1 //===- bolt/runtime/instr.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // BOLT runtime instrumentation library for x86 Linux. Currently, BOLT does 10 // not support linking modules with dependencies on one another into the final 11 // binary (TODO?), which means this library has to be self-contained in a single 12 // module. 13 // 14 // All extern declarations here need to be defined by BOLT itself. Those will be 15 // undefined symbols that BOLT needs to resolve by emitting these symbols with 16 // MCStreamer. Currently, Passes/Instrumentation.cpp is the pass responsible 17 // for defining the symbols here and these two files have a tight coupling: one 18 // working statically when you run BOLT and another during program runtime when 19 // you run an instrumented binary. The main goal here is to output an fdata file 20 // (BOLT profile) with the instrumentation counters inserted by the static pass. 21 // Counters for indirect calls are an exception, as we can't know them 22 // statically. These counters are created and managed here. To allow this, we 23 // need a minimal framework for allocating memory dynamically. We provide this 24 // with the BumpPtrAllocator class (not LLVM's, but our own version of it). 25 // 26 // Since this code is intended to be inserted into any executable, we decided to 27 // make it standalone and do not depend on any external libraries (i.e. language 28 // support libraries, such as glibc or stdc++). To allow this, we provide a few 29 // light implementations of common OS interacting functionalities using direct 30 // syscall wrappers. Our simple allocator doesn't manage deallocations that 31 // fragment the memory space, so it's stack based. This is the minimal framework 32 // provided here to allow processing instrumented counters and writing fdata. 33 // 34 // In the C++ idiom used here, we never use or rely on constructors or 35 // destructors for global objects. That's because those need support from the 36 // linker in initialization/finalization code, and we want to keep our linker 37 // very simple. Similarly, we don't create any global objects that are zero 38 // initialized, since those would need to go .bss, which our simple linker also 39 // don't support (TODO?). 40 // 41 //===----------------------------------------------------------------------===// 42 43 #if defined (__x86_64__) 44 #include "common.h" 45 46 // Enables a very verbose logging to stderr useful when debugging 47 //#define ENABLE_DEBUG 48 49 #ifdef ENABLE_DEBUG 50 #define DEBUG(X) \ 51 { X; } 52 #else 53 #define DEBUG(X) \ 54 {} 55 #endif 56 57 #pragma GCC visibility push(hidden) 58 59 extern "C" { 60 61 #if defined(__APPLE__) 62 extern uint64_t* _bolt_instr_locations_getter(); 63 extern uint32_t _bolt_num_counters_getter(); 64 65 extern uint8_t* _bolt_instr_tables_getter(); 66 extern uint32_t _bolt_instr_num_funcs_getter(); 67 68 #else 69 70 // Main counters inserted by instrumentation, incremented during runtime when 71 // points of interest (locations) in the program are reached. Those are direct 72 // calls and direct and indirect branches (local ones). There are also counters 73 // for basic block execution if they are a spanning tree leaf and need to be 74 // counted in order to infer the execution count of other edges of the CFG. 75 extern uint64_t __bolt_instr_locations[]; 76 extern uint32_t __bolt_num_counters; 77 // Descriptions are serialized metadata about binary functions written by BOLT, 78 // so we have a minimal understanding about the program structure. For a 79 // reference on the exact format of this metadata, see *Description structs, 80 // Location, IntrumentedNode and EntryNode. 81 // Number of indirect call site descriptions 82 extern uint32_t __bolt_instr_num_ind_calls; 83 // Number of indirect call target descriptions 84 extern uint32_t __bolt_instr_num_ind_targets; 85 // Number of function descriptions 86 extern uint32_t __bolt_instr_num_funcs; 87 // Time to sleep across dumps (when we write the fdata profile to disk) 88 extern uint32_t __bolt_instr_sleep_time; 89 // Do not clear counters across dumps, rewrite file with the updated values 90 extern bool __bolt_instr_no_counters_clear; 91 // Wait until all forks of instrumented process will finish 92 extern bool __bolt_instr_wait_forks; 93 // Filename to dump data to 94 extern char __bolt_instr_filename[]; 95 // Instumented binary file path 96 extern char __bolt_instr_binpath[]; 97 // If true, append current PID to the fdata filename when creating it so 98 // different invocations of the same program can be differentiated. 99 extern bool __bolt_instr_use_pid; 100 // Functions that will be used to instrument indirect calls. BOLT static pass 101 // will identify indirect calls and modify them to load the address in these 102 // trampolines and call this address instead. BOLT can't use direct calls to 103 // our handlers because our addresses here are not known at analysis time. We 104 // only support resolving dependencies from this file to the output of BOLT, 105 // *not* the other way around. 106 // TODO: We need better linking support to make that happen. 107 extern void (*__bolt_ind_call_counter_func_pointer)(); 108 extern void (*__bolt_ind_tailcall_counter_func_pointer)(); 109 // Function pointers to init/fini trampoline routines in the binary, so we can 110 // resume regular execution of these functions that we hooked 111 extern void __bolt_start_trampoline(); 112 extern void __bolt_fini_trampoline(); 113 114 #endif 115 } 116 117 namespace { 118 119 /// A simple allocator that mmaps a fixed size region and manages this space 120 /// in a stack fashion, meaning you always deallocate the last element that 121 /// was allocated. In practice, we don't need to deallocate individual elements. 122 /// We monotonically increase our usage and then deallocate everything once we 123 /// are done processing something. 124 class BumpPtrAllocator { 125 /// This is written before each allocation and act as a canary to detect when 126 /// a bug caused our program to cross allocation boundaries. 127 struct EntryMetadata { 128 uint64_t Magic; 129 uint64_t AllocSize; 130 }; 131 132 public: 133 void *allocate(size_t Size) { 134 Lock L(M); 135 136 if (StackBase == nullptr) { 137 #if defined(__APPLE__) 138 int MAP_PRIVATE_MAP_ANONYMOUS = 0x1002; 139 #else 140 int MAP_PRIVATE_MAP_ANONYMOUS = 0x22; 141 #endif 142 StackBase = reinterpret_cast<uint8_t *>( 143 __mmap(0, MaxSize, 0x3 /* PROT_READ | PROT_WRITE*/, 144 Shared ? 0x21 /*MAP_SHARED | MAP_ANONYMOUS*/ 145 : MAP_PRIVATE_MAP_ANONYMOUS /* MAP_PRIVATE | MAP_ANONYMOUS*/, 146 -1, 0)); 147 StackSize = 0; 148 } 149 150 Size = alignTo(Size + sizeof(EntryMetadata), 16); 151 uint8_t *AllocAddress = StackBase + StackSize + sizeof(EntryMetadata); 152 auto *M = reinterpret_cast<EntryMetadata *>(StackBase + StackSize); 153 M->Magic = Magic; 154 M->AllocSize = Size; 155 StackSize += Size; 156 assert(StackSize < MaxSize, "allocator ran out of memory"); 157 return AllocAddress; 158 } 159 160 #ifdef DEBUG 161 /// Element-wise deallocation is only used for debugging to catch memory 162 /// bugs by checking magic bytes. Ordinarily, we reset the allocator once 163 /// we are done with it. Reset is done with clear(). There's no need 164 /// to deallocate each element individually. 165 void deallocate(void *Ptr) { 166 Lock L(M); 167 uint8_t MetadataOffset = sizeof(EntryMetadata); 168 auto *M = reinterpret_cast<EntryMetadata *>( 169 reinterpret_cast<uint8_t *>(Ptr) - MetadataOffset); 170 const uint8_t *StackTop = StackBase + StackSize + MetadataOffset; 171 // Validate size 172 if (Ptr != StackTop - M->AllocSize) { 173 // Failed validation, check if it is a pointer returned by operator new [] 174 MetadataOffset += 175 sizeof(uint64_t); // Space for number of elements alloc'ed 176 M = reinterpret_cast<EntryMetadata *>(reinterpret_cast<uint8_t *>(Ptr) - 177 MetadataOffset); 178 // Ok, it failed both checks if this assertion fails. Stop the program, we 179 // have a memory bug. 180 assert(Ptr == StackTop - M->AllocSize, 181 "must deallocate the last element alloc'ed"); 182 } 183 assert(M->Magic == Magic, "allocator magic is corrupt"); 184 StackSize -= M->AllocSize; 185 } 186 #else 187 void deallocate(void *) {} 188 #endif 189 190 void clear() { 191 Lock L(M); 192 StackSize = 0; 193 } 194 195 /// Set mmap reservation size (only relevant before first allocation) 196 void setMaxSize(uint64_t Size) { MaxSize = Size; } 197 198 /// Set mmap reservation privacy (only relevant before first allocation) 199 void setShared(bool S) { Shared = S; } 200 201 void destroy() { 202 if (StackBase == nullptr) 203 return; 204 __munmap(StackBase, MaxSize); 205 } 206 207 private: 208 static constexpr uint64_t Magic = 0x1122334455667788ull; 209 uint64_t MaxSize = 0xa00000; 210 uint8_t *StackBase{nullptr}; 211 uint64_t StackSize{0}; 212 bool Shared{false}; 213 Mutex M; 214 }; 215 216 /// Used for allocating indirect call instrumentation counters. Initialized by 217 /// __bolt_instr_setup, our initialization routine. 218 BumpPtrAllocator GlobalAlloc; 219 } // anonymous namespace 220 221 // User-defined placement new operators. We only use those (as opposed to 222 // overriding the regular operator new) so we can keep our allocator in the 223 // stack instead of in a data section (global). 224 void *operator new(size_t Sz, BumpPtrAllocator &A) { return A.allocate(Sz); } 225 void *operator new(size_t Sz, BumpPtrAllocator &A, char C) { 226 auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); 227 memset(Ptr, C, Sz); 228 return Ptr; 229 } 230 void *operator new[](size_t Sz, BumpPtrAllocator &A) { 231 return A.allocate(Sz); 232 } 233 void *operator new[](size_t Sz, BumpPtrAllocator &A, char C) { 234 auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); 235 memset(Ptr, C, Sz); 236 return Ptr; 237 } 238 // Only called during exception unwinding (useless). We must manually dealloc. 239 // C++ language weirdness 240 void operator delete(void *Ptr, BumpPtrAllocator &A) { A.deallocate(Ptr); } 241 242 namespace { 243 244 // Disable instrumentation optimizations that sacrifice profile accuracy 245 extern "C" bool __bolt_instr_conservative; 246 247 /// Basic key-val atom stored in our hash 248 struct SimpleHashTableEntryBase { 249 uint64_t Key; 250 uint64_t Val; 251 }; 252 253 /// This hash table implementation starts by allocating a table of size 254 /// InitialSize. When conflicts happen in this main table, it resolves 255 /// them by chaining a new table of size IncSize. It never reallocs as our 256 /// allocator doesn't support it. The key is intended to be function pointers. 257 /// There's no clever hash function (it's just x mod size, size being prime). 258 /// I never tuned the coefficientes in the modular equation (TODO) 259 /// This is used for indirect calls (each call site has one of this, so it 260 /// should have a small footprint) and for tallying call counts globally for 261 /// each target to check if we missed the origin of some calls (this one is a 262 /// large instantiation of this template, since it is global for all call sites) 263 template <typename T = SimpleHashTableEntryBase, uint32_t InitialSize = 7, 264 uint32_t IncSize = 7> 265 class SimpleHashTable { 266 public: 267 using MapEntry = T; 268 269 /// Increment by 1 the value of \p Key. If it is not in this table, it will be 270 /// added to the table and its value set to 1. 271 void incrementVal(uint64_t Key, BumpPtrAllocator &Alloc) { 272 ++get(Key, Alloc).Val; 273 } 274 275 /// Basic member accessing interface. Here we pass the allocator explicitly to 276 /// avoid storing a pointer to it as part of this table (remember there is one 277 /// hash for each indirect call site, so we wan't to minimize our footprint). 278 MapEntry &get(uint64_t Key, BumpPtrAllocator &Alloc) { 279 if (!__bolt_instr_conservative) { 280 TryLock L(M); 281 if (!L.isLocked()) 282 return NoEntry; 283 return getOrAllocEntry(Key, Alloc); 284 } 285 Lock L(M); 286 return getOrAllocEntry(Key, Alloc); 287 } 288 289 /// Traverses all elements in the table 290 template <typename... Args> 291 void forEachElement(void (*Callback)(MapEntry &, Args...), Args... args) { 292 Lock L(M); 293 if (!TableRoot) 294 return; 295 return forEachElement(Callback, InitialSize, TableRoot, args...); 296 } 297 298 void resetCounters(); 299 300 private: 301 constexpr static uint64_t VacantMarker = 0; 302 constexpr static uint64_t FollowUpTableMarker = 0x8000000000000000ull; 303 304 MapEntry *TableRoot{nullptr}; 305 MapEntry NoEntry; 306 Mutex M; 307 308 template <typename... Args> 309 void forEachElement(void (*Callback)(MapEntry &, Args...), 310 uint32_t NumEntries, MapEntry *Entries, Args... args) { 311 for (uint32_t I = 0; I < NumEntries; ++I) { 312 MapEntry &Entry = Entries[I]; 313 if (Entry.Key == VacantMarker) 314 continue; 315 if (Entry.Key & FollowUpTableMarker) { 316 forEachElement(Callback, IncSize, 317 reinterpret_cast<MapEntry *>(Entry.Key & 318 ~FollowUpTableMarker), 319 args...); 320 continue; 321 } 322 Callback(Entry, args...); 323 } 324 } 325 326 MapEntry &firstAllocation(uint64_t Key, BumpPtrAllocator &Alloc) { 327 TableRoot = new (Alloc, 0) MapEntry[InitialSize]; 328 MapEntry &Entry = TableRoot[Key % InitialSize]; 329 Entry.Key = Key; 330 return Entry; 331 } 332 333 MapEntry &getEntry(MapEntry *Entries, uint64_t Key, uint64_t Selector, 334 BumpPtrAllocator &Alloc, int CurLevel) { 335 const uint32_t NumEntries = CurLevel == 0 ? InitialSize : IncSize; 336 uint64_t Remainder = Selector / NumEntries; 337 Selector = Selector % NumEntries; 338 MapEntry &Entry = Entries[Selector]; 339 340 // A hit 341 if (Entry.Key == Key) { 342 return Entry; 343 } 344 345 // Vacant - add new entry 346 if (Entry.Key == VacantMarker) { 347 Entry.Key = Key; 348 return Entry; 349 } 350 351 // Defer to the next level 352 if (Entry.Key & FollowUpTableMarker) { 353 return getEntry( 354 reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker), 355 Key, Remainder, Alloc, CurLevel + 1); 356 } 357 358 // Conflict - create the next level 359 MapEntry *NextLevelTbl = new (Alloc, 0) MapEntry[IncSize]; 360 uint64_t CurEntrySelector = Entry.Key / InitialSize; 361 for (int I = 0; I < CurLevel; ++I) 362 CurEntrySelector /= IncSize; 363 CurEntrySelector = CurEntrySelector % IncSize; 364 NextLevelTbl[CurEntrySelector] = Entry; 365 Entry.Key = reinterpret_cast<uint64_t>(NextLevelTbl) | FollowUpTableMarker; 366 return getEntry(NextLevelTbl, Key, Remainder, Alloc, CurLevel + 1); 367 } 368 369 MapEntry &getOrAllocEntry(uint64_t Key, BumpPtrAllocator &Alloc) { 370 if (TableRoot) 371 return getEntry(TableRoot, Key, Key, Alloc, 0); 372 return firstAllocation(Key, Alloc); 373 } 374 }; 375 376 template <typename T> void resetIndCallCounter(T &Entry) { 377 Entry.Val = 0; 378 } 379 380 template <typename T, uint32_t X, uint32_t Y> 381 void SimpleHashTable<T, X, Y>::resetCounters() { 382 forEachElement(resetIndCallCounter); 383 } 384 385 /// Represents a hash table mapping a function target address to its counter. 386 using IndirectCallHashTable = SimpleHashTable<>; 387 388 /// Initialize with number 1 instead of 0 so we don't go into .bss. This is the 389 /// global array of all hash tables storing indirect call destinations happening 390 /// during runtime, one table per call site. 391 IndirectCallHashTable *GlobalIndCallCounters{ 392 reinterpret_cast<IndirectCallHashTable *>(1)}; 393 394 /// Don't allow reentrancy in the fdata writing phase - only one thread writes 395 /// it 396 Mutex *GlobalWriteProfileMutex{reinterpret_cast<Mutex *>(1)}; 397 398 /// Store number of calls in additional to target address (Key) and frequency 399 /// as perceived by the basic block counter (Val). 400 struct CallFlowEntryBase : public SimpleHashTableEntryBase { 401 uint64_t Calls; 402 }; 403 404 using CallFlowHashTableBase = SimpleHashTable<CallFlowEntryBase, 11939, 233>; 405 406 /// This is a large table indexing all possible call targets (indirect and 407 /// direct ones). The goal is to find mismatches between number of calls (for 408 /// those calls we were able to track) and the entry basic block counter of the 409 /// callee. In most cases, these two should be equal. If not, there are two 410 /// possible scenarios here: 411 /// 412 /// * Entry BB has higher frequency than all known calls to this function. 413 /// In this case, we have dynamic library code or any uninstrumented code 414 /// calling this function. We will write the profile for these untracked 415 /// calls as having source "0 [unknown] 0" in the fdata file. 416 /// 417 /// * Number of known calls is higher than the frequency of entry BB 418 /// This only happens when there is no counter for the entry BB / callee 419 /// function is not simple (in BOLT terms). We don't do anything special 420 /// here and just ignore those (we still report all calls to the non-simple 421 /// function, though). 422 /// 423 class CallFlowHashTable : public CallFlowHashTableBase { 424 public: 425 CallFlowHashTable(BumpPtrAllocator &Alloc) : Alloc(Alloc) {} 426 427 MapEntry &get(uint64_t Key) { return CallFlowHashTableBase::get(Key, Alloc); } 428 429 private: 430 // Different than the hash table for indirect call targets, we do store the 431 // allocator here since there is only one call flow hash and space overhead 432 // is negligible. 433 BumpPtrAllocator &Alloc; 434 }; 435 436 /// 437 /// Description metadata emitted by BOLT to describe the program - refer to 438 /// Passes/Instrumentation.cpp - Instrumentation::emitTablesAsELFNote() 439 /// 440 struct Location { 441 uint32_t FunctionName; 442 uint32_t Offset; 443 }; 444 445 struct CallDescription { 446 Location From; 447 uint32_t FromNode; 448 Location To; 449 uint32_t Counter; 450 uint64_t TargetAddress; 451 }; 452 453 using IndCallDescription = Location; 454 455 struct IndCallTargetDescription { 456 Location Loc; 457 uint64_t Address; 458 }; 459 460 struct EdgeDescription { 461 Location From; 462 uint32_t FromNode; 463 Location To; 464 uint32_t ToNode; 465 uint32_t Counter; 466 }; 467 468 struct InstrumentedNode { 469 uint32_t Node; 470 uint32_t Counter; 471 }; 472 473 struct EntryNode { 474 uint64_t Node; 475 uint64_t Address; 476 }; 477 478 struct FunctionDescription { 479 uint32_t NumLeafNodes; 480 const InstrumentedNode *LeafNodes; 481 uint32_t NumEdges; 482 const EdgeDescription *Edges; 483 uint32_t NumCalls; 484 const CallDescription *Calls; 485 uint32_t NumEntryNodes; 486 const EntryNode *EntryNodes; 487 488 /// Constructor will parse the serialized function metadata written by BOLT 489 FunctionDescription(const uint8_t *FuncDesc); 490 491 uint64_t getSize() const { 492 return 16 + NumLeafNodes * sizeof(InstrumentedNode) + 493 NumEdges * sizeof(EdgeDescription) + 494 NumCalls * sizeof(CallDescription) + 495 NumEntryNodes * sizeof(EntryNode); 496 } 497 }; 498 499 /// The context is created when the fdata profile needs to be written to disk 500 /// and we need to interpret our runtime counters. It contains pointers to the 501 /// mmaped binary (only the BOLT written metadata section). Deserialization 502 /// should be straightforward as most data is POD or an array of POD elements. 503 /// This metadata is used to reconstruct function CFGs. 504 struct ProfileWriterContext { 505 IndCallDescription *IndCallDescriptions; 506 IndCallTargetDescription *IndCallTargets; 507 uint8_t *FuncDescriptions; 508 char *Strings; // String table with function names used in this binary 509 int FileDesc; // File descriptor for the file on disk backing this 510 // information in memory via mmap 511 void *MMapPtr; // The mmap ptr 512 int MMapSize; // The mmap size 513 514 /// Hash table storing all possible call destinations to detect untracked 515 /// calls and correctly report them as [unknown] in output fdata. 516 CallFlowHashTable *CallFlowTable; 517 518 /// Lookup the sorted indirect call target vector to fetch function name and 519 /// offset for an arbitrary function pointer. 520 const IndCallTargetDescription *lookupIndCallTarget(uint64_t Target) const; 521 }; 522 523 /// Perform a string comparison and returns zero if Str1 matches Str2. Compares 524 /// at most Size characters. 525 int compareStr(const char *Str1, const char *Str2, int Size) { 526 while (*Str1 == *Str2) { 527 if (*Str1 == '\0' || --Size == 0) 528 return 0; 529 ++Str1; 530 ++Str2; 531 } 532 return 1; 533 } 534 535 /// Output Location to the fdata file 536 char *serializeLoc(const ProfileWriterContext &Ctx, char *OutBuf, 537 const Location Loc, uint32_t BufSize) { 538 // fdata location format: Type Name Offset 539 // Type 1 - regular symbol 540 OutBuf = strCopy(OutBuf, "1 "); 541 const char *Str = Ctx.Strings + Loc.FunctionName; 542 uint32_t Size = 25; 543 while (*Str) { 544 *OutBuf++ = *Str++; 545 if (++Size >= BufSize) 546 break; 547 } 548 assert(!*Str, "buffer overflow, function name too large"); 549 *OutBuf++ = ' '; 550 OutBuf = intToStr(OutBuf, Loc.Offset, 16); 551 *OutBuf++ = ' '; 552 return OutBuf; 553 } 554 555 /// Read and deserialize a function description written by BOLT. \p FuncDesc 556 /// points at the beginning of the function metadata structure in the file. 557 /// See Instrumentation::emitTablesAsELFNote() 558 FunctionDescription::FunctionDescription(const uint8_t *FuncDesc) { 559 NumLeafNodes = *reinterpret_cast<const uint32_t *>(FuncDesc); 560 DEBUG(reportNumber("NumLeafNodes = ", NumLeafNodes, 10)); 561 LeafNodes = reinterpret_cast<const InstrumentedNode *>(FuncDesc + 4); 562 563 NumEdges = *reinterpret_cast<const uint32_t *>( 564 FuncDesc + 4 + NumLeafNodes * sizeof(InstrumentedNode)); 565 DEBUG(reportNumber("NumEdges = ", NumEdges, 10)); 566 Edges = reinterpret_cast<const EdgeDescription *>( 567 FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode)); 568 569 NumCalls = *reinterpret_cast<const uint32_t *>( 570 FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode) + 571 NumEdges * sizeof(EdgeDescription)); 572 DEBUG(reportNumber("NumCalls = ", NumCalls, 10)); 573 Calls = reinterpret_cast<const CallDescription *>( 574 FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + 575 NumEdges * sizeof(EdgeDescription)); 576 NumEntryNodes = *reinterpret_cast<const uint32_t *>( 577 FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + 578 NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); 579 DEBUG(reportNumber("NumEntryNodes = ", NumEntryNodes, 10)); 580 EntryNodes = reinterpret_cast<const EntryNode *>( 581 FuncDesc + 16 + NumLeafNodes * sizeof(InstrumentedNode) + 582 NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); 583 } 584 585 /// Read and mmap descriptions written by BOLT from the executable's notes 586 /// section 587 #if defined(HAVE_ELF_H) and !defined(__APPLE__) 588 589 void *__attribute__((noinline)) __get_pc() { 590 return __builtin_extract_return_addr(__builtin_return_address(0)); 591 } 592 593 /// Get string with address and parse it to hex pair <StartAddress, EndAddress> 594 bool parseAddressRange(const char *Str, uint64_t &StartAddress, 595 uint64_t &EndAddress) { 596 if (!Str) 597 return false; 598 // Parsed string format: <hex1>-<hex2> 599 StartAddress = hexToLong(Str, '-'); 600 while (*Str && *Str != '-') 601 ++Str; 602 if (!*Str) 603 return false; 604 ++Str; // swallow '-' 605 EndAddress = hexToLong(Str); 606 return true; 607 } 608 609 /// Get full path to the real binary by getting current virtual address 610 /// and searching for the appropriate link in address range in 611 /// /proc/self/map_files 612 static char *getBinaryPath() { 613 const uint32_t BufSize = 1024; 614 const uint32_t NameMax = 4096; 615 const char DirPath[] = "/proc/self/map_files/"; 616 static char TargetPath[NameMax] = {}; 617 char Buf[BufSize]; 618 619 if (__bolt_instr_binpath[0] != '\0') 620 return __bolt_instr_binpath; 621 622 if (TargetPath[0] != '\0') 623 return TargetPath; 624 625 unsigned long CurAddr = (unsigned long)__get_pc(); 626 uint64_t FDdir = __open(DirPath, 627 /*flags=*/0 /*O_RDONLY*/, 628 /*mode=*/0666); 629 assert(static_cast<int64_t>(FDdir) >= 0, 630 "failed to open /proc/self/map_files"); 631 632 while (long Nread = __getdents(FDdir, (struct dirent *)Buf, BufSize)) { 633 assert(static_cast<int64_t>(Nread) != -1, "failed to get folder entries"); 634 635 struct dirent *d; 636 for (long Bpos = 0; Bpos < Nread; Bpos += d->d_reclen) { 637 d = (struct dirent *)(Buf + Bpos); 638 639 uint64_t StartAddress, EndAddress; 640 if (!parseAddressRange(d->d_name, StartAddress, EndAddress)) 641 continue; 642 if (CurAddr < StartAddress || CurAddr > EndAddress) 643 continue; 644 char FindBuf[NameMax]; 645 char *C = strCopy(FindBuf, DirPath, NameMax); 646 C = strCopy(C, d->d_name, NameMax - (C - FindBuf)); 647 *C = '\0'; 648 uint32_t Ret = __readlink(FindBuf, TargetPath, sizeof(TargetPath)); 649 assert(Ret != -1 && Ret != BufSize, "readlink error"); 650 TargetPath[Ret] = '\0'; 651 return TargetPath; 652 } 653 } 654 return nullptr; 655 } 656 657 ProfileWriterContext readDescriptions() { 658 ProfileWriterContext Result; 659 char *BinPath = getBinaryPath(); 660 assert(BinPath && BinPath[0] != '\0', "failed to find binary path"); 661 662 uint64_t FD = __open(BinPath, 663 /*flags=*/0 /*O_RDONLY*/, 664 /*mode=*/0666); 665 assert(static_cast<int64_t>(FD) >= 0, "failed to open binary path"); 666 667 Result.FileDesc = FD; 668 669 // mmap our binary to memory 670 uint64_t Size = __lseek(FD, 0, 2 /*SEEK_END*/); 671 uint8_t *BinContents = reinterpret_cast<uint8_t *>( 672 __mmap(0, Size, 0x1 /* PROT_READ*/, 0x2 /* MAP_PRIVATE*/, FD, 0)); 673 Result.MMapPtr = BinContents; 674 Result.MMapSize = Size; 675 Elf64_Ehdr *Hdr = reinterpret_cast<Elf64_Ehdr *>(BinContents); 676 Elf64_Shdr *Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff); 677 Elf64_Shdr *StringTblHeader = reinterpret_cast<Elf64_Shdr *>( 678 BinContents + Hdr->e_shoff + Hdr->e_shstrndx * Hdr->e_shentsize); 679 680 // Find .bolt.instr.tables with the data we need and set pointers to it 681 for (int I = 0; I < Hdr->e_shnum; ++I) { 682 char *SecName = reinterpret_cast<char *>( 683 BinContents + StringTblHeader->sh_offset + Shdr->sh_name); 684 if (compareStr(SecName, ".bolt.instr.tables", 64) != 0) { 685 Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff + 686 (I + 1) * Hdr->e_shentsize); 687 continue; 688 } 689 // Actual contents of the ELF note start after offset 20 decimal: 690 // Offset 0: Producer name size (4 bytes) 691 // Offset 4: Contents size (4 bytes) 692 // Offset 8: Note type (4 bytes) 693 // Offset 12: Producer name (BOLT\0) (5 bytes + align to 4-byte boundary) 694 // Offset 20: Contents 695 uint32_t IndCallDescSize = 696 *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 20); 697 uint32_t IndCallTargetDescSize = *reinterpret_cast<uint32_t *>( 698 BinContents + Shdr->sh_offset + 24 + IndCallDescSize); 699 uint32_t FuncDescSize = 700 *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 28 + 701 IndCallDescSize + IndCallTargetDescSize); 702 Result.IndCallDescriptions = reinterpret_cast<IndCallDescription *>( 703 BinContents + Shdr->sh_offset + 24); 704 Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( 705 BinContents + Shdr->sh_offset + 28 + IndCallDescSize); 706 Result.FuncDescriptions = BinContents + Shdr->sh_offset + 32 + 707 IndCallDescSize + IndCallTargetDescSize; 708 Result.Strings = reinterpret_cast<char *>( 709 BinContents + Shdr->sh_offset + 32 + IndCallDescSize + 710 IndCallTargetDescSize + FuncDescSize); 711 return Result; 712 } 713 const char ErrMsg[] = 714 "BOLT instrumentation runtime error: could not find section " 715 ".bolt.instr.tables\n"; 716 reportError(ErrMsg, sizeof(ErrMsg)); 717 return Result; 718 } 719 720 #else 721 722 ProfileWriterContext readDescriptions() { 723 ProfileWriterContext Result; 724 uint8_t *Tables = _bolt_instr_tables_getter(); 725 uint32_t IndCallDescSize = *reinterpret_cast<uint32_t *>(Tables); 726 uint32_t IndCallTargetDescSize = 727 *reinterpret_cast<uint32_t *>(Tables + 4 + IndCallDescSize); 728 uint32_t FuncDescSize = *reinterpret_cast<uint32_t *>( 729 Tables + 8 + IndCallDescSize + IndCallTargetDescSize); 730 Result.IndCallDescriptions = 731 reinterpret_cast<IndCallDescription *>(Tables + 4); 732 Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( 733 Tables + 8 + IndCallDescSize); 734 Result.FuncDescriptions = 735 Tables + 12 + IndCallDescSize + IndCallTargetDescSize; 736 Result.Strings = reinterpret_cast<char *>( 737 Tables + 12 + IndCallDescSize + IndCallTargetDescSize + FuncDescSize); 738 return Result; 739 } 740 741 #endif 742 743 #if !defined(__APPLE__) 744 /// Debug by printing overall metadata global numbers to check it is sane 745 void printStats(const ProfileWriterContext &Ctx) { 746 char StatMsg[BufSize]; 747 char *StatPtr = StatMsg; 748 StatPtr = 749 strCopy(StatPtr, 750 "\nBOLT INSTRUMENTATION RUNTIME STATISTICS\n\nIndCallDescSize: "); 751 StatPtr = intToStr(StatPtr, 752 Ctx.FuncDescriptions - 753 reinterpret_cast<uint8_t *>(Ctx.IndCallDescriptions), 754 10); 755 StatPtr = strCopy(StatPtr, "\nFuncDescSize: "); 756 StatPtr = intToStr( 757 StatPtr, 758 reinterpret_cast<uint8_t *>(Ctx.Strings) - Ctx.FuncDescriptions, 10); 759 StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_ind_calls: "); 760 StatPtr = intToStr(StatPtr, __bolt_instr_num_ind_calls, 10); 761 StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_funcs: "); 762 StatPtr = intToStr(StatPtr, __bolt_instr_num_funcs, 10); 763 StatPtr = strCopy(StatPtr, "\n"); 764 __write(2, StatMsg, StatPtr - StatMsg); 765 } 766 #endif 767 768 769 /// This is part of a simple CFG representation in memory, where we store 770 /// a dynamically sized array of input and output edges per node, and store 771 /// a dynamically sized array of nodes per graph. We also store the spanning 772 /// tree edges for that CFG in a separate array of nodes in 773 /// \p SpanningTreeNodes, while the regular nodes live in \p CFGNodes. 774 struct Edge { 775 uint32_t Node; // Index in nodes array regarding the destination of this edge 776 uint32_t ID; // Edge index in an array comprising all edges of the graph 777 }; 778 779 /// A regular graph node or a spanning tree node 780 struct Node { 781 uint32_t NumInEdges{0}; // Input edge count used to size InEdge 782 uint32_t NumOutEdges{0}; // Output edge count used to size OutEdges 783 Edge *InEdges{nullptr}; // Created and managed by \p Graph 784 Edge *OutEdges{nullptr}; // ditto 785 }; 786 787 /// Main class for CFG representation in memory. Manages object creation and 788 /// destruction, populates an array of CFG nodes as well as corresponding 789 /// spanning tree nodes. 790 struct Graph { 791 uint32_t NumNodes; 792 Node *CFGNodes; 793 Node *SpanningTreeNodes; 794 uint64_t *EdgeFreqs; 795 uint64_t *CallFreqs; 796 BumpPtrAllocator &Alloc; 797 const FunctionDescription &D; 798 799 /// Reads a list of edges from function description \p D and builds 800 /// the graph from it. Allocates several internal dynamic structures that are 801 /// later destroyed by ~Graph() and uses \p Alloc. D.LeafNodes contain all 802 /// spanning tree leaf nodes descriptions (their counters). They are the seed 803 /// used to compute the rest of the missing edge counts in a bottom-up 804 /// traversal of the spanning tree. 805 Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, 806 const uint64_t *Counters, ProfileWriterContext &Ctx); 807 ~Graph(); 808 void dump() const; 809 810 private: 811 void computeEdgeFrequencies(const uint64_t *Counters, 812 ProfileWriterContext &Ctx); 813 void dumpEdgeFreqs() const; 814 }; 815 816 Graph::Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, 817 const uint64_t *Counters, ProfileWriterContext &Ctx) 818 : Alloc(Alloc), D(D) { 819 DEBUG(reportNumber("G = 0x", (uint64_t)this, 16)); 820 // First pass to determine number of nodes 821 int32_t MaxNodes = -1; 822 CallFreqs = nullptr; 823 EdgeFreqs = nullptr; 824 for (int I = 0; I < D.NumEdges; ++I) { 825 if (static_cast<int32_t>(D.Edges[I].FromNode) > MaxNodes) 826 MaxNodes = D.Edges[I].FromNode; 827 if (static_cast<int32_t>(D.Edges[I].ToNode) > MaxNodes) 828 MaxNodes = D.Edges[I].ToNode; 829 } 830 831 for (int I = 0; I < D.NumLeafNodes; ++I) 832 if (static_cast<int32_t>(D.LeafNodes[I].Node) > MaxNodes) 833 MaxNodes = D.LeafNodes[I].Node; 834 835 for (int I = 0; I < D.NumCalls; ++I) 836 if (static_cast<int32_t>(D.Calls[I].FromNode) > MaxNodes) 837 MaxNodes = D.Calls[I].FromNode; 838 839 // No nodes? Nothing to do 840 if (MaxNodes < 0) { 841 DEBUG(report("No nodes!\n")); 842 CFGNodes = nullptr; 843 SpanningTreeNodes = nullptr; 844 NumNodes = 0; 845 return; 846 } 847 ++MaxNodes; 848 DEBUG(reportNumber("NumNodes = ", MaxNodes, 10)); 849 NumNodes = static_cast<uint32_t>(MaxNodes); 850 851 // Initial allocations 852 CFGNodes = new (Alloc) Node[MaxNodes]; 853 854 DEBUG(reportNumber("G->CFGNodes = 0x", (uint64_t)CFGNodes, 16)); 855 SpanningTreeNodes = new (Alloc) Node[MaxNodes]; 856 DEBUG(reportNumber("G->SpanningTreeNodes = 0x", 857 (uint64_t)SpanningTreeNodes, 16)); 858 859 // Figure out how much to allocate to each vector (in/out edge sets) 860 for (int I = 0; I < D.NumEdges; ++I) { 861 CFGNodes[D.Edges[I].FromNode].NumOutEdges++; 862 CFGNodes[D.Edges[I].ToNode].NumInEdges++; 863 if (D.Edges[I].Counter != 0xffffffff) 864 continue; 865 866 SpanningTreeNodes[D.Edges[I].FromNode].NumOutEdges++; 867 SpanningTreeNodes[D.Edges[I].ToNode].NumInEdges++; 868 } 869 870 // Allocate in/out edge sets 871 for (int I = 0; I < MaxNodes; ++I) { 872 if (CFGNodes[I].NumInEdges > 0) 873 CFGNodes[I].InEdges = new (Alloc) Edge[CFGNodes[I].NumInEdges]; 874 if (CFGNodes[I].NumOutEdges > 0) 875 CFGNodes[I].OutEdges = new (Alloc) Edge[CFGNodes[I].NumOutEdges]; 876 if (SpanningTreeNodes[I].NumInEdges > 0) 877 SpanningTreeNodes[I].InEdges = 878 new (Alloc) Edge[SpanningTreeNodes[I].NumInEdges]; 879 if (SpanningTreeNodes[I].NumOutEdges > 0) 880 SpanningTreeNodes[I].OutEdges = 881 new (Alloc) Edge[SpanningTreeNodes[I].NumOutEdges]; 882 CFGNodes[I].NumInEdges = 0; 883 CFGNodes[I].NumOutEdges = 0; 884 SpanningTreeNodes[I].NumInEdges = 0; 885 SpanningTreeNodes[I].NumOutEdges = 0; 886 } 887 888 // Fill in/out edge sets 889 for (int I = 0; I < D.NumEdges; ++I) { 890 const uint32_t Src = D.Edges[I].FromNode; 891 const uint32_t Dst = D.Edges[I].ToNode; 892 Edge *E = &CFGNodes[Src].OutEdges[CFGNodes[Src].NumOutEdges++]; 893 E->Node = Dst; 894 E->ID = I; 895 896 E = &CFGNodes[Dst].InEdges[CFGNodes[Dst].NumInEdges++]; 897 E->Node = Src; 898 E->ID = I; 899 900 if (D.Edges[I].Counter != 0xffffffff) 901 continue; 902 903 E = &SpanningTreeNodes[Src] 904 .OutEdges[SpanningTreeNodes[Src].NumOutEdges++]; 905 E->Node = Dst; 906 E->ID = I; 907 908 E = &SpanningTreeNodes[Dst] 909 .InEdges[SpanningTreeNodes[Dst].NumInEdges++]; 910 E->Node = Src; 911 E->ID = I; 912 } 913 914 computeEdgeFrequencies(Counters, Ctx); 915 } 916 917 Graph::~Graph() { 918 if (CallFreqs) 919 Alloc.deallocate(CallFreqs); 920 if (EdgeFreqs) 921 Alloc.deallocate(EdgeFreqs); 922 for (int I = NumNodes - 1; I >= 0; --I) { 923 if (SpanningTreeNodes[I].OutEdges) 924 Alloc.deallocate(SpanningTreeNodes[I].OutEdges); 925 if (SpanningTreeNodes[I].InEdges) 926 Alloc.deallocate(SpanningTreeNodes[I].InEdges); 927 if (CFGNodes[I].OutEdges) 928 Alloc.deallocate(CFGNodes[I].OutEdges); 929 if (CFGNodes[I].InEdges) 930 Alloc.deallocate(CFGNodes[I].InEdges); 931 } 932 if (SpanningTreeNodes) 933 Alloc.deallocate(SpanningTreeNodes); 934 if (CFGNodes) 935 Alloc.deallocate(CFGNodes); 936 } 937 938 void Graph::dump() const { 939 reportNumber("Dumping graph with number of nodes: ", NumNodes, 10); 940 report(" Full graph:\n"); 941 for (int I = 0; I < NumNodes; ++I) { 942 const Node *N = &CFGNodes[I]; 943 reportNumber(" Node #", I, 10); 944 reportNumber(" InEdges total ", N->NumInEdges, 10); 945 for (int J = 0; J < N->NumInEdges; ++J) 946 reportNumber(" ", N->InEdges[J].Node, 10); 947 reportNumber(" OutEdges total ", N->NumOutEdges, 10); 948 for (int J = 0; J < N->NumOutEdges; ++J) 949 reportNumber(" ", N->OutEdges[J].Node, 10); 950 report("\n"); 951 } 952 report(" Spanning tree:\n"); 953 for (int I = 0; I < NumNodes; ++I) { 954 const Node *N = &SpanningTreeNodes[I]; 955 reportNumber(" Node #", I, 10); 956 reportNumber(" InEdges total ", N->NumInEdges, 10); 957 for (int J = 0; J < N->NumInEdges; ++J) 958 reportNumber(" ", N->InEdges[J].Node, 10); 959 reportNumber(" OutEdges total ", N->NumOutEdges, 10); 960 for (int J = 0; J < N->NumOutEdges; ++J) 961 reportNumber(" ", N->OutEdges[J].Node, 10); 962 report("\n"); 963 } 964 } 965 966 void Graph::dumpEdgeFreqs() const { 967 reportNumber( 968 "Dumping edge frequencies for graph with num edges: ", D.NumEdges, 10); 969 for (int I = 0; I < D.NumEdges; ++I) { 970 reportNumber("* Src: ", D.Edges[I].FromNode, 10); 971 reportNumber(" Dst: ", D.Edges[I].ToNode, 10); 972 reportNumber(" Cnt: ", EdgeFreqs[I], 10); 973 } 974 } 975 976 /// Auxiliary map structure for fast lookups of which calls map to each node of 977 /// the function CFG 978 struct NodeToCallsMap { 979 struct MapEntry { 980 uint32_t NumCalls; 981 uint32_t *Calls; 982 }; 983 MapEntry *Entries; 984 BumpPtrAllocator &Alloc; 985 const uint32_t NumNodes; 986 987 NodeToCallsMap(BumpPtrAllocator &Alloc, const FunctionDescription &D, 988 uint32_t NumNodes) 989 : Alloc(Alloc), NumNodes(NumNodes) { 990 Entries = new (Alloc, 0) MapEntry[NumNodes]; 991 for (int I = 0; I < D.NumCalls; ++I) { 992 DEBUG(reportNumber("Registering call in node ", D.Calls[I].FromNode, 10)); 993 ++Entries[D.Calls[I].FromNode].NumCalls; 994 } 995 for (int I = 0; I < NumNodes; ++I) { 996 Entries[I].Calls = Entries[I].NumCalls ? new (Alloc) 997 uint32_t[Entries[I].NumCalls] 998 : nullptr; 999 Entries[I].NumCalls = 0; 1000 } 1001 for (int I = 0; I < D.NumCalls; ++I) { 1002 MapEntry &Entry = Entries[D.Calls[I].FromNode]; 1003 Entry.Calls[Entry.NumCalls++] = I; 1004 } 1005 } 1006 1007 /// Set the frequency of all calls in node \p NodeID to Freq. However, if 1008 /// the calls have their own counters and do not depend on the basic block 1009 /// counter, this means they have landing pads and throw exceptions. In this 1010 /// case, set their frequency with their counters and return the maximum 1011 /// value observed in such counters. This will be used as the new frequency 1012 /// at basic block entry. This is used to fix the CFG edge frequencies in the 1013 /// presence of exceptions. 1014 uint64_t visitAllCallsIn(uint32_t NodeID, uint64_t Freq, uint64_t *CallFreqs, 1015 const FunctionDescription &D, 1016 const uint64_t *Counters, 1017 ProfileWriterContext &Ctx) const { 1018 const MapEntry &Entry = Entries[NodeID]; 1019 uint64_t MaxValue = 0ull; 1020 for (int I = 0, E = Entry.NumCalls; I != E; ++I) { 1021 const uint32_t CallID = Entry.Calls[I]; 1022 DEBUG(reportNumber(" Setting freq for call ID: ", CallID, 10)); 1023 const CallDescription &CallDesc = D.Calls[CallID]; 1024 if (CallDesc.Counter == 0xffffffff) { 1025 CallFreqs[CallID] = Freq; 1026 DEBUG(reportNumber(" with : ", Freq, 10)); 1027 } else { 1028 const uint64_t CounterVal = Counters[CallDesc.Counter]; 1029 CallFreqs[CallID] = CounterVal; 1030 MaxValue = CounterVal > MaxValue ? CounterVal : MaxValue; 1031 DEBUG(reportNumber(" with (private counter) : ", CounterVal, 10)); 1032 } 1033 DEBUG(reportNumber(" Address: 0x", CallDesc.TargetAddress, 16)); 1034 if (CallFreqs[CallID] > 0) 1035 Ctx.CallFlowTable->get(CallDesc.TargetAddress).Calls += 1036 CallFreqs[CallID]; 1037 } 1038 return MaxValue; 1039 } 1040 1041 ~NodeToCallsMap() { 1042 for (int I = NumNodes - 1; I >= 0; --I) 1043 if (Entries[I].Calls) 1044 Alloc.deallocate(Entries[I].Calls); 1045 Alloc.deallocate(Entries); 1046 } 1047 }; 1048 1049 /// Fill an array with the frequency of each edge in the function represented 1050 /// by G, as well as another array for each call. 1051 void Graph::computeEdgeFrequencies(const uint64_t *Counters, 1052 ProfileWriterContext &Ctx) { 1053 if (NumNodes == 0) 1054 return; 1055 1056 EdgeFreqs = D.NumEdges ? new (Alloc, 0) uint64_t [D.NumEdges] : nullptr; 1057 CallFreqs = D.NumCalls ? new (Alloc, 0) uint64_t [D.NumCalls] : nullptr; 1058 1059 // Setup a lookup for calls present in each node (BB) 1060 NodeToCallsMap *CallMap = new (Alloc) NodeToCallsMap(Alloc, D, NumNodes); 1061 1062 // Perform a bottom-up, BFS traversal of the spanning tree in G. Edges in the 1063 // spanning tree don't have explicit counters. We must infer their value using 1064 // a linear combination of other counters (sum of counters of the outgoing 1065 // edges minus sum of counters of the incoming edges). 1066 uint32_t *Stack = new (Alloc) uint32_t [NumNodes]; 1067 uint32_t StackTop = 0; 1068 enum Status : uint8_t { S_NEW = 0, S_VISITING, S_VISITED }; 1069 Status *Visited = new (Alloc, 0) Status[NumNodes]; 1070 uint64_t *LeafFrequency = new (Alloc, 0) uint64_t[NumNodes]; 1071 uint64_t *EntryAddress = new (Alloc, 0) uint64_t[NumNodes]; 1072 1073 // Setup a fast lookup for frequency of leaf nodes, which have special 1074 // basic block frequency instrumentation (they are not edge profiled). 1075 for (int I = 0; I < D.NumLeafNodes; ++I) { 1076 LeafFrequency[D.LeafNodes[I].Node] = Counters[D.LeafNodes[I].Counter]; 1077 DEBUG({ 1078 if (Counters[D.LeafNodes[I].Counter] > 0) { 1079 reportNumber("Leaf Node# ", D.LeafNodes[I].Node, 10); 1080 reportNumber(" Counter: ", Counters[D.LeafNodes[I].Counter], 10); 1081 } 1082 }); 1083 } 1084 for (int I = 0; I < D.NumEntryNodes; ++I) { 1085 EntryAddress[D.EntryNodes[I].Node] = D.EntryNodes[I].Address; 1086 DEBUG({ 1087 reportNumber("Entry Node# ", D.EntryNodes[I].Node, 10); 1088 reportNumber(" Address: ", D.EntryNodes[I].Address, 16); 1089 }); 1090 } 1091 // Add all root nodes to the stack 1092 for (int I = 0; I < NumNodes; ++I) 1093 if (SpanningTreeNodes[I].NumInEdges == 0) 1094 Stack[StackTop++] = I; 1095 1096 // Empty stack? 1097 if (StackTop == 0) { 1098 DEBUG(report("Empty stack!\n")); 1099 Alloc.deallocate(EntryAddress); 1100 Alloc.deallocate(LeafFrequency); 1101 Alloc.deallocate(Visited); 1102 Alloc.deallocate(Stack); 1103 CallMap->~NodeToCallsMap(); 1104 Alloc.deallocate(CallMap); 1105 if (CallFreqs) 1106 Alloc.deallocate(CallFreqs); 1107 if (EdgeFreqs) 1108 Alloc.deallocate(EdgeFreqs); 1109 EdgeFreqs = nullptr; 1110 CallFreqs = nullptr; 1111 return; 1112 } 1113 // Add all known edge counts, will infer the rest 1114 for (int I = 0; I < D.NumEdges; ++I) { 1115 const uint32_t C = D.Edges[I].Counter; 1116 if (C == 0xffffffff) // inferred counter - we will compute its value 1117 continue; 1118 EdgeFreqs[I] = Counters[C]; 1119 } 1120 1121 while (StackTop > 0) { 1122 const uint32_t Cur = Stack[--StackTop]; 1123 DEBUG({ 1124 if (Visited[Cur] == S_VISITING) 1125 report("(visiting) "); 1126 else 1127 report("(new) "); 1128 reportNumber("Cur: ", Cur, 10); 1129 }); 1130 1131 // This shouldn't happen in a tree 1132 assert(Visited[Cur] != S_VISITED, "should not have visited nodes in stack"); 1133 if (Visited[Cur] == S_NEW) { 1134 Visited[Cur] = S_VISITING; 1135 Stack[StackTop++] = Cur; 1136 assert(StackTop <= NumNodes, "stack grew too large"); 1137 for (int I = 0, E = SpanningTreeNodes[Cur].NumOutEdges; I < E; ++I) { 1138 const uint32_t Succ = SpanningTreeNodes[Cur].OutEdges[I].Node; 1139 Stack[StackTop++] = Succ; 1140 assert(StackTop <= NumNodes, "stack grew too large"); 1141 } 1142 continue; 1143 } 1144 Visited[Cur] = S_VISITED; 1145 1146 // Establish our node frequency based on outgoing edges, which should all be 1147 // resolved by now. 1148 int64_t CurNodeFreq = LeafFrequency[Cur]; 1149 // Not a leaf? 1150 if (!CurNodeFreq) { 1151 for (int I = 0, E = CFGNodes[Cur].NumOutEdges; I != E; ++I) { 1152 const uint32_t SuccEdge = CFGNodes[Cur].OutEdges[I].ID; 1153 CurNodeFreq += EdgeFreqs[SuccEdge]; 1154 } 1155 } 1156 if (CurNodeFreq < 0) 1157 CurNodeFreq = 0; 1158 1159 const uint64_t CallFreq = CallMap->visitAllCallsIn( 1160 Cur, CurNodeFreq > 0 ? CurNodeFreq : 0, CallFreqs, D, Counters, Ctx); 1161 1162 // Exception handling affected our output flow? Fix with calls info 1163 DEBUG({ 1164 if (CallFreq > CurNodeFreq) 1165 report("Bumping node frequency with call info\n"); 1166 }); 1167 CurNodeFreq = CallFreq > CurNodeFreq ? CallFreq : CurNodeFreq; 1168 1169 if (CurNodeFreq > 0) { 1170 if (uint64_t Addr = EntryAddress[Cur]) { 1171 DEBUG( 1172 reportNumber(" Setting flow at entry point address 0x", Addr, 16)); 1173 DEBUG(reportNumber(" with: ", CurNodeFreq, 10)); 1174 Ctx.CallFlowTable->get(Addr).Val = CurNodeFreq; 1175 } 1176 } 1177 1178 // No parent? Reached a tree root, limit to call frequency updating. 1179 if (SpanningTreeNodes[Cur].NumInEdges == 0) 1180 continue; 1181 1182 assert(SpanningTreeNodes[Cur].NumInEdges == 1, "must have 1 parent"); 1183 const uint32_t Parent = SpanningTreeNodes[Cur].InEdges[0].Node; 1184 const uint32_t ParentEdge = SpanningTreeNodes[Cur].InEdges[0].ID; 1185 1186 // Calculate parent edge freq. 1187 int64_t ParentEdgeFreq = CurNodeFreq; 1188 for (int I = 0, E = CFGNodes[Cur].NumInEdges; I != E; ++I) { 1189 const uint32_t PredEdge = CFGNodes[Cur].InEdges[I].ID; 1190 ParentEdgeFreq -= EdgeFreqs[PredEdge]; 1191 } 1192 1193 // Sometimes the conservative CFG that BOLT builds will lead to incorrect 1194 // flow computation. For example, in a BB that transitively calls the exit 1195 // syscall, BOLT will add a fall-through successor even though it should not 1196 // have any successors. So this block execution will likely be wrong. We 1197 // tolerate this imperfection since this case should be quite infrequent. 1198 if (ParentEdgeFreq < 0) { 1199 DEBUG(dumpEdgeFreqs()); 1200 DEBUG(report("WARNING: incorrect flow")); 1201 ParentEdgeFreq = 0; 1202 } 1203 DEBUG(reportNumber(" Setting freq for ParentEdge: ", ParentEdge, 10)); 1204 DEBUG(reportNumber(" with ParentEdgeFreq: ", ParentEdgeFreq, 10)); 1205 EdgeFreqs[ParentEdge] = ParentEdgeFreq; 1206 } 1207 1208 Alloc.deallocate(EntryAddress); 1209 Alloc.deallocate(LeafFrequency); 1210 Alloc.deallocate(Visited); 1211 Alloc.deallocate(Stack); 1212 CallMap->~NodeToCallsMap(); 1213 Alloc.deallocate(CallMap); 1214 DEBUG(dumpEdgeFreqs()); 1215 } 1216 1217 /// Write to \p FD all of the edge profiles for function \p FuncDesc. Uses 1218 /// \p Alloc to allocate helper dynamic structures used to compute profile for 1219 /// edges that we do not explictly instrument. 1220 const uint8_t *writeFunctionProfile(int FD, ProfileWriterContext &Ctx, 1221 const uint8_t *FuncDesc, 1222 BumpPtrAllocator &Alloc) { 1223 const FunctionDescription F(FuncDesc); 1224 const uint8_t *next = FuncDesc + F.getSize(); 1225 1226 #if !defined(__APPLE__) 1227 uint64_t *bolt_instr_locations = __bolt_instr_locations; 1228 #else 1229 uint64_t *bolt_instr_locations = _bolt_instr_locations_getter(); 1230 #endif 1231 1232 // Skip funcs we know are cold 1233 #ifndef ENABLE_DEBUG 1234 uint64_t CountersFreq = 0; 1235 for (int I = 0; I < F.NumLeafNodes; ++I) 1236 CountersFreq += bolt_instr_locations[F.LeafNodes[I].Counter]; 1237 1238 if (CountersFreq == 0) { 1239 for (int I = 0; I < F.NumEdges; ++I) { 1240 const uint32_t C = F.Edges[I].Counter; 1241 if (C == 0xffffffff) 1242 continue; 1243 CountersFreq += bolt_instr_locations[C]; 1244 } 1245 if (CountersFreq == 0) { 1246 for (int I = 0; I < F.NumCalls; ++I) { 1247 const uint32_t C = F.Calls[I].Counter; 1248 if (C == 0xffffffff) 1249 continue; 1250 CountersFreq += bolt_instr_locations[C]; 1251 } 1252 if (CountersFreq == 0) 1253 return next; 1254 } 1255 } 1256 #endif 1257 1258 Graph *G = new (Alloc) Graph(Alloc, F, bolt_instr_locations, Ctx); 1259 DEBUG(G->dump()); 1260 1261 if (!G->EdgeFreqs && !G->CallFreqs) { 1262 G->~Graph(); 1263 Alloc.deallocate(G); 1264 return next; 1265 } 1266 1267 for (int I = 0; I < F.NumEdges; ++I) { 1268 const uint64_t Freq = G->EdgeFreqs[I]; 1269 if (Freq == 0) 1270 continue; 1271 const EdgeDescription *Desc = &F.Edges[I]; 1272 char LineBuf[BufSize]; 1273 char *Ptr = LineBuf; 1274 Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); 1275 Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); 1276 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 22); 1277 Ptr = intToStr(Ptr, Freq, 10); 1278 *Ptr++ = '\n'; 1279 __write(FD, LineBuf, Ptr - LineBuf); 1280 } 1281 1282 for (int I = 0; I < F.NumCalls; ++I) { 1283 const uint64_t Freq = G->CallFreqs[I]; 1284 if (Freq == 0) 1285 continue; 1286 char LineBuf[BufSize]; 1287 char *Ptr = LineBuf; 1288 const CallDescription *Desc = &F.Calls[I]; 1289 Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); 1290 Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); 1291 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 1292 Ptr = intToStr(Ptr, Freq, 10); 1293 *Ptr++ = '\n'; 1294 __write(FD, LineBuf, Ptr - LineBuf); 1295 } 1296 1297 G->~Graph(); 1298 Alloc.deallocate(G); 1299 return next; 1300 } 1301 1302 #if !defined(__APPLE__) 1303 const IndCallTargetDescription * 1304 ProfileWriterContext::lookupIndCallTarget(uint64_t Target) const { 1305 uint32_t B = 0; 1306 uint32_t E = __bolt_instr_num_ind_targets; 1307 if (E == 0) 1308 return nullptr; 1309 do { 1310 uint32_t I = (E - B) / 2 + B; 1311 if (IndCallTargets[I].Address == Target) 1312 return &IndCallTargets[I]; 1313 if (IndCallTargets[I].Address < Target) 1314 B = I + 1; 1315 else 1316 E = I; 1317 } while (B < E); 1318 return nullptr; 1319 } 1320 1321 /// Write a single indirect call <src, target> pair to the fdata file 1322 void visitIndCallCounter(IndirectCallHashTable::MapEntry &Entry, 1323 int FD, int CallsiteID, 1324 ProfileWriterContext *Ctx) { 1325 if (Entry.Val == 0) 1326 return; 1327 DEBUG(reportNumber("Target func 0x", Entry.Key, 16)); 1328 DEBUG(reportNumber("Target freq: ", Entry.Val, 10)); 1329 const IndCallDescription *CallsiteDesc = 1330 &Ctx->IndCallDescriptions[CallsiteID]; 1331 const IndCallTargetDescription *TargetDesc = 1332 Ctx->lookupIndCallTarget(Entry.Key); 1333 if (!TargetDesc) { 1334 DEBUG(report("Failed to lookup indirect call target\n")); 1335 char LineBuf[BufSize]; 1336 char *Ptr = LineBuf; 1337 Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); 1338 Ptr = strCopy(Ptr, "0 [unknown] 0 0 ", BufSize - (Ptr - LineBuf) - 40); 1339 Ptr = intToStr(Ptr, Entry.Val, 10); 1340 *Ptr++ = '\n'; 1341 __write(FD, LineBuf, Ptr - LineBuf); 1342 return; 1343 } 1344 Ctx->CallFlowTable->get(TargetDesc->Address).Calls += Entry.Val; 1345 char LineBuf[BufSize]; 1346 char *Ptr = LineBuf; 1347 Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); 1348 Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); 1349 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 1350 Ptr = intToStr(Ptr, Entry.Val, 10); 1351 *Ptr++ = '\n'; 1352 __write(FD, LineBuf, Ptr - LineBuf); 1353 } 1354 1355 /// Write to \p FD all of the indirect call profiles. 1356 void writeIndirectCallProfile(int FD, ProfileWriterContext &Ctx) { 1357 for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) { 1358 DEBUG(reportNumber("IndCallsite #", I, 10)); 1359 GlobalIndCallCounters[I].forEachElement(visitIndCallCounter, FD, I, &Ctx); 1360 } 1361 } 1362 1363 /// Check a single call flow for a callee versus all known callers. If there are 1364 /// less callers than what the callee expects, write the difference with source 1365 /// [unknown] in the profile. 1366 void visitCallFlowEntry(CallFlowHashTable::MapEntry &Entry, int FD, 1367 ProfileWriterContext *Ctx) { 1368 DEBUG(reportNumber("Call flow entry address: 0x", Entry.Key, 16)); 1369 DEBUG(reportNumber("Calls: ", Entry.Calls, 10)); 1370 DEBUG(reportNumber("Reported entry frequency: ", Entry.Val, 10)); 1371 DEBUG({ 1372 if (Entry.Calls > Entry.Val) 1373 report(" More calls than expected!\n"); 1374 }); 1375 if (Entry.Val <= Entry.Calls) 1376 return; 1377 DEBUG(reportNumber( 1378 " Balancing calls with traffic: ", Entry.Val - Entry.Calls, 10)); 1379 const IndCallTargetDescription *TargetDesc = 1380 Ctx->lookupIndCallTarget(Entry.Key); 1381 if (!TargetDesc) { 1382 // There is probably something wrong with this callee and this should be 1383 // investigated, but I don't want to assert and lose all data collected. 1384 DEBUG(report("WARNING: failed to look up call target!\n")); 1385 return; 1386 } 1387 char LineBuf[BufSize]; 1388 char *Ptr = LineBuf; 1389 Ptr = strCopy(Ptr, "0 [unknown] 0 ", BufSize); 1390 Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); 1391 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 1392 Ptr = intToStr(Ptr, Entry.Val - Entry.Calls, 10); 1393 *Ptr++ = '\n'; 1394 __write(FD, LineBuf, Ptr - LineBuf); 1395 } 1396 1397 /// Open fdata file for writing and return a valid file descriptor, aborting 1398 /// program upon failure. 1399 int openProfile() { 1400 // Build the profile name string by appending our PID 1401 char Buf[BufSize]; 1402 char *Ptr = Buf; 1403 uint64_t PID = __getpid(); 1404 Ptr = strCopy(Buf, __bolt_instr_filename, BufSize); 1405 if (__bolt_instr_use_pid) { 1406 Ptr = strCopy(Ptr, ".", BufSize - (Ptr - Buf + 1)); 1407 Ptr = intToStr(Ptr, PID, 10); 1408 Ptr = strCopy(Ptr, ".fdata", BufSize - (Ptr - Buf + 1)); 1409 } 1410 *Ptr++ = '\0'; 1411 uint64_t FD = __open(Buf, 1412 /*flags=*/0x241 /*O_WRONLY|O_TRUNC|O_CREAT*/, 1413 /*mode=*/0666); 1414 if (static_cast<int64_t>(FD) < 0) { 1415 report("Error while trying to open profile file for writing: "); 1416 report(Buf); 1417 reportNumber("\nFailed with error number: 0x", 1418 0 - static_cast<int64_t>(FD), 16); 1419 __exit(1); 1420 } 1421 return FD; 1422 } 1423 1424 #endif 1425 1426 } // anonymous namespace 1427 1428 #if !defined(__APPLE__) 1429 1430 /// Reset all counters in case you want to start profiling a new phase of your 1431 /// program independently of prior phases. 1432 /// The address of this function is printed by BOLT and this can be called by 1433 /// any attached debugger during runtime. There is a useful oneliner for gdb: 1434 /// 1435 /// gdb -p $(pgrep -xo PROCESSNAME) -ex 'p ((void(*)())0xdeadbeef)()' \ 1436 /// -ex 'set confirm off' -ex quit 1437 /// 1438 /// Where 0xdeadbeef is this function address and PROCESSNAME your binary file 1439 /// name. 1440 extern "C" void __bolt_instr_clear_counters() { 1441 memset(reinterpret_cast<char *>(__bolt_instr_locations), 0, 1442 __bolt_num_counters * 8); 1443 for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) 1444 GlobalIndCallCounters[I].resetCounters(); 1445 } 1446 1447 /// This is the entry point for profile writing. 1448 /// There are three ways of getting here: 1449 /// 1450 /// * Program execution ended, finalization methods are running and BOLT 1451 /// hooked into FINI from your binary dynamic section; 1452 /// * You used the sleep timer option and during initialization we forked 1453 /// a separete process that will call this function periodically; 1454 /// * BOLT prints this function address so you can attach a debugger and 1455 /// call this function directly to get your profile written to disk 1456 /// on demand. 1457 /// 1458 extern "C" void __attribute((force_align_arg_pointer)) 1459 __bolt_instr_data_dump() { 1460 // Already dumping 1461 if (!GlobalWriteProfileMutex->acquire()) 1462 return; 1463 1464 BumpPtrAllocator HashAlloc; 1465 HashAlloc.setMaxSize(0x6400000); 1466 ProfileWriterContext Ctx = readDescriptions(); 1467 Ctx.CallFlowTable = new (HashAlloc, 0) CallFlowHashTable(HashAlloc); 1468 1469 DEBUG(printStats(Ctx)); 1470 1471 int FD = openProfile(); 1472 1473 BumpPtrAllocator Alloc; 1474 const uint8_t *FuncDesc = Ctx.FuncDescriptions; 1475 for (int I = 0, E = __bolt_instr_num_funcs; I < E; ++I) { 1476 FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); 1477 Alloc.clear(); 1478 DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)); 1479 } 1480 assert(FuncDesc == (void *)Ctx.Strings, 1481 "FuncDesc ptr must be equal to stringtable"); 1482 1483 writeIndirectCallProfile(FD, Ctx); 1484 Ctx.CallFlowTable->forEachElement(visitCallFlowEntry, FD, &Ctx); 1485 1486 __fsync(FD); 1487 __close(FD); 1488 __munmap(Ctx.MMapPtr, Ctx.MMapSize); 1489 __close(Ctx.FileDesc); 1490 HashAlloc.destroy(); 1491 GlobalWriteProfileMutex->release(); 1492 DEBUG(report("Finished writing profile.\n")); 1493 } 1494 1495 /// Event loop for our child process spawned during setup to dump profile data 1496 /// at user-specified intervals 1497 void watchProcess() { 1498 timespec ts, rem; 1499 uint64_t Ellapsed = 0ull; 1500 uint64_t ppid; 1501 if (__bolt_instr_wait_forks) { 1502 // Store parent pgid 1503 ppid = -__getpgid(0); 1504 // And leave parent process group 1505 __setpgid(0, 0); 1506 } else { 1507 // Store parent pid 1508 ppid = __getppid(); 1509 if (ppid == 1) { 1510 // Parent already dead 1511 __bolt_instr_data_dump(); 1512 goto out; 1513 } 1514 } 1515 1516 ts.tv_sec = 1; 1517 ts.tv_nsec = 0; 1518 while (1) { 1519 __nanosleep(&ts, &rem); 1520 // This means our parent process or all its forks are dead, 1521 // so no need for us to keep dumping. 1522 if (__kill(ppid, 0) < 0) { 1523 if (__bolt_instr_no_counters_clear) 1524 __bolt_instr_data_dump(); 1525 break; 1526 } 1527 1528 if (++Ellapsed < __bolt_instr_sleep_time) 1529 continue; 1530 1531 Ellapsed = 0; 1532 __bolt_instr_data_dump(); 1533 if (__bolt_instr_no_counters_clear == false) 1534 __bolt_instr_clear_counters(); 1535 } 1536 1537 out:; 1538 DEBUG(report("My parent process is dead, bye!\n")); 1539 __exit(0); 1540 } 1541 1542 extern "C" void __bolt_instr_indirect_call(); 1543 extern "C" void __bolt_instr_indirect_tailcall(); 1544 1545 /// Initialization code 1546 extern "C" void __attribute((force_align_arg_pointer)) __bolt_instr_setup() { 1547 const uint64_t CountersStart = 1548 reinterpret_cast<uint64_t>(&__bolt_instr_locations[0]); 1549 const uint64_t CountersEnd = alignTo( 1550 reinterpret_cast<uint64_t>(&__bolt_instr_locations[__bolt_num_counters]), 1551 0x1000); 1552 DEBUG(reportNumber("replace mmap start: ", CountersStart, 16)); 1553 DEBUG(reportNumber("replace mmap stop: ", CountersEnd, 16)); 1554 assert (CountersEnd > CountersStart, "no counters"); 1555 // Maps our counters to be shared instead of private, so we keep counting for 1556 // forked processes 1557 __mmap(CountersStart, CountersEnd - CountersStart, 1558 0x3 /*PROT_READ|PROT_WRITE*/, 1559 0x31 /*MAP_ANONYMOUS | MAP_SHARED | MAP_FIXED*/, -1, 0); 1560 1561 __bolt_ind_call_counter_func_pointer = __bolt_instr_indirect_call; 1562 __bolt_ind_tailcall_counter_func_pointer = __bolt_instr_indirect_tailcall; 1563 // Conservatively reserve 100MiB shared pages 1564 GlobalAlloc.setMaxSize(0x6400000); 1565 GlobalAlloc.setShared(true); 1566 GlobalWriteProfileMutex = new (GlobalAlloc, 0) Mutex(); 1567 if (__bolt_instr_num_ind_calls > 0) 1568 GlobalIndCallCounters = 1569 new (GlobalAlloc, 0) IndirectCallHashTable[__bolt_instr_num_ind_calls]; 1570 1571 if (__bolt_instr_sleep_time != 0) { 1572 // Separate instrumented process to the own process group 1573 if (__bolt_instr_wait_forks) 1574 __setpgid(0, 0); 1575 1576 if (long PID = __fork()) 1577 return; 1578 watchProcess(); 1579 } 1580 } 1581 1582 extern "C" __attribute((force_align_arg_pointer)) void 1583 instrumentIndirectCall(uint64_t Target, uint64_t IndCallID) { 1584 GlobalIndCallCounters[IndCallID].incrementVal(Target, GlobalAlloc); 1585 } 1586 1587 /// We receive as in-stack arguments the identifier of the indirect call site 1588 /// as well as the target address for the call 1589 extern "C" __attribute((naked)) void __bolt_instr_indirect_call() 1590 { 1591 __asm__ __volatile__(SAVE_ALL 1592 "mov 0xa0(%%rsp), %%rdi\n" 1593 "mov 0x98(%%rsp), %%rsi\n" 1594 "call instrumentIndirectCall\n" 1595 RESTORE_ALL 1596 "ret\n" 1597 :::); 1598 } 1599 1600 extern "C" __attribute((naked)) void __bolt_instr_indirect_tailcall() 1601 { 1602 __asm__ __volatile__(SAVE_ALL 1603 "mov 0x98(%%rsp), %%rdi\n" 1604 "mov 0x90(%%rsp), %%rsi\n" 1605 "call instrumentIndirectCall\n" 1606 RESTORE_ALL 1607 "ret\n" 1608 :::); 1609 } 1610 1611 /// This is hooking ELF's entry, it needs to save all machine state. 1612 extern "C" __attribute((naked)) void __bolt_instr_start() 1613 { 1614 __asm__ __volatile__(SAVE_ALL 1615 "call __bolt_instr_setup\n" 1616 RESTORE_ALL 1617 "jmp __bolt_start_trampoline\n" 1618 :::); 1619 } 1620 1621 /// This is hooking into ELF's DT_FINI 1622 extern "C" void __bolt_instr_fini() { 1623 __bolt_fini_trampoline(); 1624 if (__bolt_instr_sleep_time == 0) 1625 __bolt_instr_data_dump(); 1626 DEBUG(report("Finished.\n")); 1627 } 1628 1629 #endif 1630 1631 #if defined(__APPLE__) 1632 1633 extern "C" void __bolt_instr_data_dump() { 1634 ProfileWriterContext Ctx = readDescriptions(); 1635 1636 int FD = 2; 1637 BumpPtrAllocator Alloc; 1638 const uint8_t *FuncDesc = Ctx.FuncDescriptions; 1639 uint32_t bolt_instr_num_funcs = _bolt_instr_num_funcs_getter(); 1640 1641 for (int I = 0, E = bolt_instr_num_funcs; I < E; ++I) { 1642 FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); 1643 Alloc.clear(); 1644 DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)); 1645 } 1646 assert(FuncDesc == (void *)Ctx.Strings, 1647 "FuncDesc ptr must be equal to stringtable"); 1648 } 1649 1650 // On OSX/iOS the final symbol name of an extern "C" function/variable contains 1651 // one extra leading underscore: _bolt_instr_setup -> __bolt_instr_setup. 1652 extern "C" 1653 __attribute__((section("__TEXT,__setup"))) 1654 __attribute__((force_align_arg_pointer)) 1655 void _bolt_instr_setup() { 1656 __asm__ __volatile__(SAVE_ALL :::); 1657 1658 report("Hello!\n"); 1659 1660 __asm__ __volatile__(RESTORE_ALL :::); 1661 } 1662 1663 extern "C" 1664 __attribute__((section("__TEXT,__fini"))) 1665 __attribute__((force_align_arg_pointer)) 1666 void _bolt_instr_fini() { 1667 report("Bye!\n"); 1668 __bolt_instr_data_dump(); 1669 } 1670 1671 #endif 1672 #endif 1673