1 //===--- EasilySwappableParametersCheck.cpp - clang-tidy ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "EasilySwappableParametersCheck.h" 10 #include "../utils/OptionsUtils.h" 11 #include "clang/AST/ASTContext.h" 12 #include "clang/AST/RecursiveASTVisitor.h" 13 #include "clang/ASTMatchers/ASTMatchFinder.h" 14 #include "clang/Lex/Lexer.h" 15 #include "llvm/ADT/SmallSet.h" 16 17 #define DEBUG_TYPE "EasilySwappableParametersCheck" 18 #include "llvm/Support/Debug.h" 19 20 namespace optutils = clang::tidy::utils::options; 21 22 /// The default value for the MinimumLength check option. 23 static constexpr std::size_t DefaultMinimumLength = 2; 24 25 /// The default value for ignored parameter names. 26 static const std::string DefaultIgnoredParameterNames = 27 optutils::serializeStringList({"\"\"", "iterator", "Iterator", "begin", 28 "Begin", "end", "End", "first", "First", 29 "last", "Last", "lhs", "LHS", "rhs", "RHS"}); 30 31 /// The default value for ignored parameter type suffixes. 32 static const std::string DefaultIgnoredParameterTypeSuffixes = 33 optutils::serializeStringList({"bool", 34 "Bool", 35 "_Bool", 36 "it", 37 "It", 38 "iterator", 39 "Iterator", 40 "inputit", 41 "InputIt", 42 "forwardit", 43 "FowardIt", 44 "bidirit", 45 "BidirIt", 46 "constiterator", 47 "const_iterator", 48 "Const_Iterator", 49 "Constiterator", 50 "ConstIterator", 51 "RandomIt", 52 "randomit", 53 "random_iterator", 54 "ReverseIt", 55 "reverse_iterator", 56 "reverse_const_iterator", 57 "ConstReverseIterator", 58 "Const_Reverse_Iterator", 59 "const_reverse_iterator" 60 "Constreverseiterator", 61 "constreverseiterator"}); 62 63 /// The default value for the QualifiersMix check option. 64 static constexpr bool DefaultQualifiersMix = false; 65 66 /// The default value for the ModelImplicitConversions check option. 67 static constexpr bool DefaultModelImplicitConversions = true; 68 69 /// The default value for suppressing diagnostics about parameters that are 70 /// used together. 71 static constexpr bool DefaultSuppressParametersUsedTogether = true; 72 73 /// The default value for the NamePrefixSuffixSilenceDissimilarityTreshold 74 /// check option. 75 static constexpr std::size_t 76 DefaultNamePrefixSuffixSilenceDissimilarityTreshold = 1; 77 78 using namespace clang::ast_matchers; 79 80 namespace clang { 81 namespace tidy { 82 namespace bugprone { 83 84 using TheCheck = EasilySwappableParametersCheck; 85 86 namespace filter { 87 class SimilarlyUsedParameterPairSuppressor; 88 89 static bool isIgnoredParameter(const TheCheck &Check, const ParmVarDecl *Node); 90 static inline bool 91 isSimilarlyUsedParameter(const SimilarlyUsedParameterPairSuppressor &Suppressor, 92 const ParmVarDecl *Param1, const ParmVarDecl *Param2); 93 static bool prefixSuffixCoverUnderThreshold(std::size_t Threshold, 94 StringRef Str1, StringRef Str2); 95 } // namespace filter 96 97 namespace model { 98 99 /// The language features involved in allowing the mix between two parameters. 100 enum class MixFlags : unsigned char { 101 Invalid = 0, //< Sentinel bit pattern. DO NOT USE! 102 103 //< Certain constructs (such as pointers to noexcept/non-noexcept functions) 104 // have the same CanonicalType, which would result in false positives. 105 // During the recursive modelling call, this flag is set if a later diagnosed 106 // canonical type equivalence should be thrown away. 107 WorkaroundDisableCanonicalEquivalence = 1, 108 109 None = 2, //< Mix between the two parameters is not possible. 110 Trivial = 4, //< The two mix trivially, and are the exact same type. 111 Canonical = 8, //< The two mix because the types refer to the same 112 // CanonicalType, but we do not elaborate as to how. 113 TypeAlias = 16, //< The path from one type to the other involves 114 // desugaring type aliases. 115 ReferenceBind = 32, //< The mix involves the binding power of "const &". 116 Qualifiers = 64, //< The mix involves change in the qualifiers. 117 ImplicitConversion = 128, //< The mixing of the parameters is possible 118 // through implicit conversions between the types. 119 120 LLVM_MARK_AS_BITMASK_ENUM(/* LargestValue =*/ImplicitConversion) 121 }; 122 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 123 124 /// Returns whether the SearchedFlag is turned on in the Data. 125 static inline bool hasFlag(MixFlags Data, MixFlags SearchedFlag) { 126 assert(SearchedFlag != MixFlags::Invalid && 127 "can't be used to detect lack of all bits!"); 128 129 // "Data & SearchedFlag" would need static_cast<bool>() in conditions. 130 return (Data & SearchedFlag) == SearchedFlag; 131 } 132 133 #ifndef NDEBUG 134 135 // The modelling logic of this check is more complex than usual, and 136 // potentially hard to understand without the ability to see into the 137 // representation during the recursive descent. This debug code is only 138 // compiled in 'Debug' mode, or if LLVM_ENABLE_ASSERTIONS config is turned on. 139 140 /// Formats the MixFlags enum into a useful, user-readable representation. 141 static inline std::string formatMixFlags(MixFlags F) { 142 if (F == MixFlags::Invalid) 143 return "#Inv!"; 144 145 SmallString<8> Str{"-------"}; 146 147 if (hasFlag(F, MixFlags::None)) 148 // Shows the None bit explicitly, as it can be applied in the recursion 149 // even if other bits are set. 150 Str[0] = '!'; 151 if (hasFlag(F, MixFlags::Trivial)) 152 Str[1] = 'T'; 153 if (hasFlag(F, MixFlags::Canonical)) 154 Str[2] = 'C'; 155 if (hasFlag(F, MixFlags::TypeAlias)) 156 Str[3] = 't'; 157 if (hasFlag(F, MixFlags::ReferenceBind)) 158 Str[4] = '&'; 159 if (hasFlag(F, MixFlags::Qualifiers)) 160 Str[5] = 'Q'; 161 if (hasFlag(F, MixFlags::ImplicitConversion)) 162 Str[6] = 'i'; 163 164 if (hasFlag(F, MixFlags::WorkaroundDisableCanonicalEquivalence)) 165 Str.append("(~C)"); 166 167 return Str.str().str(); 168 } 169 170 #else 171 172 static inline std::string formatMixFlags(MixFlags F); 173 174 #endif // NDEBUG 175 176 /// The results of the steps of an Implicit Conversion Sequence is saved in 177 /// an instance of this record. 178 /// 179 /// A ConversionSequence maps the steps of the conversion with a member for 180 /// each type involved in the conversion. Imagine going from a hypothetical 181 /// Complex class to projecting it to the real part as a const double. 182 /// 183 /// I.e., given: 184 /// 185 /// struct Complex { 186 /// operator double() const; 187 /// }; 188 /// 189 /// void functionBeingAnalysed(Complex C, const double R); 190 /// 191 /// we will get the following sequence: 192 /// 193 /// (Begin=) Complex 194 /// 195 /// The first standard conversion is a qualification adjustment. 196 /// (AfterFirstStandard=) const Complex 197 /// 198 /// Then the user-defined conversion is executed. 199 /// (UDConvOp.ConversionOperatorResultType=) double 200 /// 201 /// Then this 'double' is qualifier-adjusted to 'const double'. 202 /// (AfterSecondStandard=) double 203 /// 204 /// The conversion's result has now been calculated, so it ends here. 205 /// (End=) double. 206 /// 207 /// Explicit storing of Begin and End in this record is needed, because 208 /// getting to what Begin and End here are needs further resolution of types, 209 /// e.g. in the case of typedefs: 210 /// 211 /// using Comp = Complex; 212 /// using CD = const double; 213 /// void functionBeingAnalysed2(Comp C, CD R); 214 /// 215 /// In this case, the user will be diagnosed with a potential conversion 216 /// between the two typedefs as written in the code, but to elaborate the 217 /// reasoning behind this conversion, we also need to show what the typedefs 218 /// mean. See FormattedConversionSequence towards the bottom of this file! 219 struct ConversionSequence { 220 enum UserDefinedConversionKind { UDCK_None, UDCK_Ctor, UDCK_Oper }; 221 222 struct UserDefinedConvertingConstructor { 223 const CXXConstructorDecl *Fun; 224 QualType ConstructorParameterType; 225 QualType UserDefinedType; 226 }; 227 228 struct UserDefinedConversionOperator { 229 const CXXConversionDecl *Fun; 230 QualType UserDefinedType; 231 QualType ConversionOperatorResultType; 232 }; 233 234 /// The type the conversion stared from. 235 QualType Begin; 236 237 /// The intermediate type after the first Standard Conversion Sequence. 238 QualType AfterFirstStandard; 239 240 /// The details of the user-defined conversion involved, as a tagged union. 241 union { 242 char None; 243 UserDefinedConvertingConstructor UDConvCtor; 244 UserDefinedConversionOperator UDConvOp; 245 }; 246 UserDefinedConversionKind UDConvKind; 247 248 /// The intermediate type after performing the second Standard Conversion 249 /// Sequence. 250 QualType AfterSecondStandard; 251 252 /// The result type the conversion targeted. 253 QualType End; 254 255 ConversionSequence() : None(0), UDConvKind(UDCK_None) {} 256 ConversionSequence(QualType From, QualType To) 257 : Begin(From), None(0), UDConvKind(UDCK_None), End(To) {} 258 259 explicit operator bool() const { 260 return !AfterFirstStandard.isNull() || UDConvKind != UDCK_None || 261 !AfterSecondStandard.isNull(); 262 } 263 264 /// Returns all the "steps" (non-unique and non-similar) types involved in 265 /// the conversion sequence. This method does **NOT** return Begin and End. 266 SmallVector<QualType, 4> getInvolvedTypesInSequence() const { 267 SmallVector<QualType, 4> Ret; 268 auto EmplaceIfDifferent = [&Ret](QualType QT) { 269 if (QT.isNull()) 270 return; 271 if (Ret.empty()) 272 Ret.emplace_back(QT); 273 else if (Ret.back() != QT) 274 Ret.emplace_back(QT); 275 }; 276 277 EmplaceIfDifferent(AfterFirstStandard); 278 switch (UDConvKind) { 279 case UDCK_Ctor: 280 EmplaceIfDifferent(UDConvCtor.ConstructorParameterType); 281 EmplaceIfDifferent(UDConvCtor.UserDefinedType); 282 break; 283 case UDCK_Oper: 284 EmplaceIfDifferent(UDConvOp.UserDefinedType); 285 EmplaceIfDifferent(UDConvOp.ConversionOperatorResultType); 286 break; 287 case UDCK_None: 288 break; 289 } 290 EmplaceIfDifferent(AfterSecondStandard); 291 292 return Ret; 293 } 294 295 /// Updates the steps of the conversion sequence with the steps from the 296 /// other instance. 297 /// 298 /// \note This method does not check if the resulting conversion sequence is 299 /// sensible! 300 ConversionSequence &update(const ConversionSequence &RHS) { 301 if (!RHS.AfterFirstStandard.isNull()) 302 AfterFirstStandard = RHS.AfterFirstStandard; 303 switch (RHS.UDConvKind) { 304 case UDCK_Ctor: 305 UDConvKind = UDCK_Ctor; 306 UDConvCtor = RHS.UDConvCtor; 307 break; 308 case UDCK_Oper: 309 UDConvKind = UDCK_Oper; 310 UDConvOp = RHS.UDConvOp; 311 break; 312 case UDCK_None: 313 break; 314 } 315 if (!RHS.AfterSecondStandard.isNull()) 316 AfterSecondStandard = RHS.AfterSecondStandard; 317 318 return *this; 319 } 320 321 /// Sets the user-defined conversion to the given constructor. 322 void setConversion(const UserDefinedConvertingConstructor &UDCC) { 323 UDConvKind = UDCK_Ctor; 324 UDConvCtor = UDCC; 325 } 326 327 /// Sets the user-defined conversion to the given operator. 328 void setConversion(const UserDefinedConversionOperator &UDCO) { 329 UDConvKind = UDCK_Oper; 330 UDConvOp = UDCO; 331 } 332 333 /// Returns the type in the conversion that's formally "in our hands" once 334 /// the user-defined conversion is executed. 335 QualType getTypeAfterUserDefinedConversion() const { 336 switch (UDConvKind) { 337 case UDCK_Ctor: 338 return UDConvCtor.UserDefinedType; 339 case UDCK_Oper: 340 return UDConvOp.ConversionOperatorResultType; 341 case UDCK_None: 342 return {}; 343 } 344 llvm_unreachable("Invalid UDConv kind."); 345 } 346 347 const CXXMethodDecl *getUserDefinedConversionFunction() const { 348 switch (UDConvKind) { 349 case UDCK_Ctor: 350 return UDConvCtor.Fun; 351 case UDCK_Oper: 352 return UDConvOp.Fun; 353 case UDCK_None: 354 return {}; 355 } 356 llvm_unreachable("Invalid UDConv kind."); 357 } 358 359 /// Returns the SourceRange in the text that corresponds to the interesting 360 /// part of the user-defined conversion. This is either the parameter type 361 /// in a converting constructor, or the conversion result type in a conversion 362 /// operator. 363 SourceRange getUserDefinedConversionHighlight() const { 364 switch (UDConvKind) { 365 case UDCK_Ctor: 366 return UDConvCtor.Fun->getParamDecl(0)->getSourceRange(); 367 case UDCK_Oper: 368 // getReturnTypeSourceRange() does not work for CXXConversionDecls as the 369 // returned type is physically behind the declaration's name ("operator"). 370 if (const FunctionTypeLoc FTL = UDConvOp.Fun->getFunctionTypeLoc()) 371 if (const TypeLoc RetLoc = FTL.getReturnLoc()) 372 return RetLoc.getSourceRange(); 373 return {}; 374 case UDCK_None: 375 return {}; 376 } 377 llvm_unreachable("Invalid UDConv kind."); 378 } 379 }; 380 381 /// Contains the metadata for the mixability result between two types, 382 /// independently of which parameters they were calculated from. 383 struct MixData { 384 /// The flag bits of the mix indicating what language features allow for it. 385 MixFlags Flags = MixFlags::Invalid; 386 387 /// A potentially calculated common underlying type after desugaring, that 388 /// both sides of the mix can originate from. 389 QualType CommonType; 390 391 /// The steps an implicit conversion performs to get from one type to the 392 /// other. 393 ConversionSequence Conversion, ConversionRTL; 394 395 /// True if the MixData was specifically created with only a one-way 396 /// conversion modelled. 397 bool CreatedFromOneWayConversion = false; 398 399 MixData(MixFlags Flags) : Flags(Flags) {} 400 MixData(MixFlags Flags, QualType CommonType) 401 : Flags(Flags), CommonType(CommonType) {} 402 MixData(MixFlags Flags, ConversionSequence Conv) 403 : Flags(Flags), Conversion(Conv), CreatedFromOneWayConversion(true) {} 404 MixData(MixFlags Flags, ConversionSequence LTR, ConversionSequence RTL) 405 : Flags(Flags), Conversion(LTR), ConversionRTL(RTL) {} 406 MixData(MixFlags Flags, QualType CommonType, ConversionSequence LTR, 407 ConversionSequence RTL) 408 : Flags(Flags), CommonType(CommonType), Conversion(LTR), 409 ConversionRTL(RTL) {} 410 411 void sanitize() { 412 assert(Flags != MixFlags::Invalid && "sanitize() called on invalid bitvec"); 413 414 MixFlags CanonicalAndWorkaround = 415 MixFlags::Canonical | MixFlags::WorkaroundDisableCanonicalEquivalence; 416 if ((Flags & CanonicalAndWorkaround) == CanonicalAndWorkaround) { 417 // A workaround for too eagerly equivalent canonical types was requested, 418 // and a canonical equivalence was proven. Fulfill the request and throw 419 // this result away. 420 Flags = MixFlags::None; 421 return; 422 } 423 424 if (hasFlag(Flags, MixFlags::None)) { 425 // If anywhere down the recursion a potential mix "path" is deemed 426 // impossible, throw away all the other bits because the mix is not 427 // possible. 428 Flags = MixFlags::None; 429 return; 430 } 431 432 if (Flags == MixFlags::Trivial) 433 return; 434 435 if (static_cast<bool>(Flags ^ MixFlags::Trivial)) 436 // If the mix involves somewhere trivial equivalence but down the 437 // recursion other bit(s) were set, remove the trivial bit, as it is not 438 // trivial. 439 Flags &= ~MixFlags::Trivial; 440 441 bool ShouldHaveImplicitConvFlag = false; 442 if (CreatedFromOneWayConversion && Conversion) 443 ShouldHaveImplicitConvFlag = true; 444 else if (!CreatedFromOneWayConversion && Conversion && ConversionRTL) 445 // Only say that we have implicit conversion mix possibility if it is 446 // bidirectional. Otherwise, the compiler would report an *actual* swap 447 // at a call site... 448 ShouldHaveImplicitConvFlag = true; 449 450 if (ShouldHaveImplicitConvFlag) 451 Flags |= MixFlags::ImplicitConversion; 452 else 453 Flags &= ~MixFlags::ImplicitConversion; 454 } 455 456 bool isValid() const { return Flags >= MixFlags::None; } 457 458 bool indicatesMixability() const { return Flags > MixFlags::None; } 459 460 /// Add the specified flag bits to the flags. 461 MixData operator|(MixFlags EnableFlags) const { 462 if (CreatedFromOneWayConversion) { 463 MixData M{Flags | EnableFlags, Conversion}; 464 M.CommonType = CommonType; 465 return M; 466 } 467 return {Flags | EnableFlags, CommonType, Conversion, ConversionRTL}; 468 } 469 470 /// Add the specified flag bits to the flags. 471 MixData &operator|=(MixFlags EnableFlags) { 472 Flags |= EnableFlags; 473 return *this; 474 } 475 476 /// Add the specified qualifiers to the common type in the Mix. 477 MixData qualify(Qualifiers Quals) const { 478 SplitQualType Split = CommonType.split(); 479 Split.Quals.addQualifiers(Quals); 480 QualType CommonType{Split.Ty, Split.Quals.getAsOpaqueValue()}; 481 482 if (CreatedFromOneWayConversion) { 483 MixData M{Flags, Conversion}; 484 M.CommonType = CommonType; 485 return M; 486 } 487 return {Flags, CommonType, Conversion, ConversionRTL}; 488 } 489 }; 490 491 /// A named tuple that contains the information for a mix between two concrete 492 /// parameters. 493 struct Mix { 494 const ParmVarDecl *First, *Second; 495 MixData Data; 496 497 Mix(const ParmVarDecl *F, const ParmVarDecl *S, MixData Data) 498 : First(F), Second(S), Data(std::move(Data)) {} 499 500 void sanitize() { Data.sanitize(); } 501 MixFlags flags() const { return Data.Flags; } 502 bool flagsValid() const { return Data.isValid(); } 503 bool mixable() const { return Data.indicatesMixability(); } 504 QualType commonUnderlyingType() const { return Data.CommonType; } 505 const ConversionSequence &leftToRightConversionSequence() const { 506 return Data.Conversion; 507 } 508 const ConversionSequence &rightToLeftConversionSequence() const { 509 return Data.ConversionRTL; 510 } 511 }; 512 513 // NOLINTNEXTLINE(misc-redundant-expression): Seems to be a bogus warning. 514 static_assert(std::is_trivially_copyable<Mix>::value && 515 std::is_trivially_move_constructible<Mix>::value && 516 std::is_trivially_move_assignable<Mix>::value, 517 "Keep frequently used data simple!"); 518 519 struct MixableParameterRange { 520 /// A container for Mixes. 521 using MixVector = SmallVector<Mix, 8>; 522 523 /// The number of parameters iterated to build the instance. 524 std::size_t NumParamsChecked = 0; 525 526 /// The individual flags and supporting information for the mixes. 527 MixVector Mixes; 528 529 /// Gets the leftmost parameter of the range. 530 const ParmVarDecl *getFirstParam() const { 531 // The first element is the LHS of the very first mix in the range. 532 assert(!Mixes.empty()); 533 return Mixes.front().First; 534 } 535 536 /// Gets the rightmost parameter of the range. 537 const ParmVarDecl *getLastParam() const { 538 // The builder function breaks building an instance of this type if it 539 // finds something that can not be mixed with the rest, by going *forward* 540 // in the list of parameters. So at any moment of break, the RHS of the last 541 // element of the mix vector is also the last element of the mixing range. 542 assert(!Mixes.empty()); 543 return Mixes.back().Second; 544 } 545 }; 546 547 /// Helper enum for the recursive calls in the modelling that toggle what kinds 548 /// of implicit conversions are to be modelled. 549 enum ImplicitConversionModellingMode : unsigned char { 550 //< No implicit conversions are modelled. 551 ICMM_None, 552 553 //< The full implicit conversion sequence is modelled. 554 ICMM_All, 555 556 //< Only model a unidirectional implicit conversion and within it only one 557 // standard conversion sequence. 558 ICMM_OneWaySingleStandardOnly 559 }; 560 561 static MixData 562 isLRefEquallyBindingToType(const TheCheck &Check, 563 const LValueReferenceType *LRef, QualType Ty, 564 const ASTContext &Ctx, bool IsRefRHS, 565 ImplicitConversionModellingMode ImplicitMode); 566 567 static MixData 568 approximateImplicitConversion(const TheCheck &Check, QualType LType, 569 QualType RType, const ASTContext &Ctx, 570 ImplicitConversionModellingMode ImplicitMode); 571 572 static inline bool isUselessSugar(const Type *T) { 573 return isa<DecayedType, ElaboratedType, ParenType>(T); 574 } 575 576 /// Approximate the way how LType and RType might refer to "essentially the 577 /// same" type, in a sense that at a particular call site, an expression of 578 /// type LType and RType might be successfully passed to a variable (in our 579 /// specific case, a parameter) of type RType and LType, respectively. 580 /// Note the swapped order! 581 /// 582 /// The returned data structure is not guaranteed to be properly set, as this 583 /// function is potentially recursive. It is the caller's responsibility to 584 /// call sanitize() on the result once the recursion is over. 585 static MixData 586 calculateMixability(const TheCheck &Check, QualType LType, QualType RType, 587 const ASTContext &Ctx, 588 ImplicitConversionModellingMode ImplicitMode) { 589 LLVM_DEBUG(llvm::dbgs() << ">>> calculateMixability for LType:\n"; 590 LType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand RType:\n"; 591 RType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << '\n';); 592 593 // Certain constructs match on the last catch-all getCanonicalType() equality, 594 // which is perhaps something not what we want. If this variable is true, 595 // the canonical type equality will be ignored. 596 bool RecursiveReturnDiscardingCanonicalType = false; 597 598 if (LType == RType) { 599 LLVM_DEBUG(llvm::dbgs() << "<<< calculateMixability. Trivial equality.\n"); 600 return {MixFlags::Trivial, LType}; 601 } 602 603 // Dissolve certain type sugars that do not affect the mixability of one type 604 // with the other, and also do not require any sort of elaboration for the 605 // user to understand. 606 if (isUselessSugar(LType.getTypePtr())) { 607 LLVM_DEBUG(llvm::dbgs() 608 << "--- calculateMixability. LHS is useless sugar.\n"); 609 return calculateMixability(Check, LType.getSingleStepDesugaredType(Ctx), 610 RType, Ctx, ImplicitMode); 611 } 612 if (isUselessSugar(RType.getTypePtr())) { 613 LLVM_DEBUG(llvm::dbgs() 614 << "--- calculateMixability. RHS is useless sugar.\n"); 615 return calculateMixability( 616 Check, LType, RType.getSingleStepDesugaredType(Ctx), Ctx, ImplicitMode); 617 } 618 619 // At a particular call site, what could be passed to a 'T' or 'const T' might 620 // also be passed to a 'const T &' without the call site putting a direct 621 // side effect on the passed expressions. 622 if (const auto *LRef = LType->getAs<LValueReferenceType>()) { 623 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. LHS is &.\n"); 624 return isLRefEquallyBindingToType(Check, LRef, RType, Ctx, false, 625 ImplicitMode) | 626 MixFlags::ReferenceBind; 627 } 628 if (const auto *RRef = RType->getAs<LValueReferenceType>()) { 629 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. RHS is &.\n"); 630 return isLRefEquallyBindingToType(Check, RRef, LType, Ctx, true, 631 ImplicitMode) | 632 MixFlags::ReferenceBind; 633 } 634 635 // Dissolve typedefs after the qualifiers outside the typedef are dealt with. 636 if (LType->getAs<TypedefType>()) { 637 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. LHS is typedef.\n"); 638 return calculateMixability(Check, LType.getSingleStepDesugaredType(Ctx), 639 RType, Ctx, ImplicitMode) | 640 MixFlags::TypeAlias; 641 } 642 if (RType->getAs<TypedefType>()) { 643 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. RHS is typedef.\n"); 644 return calculateMixability(Check, LType, 645 RType.getSingleStepDesugaredType(Ctx), Ctx, 646 ImplicitMode) | 647 MixFlags::TypeAlias; 648 } 649 650 // A parameter of type 'cvr1 T' and another of potentially differently 651 // qualified 'cvr2 T' may bind with the same power, if the user so requested. 652 if (LType.getLocalCVRQualifiers() != RType.getLocalCVRQualifiers()) { 653 LLVM_DEBUG(if (LType.getLocalCVRQualifiers()) llvm::dbgs() 654 << "--- calculateMixability. LHS is CVR.\n"); 655 LLVM_DEBUG(if (RType.getLocalCVRQualifiers()) llvm::dbgs() 656 << "--- calculateMixability. RHS is CVR.\n"); 657 658 if (!Check.QualifiersMix) { 659 LLVM_DEBUG(llvm::dbgs() 660 << "<<< calculateMixability. QualifiersMix turned off.\n"); 661 return {MixFlags::None}; 662 } 663 664 return calculateMixability(Check, LType.getLocalUnqualifiedType(), 665 RType.getLocalUnqualifiedType(), Ctx, 666 ImplicitMode) | 667 MixFlags::Qualifiers; 668 } 669 if (LType.getLocalCVRQualifiers() == RType.getLocalCVRQualifiers() && 670 LType.getLocalCVRQualifiers() != 0) { 671 LLVM_DEBUG(llvm::dbgs() 672 << "--- calculateMixability. LHS and RHS same CVR.\n"); 673 // Apply the same qualifier back into the found common type if we found 674 // a common type between the unqualified versions. 675 return calculateMixability(Check, LType.getLocalUnqualifiedType(), 676 RType.getLocalUnqualifiedType(), Ctx, 677 ImplicitMode) 678 .qualify(LType.getLocalQualifiers()); 679 } 680 681 if (LType->isPointerType() && RType->isPointerType()) { 682 // If both types are pointers, and pointed to the exact same type, 683 // LType == RType took care of that. Try to see if the pointee type has 684 // some other match. However, this must not consider implicit conversions. 685 LLVM_DEBUG(llvm::dbgs() 686 << "--- calculateMixability. LHS and RHS are Ptrs.\n"); 687 MixData MixOfPointee = 688 calculateMixability(Check, LType->getPointeeType(), 689 RType->getPointeeType(), Ctx, ICMM_None); 690 if (hasFlag(MixOfPointee.Flags, 691 MixFlags::WorkaroundDisableCanonicalEquivalence)) 692 RecursiveReturnDiscardingCanonicalType = true; 693 694 MixOfPointee.sanitize(); 695 if (MixOfPointee.indicatesMixability()) { 696 LLVM_DEBUG(llvm::dbgs() 697 << "<<< calculateMixability. Pointees are mixable.\n"); 698 return MixOfPointee; 699 } 700 } 701 702 if (ImplicitMode > ICMM_None) { 703 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. Start implicit...\n"); 704 MixData MixLTR = 705 approximateImplicitConversion(Check, LType, RType, Ctx, ImplicitMode); 706 LLVM_DEBUG( 707 if (hasFlag(MixLTR.Flags, MixFlags::ImplicitConversion)) llvm::dbgs() 708 << "--- calculateMixability. Implicit Left -> Right found.\n";); 709 710 if (ImplicitMode == ICMM_OneWaySingleStandardOnly && MixLTR.Conversion && 711 !MixLTR.Conversion.AfterFirstStandard.isNull() && 712 MixLTR.Conversion.UDConvKind == ConversionSequence::UDCK_None && 713 MixLTR.Conversion.AfterSecondStandard.isNull()) { 714 // The invoker of the method requested only modelling a single standard 715 // conversion, in only the forward direction, and they got just that. 716 LLVM_DEBUG(llvm::dbgs() << "<<< calculateMixability. Implicit " 717 "conversion, one-way, standard-only.\n"); 718 return {MixFlags::ImplicitConversion, MixLTR.Conversion}; 719 } 720 721 // Otherwise if the invoker requested a full modelling, do the other 722 // direction as well. 723 MixData MixRTL = 724 approximateImplicitConversion(Check, RType, LType, Ctx, ImplicitMode); 725 LLVM_DEBUG( 726 if (hasFlag(MixRTL.Flags, MixFlags::ImplicitConversion)) llvm::dbgs() 727 << "--- calculateMixability. Implicit Right -> Left found.\n";); 728 729 if (MixLTR.Conversion && MixRTL.Conversion) { 730 LLVM_DEBUG( 731 llvm::dbgs() 732 << "<<< calculateMixability. Implicit conversion, bidirectional.\n"); 733 return {MixFlags::ImplicitConversion, MixLTR.Conversion, 734 MixRTL.Conversion}; 735 } 736 } 737 738 if (RecursiveReturnDiscardingCanonicalType) 739 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. Before CanonicalType, " 740 "Discard was enabled.\n"); 741 742 // Certain kinds unfortunately need to be side-stepped for canonical type 743 // matching. 744 if (LType->getAs<FunctionProtoType>() || RType->getAs<FunctionProtoType>()) { 745 // Unfortunately, the canonical type of a function pointer becomes the 746 // same even if exactly one is "noexcept" and the other isn't, making us 747 // give a false positive report irrespective of implicit conversions. 748 LLVM_DEBUG(llvm::dbgs() 749 << "--- calculateMixability. Discarding potential canonical " 750 "equivalence on FunctionProtoTypes.\n"); 751 RecursiveReturnDiscardingCanonicalType = true; 752 } 753 754 MixData MixToReturn{MixFlags::None}; 755 756 // If none of the previous logic found a match, try if Clang otherwise 757 // believes the types to be the same. 758 QualType LCanonical = LType.getCanonicalType(); 759 if (LCanonical == RType.getCanonicalType()) { 760 LLVM_DEBUG(llvm::dbgs() 761 << "<<< calculateMixability. Same CanonicalType.\n"); 762 MixToReturn = {MixFlags::Canonical, LCanonical}; 763 } 764 765 if (RecursiveReturnDiscardingCanonicalType) 766 MixToReturn |= MixFlags::WorkaroundDisableCanonicalEquivalence; 767 768 LLVM_DEBUG(if (MixToReturn.Flags == MixFlags::None) llvm::dbgs() 769 << "<<< calculateMixability. No match found.\n"); 770 return MixToReturn; 771 } 772 773 /// Calculates if the reference binds an expression of the given type. This is 774 /// true iff 'LRef' is some 'const T &' type, and the 'Ty' is 'T' or 'const T'. 775 /// 776 /// \param ImplicitMode is forwarded in the possible recursive call to 777 /// calculateMixability. 778 static MixData 779 isLRefEquallyBindingToType(const TheCheck &Check, 780 const LValueReferenceType *LRef, QualType Ty, 781 const ASTContext &Ctx, bool IsRefRHS, 782 ImplicitConversionModellingMode ImplicitMode) { 783 LLVM_DEBUG(llvm::dbgs() << ">>> isLRefEquallyBindingToType for LRef:\n"; 784 LRef->dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand Type:\n"; 785 Ty.dump(llvm::dbgs(), Ctx); llvm::dbgs() << '\n';); 786 787 QualType ReferredType = LRef->getPointeeType(); 788 if (!ReferredType.isLocalConstQualified() && 789 ReferredType->getAs<TypedefType>()) { 790 LLVM_DEBUG( 791 llvm::dbgs() 792 << "--- isLRefEquallyBindingToType. Non-const LRef to Typedef.\n"); 793 ReferredType = ReferredType.getDesugaredType(Ctx); 794 if (!ReferredType.isLocalConstQualified()) { 795 LLVM_DEBUG(llvm::dbgs() 796 << "<<< isLRefEquallyBindingToType. Typedef is not const.\n"); 797 return {MixFlags::None}; 798 } 799 800 LLVM_DEBUG(llvm::dbgs() << "--- isLRefEquallyBindingToType. Typedef is " 801 "const, considering as const LRef.\n"); 802 } else if (!ReferredType.isLocalConstQualified()) { 803 LLVM_DEBUG(llvm::dbgs() 804 << "<<< isLRefEquallyBindingToType. Not const LRef.\n"); 805 return {MixFlags::None}; 806 }; 807 808 assert(ReferredType.isLocalConstQualified() && 809 "Reaching this point means we are sure LRef is effectively a const&."); 810 811 if (ReferredType == Ty) { 812 LLVM_DEBUG( 813 llvm::dbgs() 814 << "<<< isLRefEquallyBindingToType. Type of referred matches.\n"); 815 return {MixFlags::Trivial, ReferredType}; 816 } 817 818 QualType NonConstReferredType = ReferredType; 819 NonConstReferredType.removeLocalConst(); 820 if (NonConstReferredType == Ty) { 821 LLVM_DEBUG(llvm::dbgs() << "<<< isLRefEquallyBindingToType. Type of " 822 "referred matches to non-const qualified.\n"); 823 return {MixFlags::Trivial, NonConstReferredType}; 824 } 825 826 LLVM_DEBUG( 827 llvm::dbgs() 828 << "--- isLRefEquallyBindingToType. Checking mix for underlying type.\n"); 829 return IsRefRHS ? calculateMixability(Check, Ty, NonConstReferredType, Ctx, 830 ImplicitMode) 831 : calculateMixability(Check, NonConstReferredType, Ty, Ctx, 832 ImplicitMode); 833 } 834 835 static inline bool isDerivedToBase(const CXXRecordDecl *Derived, 836 const CXXRecordDecl *Base) { 837 return Derived && Base && Derived->isCompleteDefinition() && 838 Base->isCompleteDefinition() && Derived->isDerivedFrom(Base); 839 } 840 841 static Optional<QualType> 842 approximateStandardConversionSequence(const TheCheck &Check, QualType From, 843 QualType To, const ASTContext &Ctx) { 844 LLVM_DEBUG(llvm::dbgs() << ">>> approximateStdConv for LType:\n"; 845 From.dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand RType:\n"; 846 To.dump(llvm::dbgs(), Ctx); llvm::dbgs() << '\n';); 847 848 // A standard conversion sequence consists of the following, in order: 849 // * Maybe either LValue->RValue conv., Array->Ptr conv., Function->Ptr conv. 850 // * Maybe Numeric promotion or conversion. 851 // * Maybe function pointer conversion. 852 // * Maybe qualifier adjustments. 853 QualType WorkType = From; 854 // Get out the qualifiers of the original type. This will always be 855 // re-applied to the WorkType to ensure it is the same qualification as the 856 // original From was. 857 auto QualifiersToApply = From.split().Quals.getAsOpaqueValue(); 858 859 // LValue->RValue is irrelevant for the check, because it is a thing to be 860 // done at a call site, and will be performed if need be performed. 861 862 // Array->Ptr decay. 863 if (const auto *ArrayT = dyn_cast<ArrayType>(From)) { 864 LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. Array->Ptr decayed.\n"); 865 WorkType = ArrayT->getPointeeType(); 866 } 867 868 // Function->Pointer conversions are also irrelevant, because a 869 // "FunctionType" cannot be the type of a parameter variable, so this 870 // conversion is only meaningful at call sites. 871 872 // Numeric promotions and conversions. 873 const auto *FromBuiltin = WorkType->getAs<BuiltinType>(); 874 const auto *ToBuiltin = To->getAs<BuiltinType>(); 875 bool FromNumeric = FromBuiltin && (FromBuiltin->isIntegerType() || 876 FromBuiltin->isFloatingType()); 877 bool ToNumeric = 878 ToBuiltin && (ToBuiltin->isIntegerType() || ToBuiltin->isFloatingType()); 879 if (FromNumeric && ToNumeric) { 880 // If both are integral types, the numeric conversion is performed. 881 // Reapply the qualifiers of the original type, however, so 882 // "const int -> double" in this case moves over to 883 // "const double -> double". 884 LLVM_DEBUG(llvm::dbgs() 885 << "--- approximateStdConv. Conversion between numerics.\n"); 886 WorkType = QualType{ToBuiltin, QualifiersToApply}; 887 } 888 889 const auto *FromEnum = WorkType->getAs<EnumType>(); 890 const auto *ToEnum = To->getAs<EnumType>(); 891 if (FromEnum && ToNumeric && FromEnum->isUnscopedEnumerationType()) { 892 // Unscoped enumerations (or enumerations in C) convert to numerics. 893 LLVM_DEBUG(llvm::dbgs() 894 << "--- approximateStdConv. Unscoped enum to numeric.\n"); 895 WorkType = QualType{ToBuiltin, QualifiersToApply}; 896 } else if (FromNumeric && ToEnum && ToEnum->isUnscopedEnumerationType()) { 897 // Numeric types convert to enumerations only in C. 898 if (Ctx.getLangOpts().CPlusPlus) { 899 LLVM_DEBUG(llvm::dbgs() << "<<< approximateStdConv. Numeric to unscoped " 900 "enum, not possible in C++!\n"); 901 return {}; 902 } 903 904 LLVM_DEBUG(llvm::dbgs() 905 << "--- approximateStdConv. Numeric to unscoped enum.\n"); 906 WorkType = QualType{ToEnum, QualifiersToApply}; 907 } 908 909 // Check for pointer conversions. 910 const auto *FromPtr = WorkType->getAs<PointerType>(); 911 const auto *ToPtr = To->getAs<PointerType>(); 912 if (FromPtr && ToPtr) { 913 if (ToPtr->isVoidPointerType()) { 914 LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. To void pointer.\n"); 915 WorkType = QualType{ToPtr, QualifiersToApply}; 916 } 917 918 const auto *FromRecordPtr = FromPtr->getPointeeCXXRecordDecl(); 919 const auto *ToRecordPtr = ToPtr->getPointeeCXXRecordDecl(); 920 if (isDerivedToBase(FromRecordPtr, ToRecordPtr)) { 921 LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. Derived* to Base*\n"); 922 WorkType = QualType{ToPtr, QualifiersToApply}; 923 } 924 } 925 926 // Model the slicing Derived-to-Base too, as "BaseT temporary = derived;" 927 // can also be compiled. 928 const auto *FromRecord = WorkType->getAsCXXRecordDecl(); 929 const auto *ToRecord = To->getAsCXXRecordDecl(); 930 if (isDerivedToBase(FromRecord, ToRecord)) { 931 LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. Derived To Base.\n"); 932 WorkType = QualType{ToRecord->getTypeForDecl(), QualifiersToApply}; 933 } 934 935 if (Ctx.getLangOpts().CPlusPlus17 && FromPtr && ToPtr) { 936 // Function pointer conversion: A noexcept function pointer can be passed 937 // to a non-noexcept one. 938 const auto *FromFunctionPtr = 939 FromPtr->getPointeeType()->getAs<FunctionProtoType>(); 940 const auto *ToFunctionPtr = 941 ToPtr->getPointeeType()->getAs<FunctionProtoType>(); 942 if (FromFunctionPtr && ToFunctionPtr && 943 FromFunctionPtr->hasNoexceptExceptionSpec() && 944 !ToFunctionPtr->hasNoexceptExceptionSpec()) { 945 LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. noexcept function " 946 "pointer to non-noexcept.\n"); 947 WorkType = QualType{ToPtr, QualifiersToApply}; 948 } 949 } 950 951 // Qualifier adjustments are modelled according to the user's request in 952 // the QualifiersMix check config. 953 LLVM_DEBUG(llvm::dbgs() 954 << "--- approximateStdConv. Trying qualifier adjustment...\n"); 955 MixData QualConv = calculateMixability(Check, WorkType, To, Ctx, ICMM_None); 956 QualConv.sanitize(); 957 if (hasFlag(QualConv.Flags, MixFlags::Qualifiers)) { 958 LLVM_DEBUG(llvm::dbgs() 959 << "<<< approximateStdConv. Qualifiers adjusted.\n"); 960 WorkType = To; 961 } 962 963 if (WorkType == To) { 964 LLVM_DEBUG(llvm::dbgs() << "<<< approximateStdConv. Reached 'To' type.\n"); 965 return {WorkType}; 966 } 967 968 LLVM_DEBUG(llvm::dbgs() << "<<< approximateStdConv. Did not reach 'To'.\n"); 969 return {}; 970 } 971 972 namespace { 973 974 /// Helper class for storing possible user-defined conversion calls that 975 /// *could* take place in an implicit conversion, and selecting the one that 976 /// most likely *does*, if any. 977 class UserDefinedConversionSelector { 978 public: 979 /// The conversion associated with a conversion function, together with the 980 /// mixability flags of the conversion function's parameter or return type 981 /// to the rest of the sequence the selector is used in, and the sequence 982 /// that applied through the conversion itself. 983 struct PreparedConversion { 984 const CXXMethodDecl *ConversionFun; 985 MixFlags Flags; 986 ConversionSequence Seq; 987 988 PreparedConversion(const CXXMethodDecl *CMD, MixFlags F, 989 ConversionSequence S) 990 : ConversionFun(CMD), Flags(F), Seq(S) {} 991 }; 992 993 UserDefinedConversionSelector(const TheCheck &Check) : Check(Check) {} 994 995 /// Adds the conversion between the two types for the given function into 996 /// the possible implicit conversion set. FromType and ToType is either: 997 /// * the result of a standard sequence and a converting ctor parameter 998 /// * the return type of a conversion operator and the expected target of 999 /// an implicit conversion. 1000 void addConversion(const CXXMethodDecl *ConvFun, QualType FromType, 1001 QualType ToType) { 1002 // Try to go from the FromType to the ToType wiht only a single implicit 1003 // conversion, to see if the conversion function is applicable. 1004 MixData Mix = 1005 calculateMixability(Check, FromType, ToType, ConvFun->getASTContext(), 1006 ICMM_OneWaySingleStandardOnly); 1007 Mix.sanitize(); 1008 if (!Mix.indicatesMixability()) 1009 return; 1010 1011 LLVM_DEBUG(llvm::dbgs() << "--- tryConversion. Found viable with flags: " 1012 << formatMixFlags(Mix.Flags) << '\n'); 1013 FlaggedConversions.emplace_back(ConvFun, Mix.Flags, Mix.Conversion); 1014 } 1015 1016 /// Selects the best conversion function that is applicable from the 1017 /// prepared set of potential conversion functions taken. 1018 Optional<PreparedConversion> operator()() const { 1019 if (FlaggedConversions.empty()) { 1020 LLVM_DEBUG(llvm::dbgs() << "--- selectUserDefinedConv. Empty.\n"); 1021 return {}; 1022 } 1023 if (FlaggedConversions.size() == 1) { 1024 LLVM_DEBUG(llvm::dbgs() << "--- selectUserDefinedConv. Single.\n"); 1025 return FlaggedConversions.front(); 1026 } 1027 1028 Optional<PreparedConversion> BestConversion; 1029 unsigned short HowManyGoodConversions = 0; 1030 for (const auto &Prepared : FlaggedConversions) { 1031 LLVM_DEBUG(llvm::dbgs() << "--- selectUserDefinedConv. Candidate flags: " 1032 << formatMixFlags(Prepared.Flags) << '\n'); 1033 if (!BestConversion) { 1034 BestConversion = Prepared; 1035 ++HowManyGoodConversions; 1036 continue; 1037 } 1038 1039 bool BestConversionHasImplicit = 1040 hasFlag(BestConversion->Flags, MixFlags::ImplicitConversion); 1041 bool ThisConversionHasImplicit = 1042 hasFlag(Prepared.Flags, MixFlags::ImplicitConversion); 1043 if (!BestConversionHasImplicit && ThisConversionHasImplicit) 1044 // This is a worse conversion, because a better one was found earlier. 1045 continue; 1046 1047 if (BestConversionHasImplicit && !ThisConversionHasImplicit) { 1048 // If the so far best selected conversion needs a previous implicit 1049 // conversion to match the user-defined converting function, but this 1050 // conversion does not, this is a better conversion, and we can throw 1051 // away the previously selected conversion(s). 1052 BestConversion = Prepared; 1053 HowManyGoodConversions = 1; 1054 continue; 1055 } 1056 1057 if (BestConversionHasImplicit == ThisConversionHasImplicit) 1058 // The current conversion is the same in term of goodness than the 1059 // already selected one. 1060 ++HowManyGoodConversions; 1061 } 1062 1063 if (HowManyGoodConversions == 1) { 1064 LLVM_DEBUG(llvm::dbgs() 1065 << "--- selectUserDefinedConv. Unique result. Flags: " 1066 << formatMixFlags(BestConversion->Flags) << '\n'); 1067 return BestConversion; 1068 } 1069 1070 LLVM_DEBUG(llvm::dbgs() 1071 << "--- selectUserDefinedConv. No, or ambiguous.\n"); 1072 return {}; 1073 } 1074 1075 private: 1076 llvm::SmallVector<PreparedConversion, 2> FlaggedConversions; 1077 const TheCheck &Check; 1078 }; 1079 1080 } // namespace 1081 1082 static Optional<ConversionSequence> 1083 tryConversionOperators(const TheCheck &Check, const CXXRecordDecl *RD, 1084 QualType ToType) { 1085 if (!RD || !RD->isCompleteDefinition()) 1086 return {}; 1087 RD = RD->getDefinition(); 1088 1089 LLVM_DEBUG(llvm::dbgs() << ">>> tryConversionOperators: " << RD->getName() 1090 << " to:\n"; 1091 ToType.dump(llvm::dbgs(), RD->getASTContext()); 1092 llvm::dbgs() << '\n';); 1093 1094 UserDefinedConversionSelector ConversionSet{Check}; 1095 1096 for (const NamedDecl *Method : RD->getVisibleConversionFunctions()) { 1097 const auto *Con = dyn_cast<CXXConversionDecl>(Method); 1098 if (!Con || Con->isExplicit()) 1099 continue; 1100 LLVM_DEBUG(llvm::dbgs() << "--- tryConversionOperators. Trying:\n"; 1101 Con->dump(llvm::dbgs()); llvm::dbgs() << '\n';); 1102 1103 // Try to go from the result of conversion operator to the expected type, 1104 // without calculating another user-defined conversion. 1105 ConversionSet.addConversion(Con, Con->getConversionType(), ToType); 1106 } 1107 1108 if (Optional<UserDefinedConversionSelector::PreparedConversion> 1109 SelectedConversion = ConversionSet()) { 1110 QualType RecordType{RD->getTypeForDecl(), 0}; 1111 1112 ConversionSequence Result{RecordType, ToType}; 1113 // The conversion from the operator call's return type to ToType was 1114 // modelled as a "pre-conversion" in the operator call, but it is the 1115 // "post-conversion" from the point of view of the original conversion 1116 // we are modelling. 1117 Result.AfterSecondStandard = SelectedConversion->Seq.AfterFirstStandard; 1118 1119 ConversionSequence::UserDefinedConversionOperator ConvOp; 1120 ConvOp.Fun = cast<CXXConversionDecl>(SelectedConversion->ConversionFun); 1121 ConvOp.UserDefinedType = RecordType; 1122 ConvOp.ConversionOperatorResultType = ConvOp.Fun->getConversionType(); 1123 Result.setConversion(ConvOp); 1124 1125 LLVM_DEBUG(llvm::dbgs() << "<<< tryConversionOperators. Found result.\n"); 1126 return Result; 1127 } 1128 1129 LLVM_DEBUG(llvm::dbgs() << "<<< tryConversionOperators. No conversion.\n"); 1130 return {}; 1131 } 1132 1133 static Optional<ConversionSequence> 1134 tryConvertingConstructors(const TheCheck &Check, QualType FromType, 1135 const CXXRecordDecl *RD) { 1136 if (!RD || !RD->isCompleteDefinition()) 1137 return {}; 1138 RD = RD->getDefinition(); 1139 1140 LLVM_DEBUG(llvm::dbgs() << ">>> tryConveringConstructors: " << RD->getName() 1141 << " from:\n"; 1142 FromType.dump(llvm::dbgs(), RD->getASTContext()); 1143 llvm::dbgs() << '\n';); 1144 1145 UserDefinedConversionSelector ConversionSet{Check}; 1146 1147 for (const CXXConstructorDecl *Con : RD->ctors()) { 1148 if (Con->isCopyOrMoveConstructor() || 1149 !Con->isConvertingConstructor(/* AllowExplicit =*/false)) 1150 continue; 1151 LLVM_DEBUG(llvm::dbgs() << "--- tryConvertingConstructors. Trying:\n"; 1152 Con->dump(llvm::dbgs()); llvm::dbgs() << '\n';); 1153 1154 // Try to go from the original FromType to the converting constructor's 1155 // parameter type without another user-defined conversion. 1156 ConversionSet.addConversion(Con, FromType, Con->getParamDecl(0)->getType()); 1157 } 1158 1159 if (Optional<UserDefinedConversionSelector::PreparedConversion> 1160 SelectedConversion = ConversionSet()) { 1161 QualType RecordType{RD->getTypeForDecl(), 0}; 1162 1163 ConversionSequence Result{FromType, RecordType}; 1164 Result.AfterFirstStandard = SelectedConversion->Seq.AfterFirstStandard; 1165 1166 ConversionSequence::UserDefinedConvertingConstructor Ctor; 1167 Ctor.Fun = cast<CXXConstructorDecl>(SelectedConversion->ConversionFun); 1168 Ctor.ConstructorParameterType = Ctor.Fun->getParamDecl(0)->getType(); 1169 Ctor.UserDefinedType = RecordType; 1170 Result.setConversion(Ctor); 1171 1172 LLVM_DEBUG(llvm::dbgs() 1173 << "<<< tryConvertingConstructors. Found result.\n"); 1174 return Result; 1175 } 1176 1177 LLVM_DEBUG(llvm::dbgs() << "<<< tryConvertingConstructors. No conversion.\n"); 1178 return {}; 1179 } 1180 1181 /// Returns whether an expression of LType can be used in an RType context, as 1182 /// per the implicit conversion rules. 1183 /// 1184 /// Note: the result of this operation, unlike that of calculateMixability, is 1185 /// **NOT** symmetric. 1186 static MixData 1187 approximateImplicitConversion(const TheCheck &Check, QualType LType, 1188 QualType RType, const ASTContext &Ctx, 1189 ImplicitConversionModellingMode ImplicitMode) { 1190 LLVM_DEBUG(llvm::dbgs() << ">>> approximateImplicitConversion for LType:\n"; 1191 LType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand RType:\n"; 1192 RType.dump(llvm::dbgs(), Ctx); 1193 llvm::dbgs() << "\nimplicit mode: " << ImplicitMode << '\n';); 1194 if (LType == RType) 1195 return {MixFlags::Trivial, LType}; 1196 1197 // An implicit conversion sequence consists of the following, in order: 1198 // * Maybe standard conversion sequence. 1199 // * Maybe user-defined conversion. 1200 // * Maybe standard conversion sequence. 1201 ConversionSequence ImplicitSeq{LType, RType}; 1202 QualType WorkType = LType; 1203 1204 Optional<QualType> AfterFirstStdConv = 1205 approximateStandardConversionSequence(Check, LType, RType, Ctx); 1206 if (AfterFirstStdConv) { 1207 LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Standard " 1208 "Pre-Conversion found!\n"); 1209 ImplicitSeq.AfterFirstStandard = AfterFirstStdConv.getValue(); 1210 WorkType = ImplicitSeq.AfterFirstStandard; 1211 } 1212 1213 if (ImplicitMode == ICMM_OneWaySingleStandardOnly) 1214 // If the caller only requested modelling of a standard conversion, bail. 1215 return {ImplicitSeq.AfterFirstStandard.isNull() 1216 ? MixFlags::None 1217 : MixFlags::ImplicitConversion, 1218 ImplicitSeq}; 1219 1220 if (Ctx.getLangOpts().CPlusPlus) { 1221 bool FoundConversionOperator = false, FoundConvertingCtor = false; 1222 1223 if (const auto *LRD = WorkType->getAsCXXRecordDecl()) { 1224 Optional<ConversionSequence> ConversionOperatorResult = 1225 tryConversionOperators(Check, LRD, RType); 1226 if (ConversionOperatorResult) { 1227 LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Found " 1228 "conversion operator.\n"); 1229 ImplicitSeq.update(ConversionOperatorResult.getValue()); 1230 WorkType = ImplicitSeq.getTypeAfterUserDefinedConversion(); 1231 FoundConversionOperator = true; 1232 } 1233 } 1234 1235 if (const auto *RRD = RType->getAsCXXRecordDecl()) { 1236 // Use the original "LType" here, and not WorkType, because the 1237 // conversion to the converting constructors' parameters will be 1238 // modelled in the recursive call. 1239 Optional<ConversionSequence> ConvCtorResult = 1240 tryConvertingConstructors(Check, LType, RRD); 1241 if (ConvCtorResult) { 1242 LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Found " 1243 "converting constructor.\n"); 1244 ImplicitSeq.update(ConvCtorResult.getValue()); 1245 WorkType = ImplicitSeq.getTypeAfterUserDefinedConversion(); 1246 FoundConvertingCtor = true; 1247 } 1248 } 1249 1250 if (FoundConversionOperator && FoundConvertingCtor) { 1251 // If both an operator and a ctor matches, the sequence is ambiguous. 1252 LLVM_DEBUG(llvm::dbgs() 1253 << "<<< approximateImplicitConversion. Found both " 1254 "user-defined conversion kinds in the same sequence!\n"); 1255 return {MixFlags::None}; 1256 } 1257 } 1258 1259 // After the potential user-defined conversion, another standard conversion 1260 // sequence might exist. 1261 LLVM_DEBUG( 1262 llvm::dbgs() 1263 << "--- approximateImplicitConversion. Try to find post-conversion.\n"); 1264 MixData SecondStdConv = approximateImplicitConversion( 1265 Check, WorkType, RType, Ctx, ICMM_OneWaySingleStandardOnly); 1266 if (SecondStdConv.indicatesMixability()) { 1267 LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Standard " 1268 "Post-Conversion found!\n"); 1269 1270 // The single-step modelling puts the modelled conversion into the "PreStd" 1271 // variable in the recursive call, but from the PoV of this function, it is 1272 // the post-conversion. 1273 ImplicitSeq.AfterSecondStandard = 1274 SecondStdConv.Conversion.AfterFirstStandard; 1275 WorkType = ImplicitSeq.AfterSecondStandard; 1276 } 1277 1278 if (ImplicitSeq) { 1279 LLVM_DEBUG(llvm::dbgs() 1280 << "<<< approximateImplicitConversion. Found a conversion.\n"); 1281 return {MixFlags::ImplicitConversion, ImplicitSeq}; 1282 } 1283 1284 LLVM_DEBUG( 1285 llvm::dbgs() << "<<< approximateImplicitConversion. No match found.\n"); 1286 return {MixFlags::None}; 1287 } 1288 1289 static MixableParameterRange modelMixingRange( 1290 const TheCheck &Check, const FunctionDecl *FD, std::size_t StartIndex, 1291 const filter::SimilarlyUsedParameterPairSuppressor &UsageBasedSuppressor) { 1292 std::size_t NumParams = FD->getNumParams(); 1293 assert(StartIndex < NumParams && "out of bounds for start"); 1294 const ASTContext &Ctx = FD->getASTContext(); 1295 1296 MixableParameterRange Ret; 1297 // A parameter at index 'StartIndex' had been trivially "checked". 1298 Ret.NumParamsChecked = 1; 1299 1300 for (std::size_t I = StartIndex + 1; I < NumParams; ++I) { 1301 const ParmVarDecl *Ith = FD->getParamDecl(I); 1302 StringRef ParamName = Ith->getName(); 1303 LLVM_DEBUG(llvm::dbgs() 1304 << "Check param #" << I << " '" << ParamName << "'...\n"); 1305 if (filter::isIgnoredParameter(Check, Ith)) { 1306 LLVM_DEBUG(llvm::dbgs() << "Param #" << I << " is ignored. Break!\n"); 1307 break; 1308 } 1309 1310 StringRef PrevParamName = FD->getParamDecl(I - 1)->getName(); 1311 if (!ParamName.empty() && !PrevParamName.empty() && 1312 filter::prefixSuffixCoverUnderThreshold( 1313 Check.NamePrefixSuffixSilenceDissimilarityTreshold, PrevParamName, 1314 ParamName)) { 1315 LLVM_DEBUG(llvm::dbgs() << "Parameter '" << ParamName 1316 << "' follows a pattern with previous parameter '" 1317 << PrevParamName << "'. Break!\n"); 1318 break; 1319 } 1320 1321 // Now try to go forward and build the range of [Start, ..., I, I + 1, ...] 1322 // parameters that can be messed up at a call site. 1323 MixableParameterRange::MixVector MixesOfIth; 1324 for (std::size_t J = StartIndex; J < I; ++J) { 1325 const ParmVarDecl *Jth = FD->getParamDecl(J); 1326 LLVM_DEBUG(llvm::dbgs() 1327 << "Check mix of #" << J << " against #" << I << "...\n"); 1328 1329 if (isSimilarlyUsedParameter(UsageBasedSuppressor, Ith, Jth)) { 1330 // Consider the two similarly used parameters to not be possible in a 1331 // mix-up at the user's request, if they enabled this heuristic. 1332 LLVM_DEBUG(llvm::dbgs() << "Parameters #" << I << " and #" << J 1333 << " deemed related, ignoring...\n"); 1334 1335 // If the parameter #I and #J mixes, then I is mixable with something 1336 // in the current range, so the range has to be broken and I not 1337 // included. 1338 MixesOfIth.clear(); 1339 break; 1340 } 1341 1342 Mix M{Jth, Ith, 1343 calculateMixability(Check, Jth->getType(), Ith->getType(), Ctx, 1344 Check.ModelImplicitConversions ? ICMM_All 1345 : ICMM_None)}; 1346 LLVM_DEBUG(llvm::dbgs() << "Mix flags (raw) : " 1347 << formatMixFlags(M.flags()) << '\n'); 1348 M.sanitize(); 1349 LLVM_DEBUG(llvm::dbgs() << "Mix flags (after sanitize): " 1350 << formatMixFlags(M.flags()) << '\n'); 1351 1352 assert(M.flagsValid() && "All flags decayed!"); 1353 1354 if (M.mixable()) 1355 MixesOfIth.emplace_back(std::move(M)); 1356 } 1357 1358 if (MixesOfIth.empty()) { 1359 // If there weren't any new mixes stored for Ith, the range is 1360 // [Start, ..., I]. 1361 LLVM_DEBUG(llvm::dbgs() 1362 << "Param #" << I 1363 << " does not mix with any in the current range. Break!\n"); 1364 break; 1365 } 1366 1367 Ret.Mixes.insert(Ret.Mixes.end(), MixesOfIth.begin(), MixesOfIth.end()); 1368 ++Ret.NumParamsChecked; // Otherwise a new param was iterated. 1369 } 1370 1371 return Ret; 1372 } 1373 1374 } // namespace model 1375 1376 /// Matches DeclRefExprs and their ignorable wrappers to ParmVarDecls. 1377 AST_MATCHER_FUNCTION(ast_matchers::internal::Matcher<Stmt>, paramRefExpr) { 1378 return expr(ignoringParenImpCasts(ignoringElidableConstructorCall( 1379 declRefExpr(to(parmVarDecl().bind("param")))))); 1380 } 1381 1382 namespace filter { 1383 1384 /// Returns whether the parameter's name or the parameter's type's name is 1385 /// configured by the user to be ignored from analysis and diagnostic. 1386 static bool isIgnoredParameter(const TheCheck &Check, const ParmVarDecl *Node) { 1387 LLVM_DEBUG(llvm::dbgs() << "Checking if '" << Node->getName() 1388 << "' is ignored.\n"); 1389 1390 if (!Node->getIdentifier()) 1391 return llvm::find(Check.IgnoredParameterNames, "\"\"") != 1392 Check.IgnoredParameterNames.end(); 1393 1394 StringRef NodeName = Node->getName(); 1395 if (llvm::find(Check.IgnoredParameterNames, NodeName) != 1396 Check.IgnoredParameterNames.end()) { 1397 LLVM_DEBUG(llvm::dbgs() << "\tName ignored.\n"); 1398 return true; 1399 } 1400 1401 StringRef NodeTypeName = [Node] { 1402 const ASTContext &Ctx = Node->getASTContext(); 1403 const SourceManager &SM = Ctx.getSourceManager(); 1404 SourceLocation B = Node->getTypeSpecStartLoc(); 1405 SourceLocation E = Node->getTypeSpecEndLoc(); 1406 LangOptions LO; 1407 1408 LLVM_DEBUG(llvm::dbgs() << "\tType name code is '" 1409 << Lexer::getSourceText( 1410 CharSourceRange::getTokenRange(B, E), SM, LO) 1411 << "'...\n"); 1412 if (B.isMacroID()) { 1413 LLVM_DEBUG(llvm::dbgs() << "\t\tBeginning is macro.\n"); 1414 B = SM.getTopMacroCallerLoc(B); 1415 } 1416 if (E.isMacroID()) { 1417 LLVM_DEBUG(llvm::dbgs() << "\t\tEnding is macro.\n"); 1418 E = Lexer::getLocForEndOfToken(SM.getTopMacroCallerLoc(E), 0, SM, LO); 1419 } 1420 LLVM_DEBUG(llvm::dbgs() << "\tType name code is '" 1421 << Lexer::getSourceText( 1422 CharSourceRange::getTokenRange(B, E), SM, LO) 1423 << "'...\n"); 1424 1425 return Lexer::getSourceText(CharSourceRange::getTokenRange(B, E), SM, LO); 1426 }(); 1427 1428 LLVM_DEBUG(llvm::dbgs() << "\tType name is '" << NodeTypeName << "'\n"); 1429 if (!NodeTypeName.empty()) { 1430 if (llvm::any_of(Check.IgnoredParameterTypeSuffixes, 1431 [NodeTypeName](const std::string &E) { 1432 return !E.empty() && NodeTypeName.endswith(E); 1433 })) { 1434 LLVM_DEBUG(llvm::dbgs() << "\tType suffix ignored.\n"); 1435 return true; 1436 } 1437 } 1438 1439 return false; 1440 } 1441 1442 /// This namespace contains the implementations for the suppression of 1443 /// diagnostics from similaly used ("related") parameters. 1444 namespace relatedness_heuristic { 1445 1446 static constexpr std::size_t SmallDataStructureSize = 4; 1447 1448 template <typename T, std::size_t N = SmallDataStructureSize> 1449 using ParamToSmallSetMap = 1450 llvm::DenseMap<const ParmVarDecl *, llvm::SmallSet<T, N>>; 1451 1452 /// Returns whether the sets mapped to the two elements in the map have at 1453 /// least one element in common. 1454 template <typename MapTy, typename ElemTy> 1455 bool lazyMapOfSetsIntersectionExists(const MapTy &Map, const ElemTy &E1, 1456 const ElemTy &E2) { 1457 auto E1Iterator = Map.find(E1); 1458 auto E2Iterator = Map.find(E2); 1459 if (E1Iterator == Map.end() || E2Iterator == Map.end()) 1460 return false; 1461 1462 for (const auto &E1SetElem : E1Iterator->second) 1463 if (llvm::find(E2Iterator->second, E1SetElem) != E2Iterator->second.end()) 1464 return true; 1465 1466 return false; 1467 } 1468 1469 /// Implements the heuristic that marks two parameters related if there is 1470 /// a usage for both in the same strict expression subtree. A strict 1471 /// expression subtree is a tree which only includes Expr nodes, i.e. no 1472 /// Stmts and no Decls. 1473 class AppearsInSameExpr : public RecursiveASTVisitor<AppearsInSameExpr> { 1474 using Base = RecursiveASTVisitor<AppearsInSameExpr>; 1475 1476 const FunctionDecl *FD; 1477 const Expr *CurrentExprOnlyTreeRoot = nullptr; 1478 llvm::DenseMap<const ParmVarDecl *, 1479 llvm::SmallPtrSet<const Expr *, SmallDataStructureSize>> 1480 ParentExprsForParamRefs; 1481 1482 public: 1483 void setup(const FunctionDecl *FD) { 1484 this->FD = FD; 1485 TraverseFunctionDecl(const_cast<FunctionDecl *>(FD)); 1486 } 1487 1488 bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const { 1489 return lazyMapOfSetsIntersectionExists(ParentExprsForParamRefs, Param1, 1490 Param2); 1491 } 1492 1493 bool TraverseDecl(Decl *D) { 1494 CurrentExprOnlyTreeRoot = nullptr; 1495 return Base::TraverseDecl(D); 1496 } 1497 1498 bool TraverseStmt(Stmt *S, DataRecursionQueue *Queue = nullptr) { 1499 if (auto *E = dyn_cast_or_null<Expr>(S)) { 1500 bool RootSetInCurrentStackFrame = false; 1501 if (!CurrentExprOnlyTreeRoot) { 1502 CurrentExprOnlyTreeRoot = E; 1503 RootSetInCurrentStackFrame = true; 1504 } 1505 1506 bool Ret = Base::TraverseStmt(S); 1507 1508 if (RootSetInCurrentStackFrame) 1509 CurrentExprOnlyTreeRoot = nullptr; 1510 1511 return Ret; 1512 } 1513 1514 // A Stmt breaks the strictly Expr subtree. 1515 CurrentExprOnlyTreeRoot = nullptr; 1516 return Base::TraverseStmt(S); 1517 } 1518 1519 bool VisitDeclRefExpr(DeclRefExpr *DRE) { 1520 if (!CurrentExprOnlyTreeRoot) 1521 return true; 1522 1523 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 1524 if (llvm::find(FD->parameters(), PVD)) 1525 ParentExprsForParamRefs[PVD].insert(CurrentExprOnlyTreeRoot); 1526 1527 return true; 1528 } 1529 }; 1530 1531 /// Implements the heuristic that marks two parameters related if there are 1532 /// two separate calls to the same function (overload) and the parameters are 1533 /// passed to the same index in both calls, i.e f(a, b) and f(a, c) passes 1534 /// b and c to the same index (2) of f(), marking them related. 1535 class PassedToSameFunction { 1536 ParamToSmallSetMap<std::pair<const FunctionDecl *, unsigned>> TargetParams; 1537 1538 public: 1539 void setup(const FunctionDecl *FD) { 1540 auto ParamsAsArgsInFnCalls = 1541 match(functionDecl(forEachDescendant( 1542 callExpr(forEachArgumentWithParam( 1543 paramRefExpr(), parmVarDecl().bind("passed-to"))) 1544 .bind("call-expr"))), 1545 *FD, FD->getASTContext()); 1546 for (const auto &Match : ParamsAsArgsInFnCalls) { 1547 const auto *PassedParamOfThisFn = Match.getNodeAs<ParmVarDecl>("param"); 1548 const auto *CE = Match.getNodeAs<CallExpr>("call-expr"); 1549 const auto *PassedToParam = Match.getNodeAs<ParmVarDecl>("passed-to"); 1550 assert(PassedParamOfThisFn && CE && PassedToParam); 1551 1552 const FunctionDecl *CalledFn = CE->getDirectCallee(); 1553 if (!CalledFn) 1554 continue; 1555 1556 llvm::Optional<unsigned> TargetIdx; 1557 unsigned NumFnParams = CalledFn->getNumParams(); 1558 for (unsigned Idx = 0; Idx < NumFnParams; ++Idx) 1559 if (CalledFn->getParamDecl(Idx) == PassedToParam) 1560 TargetIdx.emplace(Idx); 1561 1562 assert(TargetIdx.hasValue() && "Matched, but didn't find index?"); 1563 TargetParams[PassedParamOfThisFn].insert( 1564 {CalledFn->getCanonicalDecl(), *TargetIdx}); 1565 } 1566 } 1567 1568 bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const { 1569 return lazyMapOfSetsIntersectionExists(TargetParams, Param1, Param2); 1570 } 1571 }; 1572 1573 /// Implements the heuristic that marks two parameters related if the same 1574 /// member is accessed (referred to) inside the current function's body. 1575 class AccessedSameMemberOf { 1576 ParamToSmallSetMap<const Decl *> AccessedMembers; 1577 1578 public: 1579 void setup(const FunctionDecl *FD) { 1580 auto MembersCalledOnParams = match( 1581 functionDecl(forEachDescendant( 1582 memberExpr(hasObjectExpression(paramRefExpr())).bind("mem-expr"))), 1583 *FD, FD->getASTContext()); 1584 1585 for (const auto &Match : MembersCalledOnParams) { 1586 const auto *AccessedParam = Match.getNodeAs<ParmVarDecl>("param"); 1587 const auto *ME = Match.getNodeAs<MemberExpr>("mem-expr"); 1588 assert(AccessedParam && ME); 1589 AccessedMembers[AccessedParam].insert( 1590 ME->getMemberDecl()->getCanonicalDecl()); 1591 } 1592 } 1593 1594 bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const { 1595 return lazyMapOfSetsIntersectionExists(AccessedMembers, Param1, Param2); 1596 } 1597 }; 1598 1599 /// Implements the heuristic that marks two parameters related if different 1600 /// ReturnStmts return them from the function. 1601 class Returned { 1602 llvm::SmallVector<const ParmVarDecl *, SmallDataStructureSize> ReturnedParams; 1603 1604 public: 1605 void setup(const FunctionDecl *FD) { 1606 // TODO: Handle co_return. 1607 auto ParamReturns = match(functionDecl(forEachDescendant( 1608 returnStmt(hasReturnValue(paramRefExpr())))), 1609 *FD, FD->getASTContext()); 1610 for (const auto &Match : ParamReturns) { 1611 const auto *ReturnedParam = Match.getNodeAs<ParmVarDecl>("param"); 1612 assert(ReturnedParam); 1613 1614 if (find(FD->parameters(), ReturnedParam) == FD->param_end()) 1615 // Inside the subtree of a FunctionDecl there might be ReturnStmts of 1616 // a parameter that isn't the parameter of the function, e.g. in the 1617 // case of lambdas. 1618 continue; 1619 1620 ReturnedParams.emplace_back(ReturnedParam); 1621 } 1622 } 1623 1624 bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const { 1625 return llvm::find(ReturnedParams, Param1) != ReturnedParams.end() && 1626 llvm::find(ReturnedParams, Param2) != ReturnedParams.end(); 1627 } 1628 }; 1629 1630 } // namespace relatedness_heuristic 1631 1632 /// Helper class that is used to detect if two parameters of the same function 1633 /// are used in a similar fashion, to suppress the result. 1634 class SimilarlyUsedParameterPairSuppressor { 1635 const bool Enabled; 1636 relatedness_heuristic::AppearsInSameExpr SameExpr; 1637 relatedness_heuristic::PassedToSameFunction PassToFun; 1638 relatedness_heuristic::AccessedSameMemberOf SameMember; 1639 relatedness_heuristic::Returned Returns; 1640 1641 public: 1642 SimilarlyUsedParameterPairSuppressor(const FunctionDecl *FD, bool Enable) 1643 : Enabled(Enable) { 1644 if (!Enable) 1645 return; 1646 1647 SameExpr.setup(FD); 1648 PassToFun.setup(FD); 1649 SameMember.setup(FD); 1650 Returns.setup(FD); 1651 } 1652 1653 /// Returns whether the specified two parameters are deemed similarly used 1654 /// or related by the heuristics. 1655 bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const { 1656 if (!Enabled) 1657 return false; 1658 1659 LLVM_DEBUG(llvm::dbgs() 1660 << "::: Matching similar usage / relatedness heuristic...\n"); 1661 1662 if (SameExpr(Param1, Param2)) { 1663 LLVM_DEBUG(llvm::dbgs() << "::: Used in the same expression.\n"); 1664 return true; 1665 } 1666 1667 if (PassToFun(Param1, Param2)) { 1668 LLVM_DEBUG(llvm::dbgs() 1669 << "::: Passed to same function in different calls.\n"); 1670 return true; 1671 } 1672 1673 if (SameMember(Param1, Param2)) { 1674 LLVM_DEBUG(llvm::dbgs() 1675 << "::: Same member field access or method called.\n"); 1676 return true; 1677 } 1678 1679 if (Returns(Param1, Param2)) { 1680 LLVM_DEBUG(llvm::dbgs() << "::: Both parameter returned.\n"); 1681 return true; 1682 } 1683 1684 LLVM_DEBUG(llvm::dbgs() << "::: None.\n"); 1685 return false; 1686 } 1687 }; 1688 1689 // (This function hoists the call to operator() of the wrapper, so we do not 1690 // need to define the previous class at the top of the file.) 1691 static inline bool 1692 isSimilarlyUsedParameter(const SimilarlyUsedParameterPairSuppressor &Suppressor, 1693 const ParmVarDecl *Param1, const ParmVarDecl *Param2) { 1694 return Suppressor(Param1, Param2); 1695 } 1696 1697 static void padStringAtEnd(SmallVectorImpl<char> &Str, std::size_t ToLen) { 1698 while (Str.size() < ToLen) 1699 Str.emplace_back('\0'); 1700 } 1701 1702 static void padStringAtBegin(SmallVectorImpl<char> &Str, std::size_t ToLen) { 1703 while (Str.size() < ToLen) 1704 Str.insert(Str.begin(), '\0'); 1705 } 1706 1707 static bool isCommonPrefixWithoutSomeCharacters(std::size_t N, StringRef S1, 1708 StringRef S2) { 1709 assert(S1.size() >= N && S2.size() >= N); 1710 StringRef S1Prefix = S1.take_front(S1.size() - N), 1711 S2Prefix = S2.take_front(S2.size() - N); 1712 return S1Prefix == S2Prefix && !S1Prefix.empty(); 1713 } 1714 1715 static bool isCommonSuffixWithoutSomeCharacters(std::size_t N, StringRef S1, 1716 StringRef S2) { 1717 assert(S1.size() >= N && S2.size() >= N); 1718 StringRef S1Suffix = S1.take_back(S1.size() - N), 1719 S2Suffix = S2.take_back(S2.size() - N); 1720 return S1Suffix == S2Suffix && !S1Suffix.empty(); 1721 } 1722 1723 /// Returns whether the two strings are prefixes or suffixes of each other with 1724 /// at most Threshold characters differing on the non-common end. 1725 static bool prefixSuffixCoverUnderThreshold(std::size_t Threshold, 1726 StringRef Str1, StringRef Str2) { 1727 if (Threshold == 0) 1728 return false; 1729 1730 // Pad the two strings to the longer length. 1731 std::size_t BiggerLength = std::max(Str1.size(), Str2.size()); 1732 1733 if (BiggerLength <= Threshold) 1734 // If the length of the strings is still smaller than the threshold, they 1735 // would be covered by an empty prefix/suffix with the rest differing. 1736 // (E.g. "A" and "X" with Threshold = 1 would mean we think they are 1737 // similar and do not warn about them, which is a too eager assumption.) 1738 return false; 1739 1740 SmallString<32> S1PadE{Str1}, S2PadE{Str2}; 1741 padStringAtEnd(S1PadE, BiggerLength); 1742 padStringAtEnd(S2PadE, BiggerLength); 1743 1744 if (isCommonPrefixWithoutSomeCharacters( 1745 Threshold, StringRef{S1PadE.begin(), BiggerLength}, 1746 StringRef{S2PadE.begin(), BiggerLength})) 1747 return true; 1748 1749 SmallString<32> S1PadB{Str1}, S2PadB{Str2}; 1750 padStringAtBegin(S1PadB, BiggerLength); 1751 padStringAtBegin(S2PadB, BiggerLength); 1752 1753 if (isCommonSuffixWithoutSomeCharacters( 1754 Threshold, StringRef{S1PadB.begin(), BiggerLength}, 1755 StringRef{S2PadB.begin(), BiggerLength})) 1756 return true; 1757 1758 return false; 1759 } 1760 1761 } // namespace filter 1762 1763 /// Matches functions that have at least the specified amount of parameters. 1764 AST_MATCHER_P(FunctionDecl, parameterCountGE, unsigned, N) { 1765 return Node.getNumParams() >= N; 1766 } 1767 1768 /// Matches *any* overloaded unary and binary operators. 1769 AST_MATCHER(FunctionDecl, isOverloadedUnaryOrBinaryOperator) { 1770 switch (Node.getOverloadedOperator()) { 1771 case OO_None: 1772 case OO_New: 1773 case OO_Delete: 1774 case OO_Array_New: 1775 case OO_Array_Delete: 1776 case OO_Conditional: 1777 case OO_Coawait: 1778 return false; 1779 1780 default: 1781 return Node.getNumParams() <= 2; 1782 } 1783 } 1784 1785 /// Returns the DefaultMinimumLength if the Value of requested minimum length 1786 /// is less than 2. Minimum lengths of 0 or 1 are not accepted. 1787 static inline unsigned clampMinimumLength(const unsigned Value) { 1788 return Value < 2 ? DefaultMinimumLength : Value; 1789 } 1790 1791 // FIXME: Maybe unneeded, getNameForDiagnostic() is expected to change to return 1792 // a crafted location when the node itself is unnamed. (See D84658, D85033.) 1793 /// Returns the diagnostic-friendly name of the node, or empty string. 1794 static SmallString<64> getName(const NamedDecl *ND) { 1795 SmallString<64> Name; 1796 llvm::raw_svector_ostream OS{Name}; 1797 ND->getNameForDiagnostic(OS, ND->getASTContext().getPrintingPolicy(), false); 1798 return Name; 1799 } 1800 1801 /// Returns the diagnostic-friendly name of the node, or a constant value. 1802 static SmallString<64> getNameOrUnnamed(const NamedDecl *ND) { 1803 auto Name = getName(ND); 1804 if (Name.empty()) 1805 Name = "<unnamed>"; 1806 return Name; 1807 } 1808 1809 /// Returns whether a particular Mix between two parameters should have the 1810 /// types involved diagnosed to the user. This is only a flag check. 1811 static inline bool needsToPrintTypeInDiagnostic(const model::Mix &M) { 1812 using namespace model; 1813 return static_cast<bool>( 1814 M.flags() & 1815 (MixFlags::TypeAlias | MixFlags::ReferenceBind | MixFlags::Qualifiers)); 1816 } 1817 1818 /// Returns whether a particular Mix between the two parameters should have 1819 /// implicit conversions elaborated. 1820 static inline bool needsToElaborateImplicitConversion(const model::Mix &M) { 1821 return hasFlag(M.flags(), model::MixFlags::ImplicitConversion); 1822 } 1823 1824 namespace { 1825 1826 /// This class formats a conversion sequence into a "Ty1 -> Ty2 -> Ty3" line 1827 /// that can be used in diagnostics. 1828 struct FormattedConversionSequence { 1829 std::string DiagnosticText; 1830 1831 /// The formatted sequence is trivial if it is "Ty1 -> Ty2", but Ty1 and 1832 /// Ty2 are the types that are shown in the code. A trivial diagnostic 1833 /// does not need to be printed. 1834 bool Trivial; 1835 1836 FormattedConversionSequence(const PrintingPolicy &PP, 1837 StringRef StartTypeAsDiagnosed, 1838 const model::ConversionSequence &Conv, 1839 StringRef DestinationTypeAsDiagnosed) { 1840 Trivial = true; 1841 llvm::raw_string_ostream OS{DiagnosticText}; 1842 1843 // Print the type name as it is printed in other places in the diagnostic. 1844 OS << '\'' << StartTypeAsDiagnosed << '\''; 1845 std::string LastAddedType = StartTypeAsDiagnosed.str(); 1846 std::size_t NumElementsAdded = 1; 1847 1848 // However, the parameter's defined type might not be what the implicit 1849 // conversion started with, e.g. if a typedef is found to convert. 1850 std::string SeqBeginTypeStr = Conv.Begin.getAsString(PP); 1851 std::string SeqEndTypeStr = Conv.End.getAsString(PP); 1852 if (StartTypeAsDiagnosed != SeqBeginTypeStr) { 1853 OS << " (as '" << SeqBeginTypeStr << "')"; 1854 LastAddedType = SeqBeginTypeStr; 1855 Trivial = false; 1856 } 1857 1858 auto AddType = [&](StringRef ToAdd) { 1859 if (LastAddedType != ToAdd && ToAdd != SeqEndTypeStr) { 1860 OS << " -> '" << ToAdd << "'"; 1861 LastAddedType = ToAdd.str(); 1862 ++NumElementsAdded; 1863 } 1864 }; 1865 for (QualType InvolvedType : Conv.getInvolvedTypesInSequence()) 1866 // Print every type that's unique in the sequence into the diagnosis. 1867 AddType(InvolvedType.getAsString(PP)); 1868 1869 if (LastAddedType != DestinationTypeAsDiagnosed) { 1870 OS << " -> '" << DestinationTypeAsDiagnosed << "'"; 1871 LastAddedType = DestinationTypeAsDiagnosed.str(); 1872 ++NumElementsAdded; 1873 } 1874 1875 // Same reasoning as with the Begin, e.g. if the converted-to type is a 1876 // typedef, it will not be the same inside the conversion sequence (where 1877 // the model already tore off typedefs) as in the code. 1878 if (DestinationTypeAsDiagnosed != SeqEndTypeStr) { 1879 OS << " (as '" << SeqEndTypeStr << "')"; 1880 LastAddedType = SeqEndTypeStr; 1881 Trivial = false; 1882 } 1883 1884 if (Trivial && NumElementsAdded > 2) 1885 // If the thing is still marked trivial but we have more than the 1886 // from and to types added, it should not be trivial, and elaborated 1887 // when printing the diagnostic. 1888 Trivial = false; 1889 } 1890 }; 1891 1892 /// Retains the elements called with and returns whether the call is done with 1893 /// a new element. 1894 template <typename E, std::size_t N> class InsertOnce { 1895 llvm::SmallSet<E, N> CalledWith; 1896 1897 public: 1898 bool operator()(E El) { return CalledWith.insert(std::move(El)).second; } 1899 1900 bool calledWith(const E &El) const { return CalledWith.contains(El); } 1901 }; 1902 1903 struct SwappedEqualQualTypePair { 1904 QualType LHSType, RHSType; 1905 1906 bool operator==(const SwappedEqualQualTypePair &Other) const { 1907 return (LHSType == Other.LHSType && RHSType == Other.RHSType) || 1908 (LHSType == Other.RHSType && RHSType == Other.LHSType); 1909 } 1910 1911 bool operator<(const SwappedEqualQualTypePair &Other) const { 1912 return LHSType < Other.LHSType && RHSType < Other.RHSType; 1913 } 1914 }; 1915 1916 struct TypeAliasDiagnosticTuple { 1917 QualType LHSType, RHSType, CommonType; 1918 1919 bool operator==(const TypeAliasDiagnosticTuple &Other) const { 1920 return CommonType == Other.CommonType && 1921 ((LHSType == Other.LHSType && RHSType == Other.RHSType) || 1922 (LHSType == Other.RHSType && RHSType == Other.LHSType)); 1923 } 1924 1925 bool operator<(const TypeAliasDiagnosticTuple &Other) const { 1926 return CommonType < Other.CommonType && LHSType < Other.LHSType && 1927 RHSType < Other.RHSType; 1928 } 1929 }; 1930 1931 /// Helper class to only emit a diagnostic related to MixFlags::TypeAlias once. 1932 class UniqueTypeAliasDiagnosticHelper 1933 : public InsertOnce<TypeAliasDiagnosticTuple, 8> { 1934 using Base = InsertOnce<TypeAliasDiagnosticTuple, 8>; 1935 1936 public: 1937 /// Returns whether the diagnostic for LHSType and RHSType which are both 1938 /// referring to CommonType being the same has not been emitted already. 1939 bool operator()(QualType LHSType, QualType RHSType, QualType CommonType) { 1940 if (CommonType.isNull() || CommonType == LHSType || CommonType == RHSType) 1941 return Base::operator()({LHSType, RHSType, {}}); 1942 1943 TypeAliasDiagnosticTuple ThreeTuple{LHSType, RHSType, CommonType}; 1944 if (!Base::operator()(ThreeTuple)) 1945 return false; 1946 1947 bool AlreadySaidLHSAndCommonIsSame = calledWith({LHSType, CommonType, {}}); 1948 bool AlreadySaidRHSAndCommonIsSame = calledWith({RHSType, CommonType, {}}); 1949 if (AlreadySaidLHSAndCommonIsSame && AlreadySaidRHSAndCommonIsSame) { 1950 // "SomeInt == int" && "SomeOtherInt == int" => "Common(SomeInt, 1951 // SomeOtherInt) == int", no need to diagnose it. Save the 3-tuple only 1952 // for shortcut if it ever appears again. 1953 return false; 1954 } 1955 1956 return true; 1957 } 1958 }; 1959 1960 } // namespace 1961 1962 EasilySwappableParametersCheck::EasilySwappableParametersCheck( 1963 StringRef Name, ClangTidyContext *Context) 1964 : ClangTidyCheck(Name, Context), 1965 MinimumLength(clampMinimumLength( 1966 Options.get("MinimumLength", DefaultMinimumLength))), 1967 IgnoredParameterNames(optutils::parseStringList( 1968 Options.get("IgnoredParameterNames", DefaultIgnoredParameterNames))), 1969 IgnoredParameterTypeSuffixes(optutils::parseStringList( 1970 Options.get("IgnoredParameterTypeSuffixes", 1971 DefaultIgnoredParameterTypeSuffixes))), 1972 QualifiersMix(Options.get("QualifiersMix", DefaultQualifiersMix)), 1973 ModelImplicitConversions(Options.get("ModelImplicitConversions", 1974 DefaultModelImplicitConversions)), 1975 SuppressParametersUsedTogether( 1976 Options.get("SuppressParametersUsedTogether", 1977 DefaultSuppressParametersUsedTogether)), 1978 NamePrefixSuffixSilenceDissimilarityTreshold( 1979 Options.get("NamePrefixSuffixSilenceDissimilarityTreshold", 1980 DefaultNamePrefixSuffixSilenceDissimilarityTreshold)) {} 1981 1982 void EasilySwappableParametersCheck::storeOptions( 1983 ClangTidyOptions::OptionMap &Opts) { 1984 Options.store(Opts, "MinimumLength", MinimumLength); 1985 Options.store(Opts, "IgnoredParameterNames", 1986 optutils::serializeStringList(IgnoredParameterNames)); 1987 Options.store(Opts, "IgnoredParameterTypeSuffixes", 1988 optutils::serializeStringList(IgnoredParameterTypeSuffixes)); 1989 Options.store(Opts, "QualifiersMix", QualifiersMix); 1990 Options.store(Opts, "ModelImplicitConversions", ModelImplicitConversions); 1991 Options.store(Opts, "SuppressParametersUsedTogether", 1992 SuppressParametersUsedTogether); 1993 Options.store(Opts, "NamePrefixSuffixSilenceDissimilarityTreshold", 1994 NamePrefixSuffixSilenceDissimilarityTreshold); 1995 } 1996 1997 void EasilySwappableParametersCheck::registerMatchers(MatchFinder *Finder) { 1998 const auto BaseConstraints = functionDecl( 1999 // Only report for definition nodes, as fixing the issues reported 2000 // requires the user to be able to change code. 2001 isDefinition(), parameterCountGE(MinimumLength), 2002 unless(isOverloadedUnaryOrBinaryOperator())); 2003 2004 Finder->addMatcher( 2005 functionDecl(BaseConstraints, 2006 unless(ast_matchers::isTemplateInstantiation())) 2007 .bind("func"), 2008 this); 2009 Finder->addMatcher( 2010 functionDecl(BaseConstraints, isExplicitTemplateSpecialization()) 2011 .bind("func"), 2012 this); 2013 } 2014 2015 void EasilySwappableParametersCheck::check( 2016 const MatchFinder::MatchResult &Result) { 2017 using namespace model; 2018 using namespace filter; 2019 2020 const auto *FD = Result.Nodes.getNodeAs<FunctionDecl>("func"); 2021 assert(FD); 2022 2023 const PrintingPolicy &PP = FD->getASTContext().getPrintingPolicy(); 2024 std::size_t NumParams = FD->getNumParams(); 2025 std::size_t MixableRangeStartIndex = 0; 2026 2027 // Spawn one suppressor and if the user requested, gather information from 2028 // the AST for the parameters' usages. 2029 filter::SimilarlyUsedParameterPairSuppressor UsageBasedSuppressor{ 2030 FD, SuppressParametersUsedTogether}; 2031 2032 LLVM_DEBUG(llvm::dbgs() << "Begin analysis of " << getName(FD) << " with " 2033 << NumParams << " parameters...\n"); 2034 while (MixableRangeStartIndex < NumParams) { 2035 if (isIgnoredParameter(*this, FD->getParamDecl(MixableRangeStartIndex))) { 2036 LLVM_DEBUG(llvm::dbgs() 2037 << "Parameter #" << MixableRangeStartIndex << " ignored.\n"); 2038 ++MixableRangeStartIndex; 2039 continue; 2040 } 2041 2042 MixableParameterRange R = modelMixingRange( 2043 *this, FD, MixableRangeStartIndex, UsageBasedSuppressor); 2044 assert(R.NumParamsChecked > 0 && "Ensure forward progress!"); 2045 MixableRangeStartIndex += R.NumParamsChecked; 2046 if (R.NumParamsChecked < MinimumLength) { 2047 LLVM_DEBUG(llvm::dbgs() << "Ignoring range of " << R.NumParamsChecked 2048 << " lower than limit.\n"); 2049 continue; 2050 } 2051 2052 bool NeedsAnyTypeNote = llvm::any_of(R.Mixes, needsToPrintTypeInDiagnostic); 2053 bool HasAnyImplicits = 2054 llvm::any_of(R.Mixes, needsToElaborateImplicitConversion); 2055 const ParmVarDecl *First = R.getFirstParam(), *Last = R.getLastParam(); 2056 std::string FirstParamTypeAsWritten = First->getType().getAsString(PP); 2057 { 2058 StringRef DiagText; 2059 2060 if (HasAnyImplicits) 2061 DiagText = "%0 adjacent parameters of %1 of convertible types are " 2062 "easily swapped by mistake"; 2063 else if (NeedsAnyTypeNote) 2064 DiagText = "%0 adjacent parameters of %1 of similar type are easily " 2065 "swapped by mistake"; 2066 else 2067 DiagText = "%0 adjacent parameters of %1 of similar type ('%2') are " 2068 "easily swapped by mistake"; 2069 2070 auto Diag = diag(First->getOuterLocStart(), DiagText) 2071 << static_cast<unsigned>(R.NumParamsChecked) << FD; 2072 if (!NeedsAnyTypeNote) 2073 Diag << FirstParamTypeAsWritten; 2074 2075 CharSourceRange HighlightRange = CharSourceRange::getTokenRange( 2076 First->getBeginLoc(), Last->getEndLoc()); 2077 Diag << HighlightRange; 2078 } 2079 2080 // There is a chance that the previous highlight did not succeed, e.g. when 2081 // the two parameters are on different lines. For clarity, show the user 2082 // the involved variable explicitly. 2083 diag(First->getLocation(), "the first parameter in the range is '%0'", 2084 DiagnosticIDs::Note) 2085 << getNameOrUnnamed(First) 2086 << CharSourceRange::getTokenRange(First->getLocation(), 2087 First->getLocation()); 2088 diag(Last->getLocation(), "the last parameter in the range is '%0'", 2089 DiagnosticIDs::Note) 2090 << getNameOrUnnamed(Last) 2091 << CharSourceRange::getTokenRange(Last->getLocation(), 2092 Last->getLocation()); 2093 2094 // Helper classes to silence elaborative diagnostic notes that would be 2095 // too verbose. 2096 UniqueTypeAliasDiagnosticHelper UniqueTypeAlias; 2097 InsertOnce<SwappedEqualQualTypePair, 8> UniqueBindPower; 2098 InsertOnce<SwappedEqualQualTypePair, 8> UniqueImplicitConversion; 2099 2100 for (const model::Mix &M : R.Mixes) { 2101 assert(M.mixable() && "Sentinel or false mix in result."); 2102 if (!needsToPrintTypeInDiagnostic(M) && 2103 !needsToElaborateImplicitConversion(M)) 2104 continue; 2105 2106 // Typedefs might result in the type of the variable needing to be 2107 // emitted to a note diagnostic, so prepare it. 2108 const ParmVarDecl *LVar = M.First; 2109 const ParmVarDecl *RVar = M.Second; 2110 QualType LType = LVar->getType(); 2111 QualType RType = RVar->getType(); 2112 QualType CommonType = M.commonUnderlyingType(); 2113 std::string LTypeStr = LType.getAsString(PP); 2114 std::string RTypeStr = RType.getAsString(PP); 2115 std::string CommonTypeStr = CommonType.getAsString(PP); 2116 2117 if (hasFlag(M.flags(), MixFlags::TypeAlias) && 2118 UniqueTypeAlias(LType, RType, CommonType)) { 2119 StringRef DiagText; 2120 bool ExplicitlyPrintCommonType = false; 2121 if (LTypeStr == CommonTypeStr || RTypeStr == CommonTypeStr) 2122 if (hasFlag(M.flags(), MixFlags::Qualifiers)) 2123 DiagText = "after resolving type aliases, '%0' and '%1' share a " 2124 "common type"; 2125 else 2126 DiagText = 2127 "after resolving type aliases, '%0' and '%1' are the same"; 2128 else if (!CommonType.isNull()) { 2129 DiagText = "after resolving type aliases, the common type of '%0' " 2130 "and '%1' is '%2'"; 2131 ExplicitlyPrintCommonType = true; 2132 } 2133 2134 auto Diag = 2135 diag(LVar->getOuterLocStart(), DiagText, DiagnosticIDs::Note) 2136 << LTypeStr << RTypeStr; 2137 if (ExplicitlyPrintCommonType) 2138 Diag << CommonTypeStr; 2139 } 2140 2141 if ((hasFlag(M.flags(), MixFlags::ReferenceBind) || 2142 hasFlag(M.flags(), MixFlags::Qualifiers)) && 2143 UniqueBindPower({LType, RType})) { 2144 StringRef DiagText = "'%0' and '%1' parameters accept and bind the " 2145 "same kind of values"; 2146 diag(RVar->getOuterLocStart(), DiagText, DiagnosticIDs::Note) 2147 << LTypeStr << RTypeStr; 2148 } 2149 2150 if (needsToElaborateImplicitConversion(M) && 2151 UniqueImplicitConversion({LType, RType})) { 2152 const model::ConversionSequence <R = 2153 M.leftToRightConversionSequence(); 2154 const model::ConversionSequence &RTL = 2155 M.rightToLeftConversionSequence(); 2156 FormattedConversionSequence LTRFmt{PP, LTypeStr, LTR, RTypeStr}; 2157 FormattedConversionSequence RTLFmt{PP, RTypeStr, RTL, LTypeStr}; 2158 2159 StringRef DiagText = "'%0' and '%1' may be implicitly converted"; 2160 if (!LTRFmt.Trivial || !RTLFmt.Trivial) 2161 DiagText = "'%0' and '%1' may be implicitly converted: %2, %3"; 2162 2163 { 2164 auto Diag = 2165 diag(RVar->getOuterLocStart(), DiagText, DiagnosticIDs::Note) 2166 << LTypeStr << RTypeStr; 2167 2168 if (!LTRFmt.Trivial || !RTLFmt.Trivial) 2169 Diag << LTRFmt.DiagnosticText << RTLFmt.DiagnosticText; 2170 } 2171 2172 StringRef ConversionFunctionDiagText = 2173 "the implicit conversion involves the " 2174 "%select{|converting constructor|conversion operator}0 " 2175 "declared here"; 2176 if (const FunctionDecl *LFD = LTR.getUserDefinedConversionFunction()) 2177 diag(LFD->getLocation(), ConversionFunctionDiagText, 2178 DiagnosticIDs::Note) 2179 << static_cast<unsigned>(LTR.UDConvKind) 2180 << LTR.getUserDefinedConversionHighlight(); 2181 if (const FunctionDecl *RFD = RTL.getUserDefinedConversionFunction()) 2182 diag(RFD->getLocation(), ConversionFunctionDiagText, 2183 DiagnosticIDs::Note) 2184 << static_cast<unsigned>(RTL.UDConvKind) 2185 << RTL.getUserDefinedConversionHighlight(); 2186 } 2187 } 2188 } 2189 } 2190 2191 } // namespace bugprone 2192 } // namespace tidy 2193 } // namespace clang 2194