1 //===- bolt/runtime/instr.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // BOLT runtime instrumentation library for x86 Linux. Currently, BOLT does 10 // not support linking modules with dependencies on one another into the final 11 // binary (TODO?), which means this library has to be self-contained in a single 12 // module. 13 // 14 // All extern declarations here need to be defined by BOLT itself. Those will be 15 // undefined symbols that BOLT needs to resolve by emitting these symbols with 16 // MCStreamer. Currently, Passes/Instrumentation.cpp is the pass responsible 17 // for defining the symbols here and these two files have a tight coupling: one 18 // working statically when you run BOLT and another during program runtime when 19 // you run an instrumented binary. The main goal here is to output an fdata file 20 // (BOLT profile) with the instrumentation counters inserted by the static pass. 21 // Counters for indirect calls are an exception, as we can't know them 22 // statically. These counters are created and managed here. To allow this, we 23 // need a minimal framework for allocating memory dynamically. We provide this 24 // with the BumpPtrAllocator class (not LLVM's, but our own version of it). 25 // 26 // Since this code is intended to be inserted into any executable, we decided to 27 // make it standalone and do not depend on any external libraries (i.e. language 28 // support libraries, such as glibc or stdc++). To allow this, we provide a few 29 // light implementations of common OS interacting functionalities using direct 30 // syscall wrappers. Our simple allocator doesn't manage deallocations that 31 // fragment the memory space, so it's stack based. This is the minimal framework 32 // provided here to allow processing instrumented counters and writing fdata. 33 // 34 // In the C++ idiom used here, we never use or rely on constructors or 35 // destructors for global objects. That's because those need support from the 36 // linker in initialization/finalization code, and we want to keep our linker 37 // very simple. Similarly, we don't create any global objects that are zero 38 // initialized, since those would need to go .bss, which our simple linker also 39 // don't support (TODO?). 40 // 41 //===----------------------------------------------------------------------===// 42 43 #if defined (__x86_64__) 44 #include "common.h" 45 46 // Enables a very verbose logging to stderr useful when debugging 47 //#define ENABLE_DEBUG 48 49 #ifdef ENABLE_DEBUG 50 #define DEBUG(X) \ 51 { X; } 52 #else 53 #define DEBUG(X) \ 54 {} 55 #endif 56 57 #pragma GCC visibility push(hidden) 58 59 extern "C" { 60 61 #if defined(__APPLE__) 62 extern uint64_t* _bolt_instr_locations_getter(); 63 extern uint32_t _bolt_num_counters_getter(); 64 65 extern uint8_t* _bolt_instr_tables_getter(); 66 extern uint32_t _bolt_instr_num_funcs_getter(); 67 68 #else 69 70 // Main counters inserted by instrumentation, incremented during runtime when 71 // points of interest (locations) in the program are reached. Those are direct 72 // calls and direct and indirect branches (local ones). There are also counters 73 // for basic block execution if they are a spanning tree leaf and need to be 74 // counted in order to infer the execution count of other edges of the CFG. 75 extern uint64_t __bolt_instr_locations[]; 76 extern uint32_t __bolt_num_counters; 77 // Descriptions are serialized metadata about binary functions written by BOLT, 78 // so we have a minimal understanding about the program structure. For a 79 // reference on the exact format of this metadata, see *Description structs, 80 // Location, IntrumentedNode and EntryNode. 81 // Number of indirect call site descriptions 82 extern uint32_t __bolt_instr_num_ind_calls; 83 // Number of indirect call target descriptions 84 extern uint32_t __bolt_instr_num_ind_targets; 85 // Number of function descriptions 86 extern uint32_t __bolt_instr_num_funcs; 87 // Time to sleep across dumps (when we write the fdata profile to disk) 88 extern uint32_t __bolt_instr_sleep_time; 89 // Do not clear counters across dumps, rewrite file with the updated values 90 extern bool __bolt_instr_no_counters_clear; 91 // Wait until all forks of instrumented process will finish 92 extern bool __bolt_instr_wait_forks; 93 // Filename to dump data to 94 extern char __bolt_instr_filename[]; 95 // Instumented binary file path 96 extern char __bolt_instr_binpath[]; 97 // If true, append current PID to the fdata filename when creating it so 98 // different invocations of the same program can be differentiated. 99 extern bool __bolt_instr_use_pid; 100 // Functions that will be used to instrument indirect calls. BOLT static pass 101 // will identify indirect calls and modify them to load the address in these 102 // trampolines and call this address instead. BOLT can't use direct calls to 103 // our handlers because our addresses here are not known at analysis time. We 104 // only support resolving dependencies from this file to the output of BOLT, 105 // *not* the other way around. 106 // TODO: We need better linking support to make that happen. 107 extern void (*__bolt_ind_call_counter_func_pointer)(); 108 extern void (*__bolt_ind_tailcall_counter_func_pointer)(); 109 // Function pointers to init/fini trampoline routines in the binary, so we can 110 // resume regular execution of these functions that we hooked 111 extern void __bolt_start_trampoline(); 112 extern void __bolt_fini_trampoline(); 113 114 #endif 115 } 116 117 namespace { 118 119 /// A simple allocator that mmaps a fixed size region and manages this space 120 /// in a stack fashion, meaning you always deallocate the last element that 121 /// was allocated. In practice, we don't need to deallocate individual elements. 122 /// We monotonically increase our usage and then deallocate everything once we 123 /// are done processing something. 124 class BumpPtrAllocator { 125 /// This is written before each allocation and act as a canary to detect when 126 /// a bug caused our program to cross allocation boundaries. 127 struct EntryMetadata { 128 uint64_t Magic; 129 uint64_t AllocSize; 130 }; 131 132 public: 133 void *allocate(size_t Size) { 134 Lock L(M); 135 136 if (StackBase == nullptr) { 137 StackBase = reinterpret_cast<uint8_t *>( 138 __mmap(0, MaxSize, PROT_READ | PROT_WRITE, 139 (Shared ? MAP_SHARED : MAP_PRIVATE) | MAP_ANONYMOUS, -1, 0)); 140 assert(StackBase != MAP_FAILED, 141 "BumpPtrAllocator: failed to mmap stack!"); 142 StackSize = 0; 143 } 144 145 Size = alignTo(Size + sizeof(EntryMetadata), 16); 146 uint8_t *AllocAddress = StackBase + StackSize + sizeof(EntryMetadata); 147 auto *M = reinterpret_cast<EntryMetadata *>(StackBase + StackSize); 148 M->Magic = Magic; 149 M->AllocSize = Size; 150 StackSize += Size; 151 assert(StackSize < MaxSize, "allocator ran out of memory"); 152 return AllocAddress; 153 } 154 155 #ifdef DEBUG 156 /// Element-wise deallocation is only used for debugging to catch memory 157 /// bugs by checking magic bytes. Ordinarily, we reset the allocator once 158 /// we are done with it. Reset is done with clear(). There's no need 159 /// to deallocate each element individually. 160 void deallocate(void *Ptr) { 161 Lock L(M); 162 uint8_t MetadataOffset = sizeof(EntryMetadata); 163 auto *M = reinterpret_cast<EntryMetadata *>( 164 reinterpret_cast<uint8_t *>(Ptr) - MetadataOffset); 165 const uint8_t *StackTop = StackBase + StackSize + MetadataOffset; 166 // Validate size 167 if (Ptr != StackTop - M->AllocSize) { 168 // Failed validation, check if it is a pointer returned by operator new [] 169 MetadataOffset += 170 sizeof(uint64_t); // Space for number of elements alloc'ed 171 M = reinterpret_cast<EntryMetadata *>(reinterpret_cast<uint8_t *>(Ptr) - 172 MetadataOffset); 173 // Ok, it failed both checks if this assertion fails. Stop the program, we 174 // have a memory bug. 175 assert(Ptr == StackTop - M->AllocSize, 176 "must deallocate the last element alloc'ed"); 177 } 178 assert(M->Magic == Magic, "allocator magic is corrupt"); 179 StackSize -= M->AllocSize; 180 } 181 #else 182 void deallocate(void *) {} 183 #endif 184 185 void clear() { 186 Lock L(M); 187 StackSize = 0; 188 } 189 190 /// Set mmap reservation size (only relevant before first allocation) 191 void setMaxSize(uint64_t Size) { MaxSize = Size; } 192 193 /// Set mmap reservation privacy (only relevant before first allocation) 194 void setShared(bool S) { Shared = S; } 195 196 void destroy() { 197 if (StackBase == nullptr) 198 return; 199 __munmap(StackBase, MaxSize); 200 } 201 202 // Placement operator to construct allocator in possibly shared mmaped memory 203 static void *operator new(size_t, void *Ptr) { return Ptr; }; 204 205 private: 206 static constexpr uint64_t Magic = 0x1122334455667788ull; 207 uint64_t MaxSize = 0xa00000; 208 uint8_t *StackBase{nullptr}; 209 uint64_t StackSize{0}; 210 bool Shared{false}; 211 Mutex M; 212 }; 213 214 /// Used for allocating indirect call instrumentation counters. Initialized by 215 /// __bolt_instr_setup, our initialization routine. 216 BumpPtrAllocator *GlobalAlloc; 217 218 // Storage for GlobalAlloc which can be shared if not using 219 // instrumentation-file-append-pid. 220 void *GlobalMetadataStorage; 221 222 } // anonymous namespace 223 224 // User-defined placement new operators. We only use those (as opposed to 225 // overriding the regular operator new) so we can keep our allocator in the 226 // stack instead of in a data section (global). 227 void *operator new(size_t Sz, BumpPtrAllocator &A) { return A.allocate(Sz); } 228 void *operator new(size_t Sz, BumpPtrAllocator &A, char C) { 229 auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); 230 memset(Ptr, C, Sz); 231 return Ptr; 232 } 233 void *operator new[](size_t Sz, BumpPtrAllocator &A) { 234 return A.allocate(Sz); 235 } 236 void *operator new[](size_t Sz, BumpPtrAllocator &A, char C) { 237 auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); 238 memset(Ptr, C, Sz); 239 return Ptr; 240 } 241 // Only called during exception unwinding (useless). We must manually dealloc. 242 // C++ language weirdness 243 void operator delete(void *Ptr, BumpPtrAllocator &A) { A.deallocate(Ptr); } 244 245 namespace { 246 247 // Disable instrumentation optimizations that sacrifice profile accuracy 248 extern "C" bool __bolt_instr_conservative; 249 250 /// Basic key-val atom stored in our hash 251 struct SimpleHashTableEntryBase { 252 uint64_t Key; 253 uint64_t Val; 254 void dump(const char *Msg = nullptr) { 255 // TODO: make some sort of formatting function 256 // Currently we have to do it the ugly way because 257 // we want every message to be printed atomically via a single call to 258 // __write. If we use reportNumber() and others nultiple times, we'll get 259 // garbage in mulithreaded environment 260 char Buf[BufSize]; 261 char *Ptr = Buf; 262 Ptr = intToStr(Ptr, __getpid(), 10); 263 *Ptr++ = ':'; 264 *Ptr++ = ' '; 265 if (Msg) 266 Ptr = strCopy(Ptr, Msg, strLen(Msg)); 267 *Ptr++ = '0'; 268 *Ptr++ = 'x'; 269 Ptr = intToStr(Ptr, (uint64_t)this, 16); 270 *Ptr++ = ':'; 271 *Ptr++ = ' '; 272 Ptr = strCopy(Ptr, "MapEntry(0x", sizeof("MapEntry(0x") - 1); 273 Ptr = intToStr(Ptr, Key, 16); 274 *Ptr++ = ','; 275 *Ptr++ = ' '; 276 *Ptr++ = '0'; 277 *Ptr++ = 'x'; 278 Ptr = intToStr(Ptr, Val, 16); 279 *Ptr++ = ')'; 280 *Ptr++ = '\n'; 281 assert(Ptr - Buf < BufSize, "Buffer overflow!"); 282 // print everything all at once for atomicity 283 __write(2, Buf, Ptr - Buf); 284 } 285 }; 286 287 /// This hash table implementation starts by allocating a table of size 288 /// InitialSize. When conflicts happen in this main table, it resolves 289 /// them by chaining a new table of size IncSize. It never reallocs as our 290 /// allocator doesn't support it. The key is intended to be function pointers. 291 /// There's no clever hash function (it's just x mod size, size being prime). 292 /// I never tuned the coefficientes in the modular equation (TODO) 293 /// This is used for indirect calls (each call site has one of this, so it 294 /// should have a small footprint) and for tallying call counts globally for 295 /// each target to check if we missed the origin of some calls (this one is a 296 /// large instantiation of this template, since it is global for all call sites) 297 template <typename T = SimpleHashTableEntryBase, uint32_t InitialSize = 7, 298 uint32_t IncSize = 7> 299 class SimpleHashTable { 300 public: 301 using MapEntry = T; 302 303 /// Increment by 1 the value of \p Key. If it is not in this table, it will be 304 /// added to the table and its value set to 1. 305 void incrementVal(uint64_t Key, BumpPtrAllocator &Alloc) { 306 if (!__bolt_instr_conservative) { 307 TryLock L(M); 308 if (!L.isLocked()) 309 return; 310 auto &E = getOrAllocEntry(Key, Alloc); 311 ++E.Val; 312 return; 313 } 314 Lock L(M); 315 auto &E = getOrAllocEntry(Key, Alloc); 316 ++E.Val; 317 } 318 319 /// Basic member accessing interface. Here we pass the allocator explicitly to 320 /// avoid storing a pointer to it as part of this table (remember there is one 321 /// hash for each indirect call site, so we wan't to minimize our footprint). 322 MapEntry &get(uint64_t Key, BumpPtrAllocator &Alloc) { 323 if (!__bolt_instr_conservative) { 324 TryLock L(M); 325 if (!L.isLocked()) 326 return NoEntry; 327 return getOrAllocEntry(Key, Alloc); 328 } 329 Lock L(M); 330 return getOrAllocEntry(Key, Alloc); 331 } 332 333 /// Traverses all elements in the table 334 template <typename... Args> 335 void forEachElement(void (*Callback)(MapEntry &, Args...), Args... args) { 336 Lock L(M); 337 if (!TableRoot) 338 return; 339 return forEachElement(Callback, InitialSize, TableRoot, args...); 340 } 341 342 void resetCounters(); 343 344 private: 345 constexpr static uint64_t VacantMarker = 0; 346 constexpr static uint64_t FollowUpTableMarker = 0x8000000000000000ull; 347 348 MapEntry *TableRoot{nullptr}; 349 MapEntry NoEntry; 350 Mutex M; 351 352 template <typename... Args> 353 void forEachElement(void (*Callback)(MapEntry &, Args...), 354 uint32_t NumEntries, MapEntry *Entries, Args... args) { 355 for (uint32_t I = 0; I < NumEntries; ++I) { 356 MapEntry &Entry = Entries[I]; 357 if (Entry.Key == VacantMarker) 358 continue; 359 if (Entry.Key & FollowUpTableMarker) { 360 MapEntry *Next = 361 reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker); 362 assert(Next != Entries, "Circular reference!"); 363 forEachElement(Callback, IncSize, Next, args...); 364 continue; 365 } 366 Callback(Entry, args...); 367 } 368 } 369 370 MapEntry &firstAllocation(uint64_t Key, BumpPtrAllocator &Alloc) { 371 TableRoot = new (Alloc, 0) MapEntry[InitialSize]; 372 MapEntry &Entry = TableRoot[Key % InitialSize]; 373 Entry.Key = Key; 374 // DEBUG(Entry.dump("Created root entry: ")); 375 return Entry; 376 } 377 378 MapEntry &getEntry(MapEntry *Entries, uint64_t Key, uint64_t Selector, 379 BumpPtrAllocator &Alloc, int CurLevel) { 380 // DEBUG(reportNumber("getEntry called, level ", CurLevel, 10)); 381 const uint32_t NumEntries = CurLevel == 0 ? InitialSize : IncSize; 382 uint64_t Remainder = Selector / NumEntries; 383 Selector = Selector % NumEntries; 384 MapEntry &Entry = Entries[Selector]; 385 386 // A hit 387 if (Entry.Key == Key) { 388 // DEBUG(Entry.dump("Hit: ")); 389 return Entry; 390 } 391 392 // Vacant - add new entry 393 if (Entry.Key == VacantMarker) { 394 Entry.Key = Key; 395 // DEBUG(Entry.dump("Adding new entry: ")); 396 return Entry; 397 } 398 399 // Defer to the next level 400 if (Entry.Key & FollowUpTableMarker) { 401 return getEntry( 402 reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker), 403 Key, Remainder, Alloc, CurLevel + 1); 404 } 405 406 // Conflict - create the next level 407 // DEBUG(Entry.dump("Creating new level: ")); 408 409 MapEntry *NextLevelTbl = new (Alloc, 0) MapEntry[IncSize]; 410 // DEBUG( 411 // reportNumber("Newly allocated level: 0x", uint64_t(NextLevelTbl), 412 // 16)); 413 uint64_t CurEntrySelector = Entry.Key / InitialSize; 414 for (int I = 0; I < CurLevel; ++I) 415 CurEntrySelector /= IncSize; 416 CurEntrySelector = CurEntrySelector % IncSize; 417 NextLevelTbl[CurEntrySelector] = Entry; 418 Entry.Key = reinterpret_cast<uint64_t>(NextLevelTbl) | FollowUpTableMarker; 419 assert((NextLevelTbl[CurEntrySelector].Key & ~FollowUpTableMarker) != 420 uint64_t(Entries), 421 "circular reference created!\n"); 422 // DEBUG(NextLevelTbl[CurEntrySelector].dump("New level entry: ")); 423 // DEBUG(Entry.dump("Updated old entry: ")); 424 return getEntry(NextLevelTbl, Key, Remainder, Alloc, CurLevel + 1); 425 } 426 427 MapEntry &getOrAllocEntry(uint64_t Key, BumpPtrAllocator &Alloc) { 428 if (TableRoot) { 429 MapEntry &E = getEntry(TableRoot, Key, Key, Alloc, 0); 430 assert(!(E.Key & FollowUpTableMarker), "Invalid entry!"); 431 return E; 432 } 433 return firstAllocation(Key, Alloc); 434 } 435 }; 436 437 template <typename T> void resetIndCallCounter(T &Entry) { 438 Entry.Val = 0; 439 } 440 441 template <typename T, uint32_t X, uint32_t Y> 442 void SimpleHashTable<T, X, Y>::resetCounters() { 443 forEachElement(resetIndCallCounter); 444 } 445 446 /// Represents a hash table mapping a function target address to its counter. 447 using IndirectCallHashTable = SimpleHashTable<>; 448 449 /// Initialize with number 1 instead of 0 so we don't go into .bss. This is the 450 /// global array of all hash tables storing indirect call destinations happening 451 /// during runtime, one table per call site. 452 IndirectCallHashTable *GlobalIndCallCounters{ 453 reinterpret_cast<IndirectCallHashTable *>(1)}; 454 455 /// Don't allow reentrancy in the fdata writing phase - only one thread writes 456 /// it 457 Mutex *GlobalWriteProfileMutex{reinterpret_cast<Mutex *>(1)}; 458 459 /// Store number of calls in additional to target address (Key) and frequency 460 /// as perceived by the basic block counter (Val). 461 struct CallFlowEntryBase : public SimpleHashTableEntryBase { 462 uint64_t Calls; 463 }; 464 465 using CallFlowHashTableBase = SimpleHashTable<CallFlowEntryBase, 11939, 233>; 466 467 /// This is a large table indexing all possible call targets (indirect and 468 /// direct ones). The goal is to find mismatches between number of calls (for 469 /// those calls we were able to track) and the entry basic block counter of the 470 /// callee. In most cases, these two should be equal. If not, there are two 471 /// possible scenarios here: 472 /// 473 /// * Entry BB has higher frequency than all known calls to this function. 474 /// In this case, we have dynamic library code or any uninstrumented code 475 /// calling this function. We will write the profile for these untracked 476 /// calls as having source "0 [unknown] 0" in the fdata file. 477 /// 478 /// * Number of known calls is higher than the frequency of entry BB 479 /// This only happens when there is no counter for the entry BB / callee 480 /// function is not simple (in BOLT terms). We don't do anything special 481 /// here and just ignore those (we still report all calls to the non-simple 482 /// function, though). 483 /// 484 class CallFlowHashTable : public CallFlowHashTableBase { 485 public: 486 CallFlowHashTable(BumpPtrAllocator &Alloc) : Alloc(Alloc) {} 487 488 MapEntry &get(uint64_t Key) { return CallFlowHashTableBase::get(Key, Alloc); } 489 490 private: 491 // Different than the hash table for indirect call targets, we do store the 492 // allocator here since there is only one call flow hash and space overhead 493 // is negligible. 494 BumpPtrAllocator &Alloc; 495 }; 496 497 /// 498 /// Description metadata emitted by BOLT to describe the program - refer to 499 /// Passes/Instrumentation.cpp - Instrumentation::emitTablesAsELFNote() 500 /// 501 struct Location { 502 uint32_t FunctionName; 503 uint32_t Offset; 504 }; 505 506 struct CallDescription { 507 Location From; 508 uint32_t FromNode; 509 Location To; 510 uint32_t Counter; 511 uint64_t TargetAddress; 512 }; 513 514 using IndCallDescription = Location; 515 516 struct IndCallTargetDescription { 517 Location Loc; 518 uint64_t Address; 519 }; 520 521 struct EdgeDescription { 522 Location From; 523 uint32_t FromNode; 524 Location To; 525 uint32_t ToNode; 526 uint32_t Counter; 527 }; 528 529 struct InstrumentedNode { 530 uint32_t Node; 531 uint32_t Counter; 532 }; 533 534 struct EntryNode { 535 uint64_t Node; 536 uint64_t Address; 537 }; 538 539 struct FunctionDescription { 540 uint32_t NumLeafNodes; 541 const InstrumentedNode *LeafNodes; 542 uint32_t NumEdges; 543 const EdgeDescription *Edges; 544 uint32_t NumCalls; 545 const CallDescription *Calls; 546 uint32_t NumEntryNodes; 547 const EntryNode *EntryNodes; 548 549 /// Constructor will parse the serialized function metadata written by BOLT 550 FunctionDescription(const uint8_t *FuncDesc); 551 552 uint64_t getSize() const { 553 return 16 + NumLeafNodes * sizeof(InstrumentedNode) + 554 NumEdges * sizeof(EdgeDescription) + 555 NumCalls * sizeof(CallDescription) + 556 NumEntryNodes * sizeof(EntryNode); 557 } 558 }; 559 560 /// The context is created when the fdata profile needs to be written to disk 561 /// and we need to interpret our runtime counters. It contains pointers to the 562 /// mmaped binary (only the BOLT written metadata section). Deserialization 563 /// should be straightforward as most data is POD or an array of POD elements. 564 /// This metadata is used to reconstruct function CFGs. 565 struct ProfileWriterContext { 566 IndCallDescription *IndCallDescriptions; 567 IndCallTargetDescription *IndCallTargets; 568 uint8_t *FuncDescriptions; 569 char *Strings; // String table with function names used in this binary 570 int FileDesc; // File descriptor for the file on disk backing this 571 // information in memory via mmap 572 void *MMapPtr; // The mmap ptr 573 int MMapSize; // The mmap size 574 575 /// Hash table storing all possible call destinations to detect untracked 576 /// calls and correctly report them as [unknown] in output fdata. 577 CallFlowHashTable *CallFlowTable; 578 579 /// Lookup the sorted indirect call target vector to fetch function name and 580 /// offset for an arbitrary function pointer. 581 const IndCallTargetDescription *lookupIndCallTarget(uint64_t Target) const; 582 }; 583 584 /// Perform a string comparison and returns zero if Str1 matches Str2. Compares 585 /// at most Size characters. 586 int compareStr(const char *Str1, const char *Str2, int Size) { 587 while (*Str1 == *Str2) { 588 if (*Str1 == '\0' || --Size == 0) 589 return 0; 590 ++Str1; 591 ++Str2; 592 } 593 return 1; 594 } 595 596 /// Output Location to the fdata file 597 char *serializeLoc(const ProfileWriterContext &Ctx, char *OutBuf, 598 const Location Loc, uint32_t BufSize) { 599 // fdata location format: Type Name Offset 600 // Type 1 - regular symbol 601 OutBuf = strCopy(OutBuf, "1 "); 602 const char *Str = Ctx.Strings + Loc.FunctionName; 603 uint32_t Size = 25; 604 while (*Str) { 605 *OutBuf++ = *Str++; 606 if (++Size >= BufSize) 607 break; 608 } 609 assert(!*Str, "buffer overflow, function name too large"); 610 *OutBuf++ = ' '; 611 OutBuf = intToStr(OutBuf, Loc.Offset, 16); 612 *OutBuf++ = ' '; 613 return OutBuf; 614 } 615 616 /// Read and deserialize a function description written by BOLT. \p FuncDesc 617 /// points at the beginning of the function metadata structure in the file. 618 /// See Instrumentation::emitTablesAsELFNote() 619 FunctionDescription::FunctionDescription(const uint8_t *FuncDesc) { 620 NumLeafNodes = *reinterpret_cast<const uint32_t *>(FuncDesc); 621 DEBUG(reportNumber("NumLeafNodes = ", NumLeafNodes, 10)); 622 LeafNodes = reinterpret_cast<const InstrumentedNode *>(FuncDesc + 4); 623 624 NumEdges = *reinterpret_cast<const uint32_t *>( 625 FuncDesc + 4 + NumLeafNodes * sizeof(InstrumentedNode)); 626 DEBUG(reportNumber("NumEdges = ", NumEdges, 10)); 627 Edges = reinterpret_cast<const EdgeDescription *>( 628 FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode)); 629 630 NumCalls = *reinterpret_cast<const uint32_t *>( 631 FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode) + 632 NumEdges * sizeof(EdgeDescription)); 633 DEBUG(reportNumber("NumCalls = ", NumCalls, 10)); 634 Calls = reinterpret_cast<const CallDescription *>( 635 FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + 636 NumEdges * sizeof(EdgeDescription)); 637 NumEntryNodes = *reinterpret_cast<const uint32_t *>( 638 FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + 639 NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); 640 DEBUG(reportNumber("NumEntryNodes = ", NumEntryNodes, 10)); 641 EntryNodes = reinterpret_cast<const EntryNode *>( 642 FuncDesc + 16 + NumLeafNodes * sizeof(InstrumentedNode) + 643 NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); 644 } 645 646 /// Read and mmap descriptions written by BOLT from the executable's notes 647 /// section 648 #if defined(HAVE_ELF_H) and !defined(__APPLE__) 649 650 void *__attribute__((noinline)) __get_pc() { 651 return __builtin_extract_return_addr(__builtin_return_address(0)); 652 } 653 654 /// Get string with address and parse it to hex pair <StartAddress, EndAddress> 655 bool parseAddressRange(const char *Str, uint64_t &StartAddress, 656 uint64_t &EndAddress) { 657 if (!Str) 658 return false; 659 // Parsed string format: <hex1>-<hex2> 660 StartAddress = hexToLong(Str, '-'); 661 while (*Str && *Str != '-') 662 ++Str; 663 if (!*Str) 664 return false; 665 ++Str; // swallow '-' 666 EndAddress = hexToLong(Str); 667 return true; 668 } 669 670 /// Get full path to the real binary by getting current virtual address 671 /// and searching for the appropriate link in address range in 672 /// /proc/self/map_files 673 static char *getBinaryPath() { 674 const uint32_t BufSize = 1024; 675 const uint32_t NameMax = 4096; 676 const char DirPath[] = "/proc/self/map_files/"; 677 static char TargetPath[NameMax] = {}; 678 char Buf[BufSize]; 679 680 if (__bolt_instr_binpath[0] != '\0') 681 return __bolt_instr_binpath; 682 683 if (TargetPath[0] != '\0') 684 return TargetPath; 685 686 unsigned long CurAddr = (unsigned long)__get_pc(); 687 uint64_t FDdir = __open(DirPath, O_RDONLY, 688 /*mode=*/0666); 689 assert(static_cast<int64_t>(FDdir) >= 0, 690 "failed to open /proc/self/map_files"); 691 692 while (long Nread = __getdents(FDdir, (struct dirent *)Buf, BufSize)) { 693 assert(static_cast<int64_t>(Nread) != -1, "failed to get folder entries"); 694 695 struct dirent *d; 696 for (long Bpos = 0; Bpos < Nread; Bpos += d->d_reclen) { 697 d = (struct dirent *)(Buf + Bpos); 698 699 uint64_t StartAddress, EndAddress; 700 if (!parseAddressRange(d->d_name, StartAddress, EndAddress)) 701 continue; 702 if (CurAddr < StartAddress || CurAddr > EndAddress) 703 continue; 704 char FindBuf[NameMax]; 705 char *C = strCopy(FindBuf, DirPath, NameMax); 706 C = strCopy(C, d->d_name, NameMax - (C - FindBuf)); 707 *C = '\0'; 708 uint32_t Ret = __readlink(FindBuf, TargetPath, sizeof(TargetPath)); 709 assert(Ret != -1 && Ret != BufSize, "readlink error"); 710 TargetPath[Ret] = '\0'; 711 return TargetPath; 712 } 713 } 714 return nullptr; 715 } 716 717 ProfileWriterContext readDescriptions() { 718 ProfileWriterContext Result; 719 char *BinPath = getBinaryPath(); 720 assert(BinPath && BinPath[0] != '\0', "failed to find binary path"); 721 722 uint64_t FD = __open(BinPath, O_RDONLY, 723 /*mode=*/0666); 724 assert(static_cast<int64_t>(FD) >= 0, "failed to open binary path"); 725 726 Result.FileDesc = FD; 727 728 // mmap our binary to memory 729 uint64_t Size = __lseek(FD, 0, SEEK_END); 730 uint8_t *BinContents = reinterpret_cast<uint8_t *>( 731 __mmap(0, Size, PROT_READ, MAP_PRIVATE, FD, 0)); 732 assert(BinContents != MAP_FAILED, "readDescriptions: Failed to mmap self!"); 733 Result.MMapPtr = BinContents; 734 Result.MMapSize = Size; 735 Elf64_Ehdr *Hdr = reinterpret_cast<Elf64_Ehdr *>(BinContents); 736 Elf64_Shdr *Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff); 737 Elf64_Shdr *StringTblHeader = reinterpret_cast<Elf64_Shdr *>( 738 BinContents + Hdr->e_shoff + Hdr->e_shstrndx * Hdr->e_shentsize); 739 740 // Find .bolt.instr.tables with the data we need and set pointers to it 741 for (int I = 0; I < Hdr->e_shnum; ++I) { 742 char *SecName = reinterpret_cast<char *>( 743 BinContents + StringTblHeader->sh_offset + Shdr->sh_name); 744 if (compareStr(SecName, ".bolt.instr.tables", 64) != 0) { 745 Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff + 746 (I + 1) * Hdr->e_shentsize); 747 continue; 748 } 749 // Actual contents of the ELF note start after offset 20 decimal: 750 // Offset 0: Producer name size (4 bytes) 751 // Offset 4: Contents size (4 bytes) 752 // Offset 8: Note type (4 bytes) 753 // Offset 12: Producer name (BOLT\0) (5 bytes + align to 4-byte boundary) 754 // Offset 20: Contents 755 uint32_t IndCallDescSize = 756 *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 20); 757 uint32_t IndCallTargetDescSize = *reinterpret_cast<uint32_t *>( 758 BinContents + Shdr->sh_offset + 24 + IndCallDescSize); 759 uint32_t FuncDescSize = 760 *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 28 + 761 IndCallDescSize + IndCallTargetDescSize); 762 Result.IndCallDescriptions = reinterpret_cast<IndCallDescription *>( 763 BinContents + Shdr->sh_offset + 24); 764 Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( 765 BinContents + Shdr->sh_offset + 28 + IndCallDescSize); 766 Result.FuncDescriptions = BinContents + Shdr->sh_offset + 32 + 767 IndCallDescSize + IndCallTargetDescSize; 768 Result.Strings = reinterpret_cast<char *>( 769 BinContents + Shdr->sh_offset + 32 + IndCallDescSize + 770 IndCallTargetDescSize + FuncDescSize); 771 return Result; 772 } 773 const char ErrMsg[] = 774 "BOLT instrumentation runtime error: could not find section " 775 ".bolt.instr.tables\n"; 776 reportError(ErrMsg, sizeof(ErrMsg)); 777 return Result; 778 } 779 780 #else 781 782 ProfileWriterContext readDescriptions() { 783 ProfileWriterContext Result; 784 uint8_t *Tables = _bolt_instr_tables_getter(); 785 uint32_t IndCallDescSize = *reinterpret_cast<uint32_t *>(Tables); 786 uint32_t IndCallTargetDescSize = 787 *reinterpret_cast<uint32_t *>(Tables + 4 + IndCallDescSize); 788 uint32_t FuncDescSize = *reinterpret_cast<uint32_t *>( 789 Tables + 8 + IndCallDescSize + IndCallTargetDescSize); 790 Result.IndCallDescriptions = 791 reinterpret_cast<IndCallDescription *>(Tables + 4); 792 Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( 793 Tables + 8 + IndCallDescSize); 794 Result.FuncDescriptions = 795 Tables + 12 + IndCallDescSize + IndCallTargetDescSize; 796 Result.Strings = reinterpret_cast<char *>( 797 Tables + 12 + IndCallDescSize + IndCallTargetDescSize + FuncDescSize); 798 return Result; 799 } 800 801 #endif 802 803 #if !defined(__APPLE__) 804 /// Debug by printing overall metadata global numbers to check it is sane 805 void printStats(const ProfileWriterContext &Ctx) { 806 char StatMsg[BufSize]; 807 char *StatPtr = StatMsg; 808 StatPtr = 809 strCopy(StatPtr, 810 "\nBOLT INSTRUMENTATION RUNTIME STATISTICS\n\nIndCallDescSize: "); 811 StatPtr = intToStr(StatPtr, 812 Ctx.FuncDescriptions - 813 reinterpret_cast<uint8_t *>(Ctx.IndCallDescriptions), 814 10); 815 StatPtr = strCopy(StatPtr, "\nFuncDescSize: "); 816 StatPtr = intToStr( 817 StatPtr, 818 reinterpret_cast<uint8_t *>(Ctx.Strings) - Ctx.FuncDescriptions, 10); 819 StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_ind_calls: "); 820 StatPtr = intToStr(StatPtr, __bolt_instr_num_ind_calls, 10); 821 StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_funcs: "); 822 StatPtr = intToStr(StatPtr, __bolt_instr_num_funcs, 10); 823 StatPtr = strCopy(StatPtr, "\n"); 824 __write(2, StatMsg, StatPtr - StatMsg); 825 } 826 #endif 827 828 829 /// This is part of a simple CFG representation in memory, where we store 830 /// a dynamically sized array of input and output edges per node, and store 831 /// a dynamically sized array of nodes per graph. We also store the spanning 832 /// tree edges for that CFG in a separate array of nodes in 833 /// \p SpanningTreeNodes, while the regular nodes live in \p CFGNodes. 834 struct Edge { 835 uint32_t Node; // Index in nodes array regarding the destination of this edge 836 uint32_t ID; // Edge index in an array comprising all edges of the graph 837 }; 838 839 /// A regular graph node or a spanning tree node 840 struct Node { 841 uint32_t NumInEdges{0}; // Input edge count used to size InEdge 842 uint32_t NumOutEdges{0}; // Output edge count used to size OutEdges 843 Edge *InEdges{nullptr}; // Created and managed by \p Graph 844 Edge *OutEdges{nullptr}; // ditto 845 }; 846 847 /// Main class for CFG representation in memory. Manages object creation and 848 /// destruction, populates an array of CFG nodes as well as corresponding 849 /// spanning tree nodes. 850 struct Graph { 851 uint32_t NumNodes; 852 Node *CFGNodes; 853 Node *SpanningTreeNodes; 854 uint64_t *EdgeFreqs; 855 uint64_t *CallFreqs; 856 BumpPtrAllocator &Alloc; 857 const FunctionDescription &D; 858 859 /// Reads a list of edges from function description \p D and builds 860 /// the graph from it. Allocates several internal dynamic structures that are 861 /// later destroyed by ~Graph() and uses \p Alloc. D.LeafNodes contain all 862 /// spanning tree leaf nodes descriptions (their counters). They are the seed 863 /// used to compute the rest of the missing edge counts in a bottom-up 864 /// traversal of the spanning tree. 865 Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, 866 const uint64_t *Counters, ProfileWriterContext &Ctx); 867 ~Graph(); 868 void dump() const; 869 870 private: 871 void computeEdgeFrequencies(const uint64_t *Counters, 872 ProfileWriterContext &Ctx); 873 void dumpEdgeFreqs() const; 874 }; 875 876 Graph::Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, 877 const uint64_t *Counters, ProfileWriterContext &Ctx) 878 : Alloc(Alloc), D(D) { 879 DEBUG(reportNumber("G = 0x", (uint64_t)this, 16)); 880 // First pass to determine number of nodes 881 int32_t MaxNodes = -1; 882 CallFreqs = nullptr; 883 EdgeFreqs = nullptr; 884 for (int I = 0; I < D.NumEdges; ++I) { 885 if (static_cast<int32_t>(D.Edges[I].FromNode) > MaxNodes) 886 MaxNodes = D.Edges[I].FromNode; 887 if (static_cast<int32_t>(D.Edges[I].ToNode) > MaxNodes) 888 MaxNodes = D.Edges[I].ToNode; 889 } 890 891 for (int I = 0; I < D.NumLeafNodes; ++I) 892 if (static_cast<int32_t>(D.LeafNodes[I].Node) > MaxNodes) 893 MaxNodes = D.LeafNodes[I].Node; 894 895 for (int I = 0; I < D.NumCalls; ++I) 896 if (static_cast<int32_t>(D.Calls[I].FromNode) > MaxNodes) 897 MaxNodes = D.Calls[I].FromNode; 898 899 // No nodes? Nothing to do 900 if (MaxNodes < 0) { 901 DEBUG(report("No nodes!\n")); 902 CFGNodes = nullptr; 903 SpanningTreeNodes = nullptr; 904 NumNodes = 0; 905 return; 906 } 907 ++MaxNodes; 908 DEBUG(reportNumber("NumNodes = ", MaxNodes, 10)); 909 NumNodes = static_cast<uint32_t>(MaxNodes); 910 911 // Initial allocations 912 CFGNodes = new (Alloc) Node[MaxNodes]; 913 914 DEBUG(reportNumber("G->CFGNodes = 0x", (uint64_t)CFGNodes, 16)); 915 SpanningTreeNodes = new (Alloc) Node[MaxNodes]; 916 DEBUG(reportNumber("G->SpanningTreeNodes = 0x", 917 (uint64_t)SpanningTreeNodes, 16)); 918 919 // Figure out how much to allocate to each vector (in/out edge sets) 920 for (int I = 0; I < D.NumEdges; ++I) { 921 CFGNodes[D.Edges[I].FromNode].NumOutEdges++; 922 CFGNodes[D.Edges[I].ToNode].NumInEdges++; 923 if (D.Edges[I].Counter != 0xffffffff) 924 continue; 925 926 SpanningTreeNodes[D.Edges[I].FromNode].NumOutEdges++; 927 SpanningTreeNodes[D.Edges[I].ToNode].NumInEdges++; 928 } 929 930 // Allocate in/out edge sets 931 for (int I = 0; I < MaxNodes; ++I) { 932 if (CFGNodes[I].NumInEdges > 0) 933 CFGNodes[I].InEdges = new (Alloc) Edge[CFGNodes[I].NumInEdges]; 934 if (CFGNodes[I].NumOutEdges > 0) 935 CFGNodes[I].OutEdges = new (Alloc) Edge[CFGNodes[I].NumOutEdges]; 936 if (SpanningTreeNodes[I].NumInEdges > 0) 937 SpanningTreeNodes[I].InEdges = 938 new (Alloc) Edge[SpanningTreeNodes[I].NumInEdges]; 939 if (SpanningTreeNodes[I].NumOutEdges > 0) 940 SpanningTreeNodes[I].OutEdges = 941 new (Alloc) Edge[SpanningTreeNodes[I].NumOutEdges]; 942 CFGNodes[I].NumInEdges = 0; 943 CFGNodes[I].NumOutEdges = 0; 944 SpanningTreeNodes[I].NumInEdges = 0; 945 SpanningTreeNodes[I].NumOutEdges = 0; 946 } 947 948 // Fill in/out edge sets 949 for (int I = 0; I < D.NumEdges; ++I) { 950 const uint32_t Src = D.Edges[I].FromNode; 951 const uint32_t Dst = D.Edges[I].ToNode; 952 Edge *E = &CFGNodes[Src].OutEdges[CFGNodes[Src].NumOutEdges++]; 953 E->Node = Dst; 954 E->ID = I; 955 956 E = &CFGNodes[Dst].InEdges[CFGNodes[Dst].NumInEdges++]; 957 E->Node = Src; 958 E->ID = I; 959 960 if (D.Edges[I].Counter != 0xffffffff) 961 continue; 962 963 E = &SpanningTreeNodes[Src] 964 .OutEdges[SpanningTreeNodes[Src].NumOutEdges++]; 965 E->Node = Dst; 966 E->ID = I; 967 968 E = &SpanningTreeNodes[Dst] 969 .InEdges[SpanningTreeNodes[Dst].NumInEdges++]; 970 E->Node = Src; 971 E->ID = I; 972 } 973 974 computeEdgeFrequencies(Counters, Ctx); 975 } 976 977 Graph::~Graph() { 978 if (CallFreqs) 979 Alloc.deallocate(CallFreqs); 980 if (EdgeFreqs) 981 Alloc.deallocate(EdgeFreqs); 982 for (int I = NumNodes - 1; I >= 0; --I) { 983 if (SpanningTreeNodes[I].OutEdges) 984 Alloc.deallocate(SpanningTreeNodes[I].OutEdges); 985 if (SpanningTreeNodes[I].InEdges) 986 Alloc.deallocate(SpanningTreeNodes[I].InEdges); 987 if (CFGNodes[I].OutEdges) 988 Alloc.deallocate(CFGNodes[I].OutEdges); 989 if (CFGNodes[I].InEdges) 990 Alloc.deallocate(CFGNodes[I].InEdges); 991 } 992 if (SpanningTreeNodes) 993 Alloc.deallocate(SpanningTreeNodes); 994 if (CFGNodes) 995 Alloc.deallocate(CFGNodes); 996 } 997 998 void Graph::dump() const { 999 reportNumber("Dumping graph with number of nodes: ", NumNodes, 10); 1000 report(" Full graph:\n"); 1001 for (int I = 0; I < NumNodes; ++I) { 1002 const Node *N = &CFGNodes[I]; 1003 reportNumber(" Node #", I, 10); 1004 reportNumber(" InEdges total ", N->NumInEdges, 10); 1005 for (int J = 0; J < N->NumInEdges; ++J) 1006 reportNumber(" ", N->InEdges[J].Node, 10); 1007 reportNumber(" OutEdges total ", N->NumOutEdges, 10); 1008 for (int J = 0; J < N->NumOutEdges; ++J) 1009 reportNumber(" ", N->OutEdges[J].Node, 10); 1010 report("\n"); 1011 } 1012 report(" Spanning tree:\n"); 1013 for (int I = 0; I < NumNodes; ++I) { 1014 const Node *N = &SpanningTreeNodes[I]; 1015 reportNumber(" Node #", I, 10); 1016 reportNumber(" InEdges total ", N->NumInEdges, 10); 1017 for (int J = 0; J < N->NumInEdges; ++J) 1018 reportNumber(" ", N->InEdges[J].Node, 10); 1019 reportNumber(" OutEdges total ", N->NumOutEdges, 10); 1020 for (int J = 0; J < N->NumOutEdges; ++J) 1021 reportNumber(" ", N->OutEdges[J].Node, 10); 1022 report("\n"); 1023 } 1024 } 1025 1026 void Graph::dumpEdgeFreqs() const { 1027 reportNumber( 1028 "Dumping edge frequencies for graph with num edges: ", D.NumEdges, 10); 1029 for (int I = 0; I < D.NumEdges; ++I) { 1030 reportNumber("* Src: ", D.Edges[I].FromNode, 10); 1031 reportNumber(" Dst: ", D.Edges[I].ToNode, 10); 1032 reportNumber(" Cnt: ", EdgeFreqs[I], 10); 1033 } 1034 } 1035 1036 /// Auxiliary map structure for fast lookups of which calls map to each node of 1037 /// the function CFG 1038 struct NodeToCallsMap { 1039 struct MapEntry { 1040 uint32_t NumCalls; 1041 uint32_t *Calls; 1042 }; 1043 MapEntry *Entries; 1044 BumpPtrAllocator &Alloc; 1045 const uint32_t NumNodes; 1046 1047 NodeToCallsMap(BumpPtrAllocator &Alloc, const FunctionDescription &D, 1048 uint32_t NumNodes) 1049 : Alloc(Alloc), NumNodes(NumNodes) { 1050 Entries = new (Alloc, 0) MapEntry[NumNodes]; 1051 for (int I = 0; I < D.NumCalls; ++I) { 1052 DEBUG(reportNumber("Registering call in node ", D.Calls[I].FromNode, 10)); 1053 ++Entries[D.Calls[I].FromNode].NumCalls; 1054 } 1055 for (int I = 0; I < NumNodes; ++I) { 1056 Entries[I].Calls = Entries[I].NumCalls ? new (Alloc) 1057 uint32_t[Entries[I].NumCalls] 1058 : nullptr; 1059 Entries[I].NumCalls = 0; 1060 } 1061 for (int I = 0; I < D.NumCalls; ++I) { 1062 MapEntry &Entry = Entries[D.Calls[I].FromNode]; 1063 Entry.Calls[Entry.NumCalls++] = I; 1064 } 1065 } 1066 1067 /// Set the frequency of all calls in node \p NodeID to Freq. However, if 1068 /// the calls have their own counters and do not depend on the basic block 1069 /// counter, this means they have landing pads and throw exceptions. In this 1070 /// case, set their frequency with their counters and return the maximum 1071 /// value observed in such counters. This will be used as the new frequency 1072 /// at basic block entry. This is used to fix the CFG edge frequencies in the 1073 /// presence of exceptions. 1074 uint64_t visitAllCallsIn(uint32_t NodeID, uint64_t Freq, uint64_t *CallFreqs, 1075 const FunctionDescription &D, 1076 const uint64_t *Counters, 1077 ProfileWriterContext &Ctx) const { 1078 const MapEntry &Entry = Entries[NodeID]; 1079 uint64_t MaxValue = 0ull; 1080 for (int I = 0, E = Entry.NumCalls; I != E; ++I) { 1081 const uint32_t CallID = Entry.Calls[I]; 1082 DEBUG(reportNumber(" Setting freq for call ID: ", CallID, 10)); 1083 const CallDescription &CallDesc = D.Calls[CallID]; 1084 if (CallDesc.Counter == 0xffffffff) { 1085 CallFreqs[CallID] = Freq; 1086 DEBUG(reportNumber(" with : ", Freq, 10)); 1087 } else { 1088 const uint64_t CounterVal = Counters[CallDesc.Counter]; 1089 CallFreqs[CallID] = CounterVal; 1090 MaxValue = CounterVal > MaxValue ? CounterVal : MaxValue; 1091 DEBUG(reportNumber(" with (private counter) : ", CounterVal, 10)); 1092 } 1093 DEBUG(reportNumber(" Address: 0x", CallDesc.TargetAddress, 16)); 1094 if (CallFreqs[CallID] > 0) 1095 Ctx.CallFlowTable->get(CallDesc.TargetAddress).Calls += 1096 CallFreqs[CallID]; 1097 } 1098 return MaxValue; 1099 } 1100 1101 ~NodeToCallsMap() { 1102 for (int I = NumNodes - 1; I >= 0; --I) 1103 if (Entries[I].Calls) 1104 Alloc.deallocate(Entries[I].Calls); 1105 Alloc.deallocate(Entries); 1106 } 1107 }; 1108 1109 /// Fill an array with the frequency of each edge in the function represented 1110 /// by G, as well as another array for each call. 1111 void Graph::computeEdgeFrequencies(const uint64_t *Counters, 1112 ProfileWriterContext &Ctx) { 1113 if (NumNodes == 0) 1114 return; 1115 1116 EdgeFreqs = D.NumEdges ? new (Alloc, 0) uint64_t [D.NumEdges] : nullptr; 1117 CallFreqs = D.NumCalls ? new (Alloc, 0) uint64_t [D.NumCalls] : nullptr; 1118 1119 // Setup a lookup for calls present in each node (BB) 1120 NodeToCallsMap *CallMap = new (Alloc) NodeToCallsMap(Alloc, D, NumNodes); 1121 1122 // Perform a bottom-up, BFS traversal of the spanning tree in G. Edges in the 1123 // spanning tree don't have explicit counters. We must infer their value using 1124 // a linear combination of other counters (sum of counters of the outgoing 1125 // edges minus sum of counters of the incoming edges). 1126 uint32_t *Stack = new (Alloc) uint32_t [NumNodes]; 1127 uint32_t StackTop = 0; 1128 enum Status : uint8_t { S_NEW = 0, S_VISITING, S_VISITED }; 1129 Status *Visited = new (Alloc, 0) Status[NumNodes]; 1130 uint64_t *LeafFrequency = new (Alloc, 0) uint64_t[NumNodes]; 1131 uint64_t *EntryAddress = new (Alloc, 0) uint64_t[NumNodes]; 1132 1133 // Setup a fast lookup for frequency of leaf nodes, which have special 1134 // basic block frequency instrumentation (they are not edge profiled). 1135 for (int I = 0; I < D.NumLeafNodes; ++I) { 1136 LeafFrequency[D.LeafNodes[I].Node] = Counters[D.LeafNodes[I].Counter]; 1137 DEBUG({ 1138 if (Counters[D.LeafNodes[I].Counter] > 0) { 1139 reportNumber("Leaf Node# ", D.LeafNodes[I].Node, 10); 1140 reportNumber(" Counter: ", Counters[D.LeafNodes[I].Counter], 10); 1141 } 1142 }); 1143 } 1144 for (int I = 0; I < D.NumEntryNodes; ++I) { 1145 EntryAddress[D.EntryNodes[I].Node] = D.EntryNodes[I].Address; 1146 DEBUG({ 1147 reportNumber("Entry Node# ", D.EntryNodes[I].Node, 10); 1148 reportNumber(" Address: ", D.EntryNodes[I].Address, 16); 1149 }); 1150 } 1151 // Add all root nodes to the stack 1152 for (int I = 0; I < NumNodes; ++I) 1153 if (SpanningTreeNodes[I].NumInEdges == 0) 1154 Stack[StackTop++] = I; 1155 1156 // Empty stack? 1157 if (StackTop == 0) { 1158 DEBUG(report("Empty stack!\n")); 1159 Alloc.deallocate(EntryAddress); 1160 Alloc.deallocate(LeafFrequency); 1161 Alloc.deallocate(Visited); 1162 Alloc.deallocate(Stack); 1163 CallMap->~NodeToCallsMap(); 1164 Alloc.deallocate(CallMap); 1165 if (CallFreqs) 1166 Alloc.deallocate(CallFreqs); 1167 if (EdgeFreqs) 1168 Alloc.deallocate(EdgeFreqs); 1169 EdgeFreqs = nullptr; 1170 CallFreqs = nullptr; 1171 return; 1172 } 1173 // Add all known edge counts, will infer the rest 1174 for (int I = 0; I < D.NumEdges; ++I) { 1175 const uint32_t C = D.Edges[I].Counter; 1176 if (C == 0xffffffff) // inferred counter - we will compute its value 1177 continue; 1178 EdgeFreqs[I] = Counters[C]; 1179 } 1180 1181 while (StackTop > 0) { 1182 const uint32_t Cur = Stack[--StackTop]; 1183 DEBUG({ 1184 if (Visited[Cur] == S_VISITING) 1185 report("(visiting) "); 1186 else 1187 report("(new) "); 1188 reportNumber("Cur: ", Cur, 10); 1189 }); 1190 1191 // This shouldn't happen in a tree 1192 assert(Visited[Cur] != S_VISITED, "should not have visited nodes in stack"); 1193 if (Visited[Cur] == S_NEW) { 1194 Visited[Cur] = S_VISITING; 1195 Stack[StackTop++] = Cur; 1196 assert(StackTop <= NumNodes, "stack grew too large"); 1197 for (int I = 0, E = SpanningTreeNodes[Cur].NumOutEdges; I < E; ++I) { 1198 const uint32_t Succ = SpanningTreeNodes[Cur].OutEdges[I].Node; 1199 Stack[StackTop++] = Succ; 1200 assert(StackTop <= NumNodes, "stack grew too large"); 1201 } 1202 continue; 1203 } 1204 Visited[Cur] = S_VISITED; 1205 1206 // Establish our node frequency based on outgoing edges, which should all be 1207 // resolved by now. 1208 int64_t CurNodeFreq = LeafFrequency[Cur]; 1209 // Not a leaf? 1210 if (!CurNodeFreq) { 1211 for (int I = 0, E = CFGNodes[Cur].NumOutEdges; I != E; ++I) { 1212 const uint32_t SuccEdge = CFGNodes[Cur].OutEdges[I].ID; 1213 CurNodeFreq += EdgeFreqs[SuccEdge]; 1214 } 1215 } 1216 if (CurNodeFreq < 0) 1217 CurNodeFreq = 0; 1218 1219 const uint64_t CallFreq = CallMap->visitAllCallsIn( 1220 Cur, CurNodeFreq > 0 ? CurNodeFreq : 0, CallFreqs, D, Counters, Ctx); 1221 1222 // Exception handling affected our output flow? Fix with calls info 1223 DEBUG({ 1224 if (CallFreq > CurNodeFreq) 1225 report("Bumping node frequency with call info\n"); 1226 }); 1227 CurNodeFreq = CallFreq > CurNodeFreq ? CallFreq : CurNodeFreq; 1228 1229 if (CurNodeFreq > 0) { 1230 if (uint64_t Addr = EntryAddress[Cur]) { 1231 DEBUG( 1232 reportNumber(" Setting flow at entry point address 0x", Addr, 16)); 1233 DEBUG(reportNumber(" with: ", CurNodeFreq, 10)); 1234 Ctx.CallFlowTable->get(Addr).Val = CurNodeFreq; 1235 } 1236 } 1237 1238 // No parent? Reached a tree root, limit to call frequency updating. 1239 if (SpanningTreeNodes[Cur].NumInEdges == 0) 1240 continue; 1241 1242 assert(SpanningTreeNodes[Cur].NumInEdges == 1, "must have 1 parent"); 1243 const uint32_t Parent = SpanningTreeNodes[Cur].InEdges[0].Node; 1244 const uint32_t ParentEdge = SpanningTreeNodes[Cur].InEdges[0].ID; 1245 1246 // Calculate parent edge freq. 1247 int64_t ParentEdgeFreq = CurNodeFreq; 1248 for (int I = 0, E = CFGNodes[Cur].NumInEdges; I != E; ++I) { 1249 const uint32_t PredEdge = CFGNodes[Cur].InEdges[I].ID; 1250 ParentEdgeFreq -= EdgeFreqs[PredEdge]; 1251 } 1252 1253 // Sometimes the conservative CFG that BOLT builds will lead to incorrect 1254 // flow computation. For example, in a BB that transitively calls the exit 1255 // syscall, BOLT will add a fall-through successor even though it should not 1256 // have any successors. So this block execution will likely be wrong. We 1257 // tolerate this imperfection since this case should be quite infrequent. 1258 if (ParentEdgeFreq < 0) { 1259 DEBUG(dumpEdgeFreqs()); 1260 DEBUG(report("WARNING: incorrect flow")); 1261 ParentEdgeFreq = 0; 1262 } 1263 DEBUG(reportNumber(" Setting freq for ParentEdge: ", ParentEdge, 10)); 1264 DEBUG(reportNumber(" with ParentEdgeFreq: ", ParentEdgeFreq, 10)); 1265 EdgeFreqs[ParentEdge] = ParentEdgeFreq; 1266 } 1267 1268 Alloc.deallocate(EntryAddress); 1269 Alloc.deallocate(LeafFrequency); 1270 Alloc.deallocate(Visited); 1271 Alloc.deallocate(Stack); 1272 CallMap->~NodeToCallsMap(); 1273 Alloc.deallocate(CallMap); 1274 DEBUG(dumpEdgeFreqs()); 1275 } 1276 1277 /// Write to \p FD all of the edge profiles for function \p FuncDesc. Uses 1278 /// \p Alloc to allocate helper dynamic structures used to compute profile for 1279 /// edges that we do not explictly instrument. 1280 const uint8_t *writeFunctionProfile(int FD, ProfileWriterContext &Ctx, 1281 const uint8_t *FuncDesc, 1282 BumpPtrAllocator &Alloc) { 1283 const FunctionDescription F(FuncDesc); 1284 const uint8_t *next = FuncDesc + F.getSize(); 1285 1286 #if !defined(__APPLE__) 1287 uint64_t *bolt_instr_locations = __bolt_instr_locations; 1288 #else 1289 uint64_t *bolt_instr_locations = _bolt_instr_locations_getter(); 1290 #endif 1291 1292 // Skip funcs we know are cold 1293 #ifndef ENABLE_DEBUG 1294 uint64_t CountersFreq = 0; 1295 for (int I = 0; I < F.NumLeafNodes; ++I) 1296 CountersFreq += bolt_instr_locations[F.LeafNodes[I].Counter]; 1297 1298 if (CountersFreq == 0) { 1299 for (int I = 0; I < F.NumEdges; ++I) { 1300 const uint32_t C = F.Edges[I].Counter; 1301 if (C == 0xffffffff) 1302 continue; 1303 CountersFreq += bolt_instr_locations[C]; 1304 } 1305 if (CountersFreq == 0) { 1306 for (int I = 0; I < F.NumCalls; ++I) { 1307 const uint32_t C = F.Calls[I].Counter; 1308 if (C == 0xffffffff) 1309 continue; 1310 CountersFreq += bolt_instr_locations[C]; 1311 } 1312 if (CountersFreq == 0) 1313 return next; 1314 } 1315 } 1316 #endif 1317 1318 Graph *G = new (Alloc) Graph(Alloc, F, bolt_instr_locations, Ctx); 1319 DEBUG(G->dump()); 1320 1321 if (!G->EdgeFreqs && !G->CallFreqs) { 1322 G->~Graph(); 1323 Alloc.deallocate(G); 1324 return next; 1325 } 1326 1327 for (int I = 0; I < F.NumEdges; ++I) { 1328 const uint64_t Freq = G->EdgeFreqs[I]; 1329 if (Freq == 0) 1330 continue; 1331 const EdgeDescription *Desc = &F.Edges[I]; 1332 char LineBuf[BufSize]; 1333 char *Ptr = LineBuf; 1334 Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); 1335 Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); 1336 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 22); 1337 Ptr = intToStr(Ptr, Freq, 10); 1338 *Ptr++ = '\n'; 1339 __write(FD, LineBuf, Ptr - LineBuf); 1340 } 1341 1342 for (int I = 0; I < F.NumCalls; ++I) { 1343 const uint64_t Freq = G->CallFreqs[I]; 1344 if (Freq == 0) 1345 continue; 1346 char LineBuf[BufSize]; 1347 char *Ptr = LineBuf; 1348 const CallDescription *Desc = &F.Calls[I]; 1349 Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); 1350 Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); 1351 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 1352 Ptr = intToStr(Ptr, Freq, 10); 1353 *Ptr++ = '\n'; 1354 __write(FD, LineBuf, Ptr - LineBuf); 1355 } 1356 1357 G->~Graph(); 1358 Alloc.deallocate(G); 1359 return next; 1360 } 1361 1362 #if !defined(__APPLE__) 1363 const IndCallTargetDescription * 1364 ProfileWriterContext::lookupIndCallTarget(uint64_t Target) const { 1365 uint32_t B = 0; 1366 uint32_t E = __bolt_instr_num_ind_targets; 1367 if (E == 0) 1368 return nullptr; 1369 do { 1370 uint32_t I = (E - B) / 2 + B; 1371 if (IndCallTargets[I].Address == Target) 1372 return &IndCallTargets[I]; 1373 if (IndCallTargets[I].Address < Target) 1374 B = I + 1; 1375 else 1376 E = I; 1377 } while (B < E); 1378 return nullptr; 1379 } 1380 1381 /// Write a single indirect call <src, target> pair to the fdata file 1382 void visitIndCallCounter(IndirectCallHashTable::MapEntry &Entry, 1383 int FD, int CallsiteID, 1384 ProfileWriterContext *Ctx) { 1385 if (Entry.Val == 0) 1386 return; 1387 DEBUG(reportNumber("Target func 0x", Entry.Key, 16)); 1388 DEBUG(reportNumber("Target freq: ", Entry.Val, 10)); 1389 const IndCallDescription *CallsiteDesc = 1390 &Ctx->IndCallDescriptions[CallsiteID]; 1391 const IndCallTargetDescription *TargetDesc = 1392 Ctx->lookupIndCallTarget(Entry.Key); 1393 if (!TargetDesc) { 1394 DEBUG(report("Failed to lookup indirect call target\n")); 1395 char LineBuf[BufSize]; 1396 char *Ptr = LineBuf; 1397 Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); 1398 Ptr = strCopy(Ptr, "0 [unknown] 0 0 ", BufSize - (Ptr - LineBuf) - 40); 1399 Ptr = intToStr(Ptr, Entry.Val, 10); 1400 *Ptr++ = '\n'; 1401 __write(FD, LineBuf, Ptr - LineBuf); 1402 return; 1403 } 1404 Ctx->CallFlowTable->get(TargetDesc->Address).Calls += Entry.Val; 1405 char LineBuf[BufSize]; 1406 char *Ptr = LineBuf; 1407 Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); 1408 Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); 1409 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 1410 Ptr = intToStr(Ptr, Entry.Val, 10); 1411 *Ptr++ = '\n'; 1412 __write(FD, LineBuf, Ptr - LineBuf); 1413 } 1414 1415 /// Write to \p FD all of the indirect call profiles. 1416 void writeIndirectCallProfile(int FD, ProfileWriterContext &Ctx) { 1417 for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) { 1418 DEBUG(reportNumber("IndCallsite #", I, 10)); 1419 GlobalIndCallCounters[I].forEachElement(visitIndCallCounter, FD, I, &Ctx); 1420 } 1421 } 1422 1423 /// Check a single call flow for a callee versus all known callers. If there are 1424 /// less callers than what the callee expects, write the difference with source 1425 /// [unknown] in the profile. 1426 void visitCallFlowEntry(CallFlowHashTable::MapEntry &Entry, int FD, 1427 ProfileWriterContext *Ctx) { 1428 DEBUG(reportNumber("Call flow entry address: 0x", Entry.Key, 16)); 1429 DEBUG(reportNumber("Calls: ", Entry.Calls, 10)); 1430 DEBUG(reportNumber("Reported entry frequency: ", Entry.Val, 10)); 1431 DEBUG({ 1432 if (Entry.Calls > Entry.Val) 1433 report(" More calls than expected!\n"); 1434 }); 1435 if (Entry.Val <= Entry.Calls) 1436 return; 1437 DEBUG(reportNumber( 1438 " Balancing calls with traffic: ", Entry.Val - Entry.Calls, 10)); 1439 const IndCallTargetDescription *TargetDesc = 1440 Ctx->lookupIndCallTarget(Entry.Key); 1441 if (!TargetDesc) { 1442 // There is probably something wrong with this callee and this should be 1443 // investigated, but I don't want to assert and lose all data collected. 1444 DEBUG(report("WARNING: failed to look up call target!\n")); 1445 return; 1446 } 1447 char LineBuf[BufSize]; 1448 char *Ptr = LineBuf; 1449 Ptr = strCopy(Ptr, "0 [unknown] 0 ", BufSize); 1450 Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); 1451 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 1452 Ptr = intToStr(Ptr, Entry.Val - Entry.Calls, 10); 1453 *Ptr++ = '\n'; 1454 __write(FD, LineBuf, Ptr - LineBuf); 1455 } 1456 1457 /// Open fdata file for writing and return a valid file descriptor, aborting 1458 /// program upon failure. 1459 int openProfile() { 1460 // Build the profile name string by appending our PID 1461 char Buf[BufSize]; 1462 char *Ptr = Buf; 1463 uint64_t PID = __getpid(); 1464 Ptr = strCopy(Buf, __bolt_instr_filename, BufSize); 1465 if (__bolt_instr_use_pid) { 1466 Ptr = strCopy(Ptr, ".", BufSize - (Ptr - Buf + 1)); 1467 Ptr = intToStr(Ptr, PID, 10); 1468 Ptr = strCopy(Ptr, ".fdata", BufSize - (Ptr - Buf + 1)); 1469 } 1470 *Ptr++ = '\0'; 1471 uint64_t FD = __open(Buf, O_WRONLY | O_TRUNC | O_CREAT, 1472 /*mode=*/0666); 1473 if (static_cast<int64_t>(FD) < 0) { 1474 report("Error while trying to open profile file for writing: "); 1475 report(Buf); 1476 reportNumber("\nFailed with error number: 0x", 1477 0 - static_cast<int64_t>(FD), 16); 1478 __exit(1); 1479 } 1480 return FD; 1481 } 1482 1483 #endif 1484 1485 } // anonymous namespace 1486 1487 #if !defined(__APPLE__) 1488 1489 /// Reset all counters in case you want to start profiling a new phase of your 1490 /// program independently of prior phases. 1491 /// The address of this function is printed by BOLT and this can be called by 1492 /// any attached debugger during runtime. There is a useful oneliner for gdb: 1493 /// 1494 /// gdb -p $(pgrep -xo PROCESSNAME) -ex 'p ((void(*)())0xdeadbeef)()' \ 1495 /// -ex 'set confirm off' -ex quit 1496 /// 1497 /// Where 0xdeadbeef is this function address and PROCESSNAME your binary file 1498 /// name. 1499 extern "C" void __bolt_instr_clear_counters() { 1500 memset(reinterpret_cast<char *>(__bolt_instr_locations), 0, 1501 __bolt_num_counters * 8); 1502 for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) 1503 GlobalIndCallCounters[I].resetCounters(); 1504 } 1505 1506 /// This is the entry point for profile writing. 1507 /// There are three ways of getting here: 1508 /// 1509 /// * Program execution ended, finalization methods are running and BOLT 1510 /// hooked into FINI from your binary dynamic section; 1511 /// * You used the sleep timer option and during initialization we forked 1512 /// a separete process that will call this function periodically; 1513 /// * BOLT prints this function address so you can attach a debugger and 1514 /// call this function directly to get your profile written to disk 1515 /// on demand. 1516 /// 1517 extern "C" void __attribute((force_align_arg_pointer)) 1518 __bolt_instr_data_dump(int FD) { 1519 // Already dumping 1520 if (!GlobalWriteProfileMutex->acquire()) 1521 return; 1522 1523 int ret = __lseek(FD, 0, SEEK_SET); 1524 assert(ret == 0, "Failed to lseek!"); 1525 ret = __ftruncate(FD, 0); 1526 assert(ret == 0, "Failed to ftruncate!"); 1527 BumpPtrAllocator HashAlloc; 1528 HashAlloc.setMaxSize(0x6400000); 1529 ProfileWriterContext Ctx = readDescriptions(); 1530 Ctx.CallFlowTable = new (HashAlloc, 0) CallFlowHashTable(HashAlloc); 1531 1532 DEBUG(printStats(Ctx)); 1533 1534 BumpPtrAllocator Alloc; 1535 Alloc.setMaxSize(0x6400000); 1536 const uint8_t *FuncDesc = Ctx.FuncDescriptions; 1537 for (int I = 0, E = __bolt_instr_num_funcs; I < E; ++I) { 1538 FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); 1539 Alloc.clear(); 1540 DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)); 1541 } 1542 assert(FuncDesc == (void *)Ctx.Strings, 1543 "FuncDesc ptr must be equal to stringtable"); 1544 1545 writeIndirectCallProfile(FD, Ctx); 1546 Ctx.CallFlowTable->forEachElement(visitCallFlowEntry, FD, &Ctx); 1547 1548 __fsync(FD); 1549 __munmap(Ctx.MMapPtr, Ctx.MMapSize); 1550 __close(Ctx.FileDesc); 1551 HashAlloc.destroy(); 1552 GlobalWriteProfileMutex->release(); 1553 DEBUG(report("Finished writing profile.\n")); 1554 } 1555 1556 /// Event loop for our child process spawned during setup to dump profile data 1557 /// at user-specified intervals 1558 void watchProcess() { 1559 timespec ts, rem; 1560 uint64_t Ellapsed = 0ull; 1561 int FD = openProfile(); 1562 uint64_t ppid; 1563 if (__bolt_instr_wait_forks) { 1564 // Store parent pgid 1565 ppid = -__getpgid(0); 1566 // And leave parent process group 1567 __setpgid(0, 0); 1568 } else { 1569 // Store parent pid 1570 ppid = __getppid(); 1571 if (ppid == 1) { 1572 // Parent already dead 1573 __bolt_instr_data_dump(FD); 1574 goto out; 1575 } 1576 } 1577 1578 ts.tv_sec = 1; 1579 ts.tv_nsec = 0; 1580 while (1) { 1581 __nanosleep(&ts, &rem); 1582 // This means our parent process or all its forks are dead, 1583 // so no need for us to keep dumping. 1584 if (__kill(ppid, 0) < 0) { 1585 if (__bolt_instr_no_counters_clear) 1586 __bolt_instr_data_dump(FD); 1587 break; 1588 } 1589 1590 if (++Ellapsed < __bolt_instr_sleep_time) 1591 continue; 1592 1593 Ellapsed = 0; 1594 __bolt_instr_data_dump(FD); 1595 if (__bolt_instr_no_counters_clear == false) 1596 __bolt_instr_clear_counters(); 1597 } 1598 1599 out:; 1600 DEBUG(report("My parent process is dead, bye!\n")); 1601 __close(FD); 1602 __exit(0); 1603 } 1604 1605 extern "C" void __bolt_instr_indirect_call(); 1606 extern "C" void __bolt_instr_indirect_tailcall(); 1607 1608 /// Initialization code 1609 extern "C" void __attribute((force_align_arg_pointer)) __bolt_instr_setup() { 1610 __bolt_ind_call_counter_func_pointer = __bolt_instr_indirect_call; 1611 __bolt_ind_tailcall_counter_func_pointer = __bolt_instr_indirect_tailcall; 1612 1613 const uint64_t CountersStart = 1614 reinterpret_cast<uint64_t>(&__bolt_instr_locations[0]); 1615 const uint64_t CountersEnd = alignTo( 1616 reinterpret_cast<uint64_t>(&__bolt_instr_locations[__bolt_num_counters]), 1617 0x1000); 1618 DEBUG(reportNumber("replace mmap start: ", CountersStart, 16)); 1619 DEBUG(reportNumber("replace mmap stop: ", CountersEnd, 16)); 1620 assert(CountersEnd > CountersStart, "no counters"); 1621 1622 const bool Shared = !__bolt_instr_use_pid; 1623 const uint64_t MapPrivateOrShared = Shared ? MAP_SHARED : MAP_PRIVATE; 1624 1625 void *Ret = 1626 __mmap(CountersStart, CountersEnd - CountersStart, PROT_READ | PROT_WRITE, 1627 MAP_ANONYMOUS | MapPrivateOrShared | MAP_FIXED, -1, 0); 1628 assert(Ret != MAP_FAILED, "__bolt_instr_setup: Failed to mmap counters!"); 1629 1630 GlobalMetadataStorage = __mmap(0, 4096, PROT_READ | PROT_WRITE, 1631 MapPrivateOrShared | MAP_ANONYMOUS, -1, 0); 1632 assert(GlobalMetadataStorage != MAP_FAILED, 1633 "__bolt_instr_setup: failed to mmap page for metadata!"); 1634 1635 GlobalAlloc = new (GlobalMetadataStorage) BumpPtrAllocator; 1636 // Conservatively reserve 100MiB 1637 GlobalAlloc->setMaxSize(0x6400000); 1638 GlobalAlloc->setShared(Shared); 1639 GlobalWriteProfileMutex = new (*GlobalAlloc, 0) Mutex(); 1640 if (__bolt_instr_num_ind_calls > 0) 1641 GlobalIndCallCounters = 1642 new (*GlobalAlloc, 0) IndirectCallHashTable[__bolt_instr_num_ind_calls]; 1643 1644 if (__bolt_instr_sleep_time != 0) { 1645 // Separate instrumented process to the own process group 1646 if (__bolt_instr_wait_forks) 1647 __setpgid(0, 0); 1648 1649 if (long PID = __fork()) 1650 return; 1651 watchProcess(); 1652 } 1653 } 1654 1655 extern "C" __attribute((force_align_arg_pointer)) void 1656 instrumentIndirectCall(uint64_t Target, uint64_t IndCallID) { 1657 GlobalIndCallCounters[IndCallID].incrementVal(Target, *GlobalAlloc); 1658 } 1659 1660 /// We receive as in-stack arguments the identifier of the indirect call site 1661 /// as well as the target address for the call 1662 extern "C" __attribute((naked)) void __bolt_instr_indirect_call() 1663 { 1664 __asm__ __volatile__(SAVE_ALL 1665 "mov 0xa0(%%rsp), %%rdi\n" 1666 "mov 0x98(%%rsp), %%rsi\n" 1667 "call instrumentIndirectCall\n" 1668 RESTORE_ALL 1669 "ret\n" 1670 :::); 1671 } 1672 1673 extern "C" __attribute((naked)) void __bolt_instr_indirect_tailcall() 1674 { 1675 __asm__ __volatile__(SAVE_ALL 1676 "mov 0x98(%%rsp), %%rdi\n" 1677 "mov 0x90(%%rsp), %%rsi\n" 1678 "call instrumentIndirectCall\n" 1679 RESTORE_ALL 1680 "ret\n" 1681 :::); 1682 } 1683 1684 /// This is hooking ELF's entry, it needs to save all machine state. 1685 extern "C" __attribute((naked)) void __bolt_instr_start() 1686 { 1687 __asm__ __volatile__(SAVE_ALL 1688 "call __bolt_instr_setup\n" 1689 RESTORE_ALL 1690 "jmp __bolt_start_trampoline\n" 1691 :::); 1692 } 1693 1694 /// This is hooking into ELF's DT_FINI 1695 extern "C" void __bolt_instr_fini() { 1696 __bolt_fini_trampoline(); 1697 if (__bolt_instr_sleep_time == 0) { 1698 int FD = openProfile(); 1699 __bolt_instr_data_dump(FD); 1700 __close(FD); 1701 } 1702 DEBUG(report("Finished.\n")); 1703 } 1704 1705 #endif 1706 1707 #if defined(__APPLE__) 1708 1709 extern "C" void __bolt_instr_data_dump() { 1710 ProfileWriterContext Ctx = readDescriptions(); 1711 1712 int FD = 2; 1713 BumpPtrAllocator Alloc; 1714 const uint8_t *FuncDesc = Ctx.FuncDescriptions; 1715 uint32_t bolt_instr_num_funcs = _bolt_instr_num_funcs_getter(); 1716 1717 for (int I = 0, E = bolt_instr_num_funcs; I < E; ++I) { 1718 FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); 1719 Alloc.clear(); 1720 DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)); 1721 } 1722 assert(FuncDesc == (void *)Ctx.Strings, 1723 "FuncDesc ptr must be equal to stringtable"); 1724 } 1725 1726 // On OSX/iOS the final symbol name of an extern "C" function/variable contains 1727 // one extra leading underscore: _bolt_instr_setup -> __bolt_instr_setup. 1728 extern "C" 1729 __attribute__((section("__TEXT,__setup"))) 1730 __attribute__((force_align_arg_pointer)) 1731 void _bolt_instr_setup() { 1732 __asm__ __volatile__(SAVE_ALL :::); 1733 1734 report("Hello!\n"); 1735 1736 __asm__ __volatile__(RESTORE_ALL :::); 1737 } 1738 1739 extern "C" 1740 __attribute__((section("__TEXT,__fini"))) 1741 __attribute__((force_align_arg_pointer)) 1742 void _bolt_instr_fini() { 1743 report("Bye!\n"); 1744 __bolt_instr_data_dump(); 1745 } 1746 1747 #endif 1748 #endif 1749