if (!this->emitDupPtr(SourceInfo{})) 6049 return false; 6050 return this->emitCall(DtorFunc, 0, SourceInfo{}); 6051 } 6052 /// When calling this, we have a pointer of the local-to-destroy 6053 /// on the stack. 6054 /// Emit destruction of record types (or arrays of record types). 6055 template <class Emitter> 6056 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc) { 6057 assert(Desc); 6058 assert(!Desc->isPrimitive()); 6059 assert(!Desc->isPrimitiveArray()); 6060 6061 // Arrays. 6062 if (Desc->isArray()) { 6063 const Descriptor *ElemDesc = Desc->ElemDesc; 6064 assert(ElemDesc); 6065 6066 // Don't need to do anything for these. 6067 if (ElemDesc->isPrimitiveArray()) 6068 return true; 6069 6070 // If this is an array of record types, check if we need 6071 // to call the element destructors at all. If not, try 6072 // to save the work. 6073 if (const Record *ElemRecord = ElemDesc->ElemRecord) { 6074 if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor(); 6075 !Dtor || Dtor->isTrivial()) 6076 return true; 6077 } 6078 6079 for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) { 6080 if (!this->emitConstUint64(I, SourceInfo{})) 6081 return false; 6082 if (!this->emitArrayElemPtrUint64(SourceInfo{})) 6083 return false; 6084 if (!this->emitDestruction(ElemDesc)) 6085 return false; 6086 if (!this->emitPopPtr(SourceInfo{})) 6087 return false; 6088 } 6089 return true; 6090 } 6091 6092 assert(Desc->ElemRecord); 6093 return this->emitRecordDestruction(Desc->ElemRecord); 6094 } 6095 6096 namespace clang { 6097 namespace interp { 6098 6099 template class Compiler<ByteCodeEmitter>; 6100 template class Compiler<EvalEmitter>; 6101 6102 } // namespace interp 6103 } // namespace clang 6104