1 //===--- EasilySwappableParametersCheck.cpp - clang-tidy ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "EasilySwappableParametersCheck.h" 10 #include "../utils/OptionsUtils.h" 11 #include "clang/AST/ASTContext.h" 12 #include "clang/AST/RecursiveASTVisitor.h" 13 #include "clang/ASTMatchers/ASTMatchFinder.h" 14 #include "clang/Lex/Lexer.h" 15 #include "llvm/ADT/SmallSet.h" 16 17 #define DEBUG_TYPE "EasilySwappableParametersCheck" 18 #include "llvm/Support/Debug.h" 19 20 namespace optutils = clang::tidy::utils::options; 21 22 /// The default value for the MinimumLength check option. 23 static constexpr std::size_t DefaultMinimumLength = 2; 24 25 /// The default value for ignored parameter names. 26 static const std::string DefaultIgnoredParameterNames = 27 optutils::serializeStringList({"\"\"", "iterator", "Iterator", "begin", 28 "Begin", "end", "End", "first", "First", 29 "last", "Last", "lhs", "LHS", "rhs", "RHS"}); 30 31 /// The default value for ignored parameter type suffixes. 32 static const std::string DefaultIgnoredParameterTypeSuffixes = 33 optutils::serializeStringList({"bool", 34 "Bool", 35 "_Bool", 36 "it", 37 "It", 38 "iterator", 39 "Iterator", 40 "inputit", 41 "InputIt", 42 "forwardit", 43 "FowardIt", 44 "bidirit", 45 "BidirIt", 46 "constiterator", 47 "const_iterator", 48 "Const_Iterator", 49 "Constiterator", 50 "ConstIterator", 51 "RandomIt", 52 "randomit", 53 "random_iterator", 54 "ReverseIt", 55 "reverse_iterator", 56 "reverse_const_iterator", 57 "ConstReverseIterator", 58 "Const_Reverse_Iterator", 59 "const_reverse_iterator", 60 "Constreverseiterator", 61 "constreverseiterator"}); 62 63 /// The default value for the QualifiersMix check option. 64 static constexpr bool DefaultQualifiersMix = false; 65 66 /// The default value for the ModelImplicitConversions check option. 67 static constexpr bool DefaultModelImplicitConversions = true; 68 69 /// The default value for suppressing diagnostics about parameters that are 70 /// used together. 71 static constexpr bool DefaultSuppressParametersUsedTogether = true; 72 73 /// The default value for the NamePrefixSuffixSilenceDissimilarityTreshold 74 /// check option. 75 static constexpr std::size_t 76 DefaultNamePrefixSuffixSilenceDissimilarityTreshold = 1; 77 78 using namespace clang::ast_matchers; 79 80 namespace clang { 81 namespace tidy { 82 namespace bugprone { 83 84 using TheCheck = EasilySwappableParametersCheck; 85 86 namespace filter { 87 class SimilarlyUsedParameterPairSuppressor; 88 89 static bool isIgnoredParameter(const TheCheck &Check, const ParmVarDecl *Node); 90 static inline bool 91 isSimilarlyUsedParameter(const SimilarlyUsedParameterPairSuppressor &Suppressor, 92 const ParmVarDecl *Param1, const ParmVarDecl *Param2); 93 static bool prefixSuffixCoverUnderThreshold(std::size_t Threshold, 94 StringRef Str1, StringRef Str2); 95 } // namespace filter 96 97 namespace model { 98 99 /// The language features involved in allowing the mix between two parameters. 100 enum class MixFlags : unsigned char { 101 Invalid = 0, ///< Sentinel bit pattern. DO NOT USE! 102 103 /// Certain constructs (such as pointers to noexcept/non-noexcept functions) 104 /// have the same CanonicalType, which would result in false positives. 105 /// During the recursive modelling call, this flag is set if a later diagnosed 106 /// canonical type equivalence should be thrown away. 107 WorkaroundDisableCanonicalEquivalence = 1, 108 109 None = 2, ///< Mix between the two parameters is not possible. 110 Trivial = 4, ///< The two mix trivially, and are the exact same type. 111 Canonical = 8, ///< The two mix because the types refer to the same 112 /// CanonicalType, but we do not elaborate as to how. 113 TypeAlias = 16, ///< The path from one type to the other involves 114 /// desugaring type aliases. 115 ReferenceBind = 32, ///< The mix involves the binding power of "const &". 116 Qualifiers = 64, ///< The mix involves change in the qualifiers. 117 ImplicitConversion = 128, ///< The mixing of the parameters is possible 118 /// through implicit conversions between the types. 119 120 LLVM_MARK_AS_BITMASK_ENUM(/* LargestValue =*/ImplicitConversion) 121 }; 122 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 123 124 /// Returns whether the SearchedFlag is turned on in the Data. 125 static inline bool hasFlag(MixFlags Data, MixFlags SearchedFlag) { 126 assert(SearchedFlag != MixFlags::Invalid && 127 "can't be used to detect lack of all bits!"); 128 129 // "Data & SearchedFlag" would need static_cast<bool>() in conditions. 130 return (Data & SearchedFlag) == SearchedFlag; 131 } 132 133 #ifndef NDEBUG 134 135 // The modelling logic of this check is more complex than usual, and 136 // potentially hard to understand without the ability to see into the 137 // representation during the recursive descent. This debug code is only 138 // compiled in 'Debug' mode, or if LLVM_ENABLE_ASSERTIONS config is turned on. 139 140 /// Formats the MixFlags enum into a useful, user-readable representation. 141 static inline std::string formatMixFlags(MixFlags F) { 142 if (F == MixFlags::Invalid) 143 return "#Inv!"; 144 145 SmallString<8> Str{"-------"}; 146 147 if (hasFlag(F, MixFlags::None)) 148 // Shows the None bit explicitly, as it can be applied in the recursion 149 // even if other bits are set. 150 Str[0] = '!'; 151 if (hasFlag(F, MixFlags::Trivial)) 152 Str[1] = 'T'; 153 if (hasFlag(F, MixFlags::Canonical)) 154 Str[2] = 'C'; 155 if (hasFlag(F, MixFlags::TypeAlias)) 156 Str[3] = 't'; 157 if (hasFlag(F, MixFlags::ReferenceBind)) 158 Str[4] = '&'; 159 if (hasFlag(F, MixFlags::Qualifiers)) 160 Str[5] = 'Q'; 161 if (hasFlag(F, MixFlags::ImplicitConversion)) 162 Str[6] = 'i'; 163 164 if (hasFlag(F, MixFlags::WorkaroundDisableCanonicalEquivalence)) 165 Str.append("(~C)"); 166 167 return Str.str().str(); 168 } 169 170 #endif // NDEBUG 171 172 /// The results of the steps of an Implicit Conversion Sequence is saved in 173 /// an instance of this record. 174 /// 175 /// A ConversionSequence maps the steps of the conversion with a member for 176 /// each type involved in the conversion. Imagine going from a hypothetical 177 /// Complex class to projecting it to the real part as a const double. 178 /// 179 /// I.e., given: 180 /// 181 /// struct Complex { 182 /// operator double() const; 183 /// }; 184 /// 185 /// void functionBeingAnalysed(Complex C, const double R); 186 /// 187 /// we will get the following sequence: 188 /// 189 /// (Begin=) Complex 190 /// 191 /// The first standard conversion is a qualification adjustment. 192 /// (AfterFirstStandard=) const Complex 193 /// 194 /// Then the user-defined conversion is executed. 195 /// (UDConvOp.ConversionOperatorResultType=) double 196 /// 197 /// Then this 'double' is qualifier-adjusted to 'const double'. 198 /// (AfterSecondStandard=) double 199 /// 200 /// The conversion's result has now been calculated, so it ends here. 201 /// (End=) double. 202 /// 203 /// Explicit storing of Begin and End in this record is needed, because 204 /// getting to what Begin and End here are needs further resolution of types, 205 /// e.g. in the case of typedefs: 206 /// 207 /// using Comp = Complex; 208 /// using CD = const double; 209 /// void functionBeingAnalysed2(Comp C, CD R); 210 /// 211 /// In this case, the user will be diagnosed with a potential conversion 212 /// between the two typedefs as written in the code, but to elaborate the 213 /// reasoning behind this conversion, we also need to show what the typedefs 214 /// mean. See FormattedConversionSequence towards the bottom of this file! 215 struct ConversionSequence { 216 enum UserDefinedConversionKind { UDCK_None, UDCK_Ctor, UDCK_Oper }; 217 218 struct UserDefinedConvertingConstructor { 219 const CXXConstructorDecl *Fun; 220 QualType ConstructorParameterType; 221 QualType UserDefinedType; 222 }; 223 224 struct UserDefinedConversionOperator { 225 const CXXConversionDecl *Fun; 226 QualType UserDefinedType; 227 QualType ConversionOperatorResultType; 228 }; 229 230 /// The type the conversion stared from. 231 QualType Begin; 232 233 /// The intermediate type after the first Standard Conversion Sequence. 234 QualType AfterFirstStandard; 235 236 /// The details of the user-defined conversion involved, as a tagged union. 237 union { 238 char None; 239 UserDefinedConvertingConstructor UDConvCtor; 240 UserDefinedConversionOperator UDConvOp; 241 }; 242 UserDefinedConversionKind UDConvKind; 243 244 /// The intermediate type after performing the second Standard Conversion 245 /// Sequence. 246 QualType AfterSecondStandard; 247 248 /// The result type the conversion targeted. 249 QualType End; 250 251 ConversionSequence() : None(0), UDConvKind(UDCK_None) {} 252 ConversionSequence(QualType From, QualType To) 253 : Begin(From), None(0), UDConvKind(UDCK_None), End(To) {} 254 255 explicit operator bool() const { 256 return !AfterFirstStandard.isNull() || UDConvKind != UDCK_None || 257 !AfterSecondStandard.isNull(); 258 } 259 260 /// Returns all the "steps" (non-unique and non-similar) types involved in 261 /// the conversion sequence. This method does **NOT** return Begin and End. 262 SmallVector<QualType, 4> getInvolvedTypesInSequence() const { 263 SmallVector<QualType, 4> Ret; 264 auto EmplaceIfDifferent = [&Ret](QualType QT) { 265 if (QT.isNull()) 266 return; 267 if (Ret.empty()) 268 Ret.emplace_back(QT); 269 else if (Ret.back() != QT) 270 Ret.emplace_back(QT); 271 }; 272 273 EmplaceIfDifferent(AfterFirstStandard); 274 switch (UDConvKind) { 275 case UDCK_Ctor: 276 EmplaceIfDifferent(UDConvCtor.ConstructorParameterType); 277 EmplaceIfDifferent(UDConvCtor.UserDefinedType); 278 break; 279 case UDCK_Oper: 280 EmplaceIfDifferent(UDConvOp.UserDefinedType); 281 EmplaceIfDifferent(UDConvOp.ConversionOperatorResultType); 282 break; 283 case UDCK_None: 284 break; 285 } 286 EmplaceIfDifferent(AfterSecondStandard); 287 288 return Ret; 289 } 290 291 /// Updates the steps of the conversion sequence with the steps from the 292 /// other instance. 293 /// 294 /// \note This method does not check if the resulting conversion sequence is 295 /// sensible! 296 ConversionSequence &update(const ConversionSequence &RHS) { 297 if (!RHS.AfterFirstStandard.isNull()) 298 AfterFirstStandard = RHS.AfterFirstStandard; 299 switch (RHS.UDConvKind) { 300 case UDCK_Ctor: 301 UDConvKind = UDCK_Ctor; 302 UDConvCtor = RHS.UDConvCtor; 303 break; 304 case UDCK_Oper: 305 UDConvKind = UDCK_Oper; 306 UDConvOp = RHS.UDConvOp; 307 break; 308 case UDCK_None: 309 break; 310 } 311 if (!RHS.AfterSecondStandard.isNull()) 312 AfterSecondStandard = RHS.AfterSecondStandard; 313 314 return *this; 315 } 316 317 /// Sets the user-defined conversion to the given constructor. 318 void setConversion(const UserDefinedConvertingConstructor &UDCC) { 319 UDConvKind = UDCK_Ctor; 320 UDConvCtor = UDCC; 321 } 322 323 /// Sets the user-defined conversion to the given operator. 324 void setConversion(const UserDefinedConversionOperator &UDCO) { 325 UDConvKind = UDCK_Oper; 326 UDConvOp = UDCO; 327 } 328 329 /// Returns the type in the conversion that's formally "in our hands" once 330 /// the user-defined conversion is executed. 331 QualType getTypeAfterUserDefinedConversion() const { 332 switch (UDConvKind) { 333 case UDCK_Ctor: 334 return UDConvCtor.UserDefinedType; 335 case UDCK_Oper: 336 return UDConvOp.ConversionOperatorResultType; 337 case UDCK_None: 338 return {}; 339 } 340 llvm_unreachable("Invalid UDConv kind."); 341 } 342 343 const CXXMethodDecl *getUserDefinedConversionFunction() const { 344 switch (UDConvKind) { 345 case UDCK_Ctor: 346 return UDConvCtor.Fun; 347 case UDCK_Oper: 348 return UDConvOp.Fun; 349 case UDCK_None: 350 return {}; 351 } 352 llvm_unreachable("Invalid UDConv kind."); 353 } 354 355 /// Returns the SourceRange in the text that corresponds to the interesting 356 /// part of the user-defined conversion. This is either the parameter type 357 /// in a converting constructor, or the conversion result type in a conversion 358 /// operator. 359 SourceRange getUserDefinedConversionHighlight() const { 360 switch (UDConvKind) { 361 case UDCK_Ctor: 362 return UDConvCtor.Fun->getParamDecl(0)->getSourceRange(); 363 case UDCK_Oper: 364 // getReturnTypeSourceRange() does not work for CXXConversionDecls as the 365 // returned type is physically behind the declaration's name ("operator"). 366 if (const FunctionTypeLoc FTL = UDConvOp.Fun->getFunctionTypeLoc()) 367 if (const TypeLoc RetLoc = FTL.getReturnLoc()) 368 return RetLoc.getSourceRange(); 369 return {}; 370 case UDCK_None: 371 return {}; 372 } 373 llvm_unreachable("Invalid UDConv kind."); 374 } 375 }; 376 377 /// Contains the metadata for the mixability result between two types, 378 /// independently of which parameters they were calculated from. 379 struct MixData { 380 /// The flag bits of the mix indicating what language features allow for it. 381 MixFlags Flags = MixFlags::Invalid; 382 383 /// A potentially calculated common underlying type after desugaring, that 384 /// both sides of the mix can originate from. 385 QualType CommonType; 386 387 /// The steps an implicit conversion performs to get from one type to the 388 /// other. 389 ConversionSequence Conversion, ConversionRTL; 390 391 /// True if the MixData was specifically created with only a one-way 392 /// conversion modelled. 393 bool CreatedFromOneWayConversion = false; 394 395 MixData(MixFlags Flags) : Flags(Flags) {} 396 MixData(MixFlags Flags, QualType CommonType) 397 : Flags(Flags), CommonType(CommonType) {} 398 MixData(MixFlags Flags, ConversionSequence Conv) 399 : Flags(Flags), Conversion(Conv), CreatedFromOneWayConversion(true) {} 400 MixData(MixFlags Flags, ConversionSequence LTR, ConversionSequence RTL) 401 : Flags(Flags), Conversion(LTR), ConversionRTL(RTL) {} 402 MixData(MixFlags Flags, QualType CommonType, ConversionSequence LTR, 403 ConversionSequence RTL) 404 : Flags(Flags), CommonType(CommonType), Conversion(LTR), 405 ConversionRTL(RTL) {} 406 407 void sanitize() { 408 assert(Flags != MixFlags::Invalid && "sanitize() called on invalid bitvec"); 409 410 MixFlags CanonicalAndWorkaround = 411 MixFlags::Canonical | MixFlags::WorkaroundDisableCanonicalEquivalence; 412 if ((Flags & CanonicalAndWorkaround) == CanonicalAndWorkaround) { 413 // A workaround for too eagerly equivalent canonical types was requested, 414 // and a canonical equivalence was proven. Fulfill the request and throw 415 // this result away. 416 Flags = MixFlags::None; 417 return; 418 } 419 420 if (hasFlag(Flags, MixFlags::None)) { 421 // If anywhere down the recursion a potential mix "path" is deemed 422 // impossible, throw away all the other bits because the mix is not 423 // possible. 424 Flags = MixFlags::None; 425 return; 426 } 427 428 if (Flags == MixFlags::Trivial) 429 return; 430 431 if (static_cast<bool>(Flags ^ MixFlags::Trivial)) 432 // If the mix involves somewhere trivial equivalence but down the 433 // recursion other bit(s) were set, remove the trivial bit, as it is not 434 // trivial. 435 Flags &= ~MixFlags::Trivial; 436 437 bool ShouldHaveImplicitConvFlag = false; 438 if (CreatedFromOneWayConversion && Conversion) 439 ShouldHaveImplicitConvFlag = true; 440 else if (!CreatedFromOneWayConversion && Conversion && ConversionRTL) 441 // Only say that we have implicit conversion mix possibility if it is 442 // bidirectional. Otherwise, the compiler would report an *actual* swap 443 // at a call site... 444 ShouldHaveImplicitConvFlag = true; 445 446 if (ShouldHaveImplicitConvFlag) 447 Flags |= MixFlags::ImplicitConversion; 448 else 449 Flags &= ~MixFlags::ImplicitConversion; 450 } 451 452 bool isValid() const { return Flags >= MixFlags::None; } 453 454 bool indicatesMixability() const { return Flags > MixFlags::None; } 455 456 /// Add the specified flag bits to the flags. 457 MixData operator|(MixFlags EnableFlags) const { 458 if (CreatedFromOneWayConversion) { 459 MixData M{Flags | EnableFlags, Conversion}; 460 M.CommonType = CommonType; 461 return M; 462 } 463 return {Flags | EnableFlags, CommonType, Conversion, ConversionRTL}; 464 } 465 466 /// Add the specified flag bits to the flags. 467 MixData &operator|=(MixFlags EnableFlags) { 468 Flags |= EnableFlags; 469 return *this; 470 } 471 472 template <class F> MixData withCommonTypeTransformed(F &&Func) const { 473 if (CommonType.isNull()) 474 return *this; 475 476 QualType NewCommonType = Func(CommonType); 477 478 if (CreatedFromOneWayConversion) { 479 MixData M{Flags, Conversion}; 480 M.CommonType = NewCommonType; 481 return M; 482 } 483 484 return {Flags, NewCommonType, Conversion, ConversionRTL}; 485 } 486 }; 487 488 /// A named tuple that contains the information for a mix between two concrete 489 /// parameters. 490 struct Mix { 491 const ParmVarDecl *First, *Second; 492 MixData Data; 493 494 Mix(const ParmVarDecl *F, const ParmVarDecl *S, MixData Data) 495 : First(F), Second(S), Data(std::move(Data)) {} 496 497 void sanitize() { Data.sanitize(); } 498 MixFlags flags() const { return Data.Flags; } 499 bool flagsValid() const { return Data.isValid(); } 500 bool mixable() const { return Data.indicatesMixability(); } 501 QualType commonUnderlyingType() const { return Data.CommonType; } 502 const ConversionSequence &leftToRightConversionSequence() const { 503 return Data.Conversion; 504 } 505 const ConversionSequence &rightToLeftConversionSequence() const { 506 return Data.ConversionRTL; 507 } 508 }; 509 510 // NOLINTNEXTLINE(misc-redundant-expression): Seems to be a bogus warning. 511 static_assert(std::is_trivially_copyable<Mix>::value && 512 std::is_trivially_move_constructible<Mix>::value && 513 std::is_trivially_move_assignable<Mix>::value, 514 "Keep frequently used data simple!"); 515 516 struct MixableParameterRange { 517 /// A container for Mixes. 518 using MixVector = SmallVector<Mix, 8>; 519 520 /// The number of parameters iterated to build the instance. 521 std::size_t NumParamsChecked = 0; 522 523 /// The individual flags and supporting information for the mixes. 524 MixVector Mixes; 525 526 /// Gets the leftmost parameter of the range. 527 const ParmVarDecl *getFirstParam() const { 528 // The first element is the LHS of the very first mix in the range. 529 assert(!Mixes.empty()); 530 return Mixes.front().First; 531 } 532 533 /// Gets the rightmost parameter of the range. 534 const ParmVarDecl *getLastParam() const { 535 // The builder function breaks building an instance of this type if it 536 // finds something that can not be mixed with the rest, by going *forward* 537 // in the list of parameters. So at any moment of break, the RHS of the last 538 // element of the mix vector is also the last element of the mixing range. 539 assert(!Mixes.empty()); 540 return Mixes.back().Second; 541 } 542 }; 543 544 /// Helper enum for the recursive calls in the modelling that toggle what kinds 545 /// of implicit conversions are to be modelled. 546 enum class ImplicitConversionModellingMode : unsigned char { 547 ///< No implicit conversions are modelled. 548 None, 549 550 ///< The full implicit conversion sequence is modelled. 551 All, 552 553 ///< Only model a unidirectional implicit conversion and within it only one 554 /// standard conversion sequence. 555 OneWaySingleStandardOnly 556 }; 557 558 static MixData 559 isLRefEquallyBindingToType(const TheCheck &Check, 560 const LValueReferenceType *LRef, QualType Ty, 561 const ASTContext &Ctx, bool IsRefRHS, 562 ImplicitConversionModellingMode ImplicitMode); 563 564 static MixData 565 approximateImplicitConversion(const TheCheck &Check, QualType LType, 566 QualType RType, const ASTContext &Ctx, 567 ImplicitConversionModellingMode ImplicitMode); 568 569 static inline bool isUselessSugar(const Type *T) { 570 return isa<AttributedType, DecayedType, ElaboratedType, ParenType>(T); 571 } 572 573 namespace { 574 575 struct NonCVRQualifiersResult { 576 /// True if the types are qualified in a way that even after equating or 577 /// removing local CVR qualification, even if the unqualified types 578 /// themselves would mix, the qualified ones don't, because there are some 579 /// other local qualifiers that are not equal. 580 bool HasMixabilityBreakingQualifiers; 581 582 /// The set of equal qualifiers between the two types. 583 Qualifiers CommonQualifiers; 584 }; 585 586 } // namespace 587 588 /// Returns if the two types are qualified in a way that ever after equating or 589 /// removing local CVR qualification, even if the unqualified types would mix, 590 /// the qualified ones don't, because there are some other local qualifiers 591 /// that aren't equal. 592 static NonCVRQualifiersResult 593 getNonCVRQualifiers(const ASTContext &Ctx, QualType LType, QualType RType) { 594 LLVM_DEBUG(llvm::dbgs() << ">>> getNonCVRQualifiers for LType:\n"; 595 LType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand RType:\n"; 596 RType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << '\n';); 597 Qualifiers LQual = LType.getLocalQualifiers(), 598 RQual = RType.getLocalQualifiers(); 599 600 // Strip potential CVR. That is handled by the check option QualifiersMix. 601 LQual.removeCVRQualifiers(); 602 RQual.removeCVRQualifiers(); 603 604 NonCVRQualifiersResult Ret; 605 Ret.CommonQualifiers = Qualifiers::removeCommonQualifiers(LQual, RQual); 606 607 LLVM_DEBUG(llvm::dbgs() << "--- hasNonCVRMixabilityBreakingQualifiers. " 608 "Removed common qualifiers: "; 609 Ret.CommonQualifiers.print(llvm::dbgs(), Ctx.getPrintingPolicy()); 610 llvm::dbgs() << "\n\tremaining on LType: "; 611 LQual.print(llvm::dbgs(), Ctx.getPrintingPolicy()); 612 llvm::dbgs() << "\n\tremaining on RType: "; 613 RQual.print(llvm::dbgs(), Ctx.getPrintingPolicy()); 614 llvm::dbgs() << '\n';); 615 616 // If there are no other non-cvr non-common qualifiers left, we can deduce 617 // that mixability isn't broken. 618 Ret.HasMixabilityBreakingQualifiers = 619 LQual.hasQualifiers() || RQual.hasQualifiers(); 620 621 return Ret; 622 } 623 624 /// Approximate the way how LType and RType might refer to "essentially the 625 /// same" type, in a sense that at a particular call site, an expression of 626 /// type LType and RType might be successfully passed to a variable (in our 627 /// specific case, a parameter) of type RType and LType, respectively. 628 /// Note the swapped order! 629 /// 630 /// The returned data structure is not guaranteed to be properly set, as this 631 /// function is potentially recursive. It is the caller's responsibility to 632 /// call sanitize() on the result once the recursion is over. 633 static MixData 634 calculateMixability(const TheCheck &Check, QualType LType, QualType RType, 635 const ASTContext &Ctx, 636 ImplicitConversionModellingMode ImplicitMode) { 637 LLVM_DEBUG(llvm::dbgs() << ">>> calculateMixability for LType:\n"; 638 LType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand RType:\n"; 639 RType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << '\n';); 640 if (LType == RType) { 641 LLVM_DEBUG(llvm::dbgs() << "<<< calculateMixability. Trivial equality.\n"); 642 return {MixFlags::Trivial, LType}; 643 } 644 645 // Dissolve certain type sugars that do not affect the mixability of one type 646 // with the other, and also do not require any sort of elaboration for the 647 // user to understand. 648 if (isUselessSugar(LType.getTypePtr())) { 649 LLVM_DEBUG(llvm::dbgs() 650 << "--- calculateMixability. LHS is useless sugar.\n"); 651 return calculateMixability(Check, LType.getSingleStepDesugaredType(Ctx), 652 RType, Ctx, ImplicitMode); 653 } 654 if (isUselessSugar(RType.getTypePtr())) { 655 LLVM_DEBUG(llvm::dbgs() 656 << "--- calculateMixability. RHS is useless sugar.\n"); 657 return calculateMixability( 658 Check, LType, RType.getSingleStepDesugaredType(Ctx), Ctx, ImplicitMode); 659 } 660 661 const auto *LLRef = LType->getAs<LValueReferenceType>(); 662 const auto *RLRef = RType->getAs<LValueReferenceType>(); 663 if (LLRef && RLRef) { 664 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. LHS and RHS are &.\n"); 665 666 return calculateMixability(Check, LLRef->getPointeeType(), 667 RLRef->getPointeeType(), Ctx, ImplicitMode) 668 .withCommonTypeTransformed( 669 [&Ctx](QualType QT) { return Ctx.getLValueReferenceType(QT); }); 670 } 671 // At a particular call site, what could be passed to a 'T' or 'const T' might 672 // also be passed to a 'const T &' without the call site putting a direct 673 // side effect on the passed expressions. 674 if (LLRef) { 675 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. LHS is &.\n"); 676 return isLRefEquallyBindingToType(Check, LLRef, RType, Ctx, false, 677 ImplicitMode) | 678 MixFlags::ReferenceBind; 679 } 680 if (RLRef) { 681 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. RHS is &.\n"); 682 return isLRefEquallyBindingToType(Check, RLRef, LType, Ctx, true, 683 ImplicitMode) | 684 MixFlags::ReferenceBind; 685 } 686 687 if (LType->getAs<TypedefType>()) { 688 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. LHS is typedef.\n"); 689 return calculateMixability(Check, LType.getSingleStepDesugaredType(Ctx), 690 RType, Ctx, ImplicitMode) | 691 MixFlags::TypeAlias; 692 } 693 if (RType->getAs<TypedefType>()) { 694 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. RHS is typedef.\n"); 695 return calculateMixability(Check, LType, 696 RType.getSingleStepDesugaredType(Ctx), Ctx, 697 ImplicitMode) | 698 MixFlags::TypeAlias; 699 } 700 701 // A parameter of type 'cvr1 T' and another of potentially differently 702 // qualified 'cvr2 T' may bind with the same power, if the user so requested. 703 // 704 // Whether to do this check for the inner unqualified types. 705 bool CompareUnqualifiedTypes = false; 706 if (LType.getLocalCVRQualifiers() != RType.getLocalCVRQualifiers()) { 707 LLVM_DEBUG(if (LType.getLocalCVRQualifiers()) { 708 llvm::dbgs() << "--- calculateMixability. LHS has CVR-Qualifiers: "; 709 Qualifiers::fromCVRMask(LType.getLocalCVRQualifiers()) 710 .print(llvm::dbgs(), Ctx.getPrintingPolicy()); 711 llvm::dbgs() << '\n'; 712 }); 713 LLVM_DEBUG(if (RType.getLocalCVRQualifiers()) { 714 llvm::dbgs() << "--- calculateMixability. RHS has CVR-Qualifiers: "; 715 Qualifiers::fromCVRMask(RType.getLocalCVRQualifiers()) 716 .print(llvm::dbgs(), Ctx.getPrintingPolicy()); 717 llvm::dbgs() << '\n'; 718 }); 719 720 if (!Check.QualifiersMix) { 721 LLVM_DEBUG(llvm::dbgs() 722 << "<<< calculateMixability. QualifiersMix turned off - not " 723 "mixable.\n"); 724 return {MixFlags::None}; 725 } 726 727 CompareUnqualifiedTypes = true; 728 } 729 // Whether the two types had the same CVR qualifiers. 730 bool OriginallySameQualifiers = false; 731 if (LType.getLocalCVRQualifiers() == RType.getLocalCVRQualifiers() && 732 LType.getLocalCVRQualifiers() != 0) { 733 LLVM_DEBUG(if (LType.getLocalCVRQualifiers()) { 734 llvm::dbgs() 735 << "--- calculateMixability. LHS and RHS have same CVR-Qualifiers: "; 736 Qualifiers::fromCVRMask(LType.getLocalCVRQualifiers()) 737 .print(llvm::dbgs(), Ctx.getPrintingPolicy()); 738 llvm::dbgs() << '\n'; 739 }); 740 741 CompareUnqualifiedTypes = true; 742 OriginallySameQualifiers = true; 743 } 744 745 if (CompareUnqualifiedTypes) { 746 NonCVRQualifiersResult AdditionalQuals = 747 getNonCVRQualifiers(Ctx, LType, RType); 748 if (AdditionalQuals.HasMixabilityBreakingQualifiers) { 749 LLVM_DEBUG(llvm::dbgs() << "<<< calculateMixability. Additional " 750 "non-equal incompatible qualifiers.\n"); 751 return {MixFlags::None}; 752 } 753 754 MixData UnqualifiedMixability = 755 calculateMixability(Check, LType.getLocalUnqualifiedType(), 756 RType.getLocalUnqualifiedType(), Ctx, ImplicitMode) 757 .withCommonTypeTransformed([&AdditionalQuals, &Ctx](QualType QT) { 758 // Once the mixability was deduced, apply the qualifiers common 759 // to the two type back onto the diagnostic printout. 760 return Ctx.getQualifiedType(QT, AdditionalQuals.CommonQualifiers); 761 }); 762 763 if (!OriginallySameQualifiers) 764 // User-enabled qualifier change modelled for the mix. 765 return UnqualifiedMixability | MixFlags::Qualifiers; 766 767 // Apply the same qualifier back into the found common type if they were 768 // the same. 769 return UnqualifiedMixability.withCommonTypeTransformed( 770 [&Ctx, LType](QualType QT) { 771 return Ctx.getQualifiedType(QT, LType.getLocalQualifiers()); 772 }); 773 } 774 775 // Certain constructs match on the last catch-all getCanonicalType() equality, 776 // which is perhaps something not what we want. If this variable is true, 777 // the canonical type equality will be ignored. 778 bool RecursiveReturnDiscardingCanonicalType = false; 779 780 if (LType->isPointerType() && RType->isPointerType()) { 781 // If both types are pointers, and pointed to the exact same type, 782 // LType == RType took care of that. Try to see if the pointee type has 783 // some other match. However, this must not consider implicit conversions. 784 LLVM_DEBUG(llvm::dbgs() 785 << "--- calculateMixability. LHS and RHS are Ptrs.\n"); 786 MixData MixOfPointee = 787 calculateMixability(Check, LType->getPointeeType(), 788 RType->getPointeeType(), Ctx, 789 ImplicitConversionModellingMode::None) 790 .withCommonTypeTransformed( 791 [&Ctx](QualType QT) { return Ctx.getPointerType(QT); }); 792 if (hasFlag(MixOfPointee.Flags, 793 MixFlags::WorkaroundDisableCanonicalEquivalence)) 794 RecursiveReturnDiscardingCanonicalType = true; 795 796 MixOfPointee.sanitize(); 797 if (MixOfPointee.indicatesMixability()) { 798 LLVM_DEBUG(llvm::dbgs() 799 << "<<< calculateMixability. Pointees are mixable.\n"); 800 return MixOfPointee; 801 } 802 } 803 804 if (ImplicitMode > ImplicitConversionModellingMode::None) { 805 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. Start implicit...\n"); 806 MixData MixLTR = 807 approximateImplicitConversion(Check, LType, RType, Ctx, ImplicitMode); 808 LLVM_DEBUG( 809 if (hasFlag(MixLTR.Flags, MixFlags::ImplicitConversion)) llvm::dbgs() 810 << "--- calculateMixability. Implicit Left -> Right found.\n";); 811 812 if (ImplicitMode == 813 ImplicitConversionModellingMode::OneWaySingleStandardOnly && 814 MixLTR.Conversion && !MixLTR.Conversion.AfterFirstStandard.isNull() && 815 MixLTR.Conversion.UDConvKind == ConversionSequence::UDCK_None && 816 MixLTR.Conversion.AfterSecondStandard.isNull()) { 817 // The invoker of the method requested only modelling a single standard 818 // conversion, in only the forward direction, and they got just that. 819 LLVM_DEBUG(llvm::dbgs() << "<<< calculateMixability. Implicit " 820 "conversion, one-way, standard-only.\n"); 821 return {MixFlags::ImplicitConversion, MixLTR.Conversion}; 822 } 823 824 // Otherwise if the invoker requested a full modelling, do the other 825 // direction as well. 826 MixData MixRTL = 827 approximateImplicitConversion(Check, RType, LType, Ctx, ImplicitMode); 828 LLVM_DEBUG( 829 if (hasFlag(MixRTL.Flags, MixFlags::ImplicitConversion)) llvm::dbgs() 830 << "--- calculateMixability. Implicit Right -> Left found.\n";); 831 832 if (MixLTR.Conversion && MixRTL.Conversion) { 833 LLVM_DEBUG( 834 llvm::dbgs() 835 << "<<< calculateMixability. Implicit conversion, bidirectional.\n"); 836 return {MixFlags::ImplicitConversion, MixLTR.Conversion, 837 MixRTL.Conversion}; 838 } 839 } 840 841 if (RecursiveReturnDiscardingCanonicalType) 842 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. Before CanonicalType, " 843 "Discard was enabled.\n"); 844 845 // Certain kinds unfortunately need to be side-stepped for canonical type 846 // matching. 847 if (LType->getAs<FunctionProtoType>() || RType->getAs<FunctionProtoType>()) { 848 // Unfortunately, the canonical type of a function pointer becomes the 849 // same even if exactly one is "noexcept" and the other isn't, making us 850 // give a false positive report irrespective of implicit conversions. 851 LLVM_DEBUG(llvm::dbgs() 852 << "--- calculateMixability. Discarding potential canonical " 853 "equivalence on FunctionProtoTypes.\n"); 854 RecursiveReturnDiscardingCanonicalType = true; 855 } 856 857 MixData MixToReturn{MixFlags::None}; 858 859 // If none of the previous logic found a match, try if Clang otherwise 860 // believes the types to be the same. 861 QualType LCanonical = LType.getCanonicalType(); 862 if (LCanonical == RType.getCanonicalType()) { 863 LLVM_DEBUG(llvm::dbgs() 864 << "<<< calculateMixability. Same CanonicalType.\n"); 865 MixToReturn = {MixFlags::Canonical, LCanonical}; 866 } 867 868 if (RecursiveReturnDiscardingCanonicalType) 869 MixToReturn |= MixFlags::WorkaroundDisableCanonicalEquivalence; 870 871 LLVM_DEBUG(if (MixToReturn.Flags == MixFlags::None) llvm::dbgs() 872 << "<<< calculateMixability. No match found.\n"); 873 return MixToReturn; 874 } 875 876 /// Calculates if the reference binds an expression of the given type. This is 877 /// true iff 'LRef' is some 'const T &' type, and the 'Ty' is 'T' or 'const T'. 878 /// 879 /// \param ImplicitMode is forwarded in the possible recursive call to 880 /// calculateMixability. 881 static MixData 882 isLRefEquallyBindingToType(const TheCheck &Check, 883 const LValueReferenceType *LRef, QualType Ty, 884 const ASTContext &Ctx, bool IsRefRHS, 885 ImplicitConversionModellingMode ImplicitMode) { 886 LLVM_DEBUG(llvm::dbgs() << ">>> isLRefEquallyBindingToType for LRef:\n"; 887 LRef->dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand Type:\n"; 888 Ty.dump(llvm::dbgs(), Ctx); llvm::dbgs() << '\n';); 889 890 QualType ReferredType = LRef->getPointeeType(); 891 if (!ReferredType.isLocalConstQualified() && 892 ReferredType->getAs<TypedefType>()) { 893 LLVM_DEBUG( 894 llvm::dbgs() 895 << "--- isLRefEquallyBindingToType. Non-const LRef to Typedef.\n"); 896 ReferredType = ReferredType.getDesugaredType(Ctx); 897 if (!ReferredType.isLocalConstQualified()) { 898 LLVM_DEBUG(llvm::dbgs() 899 << "<<< isLRefEquallyBindingToType. Typedef is not const.\n"); 900 return {MixFlags::None}; 901 } 902 903 LLVM_DEBUG(llvm::dbgs() << "--- isLRefEquallyBindingToType. Typedef is " 904 "const, considering as const LRef.\n"); 905 } else if (!ReferredType.isLocalConstQualified()) { 906 LLVM_DEBUG(llvm::dbgs() 907 << "<<< isLRefEquallyBindingToType. Not const LRef.\n"); 908 return {MixFlags::None}; 909 }; 910 911 assert(ReferredType.isLocalConstQualified() && 912 "Reaching this point means we are sure LRef is effectively a const&."); 913 914 if (ReferredType == Ty) { 915 LLVM_DEBUG( 916 llvm::dbgs() 917 << "<<< isLRefEquallyBindingToType. Type of referred matches.\n"); 918 return {MixFlags::Trivial, ReferredType}; 919 } 920 921 QualType NonConstReferredType = ReferredType; 922 NonConstReferredType.removeLocalConst(); 923 if (NonConstReferredType == Ty) { 924 LLVM_DEBUG(llvm::dbgs() << "<<< isLRefEquallyBindingToType. Type of " 925 "referred matches to non-const qualified.\n"); 926 return {MixFlags::Trivial, NonConstReferredType}; 927 } 928 929 LLVM_DEBUG( 930 llvm::dbgs() 931 << "--- isLRefEquallyBindingToType. Checking mix for underlying type.\n"); 932 return IsRefRHS ? calculateMixability(Check, Ty, NonConstReferredType, Ctx, 933 ImplicitMode) 934 : calculateMixability(Check, NonConstReferredType, Ty, Ctx, 935 ImplicitMode); 936 } 937 938 static inline bool isDerivedToBase(const CXXRecordDecl *Derived, 939 const CXXRecordDecl *Base) { 940 return Derived && Base && Derived->isCompleteDefinition() && 941 Base->isCompleteDefinition() && Derived->isDerivedFrom(Base); 942 } 943 944 static Optional<QualType> 945 approximateStandardConversionSequence(const TheCheck &Check, QualType From, 946 QualType To, const ASTContext &Ctx) { 947 LLVM_DEBUG(llvm::dbgs() << ">>> approximateStdConv for LType:\n"; 948 From.dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand RType:\n"; 949 To.dump(llvm::dbgs(), Ctx); llvm::dbgs() << '\n';); 950 951 // A standard conversion sequence consists of the following, in order: 952 // * Maybe either LValue->RValue conv., Array->Ptr conv., Function->Ptr conv. 953 // * Maybe Numeric promotion or conversion. 954 // * Maybe function pointer conversion. 955 // * Maybe qualifier adjustments. 956 QualType WorkType = From; 957 // Get out the qualifiers of the original type. This will always be 958 // re-applied to the WorkType to ensure it is the same qualification as the 959 // original From was. 960 auto QualifiersToApply = From.split().Quals.getAsOpaqueValue(); 961 962 // LValue->RValue is irrelevant for the check, because it is a thing to be 963 // done at a call site, and will be performed if need be performed. 964 965 // Array->Pointer decay is handled by the main method in desugaring 966 // the parameter's DecayedType as "useless sugar". 967 968 // Function->Pointer conversions are also irrelevant, because a 969 // "FunctionType" cannot be the type of a parameter variable, so this 970 // conversion is only meaningful at call sites. 971 972 // Numeric promotions and conversions. 973 const auto *FromBuiltin = WorkType->getAs<BuiltinType>(); 974 const auto *ToBuiltin = To->getAs<BuiltinType>(); 975 bool FromNumeric = FromBuiltin && (FromBuiltin->isIntegerType() || 976 FromBuiltin->isFloatingType()); 977 bool ToNumeric = 978 ToBuiltin && (ToBuiltin->isIntegerType() || ToBuiltin->isFloatingType()); 979 if (FromNumeric && ToNumeric) { 980 // If both are integral types, the numeric conversion is performed. 981 // Reapply the qualifiers of the original type, however, so 982 // "const int -> double" in this case moves over to 983 // "const double -> double". 984 LLVM_DEBUG(llvm::dbgs() 985 << "--- approximateStdConv. Conversion between numerics.\n"); 986 WorkType = QualType{ToBuiltin, QualifiersToApply}; 987 } 988 989 const auto *FromEnum = WorkType->getAs<EnumType>(); 990 const auto *ToEnum = To->getAs<EnumType>(); 991 if (FromEnum && ToNumeric && FromEnum->isUnscopedEnumerationType()) { 992 // Unscoped enumerations (or enumerations in C) convert to numerics. 993 LLVM_DEBUG(llvm::dbgs() 994 << "--- approximateStdConv. Unscoped enum to numeric.\n"); 995 WorkType = QualType{ToBuiltin, QualifiersToApply}; 996 } else if (FromNumeric && ToEnum && ToEnum->isUnscopedEnumerationType()) { 997 // Numeric types convert to enumerations only in C. 998 if (Ctx.getLangOpts().CPlusPlus) { 999 LLVM_DEBUG(llvm::dbgs() << "<<< approximateStdConv. Numeric to unscoped " 1000 "enum, not possible in C++!\n"); 1001 return {}; 1002 } 1003 1004 LLVM_DEBUG(llvm::dbgs() 1005 << "--- approximateStdConv. Numeric to unscoped enum.\n"); 1006 WorkType = QualType{ToEnum, QualifiersToApply}; 1007 } 1008 1009 // Check for pointer conversions. 1010 const auto *FromPtr = WorkType->getAs<PointerType>(); 1011 const auto *ToPtr = To->getAs<PointerType>(); 1012 if (FromPtr && ToPtr) { 1013 if (ToPtr->isVoidPointerType()) { 1014 LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. To void pointer.\n"); 1015 WorkType = QualType{ToPtr, QualifiersToApply}; 1016 } 1017 1018 const auto *FromRecordPtr = FromPtr->getPointeeCXXRecordDecl(); 1019 const auto *ToRecordPtr = ToPtr->getPointeeCXXRecordDecl(); 1020 if (isDerivedToBase(FromRecordPtr, ToRecordPtr)) { 1021 LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. Derived* to Base*\n"); 1022 WorkType = QualType{ToPtr, QualifiersToApply}; 1023 } 1024 } 1025 1026 // Model the slicing Derived-to-Base too, as "BaseT temporary = derived;" 1027 // can also be compiled. 1028 const auto *FromRecord = WorkType->getAsCXXRecordDecl(); 1029 const auto *ToRecord = To->getAsCXXRecordDecl(); 1030 if (isDerivedToBase(FromRecord, ToRecord)) { 1031 LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. Derived To Base.\n"); 1032 WorkType = QualType{ToRecord->getTypeForDecl(), QualifiersToApply}; 1033 } 1034 1035 if (Ctx.getLangOpts().CPlusPlus17 && FromPtr && ToPtr) { 1036 // Function pointer conversion: A noexcept function pointer can be passed 1037 // to a non-noexcept one. 1038 const auto *FromFunctionPtr = 1039 FromPtr->getPointeeType()->getAs<FunctionProtoType>(); 1040 const auto *ToFunctionPtr = 1041 ToPtr->getPointeeType()->getAs<FunctionProtoType>(); 1042 if (FromFunctionPtr && ToFunctionPtr && 1043 FromFunctionPtr->hasNoexceptExceptionSpec() && 1044 !ToFunctionPtr->hasNoexceptExceptionSpec()) { 1045 LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. noexcept function " 1046 "pointer to non-noexcept.\n"); 1047 WorkType = QualType{ToPtr, QualifiersToApply}; 1048 } 1049 } 1050 1051 // Qualifier adjustments are modelled according to the user's request in 1052 // the QualifiersMix check config. 1053 LLVM_DEBUG(llvm::dbgs() 1054 << "--- approximateStdConv. Trying qualifier adjustment...\n"); 1055 MixData QualConv = calculateMixability(Check, WorkType, To, Ctx, 1056 ImplicitConversionModellingMode::None); 1057 QualConv.sanitize(); 1058 if (hasFlag(QualConv.Flags, MixFlags::Qualifiers)) { 1059 LLVM_DEBUG(llvm::dbgs() 1060 << "<<< approximateStdConv. Qualifiers adjusted.\n"); 1061 WorkType = To; 1062 } 1063 1064 if (WorkType == To) { 1065 LLVM_DEBUG(llvm::dbgs() << "<<< approximateStdConv. Reached 'To' type.\n"); 1066 return {WorkType}; 1067 } 1068 1069 LLVM_DEBUG(llvm::dbgs() << "<<< approximateStdConv. Did not reach 'To'.\n"); 1070 return {}; 1071 } 1072 1073 namespace { 1074 1075 /// Helper class for storing possible user-defined conversion calls that 1076 /// *could* take place in an implicit conversion, and selecting the one that 1077 /// most likely *does*, if any. 1078 class UserDefinedConversionSelector { 1079 public: 1080 /// The conversion associated with a conversion function, together with the 1081 /// mixability flags of the conversion function's parameter or return type 1082 /// to the rest of the sequence the selector is used in, and the sequence 1083 /// that applied through the conversion itself. 1084 struct PreparedConversion { 1085 const CXXMethodDecl *ConversionFun; 1086 MixFlags Flags; 1087 ConversionSequence Seq; 1088 1089 PreparedConversion(const CXXMethodDecl *CMD, MixFlags F, 1090 ConversionSequence S) 1091 : ConversionFun(CMD), Flags(F), Seq(S) {} 1092 }; 1093 1094 UserDefinedConversionSelector(const TheCheck &Check) : Check(Check) {} 1095 1096 /// Adds the conversion between the two types for the given function into 1097 /// the possible implicit conversion set. FromType and ToType is either: 1098 /// * the result of a standard sequence and a converting ctor parameter 1099 /// * the return type of a conversion operator and the expected target of 1100 /// an implicit conversion. 1101 void addConversion(const CXXMethodDecl *ConvFun, QualType FromType, 1102 QualType ToType) { 1103 // Try to go from the FromType to the ToType wiht only a single implicit 1104 // conversion, to see if the conversion function is applicable. 1105 MixData Mix = calculateMixability( 1106 Check, FromType, ToType, ConvFun->getASTContext(), 1107 ImplicitConversionModellingMode::OneWaySingleStandardOnly); 1108 Mix.sanitize(); 1109 if (!Mix.indicatesMixability()) 1110 return; 1111 1112 LLVM_DEBUG(llvm::dbgs() << "--- tryConversion. Found viable with flags: " 1113 << formatMixFlags(Mix.Flags) << '\n'); 1114 FlaggedConversions.emplace_back(ConvFun, Mix.Flags, Mix.Conversion); 1115 } 1116 1117 /// Selects the best conversion function that is applicable from the 1118 /// prepared set of potential conversion functions taken. 1119 Optional<PreparedConversion> operator()() const { 1120 if (FlaggedConversions.empty()) { 1121 LLVM_DEBUG(llvm::dbgs() << "--- selectUserDefinedConv. Empty.\n"); 1122 return {}; 1123 } 1124 if (FlaggedConversions.size() == 1) { 1125 LLVM_DEBUG(llvm::dbgs() << "--- selectUserDefinedConv. Single.\n"); 1126 return FlaggedConversions.front(); 1127 } 1128 1129 Optional<PreparedConversion> BestConversion; 1130 unsigned short HowManyGoodConversions = 0; 1131 for (const auto &Prepared : FlaggedConversions) { 1132 LLVM_DEBUG(llvm::dbgs() << "--- selectUserDefinedConv. Candidate flags: " 1133 << formatMixFlags(Prepared.Flags) << '\n'); 1134 if (!BestConversion) { 1135 BestConversion = Prepared; 1136 ++HowManyGoodConversions; 1137 continue; 1138 } 1139 1140 bool BestConversionHasImplicit = 1141 hasFlag(BestConversion->Flags, MixFlags::ImplicitConversion); 1142 bool ThisConversionHasImplicit = 1143 hasFlag(Prepared.Flags, MixFlags::ImplicitConversion); 1144 if (!BestConversionHasImplicit && ThisConversionHasImplicit) 1145 // This is a worse conversion, because a better one was found earlier. 1146 continue; 1147 1148 if (BestConversionHasImplicit && !ThisConversionHasImplicit) { 1149 // If the so far best selected conversion needs a previous implicit 1150 // conversion to match the user-defined converting function, but this 1151 // conversion does not, this is a better conversion, and we can throw 1152 // away the previously selected conversion(s). 1153 BestConversion = Prepared; 1154 HowManyGoodConversions = 1; 1155 continue; 1156 } 1157 1158 if (BestConversionHasImplicit == ThisConversionHasImplicit) 1159 // The current conversion is the same in term of goodness than the 1160 // already selected one. 1161 ++HowManyGoodConversions; 1162 } 1163 1164 if (HowManyGoodConversions == 1) { 1165 LLVM_DEBUG(llvm::dbgs() 1166 << "--- selectUserDefinedConv. Unique result. Flags: " 1167 << formatMixFlags(BestConversion->Flags) << '\n'); 1168 return BestConversion; 1169 } 1170 1171 LLVM_DEBUG(llvm::dbgs() 1172 << "--- selectUserDefinedConv. No, or ambiguous.\n"); 1173 return {}; 1174 } 1175 1176 private: 1177 llvm::SmallVector<PreparedConversion, 2> FlaggedConversions; 1178 const TheCheck &Check; 1179 }; 1180 1181 } // namespace 1182 1183 static Optional<ConversionSequence> 1184 tryConversionOperators(const TheCheck &Check, const CXXRecordDecl *RD, 1185 QualType ToType) { 1186 if (!RD || !RD->isCompleteDefinition()) 1187 return {}; 1188 RD = RD->getDefinition(); 1189 1190 LLVM_DEBUG(llvm::dbgs() << ">>> tryConversionOperators: " << RD->getName() 1191 << " to:\n"; 1192 ToType.dump(llvm::dbgs(), RD->getASTContext()); 1193 llvm::dbgs() << '\n';); 1194 1195 UserDefinedConversionSelector ConversionSet{Check}; 1196 1197 for (const NamedDecl *Method : RD->getVisibleConversionFunctions()) { 1198 const auto *Con = dyn_cast<CXXConversionDecl>(Method); 1199 if (!Con || Con->isExplicit()) 1200 continue; 1201 LLVM_DEBUG(llvm::dbgs() << "--- tryConversionOperators. Trying:\n"; 1202 Con->dump(llvm::dbgs()); llvm::dbgs() << '\n';); 1203 1204 // Try to go from the result of conversion operator to the expected type, 1205 // without calculating another user-defined conversion. 1206 ConversionSet.addConversion(Con, Con->getConversionType(), ToType); 1207 } 1208 1209 if (Optional<UserDefinedConversionSelector::PreparedConversion> 1210 SelectedConversion = ConversionSet()) { 1211 QualType RecordType{RD->getTypeForDecl(), 0}; 1212 1213 ConversionSequence Result{RecordType, ToType}; 1214 // The conversion from the operator call's return type to ToType was 1215 // modelled as a "pre-conversion" in the operator call, but it is the 1216 // "post-conversion" from the point of view of the original conversion 1217 // we are modelling. 1218 Result.AfterSecondStandard = SelectedConversion->Seq.AfterFirstStandard; 1219 1220 ConversionSequence::UserDefinedConversionOperator ConvOp; 1221 ConvOp.Fun = cast<CXXConversionDecl>(SelectedConversion->ConversionFun); 1222 ConvOp.UserDefinedType = RecordType; 1223 ConvOp.ConversionOperatorResultType = ConvOp.Fun->getConversionType(); 1224 Result.setConversion(ConvOp); 1225 1226 LLVM_DEBUG(llvm::dbgs() << "<<< tryConversionOperators. Found result.\n"); 1227 return Result; 1228 } 1229 1230 LLVM_DEBUG(llvm::dbgs() << "<<< tryConversionOperators. No conversion.\n"); 1231 return {}; 1232 } 1233 1234 static Optional<ConversionSequence> 1235 tryConvertingConstructors(const TheCheck &Check, QualType FromType, 1236 const CXXRecordDecl *RD) { 1237 if (!RD || !RD->isCompleteDefinition()) 1238 return {}; 1239 RD = RD->getDefinition(); 1240 1241 LLVM_DEBUG(llvm::dbgs() << ">>> tryConveringConstructors: " << RD->getName() 1242 << " from:\n"; 1243 FromType.dump(llvm::dbgs(), RD->getASTContext()); 1244 llvm::dbgs() << '\n';); 1245 1246 UserDefinedConversionSelector ConversionSet{Check}; 1247 1248 for (const CXXConstructorDecl *Con : RD->ctors()) { 1249 if (Con->isCopyOrMoveConstructor() || 1250 !Con->isConvertingConstructor(/* AllowExplicit =*/false)) 1251 continue; 1252 LLVM_DEBUG(llvm::dbgs() << "--- tryConvertingConstructors. Trying:\n"; 1253 Con->dump(llvm::dbgs()); llvm::dbgs() << '\n';); 1254 1255 // Try to go from the original FromType to the converting constructor's 1256 // parameter type without another user-defined conversion. 1257 ConversionSet.addConversion(Con, FromType, Con->getParamDecl(0)->getType()); 1258 } 1259 1260 if (Optional<UserDefinedConversionSelector::PreparedConversion> 1261 SelectedConversion = ConversionSet()) { 1262 QualType RecordType{RD->getTypeForDecl(), 0}; 1263 1264 ConversionSequence Result{FromType, RecordType}; 1265 Result.AfterFirstStandard = SelectedConversion->Seq.AfterFirstStandard; 1266 1267 ConversionSequence::UserDefinedConvertingConstructor Ctor; 1268 Ctor.Fun = cast<CXXConstructorDecl>(SelectedConversion->ConversionFun); 1269 Ctor.ConstructorParameterType = Ctor.Fun->getParamDecl(0)->getType(); 1270 Ctor.UserDefinedType = RecordType; 1271 Result.setConversion(Ctor); 1272 1273 LLVM_DEBUG(llvm::dbgs() 1274 << "<<< tryConvertingConstructors. Found result.\n"); 1275 return Result; 1276 } 1277 1278 LLVM_DEBUG(llvm::dbgs() << "<<< tryConvertingConstructors. No conversion.\n"); 1279 return {}; 1280 } 1281 1282 /// Returns whether an expression of LType can be used in an RType context, as 1283 /// per the implicit conversion rules. 1284 /// 1285 /// Note: the result of this operation, unlike that of calculateMixability, is 1286 /// **NOT** symmetric. 1287 static MixData 1288 approximateImplicitConversion(const TheCheck &Check, QualType LType, 1289 QualType RType, const ASTContext &Ctx, 1290 ImplicitConversionModellingMode ImplicitMode) { 1291 LLVM_DEBUG(llvm::dbgs() << ">>> approximateImplicitConversion for LType:\n"; 1292 LType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand RType:\n"; 1293 RType.dump(llvm::dbgs(), Ctx); 1294 llvm::dbgs() << "\nimplicit mode: "; switch (ImplicitMode) { 1295 case ImplicitConversionModellingMode::None: 1296 llvm::dbgs() << "None"; 1297 break; 1298 case ImplicitConversionModellingMode::All: 1299 llvm::dbgs() << "All"; 1300 break; 1301 case ImplicitConversionModellingMode::OneWaySingleStandardOnly: 1302 llvm::dbgs() << "OneWay, Single, STD Only"; 1303 break; 1304 } llvm::dbgs() << '\n';); 1305 if (LType == RType) 1306 return {MixFlags::Trivial, LType}; 1307 1308 // An implicit conversion sequence consists of the following, in order: 1309 // * Maybe standard conversion sequence. 1310 // * Maybe user-defined conversion. 1311 // * Maybe standard conversion sequence. 1312 ConversionSequence ImplicitSeq{LType, RType}; 1313 QualType WorkType = LType; 1314 1315 Optional<QualType> AfterFirstStdConv = 1316 approximateStandardConversionSequence(Check, LType, RType, Ctx); 1317 if (AfterFirstStdConv) { 1318 LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Standard " 1319 "Pre-Conversion found!\n"); 1320 ImplicitSeq.AfterFirstStandard = AfterFirstStdConv.getValue(); 1321 WorkType = ImplicitSeq.AfterFirstStandard; 1322 } 1323 1324 if (ImplicitMode == ImplicitConversionModellingMode::OneWaySingleStandardOnly) 1325 // If the caller only requested modelling of a standard conversion, bail. 1326 return {ImplicitSeq.AfterFirstStandard.isNull() 1327 ? MixFlags::None 1328 : MixFlags::ImplicitConversion, 1329 ImplicitSeq}; 1330 1331 if (Ctx.getLangOpts().CPlusPlus) { 1332 bool FoundConversionOperator = false, FoundConvertingCtor = false; 1333 1334 if (const auto *LRD = WorkType->getAsCXXRecordDecl()) { 1335 Optional<ConversionSequence> ConversionOperatorResult = 1336 tryConversionOperators(Check, LRD, RType); 1337 if (ConversionOperatorResult) { 1338 LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Found " 1339 "conversion operator.\n"); 1340 ImplicitSeq.update(ConversionOperatorResult.getValue()); 1341 WorkType = ImplicitSeq.getTypeAfterUserDefinedConversion(); 1342 FoundConversionOperator = true; 1343 } 1344 } 1345 1346 if (const auto *RRD = RType->getAsCXXRecordDecl()) { 1347 // Use the original "LType" here, and not WorkType, because the 1348 // conversion to the converting constructors' parameters will be 1349 // modelled in the recursive call. 1350 Optional<ConversionSequence> ConvCtorResult = 1351 tryConvertingConstructors(Check, LType, RRD); 1352 if (ConvCtorResult) { 1353 LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Found " 1354 "converting constructor.\n"); 1355 ImplicitSeq.update(ConvCtorResult.getValue()); 1356 WorkType = ImplicitSeq.getTypeAfterUserDefinedConversion(); 1357 FoundConvertingCtor = true; 1358 } 1359 } 1360 1361 if (FoundConversionOperator && FoundConvertingCtor) { 1362 // If both an operator and a ctor matches, the sequence is ambiguous. 1363 LLVM_DEBUG(llvm::dbgs() 1364 << "<<< approximateImplicitConversion. Found both " 1365 "user-defined conversion kinds in the same sequence!\n"); 1366 return {MixFlags::None}; 1367 } 1368 } 1369 1370 // After the potential user-defined conversion, another standard conversion 1371 // sequence might exist. 1372 LLVM_DEBUG( 1373 llvm::dbgs() 1374 << "--- approximateImplicitConversion. Try to find post-conversion.\n"); 1375 MixData SecondStdConv = approximateImplicitConversion( 1376 Check, WorkType, RType, Ctx, 1377 ImplicitConversionModellingMode::OneWaySingleStandardOnly); 1378 if (SecondStdConv.indicatesMixability()) { 1379 LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Standard " 1380 "Post-Conversion found!\n"); 1381 1382 // The single-step modelling puts the modelled conversion into the "PreStd" 1383 // variable in the recursive call, but from the PoV of this function, it is 1384 // the post-conversion. 1385 ImplicitSeq.AfterSecondStandard = 1386 SecondStdConv.Conversion.AfterFirstStandard; 1387 WorkType = ImplicitSeq.AfterSecondStandard; 1388 } 1389 1390 if (ImplicitSeq) { 1391 LLVM_DEBUG(llvm::dbgs() 1392 << "<<< approximateImplicitConversion. Found a conversion.\n"); 1393 return {MixFlags::ImplicitConversion, ImplicitSeq}; 1394 } 1395 1396 LLVM_DEBUG( 1397 llvm::dbgs() << "<<< approximateImplicitConversion. No match found.\n"); 1398 return {MixFlags::None}; 1399 } 1400 1401 static MixableParameterRange modelMixingRange( 1402 const TheCheck &Check, const FunctionDecl *FD, std::size_t StartIndex, 1403 const filter::SimilarlyUsedParameterPairSuppressor &UsageBasedSuppressor) { 1404 std::size_t NumParams = FD->getNumParams(); 1405 assert(StartIndex < NumParams && "out of bounds for start"); 1406 const ASTContext &Ctx = FD->getASTContext(); 1407 1408 MixableParameterRange Ret; 1409 // A parameter at index 'StartIndex' had been trivially "checked". 1410 Ret.NumParamsChecked = 1; 1411 1412 for (std::size_t I = StartIndex + 1; I < NumParams; ++I) { 1413 const ParmVarDecl *Ith = FD->getParamDecl(I); 1414 StringRef ParamName = Ith->getName(); 1415 LLVM_DEBUG(llvm::dbgs() 1416 << "Check param #" << I << " '" << ParamName << "'...\n"); 1417 if (filter::isIgnoredParameter(Check, Ith)) { 1418 LLVM_DEBUG(llvm::dbgs() << "Param #" << I << " is ignored. Break!\n"); 1419 break; 1420 } 1421 1422 StringRef PrevParamName = FD->getParamDecl(I - 1)->getName(); 1423 if (!ParamName.empty() && !PrevParamName.empty() && 1424 filter::prefixSuffixCoverUnderThreshold( 1425 Check.NamePrefixSuffixSilenceDissimilarityTreshold, PrevParamName, 1426 ParamName)) { 1427 LLVM_DEBUG(llvm::dbgs() << "Parameter '" << ParamName 1428 << "' follows a pattern with previous parameter '" 1429 << PrevParamName << "'. Break!\n"); 1430 break; 1431 } 1432 1433 // Now try to go forward and build the range of [Start, ..., I, I + 1, ...] 1434 // parameters that can be messed up at a call site. 1435 MixableParameterRange::MixVector MixesOfIth; 1436 for (std::size_t J = StartIndex; J < I; ++J) { 1437 const ParmVarDecl *Jth = FD->getParamDecl(J); 1438 LLVM_DEBUG(llvm::dbgs() 1439 << "Check mix of #" << J << " against #" << I << "...\n"); 1440 1441 if (isSimilarlyUsedParameter(UsageBasedSuppressor, Ith, Jth)) { 1442 // Consider the two similarly used parameters to not be possible in a 1443 // mix-up at the user's request, if they enabled this heuristic. 1444 LLVM_DEBUG(llvm::dbgs() << "Parameters #" << I << " and #" << J 1445 << " deemed related, ignoring...\n"); 1446 1447 // If the parameter #I and #J mixes, then I is mixable with something 1448 // in the current range, so the range has to be broken and I not 1449 // included. 1450 MixesOfIth.clear(); 1451 break; 1452 } 1453 1454 Mix M{Jth, Ith, 1455 calculateMixability(Check, Jth->getType(), Ith->getType(), Ctx, 1456 Check.ModelImplicitConversions 1457 ? ImplicitConversionModellingMode::All 1458 : ImplicitConversionModellingMode::None)}; 1459 LLVM_DEBUG(llvm::dbgs() << "Mix flags (raw) : " 1460 << formatMixFlags(M.flags()) << '\n'); 1461 M.sanitize(); 1462 LLVM_DEBUG(llvm::dbgs() << "Mix flags (after sanitize): " 1463 << formatMixFlags(M.flags()) << '\n'); 1464 1465 assert(M.flagsValid() && "All flags decayed!"); 1466 1467 if (M.mixable()) 1468 MixesOfIth.emplace_back(std::move(M)); 1469 } 1470 1471 if (MixesOfIth.empty()) { 1472 // If there weren't any new mixes stored for Ith, the range is 1473 // [Start, ..., I]. 1474 LLVM_DEBUG(llvm::dbgs() 1475 << "Param #" << I 1476 << " does not mix with any in the current range. Break!\n"); 1477 break; 1478 } 1479 1480 Ret.Mixes.insert(Ret.Mixes.end(), MixesOfIth.begin(), MixesOfIth.end()); 1481 ++Ret.NumParamsChecked; // Otherwise a new param was iterated. 1482 } 1483 1484 return Ret; 1485 } 1486 1487 } // namespace model 1488 1489 /// Matches DeclRefExprs and their ignorable wrappers to ParmVarDecls. 1490 AST_MATCHER_FUNCTION(ast_matchers::internal::Matcher<Stmt>, paramRefExpr) { 1491 return expr(ignoringParenImpCasts(ignoringElidableConstructorCall( 1492 declRefExpr(to(parmVarDecl().bind("param")))))); 1493 } 1494 1495 namespace filter { 1496 1497 /// Returns whether the parameter's name or the parameter's type's name is 1498 /// configured by the user to be ignored from analysis and diagnostic. 1499 static bool isIgnoredParameter(const TheCheck &Check, const ParmVarDecl *Node) { 1500 LLVM_DEBUG(llvm::dbgs() << "Checking if '" << Node->getName() 1501 << "' is ignored.\n"); 1502 1503 if (!Node->getIdentifier()) 1504 return llvm::find(Check.IgnoredParameterNames, "\"\"") != 1505 Check.IgnoredParameterNames.end(); 1506 1507 StringRef NodeName = Node->getName(); 1508 if (llvm::find(Check.IgnoredParameterNames, NodeName) != 1509 Check.IgnoredParameterNames.end()) { 1510 LLVM_DEBUG(llvm::dbgs() << "\tName ignored.\n"); 1511 return true; 1512 } 1513 1514 StringRef NodeTypeName = [Node] { 1515 const ASTContext &Ctx = Node->getASTContext(); 1516 const SourceManager &SM = Ctx.getSourceManager(); 1517 SourceLocation B = Node->getTypeSpecStartLoc(); 1518 SourceLocation E = Node->getTypeSpecEndLoc(); 1519 LangOptions LO; 1520 1521 LLVM_DEBUG(llvm::dbgs() << "\tType name code is '" 1522 << Lexer::getSourceText( 1523 CharSourceRange::getTokenRange(B, E), SM, LO) 1524 << "'...\n"); 1525 if (B.isMacroID()) { 1526 LLVM_DEBUG(llvm::dbgs() << "\t\tBeginning is macro.\n"); 1527 B = SM.getTopMacroCallerLoc(B); 1528 } 1529 if (E.isMacroID()) { 1530 LLVM_DEBUG(llvm::dbgs() << "\t\tEnding is macro.\n"); 1531 E = Lexer::getLocForEndOfToken(SM.getTopMacroCallerLoc(E), 0, SM, LO); 1532 } 1533 LLVM_DEBUG(llvm::dbgs() << "\tType name code is '" 1534 << Lexer::getSourceText( 1535 CharSourceRange::getTokenRange(B, E), SM, LO) 1536 << "'...\n"); 1537 1538 return Lexer::getSourceText(CharSourceRange::getTokenRange(B, E), SM, LO); 1539 }(); 1540 1541 LLVM_DEBUG(llvm::dbgs() << "\tType name is '" << NodeTypeName << "'\n"); 1542 if (!NodeTypeName.empty()) { 1543 if (llvm::any_of(Check.IgnoredParameterTypeSuffixes, 1544 [NodeTypeName](const std::string &E) { 1545 return !E.empty() && NodeTypeName.endswith(E); 1546 })) { 1547 LLVM_DEBUG(llvm::dbgs() << "\tType suffix ignored.\n"); 1548 return true; 1549 } 1550 } 1551 1552 return false; 1553 } 1554 1555 /// This namespace contains the implementations for the suppression of 1556 /// diagnostics from similaly used ("related") parameters. 1557 namespace relatedness_heuristic { 1558 1559 static constexpr std::size_t SmallDataStructureSize = 4; 1560 1561 template <typename T, std::size_t N = SmallDataStructureSize> 1562 using ParamToSmallSetMap = 1563 llvm::DenseMap<const ParmVarDecl *, llvm::SmallSet<T, N>>; 1564 1565 /// Returns whether the sets mapped to the two elements in the map have at 1566 /// least one element in common. 1567 template <typename MapTy, typename ElemTy> 1568 bool lazyMapOfSetsIntersectionExists(const MapTy &Map, const ElemTy &E1, 1569 const ElemTy &E2) { 1570 auto E1Iterator = Map.find(E1); 1571 auto E2Iterator = Map.find(E2); 1572 if (E1Iterator == Map.end() || E2Iterator == Map.end()) 1573 return false; 1574 1575 for (const auto &E1SetElem : E1Iterator->second) 1576 if (llvm::find(E2Iterator->second, E1SetElem) != E2Iterator->second.end()) 1577 return true; 1578 1579 return false; 1580 } 1581 1582 /// Implements the heuristic that marks two parameters related if there is 1583 /// a usage for both in the same strict expression subtree. A strict 1584 /// expression subtree is a tree which only includes Expr nodes, i.e. no 1585 /// Stmts and no Decls. 1586 class AppearsInSameExpr : public RecursiveASTVisitor<AppearsInSameExpr> { 1587 using Base = RecursiveASTVisitor<AppearsInSameExpr>; 1588 1589 const FunctionDecl *FD; 1590 const Expr *CurrentExprOnlyTreeRoot = nullptr; 1591 llvm::DenseMap<const ParmVarDecl *, 1592 llvm::SmallPtrSet<const Expr *, SmallDataStructureSize>> 1593 ParentExprsForParamRefs; 1594 1595 public: 1596 void setup(const FunctionDecl *FD) { 1597 this->FD = FD; 1598 TraverseFunctionDecl(const_cast<FunctionDecl *>(FD)); 1599 } 1600 1601 bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const { 1602 return lazyMapOfSetsIntersectionExists(ParentExprsForParamRefs, Param1, 1603 Param2); 1604 } 1605 1606 bool TraverseDecl(Decl *D) { 1607 CurrentExprOnlyTreeRoot = nullptr; 1608 return Base::TraverseDecl(D); 1609 } 1610 1611 bool TraverseStmt(Stmt *S, DataRecursionQueue *Queue = nullptr) { 1612 if (auto *E = dyn_cast_or_null<Expr>(S)) { 1613 bool RootSetInCurrentStackFrame = false; 1614 if (!CurrentExprOnlyTreeRoot) { 1615 CurrentExprOnlyTreeRoot = E; 1616 RootSetInCurrentStackFrame = true; 1617 } 1618 1619 bool Ret = Base::TraverseStmt(S); 1620 1621 if (RootSetInCurrentStackFrame) 1622 CurrentExprOnlyTreeRoot = nullptr; 1623 1624 return Ret; 1625 } 1626 1627 // A Stmt breaks the strictly Expr subtree. 1628 CurrentExprOnlyTreeRoot = nullptr; 1629 return Base::TraverseStmt(S); 1630 } 1631 1632 bool VisitDeclRefExpr(DeclRefExpr *DRE) { 1633 if (!CurrentExprOnlyTreeRoot) 1634 return true; 1635 1636 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 1637 if (llvm::find(FD->parameters(), PVD)) 1638 ParentExprsForParamRefs[PVD].insert(CurrentExprOnlyTreeRoot); 1639 1640 return true; 1641 } 1642 }; 1643 1644 /// Implements the heuristic that marks two parameters related if there are 1645 /// two separate calls to the same function (overload) and the parameters are 1646 /// passed to the same index in both calls, i.e f(a, b) and f(a, c) passes 1647 /// b and c to the same index (2) of f(), marking them related. 1648 class PassedToSameFunction { 1649 ParamToSmallSetMap<std::pair<const FunctionDecl *, unsigned>> TargetParams; 1650 1651 public: 1652 void setup(const FunctionDecl *FD) { 1653 auto ParamsAsArgsInFnCalls = 1654 match(functionDecl(forEachDescendant( 1655 callExpr(forEachArgumentWithParam( 1656 paramRefExpr(), parmVarDecl().bind("passed-to"))) 1657 .bind("call-expr"))), 1658 *FD, FD->getASTContext()); 1659 for (const auto &Match : ParamsAsArgsInFnCalls) { 1660 const auto *PassedParamOfThisFn = Match.getNodeAs<ParmVarDecl>("param"); 1661 const auto *CE = Match.getNodeAs<CallExpr>("call-expr"); 1662 const auto *PassedToParam = Match.getNodeAs<ParmVarDecl>("passed-to"); 1663 assert(PassedParamOfThisFn && CE && PassedToParam); 1664 1665 const FunctionDecl *CalledFn = CE->getDirectCallee(); 1666 if (!CalledFn) 1667 continue; 1668 1669 llvm::Optional<unsigned> TargetIdx; 1670 unsigned NumFnParams = CalledFn->getNumParams(); 1671 for (unsigned Idx = 0; Idx < NumFnParams; ++Idx) 1672 if (CalledFn->getParamDecl(Idx) == PassedToParam) 1673 TargetIdx.emplace(Idx); 1674 1675 assert(TargetIdx.hasValue() && "Matched, but didn't find index?"); 1676 TargetParams[PassedParamOfThisFn].insert( 1677 {CalledFn->getCanonicalDecl(), *TargetIdx}); 1678 } 1679 } 1680 1681 bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const { 1682 return lazyMapOfSetsIntersectionExists(TargetParams, Param1, Param2); 1683 } 1684 }; 1685 1686 /// Implements the heuristic that marks two parameters related if the same 1687 /// member is accessed (referred to) inside the current function's body. 1688 class AccessedSameMemberOf { 1689 ParamToSmallSetMap<const Decl *> AccessedMembers; 1690 1691 public: 1692 void setup(const FunctionDecl *FD) { 1693 auto MembersCalledOnParams = match( 1694 functionDecl(forEachDescendant( 1695 memberExpr(hasObjectExpression(paramRefExpr())).bind("mem-expr"))), 1696 *FD, FD->getASTContext()); 1697 1698 for (const auto &Match : MembersCalledOnParams) { 1699 const auto *AccessedParam = Match.getNodeAs<ParmVarDecl>("param"); 1700 const auto *ME = Match.getNodeAs<MemberExpr>("mem-expr"); 1701 assert(AccessedParam && ME); 1702 AccessedMembers[AccessedParam].insert( 1703 ME->getMemberDecl()->getCanonicalDecl()); 1704 } 1705 } 1706 1707 bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const { 1708 return lazyMapOfSetsIntersectionExists(AccessedMembers, Param1, Param2); 1709 } 1710 }; 1711 1712 /// Implements the heuristic that marks two parameters related if different 1713 /// ReturnStmts return them from the function. 1714 class Returned { 1715 llvm::SmallVector<const ParmVarDecl *, SmallDataStructureSize> ReturnedParams; 1716 1717 public: 1718 void setup(const FunctionDecl *FD) { 1719 // TODO: Handle co_return. 1720 auto ParamReturns = match(functionDecl(forEachDescendant( 1721 returnStmt(hasReturnValue(paramRefExpr())))), 1722 *FD, FD->getASTContext()); 1723 for (const auto &Match : ParamReturns) { 1724 const auto *ReturnedParam = Match.getNodeAs<ParmVarDecl>("param"); 1725 assert(ReturnedParam); 1726 1727 if (find(FD->parameters(), ReturnedParam) == FD->param_end()) 1728 // Inside the subtree of a FunctionDecl there might be ReturnStmts of 1729 // a parameter that isn't the parameter of the function, e.g. in the 1730 // case of lambdas. 1731 continue; 1732 1733 ReturnedParams.emplace_back(ReturnedParam); 1734 } 1735 } 1736 1737 bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const { 1738 return llvm::find(ReturnedParams, Param1) != ReturnedParams.end() && 1739 llvm::find(ReturnedParams, Param2) != ReturnedParams.end(); 1740 } 1741 }; 1742 1743 } // namespace relatedness_heuristic 1744 1745 /// Helper class that is used to detect if two parameters of the same function 1746 /// are used in a similar fashion, to suppress the result. 1747 class SimilarlyUsedParameterPairSuppressor { 1748 const bool Enabled; 1749 relatedness_heuristic::AppearsInSameExpr SameExpr; 1750 relatedness_heuristic::PassedToSameFunction PassToFun; 1751 relatedness_heuristic::AccessedSameMemberOf SameMember; 1752 relatedness_heuristic::Returned Returns; 1753 1754 public: 1755 SimilarlyUsedParameterPairSuppressor(const FunctionDecl *FD, bool Enable) 1756 : Enabled(Enable) { 1757 if (!Enable) 1758 return; 1759 1760 SameExpr.setup(FD); 1761 PassToFun.setup(FD); 1762 SameMember.setup(FD); 1763 Returns.setup(FD); 1764 } 1765 1766 /// Returns whether the specified two parameters are deemed similarly used 1767 /// or related by the heuristics. 1768 bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const { 1769 if (!Enabled) 1770 return false; 1771 1772 LLVM_DEBUG(llvm::dbgs() 1773 << "::: Matching similar usage / relatedness heuristic...\n"); 1774 1775 if (SameExpr(Param1, Param2)) { 1776 LLVM_DEBUG(llvm::dbgs() << "::: Used in the same expression.\n"); 1777 return true; 1778 } 1779 1780 if (PassToFun(Param1, Param2)) { 1781 LLVM_DEBUG(llvm::dbgs() 1782 << "::: Passed to same function in different calls.\n"); 1783 return true; 1784 } 1785 1786 if (SameMember(Param1, Param2)) { 1787 LLVM_DEBUG(llvm::dbgs() 1788 << "::: Same member field access or method called.\n"); 1789 return true; 1790 } 1791 1792 if (Returns(Param1, Param2)) { 1793 LLVM_DEBUG(llvm::dbgs() << "::: Both parameter returned.\n"); 1794 return true; 1795 } 1796 1797 LLVM_DEBUG(llvm::dbgs() << "::: None.\n"); 1798 return false; 1799 } 1800 }; 1801 1802 // (This function hoists the call to operator() of the wrapper, so we do not 1803 // need to define the previous class at the top of the file.) 1804 static inline bool 1805 isSimilarlyUsedParameter(const SimilarlyUsedParameterPairSuppressor &Suppressor, 1806 const ParmVarDecl *Param1, const ParmVarDecl *Param2) { 1807 return Suppressor(Param1, Param2); 1808 } 1809 1810 static void padStringAtEnd(SmallVectorImpl<char> &Str, std::size_t ToLen) { 1811 while (Str.size() < ToLen) 1812 Str.emplace_back('\0'); 1813 } 1814 1815 static void padStringAtBegin(SmallVectorImpl<char> &Str, std::size_t ToLen) { 1816 while (Str.size() < ToLen) 1817 Str.insert(Str.begin(), '\0'); 1818 } 1819 1820 static bool isCommonPrefixWithoutSomeCharacters(std::size_t N, StringRef S1, 1821 StringRef S2) { 1822 assert(S1.size() >= N && S2.size() >= N); 1823 StringRef S1Prefix = S1.take_front(S1.size() - N), 1824 S2Prefix = S2.take_front(S2.size() - N); 1825 return S1Prefix == S2Prefix && !S1Prefix.empty(); 1826 } 1827 1828 static bool isCommonSuffixWithoutSomeCharacters(std::size_t N, StringRef S1, 1829 StringRef S2) { 1830 assert(S1.size() >= N && S2.size() >= N); 1831 StringRef S1Suffix = S1.take_back(S1.size() - N), 1832 S2Suffix = S2.take_back(S2.size() - N); 1833 return S1Suffix == S2Suffix && !S1Suffix.empty(); 1834 } 1835 1836 /// Returns whether the two strings are prefixes or suffixes of each other with 1837 /// at most Threshold characters differing on the non-common end. 1838 static bool prefixSuffixCoverUnderThreshold(std::size_t Threshold, 1839 StringRef Str1, StringRef Str2) { 1840 if (Threshold == 0) 1841 return false; 1842 1843 // Pad the two strings to the longer length. 1844 std::size_t BiggerLength = std::max(Str1.size(), Str2.size()); 1845 1846 if (BiggerLength <= Threshold) 1847 // If the length of the strings is still smaller than the threshold, they 1848 // would be covered by an empty prefix/suffix with the rest differing. 1849 // (E.g. "A" and "X" with Threshold = 1 would mean we think they are 1850 // similar and do not warn about them, which is a too eager assumption.) 1851 return false; 1852 1853 SmallString<32> S1PadE{Str1}, S2PadE{Str2}; 1854 padStringAtEnd(S1PadE, BiggerLength); 1855 padStringAtEnd(S2PadE, BiggerLength); 1856 1857 if (isCommonPrefixWithoutSomeCharacters( 1858 Threshold, StringRef{S1PadE.begin(), BiggerLength}, 1859 StringRef{S2PadE.begin(), BiggerLength})) 1860 return true; 1861 1862 SmallString<32> S1PadB{Str1}, S2PadB{Str2}; 1863 padStringAtBegin(S1PadB, BiggerLength); 1864 padStringAtBegin(S2PadB, BiggerLength); 1865 1866 if (isCommonSuffixWithoutSomeCharacters( 1867 Threshold, StringRef{S1PadB.begin(), BiggerLength}, 1868 StringRef{S2PadB.begin(), BiggerLength})) 1869 return true; 1870 1871 return false; 1872 } 1873 1874 } // namespace filter 1875 1876 /// Matches functions that have at least the specified amount of parameters. 1877 AST_MATCHER_P(FunctionDecl, parameterCountGE, unsigned, N) { 1878 return Node.getNumParams() >= N; 1879 } 1880 1881 /// Matches *any* overloaded unary and binary operators. 1882 AST_MATCHER(FunctionDecl, isOverloadedUnaryOrBinaryOperator) { 1883 switch (Node.getOverloadedOperator()) { 1884 case OO_None: 1885 case OO_New: 1886 case OO_Delete: 1887 case OO_Array_New: 1888 case OO_Array_Delete: 1889 case OO_Conditional: 1890 case OO_Coawait: 1891 return false; 1892 1893 default: 1894 return Node.getNumParams() <= 2; 1895 } 1896 } 1897 1898 /// Returns the DefaultMinimumLength if the Value of requested minimum length 1899 /// is less than 2. Minimum lengths of 0 or 1 are not accepted. 1900 static inline unsigned clampMinimumLength(const unsigned Value) { 1901 return Value < 2 ? DefaultMinimumLength : Value; 1902 } 1903 1904 // FIXME: Maybe unneeded, getNameForDiagnostic() is expected to change to return 1905 // a crafted location when the node itself is unnamed. (See D84658, D85033.) 1906 /// Returns the diagnostic-friendly name of the node, or empty string. 1907 static SmallString<64> getName(const NamedDecl *ND) { 1908 SmallString<64> Name; 1909 llvm::raw_svector_ostream OS{Name}; 1910 ND->getNameForDiagnostic(OS, ND->getASTContext().getPrintingPolicy(), false); 1911 return Name; 1912 } 1913 1914 /// Returns the diagnostic-friendly name of the node, or a constant value. 1915 static SmallString<64> getNameOrUnnamed(const NamedDecl *ND) { 1916 auto Name = getName(ND); 1917 if (Name.empty()) 1918 Name = "<unnamed>"; 1919 return Name; 1920 } 1921 1922 /// Returns whether a particular Mix between two parameters should have the 1923 /// types involved diagnosed to the user. This is only a flag check. 1924 static inline bool needsToPrintTypeInDiagnostic(const model::Mix &M) { 1925 using namespace model; 1926 return static_cast<bool>( 1927 M.flags() & 1928 (MixFlags::TypeAlias | MixFlags::ReferenceBind | MixFlags::Qualifiers)); 1929 } 1930 1931 /// Returns whether a particular Mix between the two parameters should have 1932 /// implicit conversions elaborated. 1933 static inline bool needsToElaborateImplicitConversion(const model::Mix &M) { 1934 return hasFlag(M.flags(), model::MixFlags::ImplicitConversion); 1935 } 1936 1937 namespace { 1938 1939 /// This class formats a conversion sequence into a "Ty1 -> Ty2 -> Ty3" line 1940 /// that can be used in diagnostics. 1941 struct FormattedConversionSequence { 1942 std::string DiagnosticText; 1943 1944 /// The formatted sequence is trivial if it is "Ty1 -> Ty2", but Ty1 and 1945 /// Ty2 are the types that are shown in the code. A trivial diagnostic 1946 /// does not need to be printed. 1947 bool Trivial; 1948 1949 FormattedConversionSequence(const PrintingPolicy &PP, 1950 StringRef StartTypeAsDiagnosed, 1951 const model::ConversionSequence &Conv, 1952 StringRef DestinationTypeAsDiagnosed) { 1953 Trivial = true; 1954 llvm::raw_string_ostream OS{DiagnosticText}; 1955 1956 // Print the type name as it is printed in other places in the diagnostic. 1957 OS << '\'' << StartTypeAsDiagnosed << '\''; 1958 std::string LastAddedType = StartTypeAsDiagnosed.str(); 1959 std::size_t NumElementsAdded = 1; 1960 1961 // However, the parameter's defined type might not be what the implicit 1962 // conversion started with, e.g. if a typedef is found to convert. 1963 std::string SeqBeginTypeStr = Conv.Begin.getAsString(PP); 1964 std::string SeqEndTypeStr = Conv.End.getAsString(PP); 1965 if (StartTypeAsDiagnosed != SeqBeginTypeStr) { 1966 OS << " (as '" << SeqBeginTypeStr << "')"; 1967 LastAddedType = SeqBeginTypeStr; 1968 Trivial = false; 1969 } 1970 1971 auto AddType = [&](StringRef ToAdd) { 1972 if (LastAddedType != ToAdd && ToAdd != SeqEndTypeStr) { 1973 OS << " -> '" << ToAdd << "'"; 1974 LastAddedType = ToAdd.str(); 1975 ++NumElementsAdded; 1976 } 1977 }; 1978 for (QualType InvolvedType : Conv.getInvolvedTypesInSequence()) 1979 // Print every type that's unique in the sequence into the diagnosis. 1980 AddType(InvolvedType.getAsString(PP)); 1981 1982 if (LastAddedType != DestinationTypeAsDiagnosed) { 1983 OS << " -> '" << DestinationTypeAsDiagnosed << "'"; 1984 LastAddedType = DestinationTypeAsDiagnosed.str(); 1985 ++NumElementsAdded; 1986 } 1987 1988 // Same reasoning as with the Begin, e.g. if the converted-to type is a 1989 // typedef, it will not be the same inside the conversion sequence (where 1990 // the model already tore off typedefs) as in the code. 1991 if (DestinationTypeAsDiagnosed != SeqEndTypeStr) { 1992 OS << " (as '" << SeqEndTypeStr << "')"; 1993 LastAddedType = SeqEndTypeStr; 1994 Trivial = false; 1995 } 1996 1997 if (Trivial && NumElementsAdded > 2) 1998 // If the thing is still marked trivial but we have more than the 1999 // from and to types added, it should not be trivial, and elaborated 2000 // when printing the diagnostic. 2001 Trivial = false; 2002 } 2003 }; 2004 2005 /// Retains the elements called with and returns whether the call is done with 2006 /// a new element. 2007 template <typename E, std::size_t N> class InsertOnce { 2008 llvm::SmallSet<E, N> CalledWith; 2009 2010 public: 2011 bool operator()(E El) { return CalledWith.insert(std::move(El)).second; } 2012 2013 bool calledWith(const E &El) const { return CalledWith.contains(El); } 2014 }; 2015 2016 struct SwappedEqualQualTypePair { 2017 QualType LHSType, RHSType; 2018 2019 bool operator==(const SwappedEqualQualTypePair &Other) const { 2020 return (LHSType == Other.LHSType && RHSType == Other.RHSType) || 2021 (LHSType == Other.RHSType && RHSType == Other.LHSType); 2022 } 2023 2024 bool operator<(const SwappedEqualQualTypePair &Other) const { 2025 return LHSType < Other.LHSType && RHSType < Other.RHSType; 2026 } 2027 }; 2028 2029 struct TypeAliasDiagnosticTuple { 2030 QualType LHSType, RHSType, CommonType; 2031 2032 bool operator==(const TypeAliasDiagnosticTuple &Other) const { 2033 return CommonType == Other.CommonType && 2034 ((LHSType == Other.LHSType && RHSType == Other.RHSType) || 2035 (LHSType == Other.RHSType && RHSType == Other.LHSType)); 2036 } 2037 2038 bool operator<(const TypeAliasDiagnosticTuple &Other) const { 2039 return CommonType < Other.CommonType && LHSType < Other.LHSType && 2040 RHSType < Other.RHSType; 2041 } 2042 }; 2043 2044 /// Helper class to only emit a diagnostic related to MixFlags::TypeAlias once. 2045 class UniqueTypeAliasDiagnosticHelper 2046 : public InsertOnce<TypeAliasDiagnosticTuple, 8> { 2047 using Base = InsertOnce<TypeAliasDiagnosticTuple, 8>; 2048 2049 public: 2050 /// Returns whether the diagnostic for LHSType and RHSType which are both 2051 /// referring to CommonType being the same has not been emitted already. 2052 bool operator()(QualType LHSType, QualType RHSType, QualType CommonType) { 2053 if (CommonType.isNull() || CommonType == LHSType || CommonType == RHSType) 2054 return Base::operator()({LHSType, RHSType, {}}); 2055 2056 TypeAliasDiagnosticTuple ThreeTuple{LHSType, RHSType, CommonType}; 2057 if (!Base::operator()(ThreeTuple)) 2058 return false; 2059 2060 bool AlreadySaidLHSAndCommonIsSame = calledWith({LHSType, CommonType, {}}); 2061 bool AlreadySaidRHSAndCommonIsSame = calledWith({RHSType, CommonType, {}}); 2062 if (AlreadySaidLHSAndCommonIsSame && AlreadySaidRHSAndCommonIsSame) { 2063 // "SomeInt == int" && "SomeOtherInt == int" => "Common(SomeInt, 2064 // SomeOtherInt) == int", no need to diagnose it. Save the 3-tuple only 2065 // for shortcut if it ever appears again. 2066 return false; 2067 } 2068 2069 return true; 2070 } 2071 }; 2072 2073 } // namespace 2074 2075 EasilySwappableParametersCheck::EasilySwappableParametersCheck( 2076 StringRef Name, ClangTidyContext *Context) 2077 : ClangTidyCheck(Name, Context), 2078 MinimumLength(clampMinimumLength( 2079 Options.get("MinimumLength", DefaultMinimumLength))), 2080 IgnoredParameterNames(optutils::parseStringList( 2081 Options.get("IgnoredParameterNames", DefaultIgnoredParameterNames))), 2082 IgnoredParameterTypeSuffixes(optutils::parseStringList( 2083 Options.get("IgnoredParameterTypeSuffixes", 2084 DefaultIgnoredParameterTypeSuffixes))), 2085 QualifiersMix(Options.get("QualifiersMix", DefaultQualifiersMix)), 2086 ModelImplicitConversions(Options.get("ModelImplicitConversions", 2087 DefaultModelImplicitConversions)), 2088 SuppressParametersUsedTogether( 2089 Options.get("SuppressParametersUsedTogether", 2090 DefaultSuppressParametersUsedTogether)), 2091 NamePrefixSuffixSilenceDissimilarityTreshold( 2092 Options.get("NamePrefixSuffixSilenceDissimilarityTreshold", 2093 DefaultNamePrefixSuffixSilenceDissimilarityTreshold)) {} 2094 2095 void EasilySwappableParametersCheck::storeOptions( 2096 ClangTidyOptions::OptionMap &Opts) { 2097 Options.store(Opts, "MinimumLength", MinimumLength); 2098 Options.store(Opts, "IgnoredParameterNames", 2099 optutils::serializeStringList(IgnoredParameterNames)); 2100 Options.store(Opts, "IgnoredParameterTypeSuffixes", 2101 optutils::serializeStringList(IgnoredParameterTypeSuffixes)); 2102 Options.store(Opts, "QualifiersMix", QualifiersMix); 2103 Options.store(Opts, "ModelImplicitConversions", ModelImplicitConversions); 2104 Options.store(Opts, "SuppressParametersUsedTogether", 2105 SuppressParametersUsedTogether); 2106 Options.store(Opts, "NamePrefixSuffixSilenceDissimilarityTreshold", 2107 NamePrefixSuffixSilenceDissimilarityTreshold); 2108 } 2109 2110 void EasilySwappableParametersCheck::registerMatchers(MatchFinder *Finder) { 2111 const auto BaseConstraints = functionDecl( 2112 // Only report for definition nodes, as fixing the issues reported 2113 // requires the user to be able to change code. 2114 isDefinition(), parameterCountGE(MinimumLength), 2115 unless(isOverloadedUnaryOrBinaryOperator())); 2116 2117 Finder->addMatcher( 2118 functionDecl(BaseConstraints, 2119 unless(ast_matchers::isTemplateInstantiation())) 2120 .bind("func"), 2121 this); 2122 Finder->addMatcher( 2123 functionDecl(BaseConstraints, isExplicitTemplateSpecialization()) 2124 .bind("func"), 2125 this); 2126 } 2127 2128 void EasilySwappableParametersCheck::check( 2129 const MatchFinder::MatchResult &Result) { 2130 using namespace model; 2131 using namespace filter; 2132 2133 const auto *FD = Result.Nodes.getNodeAs<FunctionDecl>("func"); 2134 assert(FD); 2135 2136 const PrintingPolicy &PP = FD->getASTContext().getPrintingPolicy(); 2137 std::size_t NumParams = FD->getNumParams(); 2138 std::size_t MixableRangeStartIndex = 0; 2139 2140 // Spawn one suppressor and if the user requested, gather information from 2141 // the AST for the parameters' usages. 2142 filter::SimilarlyUsedParameterPairSuppressor UsageBasedSuppressor{ 2143 FD, SuppressParametersUsedTogether}; 2144 2145 LLVM_DEBUG(llvm::dbgs() << "Begin analysis of " << getName(FD) << " with " 2146 << NumParams << " parameters...\n"); 2147 while (MixableRangeStartIndex < NumParams) { 2148 if (isIgnoredParameter(*this, FD->getParamDecl(MixableRangeStartIndex))) { 2149 LLVM_DEBUG(llvm::dbgs() 2150 << "Parameter #" << MixableRangeStartIndex << " ignored.\n"); 2151 ++MixableRangeStartIndex; 2152 continue; 2153 } 2154 2155 MixableParameterRange R = modelMixingRange( 2156 *this, FD, MixableRangeStartIndex, UsageBasedSuppressor); 2157 assert(R.NumParamsChecked > 0 && "Ensure forward progress!"); 2158 MixableRangeStartIndex += R.NumParamsChecked; 2159 if (R.NumParamsChecked < MinimumLength) { 2160 LLVM_DEBUG(llvm::dbgs() << "Ignoring range of " << R.NumParamsChecked 2161 << " lower than limit.\n"); 2162 continue; 2163 } 2164 2165 bool NeedsAnyTypeNote = llvm::any_of(R.Mixes, needsToPrintTypeInDiagnostic); 2166 bool HasAnyImplicits = 2167 llvm::any_of(R.Mixes, needsToElaborateImplicitConversion); 2168 const ParmVarDecl *First = R.getFirstParam(), *Last = R.getLastParam(); 2169 std::string FirstParamTypeAsWritten = First->getType().getAsString(PP); 2170 { 2171 StringRef DiagText; 2172 2173 if (HasAnyImplicits) 2174 DiagText = "%0 adjacent parameters of %1 of convertible types are " 2175 "easily swapped by mistake"; 2176 else if (NeedsAnyTypeNote) 2177 DiagText = "%0 adjacent parameters of %1 of similar type are easily " 2178 "swapped by mistake"; 2179 else 2180 DiagText = "%0 adjacent parameters of %1 of similar type ('%2') are " 2181 "easily swapped by mistake"; 2182 2183 auto Diag = diag(First->getOuterLocStart(), DiagText) 2184 << static_cast<unsigned>(R.NumParamsChecked) << FD; 2185 if (!NeedsAnyTypeNote) 2186 Diag << FirstParamTypeAsWritten; 2187 2188 CharSourceRange HighlightRange = CharSourceRange::getTokenRange( 2189 First->getBeginLoc(), Last->getEndLoc()); 2190 Diag << HighlightRange; 2191 } 2192 2193 // There is a chance that the previous highlight did not succeed, e.g. when 2194 // the two parameters are on different lines. For clarity, show the user 2195 // the involved variable explicitly. 2196 diag(First->getLocation(), "the first parameter in the range is '%0'", 2197 DiagnosticIDs::Note) 2198 << getNameOrUnnamed(First) 2199 << CharSourceRange::getTokenRange(First->getLocation(), 2200 First->getLocation()); 2201 diag(Last->getLocation(), "the last parameter in the range is '%0'", 2202 DiagnosticIDs::Note) 2203 << getNameOrUnnamed(Last) 2204 << CharSourceRange::getTokenRange(Last->getLocation(), 2205 Last->getLocation()); 2206 2207 // Helper classes to silence elaborative diagnostic notes that would be 2208 // too verbose. 2209 UniqueTypeAliasDiagnosticHelper UniqueTypeAlias; 2210 InsertOnce<SwappedEqualQualTypePair, 8> UniqueBindPower; 2211 InsertOnce<SwappedEqualQualTypePair, 8> UniqueImplicitConversion; 2212 2213 for (const model::Mix &M : R.Mixes) { 2214 assert(M.mixable() && "Sentinel or false mix in result."); 2215 if (!needsToPrintTypeInDiagnostic(M) && 2216 !needsToElaborateImplicitConversion(M)) 2217 continue; 2218 2219 // Typedefs might result in the type of the variable needing to be 2220 // emitted to a note diagnostic, so prepare it. 2221 const ParmVarDecl *LVar = M.First; 2222 const ParmVarDecl *RVar = M.Second; 2223 QualType LType = LVar->getType(); 2224 QualType RType = RVar->getType(); 2225 QualType CommonType = M.commonUnderlyingType(); 2226 std::string LTypeStr = LType.getAsString(PP); 2227 std::string RTypeStr = RType.getAsString(PP); 2228 std::string CommonTypeStr = CommonType.getAsString(PP); 2229 2230 if (hasFlag(M.flags(), MixFlags::TypeAlias) && 2231 UniqueTypeAlias(LType, RType, CommonType)) { 2232 StringRef DiagText; 2233 bool ExplicitlyPrintCommonType = false; 2234 if (LTypeStr == CommonTypeStr || RTypeStr == CommonTypeStr) { 2235 if (hasFlag(M.flags(), MixFlags::Qualifiers)) 2236 DiagText = "after resolving type aliases, '%0' and '%1' share a " 2237 "common type"; 2238 else 2239 DiagText = 2240 "after resolving type aliases, '%0' and '%1' are the same"; 2241 } else if (!CommonType.isNull()) { 2242 DiagText = "after resolving type aliases, the common type of '%0' " 2243 "and '%1' is '%2'"; 2244 ExplicitlyPrintCommonType = true; 2245 } 2246 2247 auto Diag = 2248 diag(LVar->getOuterLocStart(), DiagText, DiagnosticIDs::Note) 2249 << LTypeStr << RTypeStr; 2250 if (ExplicitlyPrintCommonType) 2251 Diag << CommonTypeStr; 2252 } 2253 2254 if ((hasFlag(M.flags(), MixFlags::ReferenceBind) || 2255 hasFlag(M.flags(), MixFlags::Qualifiers)) && 2256 UniqueBindPower({LType, RType})) { 2257 StringRef DiagText = "'%0' and '%1' parameters accept and bind the " 2258 "same kind of values"; 2259 diag(RVar->getOuterLocStart(), DiagText, DiagnosticIDs::Note) 2260 << LTypeStr << RTypeStr; 2261 } 2262 2263 if (needsToElaborateImplicitConversion(M) && 2264 UniqueImplicitConversion({LType, RType})) { 2265 const model::ConversionSequence <R = 2266 M.leftToRightConversionSequence(); 2267 const model::ConversionSequence &RTL = 2268 M.rightToLeftConversionSequence(); 2269 FormattedConversionSequence LTRFmt{PP, LTypeStr, LTR, RTypeStr}; 2270 FormattedConversionSequence RTLFmt{PP, RTypeStr, RTL, LTypeStr}; 2271 2272 StringRef DiagText = "'%0' and '%1' may be implicitly converted"; 2273 if (!LTRFmt.Trivial || !RTLFmt.Trivial) 2274 DiagText = "'%0' and '%1' may be implicitly converted: %2, %3"; 2275 2276 { 2277 auto Diag = 2278 diag(RVar->getOuterLocStart(), DiagText, DiagnosticIDs::Note) 2279 << LTypeStr << RTypeStr; 2280 2281 if (!LTRFmt.Trivial || !RTLFmt.Trivial) 2282 Diag << LTRFmt.DiagnosticText << RTLFmt.DiagnosticText; 2283 } 2284 2285 StringRef ConversionFunctionDiagText = 2286 "the implicit conversion involves the " 2287 "%select{|converting constructor|conversion operator}0 " 2288 "declared here"; 2289 if (const FunctionDecl *LFD = LTR.getUserDefinedConversionFunction()) 2290 diag(LFD->getLocation(), ConversionFunctionDiagText, 2291 DiagnosticIDs::Note) 2292 << static_cast<unsigned>(LTR.UDConvKind) 2293 << LTR.getUserDefinedConversionHighlight(); 2294 if (const FunctionDecl *RFD = RTL.getUserDefinedConversionFunction()) 2295 diag(RFD->getLocation(), ConversionFunctionDiagText, 2296 DiagnosticIDs::Note) 2297 << static_cast<unsigned>(RTL.UDConvKind) 2298 << RTL.getUserDefinedConversionHighlight(); 2299 } 2300 } 2301 } 2302 } 2303 2304 } // namespace bugprone 2305 } // namespace tidy 2306 } // namespace clang 2307