1 //===- bolt/runtime/instr.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // BOLT runtime instrumentation library for x86 Linux. Currently, BOLT does 10 // not support linking modules with dependencies on one another into the final 11 // binary (TODO?), which means this library has to be self-contained in a single 12 // module. 13 // 14 // All extern declarations here need to be defined by BOLT itself. Those will be 15 // undefined symbols that BOLT needs to resolve by emitting these symbols with 16 // MCStreamer. Currently, Passes/Instrumentation.cpp is the pass responsible 17 // for defining the symbols here and these two files have a tight coupling: one 18 // working statically when you run BOLT and another during program runtime when 19 // you run an instrumented binary. The main goal here is to output an fdata file 20 // (BOLT profile) with the instrumentation counters inserted by the static pass. 21 // Counters for indirect calls are an exception, as we can't know them 22 // statically. These counters are created and managed here. To allow this, we 23 // need a minimal framework for allocating memory dynamically. We provide this 24 // with the BumpPtrAllocator class (not LLVM's, but our own version of it). 25 // 26 // Since this code is intended to be inserted into any executable, we decided to 27 // make it standalone and do not depend on any external libraries (i.e. language 28 // support libraries, such as glibc or stdc++). To allow this, we provide a few 29 // light implementations of common OS interacting functionalities using direct 30 // syscall wrappers. Our simple allocator doesn't manage deallocations that 31 // fragment the memory space, so it's stack based. This is the minimal framework 32 // provided here to allow processing instrumented counters and writing fdata. 33 // 34 // In the C++ idiom used here, we never use or rely on constructors or 35 // destructors for global objects. That's because those need support from the 36 // linker in initialization/finalization code, and we want to keep our linker 37 // very simple. Similarly, we don't create any global objects that are zero 38 // initialized, since those would need to go .bss, which our simple linker also 39 // don't support (TODO?). 40 // 41 //===----------------------------------------------------------------------===// 42 43 #if defined (__x86_64__) 44 #include "common.h" 45 46 // Enables a very verbose logging to stderr useful when debugging 47 //#define ENABLE_DEBUG 48 49 #ifdef ENABLE_DEBUG 50 #define DEBUG(X) \ 51 { X; } 52 #else 53 #define DEBUG(X) \ 54 {} 55 #endif 56 57 #pragma GCC visibility push(hidden) 58 59 extern "C" { 60 61 #if defined(__APPLE__) 62 extern uint64_t* _bolt_instr_locations_getter(); 63 extern uint32_t _bolt_num_counters_getter(); 64 65 extern uint8_t* _bolt_instr_tables_getter(); 66 extern uint32_t _bolt_instr_num_funcs_getter(); 67 68 #else 69 70 // Main counters inserted by instrumentation, incremented during runtime when 71 // points of interest (locations) in the program are reached. Those are direct 72 // calls and direct and indirect branches (local ones). There are also counters 73 // for basic block execution if they are a spanning tree leaf and need to be 74 // counted in order to infer the execution count of other edges of the CFG. 75 extern uint64_t __bolt_instr_locations[]; 76 extern uint32_t __bolt_num_counters; 77 // Descriptions are serialized metadata about binary functions written by BOLT, 78 // so we have a minimal understanding about the program structure. For a 79 // reference on the exact format of this metadata, see *Description structs, 80 // Location, IntrumentedNode and EntryNode. 81 // Number of indirect call site descriptions 82 extern uint32_t __bolt_instr_num_ind_calls; 83 // Number of indirect call target descriptions 84 extern uint32_t __bolt_instr_num_ind_targets; 85 // Number of function descriptions 86 extern uint32_t __bolt_instr_num_funcs; 87 // Time to sleep across dumps (when we write the fdata profile to disk) 88 extern uint32_t __bolt_instr_sleep_time; 89 // Do not clear counters across dumps, rewrite file with the updated values 90 extern bool __bolt_instr_no_counters_clear; 91 // Wait until all forks of instrumented process will finish 92 extern bool __bolt_instr_wait_forks; 93 // Filename to dump data to 94 extern char __bolt_instr_filename[]; 95 // Instumented binary file path 96 extern char __bolt_instr_binpath[]; 97 // If true, append current PID to the fdata filename when creating it so 98 // different invocations of the same program can be differentiated. 99 extern bool __bolt_instr_use_pid; 100 // Functions that will be used to instrument indirect calls. BOLT static pass 101 // will identify indirect calls and modify them to load the address in these 102 // trampolines and call this address instead. BOLT can't use direct calls to 103 // our handlers because our addresses here are not known at analysis time. We 104 // only support resolving dependencies from this file to the output of BOLT, 105 // *not* the other way around. 106 // TODO: We need better linking support to make that happen. 107 extern void (*__bolt_ind_call_counter_func_pointer)(); 108 extern void (*__bolt_ind_tailcall_counter_func_pointer)(); 109 // Function pointers to init/fini trampoline routines in the binary, so we can 110 // resume regular execution of these functions that we hooked 111 extern void __bolt_start_trampoline(); 112 extern void __bolt_fini_trampoline(); 113 114 #endif 115 } 116 117 namespace { 118 119 /// A simple allocator that mmaps a fixed size region and manages this space 120 /// in a stack fashion, meaning you always deallocate the last element that 121 /// was allocated. In practice, we don't need to deallocate individual elements. 122 /// We monotonically increase our usage and then deallocate everything once we 123 /// are done processing something. 124 class BumpPtrAllocator { 125 /// This is written before each allocation and act as a canary to detect when 126 /// a bug caused our program to cross allocation boundaries. 127 struct EntryMetadata { 128 uint64_t Magic; 129 uint64_t AllocSize; 130 }; 131 132 public: 133 void *allocate(size_t Size) { 134 Lock L(M); 135 136 if (StackBase == nullptr) { 137 StackBase = reinterpret_cast<uint8_t *>( 138 __mmap(0, MaxSize, PROT_READ | PROT_WRITE, 139 (Shared ? MAP_SHARED : MAP_PRIVATE) | MAP_ANONYMOUS, -1, 0)); 140 assert(StackBase != MAP_FAILED, 141 "BumpPtrAllocator: failed to mmap stack!"); 142 StackSize = 0; 143 } 144 145 Size = alignTo(Size + sizeof(EntryMetadata), 16); 146 uint8_t *AllocAddress = StackBase + StackSize + sizeof(EntryMetadata); 147 auto *M = reinterpret_cast<EntryMetadata *>(StackBase + StackSize); 148 M->Magic = Magic; 149 M->AllocSize = Size; 150 StackSize += Size; 151 assert(StackSize < MaxSize, "allocator ran out of memory"); 152 return AllocAddress; 153 } 154 155 #ifdef DEBUG 156 /// Element-wise deallocation is only used for debugging to catch memory 157 /// bugs by checking magic bytes. Ordinarily, we reset the allocator once 158 /// we are done with it. Reset is done with clear(). There's no need 159 /// to deallocate each element individually. 160 void deallocate(void *Ptr) { 161 Lock L(M); 162 uint8_t MetadataOffset = sizeof(EntryMetadata); 163 auto *M = reinterpret_cast<EntryMetadata *>( 164 reinterpret_cast<uint8_t *>(Ptr) - MetadataOffset); 165 const uint8_t *StackTop = StackBase + StackSize + MetadataOffset; 166 // Validate size 167 if (Ptr != StackTop - M->AllocSize) { 168 // Failed validation, check if it is a pointer returned by operator new [] 169 MetadataOffset += 170 sizeof(uint64_t); // Space for number of elements alloc'ed 171 M = reinterpret_cast<EntryMetadata *>(reinterpret_cast<uint8_t *>(Ptr) - 172 MetadataOffset); 173 // Ok, it failed both checks if this assertion fails. Stop the program, we 174 // have a memory bug. 175 assert(Ptr == StackTop - M->AllocSize, 176 "must deallocate the last element alloc'ed"); 177 } 178 assert(M->Magic == Magic, "allocator magic is corrupt"); 179 StackSize -= M->AllocSize; 180 } 181 #else 182 void deallocate(void *) {} 183 #endif 184 185 void clear() { 186 Lock L(M); 187 StackSize = 0; 188 } 189 190 /// Set mmap reservation size (only relevant before first allocation) 191 void setMaxSize(uint64_t Size) { MaxSize = Size; } 192 193 /// Set mmap reservation privacy (only relevant before first allocation) 194 void setShared(bool S) { Shared = S; } 195 196 void destroy() { 197 if (StackBase == nullptr) 198 return; 199 __munmap(StackBase, MaxSize); 200 } 201 202 private: 203 static constexpr uint64_t Magic = 0x1122334455667788ull; 204 uint64_t MaxSize = 0xa00000; 205 uint8_t *StackBase{nullptr}; 206 uint64_t StackSize{0}; 207 bool Shared{false}; 208 Mutex M; 209 }; 210 211 /// Used for allocating indirect call instrumentation counters. Initialized by 212 /// __bolt_instr_setup, our initialization routine. 213 BumpPtrAllocator GlobalAlloc; 214 } // anonymous namespace 215 216 // User-defined placement new operators. We only use those (as opposed to 217 // overriding the regular operator new) so we can keep our allocator in the 218 // stack instead of in a data section (global). 219 void *operator new(size_t Sz, BumpPtrAllocator &A) { return A.allocate(Sz); } 220 void *operator new(size_t Sz, BumpPtrAllocator &A, char C) { 221 auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); 222 memset(Ptr, C, Sz); 223 return Ptr; 224 } 225 void *operator new[](size_t Sz, BumpPtrAllocator &A) { 226 return A.allocate(Sz); 227 } 228 void *operator new[](size_t Sz, BumpPtrAllocator &A, char C) { 229 auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); 230 memset(Ptr, C, Sz); 231 return Ptr; 232 } 233 // Only called during exception unwinding (useless). We must manually dealloc. 234 // C++ language weirdness 235 void operator delete(void *Ptr, BumpPtrAllocator &A) { A.deallocate(Ptr); } 236 237 namespace { 238 239 // Disable instrumentation optimizations that sacrifice profile accuracy 240 extern "C" bool __bolt_instr_conservative; 241 242 /// Basic key-val atom stored in our hash 243 struct SimpleHashTableEntryBase { 244 uint64_t Key; 245 uint64_t Val; 246 }; 247 248 /// This hash table implementation starts by allocating a table of size 249 /// InitialSize. When conflicts happen in this main table, it resolves 250 /// them by chaining a new table of size IncSize. It never reallocs as our 251 /// allocator doesn't support it. The key is intended to be function pointers. 252 /// There's no clever hash function (it's just x mod size, size being prime). 253 /// I never tuned the coefficientes in the modular equation (TODO) 254 /// This is used for indirect calls (each call site has one of this, so it 255 /// should have a small footprint) and for tallying call counts globally for 256 /// each target to check if we missed the origin of some calls (this one is a 257 /// large instantiation of this template, since it is global for all call sites) 258 template <typename T = SimpleHashTableEntryBase, uint32_t InitialSize = 7, 259 uint32_t IncSize = 7> 260 class SimpleHashTable { 261 public: 262 using MapEntry = T; 263 264 /// Increment by 1 the value of \p Key. If it is not in this table, it will be 265 /// added to the table and its value set to 1. 266 void incrementVal(uint64_t Key, BumpPtrAllocator &Alloc) { 267 ++get(Key, Alloc).Val; 268 } 269 270 /// Basic member accessing interface. Here we pass the allocator explicitly to 271 /// avoid storing a pointer to it as part of this table (remember there is one 272 /// hash for each indirect call site, so we wan't to minimize our footprint). 273 MapEntry &get(uint64_t Key, BumpPtrAllocator &Alloc) { 274 if (!__bolt_instr_conservative) { 275 TryLock L(M); 276 if (!L.isLocked()) 277 return NoEntry; 278 return getOrAllocEntry(Key, Alloc); 279 } 280 Lock L(M); 281 return getOrAllocEntry(Key, Alloc); 282 } 283 284 /// Traverses all elements in the table 285 template <typename... Args> 286 void forEachElement(void (*Callback)(MapEntry &, Args...), Args... args) { 287 Lock L(M); 288 if (!TableRoot) 289 return; 290 return forEachElement(Callback, InitialSize, TableRoot, args...); 291 } 292 293 void resetCounters(); 294 295 private: 296 constexpr static uint64_t VacantMarker = 0; 297 constexpr static uint64_t FollowUpTableMarker = 0x8000000000000000ull; 298 299 MapEntry *TableRoot{nullptr}; 300 MapEntry NoEntry; 301 Mutex M; 302 303 template <typename... Args> 304 void forEachElement(void (*Callback)(MapEntry &, Args...), 305 uint32_t NumEntries, MapEntry *Entries, Args... args) { 306 for (uint32_t I = 0; I < NumEntries; ++I) { 307 MapEntry &Entry = Entries[I]; 308 if (Entry.Key == VacantMarker) 309 continue; 310 if (Entry.Key & FollowUpTableMarker) { 311 forEachElement(Callback, IncSize, 312 reinterpret_cast<MapEntry *>(Entry.Key & 313 ~FollowUpTableMarker), 314 args...); 315 continue; 316 } 317 Callback(Entry, args...); 318 } 319 } 320 321 MapEntry &firstAllocation(uint64_t Key, BumpPtrAllocator &Alloc) { 322 TableRoot = new (Alloc, 0) MapEntry[InitialSize]; 323 MapEntry &Entry = TableRoot[Key % InitialSize]; 324 Entry.Key = Key; 325 return Entry; 326 } 327 328 MapEntry &getEntry(MapEntry *Entries, uint64_t Key, uint64_t Selector, 329 BumpPtrAllocator &Alloc, int CurLevel) { 330 const uint32_t NumEntries = CurLevel == 0 ? InitialSize : IncSize; 331 uint64_t Remainder = Selector / NumEntries; 332 Selector = Selector % NumEntries; 333 MapEntry &Entry = Entries[Selector]; 334 335 // A hit 336 if (Entry.Key == Key) { 337 return Entry; 338 } 339 340 // Vacant - add new entry 341 if (Entry.Key == VacantMarker) { 342 Entry.Key = Key; 343 return Entry; 344 } 345 346 // Defer to the next level 347 if (Entry.Key & FollowUpTableMarker) { 348 return getEntry( 349 reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker), 350 Key, Remainder, Alloc, CurLevel + 1); 351 } 352 353 // Conflict - create the next level 354 MapEntry *NextLevelTbl = new (Alloc, 0) MapEntry[IncSize]; 355 uint64_t CurEntrySelector = Entry.Key / InitialSize; 356 for (int I = 0; I < CurLevel; ++I) 357 CurEntrySelector /= IncSize; 358 CurEntrySelector = CurEntrySelector % IncSize; 359 NextLevelTbl[CurEntrySelector] = Entry; 360 Entry.Key = reinterpret_cast<uint64_t>(NextLevelTbl) | FollowUpTableMarker; 361 return getEntry(NextLevelTbl, Key, Remainder, Alloc, CurLevel + 1); 362 } 363 364 MapEntry &getOrAllocEntry(uint64_t Key, BumpPtrAllocator &Alloc) { 365 if (TableRoot) 366 return getEntry(TableRoot, Key, Key, Alloc, 0); 367 return firstAllocation(Key, Alloc); 368 } 369 }; 370 371 template <typename T> void resetIndCallCounter(T &Entry) { 372 Entry.Val = 0; 373 } 374 375 template <typename T, uint32_t X, uint32_t Y> 376 void SimpleHashTable<T, X, Y>::resetCounters() { 377 forEachElement(resetIndCallCounter); 378 } 379 380 /// Represents a hash table mapping a function target address to its counter. 381 using IndirectCallHashTable = SimpleHashTable<>; 382 383 /// Initialize with number 1 instead of 0 so we don't go into .bss. This is the 384 /// global array of all hash tables storing indirect call destinations happening 385 /// during runtime, one table per call site. 386 IndirectCallHashTable *GlobalIndCallCounters{ 387 reinterpret_cast<IndirectCallHashTable *>(1)}; 388 389 /// Don't allow reentrancy in the fdata writing phase - only one thread writes 390 /// it 391 Mutex *GlobalWriteProfileMutex{reinterpret_cast<Mutex *>(1)}; 392 393 /// Store number of calls in additional to target address (Key) and frequency 394 /// as perceived by the basic block counter (Val). 395 struct CallFlowEntryBase : public SimpleHashTableEntryBase { 396 uint64_t Calls; 397 }; 398 399 using CallFlowHashTableBase = SimpleHashTable<CallFlowEntryBase, 11939, 233>; 400 401 /// This is a large table indexing all possible call targets (indirect and 402 /// direct ones). The goal is to find mismatches between number of calls (for 403 /// those calls we were able to track) and the entry basic block counter of the 404 /// callee. In most cases, these two should be equal. If not, there are two 405 /// possible scenarios here: 406 /// 407 /// * Entry BB has higher frequency than all known calls to this function. 408 /// In this case, we have dynamic library code or any uninstrumented code 409 /// calling this function. We will write the profile for these untracked 410 /// calls as having source "0 [unknown] 0" in the fdata file. 411 /// 412 /// * Number of known calls is higher than the frequency of entry BB 413 /// This only happens when there is no counter for the entry BB / callee 414 /// function is not simple (in BOLT terms). We don't do anything special 415 /// here and just ignore those (we still report all calls to the non-simple 416 /// function, though). 417 /// 418 class CallFlowHashTable : public CallFlowHashTableBase { 419 public: 420 CallFlowHashTable(BumpPtrAllocator &Alloc) : Alloc(Alloc) {} 421 422 MapEntry &get(uint64_t Key) { return CallFlowHashTableBase::get(Key, Alloc); } 423 424 private: 425 // Different than the hash table for indirect call targets, we do store the 426 // allocator here since there is only one call flow hash and space overhead 427 // is negligible. 428 BumpPtrAllocator &Alloc; 429 }; 430 431 /// 432 /// Description metadata emitted by BOLT to describe the program - refer to 433 /// Passes/Instrumentation.cpp - Instrumentation::emitTablesAsELFNote() 434 /// 435 struct Location { 436 uint32_t FunctionName; 437 uint32_t Offset; 438 }; 439 440 struct CallDescription { 441 Location From; 442 uint32_t FromNode; 443 Location To; 444 uint32_t Counter; 445 uint64_t TargetAddress; 446 }; 447 448 using IndCallDescription = Location; 449 450 struct IndCallTargetDescription { 451 Location Loc; 452 uint64_t Address; 453 }; 454 455 struct EdgeDescription { 456 Location From; 457 uint32_t FromNode; 458 Location To; 459 uint32_t ToNode; 460 uint32_t Counter; 461 }; 462 463 struct InstrumentedNode { 464 uint32_t Node; 465 uint32_t Counter; 466 }; 467 468 struct EntryNode { 469 uint64_t Node; 470 uint64_t Address; 471 }; 472 473 struct FunctionDescription { 474 uint32_t NumLeafNodes; 475 const InstrumentedNode *LeafNodes; 476 uint32_t NumEdges; 477 const EdgeDescription *Edges; 478 uint32_t NumCalls; 479 const CallDescription *Calls; 480 uint32_t NumEntryNodes; 481 const EntryNode *EntryNodes; 482 483 /// Constructor will parse the serialized function metadata written by BOLT 484 FunctionDescription(const uint8_t *FuncDesc); 485 486 uint64_t getSize() const { 487 return 16 + NumLeafNodes * sizeof(InstrumentedNode) + 488 NumEdges * sizeof(EdgeDescription) + 489 NumCalls * sizeof(CallDescription) + 490 NumEntryNodes * sizeof(EntryNode); 491 } 492 }; 493 494 /// The context is created when the fdata profile needs to be written to disk 495 /// and we need to interpret our runtime counters. It contains pointers to the 496 /// mmaped binary (only the BOLT written metadata section). Deserialization 497 /// should be straightforward as most data is POD or an array of POD elements. 498 /// This metadata is used to reconstruct function CFGs. 499 struct ProfileWriterContext { 500 IndCallDescription *IndCallDescriptions; 501 IndCallTargetDescription *IndCallTargets; 502 uint8_t *FuncDescriptions; 503 char *Strings; // String table with function names used in this binary 504 int FileDesc; // File descriptor for the file on disk backing this 505 // information in memory via mmap 506 void *MMapPtr; // The mmap ptr 507 int MMapSize; // The mmap size 508 509 /// Hash table storing all possible call destinations to detect untracked 510 /// calls and correctly report them as [unknown] in output fdata. 511 CallFlowHashTable *CallFlowTable; 512 513 /// Lookup the sorted indirect call target vector to fetch function name and 514 /// offset for an arbitrary function pointer. 515 const IndCallTargetDescription *lookupIndCallTarget(uint64_t Target) const; 516 }; 517 518 /// Perform a string comparison and returns zero if Str1 matches Str2. Compares 519 /// at most Size characters. 520 int compareStr(const char *Str1, const char *Str2, int Size) { 521 while (*Str1 == *Str2) { 522 if (*Str1 == '\0' || --Size == 0) 523 return 0; 524 ++Str1; 525 ++Str2; 526 } 527 return 1; 528 } 529 530 /// Output Location to the fdata file 531 char *serializeLoc(const ProfileWriterContext &Ctx, char *OutBuf, 532 const Location Loc, uint32_t BufSize) { 533 // fdata location format: Type Name Offset 534 // Type 1 - regular symbol 535 OutBuf = strCopy(OutBuf, "1 "); 536 const char *Str = Ctx.Strings + Loc.FunctionName; 537 uint32_t Size = 25; 538 while (*Str) { 539 *OutBuf++ = *Str++; 540 if (++Size >= BufSize) 541 break; 542 } 543 assert(!*Str, "buffer overflow, function name too large"); 544 *OutBuf++ = ' '; 545 OutBuf = intToStr(OutBuf, Loc.Offset, 16); 546 *OutBuf++ = ' '; 547 return OutBuf; 548 } 549 550 /// Read and deserialize a function description written by BOLT. \p FuncDesc 551 /// points at the beginning of the function metadata structure in the file. 552 /// See Instrumentation::emitTablesAsELFNote() 553 FunctionDescription::FunctionDescription(const uint8_t *FuncDesc) { 554 NumLeafNodes = *reinterpret_cast<const uint32_t *>(FuncDesc); 555 DEBUG(reportNumber("NumLeafNodes = ", NumLeafNodes, 10)); 556 LeafNodes = reinterpret_cast<const InstrumentedNode *>(FuncDesc + 4); 557 558 NumEdges = *reinterpret_cast<const uint32_t *>( 559 FuncDesc + 4 + NumLeafNodes * sizeof(InstrumentedNode)); 560 DEBUG(reportNumber("NumEdges = ", NumEdges, 10)); 561 Edges = reinterpret_cast<const EdgeDescription *>( 562 FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode)); 563 564 NumCalls = *reinterpret_cast<const uint32_t *>( 565 FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode) + 566 NumEdges * sizeof(EdgeDescription)); 567 DEBUG(reportNumber("NumCalls = ", NumCalls, 10)); 568 Calls = reinterpret_cast<const CallDescription *>( 569 FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + 570 NumEdges * sizeof(EdgeDescription)); 571 NumEntryNodes = *reinterpret_cast<const uint32_t *>( 572 FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + 573 NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); 574 DEBUG(reportNumber("NumEntryNodes = ", NumEntryNodes, 10)); 575 EntryNodes = reinterpret_cast<const EntryNode *>( 576 FuncDesc + 16 + NumLeafNodes * sizeof(InstrumentedNode) + 577 NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); 578 } 579 580 /// Read and mmap descriptions written by BOLT from the executable's notes 581 /// section 582 #if defined(HAVE_ELF_H) and !defined(__APPLE__) 583 584 void *__attribute__((noinline)) __get_pc() { 585 return __builtin_extract_return_addr(__builtin_return_address(0)); 586 } 587 588 /// Get string with address and parse it to hex pair <StartAddress, EndAddress> 589 bool parseAddressRange(const char *Str, uint64_t &StartAddress, 590 uint64_t &EndAddress) { 591 if (!Str) 592 return false; 593 // Parsed string format: <hex1>-<hex2> 594 StartAddress = hexToLong(Str, '-'); 595 while (*Str && *Str != '-') 596 ++Str; 597 if (!*Str) 598 return false; 599 ++Str; // swallow '-' 600 EndAddress = hexToLong(Str); 601 return true; 602 } 603 604 /// Get full path to the real binary by getting current virtual address 605 /// and searching for the appropriate link in address range in 606 /// /proc/self/map_files 607 static char *getBinaryPath() { 608 const uint32_t BufSize = 1024; 609 const uint32_t NameMax = 4096; 610 const char DirPath[] = "/proc/self/map_files/"; 611 static char TargetPath[NameMax] = {}; 612 char Buf[BufSize]; 613 614 if (__bolt_instr_binpath[0] != '\0') 615 return __bolt_instr_binpath; 616 617 if (TargetPath[0] != '\0') 618 return TargetPath; 619 620 unsigned long CurAddr = (unsigned long)__get_pc(); 621 uint64_t FDdir = __open(DirPath, 622 /*flags=*/0 /*O_RDONLY*/, 623 /*mode=*/0666); 624 assert(static_cast<int64_t>(FDdir) >= 0, 625 "failed to open /proc/self/map_files"); 626 627 while (long Nread = __getdents(FDdir, (struct dirent *)Buf, BufSize)) { 628 assert(static_cast<int64_t>(Nread) != -1, "failed to get folder entries"); 629 630 struct dirent *d; 631 for (long Bpos = 0; Bpos < Nread; Bpos += d->d_reclen) { 632 d = (struct dirent *)(Buf + Bpos); 633 634 uint64_t StartAddress, EndAddress; 635 if (!parseAddressRange(d->d_name, StartAddress, EndAddress)) 636 continue; 637 if (CurAddr < StartAddress || CurAddr > EndAddress) 638 continue; 639 char FindBuf[NameMax]; 640 char *C = strCopy(FindBuf, DirPath, NameMax); 641 C = strCopy(C, d->d_name, NameMax - (C - FindBuf)); 642 *C = '\0'; 643 uint32_t Ret = __readlink(FindBuf, TargetPath, sizeof(TargetPath)); 644 assert(Ret != -1 && Ret != BufSize, "readlink error"); 645 TargetPath[Ret] = '\0'; 646 return TargetPath; 647 } 648 } 649 return nullptr; 650 } 651 652 ProfileWriterContext readDescriptions() { 653 ProfileWriterContext Result; 654 char *BinPath = getBinaryPath(); 655 assert(BinPath && BinPath[0] != '\0', "failed to find binary path"); 656 657 uint64_t FD = __open(BinPath, 658 /*flags=*/0 /*O_RDONLY*/, 659 /*mode=*/0666); 660 assert(static_cast<int64_t>(FD) >= 0, "failed to open binary path"); 661 662 Result.FileDesc = FD; 663 664 // mmap our binary to memory 665 uint64_t Size = __lseek(FD, 0, 2 /*SEEK_END*/); 666 uint8_t *BinContents = reinterpret_cast<uint8_t *>( 667 __mmap(0, Size, PROT_READ, MAP_PRIVATE, FD, 0)); 668 assert(BinContents != MAP_FAILED, "readDescriptions: Failed to mmap self!"); 669 Result.MMapPtr = BinContents; 670 Result.MMapSize = Size; 671 Elf64_Ehdr *Hdr = reinterpret_cast<Elf64_Ehdr *>(BinContents); 672 Elf64_Shdr *Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff); 673 Elf64_Shdr *StringTblHeader = reinterpret_cast<Elf64_Shdr *>( 674 BinContents + Hdr->e_shoff + Hdr->e_shstrndx * Hdr->e_shentsize); 675 676 // Find .bolt.instr.tables with the data we need and set pointers to it 677 for (int I = 0; I < Hdr->e_shnum; ++I) { 678 char *SecName = reinterpret_cast<char *>( 679 BinContents + StringTblHeader->sh_offset + Shdr->sh_name); 680 if (compareStr(SecName, ".bolt.instr.tables", 64) != 0) { 681 Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff + 682 (I + 1) * Hdr->e_shentsize); 683 continue; 684 } 685 // Actual contents of the ELF note start after offset 20 decimal: 686 // Offset 0: Producer name size (4 bytes) 687 // Offset 4: Contents size (4 bytes) 688 // Offset 8: Note type (4 bytes) 689 // Offset 12: Producer name (BOLT\0) (5 bytes + align to 4-byte boundary) 690 // Offset 20: Contents 691 uint32_t IndCallDescSize = 692 *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 20); 693 uint32_t IndCallTargetDescSize = *reinterpret_cast<uint32_t *>( 694 BinContents + Shdr->sh_offset + 24 + IndCallDescSize); 695 uint32_t FuncDescSize = 696 *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 28 + 697 IndCallDescSize + IndCallTargetDescSize); 698 Result.IndCallDescriptions = reinterpret_cast<IndCallDescription *>( 699 BinContents + Shdr->sh_offset + 24); 700 Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( 701 BinContents + Shdr->sh_offset + 28 + IndCallDescSize); 702 Result.FuncDescriptions = BinContents + Shdr->sh_offset + 32 + 703 IndCallDescSize + IndCallTargetDescSize; 704 Result.Strings = reinterpret_cast<char *>( 705 BinContents + Shdr->sh_offset + 32 + IndCallDescSize + 706 IndCallTargetDescSize + FuncDescSize); 707 return Result; 708 } 709 const char ErrMsg[] = 710 "BOLT instrumentation runtime error: could not find section " 711 ".bolt.instr.tables\n"; 712 reportError(ErrMsg, sizeof(ErrMsg)); 713 return Result; 714 } 715 716 #else 717 718 ProfileWriterContext readDescriptions() { 719 ProfileWriterContext Result; 720 uint8_t *Tables = _bolt_instr_tables_getter(); 721 uint32_t IndCallDescSize = *reinterpret_cast<uint32_t *>(Tables); 722 uint32_t IndCallTargetDescSize = 723 *reinterpret_cast<uint32_t *>(Tables + 4 + IndCallDescSize); 724 uint32_t FuncDescSize = *reinterpret_cast<uint32_t *>( 725 Tables + 8 + IndCallDescSize + IndCallTargetDescSize); 726 Result.IndCallDescriptions = 727 reinterpret_cast<IndCallDescription *>(Tables + 4); 728 Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( 729 Tables + 8 + IndCallDescSize); 730 Result.FuncDescriptions = 731 Tables + 12 + IndCallDescSize + IndCallTargetDescSize; 732 Result.Strings = reinterpret_cast<char *>( 733 Tables + 12 + IndCallDescSize + IndCallTargetDescSize + FuncDescSize); 734 return Result; 735 } 736 737 #endif 738 739 #if !defined(__APPLE__) 740 /// Debug by printing overall metadata global numbers to check it is sane 741 void printStats(const ProfileWriterContext &Ctx) { 742 char StatMsg[BufSize]; 743 char *StatPtr = StatMsg; 744 StatPtr = 745 strCopy(StatPtr, 746 "\nBOLT INSTRUMENTATION RUNTIME STATISTICS\n\nIndCallDescSize: "); 747 StatPtr = intToStr(StatPtr, 748 Ctx.FuncDescriptions - 749 reinterpret_cast<uint8_t *>(Ctx.IndCallDescriptions), 750 10); 751 StatPtr = strCopy(StatPtr, "\nFuncDescSize: "); 752 StatPtr = intToStr( 753 StatPtr, 754 reinterpret_cast<uint8_t *>(Ctx.Strings) - Ctx.FuncDescriptions, 10); 755 StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_ind_calls: "); 756 StatPtr = intToStr(StatPtr, __bolt_instr_num_ind_calls, 10); 757 StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_funcs: "); 758 StatPtr = intToStr(StatPtr, __bolt_instr_num_funcs, 10); 759 StatPtr = strCopy(StatPtr, "\n"); 760 __write(2, StatMsg, StatPtr - StatMsg); 761 } 762 #endif 763 764 765 /// This is part of a simple CFG representation in memory, where we store 766 /// a dynamically sized array of input and output edges per node, and store 767 /// a dynamically sized array of nodes per graph. We also store the spanning 768 /// tree edges for that CFG in a separate array of nodes in 769 /// \p SpanningTreeNodes, while the regular nodes live in \p CFGNodes. 770 struct Edge { 771 uint32_t Node; // Index in nodes array regarding the destination of this edge 772 uint32_t ID; // Edge index in an array comprising all edges of the graph 773 }; 774 775 /// A regular graph node or a spanning tree node 776 struct Node { 777 uint32_t NumInEdges{0}; // Input edge count used to size InEdge 778 uint32_t NumOutEdges{0}; // Output edge count used to size OutEdges 779 Edge *InEdges{nullptr}; // Created and managed by \p Graph 780 Edge *OutEdges{nullptr}; // ditto 781 }; 782 783 /// Main class for CFG representation in memory. Manages object creation and 784 /// destruction, populates an array of CFG nodes as well as corresponding 785 /// spanning tree nodes. 786 struct Graph { 787 uint32_t NumNodes; 788 Node *CFGNodes; 789 Node *SpanningTreeNodes; 790 uint64_t *EdgeFreqs; 791 uint64_t *CallFreqs; 792 BumpPtrAllocator &Alloc; 793 const FunctionDescription &D; 794 795 /// Reads a list of edges from function description \p D and builds 796 /// the graph from it. Allocates several internal dynamic structures that are 797 /// later destroyed by ~Graph() and uses \p Alloc. D.LeafNodes contain all 798 /// spanning tree leaf nodes descriptions (their counters). They are the seed 799 /// used to compute the rest of the missing edge counts in a bottom-up 800 /// traversal of the spanning tree. 801 Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, 802 const uint64_t *Counters, ProfileWriterContext &Ctx); 803 ~Graph(); 804 void dump() const; 805 806 private: 807 void computeEdgeFrequencies(const uint64_t *Counters, 808 ProfileWriterContext &Ctx); 809 void dumpEdgeFreqs() const; 810 }; 811 812 Graph::Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, 813 const uint64_t *Counters, ProfileWriterContext &Ctx) 814 : Alloc(Alloc), D(D) { 815 DEBUG(reportNumber("G = 0x", (uint64_t)this, 16)); 816 // First pass to determine number of nodes 817 int32_t MaxNodes = -1; 818 CallFreqs = nullptr; 819 EdgeFreqs = nullptr; 820 for (int I = 0; I < D.NumEdges; ++I) { 821 if (static_cast<int32_t>(D.Edges[I].FromNode) > MaxNodes) 822 MaxNodes = D.Edges[I].FromNode; 823 if (static_cast<int32_t>(D.Edges[I].ToNode) > MaxNodes) 824 MaxNodes = D.Edges[I].ToNode; 825 } 826 827 for (int I = 0; I < D.NumLeafNodes; ++I) 828 if (static_cast<int32_t>(D.LeafNodes[I].Node) > MaxNodes) 829 MaxNodes = D.LeafNodes[I].Node; 830 831 for (int I = 0; I < D.NumCalls; ++I) 832 if (static_cast<int32_t>(D.Calls[I].FromNode) > MaxNodes) 833 MaxNodes = D.Calls[I].FromNode; 834 835 // No nodes? Nothing to do 836 if (MaxNodes < 0) { 837 DEBUG(report("No nodes!\n")); 838 CFGNodes = nullptr; 839 SpanningTreeNodes = nullptr; 840 NumNodes = 0; 841 return; 842 } 843 ++MaxNodes; 844 DEBUG(reportNumber("NumNodes = ", MaxNodes, 10)); 845 NumNodes = static_cast<uint32_t>(MaxNodes); 846 847 // Initial allocations 848 CFGNodes = new (Alloc) Node[MaxNodes]; 849 850 DEBUG(reportNumber("G->CFGNodes = 0x", (uint64_t)CFGNodes, 16)); 851 SpanningTreeNodes = new (Alloc) Node[MaxNodes]; 852 DEBUG(reportNumber("G->SpanningTreeNodes = 0x", 853 (uint64_t)SpanningTreeNodes, 16)); 854 855 // Figure out how much to allocate to each vector (in/out edge sets) 856 for (int I = 0; I < D.NumEdges; ++I) { 857 CFGNodes[D.Edges[I].FromNode].NumOutEdges++; 858 CFGNodes[D.Edges[I].ToNode].NumInEdges++; 859 if (D.Edges[I].Counter != 0xffffffff) 860 continue; 861 862 SpanningTreeNodes[D.Edges[I].FromNode].NumOutEdges++; 863 SpanningTreeNodes[D.Edges[I].ToNode].NumInEdges++; 864 } 865 866 // Allocate in/out edge sets 867 for (int I = 0; I < MaxNodes; ++I) { 868 if (CFGNodes[I].NumInEdges > 0) 869 CFGNodes[I].InEdges = new (Alloc) Edge[CFGNodes[I].NumInEdges]; 870 if (CFGNodes[I].NumOutEdges > 0) 871 CFGNodes[I].OutEdges = new (Alloc) Edge[CFGNodes[I].NumOutEdges]; 872 if (SpanningTreeNodes[I].NumInEdges > 0) 873 SpanningTreeNodes[I].InEdges = 874 new (Alloc) Edge[SpanningTreeNodes[I].NumInEdges]; 875 if (SpanningTreeNodes[I].NumOutEdges > 0) 876 SpanningTreeNodes[I].OutEdges = 877 new (Alloc) Edge[SpanningTreeNodes[I].NumOutEdges]; 878 CFGNodes[I].NumInEdges = 0; 879 CFGNodes[I].NumOutEdges = 0; 880 SpanningTreeNodes[I].NumInEdges = 0; 881 SpanningTreeNodes[I].NumOutEdges = 0; 882 } 883 884 // Fill in/out edge sets 885 for (int I = 0; I < D.NumEdges; ++I) { 886 const uint32_t Src = D.Edges[I].FromNode; 887 const uint32_t Dst = D.Edges[I].ToNode; 888 Edge *E = &CFGNodes[Src].OutEdges[CFGNodes[Src].NumOutEdges++]; 889 E->Node = Dst; 890 E->ID = I; 891 892 E = &CFGNodes[Dst].InEdges[CFGNodes[Dst].NumInEdges++]; 893 E->Node = Src; 894 E->ID = I; 895 896 if (D.Edges[I].Counter != 0xffffffff) 897 continue; 898 899 E = &SpanningTreeNodes[Src] 900 .OutEdges[SpanningTreeNodes[Src].NumOutEdges++]; 901 E->Node = Dst; 902 E->ID = I; 903 904 E = &SpanningTreeNodes[Dst] 905 .InEdges[SpanningTreeNodes[Dst].NumInEdges++]; 906 E->Node = Src; 907 E->ID = I; 908 } 909 910 computeEdgeFrequencies(Counters, Ctx); 911 } 912 913 Graph::~Graph() { 914 if (CallFreqs) 915 Alloc.deallocate(CallFreqs); 916 if (EdgeFreqs) 917 Alloc.deallocate(EdgeFreqs); 918 for (int I = NumNodes - 1; I >= 0; --I) { 919 if (SpanningTreeNodes[I].OutEdges) 920 Alloc.deallocate(SpanningTreeNodes[I].OutEdges); 921 if (SpanningTreeNodes[I].InEdges) 922 Alloc.deallocate(SpanningTreeNodes[I].InEdges); 923 if (CFGNodes[I].OutEdges) 924 Alloc.deallocate(CFGNodes[I].OutEdges); 925 if (CFGNodes[I].InEdges) 926 Alloc.deallocate(CFGNodes[I].InEdges); 927 } 928 if (SpanningTreeNodes) 929 Alloc.deallocate(SpanningTreeNodes); 930 if (CFGNodes) 931 Alloc.deallocate(CFGNodes); 932 } 933 934 void Graph::dump() const { 935 reportNumber("Dumping graph with number of nodes: ", NumNodes, 10); 936 report(" Full graph:\n"); 937 for (int I = 0; I < NumNodes; ++I) { 938 const Node *N = &CFGNodes[I]; 939 reportNumber(" Node #", I, 10); 940 reportNumber(" InEdges total ", N->NumInEdges, 10); 941 for (int J = 0; J < N->NumInEdges; ++J) 942 reportNumber(" ", N->InEdges[J].Node, 10); 943 reportNumber(" OutEdges total ", N->NumOutEdges, 10); 944 for (int J = 0; J < N->NumOutEdges; ++J) 945 reportNumber(" ", N->OutEdges[J].Node, 10); 946 report("\n"); 947 } 948 report(" Spanning tree:\n"); 949 for (int I = 0; I < NumNodes; ++I) { 950 const Node *N = &SpanningTreeNodes[I]; 951 reportNumber(" Node #", I, 10); 952 reportNumber(" InEdges total ", N->NumInEdges, 10); 953 for (int J = 0; J < N->NumInEdges; ++J) 954 reportNumber(" ", N->InEdges[J].Node, 10); 955 reportNumber(" OutEdges total ", N->NumOutEdges, 10); 956 for (int J = 0; J < N->NumOutEdges; ++J) 957 reportNumber(" ", N->OutEdges[J].Node, 10); 958 report("\n"); 959 } 960 } 961 962 void Graph::dumpEdgeFreqs() const { 963 reportNumber( 964 "Dumping edge frequencies for graph with num edges: ", D.NumEdges, 10); 965 for (int I = 0; I < D.NumEdges; ++I) { 966 reportNumber("* Src: ", D.Edges[I].FromNode, 10); 967 reportNumber(" Dst: ", D.Edges[I].ToNode, 10); 968 reportNumber(" Cnt: ", EdgeFreqs[I], 10); 969 } 970 } 971 972 /// Auxiliary map structure for fast lookups of which calls map to each node of 973 /// the function CFG 974 struct NodeToCallsMap { 975 struct MapEntry { 976 uint32_t NumCalls; 977 uint32_t *Calls; 978 }; 979 MapEntry *Entries; 980 BumpPtrAllocator &Alloc; 981 const uint32_t NumNodes; 982 983 NodeToCallsMap(BumpPtrAllocator &Alloc, const FunctionDescription &D, 984 uint32_t NumNodes) 985 : Alloc(Alloc), NumNodes(NumNodes) { 986 Entries = new (Alloc, 0) MapEntry[NumNodes]; 987 for (int I = 0; I < D.NumCalls; ++I) { 988 DEBUG(reportNumber("Registering call in node ", D.Calls[I].FromNode, 10)); 989 ++Entries[D.Calls[I].FromNode].NumCalls; 990 } 991 for (int I = 0; I < NumNodes; ++I) { 992 Entries[I].Calls = Entries[I].NumCalls ? new (Alloc) 993 uint32_t[Entries[I].NumCalls] 994 : nullptr; 995 Entries[I].NumCalls = 0; 996 } 997 for (int I = 0; I < D.NumCalls; ++I) { 998 MapEntry &Entry = Entries[D.Calls[I].FromNode]; 999 Entry.Calls[Entry.NumCalls++] = I; 1000 } 1001 } 1002 1003 /// Set the frequency of all calls in node \p NodeID to Freq. However, if 1004 /// the calls have their own counters and do not depend on the basic block 1005 /// counter, this means they have landing pads and throw exceptions. In this 1006 /// case, set their frequency with their counters and return the maximum 1007 /// value observed in such counters. This will be used as the new frequency 1008 /// at basic block entry. This is used to fix the CFG edge frequencies in the 1009 /// presence of exceptions. 1010 uint64_t visitAllCallsIn(uint32_t NodeID, uint64_t Freq, uint64_t *CallFreqs, 1011 const FunctionDescription &D, 1012 const uint64_t *Counters, 1013 ProfileWriterContext &Ctx) const { 1014 const MapEntry &Entry = Entries[NodeID]; 1015 uint64_t MaxValue = 0ull; 1016 for (int I = 0, E = Entry.NumCalls; I != E; ++I) { 1017 const uint32_t CallID = Entry.Calls[I]; 1018 DEBUG(reportNumber(" Setting freq for call ID: ", CallID, 10)); 1019 const CallDescription &CallDesc = D.Calls[CallID]; 1020 if (CallDesc.Counter == 0xffffffff) { 1021 CallFreqs[CallID] = Freq; 1022 DEBUG(reportNumber(" with : ", Freq, 10)); 1023 } else { 1024 const uint64_t CounterVal = Counters[CallDesc.Counter]; 1025 CallFreqs[CallID] = CounterVal; 1026 MaxValue = CounterVal > MaxValue ? CounterVal : MaxValue; 1027 DEBUG(reportNumber(" with (private counter) : ", CounterVal, 10)); 1028 } 1029 DEBUG(reportNumber(" Address: 0x", CallDesc.TargetAddress, 16)); 1030 if (CallFreqs[CallID] > 0) 1031 Ctx.CallFlowTable->get(CallDesc.TargetAddress).Calls += 1032 CallFreqs[CallID]; 1033 } 1034 return MaxValue; 1035 } 1036 1037 ~NodeToCallsMap() { 1038 for (int I = NumNodes - 1; I >= 0; --I) 1039 if (Entries[I].Calls) 1040 Alloc.deallocate(Entries[I].Calls); 1041 Alloc.deallocate(Entries); 1042 } 1043 }; 1044 1045 /// Fill an array with the frequency of each edge in the function represented 1046 /// by G, as well as another array for each call. 1047 void Graph::computeEdgeFrequencies(const uint64_t *Counters, 1048 ProfileWriterContext &Ctx) { 1049 if (NumNodes == 0) 1050 return; 1051 1052 EdgeFreqs = D.NumEdges ? new (Alloc, 0) uint64_t [D.NumEdges] : nullptr; 1053 CallFreqs = D.NumCalls ? new (Alloc, 0) uint64_t [D.NumCalls] : nullptr; 1054 1055 // Setup a lookup for calls present in each node (BB) 1056 NodeToCallsMap *CallMap = new (Alloc) NodeToCallsMap(Alloc, D, NumNodes); 1057 1058 // Perform a bottom-up, BFS traversal of the spanning tree in G. Edges in the 1059 // spanning tree don't have explicit counters. We must infer their value using 1060 // a linear combination of other counters (sum of counters of the outgoing 1061 // edges minus sum of counters of the incoming edges). 1062 uint32_t *Stack = new (Alloc) uint32_t [NumNodes]; 1063 uint32_t StackTop = 0; 1064 enum Status : uint8_t { S_NEW = 0, S_VISITING, S_VISITED }; 1065 Status *Visited = new (Alloc, 0) Status[NumNodes]; 1066 uint64_t *LeafFrequency = new (Alloc, 0) uint64_t[NumNodes]; 1067 uint64_t *EntryAddress = new (Alloc, 0) uint64_t[NumNodes]; 1068 1069 // Setup a fast lookup for frequency of leaf nodes, which have special 1070 // basic block frequency instrumentation (they are not edge profiled). 1071 for (int I = 0; I < D.NumLeafNodes; ++I) { 1072 LeafFrequency[D.LeafNodes[I].Node] = Counters[D.LeafNodes[I].Counter]; 1073 DEBUG({ 1074 if (Counters[D.LeafNodes[I].Counter] > 0) { 1075 reportNumber("Leaf Node# ", D.LeafNodes[I].Node, 10); 1076 reportNumber(" Counter: ", Counters[D.LeafNodes[I].Counter], 10); 1077 } 1078 }); 1079 } 1080 for (int I = 0; I < D.NumEntryNodes; ++I) { 1081 EntryAddress[D.EntryNodes[I].Node] = D.EntryNodes[I].Address; 1082 DEBUG({ 1083 reportNumber("Entry Node# ", D.EntryNodes[I].Node, 10); 1084 reportNumber(" Address: ", D.EntryNodes[I].Address, 16); 1085 }); 1086 } 1087 // Add all root nodes to the stack 1088 for (int I = 0; I < NumNodes; ++I) 1089 if (SpanningTreeNodes[I].NumInEdges == 0) 1090 Stack[StackTop++] = I; 1091 1092 // Empty stack? 1093 if (StackTop == 0) { 1094 DEBUG(report("Empty stack!\n")); 1095 Alloc.deallocate(EntryAddress); 1096 Alloc.deallocate(LeafFrequency); 1097 Alloc.deallocate(Visited); 1098 Alloc.deallocate(Stack); 1099 CallMap->~NodeToCallsMap(); 1100 Alloc.deallocate(CallMap); 1101 if (CallFreqs) 1102 Alloc.deallocate(CallFreqs); 1103 if (EdgeFreqs) 1104 Alloc.deallocate(EdgeFreqs); 1105 EdgeFreqs = nullptr; 1106 CallFreqs = nullptr; 1107 return; 1108 } 1109 // Add all known edge counts, will infer the rest 1110 for (int I = 0; I < D.NumEdges; ++I) { 1111 const uint32_t C = D.Edges[I].Counter; 1112 if (C == 0xffffffff) // inferred counter - we will compute its value 1113 continue; 1114 EdgeFreqs[I] = Counters[C]; 1115 } 1116 1117 while (StackTop > 0) { 1118 const uint32_t Cur = Stack[--StackTop]; 1119 DEBUG({ 1120 if (Visited[Cur] == S_VISITING) 1121 report("(visiting) "); 1122 else 1123 report("(new) "); 1124 reportNumber("Cur: ", Cur, 10); 1125 }); 1126 1127 // This shouldn't happen in a tree 1128 assert(Visited[Cur] != S_VISITED, "should not have visited nodes in stack"); 1129 if (Visited[Cur] == S_NEW) { 1130 Visited[Cur] = S_VISITING; 1131 Stack[StackTop++] = Cur; 1132 assert(StackTop <= NumNodes, "stack grew too large"); 1133 for (int I = 0, E = SpanningTreeNodes[Cur].NumOutEdges; I < E; ++I) { 1134 const uint32_t Succ = SpanningTreeNodes[Cur].OutEdges[I].Node; 1135 Stack[StackTop++] = Succ; 1136 assert(StackTop <= NumNodes, "stack grew too large"); 1137 } 1138 continue; 1139 } 1140 Visited[Cur] = S_VISITED; 1141 1142 // Establish our node frequency based on outgoing edges, which should all be 1143 // resolved by now. 1144 int64_t CurNodeFreq = LeafFrequency[Cur]; 1145 // Not a leaf? 1146 if (!CurNodeFreq) { 1147 for (int I = 0, E = CFGNodes[Cur].NumOutEdges; I != E; ++I) { 1148 const uint32_t SuccEdge = CFGNodes[Cur].OutEdges[I].ID; 1149 CurNodeFreq += EdgeFreqs[SuccEdge]; 1150 } 1151 } 1152 if (CurNodeFreq < 0) 1153 CurNodeFreq = 0; 1154 1155 const uint64_t CallFreq = CallMap->visitAllCallsIn( 1156 Cur, CurNodeFreq > 0 ? CurNodeFreq : 0, CallFreqs, D, Counters, Ctx); 1157 1158 // Exception handling affected our output flow? Fix with calls info 1159 DEBUG({ 1160 if (CallFreq > CurNodeFreq) 1161 report("Bumping node frequency with call info\n"); 1162 }); 1163 CurNodeFreq = CallFreq > CurNodeFreq ? CallFreq : CurNodeFreq; 1164 1165 if (CurNodeFreq > 0) { 1166 if (uint64_t Addr = EntryAddress[Cur]) { 1167 DEBUG( 1168 reportNumber(" Setting flow at entry point address 0x", Addr, 16)); 1169 DEBUG(reportNumber(" with: ", CurNodeFreq, 10)); 1170 Ctx.CallFlowTable->get(Addr).Val = CurNodeFreq; 1171 } 1172 } 1173 1174 // No parent? Reached a tree root, limit to call frequency updating. 1175 if (SpanningTreeNodes[Cur].NumInEdges == 0) 1176 continue; 1177 1178 assert(SpanningTreeNodes[Cur].NumInEdges == 1, "must have 1 parent"); 1179 const uint32_t Parent = SpanningTreeNodes[Cur].InEdges[0].Node; 1180 const uint32_t ParentEdge = SpanningTreeNodes[Cur].InEdges[0].ID; 1181 1182 // Calculate parent edge freq. 1183 int64_t ParentEdgeFreq = CurNodeFreq; 1184 for (int I = 0, E = CFGNodes[Cur].NumInEdges; I != E; ++I) { 1185 const uint32_t PredEdge = CFGNodes[Cur].InEdges[I].ID; 1186 ParentEdgeFreq -= EdgeFreqs[PredEdge]; 1187 } 1188 1189 // Sometimes the conservative CFG that BOLT builds will lead to incorrect 1190 // flow computation. For example, in a BB that transitively calls the exit 1191 // syscall, BOLT will add a fall-through successor even though it should not 1192 // have any successors. So this block execution will likely be wrong. We 1193 // tolerate this imperfection since this case should be quite infrequent. 1194 if (ParentEdgeFreq < 0) { 1195 DEBUG(dumpEdgeFreqs()); 1196 DEBUG(report("WARNING: incorrect flow")); 1197 ParentEdgeFreq = 0; 1198 } 1199 DEBUG(reportNumber(" Setting freq for ParentEdge: ", ParentEdge, 10)); 1200 DEBUG(reportNumber(" with ParentEdgeFreq: ", ParentEdgeFreq, 10)); 1201 EdgeFreqs[ParentEdge] = ParentEdgeFreq; 1202 } 1203 1204 Alloc.deallocate(EntryAddress); 1205 Alloc.deallocate(LeafFrequency); 1206 Alloc.deallocate(Visited); 1207 Alloc.deallocate(Stack); 1208 CallMap->~NodeToCallsMap(); 1209 Alloc.deallocate(CallMap); 1210 DEBUG(dumpEdgeFreqs()); 1211 } 1212 1213 /// Write to \p FD all of the edge profiles for function \p FuncDesc. Uses 1214 /// \p Alloc to allocate helper dynamic structures used to compute profile for 1215 /// edges that we do not explictly instrument. 1216 const uint8_t *writeFunctionProfile(int FD, ProfileWriterContext &Ctx, 1217 const uint8_t *FuncDesc, 1218 BumpPtrAllocator &Alloc) { 1219 const FunctionDescription F(FuncDesc); 1220 const uint8_t *next = FuncDesc + F.getSize(); 1221 1222 #if !defined(__APPLE__) 1223 uint64_t *bolt_instr_locations = __bolt_instr_locations; 1224 #else 1225 uint64_t *bolt_instr_locations = _bolt_instr_locations_getter(); 1226 #endif 1227 1228 // Skip funcs we know are cold 1229 #ifndef ENABLE_DEBUG 1230 uint64_t CountersFreq = 0; 1231 for (int I = 0; I < F.NumLeafNodes; ++I) 1232 CountersFreq += bolt_instr_locations[F.LeafNodes[I].Counter]; 1233 1234 if (CountersFreq == 0) { 1235 for (int I = 0; I < F.NumEdges; ++I) { 1236 const uint32_t C = F.Edges[I].Counter; 1237 if (C == 0xffffffff) 1238 continue; 1239 CountersFreq += bolt_instr_locations[C]; 1240 } 1241 if (CountersFreq == 0) { 1242 for (int I = 0; I < F.NumCalls; ++I) { 1243 const uint32_t C = F.Calls[I].Counter; 1244 if (C == 0xffffffff) 1245 continue; 1246 CountersFreq += bolt_instr_locations[C]; 1247 } 1248 if (CountersFreq == 0) 1249 return next; 1250 } 1251 } 1252 #endif 1253 1254 Graph *G = new (Alloc) Graph(Alloc, F, bolt_instr_locations, Ctx); 1255 DEBUG(G->dump()); 1256 1257 if (!G->EdgeFreqs && !G->CallFreqs) { 1258 G->~Graph(); 1259 Alloc.deallocate(G); 1260 return next; 1261 } 1262 1263 for (int I = 0; I < F.NumEdges; ++I) { 1264 const uint64_t Freq = G->EdgeFreqs[I]; 1265 if (Freq == 0) 1266 continue; 1267 const EdgeDescription *Desc = &F.Edges[I]; 1268 char LineBuf[BufSize]; 1269 char *Ptr = LineBuf; 1270 Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); 1271 Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); 1272 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 22); 1273 Ptr = intToStr(Ptr, Freq, 10); 1274 *Ptr++ = '\n'; 1275 __write(FD, LineBuf, Ptr - LineBuf); 1276 } 1277 1278 for (int I = 0; I < F.NumCalls; ++I) { 1279 const uint64_t Freq = G->CallFreqs[I]; 1280 if (Freq == 0) 1281 continue; 1282 char LineBuf[BufSize]; 1283 char *Ptr = LineBuf; 1284 const CallDescription *Desc = &F.Calls[I]; 1285 Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); 1286 Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); 1287 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 1288 Ptr = intToStr(Ptr, Freq, 10); 1289 *Ptr++ = '\n'; 1290 __write(FD, LineBuf, Ptr - LineBuf); 1291 } 1292 1293 G->~Graph(); 1294 Alloc.deallocate(G); 1295 return next; 1296 } 1297 1298 #if !defined(__APPLE__) 1299 const IndCallTargetDescription * 1300 ProfileWriterContext::lookupIndCallTarget(uint64_t Target) const { 1301 uint32_t B = 0; 1302 uint32_t E = __bolt_instr_num_ind_targets; 1303 if (E == 0) 1304 return nullptr; 1305 do { 1306 uint32_t I = (E - B) / 2 + B; 1307 if (IndCallTargets[I].Address == Target) 1308 return &IndCallTargets[I]; 1309 if (IndCallTargets[I].Address < Target) 1310 B = I + 1; 1311 else 1312 E = I; 1313 } while (B < E); 1314 return nullptr; 1315 } 1316 1317 /// Write a single indirect call <src, target> pair to the fdata file 1318 void visitIndCallCounter(IndirectCallHashTable::MapEntry &Entry, 1319 int FD, int CallsiteID, 1320 ProfileWriterContext *Ctx) { 1321 if (Entry.Val == 0) 1322 return; 1323 DEBUG(reportNumber("Target func 0x", Entry.Key, 16)); 1324 DEBUG(reportNumber("Target freq: ", Entry.Val, 10)); 1325 const IndCallDescription *CallsiteDesc = 1326 &Ctx->IndCallDescriptions[CallsiteID]; 1327 const IndCallTargetDescription *TargetDesc = 1328 Ctx->lookupIndCallTarget(Entry.Key); 1329 if (!TargetDesc) { 1330 DEBUG(report("Failed to lookup indirect call target\n")); 1331 char LineBuf[BufSize]; 1332 char *Ptr = LineBuf; 1333 Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); 1334 Ptr = strCopy(Ptr, "0 [unknown] 0 0 ", BufSize - (Ptr - LineBuf) - 40); 1335 Ptr = intToStr(Ptr, Entry.Val, 10); 1336 *Ptr++ = '\n'; 1337 __write(FD, LineBuf, Ptr - LineBuf); 1338 return; 1339 } 1340 Ctx->CallFlowTable->get(TargetDesc->Address).Calls += Entry.Val; 1341 char LineBuf[BufSize]; 1342 char *Ptr = LineBuf; 1343 Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); 1344 Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); 1345 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 1346 Ptr = intToStr(Ptr, Entry.Val, 10); 1347 *Ptr++ = '\n'; 1348 __write(FD, LineBuf, Ptr - LineBuf); 1349 } 1350 1351 /// Write to \p FD all of the indirect call profiles. 1352 void writeIndirectCallProfile(int FD, ProfileWriterContext &Ctx) { 1353 for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) { 1354 DEBUG(reportNumber("IndCallsite #", I, 10)); 1355 GlobalIndCallCounters[I].forEachElement(visitIndCallCounter, FD, I, &Ctx); 1356 } 1357 } 1358 1359 /// Check a single call flow for a callee versus all known callers. If there are 1360 /// less callers than what the callee expects, write the difference with source 1361 /// [unknown] in the profile. 1362 void visitCallFlowEntry(CallFlowHashTable::MapEntry &Entry, int FD, 1363 ProfileWriterContext *Ctx) { 1364 DEBUG(reportNumber("Call flow entry address: 0x", Entry.Key, 16)); 1365 DEBUG(reportNumber("Calls: ", Entry.Calls, 10)); 1366 DEBUG(reportNumber("Reported entry frequency: ", Entry.Val, 10)); 1367 DEBUG({ 1368 if (Entry.Calls > Entry.Val) 1369 report(" More calls than expected!\n"); 1370 }); 1371 if (Entry.Val <= Entry.Calls) 1372 return; 1373 DEBUG(reportNumber( 1374 " Balancing calls with traffic: ", Entry.Val - Entry.Calls, 10)); 1375 const IndCallTargetDescription *TargetDesc = 1376 Ctx->lookupIndCallTarget(Entry.Key); 1377 if (!TargetDesc) { 1378 // There is probably something wrong with this callee and this should be 1379 // investigated, but I don't want to assert and lose all data collected. 1380 DEBUG(report("WARNING: failed to look up call target!\n")); 1381 return; 1382 } 1383 char LineBuf[BufSize]; 1384 char *Ptr = LineBuf; 1385 Ptr = strCopy(Ptr, "0 [unknown] 0 ", BufSize); 1386 Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); 1387 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 1388 Ptr = intToStr(Ptr, Entry.Val - Entry.Calls, 10); 1389 *Ptr++ = '\n'; 1390 __write(FD, LineBuf, Ptr - LineBuf); 1391 } 1392 1393 /// Open fdata file for writing and return a valid file descriptor, aborting 1394 /// program upon failure. 1395 int openProfile() { 1396 // Build the profile name string by appending our PID 1397 char Buf[BufSize]; 1398 char *Ptr = Buf; 1399 uint64_t PID = __getpid(); 1400 Ptr = strCopy(Buf, __bolt_instr_filename, BufSize); 1401 if (__bolt_instr_use_pid) { 1402 Ptr = strCopy(Ptr, ".", BufSize - (Ptr - Buf + 1)); 1403 Ptr = intToStr(Ptr, PID, 10); 1404 Ptr = strCopy(Ptr, ".fdata", BufSize - (Ptr - Buf + 1)); 1405 } 1406 *Ptr++ = '\0'; 1407 uint64_t FD = __open(Buf, 1408 /*flags=*/0x241 /*O_WRONLY|O_TRUNC|O_CREAT*/, 1409 /*mode=*/0666); 1410 if (static_cast<int64_t>(FD) < 0) { 1411 report("Error while trying to open profile file for writing: "); 1412 report(Buf); 1413 reportNumber("\nFailed with error number: 0x", 1414 0 - static_cast<int64_t>(FD), 16); 1415 __exit(1); 1416 } 1417 return FD; 1418 } 1419 1420 #endif 1421 1422 } // anonymous namespace 1423 1424 #if !defined(__APPLE__) 1425 1426 /// Reset all counters in case you want to start profiling a new phase of your 1427 /// program independently of prior phases. 1428 /// The address of this function is printed by BOLT and this can be called by 1429 /// any attached debugger during runtime. There is a useful oneliner for gdb: 1430 /// 1431 /// gdb -p $(pgrep -xo PROCESSNAME) -ex 'p ((void(*)())0xdeadbeef)()' \ 1432 /// -ex 'set confirm off' -ex quit 1433 /// 1434 /// Where 0xdeadbeef is this function address and PROCESSNAME your binary file 1435 /// name. 1436 extern "C" void __bolt_instr_clear_counters() { 1437 memset(reinterpret_cast<char *>(__bolt_instr_locations), 0, 1438 __bolt_num_counters * 8); 1439 for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) 1440 GlobalIndCallCounters[I].resetCounters(); 1441 } 1442 1443 /// This is the entry point for profile writing. 1444 /// There are three ways of getting here: 1445 /// 1446 /// * Program execution ended, finalization methods are running and BOLT 1447 /// hooked into FINI from your binary dynamic section; 1448 /// * You used the sleep timer option and during initialization we forked 1449 /// a separete process that will call this function periodically; 1450 /// * BOLT prints this function address so you can attach a debugger and 1451 /// call this function directly to get your profile written to disk 1452 /// on demand. 1453 /// 1454 extern "C" void __attribute((force_align_arg_pointer)) 1455 __bolt_instr_data_dump() { 1456 // Already dumping 1457 if (!GlobalWriteProfileMutex->acquire()) 1458 return; 1459 1460 BumpPtrAllocator HashAlloc; 1461 HashAlloc.setMaxSize(0x6400000); 1462 ProfileWriterContext Ctx = readDescriptions(); 1463 Ctx.CallFlowTable = new (HashAlloc, 0) CallFlowHashTable(HashAlloc); 1464 1465 DEBUG(printStats(Ctx)); 1466 1467 int FD = openProfile(); 1468 1469 BumpPtrAllocator Alloc; 1470 Alloc.setMaxSize(0x6400000); 1471 const uint8_t *FuncDesc = Ctx.FuncDescriptions; 1472 for (int I = 0, E = __bolt_instr_num_funcs; I < E; ++I) { 1473 FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); 1474 Alloc.clear(); 1475 DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)); 1476 } 1477 assert(FuncDesc == (void *)Ctx.Strings, 1478 "FuncDesc ptr must be equal to stringtable"); 1479 1480 writeIndirectCallProfile(FD, Ctx); 1481 Ctx.CallFlowTable->forEachElement(visitCallFlowEntry, FD, &Ctx); 1482 1483 __fsync(FD); 1484 __close(FD); 1485 __munmap(Ctx.MMapPtr, Ctx.MMapSize); 1486 __close(Ctx.FileDesc); 1487 HashAlloc.destroy(); 1488 GlobalWriteProfileMutex->release(); 1489 DEBUG(report("Finished writing profile.\n")); 1490 } 1491 1492 /// Event loop for our child process spawned during setup to dump profile data 1493 /// at user-specified intervals 1494 void watchProcess() { 1495 timespec ts, rem; 1496 uint64_t Ellapsed = 0ull; 1497 uint64_t ppid; 1498 if (__bolt_instr_wait_forks) { 1499 // Store parent pgid 1500 ppid = -__getpgid(0); 1501 // And leave parent process group 1502 __setpgid(0, 0); 1503 } else { 1504 // Store parent pid 1505 ppid = __getppid(); 1506 if (ppid == 1) { 1507 // Parent already dead 1508 __bolt_instr_data_dump(); 1509 goto out; 1510 } 1511 } 1512 1513 ts.tv_sec = 1; 1514 ts.tv_nsec = 0; 1515 while (1) { 1516 __nanosleep(&ts, &rem); 1517 // This means our parent process or all its forks are dead, 1518 // so no need for us to keep dumping. 1519 if (__kill(ppid, 0) < 0) { 1520 if (__bolt_instr_no_counters_clear) 1521 __bolt_instr_data_dump(); 1522 break; 1523 } 1524 1525 if (++Ellapsed < __bolt_instr_sleep_time) 1526 continue; 1527 1528 Ellapsed = 0; 1529 __bolt_instr_data_dump(); 1530 if (__bolt_instr_no_counters_clear == false) 1531 __bolt_instr_clear_counters(); 1532 } 1533 1534 out:; 1535 DEBUG(report("My parent process is dead, bye!\n")); 1536 __exit(0); 1537 } 1538 1539 extern "C" void __bolt_instr_indirect_call(); 1540 extern "C" void __bolt_instr_indirect_tailcall(); 1541 1542 /// Initialization code 1543 extern "C" void __attribute((force_align_arg_pointer)) __bolt_instr_setup() { 1544 const uint64_t CountersStart = 1545 reinterpret_cast<uint64_t>(&__bolt_instr_locations[0]); 1546 const uint64_t CountersEnd = alignTo( 1547 reinterpret_cast<uint64_t>(&__bolt_instr_locations[__bolt_num_counters]), 1548 0x1000); 1549 DEBUG(reportNumber("replace mmap start: ", CountersStart, 16)); 1550 DEBUG(reportNumber("replace mmap stop: ", CountersEnd, 16)); 1551 assert (CountersEnd > CountersStart, "no counters"); 1552 // Maps our counters to be shared instead of private, so we keep counting for 1553 // forked processes 1554 void *Ret = 1555 __mmap(CountersStart, CountersEnd - CountersStart, PROT_READ | PROT_WRITE, 1556 MAP_ANONYMOUS | MAP_SHARED | MAP_FIXED, -1, 0); 1557 assert(Ret != MAP_FAILED, "__bolt_instr_setup: Failed to mmap counters!"); 1558 __bolt_ind_call_counter_func_pointer = __bolt_instr_indirect_call; 1559 __bolt_ind_tailcall_counter_func_pointer = __bolt_instr_indirect_tailcall; 1560 // Conservatively reserve 100MiB shared pages 1561 GlobalAlloc.setMaxSize(0x6400000); 1562 GlobalAlloc.setShared(true); 1563 GlobalWriteProfileMutex = new (GlobalAlloc, 0) Mutex(); 1564 if (__bolt_instr_num_ind_calls > 0) 1565 GlobalIndCallCounters = 1566 new (GlobalAlloc, 0) IndirectCallHashTable[__bolt_instr_num_ind_calls]; 1567 1568 if (__bolt_instr_sleep_time != 0) { 1569 // Separate instrumented process to the own process group 1570 if (__bolt_instr_wait_forks) 1571 __setpgid(0, 0); 1572 1573 if (long PID = __fork()) 1574 return; 1575 watchProcess(); 1576 } 1577 } 1578 1579 extern "C" __attribute((force_align_arg_pointer)) void 1580 instrumentIndirectCall(uint64_t Target, uint64_t IndCallID) { 1581 GlobalIndCallCounters[IndCallID].incrementVal(Target, GlobalAlloc); 1582 } 1583 1584 /// We receive as in-stack arguments the identifier of the indirect call site 1585 /// as well as the target address for the call 1586 extern "C" __attribute((naked)) void __bolt_instr_indirect_call() 1587 { 1588 __asm__ __volatile__(SAVE_ALL 1589 "mov 0xa0(%%rsp), %%rdi\n" 1590 "mov 0x98(%%rsp), %%rsi\n" 1591 "call instrumentIndirectCall\n" 1592 RESTORE_ALL 1593 "ret\n" 1594 :::); 1595 } 1596 1597 extern "C" __attribute((naked)) void __bolt_instr_indirect_tailcall() 1598 { 1599 __asm__ __volatile__(SAVE_ALL 1600 "mov 0x98(%%rsp), %%rdi\n" 1601 "mov 0x90(%%rsp), %%rsi\n" 1602 "call instrumentIndirectCall\n" 1603 RESTORE_ALL 1604 "ret\n" 1605 :::); 1606 } 1607 1608 /// This is hooking ELF's entry, it needs to save all machine state. 1609 extern "C" __attribute((naked)) void __bolt_instr_start() 1610 { 1611 __asm__ __volatile__(SAVE_ALL 1612 "call __bolt_instr_setup\n" 1613 RESTORE_ALL 1614 "jmp __bolt_start_trampoline\n" 1615 :::); 1616 } 1617 1618 /// This is hooking into ELF's DT_FINI 1619 extern "C" void __bolt_instr_fini() { 1620 __bolt_fini_trampoline(); 1621 if (__bolt_instr_sleep_time == 0) 1622 __bolt_instr_data_dump(); 1623 DEBUG(report("Finished.\n")); 1624 } 1625 1626 #endif 1627 1628 #if defined(__APPLE__) 1629 1630 extern "C" void __bolt_instr_data_dump() { 1631 ProfileWriterContext Ctx = readDescriptions(); 1632 1633 int FD = 2; 1634 BumpPtrAllocator Alloc; 1635 const uint8_t *FuncDesc = Ctx.FuncDescriptions; 1636 uint32_t bolt_instr_num_funcs = _bolt_instr_num_funcs_getter(); 1637 1638 for (int I = 0, E = bolt_instr_num_funcs; I < E; ++I) { 1639 FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); 1640 Alloc.clear(); 1641 DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)); 1642 } 1643 assert(FuncDesc == (void *)Ctx.Strings, 1644 "FuncDesc ptr must be equal to stringtable"); 1645 } 1646 1647 // On OSX/iOS the final symbol name of an extern "C" function/variable contains 1648 // one extra leading underscore: _bolt_instr_setup -> __bolt_instr_setup. 1649 extern "C" 1650 __attribute__((section("__TEXT,__setup"))) 1651 __attribute__((force_align_arg_pointer)) 1652 void _bolt_instr_setup() { 1653 __asm__ __volatile__(SAVE_ALL :::); 1654 1655 report("Hello!\n"); 1656 1657 __asm__ __volatile__(RESTORE_ALL :::); 1658 } 1659 1660 extern "C" 1661 __attribute__((section("__TEXT,__fini"))) 1662 __attribute__((force_align_arg_pointer)) 1663 void _bolt_instr_fini() { 1664 report("Bye!\n"); 1665 __bolt_instr_data_dump(); 1666 } 1667 1668 #endif 1669 #endif 1670