1 //===--- ExtractVariable.cpp ------------------------------------*- C++-*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "AST.h" 9 #include "ParsedAST.h" 10 #include "Protocol.h" 11 #include "Selection.h" 12 #include "SourceCode.h" 13 #include "refactor/Tweak.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/Decl.h" 16 #include "clang/AST/DeclCXX.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/LambdaCapture.h" 20 #include "clang/AST/OperationKinds.h" 21 #include "clang/AST/RecursiveASTVisitor.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/LangOptions.h" 25 #include "clang/Basic/SourceLocation.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Tooling/Core/Replacement.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/Error.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 namespace clang { 35 namespace clangd { 36 namespace { 37 // information regarding the Expr that is being extracted 38 class ExtractionContext { 39 public: 40 ExtractionContext(const SelectionTree::Node *Node, const SourceManager &SM, 41 const ASTContext &Ctx); 42 const clang::Expr *getExpr() const { return Expr; } 43 const SelectionTree::Node *getExprNode() const { return ExprNode; } 44 bool isExtractable() const { return Extractable; } 45 // The half-open range for the expression to be extracted. 46 SourceRange getExtractionChars() const; 47 // Generate Replacement for replacing selected expression with given VarName 48 tooling::Replacement replaceWithVar(SourceRange Chars, 49 llvm::StringRef VarName) const; 50 // Generate Replacement for declaring the selected Expr as a new variable 51 tooling::Replacement insertDeclaration(llvm::StringRef VarName, 52 SourceRange InitChars) const; 53 54 private: 55 bool Extractable = false; 56 const clang::Expr *Expr; 57 QualType VarType; 58 const SelectionTree::Node *ExprNode; 59 // Stmt before which we will extract 60 const clang::Stmt *InsertionPoint = nullptr; 61 const SourceManager &SM; 62 const ASTContext &Ctx; 63 // Decls referenced in the Expr 64 std::vector<clang::Decl *> ReferencedDecls; 65 // returns true if the Expr doesn't reference any variable declared in scope 66 bool exprIsValidOutside(const clang::Stmt *Scope) const; 67 // computes the Stmt before which we will extract out Expr 68 const clang::Stmt *computeInsertionPoint() const; 69 }; 70 71 // Returns all the Decls referenced inside the given Expr 72 static std::vector<clang::Decl *> 73 computeReferencedDecls(const clang::Expr *Expr) { 74 // RAV subclass to find all DeclRefs in a given Stmt 75 class FindDeclRefsVisitor 76 : public clang::RecursiveASTVisitor<FindDeclRefsVisitor> { 77 public: 78 std::vector<Decl *> ReferencedDecls; 79 bool VisitDeclRefExpr(DeclRefExpr *DeclRef) { // NOLINT 80 // Stop the call operator of lambdas from being marked as a referenced 81 // DeclRefExpr in immediately invoked lambdas. 82 if (const auto *const Method = 83 llvm::dyn_cast<CXXMethodDecl>(DeclRef->getDecl()); 84 Method != nullptr && Method->getParent()->isLambda()) { 85 return true; 86 } 87 ReferencedDecls.push_back(DeclRef->getDecl()); 88 return true; 89 } 90 91 // Local variables declared inside of the selected lambda cannot go out of 92 // scope. The DeclRefExprs that are important are the variables captured, 93 // the DeclRefExprs inside the initializers of init-capture variables, 94 // variables mentioned in trailing return types, constraints and explicit 95 // defaulted template parameters. 96 bool TraverseLambdaExpr(LambdaExpr *LExpr) { 97 for (const auto &[Capture, Initializer] : 98 llvm::zip(LExpr->captures(), LExpr->capture_inits())) { 99 TraverseLambdaCapture(LExpr, &Capture, Initializer); 100 } 101 102 if (clang::Expr *const RequiresClause = 103 LExpr->getTrailingRequiresClause()) { 104 TraverseStmt(RequiresClause); 105 } 106 107 for (auto *const TemplateParam : LExpr->getExplicitTemplateParameters()) 108 TraverseDecl(TemplateParam); 109 110 if (auto *const CallOperator = LExpr->getCallOperator()) { 111 TraverseType(CallOperator->getDeclaredReturnType()); 112 113 for (auto *const Param : CallOperator->parameters()) { 114 TraverseParmVarDecl(Param); 115 } 116 117 for (auto *const Attr : CallOperator->attrs()) { 118 TraverseAttr(Attr); 119 } 120 } 121 122 return true; 123 } 124 }; 125 126 FindDeclRefsVisitor Visitor; 127 Visitor.TraverseStmt(const_cast<Stmt *>(cast<Stmt>(Expr))); 128 return Visitor.ReferencedDecls; 129 } 130 131 static QualType computeVariableType(const Expr *Expr, const ASTContext &Ctx) { 132 if (Ctx.getLangOpts().CPlusPlus11) 133 return Ctx.getAutoDeductType(); 134 135 if (Expr->hasPlaceholderType(BuiltinType::PseudoObject)) { 136 if (const auto *PR = dyn_cast<ObjCPropertyRefExpr>(Expr)) { 137 if (PR->isMessagingSetter()) { 138 // Don't support extracting a compound reference like `self.prop += 1` 139 // since the meaning changes after extraction since we'll no longer call 140 // the setter. Non compound access like `self.prop = 1` is invalid since 141 // it returns nil (setter method must have a void return type). 142 return QualType(); 143 } else if (PR->isMessagingGetter()) { 144 if (PR->isExplicitProperty()) 145 return PR->getExplicitProperty()->getType(); 146 else 147 return PR->getImplicitPropertyGetter()->getReturnType(); 148 } 149 } else { 150 return QualType(); 151 } 152 } 153 return Expr->getType(); 154 } 155 156 ExtractionContext::ExtractionContext(const SelectionTree::Node *Node, 157 const SourceManager &SM, 158 const ASTContext &Ctx) 159 : ExprNode(Node), SM(SM), Ctx(Ctx) { 160 Expr = Node->ASTNode.get<clang::Expr>(); 161 ReferencedDecls = computeReferencedDecls(Expr); 162 InsertionPoint = computeInsertionPoint(); 163 if (InsertionPoint) 164 Extractable = true; 165 VarType = computeVariableType(Expr, Ctx); 166 if (VarType.isNull()) 167 Extractable = false; 168 else 169 // Strip the outer nullability since it's not common for local variables. 170 AttributedType::stripOuterNullability(VarType); 171 } 172 173 // checks whether extracting before InsertionPoint will take a 174 // variable reference out of scope 175 bool ExtractionContext::exprIsValidOutside(const clang::Stmt *Scope) const { 176 SourceLocation ScopeBegin = Scope->getBeginLoc(); 177 SourceLocation ScopeEnd = Scope->getEndLoc(); 178 for (const Decl *ReferencedDecl : ReferencedDecls) { 179 if (SM.isPointWithin(ReferencedDecl->getBeginLoc(), ScopeBegin, ScopeEnd) && 180 SM.isPointWithin(ReferencedDecl->getEndLoc(), ScopeBegin, ScopeEnd)) 181 return false; 182 } 183 return true; 184 } 185 186 // Return the Stmt before which we need to insert the extraction. 187 // To find the Stmt, we go up the AST Tree and if the Parent of the current 188 // Stmt is a CompoundStmt, we can extract inside this CompoundStmt just before 189 // the current Stmt. We ALWAYS insert before a Stmt whose parent is a 190 // CompoundStmt 191 // 192 // FIXME: Extraction from label, switch and case statements 193 // FIXME: Doens't work for FoldExpr 194 // FIXME: Ensure extraction from loops doesn't change semantics. 195 const clang::Stmt *ExtractionContext::computeInsertionPoint() const { 196 // returns true if we can extract before InsertionPoint 197 auto CanExtractOutside = 198 [](const SelectionTree::Node *InsertionPoint) -> bool { 199 if (const clang::Stmt *Stmt = InsertionPoint->ASTNode.get<clang::Stmt>()) { 200 if (isa<clang::Expr>(Stmt)) { 201 // Do not allow extraction from the initializer of a defaulted parameter 202 // to a local variable (e.g. a function-local lambda). 203 if (InsertionPoint->Parent->ASTNode.get<ParmVarDecl>() != nullptr) { 204 return false; 205 } 206 207 return true; 208 } 209 210 // We don't yet allow extraction from switch/case stmt as we would need to 211 // jump over the switch stmt even if there is a CompoundStmt inside the 212 // switch. And there are other Stmts which we don't care about (e.g. 213 // continue and break) as there can never be anything to extract from 214 // them. 215 return isa<AttributedStmt>(Stmt) || isa<CompoundStmt>(Stmt) || 216 isa<CXXForRangeStmt>(Stmt) || isa<DeclStmt>(Stmt) || 217 isa<DoStmt>(Stmt) || isa<ForStmt>(Stmt) || isa<IfStmt>(Stmt) || 218 isa<ReturnStmt>(Stmt) || isa<WhileStmt>(Stmt); 219 } 220 if (InsertionPoint->ASTNode.get<VarDecl>()) 221 return true; 222 return false; 223 }; 224 for (const SelectionTree::Node *CurNode = getExprNode(); 225 CurNode->Parent && CanExtractOutside(CurNode); 226 CurNode = CurNode->Parent) { 227 const clang::Stmt *CurInsertionPoint = CurNode->ASTNode.get<Stmt>(); 228 // give up if extraction will take a variable out of scope 229 if (CurInsertionPoint && !exprIsValidOutside(CurInsertionPoint)) 230 break; 231 if (const clang::Stmt *CurParent = CurNode->Parent->ASTNode.get<Stmt>()) { 232 if (isa<CompoundStmt>(CurParent)) { 233 // Ensure we don't write inside a macro. 234 if (CurParent->getBeginLoc().isMacroID()) 235 continue; 236 return CurInsertionPoint; 237 } 238 } 239 } 240 return nullptr; 241 } 242 243 // returns the replacement for substituting the extraction with VarName 244 tooling::Replacement 245 ExtractionContext::replaceWithVar(SourceRange Chars, 246 llvm::StringRef VarName) const { 247 unsigned ExtractionLength = 248 SM.getFileOffset(Chars.getEnd()) - SM.getFileOffset(Chars.getBegin()); 249 return tooling::Replacement(SM, Chars.getBegin(), ExtractionLength, VarName); 250 } 251 // returns the Replacement for declaring a new variable storing the extraction 252 tooling::Replacement 253 ExtractionContext::insertDeclaration(llvm::StringRef VarName, 254 SourceRange InitializerChars) const { 255 llvm::StringRef ExtractionCode = toSourceCode(SM, InitializerChars); 256 const SourceLocation InsertionLoc = 257 toHalfOpenFileRange(SM, Ctx.getLangOpts(), 258 InsertionPoint->getSourceRange()) 259 ->getBegin(); 260 std::string ExtractedVarDecl = 261 printType(VarType, ExprNode->getDeclContext(), VarName) + " = " + 262 ExtractionCode.str() + "; "; 263 return tooling::Replacement(SM, InsertionLoc, 0, ExtractedVarDecl); 264 } 265 266 // Helpers for handling "binary subexpressions" like a + [[b + c]] + d. 267 // 268 // These are special, because the formal AST doesn't match what users expect: 269 // - the AST is ((a + b) + c) + d, so the ancestor expression is `a + b + c`. 270 // - but extracting `b + c` is reasonable, as + is (mathematically) associative. 271 // 272 // So we try to support these cases with some restrictions: 273 // - the operator must be associative 274 // - no mixing of operators is allowed 275 // - we don't look inside macro expansions in the subexpressions 276 // - we only adjust the extracted range, so references in the unselected parts 277 // of the AST expression (e.g. `a`) are still considered referenced for 278 // the purposes of calculating the insertion point. 279 // FIXME: it would be nice to exclude these references, by micromanaging 280 // the computeReferencedDecls() calls around the binary operator tree. 281 282 // Information extracted about a binary operator encounted in a SelectionTree. 283 // It can represent either an overloaded or built-in operator. 284 struct ParsedBinaryOperator { 285 BinaryOperatorKind Kind; 286 SourceLocation ExprLoc; 287 llvm::SmallVector<const SelectionTree::Node *> SelectedOperands; 288 289 // If N is a binary operator, populate this and return true. 290 bool parse(const SelectionTree::Node &N) { 291 SelectedOperands.clear(); 292 293 if (const BinaryOperator *Op = 294 llvm::dyn_cast_or_null<BinaryOperator>(N.ASTNode.get<Expr>())) { 295 Kind = Op->getOpcode(); 296 ExprLoc = Op->getExprLoc(); 297 SelectedOperands = N.Children; 298 return true; 299 } 300 if (const CXXOperatorCallExpr *Op = 301 llvm::dyn_cast_or_null<CXXOperatorCallExpr>( 302 N.ASTNode.get<Expr>())) { 303 if (!Op->isInfixBinaryOp()) 304 return false; 305 306 Kind = BinaryOperator::getOverloadedOpcode(Op->getOperator()); 307 ExprLoc = Op->getExprLoc(); 308 // Not all children are args, there's also the callee (operator). 309 for (const auto *Child : N.Children) { 310 const Expr *E = Child->ASTNode.get<Expr>(); 311 assert(E && "callee and args should be Exprs!"); 312 if (E == Op->getArg(0) || E == Op->getArg(1)) 313 SelectedOperands.push_back(Child); 314 } 315 return true; 316 } 317 return false; 318 } 319 320 bool associative() const { 321 // Must also be left-associative, or update getBinaryOperatorRange()! 322 switch (Kind) { 323 case BO_Add: 324 case BO_Mul: 325 case BO_And: 326 case BO_Or: 327 case BO_Xor: 328 case BO_LAnd: 329 case BO_LOr: 330 return true; 331 default: 332 return false; 333 } 334 } 335 336 bool crossesMacroBoundary(const SourceManager &SM) { 337 FileID F = SM.getFileID(ExprLoc); 338 for (const SelectionTree::Node *Child : SelectedOperands) 339 if (SM.getFileID(Child->ASTNode.get<Expr>()->getExprLoc()) != F) 340 return true; 341 return false; 342 } 343 }; 344 345 // If have an associative operator at the top level, then we must find 346 // the start point (rightmost in LHS) and end point (leftmost in RHS). 347 // We can only descend into subtrees where the operator matches. 348 // 349 // e.g. for a + [[b + c]] + d 350 // + 351 // / \ 352 // N-> + d 353 // / \ 354 // + c <- End 355 // / \ 356 // a b <- Start 357 const SourceRange getBinaryOperatorRange(const SelectionTree::Node &N, 358 const SourceManager &SM, 359 const LangOptions &LangOpts) { 360 // If N is not a suitable binary operator, bail out. 361 ParsedBinaryOperator Op; 362 if (!Op.parse(N.ignoreImplicit()) || !Op.associative() || 363 Op.crossesMacroBoundary(SM) || Op.SelectedOperands.size() != 2) 364 return SourceRange(); 365 BinaryOperatorKind OuterOp = Op.Kind; 366 367 // Because the tree we're interested in contains only one operator type, and 368 // all eligible operators are left-associative, the shape of the tree is 369 // very restricted: it's a linked list along the left edges. 370 // This simplifies our implementation. 371 const SelectionTree::Node *Start = Op.SelectedOperands.front(); // LHS 372 const SelectionTree::Node *End = Op.SelectedOperands.back(); // RHS 373 // End is already correct: it can't be an OuterOp (as it's left-associative). 374 // Start needs to be pushed down int the subtree to the right spot. 375 while (Op.parse(Start->ignoreImplicit()) && Op.Kind == OuterOp && 376 !Op.crossesMacroBoundary(SM)) { 377 assert(!Op.SelectedOperands.empty() && "got only operator on one side!"); 378 if (Op.SelectedOperands.size() == 1) { // Only Op.RHS selected 379 Start = Op.SelectedOperands.back(); 380 break; 381 } 382 // Op.LHS is (at least partially) selected, so descend into it. 383 Start = Op.SelectedOperands.front(); 384 } 385 386 return SourceRange( 387 toHalfOpenFileRange(SM, LangOpts, Start->ASTNode.getSourceRange()) 388 ->getBegin(), 389 toHalfOpenFileRange(SM, LangOpts, End->ASTNode.getSourceRange()) 390 ->getEnd()); 391 } 392 393 SourceRange ExtractionContext::getExtractionChars() const { 394 // Special case: we're extracting an associative binary subexpression. 395 SourceRange BinaryOperatorRange = 396 getBinaryOperatorRange(*ExprNode, SM, Ctx.getLangOpts()); 397 if (BinaryOperatorRange.isValid()) 398 return BinaryOperatorRange; 399 400 // Usual case: we're extracting the whole expression. 401 return *toHalfOpenFileRange(SM, Ctx.getLangOpts(), Expr->getSourceRange()); 402 } 403 404 // Find the CallExpr whose callee is the (possibly wrapped) DeclRef 405 const SelectionTree::Node *getCallExpr(const SelectionTree::Node *DeclRef) { 406 const SelectionTree::Node &MaybeCallee = DeclRef->outerImplicit(); 407 const SelectionTree::Node *MaybeCall = MaybeCallee.Parent; 408 if (!MaybeCall) 409 return nullptr; 410 const CallExpr *CE = 411 llvm::dyn_cast_or_null<CallExpr>(MaybeCall->ASTNode.get<Expr>()); 412 if (!CE) 413 return nullptr; 414 if (CE->getCallee() != MaybeCallee.ASTNode.get<Expr>()) 415 return nullptr; 416 return MaybeCall; 417 } 418 419 // Returns true if Inner (which is a direct child of Outer) is appearing as 420 // a statement rather than an expression whose value can be used. 421 bool childExprIsStmt(const Stmt *Outer, const Expr *Inner) { 422 if (!Outer || !Inner) 423 return false; 424 // Exclude the most common places where an expr can appear but be unused. 425 if (llvm::isa<CompoundStmt>(Outer)) 426 return true; 427 if (llvm::isa<SwitchCase>(Outer)) 428 return true; 429 // Control flow statements use condition etc, but not the body. 430 if (const auto *WS = llvm::dyn_cast<WhileStmt>(Outer)) 431 return Inner == WS->getBody(); 432 if (const auto *DS = llvm::dyn_cast<DoStmt>(Outer)) 433 return Inner == DS->getBody(); 434 if (const auto *FS = llvm::dyn_cast<ForStmt>(Outer)) 435 return Inner == FS->getBody(); 436 if (const auto *FS = llvm::dyn_cast<CXXForRangeStmt>(Outer)) 437 return Inner == FS->getBody(); 438 if (const auto *IS = llvm::dyn_cast<IfStmt>(Outer)) 439 return Inner == IS->getThen() || Inner == IS->getElse(); 440 // Assume all other cases may be actual expressions. 441 // This includes the important case of subexpressions (where Outer is Expr). 442 return false; 443 } 444 445 // check if N can and should be extracted (e.g. is not void-typed). 446 bool eligibleForExtraction(const SelectionTree::Node *N) { 447 const Expr *E = N->ASTNode.get<Expr>(); 448 if (!E) 449 return false; 450 451 // Void expressions can't be assigned to variables. 452 const Type *ExprType = E->getType().getTypePtrOrNull(); 453 if (!ExprType || ExprType->isVoidType()) 454 return false; 455 456 // A plain reference to a name (e.g. variable) isn't worth extracting. 457 // FIXME: really? What if it's e.g. `std::is_same<void, void>::value`? 458 if (llvm::isa<DeclRefExpr>(E)) 459 return false; 460 461 // Similarly disallow extraction for member exprs with an implicit `this`. 462 if (const auto *ME = dyn_cast<MemberExpr>(E)) 463 if (const auto *TE = dyn_cast<CXXThisExpr>(ME->getBase()->IgnoreImpCasts())) 464 if (TE->isImplicit()) 465 return false; 466 467 // Extracting Exprs like a = 1 gives placeholder = a = 1 which isn't useful. 468 // FIXME: we could still hoist the assignment, and leave the variable there? 469 ParsedBinaryOperator BinOp; 470 if (BinOp.parse(*N) && BinaryOperator::isAssignmentOp(BinOp.Kind)) 471 return false; 472 473 const SelectionTree::Node &OuterImplicit = N->outerImplicit(); 474 const auto *Parent = OuterImplicit.Parent; 475 if (!Parent) 476 return false; 477 // We don't want to extract expressions used as statements, that would leave 478 // a `placeholder;` around that has no effect. 479 // Unfortunately because the AST doesn't have ExprStmt, we have to check in 480 // this roundabout way. 481 if (childExprIsStmt(Parent->ASTNode.get<Stmt>(), 482 OuterImplicit.ASTNode.get<Expr>())) 483 return false; 484 485 // Disable extraction of full RHS on assignment operations, e.g: 486 // auto x = [[RHS_EXPR]]; 487 // This would just result in duplicating the code. 488 if (const auto *BO = Parent->ASTNode.get<BinaryOperator>()) { 489 if (BO->isAssignmentOp() && 490 BO->getRHS() == OuterImplicit.ASTNode.get<Expr>()) 491 return false; 492 } 493 494 return true; 495 } 496 497 // Find the Expr node that we're going to extract. 498 // We don't want to trigger for assignment expressions and variable/field 499 // DeclRefs. For function/member function, we want to extract the entire 500 // function call. 501 const SelectionTree::Node *computeExtractedExpr(const SelectionTree::Node *N) { 502 if (!N) 503 return nullptr; 504 const SelectionTree::Node *TargetNode = N; 505 const clang::Expr *SelectedExpr = N->ASTNode.get<clang::Expr>(); 506 if (!SelectedExpr) 507 return nullptr; 508 // For function and member function DeclRefs, extract the whole call. 509 if (llvm::isa<DeclRefExpr>(SelectedExpr) || 510 llvm::isa<MemberExpr>(SelectedExpr)) 511 if (const SelectionTree::Node *Call = getCallExpr(N)) 512 TargetNode = Call; 513 // Extracting Exprs like a = 1 gives placeholder = a = 1 which isn't useful. 514 if (const BinaryOperator *BinOpExpr = 515 dyn_cast_or_null<BinaryOperator>(SelectedExpr)) { 516 if (BinOpExpr->getOpcode() == BinaryOperatorKind::BO_Assign) 517 return nullptr; 518 } 519 if (!TargetNode || !eligibleForExtraction(TargetNode)) 520 return nullptr; 521 return TargetNode; 522 } 523 524 /// Extracts an expression to the variable placeholder 525 /// Before: 526 /// int x = 5 + 4 * 3; 527 /// ^^^^^ 528 /// After: 529 /// auto placeholder = 5 + 4; 530 /// int x = placeholder * 3; 531 class ExtractVariable : public Tweak { 532 public: 533 const char *id() const final; 534 bool prepare(const Selection &Inputs) override; 535 Expected<Effect> apply(const Selection &Inputs) override; 536 std::string title() const override { 537 return "Extract subexpression to variable"; 538 } 539 llvm::StringLiteral kind() const override { 540 return CodeAction::REFACTOR_KIND; 541 } 542 543 private: 544 // the expression to extract 545 std::unique_ptr<ExtractionContext> Target; 546 }; 547 REGISTER_TWEAK(ExtractVariable) 548 bool ExtractVariable::prepare(const Selection &Inputs) { 549 // we don't trigger on empty selections for now 550 if (Inputs.SelectionBegin == Inputs.SelectionEnd) 551 return false; 552 const ASTContext &Ctx = Inputs.AST->getASTContext(); 553 const SourceManager &SM = Inputs.AST->getSourceManager(); 554 if (const SelectionTree::Node *N = 555 computeExtractedExpr(Inputs.ASTSelection.commonAncestor())) 556 Target = std::make_unique<ExtractionContext>(N, SM, Ctx); 557 return Target && Target->isExtractable(); 558 } 559 560 Expected<Tweak::Effect> ExtractVariable::apply(const Selection &Inputs) { 561 tooling::Replacements Result; 562 // FIXME: get variable name from user or suggest based on type 563 std::string VarName = "placeholder"; 564 SourceRange Range = Target->getExtractionChars(); 565 // insert new variable declaration 566 if (auto Err = Result.add(Target->insertDeclaration(VarName, Range))) 567 return std::move(Err); 568 // replace expression with variable name 569 if (auto Err = Result.add(Target->replaceWithVar(Range, VarName))) 570 return std::move(Err); 571 return Effect::mainFileEdit(Inputs.AST->getSourceManager(), 572 std::move(Result)); 573 } 574 575 } // namespace 576 } // namespace clangd 577 } // namespace clang 578