xref: /llvm-project/clang-tools-extra/clang-tidy/bugprone/EasilySwappableParametersCheck.cpp (revision 632e15e766ee625ae367b2e872f3df903e507bfb)
1 //===--- EasilySwappableParametersCheck.cpp - clang-tidy ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "EasilySwappableParametersCheck.h"
10 #include "../utils/OptionsUtils.h"
11 #include "clang/AST/ASTContext.h"
12 #include "clang/AST/RecursiveASTVisitor.h"
13 #include "clang/ASTMatchers/ASTMatchFinder.h"
14 #include "clang/Lex/Lexer.h"
15 #include "llvm/ADT/SmallSet.h"
16 
17 #define DEBUG_TYPE "EasilySwappableParametersCheck"
18 #include "llvm/Support/Debug.h"
19 
20 namespace optutils = clang::tidy::utils::options;
21 
22 /// The default value for the MinimumLength check option.
23 static constexpr std::size_t DefaultMinimumLength = 2;
24 
25 /// The default value for ignored parameter names.
26 static const std::string DefaultIgnoredParameterNames =
27     optutils::serializeStringList({"\"\"", "iterator", "Iterator", "begin",
28                                    "Begin", "end", "End", "first", "First",
29                                    "last", "Last", "lhs", "LHS", "rhs", "RHS"});
30 
31 /// The default value for ignored parameter type suffixes.
32 static const std::string DefaultIgnoredParameterTypeSuffixes =
33     optutils::serializeStringList({"bool",
34                                    "Bool",
35                                    "_Bool",
36                                    "it",
37                                    "It",
38                                    "iterator",
39                                    "Iterator",
40                                    "inputit",
41                                    "InputIt",
42                                    "forwardit",
43                                    "FowardIt",
44                                    "bidirit",
45                                    "BidirIt",
46                                    "constiterator",
47                                    "const_iterator",
48                                    "Const_Iterator",
49                                    "Constiterator",
50                                    "ConstIterator",
51                                    "RandomIt",
52                                    "randomit",
53                                    "random_iterator",
54                                    "ReverseIt",
55                                    "reverse_iterator",
56                                    "reverse_const_iterator",
57                                    "ConstReverseIterator",
58                                    "Const_Reverse_Iterator",
59                                    "const_reverse_iterator"
60                                    "Constreverseiterator",
61                                    "constreverseiterator"});
62 
63 /// The default value for the QualifiersMix check option.
64 static constexpr bool DefaultQualifiersMix = false;
65 
66 /// The default value for the ModelImplicitConversions check option.
67 static constexpr bool DefaultModelImplicitConversions = true;
68 
69 /// The default value for suppressing diagnostics about parameters that are
70 /// used together.
71 static constexpr bool DefaultSuppressParametersUsedTogether = true;
72 
73 /// The default value for the NamePrefixSuffixSilenceDissimilarityTreshold
74 /// check option.
75 static constexpr std::size_t
76     DefaultNamePrefixSuffixSilenceDissimilarityTreshold = 1;
77 
78 using namespace clang::ast_matchers;
79 
80 namespace clang {
81 namespace tidy {
82 namespace bugprone {
83 
84 using TheCheck = EasilySwappableParametersCheck;
85 
86 namespace filter {
87 class SimilarlyUsedParameterPairSuppressor;
88 
89 static bool isIgnoredParameter(const TheCheck &Check, const ParmVarDecl *Node);
90 static inline bool
91 isSimilarlyUsedParameter(const SimilarlyUsedParameterPairSuppressor &Suppressor,
92                          const ParmVarDecl *Param1, const ParmVarDecl *Param2);
93 static bool prefixSuffixCoverUnderThreshold(std::size_t Threshold,
94                                             StringRef Str1, StringRef Str2);
95 } // namespace filter
96 
97 namespace model {
98 
99 /// The language features involved in allowing the mix between two parameters.
100 enum class MixFlags : unsigned char {
101   Invalid = 0, ///< Sentinel bit pattern. DO NOT USE!
102 
103   /// Certain constructs (such as pointers to noexcept/non-noexcept functions)
104   /// have the same CanonicalType, which would result in false positives.
105   /// During the recursive modelling call, this flag is set if a later diagnosed
106   /// canonical type equivalence should be thrown away.
107   WorkaroundDisableCanonicalEquivalence = 1,
108 
109   None = 2,           ///< Mix between the two parameters is not possible.
110   Trivial = 4,        ///< The two mix trivially, and are the exact same type.
111   Canonical = 8,      ///< The two mix because the types refer to the same
112                       /// CanonicalType, but we do not elaborate as to how.
113   TypeAlias = 16,     ///< The path from one type to the other involves
114                       /// desugaring type aliases.
115   ReferenceBind = 32, ///< The mix involves the binding power of "const &".
116   Qualifiers = 64,    ///< The mix involves change in the qualifiers.
117   ImplicitConversion = 128, ///< The mixing of the parameters is possible
118                             /// through implicit conversions between the types.
119 
120   LLVM_MARK_AS_BITMASK_ENUM(/* LargestValue =*/ImplicitConversion)
121 };
122 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
123 
124 /// Returns whether the SearchedFlag is turned on in the Data.
125 static inline bool hasFlag(MixFlags Data, MixFlags SearchedFlag) {
126   assert(SearchedFlag != MixFlags::Invalid &&
127          "can't be used to detect lack of all bits!");
128 
129   // "Data & SearchedFlag" would need static_cast<bool>() in conditions.
130   return (Data & SearchedFlag) == SearchedFlag;
131 }
132 
133 #ifndef NDEBUG
134 
135 // The modelling logic of this check is more complex than usual, and
136 // potentially hard to understand without the ability to see into the
137 // representation during the recursive descent. This debug code is only
138 // compiled in 'Debug' mode, or if LLVM_ENABLE_ASSERTIONS config is turned on.
139 
140 /// Formats the MixFlags enum into a useful, user-readable representation.
141 static inline std::string formatMixFlags(MixFlags F) {
142   if (F == MixFlags::Invalid)
143     return "#Inv!";
144 
145   SmallString<8> Str{"-------"};
146 
147   if (hasFlag(F, MixFlags::None))
148     // Shows the None bit explicitly, as it can be applied in the recursion
149     // even if other bits are set.
150     Str[0] = '!';
151   if (hasFlag(F, MixFlags::Trivial))
152     Str[1] = 'T';
153   if (hasFlag(F, MixFlags::Canonical))
154     Str[2] = 'C';
155   if (hasFlag(F, MixFlags::TypeAlias))
156     Str[3] = 't';
157   if (hasFlag(F, MixFlags::ReferenceBind))
158     Str[4] = '&';
159   if (hasFlag(F, MixFlags::Qualifiers))
160     Str[5] = 'Q';
161   if (hasFlag(F, MixFlags::ImplicitConversion))
162     Str[6] = 'i';
163 
164   if (hasFlag(F, MixFlags::WorkaroundDisableCanonicalEquivalence))
165     Str.append("(~C)");
166 
167   return Str.str().str();
168 }
169 
170 #endif // NDEBUG
171 
172 /// The results of the steps of an Implicit Conversion Sequence is saved in
173 /// an instance of this record.
174 ///
175 /// A ConversionSequence maps the steps of the conversion with a member for
176 /// each type involved in the conversion. Imagine going from a hypothetical
177 /// Complex class to projecting it to the real part as a const double.
178 ///
179 /// I.e., given:
180 ///
181 ///    struct Complex {
182 ///      operator double() const;
183 ///    };
184 ///
185 ///    void functionBeingAnalysed(Complex C, const double R);
186 ///
187 /// we will get the following sequence:
188 ///
189 /// (Begin=) Complex
190 ///
191 ///     The first standard conversion is a qualification adjustment.
192 /// (AfterFirstStandard=) const Complex
193 ///
194 ///     Then the user-defined conversion is executed.
195 /// (UDConvOp.ConversionOperatorResultType=) double
196 ///
197 ///     Then this 'double' is qualifier-adjusted to 'const double'.
198 /// (AfterSecondStandard=) double
199 ///
200 /// The conversion's result has now been calculated, so it ends here.
201 /// (End=) double.
202 ///
203 /// Explicit storing of Begin and End in this record is needed, because
204 /// getting to what Begin and End here are needs further resolution of types,
205 /// e.g. in the case of typedefs:
206 ///
207 ///     using Comp = Complex;
208 ///     using CD = const double;
209 ///     void functionBeingAnalysed2(Comp C, CD R);
210 ///
211 /// In this case, the user will be diagnosed with a potential conversion
212 /// between the two typedefs as written in the code, but to elaborate the
213 /// reasoning behind this conversion, we also need to show what the typedefs
214 /// mean. See FormattedConversionSequence towards the bottom of this file!
215 struct ConversionSequence {
216   enum UserDefinedConversionKind { UDCK_None, UDCK_Ctor, UDCK_Oper };
217 
218   struct UserDefinedConvertingConstructor {
219     const CXXConstructorDecl *Fun;
220     QualType ConstructorParameterType;
221     QualType UserDefinedType;
222   };
223 
224   struct UserDefinedConversionOperator {
225     const CXXConversionDecl *Fun;
226     QualType UserDefinedType;
227     QualType ConversionOperatorResultType;
228   };
229 
230   /// The type the conversion stared from.
231   QualType Begin;
232 
233   /// The intermediate type after the first Standard Conversion Sequence.
234   QualType AfterFirstStandard;
235 
236   /// The details of the user-defined conversion involved, as a tagged union.
237   union {
238     char None;
239     UserDefinedConvertingConstructor UDConvCtor;
240     UserDefinedConversionOperator UDConvOp;
241   };
242   UserDefinedConversionKind UDConvKind;
243 
244   /// The intermediate type after performing the second Standard Conversion
245   /// Sequence.
246   QualType AfterSecondStandard;
247 
248   /// The result type the conversion targeted.
249   QualType End;
250 
251   ConversionSequence() : None(0), UDConvKind(UDCK_None) {}
252   ConversionSequence(QualType From, QualType To)
253       : Begin(From), None(0), UDConvKind(UDCK_None), End(To) {}
254 
255   explicit operator bool() const {
256     return !AfterFirstStandard.isNull() || UDConvKind != UDCK_None ||
257            !AfterSecondStandard.isNull();
258   }
259 
260   /// Returns all the "steps" (non-unique and non-similar) types involved in
261   /// the conversion sequence. This method does **NOT** return Begin and End.
262   SmallVector<QualType, 4> getInvolvedTypesInSequence() const {
263     SmallVector<QualType, 4> Ret;
264     auto EmplaceIfDifferent = [&Ret](QualType QT) {
265       if (QT.isNull())
266         return;
267       if (Ret.empty())
268         Ret.emplace_back(QT);
269       else if (Ret.back() != QT)
270         Ret.emplace_back(QT);
271     };
272 
273     EmplaceIfDifferent(AfterFirstStandard);
274     switch (UDConvKind) {
275     case UDCK_Ctor:
276       EmplaceIfDifferent(UDConvCtor.ConstructorParameterType);
277       EmplaceIfDifferent(UDConvCtor.UserDefinedType);
278       break;
279     case UDCK_Oper:
280       EmplaceIfDifferent(UDConvOp.UserDefinedType);
281       EmplaceIfDifferent(UDConvOp.ConversionOperatorResultType);
282       break;
283     case UDCK_None:
284       break;
285     }
286     EmplaceIfDifferent(AfterSecondStandard);
287 
288     return Ret;
289   }
290 
291   /// Updates the steps of the conversion sequence with the steps from the
292   /// other instance.
293   ///
294   /// \note This method does not check if the resulting conversion sequence is
295   /// sensible!
296   ConversionSequence &update(const ConversionSequence &RHS) {
297     if (!RHS.AfterFirstStandard.isNull())
298       AfterFirstStandard = RHS.AfterFirstStandard;
299     switch (RHS.UDConvKind) {
300     case UDCK_Ctor:
301       UDConvKind = UDCK_Ctor;
302       UDConvCtor = RHS.UDConvCtor;
303       break;
304     case UDCK_Oper:
305       UDConvKind = UDCK_Oper;
306       UDConvOp = RHS.UDConvOp;
307       break;
308     case UDCK_None:
309       break;
310     }
311     if (!RHS.AfterSecondStandard.isNull())
312       AfterSecondStandard = RHS.AfterSecondStandard;
313 
314     return *this;
315   }
316 
317   /// Sets the user-defined conversion to the given constructor.
318   void setConversion(const UserDefinedConvertingConstructor &UDCC) {
319     UDConvKind = UDCK_Ctor;
320     UDConvCtor = UDCC;
321   }
322 
323   /// Sets the user-defined conversion to the given operator.
324   void setConversion(const UserDefinedConversionOperator &UDCO) {
325     UDConvKind = UDCK_Oper;
326     UDConvOp = UDCO;
327   }
328 
329   /// Returns the type in the conversion that's formally "in our hands" once
330   /// the user-defined conversion is executed.
331   QualType getTypeAfterUserDefinedConversion() const {
332     switch (UDConvKind) {
333     case UDCK_Ctor:
334       return UDConvCtor.UserDefinedType;
335     case UDCK_Oper:
336       return UDConvOp.ConversionOperatorResultType;
337     case UDCK_None:
338       return {};
339     }
340     llvm_unreachable("Invalid UDConv kind.");
341   }
342 
343   const CXXMethodDecl *getUserDefinedConversionFunction() const {
344     switch (UDConvKind) {
345     case UDCK_Ctor:
346       return UDConvCtor.Fun;
347     case UDCK_Oper:
348       return UDConvOp.Fun;
349     case UDCK_None:
350       return {};
351     }
352     llvm_unreachable("Invalid UDConv kind.");
353   }
354 
355   /// Returns the SourceRange in the text that corresponds to the interesting
356   /// part of the user-defined conversion. This is either the parameter type
357   /// in a converting constructor, or the conversion result type in a conversion
358   /// operator.
359   SourceRange getUserDefinedConversionHighlight() const {
360     switch (UDConvKind) {
361     case UDCK_Ctor:
362       return UDConvCtor.Fun->getParamDecl(0)->getSourceRange();
363     case UDCK_Oper:
364       // getReturnTypeSourceRange() does not work for CXXConversionDecls as the
365       // returned type is physically behind the declaration's name ("operator").
366       if (const FunctionTypeLoc FTL = UDConvOp.Fun->getFunctionTypeLoc())
367         if (const TypeLoc RetLoc = FTL.getReturnLoc())
368           return RetLoc.getSourceRange();
369       return {};
370     case UDCK_None:
371       return {};
372     }
373     llvm_unreachable("Invalid UDConv kind.");
374   }
375 };
376 
377 /// Contains the metadata for the mixability result between two types,
378 /// independently of which parameters they were calculated from.
379 struct MixData {
380   /// The flag bits of the mix indicating what language features allow for it.
381   MixFlags Flags = MixFlags::Invalid;
382 
383   /// A potentially calculated common underlying type after desugaring, that
384   /// both sides of the mix can originate from.
385   QualType CommonType;
386 
387   /// The steps an implicit conversion performs to get from one type to the
388   /// other.
389   ConversionSequence Conversion, ConversionRTL;
390 
391   /// True if the MixData was specifically created with only a one-way
392   /// conversion modelled.
393   bool CreatedFromOneWayConversion = false;
394 
395   MixData(MixFlags Flags) : Flags(Flags) {}
396   MixData(MixFlags Flags, QualType CommonType)
397       : Flags(Flags), CommonType(CommonType) {}
398   MixData(MixFlags Flags, ConversionSequence Conv)
399       : Flags(Flags), Conversion(Conv), CreatedFromOneWayConversion(true) {}
400   MixData(MixFlags Flags, ConversionSequence LTR, ConversionSequence RTL)
401       : Flags(Flags), Conversion(LTR), ConversionRTL(RTL) {}
402   MixData(MixFlags Flags, QualType CommonType, ConversionSequence LTR,
403           ConversionSequence RTL)
404       : Flags(Flags), CommonType(CommonType), Conversion(LTR),
405         ConversionRTL(RTL) {}
406 
407   void sanitize() {
408     assert(Flags != MixFlags::Invalid && "sanitize() called on invalid bitvec");
409 
410     MixFlags CanonicalAndWorkaround =
411         MixFlags::Canonical | MixFlags::WorkaroundDisableCanonicalEquivalence;
412     if ((Flags & CanonicalAndWorkaround) == CanonicalAndWorkaround) {
413       // A workaround for too eagerly equivalent canonical types was requested,
414       // and a canonical equivalence was proven. Fulfill the request and throw
415       // this result away.
416       Flags = MixFlags::None;
417       return;
418     }
419 
420     if (hasFlag(Flags, MixFlags::None)) {
421       // If anywhere down the recursion a potential mix "path" is deemed
422       // impossible, throw away all the other bits because the mix is not
423       // possible.
424       Flags = MixFlags::None;
425       return;
426     }
427 
428     if (Flags == MixFlags::Trivial)
429       return;
430 
431     if (static_cast<bool>(Flags ^ MixFlags::Trivial))
432       // If the mix involves somewhere trivial equivalence but down the
433       // recursion other bit(s) were set, remove the trivial bit, as it is not
434       // trivial.
435       Flags &= ~MixFlags::Trivial;
436 
437     bool ShouldHaveImplicitConvFlag = false;
438     if (CreatedFromOneWayConversion && Conversion)
439       ShouldHaveImplicitConvFlag = true;
440     else if (!CreatedFromOneWayConversion && Conversion && ConversionRTL)
441       // Only say that we have implicit conversion mix possibility if it is
442       // bidirectional. Otherwise, the compiler would report an *actual* swap
443       // at a call site...
444       ShouldHaveImplicitConvFlag = true;
445 
446     if (ShouldHaveImplicitConvFlag)
447       Flags |= MixFlags::ImplicitConversion;
448     else
449       Flags &= ~MixFlags::ImplicitConversion;
450   }
451 
452   bool isValid() const { return Flags >= MixFlags::None; }
453 
454   bool indicatesMixability() const { return Flags > MixFlags::None; }
455 
456   /// Add the specified flag bits to the flags.
457   MixData operator|(MixFlags EnableFlags) const {
458     if (CreatedFromOneWayConversion) {
459       MixData M{Flags | EnableFlags, Conversion};
460       M.CommonType = CommonType;
461       return M;
462     }
463     return {Flags | EnableFlags, CommonType, Conversion, ConversionRTL};
464   }
465 
466   /// Add the specified flag bits to the flags.
467   MixData &operator|=(MixFlags EnableFlags) {
468     Flags |= EnableFlags;
469     return *this;
470   }
471 
472   /// Add the specified qualifiers to the common type in the Mix.
473   MixData qualify(Qualifiers Quals) const {
474     SplitQualType Split = CommonType.split();
475     Split.Quals.addQualifiers(Quals);
476     QualType CommonType{Split.Ty, Split.Quals.getAsOpaqueValue()};
477 
478     if (CreatedFromOneWayConversion) {
479       MixData M{Flags, Conversion};
480       M.CommonType = CommonType;
481       return M;
482     }
483     return {Flags, CommonType, Conversion, ConversionRTL};
484   }
485 };
486 
487 /// A named tuple that contains the information for a mix between two concrete
488 /// parameters.
489 struct Mix {
490   const ParmVarDecl *First, *Second;
491   MixData Data;
492 
493   Mix(const ParmVarDecl *F, const ParmVarDecl *S, MixData Data)
494       : First(F), Second(S), Data(std::move(Data)) {}
495 
496   void sanitize() { Data.sanitize(); }
497   MixFlags flags() const { return Data.Flags; }
498   bool flagsValid() const { return Data.isValid(); }
499   bool mixable() const { return Data.indicatesMixability(); }
500   QualType commonUnderlyingType() const { return Data.CommonType; }
501   const ConversionSequence &leftToRightConversionSequence() const {
502     return Data.Conversion;
503   }
504   const ConversionSequence &rightToLeftConversionSequence() const {
505     return Data.ConversionRTL;
506   }
507 };
508 
509 // NOLINTNEXTLINE(misc-redundant-expression): Seems to be a bogus warning.
510 static_assert(std::is_trivially_copyable<Mix>::value &&
511                   std::is_trivially_move_constructible<Mix>::value &&
512                   std::is_trivially_move_assignable<Mix>::value,
513               "Keep frequently used data simple!");
514 
515 struct MixableParameterRange {
516   /// A container for Mixes.
517   using MixVector = SmallVector<Mix, 8>;
518 
519   /// The number of parameters iterated to build the instance.
520   std::size_t NumParamsChecked = 0;
521 
522   /// The individual flags and supporting information for the mixes.
523   MixVector Mixes;
524 
525   /// Gets the leftmost parameter of the range.
526   const ParmVarDecl *getFirstParam() const {
527     // The first element is the LHS of the very first mix in the range.
528     assert(!Mixes.empty());
529     return Mixes.front().First;
530   }
531 
532   /// Gets the rightmost parameter of the range.
533   const ParmVarDecl *getLastParam() const {
534     // The builder function breaks building an instance of this type if it
535     // finds something that can not be mixed with the rest, by going *forward*
536     // in the list of parameters. So at any moment of break, the RHS of the last
537     // element of the mix vector is also the last element of the mixing range.
538     assert(!Mixes.empty());
539     return Mixes.back().Second;
540   }
541 };
542 
543 /// Helper enum for the recursive calls in the modelling that toggle what kinds
544 /// of implicit conversions are to be modelled.
545 enum class ImplicitConversionModellingMode : unsigned char {
546   /// No implicit conversions are modelled.
547   None,
548 
549   /// The full implicit conversion sequence is modelled.
550   All,
551 
552   /// Only model a unidirectional implicit conversion and within it only one
553   /// standard conversion sequence.
554   OneWaySingleStandardOnly
555 };
556 
557 static MixData
558 isLRefEquallyBindingToType(const TheCheck &Check,
559                            const LValueReferenceType *LRef, QualType Ty,
560                            const ASTContext &Ctx, bool IsRefRHS,
561                            ImplicitConversionModellingMode ImplicitMode);
562 
563 static MixData
564 approximateImplicitConversion(const TheCheck &Check, QualType LType,
565                               QualType RType, const ASTContext &Ctx,
566                               ImplicitConversionModellingMode ImplicitMode);
567 
568 static inline bool isUselessSugar(const Type *T) {
569   return isa<DecayedType, ElaboratedType, ParenType>(T);
570 }
571 
572 /// Approximate the way how LType and RType might refer to "essentially the
573 /// same" type, in a sense that at a particular call site, an expression of
574 /// type LType and RType might be successfully passed to a variable (in our
575 /// specific case, a parameter) of type RType and LType, respectively.
576 /// Note the swapped order!
577 ///
578 /// The returned data structure is not guaranteed to be properly set, as this
579 /// function is potentially recursive. It is the caller's responsibility to
580 /// call sanitize() on the result once the recursion is over.
581 static MixData
582 calculateMixability(const TheCheck &Check, QualType LType, QualType RType,
583                     const ASTContext &Ctx,
584                     ImplicitConversionModellingMode ImplicitMode) {
585   LLVM_DEBUG(llvm::dbgs() << ">>> calculateMixability for LType:\n";
586              LType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand RType:\n";
587              RType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << '\n';);
588 
589   // Certain constructs match on the last catch-all getCanonicalType() equality,
590   // which is perhaps something not what we want. If this variable is true,
591   // the canonical type equality will be ignored.
592   bool RecursiveReturnDiscardingCanonicalType = false;
593 
594   if (LType == RType) {
595     LLVM_DEBUG(llvm::dbgs() << "<<< calculateMixability. Trivial equality.\n");
596     return {MixFlags::Trivial, LType};
597   }
598 
599   // Dissolve certain type sugars that do not affect the mixability of one type
600   // with the other, and also do not require any sort of elaboration for the
601   // user to understand.
602   if (isUselessSugar(LType.getTypePtr())) {
603     LLVM_DEBUG(llvm::dbgs()
604                << "--- calculateMixability. LHS is useless sugar.\n");
605     return calculateMixability(Check, LType.getSingleStepDesugaredType(Ctx),
606                                RType, Ctx, ImplicitMode);
607   }
608   if (isUselessSugar(RType.getTypePtr())) {
609     LLVM_DEBUG(llvm::dbgs()
610                << "--- calculateMixability. RHS is useless sugar.\n");
611     return calculateMixability(
612         Check, LType, RType.getSingleStepDesugaredType(Ctx), Ctx, ImplicitMode);
613   }
614 
615   // At a particular call site, what could be passed to a 'T' or 'const T' might
616   // also be passed to a 'const T &' without the call site putting a direct
617   // side effect on the passed expressions.
618   if (const auto *LRef = LType->getAs<LValueReferenceType>()) {
619     LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. LHS is &.\n");
620     return isLRefEquallyBindingToType(Check, LRef, RType, Ctx, false,
621                                       ImplicitMode) |
622            MixFlags::ReferenceBind;
623   }
624   if (const auto *RRef = RType->getAs<LValueReferenceType>()) {
625     LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. RHS is &.\n");
626     return isLRefEquallyBindingToType(Check, RRef, LType, Ctx, true,
627                                       ImplicitMode) |
628            MixFlags::ReferenceBind;
629   }
630 
631   // Dissolve typedefs after the qualifiers outside the typedef are dealt with.
632   if (LType->getAs<TypedefType>()) {
633     LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. LHS is typedef.\n");
634     return calculateMixability(Check, LType.getSingleStepDesugaredType(Ctx),
635                                RType, Ctx, ImplicitMode) |
636            MixFlags::TypeAlias;
637   }
638   if (RType->getAs<TypedefType>()) {
639     LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. RHS is typedef.\n");
640     return calculateMixability(Check, LType,
641                                RType.getSingleStepDesugaredType(Ctx), Ctx,
642                                ImplicitMode) |
643            MixFlags::TypeAlias;
644   }
645 
646   // A parameter of type 'cvr1 T' and another of potentially differently
647   // qualified 'cvr2 T' may bind with the same power, if the user so requested.
648   if (LType.getLocalCVRQualifiers() != RType.getLocalCVRQualifiers()) {
649     LLVM_DEBUG(if (LType.getLocalCVRQualifiers()) llvm::dbgs()
650                << "--- calculateMixability. LHS is CVR.\n");
651     LLVM_DEBUG(if (RType.getLocalCVRQualifiers()) llvm::dbgs()
652                << "--- calculateMixability. RHS is CVR.\n");
653 
654     if (!Check.QualifiersMix) {
655       LLVM_DEBUG(llvm::dbgs()
656                  << "<<< calculateMixability. QualifiersMix turned off.\n");
657       return {MixFlags::None};
658     }
659 
660     return calculateMixability(Check, LType.getLocalUnqualifiedType(),
661                                RType.getLocalUnqualifiedType(), Ctx,
662                                ImplicitMode) |
663            MixFlags::Qualifiers;
664   }
665   if (LType.getLocalCVRQualifiers() == RType.getLocalCVRQualifiers() &&
666       LType.getLocalCVRQualifiers() != 0) {
667     LLVM_DEBUG(llvm::dbgs()
668                << "--- calculateMixability. LHS and RHS same CVR.\n");
669     // Apply the same qualifier back into the found common type if we found
670     // a common type between the unqualified versions.
671     return calculateMixability(Check, LType.getLocalUnqualifiedType(),
672                                RType.getLocalUnqualifiedType(), Ctx,
673                                ImplicitMode)
674         .qualify(LType.getLocalQualifiers());
675   }
676 
677   if (LType->isPointerType() && RType->isPointerType()) {
678     // If both types are pointers, and pointed to the exact same type,
679     // LType == RType took care of that. Try to see if the pointee type has
680     // some other match. However, this must not consider implicit conversions.
681     LLVM_DEBUG(llvm::dbgs()
682                << "--- calculateMixability. LHS and RHS are Ptrs.\n");
683     MixData MixOfPointee = calculateMixability(
684         Check, LType->getPointeeType(), RType->getPointeeType(), Ctx,
685         ImplicitConversionModellingMode::None);
686     if (hasFlag(MixOfPointee.Flags,
687                 MixFlags::WorkaroundDisableCanonicalEquivalence))
688       RecursiveReturnDiscardingCanonicalType = true;
689 
690     MixOfPointee.sanitize();
691     if (MixOfPointee.indicatesMixability()) {
692       LLVM_DEBUG(llvm::dbgs()
693                  << "<<< calculateMixability. Pointees are mixable.\n");
694       return MixOfPointee;
695     }
696   }
697 
698   if (ImplicitMode > ImplicitConversionModellingMode::None) {
699     LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. Start implicit...\n");
700     MixData MixLTR =
701         approximateImplicitConversion(Check, LType, RType, Ctx, ImplicitMode);
702     LLVM_DEBUG(
703         if (hasFlag(MixLTR.Flags, MixFlags::ImplicitConversion)) llvm::dbgs()
704             << "--- calculateMixability. Implicit Left -> Right found.\n";);
705 
706     if (ImplicitMode ==
707             ImplicitConversionModellingMode::OneWaySingleStandardOnly &&
708         MixLTR.Conversion && !MixLTR.Conversion.AfterFirstStandard.isNull() &&
709         MixLTR.Conversion.UDConvKind == ConversionSequence::UDCK_None &&
710         MixLTR.Conversion.AfterSecondStandard.isNull()) {
711       // The invoker of the method requested only modelling a single standard
712       // conversion, in only the forward direction, and they got just that.
713       LLVM_DEBUG(llvm::dbgs() << "<<< calculateMixability. Implicit "
714                                  "conversion, one-way, standard-only.\n");
715       return {MixFlags::ImplicitConversion, MixLTR.Conversion};
716     }
717 
718     // Otherwise if the invoker requested a full modelling, do the other
719     // direction as well.
720     MixData MixRTL =
721         approximateImplicitConversion(Check, RType, LType, Ctx, ImplicitMode);
722     LLVM_DEBUG(
723         if (hasFlag(MixRTL.Flags, MixFlags::ImplicitConversion)) llvm::dbgs()
724             << "--- calculateMixability. Implicit Right -> Left found.\n";);
725 
726     if (MixLTR.Conversion && MixRTL.Conversion) {
727       LLVM_DEBUG(
728           llvm::dbgs()
729           << "<<< calculateMixability. Implicit conversion, bidirectional.\n");
730       return {MixFlags::ImplicitConversion, MixLTR.Conversion,
731               MixRTL.Conversion};
732     }
733   }
734 
735   if (RecursiveReturnDiscardingCanonicalType)
736     LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. Before CanonicalType, "
737                                "Discard was enabled.\n");
738 
739   // Certain kinds unfortunately need to be side-stepped for canonical type
740   // matching.
741   if (LType->getAs<FunctionProtoType>() || RType->getAs<FunctionProtoType>()) {
742     // Unfortunately, the canonical type of a function pointer becomes the
743     // same even if exactly one is "noexcept" and the other isn't, making us
744     // give a false positive report irrespective of implicit conversions.
745     LLVM_DEBUG(llvm::dbgs()
746                << "--- calculateMixability. Discarding potential canonical "
747                   "equivalence on FunctionProtoTypes.\n");
748     RecursiveReturnDiscardingCanonicalType = true;
749   }
750 
751   MixData MixToReturn{MixFlags::None};
752 
753   // If none of the previous logic found a match, try if Clang otherwise
754   // believes the types to be the same.
755   QualType LCanonical = LType.getCanonicalType();
756   if (LCanonical == RType.getCanonicalType()) {
757     LLVM_DEBUG(llvm::dbgs()
758                << "<<< calculateMixability. Same CanonicalType.\n");
759     MixToReturn = {MixFlags::Canonical, LCanonical};
760   }
761 
762   if (RecursiveReturnDiscardingCanonicalType)
763     MixToReturn |= MixFlags::WorkaroundDisableCanonicalEquivalence;
764 
765   LLVM_DEBUG(if (MixToReturn.Flags == MixFlags::None) llvm::dbgs()
766              << "<<< calculateMixability. No match found.\n");
767   return MixToReturn;
768 }
769 
770 /// Calculates if the reference binds an expression of the given type. This is
771 /// true iff 'LRef' is some 'const T &' type, and the 'Ty' is 'T' or 'const T'.
772 ///
773 /// \param ImplicitMode is forwarded in the possible recursive call to
774 /// calculateMixability.
775 static MixData
776 isLRefEquallyBindingToType(const TheCheck &Check,
777                            const LValueReferenceType *LRef, QualType Ty,
778                            const ASTContext &Ctx, bool IsRefRHS,
779                            ImplicitConversionModellingMode ImplicitMode) {
780   LLVM_DEBUG(llvm::dbgs() << ">>> isLRefEquallyBindingToType for LRef:\n";
781              LRef->dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand Type:\n";
782              Ty.dump(llvm::dbgs(), Ctx); llvm::dbgs() << '\n';);
783 
784   QualType ReferredType = LRef->getPointeeType();
785   if (!ReferredType.isLocalConstQualified() &&
786       ReferredType->getAs<TypedefType>()) {
787     LLVM_DEBUG(
788         llvm::dbgs()
789         << "--- isLRefEquallyBindingToType. Non-const LRef to Typedef.\n");
790     ReferredType = ReferredType.getDesugaredType(Ctx);
791     if (!ReferredType.isLocalConstQualified()) {
792       LLVM_DEBUG(llvm::dbgs()
793                  << "<<< isLRefEquallyBindingToType. Typedef is not const.\n");
794       return {MixFlags::None};
795     }
796 
797     LLVM_DEBUG(llvm::dbgs() << "--- isLRefEquallyBindingToType. Typedef is "
798                                "const, considering as const LRef.\n");
799   } else if (!ReferredType.isLocalConstQualified()) {
800     LLVM_DEBUG(llvm::dbgs()
801                << "<<< isLRefEquallyBindingToType. Not const LRef.\n");
802     return {MixFlags::None};
803   };
804 
805   assert(ReferredType.isLocalConstQualified() &&
806          "Reaching this point means we are sure LRef is effectively a const&.");
807 
808   if (ReferredType == Ty) {
809     LLVM_DEBUG(
810         llvm::dbgs()
811         << "<<< isLRefEquallyBindingToType. Type of referred matches.\n");
812     return {MixFlags::Trivial, ReferredType};
813   }
814 
815   QualType NonConstReferredType = ReferredType;
816   NonConstReferredType.removeLocalConst();
817   if (NonConstReferredType == Ty) {
818     LLVM_DEBUG(llvm::dbgs() << "<<< isLRefEquallyBindingToType. Type of "
819                                "referred matches to non-const qualified.\n");
820     return {MixFlags::Trivial, NonConstReferredType};
821   }
822 
823   LLVM_DEBUG(
824       llvm::dbgs()
825       << "--- isLRefEquallyBindingToType. Checking mix for underlying type.\n");
826   return IsRefRHS ? calculateMixability(Check, Ty, NonConstReferredType, Ctx,
827                                         ImplicitMode)
828                   : calculateMixability(Check, NonConstReferredType, Ty, Ctx,
829                                         ImplicitMode);
830 }
831 
832 static inline bool isDerivedToBase(const CXXRecordDecl *Derived,
833                                    const CXXRecordDecl *Base) {
834   return Derived && Base && Derived->isCompleteDefinition() &&
835          Base->isCompleteDefinition() && Derived->isDerivedFrom(Base);
836 }
837 
838 static Optional<QualType>
839 approximateStandardConversionSequence(const TheCheck &Check, QualType From,
840                                       QualType To, const ASTContext &Ctx) {
841   LLVM_DEBUG(llvm::dbgs() << ">>> approximateStdConv for LType:\n";
842              From.dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand RType:\n";
843              To.dump(llvm::dbgs(), Ctx); llvm::dbgs() << '\n';);
844 
845   // A standard conversion sequence consists of the following, in order:
846   //  * Maybe either LValue->RValue conv., Array->Ptr conv., Function->Ptr conv.
847   //  * Maybe Numeric promotion or conversion.
848   //  * Maybe function pointer conversion.
849   //  * Maybe qualifier adjustments.
850   QualType WorkType = From;
851   // Get out the qualifiers of the original type. This will always be
852   // re-applied to the WorkType to ensure it is the same qualification as the
853   // original From was.
854   auto QualifiersToApply = From.split().Quals.getAsOpaqueValue();
855 
856   // LValue->RValue is irrelevant for the check, because it is a thing to be
857   // done at a call site, and will be performed if need be performed.
858 
859   // Array->Ptr decay.
860   if (const auto *ArrayT = dyn_cast<ArrayType>(From)) {
861     LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. Array->Ptr decayed.\n");
862     WorkType = ArrayT->getPointeeType();
863   }
864 
865   // Function->Pointer conversions are also irrelevant, because a
866   // "FunctionType" cannot be the type of a parameter variable, so this
867   // conversion is only meaningful at call sites.
868 
869   // Numeric promotions and conversions.
870   const auto *FromBuiltin = WorkType->getAs<BuiltinType>();
871   const auto *ToBuiltin = To->getAs<BuiltinType>();
872   bool FromNumeric = FromBuiltin && (FromBuiltin->isIntegerType() ||
873                                      FromBuiltin->isFloatingType());
874   bool ToNumeric =
875       ToBuiltin && (ToBuiltin->isIntegerType() || ToBuiltin->isFloatingType());
876   if (FromNumeric && ToNumeric) {
877     // If both are integral types, the numeric conversion is performed.
878     // Reapply the qualifiers of the original type, however, so
879     // "const int -> double" in this case moves over to
880     // "const double -> double".
881     LLVM_DEBUG(llvm::dbgs()
882                << "--- approximateStdConv. Conversion between numerics.\n");
883     WorkType = QualType{ToBuiltin, QualifiersToApply};
884   }
885 
886   const auto *FromEnum = WorkType->getAs<EnumType>();
887   const auto *ToEnum = To->getAs<EnumType>();
888   if (FromEnum && ToNumeric && FromEnum->isUnscopedEnumerationType()) {
889     // Unscoped enumerations (or enumerations in C) convert to numerics.
890     LLVM_DEBUG(llvm::dbgs()
891                << "--- approximateStdConv. Unscoped enum to numeric.\n");
892     WorkType = QualType{ToBuiltin, QualifiersToApply};
893   } else if (FromNumeric && ToEnum && ToEnum->isUnscopedEnumerationType()) {
894     // Numeric types convert to enumerations only in C.
895     if (Ctx.getLangOpts().CPlusPlus) {
896       LLVM_DEBUG(llvm::dbgs() << "<<< approximateStdConv. Numeric to unscoped "
897                                  "enum, not possible in C++!\n");
898       return {};
899     }
900 
901     LLVM_DEBUG(llvm::dbgs()
902                << "--- approximateStdConv. Numeric to unscoped enum.\n");
903     WorkType = QualType{ToEnum, QualifiersToApply};
904   }
905 
906   // Check for pointer conversions.
907   const auto *FromPtr = WorkType->getAs<PointerType>();
908   const auto *ToPtr = To->getAs<PointerType>();
909   if (FromPtr && ToPtr) {
910     if (ToPtr->isVoidPointerType()) {
911       LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. To void pointer.\n");
912       WorkType = QualType{ToPtr, QualifiersToApply};
913     }
914 
915     const auto *FromRecordPtr = FromPtr->getPointeeCXXRecordDecl();
916     const auto *ToRecordPtr = ToPtr->getPointeeCXXRecordDecl();
917     if (isDerivedToBase(FromRecordPtr, ToRecordPtr)) {
918       LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. Derived* to Base*\n");
919       WorkType = QualType{ToPtr, QualifiersToApply};
920     }
921   }
922 
923   // Model the slicing Derived-to-Base too, as "BaseT temporary = derived;"
924   // can also be compiled.
925   const auto *FromRecord = WorkType->getAsCXXRecordDecl();
926   const auto *ToRecord = To->getAsCXXRecordDecl();
927   if (isDerivedToBase(FromRecord, ToRecord)) {
928     LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. Derived To Base.\n");
929     WorkType = QualType{ToRecord->getTypeForDecl(), QualifiersToApply};
930   }
931 
932   if (Ctx.getLangOpts().CPlusPlus17 && FromPtr && ToPtr) {
933     // Function pointer conversion: A noexcept function pointer can be passed
934     // to a non-noexcept one.
935     const auto *FromFunctionPtr =
936         FromPtr->getPointeeType()->getAs<FunctionProtoType>();
937     const auto *ToFunctionPtr =
938         ToPtr->getPointeeType()->getAs<FunctionProtoType>();
939     if (FromFunctionPtr && ToFunctionPtr &&
940         FromFunctionPtr->hasNoexceptExceptionSpec() &&
941         !ToFunctionPtr->hasNoexceptExceptionSpec()) {
942       LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. noexcept function "
943                                  "pointer to non-noexcept.\n");
944       WorkType = QualType{ToPtr, QualifiersToApply};
945     }
946   }
947 
948   // Qualifier adjustments are modelled according to the user's request in
949   // the QualifiersMix check config.
950   LLVM_DEBUG(llvm::dbgs()
951              << "--- approximateStdConv. Trying qualifier adjustment...\n");
952   MixData QualConv = calculateMixability(Check, WorkType, To, Ctx,
953                                          ImplicitConversionModellingMode::None);
954   QualConv.sanitize();
955   if (hasFlag(QualConv.Flags, MixFlags::Qualifiers)) {
956     LLVM_DEBUG(llvm::dbgs()
957                << "<<< approximateStdConv. Qualifiers adjusted.\n");
958     WorkType = To;
959   }
960 
961   if (WorkType == To) {
962     LLVM_DEBUG(llvm::dbgs() << "<<< approximateStdConv. Reached 'To' type.\n");
963     return {WorkType};
964   }
965 
966   LLVM_DEBUG(llvm::dbgs() << "<<< approximateStdConv. Did not reach 'To'.\n");
967   return {};
968 }
969 
970 namespace {
971 
972 /// Helper class for storing possible user-defined conversion calls that
973 /// *could* take place in an implicit conversion, and selecting the one that
974 /// most likely *does*, if any.
975 class UserDefinedConversionSelector {
976 public:
977   /// The conversion associated with a conversion function, together with the
978   /// mixability flags of the conversion function's parameter or return type
979   /// to the rest of the sequence the selector is used in, and the sequence
980   /// that applied through the conversion itself.
981   struct PreparedConversion {
982     const CXXMethodDecl *ConversionFun;
983     MixFlags Flags;
984     ConversionSequence Seq;
985 
986     PreparedConversion(const CXXMethodDecl *CMD, MixFlags F,
987                        ConversionSequence S)
988         : ConversionFun(CMD), Flags(F), Seq(S) {}
989   };
990 
991   UserDefinedConversionSelector(const TheCheck &Check) : Check(Check) {}
992 
993   /// Adds the conversion between the two types for the given function into
994   /// the possible implicit conversion set. FromType and ToType is either:
995   ///   * the result of a standard sequence and a converting ctor parameter
996   ///   * the return type of a conversion operator and the expected target of
997   ///     an implicit conversion.
998   void addConversion(const CXXMethodDecl *ConvFun, QualType FromType,
999                      QualType ToType) {
1000     // Try to go from the FromType to the ToType wiht only a single implicit
1001     // conversion, to see if the conversion function is applicable.
1002     MixData Mix = calculateMixability(
1003         Check, FromType, ToType, ConvFun->getASTContext(),
1004         ImplicitConversionModellingMode::OneWaySingleStandardOnly);
1005     Mix.sanitize();
1006     if (!Mix.indicatesMixability())
1007       return;
1008 
1009     LLVM_DEBUG(llvm::dbgs() << "--- tryConversion. Found viable with flags: "
1010                             << formatMixFlags(Mix.Flags) << '\n');
1011     FlaggedConversions.emplace_back(ConvFun, Mix.Flags, Mix.Conversion);
1012   }
1013 
1014   /// Selects the best conversion function that is applicable from the
1015   /// prepared set of potential conversion functions taken.
1016   Optional<PreparedConversion> operator()() const {
1017     if (FlaggedConversions.empty()) {
1018       LLVM_DEBUG(llvm::dbgs() << "--- selectUserDefinedConv. Empty.\n");
1019       return {};
1020     }
1021     if (FlaggedConversions.size() == 1) {
1022       LLVM_DEBUG(llvm::dbgs() << "--- selectUserDefinedConv. Single.\n");
1023       return FlaggedConversions.front();
1024     }
1025 
1026     Optional<PreparedConversion> BestConversion;
1027     unsigned short HowManyGoodConversions = 0;
1028     for (const auto &Prepared : FlaggedConversions) {
1029       LLVM_DEBUG(llvm::dbgs() << "--- selectUserDefinedConv. Candidate flags: "
1030                               << formatMixFlags(Prepared.Flags) << '\n');
1031       if (!BestConversion) {
1032         BestConversion = Prepared;
1033         ++HowManyGoodConversions;
1034         continue;
1035       }
1036 
1037       bool BestConversionHasImplicit =
1038           hasFlag(BestConversion->Flags, MixFlags::ImplicitConversion);
1039       bool ThisConversionHasImplicit =
1040           hasFlag(Prepared.Flags, MixFlags::ImplicitConversion);
1041       if (!BestConversionHasImplicit && ThisConversionHasImplicit)
1042         // This is a worse conversion, because a better one was found earlier.
1043         continue;
1044 
1045       if (BestConversionHasImplicit && !ThisConversionHasImplicit) {
1046         // If the so far best selected conversion needs a previous implicit
1047         // conversion to match the user-defined converting function, but this
1048         // conversion does not, this is a better conversion, and we can throw
1049         // away the previously selected conversion(s).
1050         BestConversion = Prepared;
1051         HowManyGoodConversions = 1;
1052         continue;
1053       }
1054 
1055       if (BestConversionHasImplicit == ThisConversionHasImplicit)
1056         // The current conversion is the same in term of goodness than the
1057         // already selected one.
1058         ++HowManyGoodConversions;
1059     }
1060 
1061     if (HowManyGoodConversions == 1) {
1062       LLVM_DEBUG(llvm::dbgs()
1063                  << "--- selectUserDefinedConv. Unique result. Flags: "
1064                  << formatMixFlags(BestConversion->Flags) << '\n');
1065       return BestConversion;
1066     }
1067 
1068     LLVM_DEBUG(llvm::dbgs()
1069                << "--- selectUserDefinedConv. No, or ambiguous.\n");
1070     return {};
1071   }
1072 
1073 private:
1074   llvm::SmallVector<PreparedConversion, 2> FlaggedConversions;
1075   const TheCheck &Check;
1076 };
1077 
1078 } // namespace
1079 
1080 static Optional<ConversionSequence>
1081 tryConversionOperators(const TheCheck &Check, const CXXRecordDecl *RD,
1082                        QualType ToType) {
1083   if (!RD || !RD->isCompleteDefinition())
1084     return {};
1085   RD = RD->getDefinition();
1086 
1087   LLVM_DEBUG(llvm::dbgs() << ">>> tryConversionOperators: " << RD->getName()
1088                           << " to:\n";
1089              ToType.dump(llvm::dbgs(), RD->getASTContext());
1090              llvm::dbgs() << '\n';);
1091 
1092   UserDefinedConversionSelector ConversionSet{Check};
1093 
1094   for (const NamedDecl *Method : RD->getVisibleConversionFunctions()) {
1095     const auto *Con = dyn_cast<CXXConversionDecl>(Method);
1096     if (!Con || Con->isExplicit())
1097       continue;
1098     LLVM_DEBUG(llvm::dbgs() << "--- tryConversionOperators. Trying:\n";
1099                Con->dump(llvm::dbgs()); llvm::dbgs() << '\n';);
1100 
1101     // Try to go from the result of conversion operator to the expected type,
1102     // without calculating another user-defined conversion.
1103     ConversionSet.addConversion(Con, Con->getConversionType(), ToType);
1104   }
1105 
1106   if (Optional<UserDefinedConversionSelector::PreparedConversion>
1107           SelectedConversion = ConversionSet()) {
1108     QualType RecordType{RD->getTypeForDecl(), 0};
1109 
1110     ConversionSequence Result{RecordType, ToType};
1111     // The conversion from the operator call's return type to ToType was
1112     // modelled as a "pre-conversion" in the operator call, but it is the
1113     // "post-conversion" from the point of view of the original conversion
1114     // we are modelling.
1115     Result.AfterSecondStandard = SelectedConversion->Seq.AfterFirstStandard;
1116 
1117     ConversionSequence::UserDefinedConversionOperator ConvOp;
1118     ConvOp.Fun = cast<CXXConversionDecl>(SelectedConversion->ConversionFun);
1119     ConvOp.UserDefinedType = RecordType;
1120     ConvOp.ConversionOperatorResultType = ConvOp.Fun->getConversionType();
1121     Result.setConversion(ConvOp);
1122 
1123     LLVM_DEBUG(llvm::dbgs() << "<<< tryConversionOperators. Found result.\n");
1124     return Result;
1125   }
1126 
1127   LLVM_DEBUG(llvm::dbgs() << "<<< tryConversionOperators. No conversion.\n");
1128   return {};
1129 }
1130 
1131 static Optional<ConversionSequence>
1132 tryConvertingConstructors(const TheCheck &Check, QualType FromType,
1133                           const CXXRecordDecl *RD) {
1134   if (!RD || !RD->isCompleteDefinition())
1135     return {};
1136   RD = RD->getDefinition();
1137 
1138   LLVM_DEBUG(llvm::dbgs() << ">>> tryConveringConstructors: " << RD->getName()
1139                           << " from:\n";
1140              FromType.dump(llvm::dbgs(), RD->getASTContext());
1141              llvm::dbgs() << '\n';);
1142 
1143   UserDefinedConversionSelector ConversionSet{Check};
1144 
1145   for (const CXXConstructorDecl *Con : RD->ctors()) {
1146     if (Con->isCopyOrMoveConstructor() ||
1147         !Con->isConvertingConstructor(/* AllowExplicit =*/false))
1148       continue;
1149     LLVM_DEBUG(llvm::dbgs() << "--- tryConvertingConstructors. Trying:\n";
1150                Con->dump(llvm::dbgs()); llvm::dbgs() << '\n';);
1151 
1152     // Try to go from the original FromType to the converting constructor's
1153     // parameter type without another user-defined conversion.
1154     ConversionSet.addConversion(Con, FromType, Con->getParamDecl(0)->getType());
1155   }
1156 
1157   if (Optional<UserDefinedConversionSelector::PreparedConversion>
1158           SelectedConversion = ConversionSet()) {
1159     QualType RecordType{RD->getTypeForDecl(), 0};
1160 
1161     ConversionSequence Result{FromType, RecordType};
1162     Result.AfterFirstStandard = SelectedConversion->Seq.AfterFirstStandard;
1163 
1164     ConversionSequence::UserDefinedConvertingConstructor Ctor;
1165     Ctor.Fun = cast<CXXConstructorDecl>(SelectedConversion->ConversionFun);
1166     Ctor.ConstructorParameterType = Ctor.Fun->getParamDecl(0)->getType();
1167     Ctor.UserDefinedType = RecordType;
1168     Result.setConversion(Ctor);
1169 
1170     LLVM_DEBUG(llvm::dbgs()
1171                << "<<< tryConvertingConstructors. Found result.\n");
1172     return Result;
1173   }
1174 
1175   LLVM_DEBUG(llvm::dbgs() << "<<< tryConvertingConstructors. No conversion.\n");
1176   return {};
1177 }
1178 
1179 /// Returns whether an expression of LType can be used in an RType context, as
1180 /// per the implicit conversion rules.
1181 ///
1182 /// Note: the result of this operation, unlike that of calculateMixability, is
1183 /// **NOT** symmetric.
1184 static MixData
1185 approximateImplicitConversion(const TheCheck &Check, QualType LType,
1186                               QualType RType, const ASTContext &Ctx,
1187                               ImplicitConversionModellingMode ImplicitMode) {
1188   LLVM_DEBUG(llvm::dbgs() << ">>> approximateImplicitConversion for LType:\n";
1189              LType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand RType:\n";
1190              RType.dump(llvm::dbgs(), Ctx);
1191              llvm::dbgs() << "\nimplicit mode: "; switch (ImplicitMode) {
1192                case ImplicitConversionModellingMode::None:
1193                  llvm::dbgs() << "None";
1194                  break;
1195                case ImplicitConversionModellingMode::All:
1196                  llvm::dbgs() << "All";
1197                  break;
1198                case ImplicitConversionModellingMode::OneWaySingleStandardOnly:
1199                  llvm::dbgs() << "OneWay, Single, STD Only";
1200                  break;
1201              } llvm::dbgs() << '\n';);
1202   if (LType == RType)
1203     return {MixFlags::Trivial, LType};
1204 
1205   // An implicit conversion sequence consists of the following, in order:
1206   //  * Maybe standard conversion sequence.
1207   //  * Maybe user-defined conversion.
1208   //  * Maybe standard conversion sequence.
1209   ConversionSequence ImplicitSeq{LType, RType};
1210   QualType WorkType = LType;
1211 
1212   Optional<QualType> AfterFirstStdConv =
1213       approximateStandardConversionSequence(Check, LType, RType, Ctx);
1214   if (AfterFirstStdConv) {
1215     LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Standard "
1216                                "Pre-Conversion found!\n");
1217     ImplicitSeq.AfterFirstStandard = AfterFirstStdConv.getValue();
1218     WorkType = ImplicitSeq.AfterFirstStandard;
1219   }
1220 
1221   if (ImplicitMode == ImplicitConversionModellingMode::OneWaySingleStandardOnly)
1222     // If the caller only requested modelling of a standard conversion, bail.
1223     return {ImplicitSeq.AfterFirstStandard.isNull()
1224                 ? MixFlags::None
1225                 : MixFlags::ImplicitConversion,
1226             ImplicitSeq};
1227 
1228   if (Ctx.getLangOpts().CPlusPlus) {
1229     bool FoundConversionOperator = false, FoundConvertingCtor = false;
1230 
1231     if (const auto *LRD = WorkType->getAsCXXRecordDecl()) {
1232       Optional<ConversionSequence> ConversionOperatorResult =
1233           tryConversionOperators(Check, LRD, RType);
1234       if (ConversionOperatorResult) {
1235         LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Found "
1236                                    "conversion operator.\n");
1237         ImplicitSeq.update(ConversionOperatorResult.getValue());
1238         WorkType = ImplicitSeq.getTypeAfterUserDefinedConversion();
1239         FoundConversionOperator = true;
1240       }
1241     }
1242 
1243     if (const auto *RRD = RType->getAsCXXRecordDecl()) {
1244       // Use the original "LType" here, and not WorkType, because the
1245       // conversion to the converting constructors' parameters will be
1246       // modelled in the recursive call.
1247       Optional<ConversionSequence> ConvCtorResult =
1248           tryConvertingConstructors(Check, LType, RRD);
1249       if (ConvCtorResult) {
1250         LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Found "
1251                                    "converting constructor.\n");
1252         ImplicitSeq.update(ConvCtorResult.getValue());
1253         WorkType = ImplicitSeq.getTypeAfterUserDefinedConversion();
1254         FoundConvertingCtor = true;
1255       }
1256     }
1257 
1258     if (FoundConversionOperator && FoundConvertingCtor) {
1259       // If both an operator and a ctor matches, the sequence is ambiguous.
1260       LLVM_DEBUG(llvm::dbgs()
1261                  << "<<< approximateImplicitConversion. Found both "
1262                     "user-defined conversion kinds in the same sequence!\n");
1263       return {MixFlags::None};
1264     }
1265   }
1266 
1267   // After the potential user-defined conversion, another standard conversion
1268   // sequence might exist.
1269   LLVM_DEBUG(
1270       llvm::dbgs()
1271       << "--- approximateImplicitConversion. Try to find post-conversion.\n");
1272   MixData SecondStdConv = approximateImplicitConversion(
1273       Check, WorkType, RType, Ctx,
1274       ImplicitConversionModellingMode::OneWaySingleStandardOnly);
1275   if (SecondStdConv.indicatesMixability()) {
1276     LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Standard "
1277                                "Post-Conversion found!\n");
1278 
1279     // The single-step modelling puts the modelled conversion into the "PreStd"
1280     // variable in the recursive call, but from the PoV of this function, it is
1281     // the post-conversion.
1282     ImplicitSeq.AfterSecondStandard =
1283         SecondStdConv.Conversion.AfterFirstStandard;
1284     WorkType = ImplicitSeq.AfterSecondStandard;
1285   }
1286 
1287   if (ImplicitSeq) {
1288     LLVM_DEBUG(llvm::dbgs()
1289                << "<<< approximateImplicitConversion. Found a conversion.\n");
1290     return {MixFlags::ImplicitConversion, ImplicitSeq};
1291   }
1292 
1293   LLVM_DEBUG(
1294       llvm::dbgs() << "<<< approximateImplicitConversion. No match found.\n");
1295   return {MixFlags::None};
1296 }
1297 
1298 static MixableParameterRange modelMixingRange(
1299     const TheCheck &Check, const FunctionDecl *FD, std::size_t StartIndex,
1300     const filter::SimilarlyUsedParameterPairSuppressor &UsageBasedSuppressor) {
1301   std::size_t NumParams = FD->getNumParams();
1302   assert(StartIndex < NumParams && "out of bounds for start");
1303   const ASTContext &Ctx = FD->getASTContext();
1304 
1305   MixableParameterRange Ret;
1306   // A parameter at index 'StartIndex' had been trivially "checked".
1307   Ret.NumParamsChecked = 1;
1308 
1309   for (std::size_t I = StartIndex + 1; I < NumParams; ++I) {
1310     const ParmVarDecl *Ith = FD->getParamDecl(I);
1311     StringRef ParamName = Ith->getName();
1312     LLVM_DEBUG(llvm::dbgs()
1313                << "Check param #" << I << " '" << ParamName << "'...\n");
1314     if (filter::isIgnoredParameter(Check, Ith)) {
1315       LLVM_DEBUG(llvm::dbgs() << "Param #" << I << " is ignored. Break!\n");
1316       break;
1317     }
1318 
1319     StringRef PrevParamName = FD->getParamDecl(I - 1)->getName();
1320     if (!ParamName.empty() && !PrevParamName.empty() &&
1321         filter::prefixSuffixCoverUnderThreshold(
1322             Check.NamePrefixSuffixSilenceDissimilarityTreshold, PrevParamName,
1323             ParamName)) {
1324       LLVM_DEBUG(llvm::dbgs() << "Parameter '" << ParamName
1325                               << "' follows a pattern with previous parameter '"
1326                               << PrevParamName << "'. Break!\n");
1327       break;
1328     }
1329 
1330     // Now try to go forward and build the range of [Start, ..., I, I + 1, ...]
1331     // parameters that can be messed up at a call site.
1332     MixableParameterRange::MixVector MixesOfIth;
1333     for (std::size_t J = StartIndex; J < I; ++J) {
1334       const ParmVarDecl *Jth = FD->getParamDecl(J);
1335       LLVM_DEBUG(llvm::dbgs()
1336                  << "Check mix of #" << J << " against #" << I << "...\n");
1337 
1338       if (isSimilarlyUsedParameter(UsageBasedSuppressor, Ith, Jth)) {
1339         // Consider the two similarly used parameters to not be possible in a
1340         // mix-up at the user's request, if they enabled this heuristic.
1341         LLVM_DEBUG(llvm::dbgs() << "Parameters #" << I << " and #" << J
1342                                 << " deemed related, ignoring...\n");
1343 
1344         // If the parameter #I and #J mixes, then I is mixable with something
1345         // in the current range, so the range has to be broken and I not
1346         // included.
1347         MixesOfIth.clear();
1348         break;
1349       }
1350 
1351       Mix M{Jth, Ith,
1352             calculateMixability(Check, Jth->getType(), Ith->getType(), Ctx,
1353                                 Check.ModelImplicitConversions
1354                                     ? ImplicitConversionModellingMode::All
1355                                     : ImplicitConversionModellingMode::None)};
1356       LLVM_DEBUG(llvm::dbgs() << "Mix flags (raw)           : "
1357                               << formatMixFlags(M.flags()) << '\n');
1358       M.sanitize();
1359       LLVM_DEBUG(llvm::dbgs() << "Mix flags (after sanitize): "
1360                               << formatMixFlags(M.flags()) << '\n');
1361 
1362       assert(M.flagsValid() && "All flags decayed!");
1363 
1364       if (M.mixable())
1365         MixesOfIth.emplace_back(std::move(M));
1366     }
1367 
1368     if (MixesOfIth.empty()) {
1369       // If there weren't any new mixes stored for Ith, the range is
1370       // [Start, ..., I].
1371       LLVM_DEBUG(llvm::dbgs()
1372                  << "Param #" << I
1373                  << " does not mix with any in the current range. Break!\n");
1374       break;
1375     }
1376 
1377     Ret.Mixes.insert(Ret.Mixes.end(), MixesOfIth.begin(), MixesOfIth.end());
1378     ++Ret.NumParamsChecked; // Otherwise a new param was iterated.
1379   }
1380 
1381   return Ret;
1382 }
1383 
1384 } // namespace model
1385 
1386 /// Matches DeclRefExprs and their ignorable wrappers to ParmVarDecls.
1387 AST_MATCHER_FUNCTION(ast_matchers::internal::Matcher<Stmt>, paramRefExpr) {
1388   return expr(ignoringParenImpCasts(ignoringElidableConstructorCall(
1389       declRefExpr(to(parmVarDecl().bind("param"))))));
1390 }
1391 
1392 namespace filter {
1393 
1394 /// Returns whether the parameter's name or the parameter's type's name is
1395 /// configured by the user to be ignored from analysis and diagnostic.
1396 static bool isIgnoredParameter(const TheCheck &Check, const ParmVarDecl *Node) {
1397   LLVM_DEBUG(llvm::dbgs() << "Checking if '" << Node->getName()
1398                           << "' is ignored.\n");
1399 
1400   if (!Node->getIdentifier())
1401     return llvm::find(Check.IgnoredParameterNames, "\"\"") !=
1402            Check.IgnoredParameterNames.end();
1403 
1404   StringRef NodeName = Node->getName();
1405   if (llvm::find(Check.IgnoredParameterNames, NodeName) !=
1406       Check.IgnoredParameterNames.end()) {
1407     LLVM_DEBUG(llvm::dbgs() << "\tName ignored.\n");
1408     return true;
1409   }
1410 
1411   StringRef NodeTypeName = [Node] {
1412     const ASTContext &Ctx = Node->getASTContext();
1413     const SourceManager &SM = Ctx.getSourceManager();
1414     SourceLocation B = Node->getTypeSpecStartLoc();
1415     SourceLocation E = Node->getTypeSpecEndLoc();
1416     LangOptions LO;
1417 
1418     LLVM_DEBUG(llvm::dbgs() << "\tType name code is '"
1419                             << Lexer::getSourceText(
1420                                    CharSourceRange::getTokenRange(B, E), SM, LO)
1421                             << "'...\n");
1422     if (B.isMacroID()) {
1423       LLVM_DEBUG(llvm::dbgs() << "\t\tBeginning is macro.\n");
1424       B = SM.getTopMacroCallerLoc(B);
1425     }
1426     if (E.isMacroID()) {
1427       LLVM_DEBUG(llvm::dbgs() << "\t\tEnding is macro.\n");
1428       E = Lexer::getLocForEndOfToken(SM.getTopMacroCallerLoc(E), 0, SM, LO);
1429     }
1430     LLVM_DEBUG(llvm::dbgs() << "\tType name code is '"
1431                             << Lexer::getSourceText(
1432                                    CharSourceRange::getTokenRange(B, E), SM, LO)
1433                             << "'...\n");
1434 
1435     return Lexer::getSourceText(CharSourceRange::getTokenRange(B, E), SM, LO);
1436   }();
1437 
1438   LLVM_DEBUG(llvm::dbgs() << "\tType name is '" << NodeTypeName << "'\n");
1439   if (!NodeTypeName.empty()) {
1440     if (llvm::any_of(Check.IgnoredParameterTypeSuffixes,
1441                      [NodeTypeName](const std::string &E) {
1442                        return !E.empty() && NodeTypeName.endswith(E);
1443                      })) {
1444       LLVM_DEBUG(llvm::dbgs() << "\tType suffix ignored.\n");
1445       return true;
1446     }
1447   }
1448 
1449   return false;
1450 }
1451 
1452 /// This namespace contains the implementations for the suppression of
1453 /// diagnostics from similaly used ("related") parameters.
1454 namespace relatedness_heuristic {
1455 
1456 static constexpr std::size_t SmallDataStructureSize = 4;
1457 
1458 template <typename T, std::size_t N = SmallDataStructureSize>
1459 using ParamToSmallSetMap =
1460     llvm::DenseMap<const ParmVarDecl *, llvm::SmallSet<T, N>>;
1461 
1462 /// Returns whether the sets mapped to the two elements in the map have at
1463 /// least one element in common.
1464 template <typename MapTy, typename ElemTy>
1465 bool lazyMapOfSetsIntersectionExists(const MapTy &Map, const ElemTy &E1,
1466                                      const ElemTy &E2) {
1467   auto E1Iterator = Map.find(E1);
1468   auto E2Iterator = Map.find(E2);
1469   if (E1Iterator == Map.end() || E2Iterator == Map.end())
1470     return false;
1471 
1472   for (const auto &E1SetElem : E1Iterator->second)
1473     if (llvm::find(E2Iterator->second, E1SetElem) != E2Iterator->second.end())
1474       return true;
1475 
1476   return false;
1477 }
1478 
1479 /// Implements the heuristic that marks two parameters related if there is
1480 /// a usage for both in the same strict expression subtree. A strict
1481 /// expression subtree is a tree which only includes Expr nodes, i.e. no
1482 /// Stmts and no Decls.
1483 class AppearsInSameExpr : public RecursiveASTVisitor<AppearsInSameExpr> {
1484   using Base = RecursiveASTVisitor<AppearsInSameExpr>;
1485 
1486   const FunctionDecl *FD;
1487   const Expr *CurrentExprOnlyTreeRoot = nullptr;
1488   llvm::DenseMap<const ParmVarDecl *,
1489                  llvm::SmallPtrSet<const Expr *, SmallDataStructureSize>>
1490       ParentExprsForParamRefs;
1491 
1492 public:
1493   void setup(const FunctionDecl *FD) {
1494     this->FD = FD;
1495     TraverseFunctionDecl(const_cast<FunctionDecl *>(FD));
1496   }
1497 
1498   bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const {
1499     return lazyMapOfSetsIntersectionExists(ParentExprsForParamRefs, Param1,
1500                                            Param2);
1501   }
1502 
1503   bool TraverseDecl(Decl *D) {
1504     CurrentExprOnlyTreeRoot = nullptr;
1505     return Base::TraverseDecl(D);
1506   }
1507 
1508   bool TraverseStmt(Stmt *S, DataRecursionQueue *Queue = nullptr) {
1509     if (auto *E = dyn_cast_or_null<Expr>(S)) {
1510       bool RootSetInCurrentStackFrame = false;
1511       if (!CurrentExprOnlyTreeRoot) {
1512         CurrentExprOnlyTreeRoot = E;
1513         RootSetInCurrentStackFrame = true;
1514       }
1515 
1516       bool Ret = Base::TraverseStmt(S);
1517 
1518       if (RootSetInCurrentStackFrame)
1519         CurrentExprOnlyTreeRoot = nullptr;
1520 
1521       return Ret;
1522     }
1523 
1524     // A Stmt breaks the strictly Expr subtree.
1525     CurrentExprOnlyTreeRoot = nullptr;
1526     return Base::TraverseStmt(S);
1527   }
1528 
1529   bool VisitDeclRefExpr(DeclRefExpr *DRE) {
1530     if (!CurrentExprOnlyTreeRoot)
1531       return true;
1532 
1533     if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
1534       if (llvm::find(FD->parameters(), PVD))
1535         ParentExprsForParamRefs[PVD].insert(CurrentExprOnlyTreeRoot);
1536 
1537     return true;
1538   }
1539 };
1540 
1541 /// Implements the heuristic that marks two parameters related if there are
1542 /// two separate calls to the same function (overload) and the parameters are
1543 /// passed to the same index in both calls, i.e f(a, b) and f(a, c) passes
1544 /// b and c to the same index (2) of f(), marking them related.
1545 class PassedToSameFunction {
1546   ParamToSmallSetMap<std::pair<const FunctionDecl *, unsigned>> TargetParams;
1547 
1548 public:
1549   void setup(const FunctionDecl *FD) {
1550     auto ParamsAsArgsInFnCalls =
1551         match(functionDecl(forEachDescendant(
1552                   callExpr(forEachArgumentWithParam(
1553                                paramRefExpr(), parmVarDecl().bind("passed-to")))
1554                       .bind("call-expr"))),
1555               *FD, FD->getASTContext());
1556     for (const auto &Match : ParamsAsArgsInFnCalls) {
1557       const auto *PassedParamOfThisFn = Match.getNodeAs<ParmVarDecl>("param");
1558       const auto *CE = Match.getNodeAs<CallExpr>("call-expr");
1559       const auto *PassedToParam = Match.getNodeAs<ParmVarDecl>("passed-to");
1560       assert(PassedParamOfThisFn && CE && PassedToParam);
1561 
1562       const FunctionDecl *CalledFn = CE->getDirectCallee();
1563       if (!CalledFn)
1564         continue;
1565 
1566       llvm::Optional<unsigned> TargetIdx;
1567       unsigned NumFnParams = CalledFn->getNumParams();
1568       for (unsigned Idx = 0; Idx < NumFnParams; ++Idx)
1569         if (CalledFn->getParamDecl(Idx) == PassedToParam)
1570           TargetIdx.emplace(Idx);
1571 
1572       assert(TargetIdx.hasValue() && "Matched, but didn't find index?");
1573       TargetParams[PassedParamOfThisFn].insert(
1574           {CalledFn->getCanonicalDecl(), *TargetIdx});
1575     }
1576   }
1577 
1578   bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const {
1579     return lazyMapOfSetsIntersectionExists(TargetParams, Param1, Param2);
1580   }
1581 };
1582 
1583 /// Implements the heuristic that marks two parameters related if the same
1584 /// member is accessed (referred to) inside the current function's body.
1585 class AccessedSameMemberOf {
1586   ParamToSmallSetMap<const Decl *> AccessedMembers;
1587 
1588 public:
1589   void setup(const FunctionDecl *FD) {
1590     auto MembersCalledOnParams = match(
1591         functionDecl(forEachDescendant(
1592             memberExpr(hasObjectExpression(paramRefExpr())).bind("mem-expr"))),
1593         *FD, FD->getASTContext());
1594 
1595     for (const auto &Match : MembersCalledOnParams) {
1596       const auto *AccessedParam = Match.getNodeAs<ParmVarDecl>("param");
1597       const auto *ME = Match.getNodeAs<MemberExpr>("mem-expr");
1598       assert(AccessedParam && ME);
1599       AccessedMembers[AccessedParam].insert(
1600           ME->getMemberDecl()->getCanonicalDecl());
1601     }
1602   }
1603 
1604   bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const {
1605     return lazyMapOfSetsIntersectionExists(AccessedMembers, Param1, Param2);
1606   }
1607 };
1608 
1609 /// Implements the heuristic that marks two parameters related if different
1610 /// ReturnStmts return them from the function.
1611 class Returned {
1612   llvm::SmallVector<const ParmVarDecl *, SmallDataStructureSize> ReturnedParams;
1613 
1614 public:
1615   void setup(const FunctionDecl *FD) {
1616     // TODO: Handle co_return.
1617     auto ParamReturns = match(functionDecl(forEachDescendant(
1618                                   returnStmt(hasReturnValue(paramRefExpr())))),
1619                               *FD, FD->getASTContext());
1620     for (const auto &Match : ParamReturns) {
1621       const auto *ReturnedParam = Match.getNodeAs<ParmVarDecl>("param");
1622       assert(ReturnedParam);
1623 
1624       if (find(FD->parameters(), ReturnedParam) == FD->param_end())
1625         // Inside the subtree of a FunctionDecl there might be ReturnStmts of
1626         // a parameter that isn't the parameter of the function, e.g. in the
1627         // case of lambdas.
1628         continue;
1629 
1630       ReturnedParams.emplace_back(ReturnedParam);
1631     }
1632   }
1633 
1634   bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const {
1635     return llvm::find(ReturnedParams, Param1) != ReturnedParams.end() &&
1636            llvm::find(ReturnedParams, Param2) != ReturnedParams.end();
1637   }
1638 };
1639 
1640 } // namespace relatedness_heuristic
1641 
1642 /// Helper class that is used to detect if two parameters of the same function
1643 /// are used in a similar fashion, to suppress the result.
1644 class SimilarlyUsedParameterPairSuppressor {
1645   const bool Enabled;
1646   relatedness_heuristic::AppearsInSameExpr SameExpr;
1647   relatedness_heuristic::PassedToSameFunction PassToFun;
1648   relatedness_heuristic::AccessedSameMemberOf SameMember;
1649   relatedness_heuristic::Returned Returns;
1650 
1651 public:
1652   SimilarlyUsedParameterPairSuppressor(const FunctionDecl *FD, bool Enable)
1653       : Enabled(Enable) {
1654     if (!Enable)
1655       return;
1656 
1657     SameExpr.setup(FD);
1658     PassToFun.setup(FD);
1659     SameMember.setup(FD);
1660     Returns.setup(FD);
1661   }
1662 
1663   /// Returns whether the specified two parameters are deemed similarly used
1664   /// or related by the heuristics.
1665   bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const {
1666     if (!Enabled)
1667       return false;
1668 
1669     LLVM_DEBUG(llvm::dbgs()
1670                << "::: Matching similar usage / relatedness heuristic...\n");
1671 
1672     if (SameExpr(Param1, Param2)) {
1673       LLVM_DEBUG(llvm::dbgs() << "::: Used in the same expression.\n");
1674       return true;
1675     }
1676 
1677     if (PassToFun(Param1, Param2)) {
1678       LLVM_DEBUG(llvm::dbgs()
1679                  << "::: Passed to same function in different calls.\n");
1680       return true;
1681     }
1682 
1683     if (SameMember(Param1, Param2)) {
1684       LLVM_DEBUG(llvm::dbgs()
1685                  << "::: Same member field access or method called.\n");
1686       return true;
1687     }
1688 
1689     if (Returns(Param1, Param2)) {
1690       LLVM_DEBUG(llvm::dbgs() << "::: Both parameter returned.\n");
1691       return true;
1692     }
1693 
1694     LLVM_DEBUG(llvm::dbgs() << "::: None.\n");
1695     return false;
1696   }
1697 };
1698 
1699 // (This function hoists the call to operator() of the wrapper, so we do not
1700 // need to define the previous class at the top of the file.)
1701 static inline bool
1702 isSimilarlyUsedParameter(const SimilarlyUsedParameterPairSuppressor &Suppressor,
1703                          const ParmVarDecl *Param1, const ParmVarDecl *Param2) {
1704   return Suppressor(Param1, Param2);
1705 }
1706 
1707 static void padStringAtEnd(SmallVectorImpl<char> &Str, std::size_t ToLen) {
1708   while (Str.size() < ToLen)
1709     Str.emplace_back('\0');
1710 }
1711 
1712 static void padStringAtBegin(SmallVectorImpl<char> &Str, std::size_t ToLen) {
1713   while (Str.size() < ToLen)
1714     Str.insert(Str.begin(), '\0');
1715 }
1716 
1717 static bool isCommonPrefixWithoutSomeCharacters(std::size_t N, StringRef S1,
1718                                                 StringRef S2) {
1719   assert(S1.size() >= N && S2.size() >= N);
1720   StringRef S1Prefix = S1.take_front(S1.size() - N),
1721             S2Prefix = S2.take_front(S2.size() - N);
1722   return S1Prefix == S2Prefix && !S1Prefix.empty();
1723 }
1724 
1725 static bool isCommonSuffixWithoutSomeCharacters(std::size_t N, StringRef S1,
1726                                                 StringRef S2) {
1727   assert(S1.size() >= N && S2.size() >= N);
1728   StringRef S1Suffix = S1.take_back(S1.size() - N),
1729             S2Suffix = S2.take_back(S2.size() - N);
1730   return S1Suffix == S2Suffix && !S1Suffix.empty();
1731 }
1732 
1733 /// Returns whether the two strings are prefixes or suffixes of each other with
1734 /// at most Threshold characters differing on the non-common end.
1735 static bool prefixSuffixCoverUnderThreshold(std::size_t Threshold,
1736                                             StringRef Str1, StringRef Str2) {
1737   if (Threshold == 0)
1738     return false;
1739 
1740   // Pad the two strings to the longer length.
1741   std::size_t BiggerLength = std::max(Str1.size(), Str2.size());
1742 
1743   if (BiggerLength <= Threshold)
1744     // If the length of the strings is still smaller than the threshold, they
1745     // would be covered by an empty prefix/suffix with the rest differing.
1746     // (E.g. "A" and "X" with Threshold = 1 would mean we think they are
1747     // similar and do not warn about them, which is a too eager assumption.)
1748     return false;
1749 
1750   SmallString<32> S1PadE{Str1}, S2PadE{Str2};
1751   padStringAtEnd(S1PadE, BiggerLength);
1752   padStringAtEnd(S2PadE, BiggerLength);
1753 
1754   if (isCommonPrefixWithoutSomeCharacters(
1755           Threshold, StringRef{S1PadE.begin(), BiggerLength},
1756           StringRef{S2PadE.begin(), BiggerLength}))
1757     return true;
1758 
1759   SmallString<32> S1PadB{Str1}, S2PadB{Str2};
1760   padStringAtBegin(S1PadB, BiggerLength);
1761   padStringAtBegin(S2PadB, BiggerLength);
1762 
1763   if (isCommonSuffixWithoutSomeCharacters(
1764           Threshold, StringRef{S1PadB.begin(), BiggerLength},
1765           StringRef{S2PadB.begin(), BiggerLength}))
1766     return true;
1767 
1768   return false;
1769 }
1770 
1771 } // namespace filter
1772 
1773 /// Matches functions that have at least the specified amount of parameters.
1774 AST_MATCHER_P(FunctionDecl, parameterCountGE, unsigned, N) {
1775   return Node.getNumParams() >= N;
1776 }
1777 
1778 /// Matches *any* overloaded unary and binary operators.
1779 AST_MATCHER(FunctionDecl, isOverloadedUnaryOrBinaryOperator) {
1780   switch (Node.getOverloadedOperator()) {
1781   case OO_None:
1782   case OO_New:
1783   case OO_Delete:
1784   case OO_Array_New:
1785   case OO_Array_Delete:
1786   case OO_Conditional:
1787   case OO_Coawait:
1788     return false;
1789 
1790   default:
1791     return Node.getNumParams() <= 2;
1792   }
1793 }
1794 
1795 /// Returns the DefaultMinimumLength if the Value of requested minimum length
1796 /// is less than 2. Minimum lengths of 0 or 1 are not accepted.
1797 static inline unsigned clampMinimumLength(const unsigned Value) {
1798   return Value < 2 ? DefaultMinimumLength : Value;
1799 }
1800 
1801 // FIXME: Maybe unneeded, getNameForDiagnostic() is expected to change to return
1802 // a crafted location when the node itself is unnamed. (See D84658, D85033.)
1803 /// Returns the diagnostic-friendly name of the node, or empty string.
1804 static SmallString<64> getName(const NamedDecl *ND) {
1805   SmallString<64> Name;
1806   llvm::raw_svector_ostream OS{Name};
1807   ND->getNameForDiagnostic(OS, ND->getASTContext().getPrintingPolicy(), false);
1808   return Name;
1809 }
1810 
1811 /// Returns the diagnostic-friendly name of the node, or a constant value.
1812 static SmallString<64> getNameOrUnnamed(const NamedDecl *ND) {
1813   auto Name = getName(ND);
1814   if (Name.empty())
1815     Name = "<unnamed>";
1816   return Name;
1817 }
1818 
1819 /// Returns whether a particular Mix between two parameters should have the
1820 /// types involved diagnosed to the user. This is only a flag check.
1821 static inline bool needsToPrintTypeInDiagnostic(const model::Mix &M) {
1822   using namespace model;
1823   return static_cast<bool>(
1824       M.flags() &
1825       (MixFlags::TypeAlias | MixFlags::ReferenceBind | MixFlags::Qualifiers));
1826 }
1827 
1828 /// Returns whether a particular Mix between the two parameters should have
1829 /// implicit conversions elaborated.
1830 static inline bool needsToElaborateImplicitConversion(const model::Mix &M) {
1831   return hasFlag(M.flags(), model::MixFlags::ImplicitConversion);
1832 }
1833 
1834 namespace {
1835 
1836 /// This class formats a conversion sequence into a "Ty1 -> Ty2 -> Ty3" line
1837 /// that can be used in diagnostics.
1838 struct FormattedConversionSequence {
1839   std::string DiagnosticText;
1840 
1841   /// The formatted sequence is trivial if it is "Ty1 -> Ty2", but Ty1 and
1842   /// Ty2 are the types that are shown in the code. A trivial diagnostic
1843   /// does not need to be printed.
1844   bool Trivial;
1845 
1846   FormattedConversionSequence(const PrintingPolicy &PP,
1847                               StringRef StartTypeAsDiagnosed,
1848                               const model::ConversionSequence &Conv,
1849                               StringRef DestinationTypeAsDiagnosed) {
1850     Trivial = true;
1851     llvm::raw_string_ostream OS{DiagnosticText};
1852 
1853     // Print the type name as it is printed in other places in the diagnostic.
1854     OS << '\'' << StartTypeAsDiagnosed << '\'';
1855     std::string LastAddedType = StartTypeAsDiagnosed.str();
1856     std::size_t NumElementsAdded = 1;
1857 
1858     // However, the parameter's defined type might not be what the implicit
1859     // conversion started with, e.g. if a typedef is found to convert.
1860     std::string SeqBeginTypeStr = Conv.Begin.getAsString(PP);
1861     std::string SeqEndTypeStr = Conv.End.getAsString(PP);
1862     if (StartTypeAsDiagnosed != SeqBeginTypeStr) {
1863       OS << " (as '" << SeqBeginTypeStr << "')";
1864       LastAddedType = SeqBeginTypeStr;
1865       Trivial = false;
1866     }
1867 
1868     auto AddType = [&](StringRef ToAdd) {
1869       if (LastAddedType != ToAdd && ToAdd != SeqEndTypeStr) {
1870         OS << " -> '" << ToAdd << "'";
1871         LastAddedType = ToAdd.str();
1872         ++NumElementsAdded;
1873       }
1874     };
1875     for (QualType InvolvedType : Conv.getInvolvedTypesInSequence())
1876       // Print every type that's unique in the sequence into the diagnosis.
1877       AddType(InvolvedType.getAsString(PP));
1878 
1879     if (LastAddedType != DestinationTypeAsDiagnosed) {
1880       OS << " -> '" << DestinationTypeAsDiagnosed << "'";
1881       LastAddedType = DestinationTypeAsDiagnosed.str();
1882       ++NumElementsAdded;
1883     }
1884 
1885     // Same reasoning as with the Begin, e.g. if the converted-to type is a
1886     // typedef, it will not be the same inside the conversion sequence (where
1887     // the model already tore off typedefs) as in the code.
1888     if (DestinationTypeAsDiagnosed != SeqEndTypeStr) {
1889       OS << " (as '" << SeqEndTypeStr << "')";
1890       LastAddedType = SeqEndTypeStr;
1891       Trivial = false;
1892     }
1893 
1894     if (Trivial && NumElementsAdded > 2)
1895       // If the thing is still marked trivial but we have more than the
1896       // from and to types added, it should not be trivial, and elaborated
1897       // when printing the diagnostic.
1898       Trivial = false;
1899   }
1900 };
1901 
1902 /// Retains the elements called with and returns whether the call is done with
1903 /// a new element.
1904 template <typename E, std::size_t N> class InsertOnce {
1905   llvm::SmallSet<E, N> CalledWith;
1906 
1907 public:
1908   bool operator()(E El) { return CalledWith.insert(std::move(El)).second; }
1909 
1910   bool calledWith(const E &El) const { return CalledWith.contains(El); }
1911 };
1912 
1913 struct SwappedEqualQualTypePair {
1914   QualType LHSType, RHSType;
1915 
1916   bool operator==(const SwappedEqualQualTypePair &Other) const {
1917     return (LHSType == Other.LHSType && RHSType == Other.RHSType) ||
1918            (LHSType == Other.RHSType && RHSType == Other.LHSType);
1919   }
1920 
1921   bool operator<(const SwappedEqualQualTypePair &Other) const {
1922     return LHSType < Other.LHSType && RHSType < Other.RHSType;
1923   }
1924 };
1925 
1926 struct TypeAliasDiagnosticTuple {
1927   QualType LHSType, RHSType, CommonType;
1928 
1929   bool operator==(const TypeAliasDiagnosticTuple &Other) const {
1930     return CommonType == Other.CommonType &&
1931            ((LHSType == Other.LHSType && RHSType == Other.RHSType) ||
1932             (LHSType == Other.RHSType && RHSType == Other.LHSType));
1933   }
1934 
1935   bool operator<(const TypeAliasDiagnosticTuple &Other) const {
1936     return CommonType < Other.CommonType && LHSType < Other.LHSType &&
1937            RHSType < Other.RHSType;
1938   }
1939 };
1940 
1941 /// Helper class to only emit a diagnostic related to MixFlags::TypeAlias once.
1942 class UniqueTypeAliasDiagnosticHelper
1943     : public InsertOnce<TypeAliasDiagnosticTuple, 8> {
1944   using Base = InsertOnce<TypeAliasDiagnosticTuple, 8>;
1945 
1946 public:
1947   /// Returns whether the diagnostic for LHSType and RHSType which are both
1948   /// referring to CommonType being the same has not been emitted already.
1949   bool operator()(QualType LHSType, QualType RHSType, QualType CommonType) {
1950     if (CommonType.isNull() || CommonType == LHSType || CommonType == RHSType)
1951       return Base::operator()({LHSType, RHSType, {}});
1952 
1953     TypeAliasDiagnosticTuple ThreeTuple{LHSType, RHSType, CommonType};
1954     if (!Base::operator()(ThreeTuple))
1955       return false;
1956 
1957     bool AlreadySaidLHSAndCommonIsSame = calledWith({LHSType, CommonType, {}});
1958     bool AlreadySaidRHSAndCommonIsSame = calledWith({RHSType, CommonType, {}});
1959     if (AlreadySaidLHSAndCommonIsSame && AlreadySaidRHSAndCommonIsSame) {
1960       // "SomeInt == int" && "SomeOtherInt == int" => "Common(SomeInt,
1961       // SomeOtherInt) == int", no need to diagnose it. Save the 3-tuple only
1962       // for shortcut if it ever appears again.
1963       return false;
1964     }
1965 
1966     return true;
1967   }
1968 };
1969 
1970 } // namespace
1971 
1972 EasilySwappableParametersCheck::EasilySwappableParametersCheck(
1973     StringRef Name, ClangTidyContext *Context)
1974     : ClangTidyCheck(Name, Context),
1975       MinimumLength(clampMinimumLength(
1976           Options.get("MinimumLength", DefaultMinimumLength))),
1977       IgnoredParameterNames(optutils::parseStringList(
1978           Options.get("IgnoredParameterNames", DefaultIgnoredParameterNames))),
1979       IgnoredParameterTypeSuffixes(optutils::parseStringList(
1980           Options.get("IgnoredParameterTypeSuffixes",
1981                       DefaultIgnoredParameterTypeSuffixes))),
1982       QualifiersMix(Options.get("QualifiersMix", DefaultQualifiersMix)),
1983       ModelImplicitConversions(Options.get("ModelImplicitConversions",
1984                                            DefaultModelImplicitConversions)),
1985       SuppressParametersUsedTogether(
1986           Options.get("SuppressParametersUsedTogether",
1987                       DefaultSuppressParametersUsedTogether)),
1988       NamePrefixSuffixSilenceDissimilarityTreshold(
1989           Options.get("NamePrefixSuffixSilenceDissimilarityTreshold",
1990                       DefaultNamePrefixSuffixSilenceDissimilarityTreshold)) {}
1991 
1992 void EasilySwappableParametersCheck::storeOptions(
1993     ClangTidyOptions::OptionMap &Opts) {
1994   Options.store(Opts, "MinimumLength", MinimumLength);
1995   Options.store(Opts, "IgnoredParameterNames",
1996                 optutils::serializeStringList(IgnoredParameterNames));
1997   Options.store(Opts, "IgnoredParameterTypeSuffixes",
1998                 optutils::serializeStringList(IgnoredParameterTypeSuffixes));
1999   Options.store(Opts, "QualifiersMix", QualifiersMix);
2000   Options.store(Opts, "ModelImplicitConversions", ModelImplicitConversions);
2001   Options.store(Opts, "SuppressParametersUsedTogether",
2002                 SuppressParametersUsedTogether);
2003   Options.store(Opts, "NamePrefixSuffixSilenceDissimilarityTreshold",
2004                 NamePrefixSuffixSilenceDissimilarityTreshold);
2005 }
2006 
2007 void EasilySwappableParametersCheck::registerMatchers(MatchFinder *Finder) {
2008   const auto BaseConstraints = functionDecl(
2009       // Only report for definition nodes, as fixing the issues reported
2010       // requires the user to be able to change code.
2011       isDefinition(), parameterCountGE(MinimumLength),
2012       unless(isOverloadedUnaryOrBinaryOperator()));
2013 
2014   Finder->addMatcher(
2015       functionDecl(BaseConstraints,
2016                    unless(ast_matchers::isTemplateInstantiation()))
2017           .bind("func"),
2018       this);
2019   Finder->addMatcher(
2020       functionDecl(BaseConstraints, isExplicitTemplateSpecialization())
2021           .bind("func"),
2022       this);
2023 }
2024 
2025 void EasilySwappableParametersCheck::check(
2026     const MatchFinder::MatchResult &Result) {
2027   using namespace model;
2028   using namespace filter;
2029 
2030   const auto *FD = Result.Nodes.getNodeAs<FunctionDecl>("func");
2031   assert(FD);
2032 
2033   const PrintingPolicy &PP = FD->getASTContext().getPrintingPolicy();
2034   std::size_t NumParams = FD->getNumParams();
2035   std::size_t MixableRangeStartIndex = 0;
2036 
2037   // Spawn one suppressor and if the user requested, gather information from
2038   // the AST for the parameters' usages.
2039   filter::SimilarlyUsedParameterPairSuppressor UsageBasedSuppressor{
2040       FD, SuppressParametersUsedTogether};
2041 
2042   LLVM_DEBUG(llvm::dbgs() << "Begin analysis of " << getName(FD) << " with "
2043                           << NumParams << " parameters...\n");
2044   while (MixableRangeStartIndex < NumParams) {
2045     if (isIgnoredParameter(*this, FD->getParamDecl(MixableRangeStartIndex))) {
2046       LLVM_DEBUG(llvm::dbgs()
2047                  << "Parameter #" << MixableRangeStartIndex << " ignored.\n");
2048       ++MixableRangeStartIndex;
2049       continue;
2050     }
2051 
2052     MixableParameterRange R = modelMixingRange(
2053         *this, FD, MixableRangeStartIndex, UsageBasedSuppressor);
2054     assert(R.NumParamsChecked > 0 && "Ensure forward progress!");
2055     MixableRangeStartIndex += R.NumParamsChecked;
2056     if (R.NumParamsChecked < MinimumLength) {
2057       LLVM_DEBUG(llvm::dbgs() << "Ignoring range of " << R.NumParamsChecked
2058                               << " lower than limit.\n");
2059       continue;
2060     }
2061 
2062     bool NeedsAnyTypeNote = llvm::any_of(R.Mixes, needsToPrintTypeInDiagnostic);
2063     bool HasAnyImplicits =
2064         llvm::any_of(R.Mixes, needsToElaborateImplicitConversion);
2065     const ParmVarDecl *First = R.getFirstParam(), *Last = R.getLastParam();
2066     std::string FirstParamTypeAsWritten = First->getType().getAsString(PP);
2067     {
2068       StringRef DiagText;
2069 
2070       if (HasAnyImplicits)
2071         DiagText = "%0 adjacent parameters of %1 of convertible types are "
2072                    "easily swapped by mistake";
2073       else if (NeedsAnyTypeNote)
2074         DiagText = "%0 adjacent parameters of %1 of similar type are easily "
2075                    "swapped by mistake";
2076       else
2077         DiagText = "%0 adjacent parameters of %1 of similar type ('%2') are "
2078                    "easily swapped by mistake";
2079 
2080       auto Diag = diag(First->getOuterLocStart(), DiagText)
2081                   << static_cast<unsigned>(R.NumParamsChecked) << FD;
2082       if (!NeedsAnyTypeNote)
2083         Diag << FirstParamTypeAsWritten;
2084 
2085       CharSourceRange HighlightRange = CharSourceRange::getTokenRange(
2086           First->getBeginLoc(), Last->getEndLoc());
2087       Diag << HighlightRange;
2088     }
2089 
2090     // There is a chance that the previous highlight did not succeed, e.g. when
2091     // the two parameters are on different lines. For clarity, show the user
2092     // the involved variable explicitly.
2093     diag(First->getLocation(), "the first parameter in the range is '%0'",
2094          DiagnosticIDs::Note)
2095         << getNameOrUnnamed(First)
2096         << CharSourceRange::getTokenRange(First->getLocation(),
2097                                           First->getLocation());
2098     diag(Last->getLocation(), "the last parameter in the range is '%0'",
2099          DiagnosticIDs::Note)
2100         << getNameOrUnnamed(Last)
2101         << CharSourceRange::getTokenRange(Last->getLocation(),
2102                                           Last->getLocation());
2103 
2104     // Helper classes to silence elaborative diagnostic notes that would be
2105     // too verbose.
2106     UniqueTypeAliasDiagnosticHelper UniqueTypeAlias;
2107     InsertOnce<SwappedEqualQualTypePair, 8> UniqueBindPower;
2108     InsertOnce<SwappedEqualQualTypePair, 8> UniqueImplicitConversion;
2109 
2110     for (const model::Mix &M : R.Mixes) {
2111       assert(M.mixable() && "Sentinel or false mix in result.");
2112       if (!needsToPrintTypeInDiagnostic(M) &&
2113           !needsToElaborateImplicitConversion(M))
2114         continue;
2115 
2116       // Typedefs might result in the type of the variable needing to be
2117       // emitted to a note diagnostic, so prepare it.
2118       const ParmVarDecl *LVar = M.First;
2119       const ParmVarDecl *RVar = M.Second;
2120       QualType LType = LVar->getType();
2121       QualType RType = RVar->getType();
2122       QualType CommonType = M.commonUnderlyingType();
2123       std::string LTypeStr = LType.getAsString(PP);
2124       std::string RTypeStr = RType.getAsString(PP);
2125       std::string CommonTypeStr = CommonType.getAsString(PP);
2126 
2127       if (hasFlag(M.flags(), MixFlags::TypeAlias) &&
2128           UniqueTypeAlias(LType, RType, CommonType)) {
2129         StringRef DiagText;
2130         bool ExplicitlyPrintCommonType = false;
2131         if (LTypeStr == CommonTypeStr || RTypeStr == CommonTypeStr)
2132           if (hasFlag(M.flags(), MixFlags::Qualifiers))
2133             DiagText = "after resolving type aliases, '%0' and '%1' share a "
2134                        "common type";
2135           else
2136             DiagText =
2137                 "after resolving type aliases, '%0' and '%1' are the same";
2138         else if (!CommonType.isNull()) {
2139           DiagText = "after resolving type aliases, the common type of '%0' "
2140                      "and '%1' is '%2'";
2141           ExplicitlyPrintCommonType = true;
2142         }
2143 
2144         auto Diag =
2145             diag(LVar->getOuterLocStart(), DiagText, DiagnosticIDs::Note)
2146             << LTypeStr << RTypeStr;
2147         if (ExplicitlyPrintCommonType)
2148           Diag << CommonTypeStr;
2149       }
2150 
2151       if ((hasFlag(M.flags(), MixFlags::ReferenceBind) ||
2152            hasFlag(M.flags(), MixFlags::Qualifiers)) &&
2153           UniqueBindPower({LType, RType})) {
2154         StringRef DiagText = "'%0' and '%1' parameters accept and bind the "
2155                              "same kind of values";
2156         diag(RVar->getOuterLocStart(), DiagText, DiagnosticIDs::Note)
2157             << LTypeStr << RTypeStr;
2158       }
2159 
2160       if (needsToElaborateImplicitConversion(M) &&
2161           UniqueImplicitConversion({LType, RType})) {
2162         const model::ConversionSequence &LTR =
2163             M.leftToRightConversionSequence();
2164         const model::ConversionSequence &RTL =
2165             M.rightToLeftConversionSequence();
2166         FormattedConversionSequence LTRFmt{PP, LTypeStr, LTR, RTypeStr};
2167         FormattedConversionSequence RTLFmt{PP, RTypeStr, RTL, LTypeStr};
2168 
2169         StringRef DiagText = "'%0' and '%1' may be implicitly converted";
2170         if (!LTRFmt.Trivial || !RTLFmt.Trivial)
2171           DiagText = "'%0' and '%1' may be implicitly converted: %2, %3";
2172 
2173         {
2174           auto Diag =
2175               diag(RVar->getOuterLocStart(), DiagText, DiagnosticIDs::Note)
2176               << LTypeStr << RTypeStr;
2177 
2178           if (!LTRFmt.Trivial || !RTLFmt.Trivial)
2179             Diag << LTRFmt.DiagnosticText << RTLFmt.DiagnosticText;
2180         }
2181 
2182         StringRef ConversionFunctionDiagText =
2183             "the implicit conversion involves the "
2184             "%select{|converting constructor|conversion operator}0 "
2185             "declared here";
2186         if (const FunctionDecl *LFD = LTR.getUserDefinedConversionFunction())
2187           diag(LFD->getLocation(), ConversionFunctionDiagText,
2188                DiagnosticIDs::Note)
2189               << static_cast<unsigned>(LTR.UDConvKind)
2190               << LTR.getUserDefinedConversionHighlight();
2191         if (const FunctionDecl *RFD = RTL.getUserDefinedConversionFunction())
2192           diag(RFD->getLocation(), ConversionFunctionDiagText,
2193                DiagnosticIDs::Note)
2194               << static_cast<unsigned>(RTL.UDConvKind)
2195               << RTL.getUserDefinedConversionHighlight();
2196       }
2197     }
2198   }
2199 }
2200 
2201 } // namespace bugprone
2202 } // namespace tidy
2203 } // namespace clang
2204