1 //===- bolt/runtime/instr.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // BOLT runtime instrumentation library for x86 Linux. Currently, BOLT does 10 // not support linking modules with dependencies on one another into the final 11 // binary (TODO?), which means this library has to be self-contained in a single 12 // module. 13 // 14 // All extern declarations here need to be defined by BOLT itself. Those will be 15 // undefined symbols that BOLT needs to resolve by emitting these symbols with 16 // MCStreamer. Currently, Passes/Instrumentation.cpp is the pass responsible 17 // for defining the symbols here and these two files have a tight coupling: one 18 // working statically when you run BOLT and another during program runtime when 19 // you run an instrumented binary. The main goal here is to output an fdata file 20 // (BOLT profile) with the instrumentation counters inserted by the static pass. 21 // Counters for indirect calls are an exception, as we can't know them 22 // statically. These counters are created and managed here. To allow this, we 23 // need a minimal framework for allocating memory dynamically. We provide this 24 // with the BumpPtrAllocator class (not LLVM's, but our own version of it). 25 // 26 // Since this code is intended to be inserted into any executable, we decided to 27 // make it standalone and do not depend on any external libraries (i.e. language 28 // support libraries, such as glibc or stdc++). To allow this, we provide a few 29 // light implementations of common OS interacting functionalities using direct 30 // syscall wrappers. Our simple allocator doesn't manage deallocations that 31 // fragment the memory space, so it's stack based. This is the minimal framework 32 // provided here to allow processing instrumented counters and writing fdata. 33 // 34 // In the C++ idiom used here, we never use or rely on constructors or 35 // destructors for global objects. That's because those need support from the 36 // linker in initialization/finalization code, and we want to keep our linker 37 // very simple. Similarly, we don't create any global objects that are zero 38 // initialized, since those would need to go .bss, which our simple linker also 39 // don't support (TODO?). 40 // 41 //===----------------------------------------------------------------------===// 42 43 #if defined (__x86_64__) 44 #include "common.h" 45 46 // Enables a very verbose logging to stderr useful when debugging 47 //#define ENABLE_DEBUG 48 49 #ifdef ENABLE_DEBUG 50 #define DEBUG(X) \ 51 { X; } 52 #else 53 #define DEBUG(X) \ 54 {} 55 #endif 56 57 #pragma GCC visibility push(hidden) 58 59 extern "C" { 60 61 #if defined(__APPLE__) 62 extern uint64_t* _bolt_instr_locations_getter(); 63 extern uint32_t _bolt_num_counters_getter(); 64 65 extern uint8_t* _bolt_instr_tables_getter(); 66 extern uint32_t _bolt_instr_num_funcs_getter(); 67 68 #else 69 70 // Main counters inserted by instrumentation, incremented during runtime when 71 // points of interest (locations) in the program are reached. Those are direct 72 // calls and direct and indirect branches (local ones). There are also counters 73 // for basic block execution if they are a spanning tree leaf and need to be 74 // counted in order to infer the execution count of other edges of the CFG. 75 extern uint64_t __bolt_instr_locations[]; 76 extern uint32_t __bolt_num_counters; 77 // Descriptions are serialized metadata about binary functions written by BOLT, 78 // so we have a minimal understanding about the program structure. For a 79 // reference on the exact format of this metadata, see *Description structs, 80 // Location, IntrumentedNode and EntryNode. 81 // Number of indirect call site descriptions 82 extern uint32_t __bolt_instr_num_ind_calls; 83 // Number of indirect call target descriptions 84 extern uint32_t __bolt_instr_num_ind_targets; 85 // Number of function descriptions 86 extern uint32_t __bolt_instr_num_funcs; 87 // Time to sleep across dumps (when we write the fdata profile to disk) 88 extern uint32_t __bolt_instr_sleep_time; 89 // Do not clear counters across dumps, rewrite file with the updated values 90 extern bool __bolt_instr_no_counters_clear; 91 // Wait until all forks of instrumented process will finish 92 extern bool __bolt_instr_wait_forks; 93 // Filename to dump data to 94 extern char __bolt_instr_filename[]; 95 // Instumented binary file path 96 extern char __bolt_instr_binpath[]; 97 // If true, append current PID to the fdata filename when creating it so 98 // different invocations of the same program can be differentiated. 99 extern bool __bolt_instr_use_pid; 100 // Functions that will be used to instrument indirect calls. BOLT static pass 101 // will identify indirect calls and modify them to load the address in these 102 // trampolines and call this address instead. BOLT can't use direct calls to 103 // our handlers because our addresses here are not known at analysis time. We 104 // only support resolving dependencies from this file to the output of BOLT, 105 // *not* the other way around. 106 // TODO: We need better linking support to make that happen. 107 extern void (*__bolt_ind_call_counter_func_pointer)(); 108 extern void (*__bolt_ind_tailcall_counter_func_pointer)(); 109 // Function pointers to init/fini trampoline routines in the binary, so we can 110 // resume regular execution of these functions that we hooked 111 extern void __bolt_start_trampoline(); 112 extern void __bolt_fini_trampoline(); 113 114 #endif 115 } 116 117 namespace { 118 119 /// A simple allocator that mmaps a fixed size region and manages this space 120 /// in a stack fashion, meaning you always deallocate the last element that 121 /// was allocated. In practice, we don't need to deallocate individual elements. 122 /// We monotonically increase our usage and then deallocate everything once we 123 /// are done processing something. 124 class BumpPtrAllocator { 125 /// This is written before each allocation and act as a canary to detect when 126 /// a bug caused our program to cross allocation boundaries. 127 struct EntryMetadata { 128 uint64_t Magic; 129 uint64_t AllocSize; 130 }; 131 132 public: 133 void *allocate(size_t Size) { 134 Lock L(M); 135 136 if (StackBase == nullptr) { 137 #if defined(__APPLE__) 138 int MAP_PRIVATE_MAP_ANONYMOUS = 0x1002; 139 #else 140 int MAP_PRIVATE_MAP_ANONYMOUS = 0x22; 141 #endif 142 StackBase = reinterpret_cast<uint8_t *>( 143 __mmap(0, MaxSize, 0x3 /* PROT_READ | PROT_WRITE*/, 144 Shared ? 0x21 /*MAP_SHARED | MAP_ANONYMOUS*/ 145 : MAP_PRIVATE_MAP_ANONYMOUS /* MAP_PRIVATE | MAP_ANONYMOUS*/, 146 -1, 0)); 147 StackSize = 0; 148 } 149 150 Size = alignTo(Size + sizeof(EntryMetadata), 16); 151 uint8_t *AllocAddress = StackBase + StackSize + sizeof(EntryMetadata); 152 auto *M = reinterpret_cast<EntryMetadata *>(StackBase + StackSize); 153 M->Magic = Magic; 154 M->AllocSize = Size; 155 StackSize += Size; 156 assert(StackSize < MaxSize, "allocator ran out of memory"); 157 return AllocAddress; 158 } 159 160 #ifdef DEBUG 161 /// Element-wise deallocation is only used for debugging to catch memory 162 /// bugs by checking magic bytes. Ordinarily, we reset the allocator once 163 /// we are done with it. Reset is done with clear(). There's no need 164 /// to deallocate each element individually. 165 void deallocate(void *Ptr) { 166 Lock L(M); 167 uint8_t MetadataOffset = sizeof(EntryMetadata); 168 auto *M = reinterpret_cast<EntryMetadata *>( 169 reinterpret_cast<uint8_t *>(Ptr) - MetadataOffset); 170 const uint8_t *StackTop = StackBase + StackSize + MetadataOffset; 171 // Validate size 172 if (Ptr != StackTop - M->AllocSize) { 173 // Failed validation, check if it is a pointer returned by operator new [] 174 MetadataOffset += 175 sizeof(uint64_t); // Space for number of elements alloc'ed 176 M = reinterpret_cast<EntryMetadata *>(reinterpret_cast<uint8_t *>(Ptr) - 177 MetadataOffset); 178 // Ok, it failed both checks if this assertion fails. Stop the program, we 179 // have a memory bug. 180 assert(Ptr == StackTop - M->AllocSize, 181 "must deallocate the last element alloc'ed"); 182 } 183 assert(M->Magic == Magic, "allocator magic is corrupt"); 184 StackSize -= M->AllocSize; 185 } 186 #else 187 void deallocate(void *) {} 188 #endif 189 190 void clear() { 191 Lock L(M); 192 StackSize = 0; 193 } 194 195 /// Set mmap reservation size (only relevant before first allocation) 196 void setMaxSize(uint64_t Size) { MaxSize = Size; } 197 198 /// Set mmap reservation privacy (only relevant before first allocation) 199 void setShared(bool S) { Shared = S; } 200 201 void destroy() { 202 if (StackBase == nullptr) 203 return; 204 __munmap(StackBase, MaxSize); 205 } 206 207 private: 208 static constexpr uint64_t Magic = 0x1122334455667788ull; 209 uint64_t MaxSize = 0xa00000; 210 uint8_t *StackBase{nullptr}; 211 uint64_t StackSize{0}; 212 bool Shared{false}; 213 Mutex M; 214 }; 215 216 /// Used for allocating indirect call instrumentation counters. Initialized by 217 /// __bolt_instr_setup, our initialization routine. 218 BumpPtrAllocator GlobalAlloc; 219 } // anonymous namespace 220 221 // User-defined placement new operators. We only use those (as opposed to 222 // overriding the regular operator new) so we can keep our allocator in the 223 // stack instead of in a data section (global). 224 void *operator new(size_t Sz, BumpPtrAllocator &A) { return A.allocate(Sz); } 225 void *operator new(size_t Sz, BumpPtrAllocator &A, char C) { 226 auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); 227 memset(Ptr, C, Sz); 228 return Ptr; 229 } 230 void *operator new[](size_t Sz, BumpPtrAllocator &A) { 231 return A.allocate(Sz); 232 } 233 void *operator new[](size_t Sz, BumpPtrAllocator &A, char C) { 234 auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); 235 memset(Ptr, C, Sz); 236 return Ptr; 237 } 238 // Only called during exception unwinding (useless). We must manually dealloc. 239 // C++ language weirdness 240 void operator delete(void *Ptr, BumpPtrAllocator &A) { A.deallocate(Ptr); } 241 242 namespace { 243 244 // Disable instrumentation optimizations that sacrifice profile accuracy 245 extern "C" bool __bolt_instr_conservative; 246 247 /// Basic key-val atom stored in our hash 248 struct SimpleHashTableEntryBase { 249 uint64_t Key; 250 uint64_t Val; 251 void dump(const char *Msg = nullptr) { 252 // TODO: make some sort of formatting function 253 // Currently we have to do it the ugly way because 254 // we want every message to be printed atomically via a single call to 255 // __write. If we use reportNumber() and others nultiple times, we'll get 256 // garbage in mulithreaded environment 257 char Buf[BufSize]; 258 char *Ptr = Buf; 259 Ptr = intToStr(Ptr, __getpid(), 10); 260 *Ptr++ = ':'; 261 *Ptr++ = ' '; 262 if (Msg) 263 Ptr = strCopy(Ptr, Msg, strLen(Msg)); 264 *Ptr++ = '0'; 265 *Ptr++ = 'x'; 266 Ptr = intToStr(Ptr, (uint64_t)this, 16); 267 *Ptr++ = ':'; 268 *Ptr++ = ' '; 269 Ptr = strCopy(Ptr, "MapEntry(0x", sizeof("MapEntry(0x") - 1); 270 Ptr = intToStr(Ptr, Key, 16); 271 *Ptr++ = ','; 272 *Ptr++ = ' '; 273 *Ptr++ = '0'; 274 *Ptr++ = 'x'; 275 Ptr = intToStr(Ptr, Val, 16); 276 *Ptr++ = ')'; 277 *Ptr++ = '\n'; 278 assert(Ptr - Buf < BufSize, "Buffer overflow!"); 279 // print everything all at once for atomicity 280 __write(2, Buf, Ptr - Buf); 281 } 282 }; 283 284 /// This hash table implementation starts by allocating a table of size 285 /// InitialSize. When conflicts happen in this main table, it resolves 286 /// them by chaining a new table of size IncSize. It never reallocs as our 287 /// allocator doesn't support it. The key is intended to be function pointers. 288 /// There's no clever hash function (it's just x mod size, size being prime). 289 /// I never tuned the coefficientes in the modular equation (TODO) 290 /// This is used for indirect calls (each call site has one of this, so it 291 /// should have a small footprint) and for tallying call counts globally for 292 /// each target to check if we missed the origin of some calls (this one is a 293 /// large instantiation of this template, since it is global for all call sites) 294 template <typename T = SimpleHashTableEntryBase, uint32_t InitialSize = 7, 295 uint32_t IncSize = 7> 296 class SimpleHashTable { 297 public: 298 using MapEntry = T; 299 300 /// Increment by 1 the value of \p Key. If it is not in this table, it will be 301 /// added to the table and its value set to 1. 302 void incrementVal(uint64_t Key, BumpPtrAllocator &Alloc) { 303 ++get(Key, Alloc).Val; 304 } 305 306 /// Basic member accessing interface. Here we pass the allocator explicitly to 307 /// avoid storing a pointer to it as part of this table (remember there is one 308 /// hash for each indirect call site, so we wan't to minimize our footprint). 309 MapEntry &get(uint64_t Key, BumpPtrAllocator &Alloc) { 310 if (!__bolt_instr_conservative) { 311 TryLock L(M); 312 if (!L.isLocked()) 313 return NoEntry; 314 return getOrAllocEntry(Key, Alloc); 315 } 316 Lock L(M); 317 return getOrAllocEntry(Key, Alloc); 318 } 319 320 /// Traverses all elements in the table 321 template <typename... Args> 322 void forEachElement(void (*Callback)(MapEntry &, Args...), Args... args) { 323 Lock L(M); 324 if (!TableRoot) 325 return; 326 return forEachElement(Callback, InitialSize, TableRoot, args...); 327 } 328 329 void resetCounters(); 330 331 private: 332 constexpr static uint64_t VacantMarker = 0; 333 constexpr static uint64_t FollowUpTableMarker = 0x8000000000000000ull; 334 335 MapEntry *TableRoot{nullptr}; 336 MapEntry NoEntry; 337 Mutex M; 338 339 template <typename... Args> 340 void forEachElement(void (*Callback)(MapEntry &, Args...), 341 uint32_t NumEntries, MapEntry *Entries, Args... args) { 342 for (uint32_t I = 0; I < NumEntries; ++I) { 343 MapEntry &Entry = Entries[I]; 344 if (Entry.Key == VacantMarker) 345 continue; 346 if (Entry.Key & FollowUpTableMarker) { 347 forEachElement(Callback, IncSize, 348 reinterpret_cast<MapEntry *>(Entry.Key & 349 ~FollowUpTableMarker), 350 args...); 351 continue; 352 } 353 Callback(Entry, args...); 354 } 355 } 356 357 MapEntry &firstAllocation(uint64_t Key, BumpPtrAllocator &Alloc) { 358 TableRoot = new (Alloc, 0) MapEntry[InitialSize]; 359 MapEntry &Entry = TableRoot[Key % InitialSize]; 360 Entry.Key = Key; 361 // DEBUG(Entry.dump("Created root entry: ")); 362 return Entry; 363 } 364 365 MapEntry &getEntry(MapEntry *Entries, uint64_t Key, uint64_t Selector, 366 BumpPtrAllocator &Alloc, int CurLevel) { 367 // DEBUG(reportNumber("getEntry called, level ", CurLevel, 10)); 368 const uint32_t NumEntries = CurLevel == 0 ? InitialSize : IncSize; 369 uint64_t Remainder = Selector / NumEntries; 370 Selector = Selector % NumEntries; 371 MapEntry &Entry = Entries[Selector]; 372 373 // A hit 374 if (Entry.Key == Key) { 375 // DEBUG(Entry.dump("Hit: ")); 376 return Entry; 377 } 378 379 // Vacant - add new entry 380 if (Entry.Key == VacantMarker) { 381 Entry.Key = Key; 382 // DEBUG(Entry.dump("Adding new entry: ")); 383 return Entry; 384 } 385 386 // Defer to the next level 387 if (Entry.Key & FollowUpTableMarker) { 388 return getEntry( 389 reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker), 390 Key, Remainder, Alloc, CurLevel + 1); 391 } 392 393 // Conflict - create the next level 394 // DEBUG(Entry.dump("Creating new level: ")); 395 396 MapEntry *NextLevelTbl = new (Alloc, 0) MapEntry[IncSize]; 397 // DEBUG( 398 // reportNumber("Newly allocated level: 0x", uint64_t(NextLevelTbl), 399 // 16)); 400 uint64_t CurEntrySelector = Entry.Key / InitialSize; 401 for (int I = 0; I < CurLevel; ++I) 402 CurEntrySelector /= IncSize; 403 CurEntrySelector = CurEntrySelector % IncSize; 404 NextLevelTbl[CurEntrySelector] = Entry; 405 Entry.Key = reinterpret_cast<uint64_t>(NextLevelTbl) | FollowUpTableMarker; 406 assert((NextLevelTbl[CurEntrySelector].Key & ~FollowUpTableMarker) != 407 uint64_t(Entries), 408 "circular reference created!\n"); 409 // DEBUG(NextLevelTbl[CurEntrySelector].dump("New level entry: ")); 410 // DEBUG(Entry.dump("Updated old entry: ")); 411 return getEntry(NextLevelTbl, Key, Remainder, Alloc, CurLevel + 1); 412 } 413 414 MapEntry &getOrAllocEntry(uint64_t Key, BumpPtrAllocator &Alloc) { 415 if (TableRoot) 416 return getEntry(TableRoot, Key, Key, Alloc, 0); 417 return firstAllocation(Key, Alloc); 418 } 419 }; 420 421 template <typename T> void resetIndCallCounter(T &Entry) { 422 Entry.Val = 0; 423 } 424 425 template <typename T, uint32_t X, uint32_t Y> 426 void SimpleHashTable<T, X, Y>::resetCounters() { 427 forEachElement(resetIndCallCounter); 428 } 429 430 /// Represents a hash table mapping a function target address to its counter. 431 using IndirectCallHashTable = SimpleHashTable<>; 432 433 /// Initialize with number 1 instead of 0 so we don't go into .bss. This is the 434 /// global array of all hash tables storing indirect call destinations happening 435 /// during runtime, one table per call site. 436 IndirectCallHashTable *GlobalIndCallCounters{ 437 reinterpret_cast<IndirectCallHashTable *>(1)}; 438 439 /// Don't allow reentrancy in the fdata writing phase - only one thread writes 440 /// it 441 Mutex *GlobalWriteProfileMutex{reinterpret_cast<Mutex *>(1)}; 442 443 /// Store number of calls in additional to target address (Key) and frequency 444 /// as perceived by the basic block counter (Val). 445 struct CallFlowEntryBase : public SimpleHashTableEntryBase { 446 uint64_t Calls; 447 }; 448 449 using CallFlowHashTableBase = SimpleHashTable<CallFlowEntryBase, 11939, 233>; 450 451 /// This is a large table indexing all possible call targets (indirect and 452 /// direct ones). The goal is to find mismatches between number of calls (for 453 /// those calls we were able to track) and the entry basic block counter of the 454 /// callee. In most cases, these two should be equal. If not, there are two 455 /// possible scenarios here: 456 /// 457 /// * Entry BB has higher frequency than all known calls to this function. 458 /// In this case, we have dynamic library code or any uninstrumented code 459 /// calling this function. We will write the profile for these untracked 460 /// calls as having source "0 [unknown] 0" in the fdata file. 461 /// 462 /// * Number of known calls is higher than the frequency of entry BB 463 /// This only happens when there is no counter for the entry BB / callee 464 /// function is not simple (in BOLT terms). We don't do anything special 465 /// here and just ignore those (we still report all calls to the non-simple 466 /// function, though). 467 /// 468 class CallFlowHashTable : public CallFlowHashTableBase { 469 public: 470 CallFlowHashTable(BumpPtrAllocator &Alloc) : Alloc(Alloc) {} 471 472 MapEntry &get(uint64_t Key) { return CallFlowHashTableBase::get(Key, Alloc); } 473 474 private: 475 // Different than the hash table for indirect call targets, we do store the 476 // allocator here since there is only one call flow hash and space overhead 477 // is negligible. 478 BumpPtrAllocator &Alloc; 479 }; 480 481 /// 482 /// Description metadata emitted by BOLT to describe the program - refer to 483 /// Passes/Instrumentation.cpp - Instrumentation::emitTablesAsELFNote() 484 /// 485 struct Location { 486 uint32_t FunctionName; 487 uint32_t Offset; 488 }; 489 490 struct CallDescription { 491 Location From; 492 uint32_t FromNode; 493 Location To; 494 uint32_t Counter; 495 uint64_t TargetAddress; 496 }; 497 498 using IndCallDescription = Location; 499 500 struct IndCallTargetDescription { 501 Location Loc; 502 uint64_t Address; 503 }; 504 505 struct EdgeDescription { 506 Location From; 507 uint32_t FromNode; 508 Location To; 509 uint32_t ToNode; 510 uint32_t Counter; 511 }; 512 513 struct InstrumentedNode { 514 uint32_t Node; 515 uint32_t Counter; 516 }; 517 518 struct EntryNode { 519 uint64_t Node; 520 uint64_t Address; 521 }; 522 523 struct FunctionDescription { 524 uint32_t NumLeafNodes; 525 const InstrumentedNode *LeafNodes; 526 uint32_t NumEdges; 527 const EdgeDescription *Edges; 528 uint32_t NumCalls; 529 const CallDescription *Calls; 530 uint32_t NumEntryNodes; 531 const EntryNode *EntryNodes; 532 533 /// Constructor will parse the serialized function metadata written by BOLT 534 FunctionDescription(const uint8_t *FuncDesc); 535 536 uint64_t getSize() const { 537 return 16 + NumLeafNodes * sizeof(InstrumentedNode) + 538 NumEdges * sizeof(EdgeDescription) + 539 NumCalls * sizeof(CallDescription) + 540 NumEntryNodes * sizeof(EntryNode); 541 } 542 }; 543 544 /// The context is created when the fdata profile needs to be written to disk 545 /// and we need to interpret our runtime counters. It contains pointers to the 546 /// mmaped binary (only the BOLT written metadata section). Deserialization 547 /// should be straightforward as most data is POD or an array of POD elements. 548 /// This metadata is used to reconstruct function CFGs. 549 struct ProfileWriterContext { 550 IndCallDescription *IndCallDescriptions; 551 IndCallTargetDescription *IndCallTargets; 552 uint8_t *FuncDescriptions; 553 char *Strings; // String table with function names used in this binary 554 int FileDesc; // File descriptor for the file on disk backing this 555 // information in memory via mmap 556 void *MMapPtr; // The mmap ptr 557 int MMapSize; // The mmap size 558 559 /// Hash table storing all possible call destinations to detect untracked 560 /// calls and correctly report them as [unknown] in output fdata. 561 CallFlowHashTable *CallFlowTable; 562 563 /// Lookup the sorted indirect call target vector to fetch function name and 564 /// offset for an arbitrary function pointer. 565 const IndCallTargetDescription *lookupIndCallTarget(uint64_t Target) const; 566 }; 567 568 /// Perform a string comparison and returns zero if Str1 matches Str2. Compares 569 /// at most Size characters. 570 int compareStr(const char *Str1, const char *Str2, int Size) { 571 while (*Str1 == *Str2) { 572 if (*Str1 == '\0' || --Size == 0) 573 return 0; 574 ++Str1; 575 ++Str2; 576 } 577 return 1; 578 } 579 580 /// Output Location to the fdata file 581 char *serializeLoc(const ProfileWriterContext &Ctx, char *OutBuf, 582 const Location Loc, uint32_t BufSize) { 583 // fdata location format: Type Name Offset 584 // Type 1 - regular symbol 585 OutBuf = strCopy(OutBuf, "1 "); 586 const char *Str = Ctx.Strings + Loc.FunctionName; 587 uint32_t Size = 25; 588 while (*Str) { 589 *OutBuf++ = *Str++; 590 if (++Size >= BufSize) 591 break; 592 } 593 assert(!*Str, "buffer overflow, function name too large"); 594 *OutBuf++ = ' '; 595 OutBuf = intToStr(OutBuf, Loc.Offset, 16); 596 *OutBuf++ = ' '; 597 return OutBuf; 598 } 599 600 /// Read and deserialize a function description written by BOLT. \p FuncDesc 601 /// points at the beginning of the function metadata structure in the file. 602 /// See Instrumentation::emitTablesAsELFNote() 603 FunctionDescription::FunctionDescription(const uint8_t *FuncDesc) { 604 NumLeafNodes = *reinterpret_cast<const uint32_t *>(FuncDesc); 605 DEBUG(reportNumber("NumLeafNodes = ", NumLeafNodes, 10)); 606 LeafNodes = reinterpret_cast<const InstrumentedNode *>(FuncDesc + 4); 607 608 NumEdges = *reinterpret_cast<const uint32_t *>( 609 FuncDesc + 4 + NumLeafNodes * sizeof(InstrumentedNode)); 610 DEBUG(reportNumber("NumEdges = ", NumEdges, 10)); 611 Edges = reinterpret_cast<const EdgeDescription *>( 612 FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode)); 613 614 NumCalls = *reinterpret_cast<const uint32_t *>( 615 FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode) + 616 NumEdges * sizeof(EdgeDescription)); 617 DEBUG(reportNumber("NumCalls = ", NumCalls, 10)); 618 Calls = reinterpret_cast<const CallDescription *>( 619 FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + 620 NumEdges * sizeof(EdgeDescription)); 621 NumEntryNodes = *reinterpret_cast<const uint32_t *>( 622 FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + 623 NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); 624 DEBUG(reportNumber("NumEntryNodes = ", NumEntryNodes, 10)); 625 EntryNodes = reinterpret_cast<const EntryNode *>( 626 FuncDesc + 16 + NumLeafNodes * sizeof(InstrumentedNode) + 627 NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); 628 } 629 630 /// Read and mmap descriptions written by BOLT from the executable's notes 631 /// section 632 #if defined(HAVE_ELF_H) and !defined(__APPLE__) 633 634 void *__attribute__((noinline)) __get_pc() { 635 return __builtin_extract_return_addr(__builtin_return_address(0)); 636 } 637 638 /// Get string with address and parse it to hex pair <StartAddress, EndAddress> 639 bool parseAddressRange(const char *Str, uint64_t &StartAddress, 640 uint64_t &EndAddress) { 641 if (!Str) 642 return false; 643 // Parsed string format: <hex1>-<hex2> 644 StartAddress = hexToLong(Str, '-'); 645 while (*Str && *Str != '-') 646 ++Str; 647 if (!*Str) 648 return false; 649 ++Str; // swallow '-' 650 EndAddress = hexToLong(Str); 651 return true; 652 } 653 654 /// Get full path to the real binary by getting current virtual address 655 /// and searching for the appropriate link in address range in 656 /// /proc/self/map_files 657 static char *getBinaryPath() { 658 const uint32_t BufSize = 1024; 659 const uint32_t NameMax = 4096; 660 const char DirPath[] = "/proc/self/map_files/"; 661 static char TargetPath[NameMax] = {}; 662 char Buf[BufSize]; 663 664 if (__bolt_instr_binpath[0] != '\0') 665 return __bolt_instr_binpath; 666 667 if (TargetPath[0] != '\0') 668 return TargetPath; 669 670 unsigned long CurAddr = (unsigned long)__get_pc(); 671 uint64_t FDdir = __open(DirPath, 672 /*flags=*/0 /*O_RDONLY*/, 673 /*mode=*/0666); 674 assert(static_cast<int64_t>(FDdir) >= 0, 675 "failed to open /proc/self/map_files"); 676 677 while (long Nread = __getdents(FDdir, (struct dirent *)Buf, BufSize)) { 678 assert(static_cast<int64_t>(Nread) != -1, "failed to get folder entries"); 679 680 struct dirent *d; 681 for (long Bpos = 0; Bpos < Nread; Bpos += d->d_reclen) { 682 d = (struct dirent *)(Buf + Bpos); 683 684 uint64_t StartAddress, EndAddress; 685 if (!parseAddressRange(d->d_name, StartAddress, EndAddress)) 686 continue; 687 if (CurAddr < StartAddress || CurAddr > EndAddress) 688 continue; 689 char FindBuf[NameMax]; 690 char *C = strCopy(FindBuf, DirPath, NameMax); 691 C = strCopy(C, d->d_name, NameMax - (C - FindBuf)); 692 *C = '\0'; 693 uint32_t Ret = __readlink(FindBuf, TargetPath, sizeof(TargetPath)); 694 assert(Ret != -1 && Ret != BufSize, "readlink error"); 695 TargetPath[Ret] = '\0'; 696 return TargetPath; 697 } 698 } 699 return nullptr; 700 } 701 702 ProfileWriterContext readDescriptions() { 703 ProfileWriterContext Result; 704 char *BinPath = getBinaryPath(); 705 assert(BinPath && BinPath[0] != '\0', "failed to find binary path"); 706 707 uint64_t FD = __open(BinPath, 708 /*flags=*/0 /*O_RDONLY*/, 709 /*mode=*/0666); 710 assert(static_cast<int64_t>(FD) >= 0, "failed to open binary path"); 711 712 Result.FileDesc = FD; 713 714 // mmap our binary to memory 715 uint64_t Size = __lseek(FD, 0, 2 /*SEEK_END*/); 716 uint8_t *BinContents = reinterpret_cast<uint8_t *>( 717 __mmap(0, Size, 0x1 /* PROT_READ*/, 0x2 /* MAP_PRIVATE*/, FD, 0)); 718 Result.MMapPtr = BinContents; 719 Result.MMapSize = Size; 720 Elf64_Ehdr *Hdr = reinterpret_cast<Elf64_Ehdr *>(BinContents); 721 Elf64_Shdr *Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff); 722 Elf64_Shdr *StringTblHeader = reinterpret_cast<Elf64_Shdr *>( 723 BinContents + Hdr->e_shoff + Hdr->e_shstrndx * Hdr->e_shentsize); 724 725 // Find .bolt.instr.tables with the data we need and set pointers to it 726 for (int I = 0; I < Hdr->e_shnum; ++I) { 727 char *SecName = reinterpret_cast<char *>( 728 BinContents + StringTblHeader->sh_offset + Shdr->sh_name); 729 if (compareStr(SecName, ".bolt.instr.tables", 64) != 0) { 730 Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff + 731 (I + 1) * Hdr->e_shentsize); 732 continue; 733 } 734 // Actual contents of the ELF note start after offset 20 decimal: 735 // Offset 0: Producer name size (4 bytes) 736 // Offset 4: Contents size (4 bytes) 737 // Offset 8: Note type (4 bytes) 738 // Offset 12: Producer name (BOLT\0) (5 bytes + align to 4-byte boundary) 739 // Offset 20: Contents 740 uint32_t IndCallDescSize = 741 *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 20); 742 uint32_t IndCallTargetDescSize = *reinterpret_cast<uint32_t *>( 743 BinContents + Shdr->sh_offset + 24 + IndCallDescSize); 744 uint32_t FuncDescSize = 745 *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 28 + 746 IndCallDescSize + IndCallTargetDescSize); 747 Result.IndCallDescriptions = reinterpret_cast<IndCallDescription *>( 748 BinContents + Shdr->sh_offset + 24); 749 Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( 750 BinContents + Shdr->sh_offset + 28 + IndCallDescSize); 751 Result.FuncDescriptions = BinContents + Shdr->sh_offset + 32 + 752 IndCallDescSize + IndCallTargetDescSize; 753 Result.Strings = reinterpret_cast<char *>( 754 BinContents + Shdr->sh_offset + 32 + IndCallDescSize + 755 IndCallTargetDescSize + FuncDescSize); 756 return Result; 757 } 758 const char ErrMsg[] = 759 "BOLT instrumentation runtime error: could not find section " 760 ".bolt.instr.tables\n"; 761 reportError(ErrMsg, sizeof(ErrMsg)); 762 return Result; 763 } 764 765 #else 766 767 ProfileWriterContext readDescriptions() { 768 ProfileWriterContext Result; 769 uint8_t *Tables = _bolt_instr_tables_getter(); 770 uint32_t IndCallDescSize = *reinterpret_cast<uint32_t *>(Tables); 771 uint32_t IndCallTargetDescSize = 772 *reinterpret_cast<uint32_t *>(Tables + 4 + IndCallDescSize); 773 uint32_t FuncDescSize = *reinterpret_cast<uint32_t *>( 774 Tables + 8 + IndCallDescSize + IndCallTargetDescSize); 775 Result.IndCallDescriptions = 776 reinterpret_cast<IndCallDescription *>(Tables + 4); 777 Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( 778 Tables + 8 + IndCallDescSize); 779 Result.FuncDescriptions = 780 Tables + 12 + IndCallDescSize + IndCallTargetDescSize; 781 Result.Strings = reinterpret_cast<char *>( 782 Tables + 12 + IndCallDescSize + IndCallTargetDescSize + FuncDescSize); 783 return Result; 784 } 785 786 #endif 787 788 #if !defined(__APPLE__) 789 /// Debug by printing overall metadata global numbers to check it is sane 790 void printStats(const ProfileWriterContext &Ctx) { 791 char StatMsg[BufSize]; 792 char *StatPtr = StatMsg; 793 StatPtr = 794 strCopy(StatPtr, 795 "\nBOLT INSTRUMENTATION RUNTIME STATISTICS\n\nIndCallDescSize: "); 796 StatPtr = intToStr(StatPtr, 797 Ctx.FuncDescriptions - 798 reinterpret_cast<uint8_t *>(Ctx.IndCallDescriptions), 799 10); 800 StatPtr = strCopy(StatPtr, "\nFuncDescSize: "); 801 StatPtr = intToStr( 802 StatPtr, 803 reinterpret_cast<uint8_t *>(Ctx.Strings) - Ctx.FuncDescriptions, 10); 804 StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_ind_calls: "); 805 StatPtr = intToStr(StatPtr, __bolt_instr_num_ind_calls, 10); 806 StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_funcs: "); 807 StatPtr = intToStr(StatPtr, __bolt_instr_num_funcs, 10); 808 StatPtr = strCopy(StatPtr, "\n"); 809 __write(2, StatMsg, StatPtr - StatMsg); 810 } 811 #endif 812 813 814 /// This is part of a simple CFG representation in memory, where we store 815 /// a dynamically sized array of input and output edges per node, and store 816 /// a dynamically sized array of nodes per graph. We also store the spanning 817 /// tree edges for that CFG in a separate array of nodes in 818 /// \p SpanningTreeNodes, while the regular nodes live in \p CFGNodes. 819 struct Edge { 820 uint32_t Node; // Index in nodes array regarding the destination of this edge 821 uint32_t ID; // Edge index in an array comprising all edges of the graph 822 }; 823 824 /// A regular graph node or a spanning tree node 825 struct Node { 826 uint32_t NumInEdges{0}; // Input edge count used to size InEdge 827 uint32_t NumOutEdges{0}; // Output edge count used to size OutEdges 828 Edge *InEdges{nullptr}; // Created and managed by \p Graph 829 Edge *OutEdges{nullptr}; // ditto 830 }; 831 832 /// Main class for CFG representation in memory. Manages object creation and 833 /// destruction, populates an array of CFG nodes as well as corresponding 834 /// spanning tree nodes. 835 struct Graph { 836 uint32_t NumNodes; 837 Node *CFGNodes; 838 Node *SpanningTreeNodes; 839 uint64_t *EdgeFreqs; 840 uint64_t *CallFreqs; 841 BumpPtrAllocator &Alloc; 842 const FunctionDescription &D; 843 844 /// Reads a list of edges from function description \p D and builds 845 /// the graph from it. Allocates several internal dynamic structures that are 846 /// later destroyed by ~Graph() and uses \p Alloc. D.LeafNodes contain all 847 /// spanning tree leaf nodes descriptions (their counters). They are the seed 848 /// used to compute the rest of the missing edge counts in a bottom-up 849 /// traversal of the spanning tree. 850 Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, 851 const uint64_t *Counters, ProfileWriterContext &Ctx); 852 ~Graph(); 853 void dump() const; 854 855 private: 856 void computeEdgeFrequencies(const uint64_t *Counters, 857 ProfileWriterContext &Ctx); 858 void dumpEdgeFreqs() const; 859 }; 860 861 Graph::Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, 862 const uint64_t *Counters, ProfileWriterContext &Ctx) 863 : Alloc(Alloc), D(D) { 864 DEBUG(reportNumber("G = 0x", (uint64_t)this, 16)); 865 // First pass to determine number of nodes 866 int32_t MaxNodes = -1; 867 CallFreqs = nullptr; 868 EdgeFreqs = nullptr; 869 for (int I = 0; I < D.NumEdges; ++I) { 870 if (static_cast<int32_t>(D.Edges[I].FromNode) > MaxNodes) 871 MaxNodes = D.Edges[I].FromNode; 872 if (static_cast<int32_t>(D.Edges[I].ToNode) > MaxNodes) 873 MaxNodes = D.Edges[I].ToNode; 874 } 875 876 for (int I = 0; I < D.NumLeafNodes; ++I) 877 if (static_cast<int32_t>(D.LeafNodes[I].Node) > MaxNodes) 878 MaxNodes = D.LeafNodes[I].Node; 879 880 for (int I = 0; I < D.NumCalls; ++I) 881 if (static_cast<int32_t>(D.Calls[I].FromNode) > MaxNodes) 882 MaxNodes = D.Calls[I].FromNode; 883 884 // No nodes? Nothing to do 885 if (MaxNodes < 0) { 886 DEBUG(report("No nodes!\n")); 887 CFGNodes = nullptr; 888 SpanningTreeNodes = nullptr; 889 NumNodes = 0; 890 return; 891 } 892 ++MaxNodes; 893 DEBUG(reportNumber("NumNodes = ", MaxNodes, 10)); 894 NumNodes = static_cast<uint32_t>(MaxNodes); 895 896 // Initial allocations 897 CFGNodes = new (Alloc) Node[MaxNodes]; 898 899 DEBUG(reportNumber("G->CFGNodes = 0x", (uint64_t)CFGNodes, 16)); 900 SpanningTreeNodes = new (Alloc) Node[MaxNodes]; 901 DEBUG(reportNumber("G->SpanningTreeNodes = 0x", 902 (uint64_t)SpanningTreeNodes, 16)); 903 904 // Figure out how much to allocate to each vector (in/out edge sets) 905 for (int I = 0; I < D.NumEdges; ++I) { 906 CFGNodes[D.Edges[I].FromNode].NumOutEdges++; 907 CFGNodes[D.Edges[I].ToNode].NumInEdges++; 908 if (D.Edges[I].Counter != 0xffffffff) 909 continue; 910 911 SpanningTreeNodes[D.Edges[I].FromNode].NumOutEdges++; 912 SpanningTreeNodes[D.Edges[I].ToNode].NumInEdges++; 913 } 914 915 // Allocate in/out edge sets 916 for (int I = 0; I < MaxNodes; ++I) { 917 if (CFGNodes[I].NumInEdges > 0) 918 CFGNodes[I].InEdges = new (Alloc) Edge[CFGNodes[I].NumInEdges]; 919 if (CFGNodes[I].NumOutEdges > 0) 920 CFGNodes[I].OutEdges = new (Alloc) Edge[CFGNodes[I].NumOutEdges]; 921 if (SpanningTreeNodes[I].NumInEdges > 0) 922 SpanningTreeNodes[I].InEdges = 923 new (Alloc) Edge[SpanningTreeNodes[I].NumInEdges]; 924 if (SpanningTreeNodes[I].NumOutEdges > 0) 925 SpanningTreeNodes[I].OutEdges = 926 new (Alloc) Edge[SpanningTreeNodes[I].NumOutEdges]; 927 CFGNodes[I].NumInEdges = 0; 928 CFGNodes[I].NumOutEdges = 0; 929 SpanningTreeNodes[I].NumInEdges = 0; 930 SpanningTreeNodes[I].NumOutEdges = 0; 931 } 932 933 // Fill in/out edge sets 934 for (int I = 0; I < D.NumEdges; ++I) { 935 const uint32_t Src = D.Edges[I].FromNode; 936 const uint32_t Dst = D.Edges[I].ToNode; 937 Edge *E = &CFGNodes[Src].OutEdges[CFGNodes[Src].NumOutEdges++]; 938 E->Node = Dst; 939 E->ID = I; 940 941 E = &CFGNodes[Dst].InEdges[CFGNodes[Dst].NumInEdges++]; 942 E->Node = Src; 943 E->ID = I; 944 945 if (D.Edges[I].Counter != 0xffffffff) 946 continue; 947 948 E = &SpanningTreeNodes[Src] 949 .OutEdges[SpanningTreeNodes[Src].NumOutEdges++]; 950 E->Node = Dst; 951 E->ID = I; 952 953 E = &SpanningTreeNodes[Dst] 954 .InEdges[SpanningTreeNodes[Dst].NumInEdges++]; 955 E->Node = Src; 956 E->ID = I; 957 } 958 959 computeEdgeFrequencies(Counters, Ctx); 960 } 961 962 Graph::~Graph() { 963 if (CallFreqs) 964 Alloc.deallocate(CallFreqs); 965 if (EdgeFreqs) 966 Alloc.deallocate(EdgeFreqs); 967 for (int I = NumNodes - 1; I >= 0; --I) { 968 if (SpanningTreeNodes[I].OutEdges) 969 Alloc.deallocate(SpanningTreeNodes[I].OutEdges); 970 if (SpanningTreeNodes[I].InEdges) 971 Alloc.deallocate(SpanningTreeNodes[I].InEdges); 972 if (CFGNodes[I].OutEdges) 973 Alloc.deallocate(CFGNodes[I].OutEdges); 974 if (CFGNodes[I].InEdges) 975 Alloc.deallocate(CFGNodes[I].InEdges); 976 } 977 if (SpanningTreeNodes) 978 Alloc.deallocate(SpanningTreeNodes); 979 if (CFGNodes) 980 Alloc.deallocate(CFGNodes); 981 } 982 983 void Graph::dump() const { 984 reportNumber("Dumping graph with number of nodes: ", NumNodes, 10); 985 report(" Full graph:\n"); 986 for (int I = 0; I < NumNodes; ++I) { 987 const Node *N = &CFGNodes[I]; 988 reportNumber(" Node #", I, 10); 989 reportNumber(" InEdges total ", N->NumInEdges, 10); 990 for (int J = 0; J < N->NumInEdges; ++J) 991 reportNumber(" ", N->InEdges[J].Node, 10); 992 reportNumber(" OutEdges total ", N->NumOutEdges, 10); 993 for (int J = 0; J < N->NumOutEdges; ++J) 994 reportNumber(" ", N->OutEdges[J].Node, 10); 995 report("\n"); 996 } 997 report(" Spanning tree:\n"); 998 for (int I = 0; I < NumNodes; ++I) { 999 const Node *N = &SpanningTreeNodes[I]; 1000 reportNumber(" Node #", I, 10); 1001 reportNumber(" InEdges total ", N->NumInEdges, 10); 1002 for (int J = 0; J < N->NumInEdges; ++J) 1003 reportNumber(" ", N->InEdges[J].Node, 10); 1004 reportNumber(" OutEdges total ", N->NumOutEdges, 10); 1005 for (int J = 0; J < N->NumOutEdges; ++J) 1006 reportNumber(" ", N->OutEdges[J].Node, 10); 1007 report("\n"); 1008 } 1009 } 1010 1011 void Graph::dumpEdgeFreqs() const { 1012 reportNumber( 1013 "Dumping edge frequencies for graph with num edges: ", D.NumEdges, 10); 1014 for (int I = 0; I < D.NumEdges; ++I) { 1015 reportNumber("* Src: ", D.Edges[I].FromNode, 10); 1016 reportNumber(" Dst: ", D.Edges[I].ToNode, 10); 1017 reportNumber(" Cnt: ", EdgeFreqs[I], 10); 1018 } 1019 } 1020 1021 /// Auxiliary map structure for fast lookups of which calls map to each node of 1022 /// the function CFG 1023 struct NodeToCallsMap { 1024 struct MapEntry { 1025 uint32_t NumCalls; 1026 uint32_t *Calls; 1027 }; 1028 MapEntry *Entries; 1029 BumpPtrAllocator &Alloc; 1030 const uint32_t NumNodes; 1031 1032 NodeToCallsMap(BumpPtrAllocator &Alloc, const FunctionDescription &D, 1033 uint32_t NumNodes) 1034 : Alloc(Alloc), NumNodes(NumNodes) { 1035 Entries = new (Alloc, 0) MapEntry[NumNodes]; 1036 for (int I = 0; I < D.NumCalls; ++I) { 1037 DEBUG(reportNumber("Registering call in node ", D.Calls[I].FromNode, 10)); 1038 ++Entries[D.Calls[I].FromNode].NumCalls; 1039 } 1040 for (int I = 0; I < NumNodes; ++I) { 1041 Entries[I].Calls = Entries[I].NumCalls ? new (Alloc) 1042 uint32_t[Entries[I].NumCalls] 1043 : nullptr; 1044 Entries[I].NumCalls = 0; 1045 } 1046 for (int I = 0; I < D.NumCalls; ++I) { 1047 MapEntry &Entry = Entries[D.Calls[I].FromNode]; 1048 Entry.Calls[Entry.NumCalls++] = I; 1049 } 1050 } 1051 1052 /// Set the frequency of all calls in node \p NodeID to Freq. However, if 1053 /// the calls have their own counters and do not depend on the basic block 1054 /// counter, this means they have landing pads and throw exceptions. In this 1055 /// case, set their frequency with their counters and return the maximum 1056 /// value observed in such counters. This will be used as the new frequency 1057 /// at basic block entry. This is used to fix the CFG edge frequencies in the 1058 /// presence of exceptions. 1059 uint64_t visitAllCallsIn(uint32_t NodeID, uint64_t Freq, uint64_t *CallFreqs, 1060 const FunctionDescription &D, 1061 const uint64_t *Counters, 1062 ProfileWriterContext &Ctx) const { 1063 const MapEntry &Entry = Entries[NodeID]; 1064 uint64_t MaxValue = 0ull; 1065 for (int I = 0, E = Entry.NumCalls; I != E; ++I) { 1066 const uint32_t CallID = Entry.Calls[I]; 1067 DEBUG(reportNumber(" Setting freq for call ID: ", CallID, 10)); 1068 const CallDescription &CallDesc = D.Calls[CallID]; 1069 if (CallDesc.Counter == 0xffffffff) { 1070 CallFreqs[CallID] = Freq; 1071 DEBUG(reportNumber(" with : ", Freq, 10)); 1072 } else { 1073 const uint64_t CounterVal = Counters[CallDesc.Counter]; 1074 CallFreqs[CallID] = CounterVal; 1075 MaxValue = CounterVal > MaxValue ? CounterVal : MaxValue; 1076 DEBUG(reportNumber(" with (private counter) : ", CounterVal, 10)); 1077 } 1078 DEBUG(reportNumber(" Address: 0x", CallDesc.TargetAddress, 16)); 1079 if (CallFreqs[CallID] > 0) 1080 Ctx.CallFlowTable->get(CallDesc.TargetAddress).Calls += 1081 CallFreqs[CallID]; 1082 } 1083 return MaxValue; 1084 } 1085 1086 ~NodeToCallsMap() { 1087 for (int I = NumNodes - 1; I >= 0; --I) 1088 if (Entries[I].Calls) 1089 Alloc.deallocate(Entries[I].Calls); 1090 Alloc.deallocate(Entries); 1091 } 1092 }; 1093 1094 /// Fill an array with the frequency of each edge in the function represented 1095 /// by G, as well as another array for each call. 1096 void Graph::computeEdgeFrequencies(const uint64_t *Counters, 1097 ProfileWriterContext &Ctx) { 1098 if (NumNodes == 0) 1099 return; 1100 1101 EdgeFreqs = D.NumEdges ? new (Alloc, 0) uint64_t [D.NumEdges] : nullptr; 1102 CallFreqs = D.NumCalls ? new (Alloc, 0) uint64_t [D.NumCalls] : nullptr; 1103 1104 // Setup a lookup for calls present in each node (BB) 1105 NodeToCallsMap *CallMap = new (Alloc) NodeToCallsMap(Alloc, D, NumNodes); 1106 1107 // Perform a bottom-up, BFS traversal of the spanning tree in G. Edges in the 1108 // spanning tree don't have explicit counters. We must infer their value using 1109 // a linear combination of other counters (sum of counters of the outgoing 1110 // edges minus sum of counters of the incoming edges). 1111 uint32_t *Stack = new (Alloc) uint32_t [NumNodes]; 1112 uint32_t StackTop = 0; 1113 enum Status : uint8_t { S_NEW = 0, S_VISITING, S_VISITED }; 1114 Status *Visited = new (Alloc, 0) Status[NumNodes]; 1115 uint64_t *LeafFrequency = new (Alloc, 0) uint64_t[NumNodes]; 1116 uint64_t *EntryAddress = new (Alloc, 0) uint64_t[NumNodes]; 1117 1118 // Setup a fast lookup for frequency of leaf nodes, which have special 1119 // basic block frequency instrumentation (they are not edge profiled). 1120 for (int I = 0; I < D.NumLeafNodes; ++I) { 1121 LeafFrequency[D.LeafNodes[I].Node] = Counters[D.LeafNodes[I].Counter]; 1122 DEBUG({ 1123 if (Counters[D.LeafNodes[I].Counter] > 0) { 1124 reportNumber("Leaf Node# ", D.LeafNodes[I].Node, 10); 1125 reportNumber(" Counter: ", Counters[D.LeafNodes[I].Counter], 10); 1126 } 1127 }); 1128 } 1129 for (int I = 0; I < D.NumEntryNodes; ++I) { 1130 EntryAddress[D.EntryNodes[I].Node] = D.EntryNodes[I].Address; 1131 DEBUG({ 1132 reportNumber("Entry Node# ", D.EntryNodes[I].Node, 10); 1133 reportNumber(" Address: ", D.EntryNodes[I].Address, 16); 1134 }); 1135 } 1136 // Add all root nodes to the stack 1137 for (int I = 0; I < NumNodes; ++I) 1138 if (SpanningTreeNodes[I].NumInEdges == 0) 1139 Stack[StackTop++] = I; 1140 1141 // Empty stack? 1142 if (StackTop == 0) { 1143 DEBUG(report("Empty stack!\n")); 1144 Alloc.deallocate(EntryAddress); 1145 Alloc.deallocate(LeafFrequency); 1146 Alloc.deallocate(Visited); 1147 Alloc.deallocate(Stack); 1148 CallMap->~NodeToCallsMap(); 1149 Alloc.deallocate(CallMap); 1150 if (CallFreqs) 1151 Alloc.deallocate(CallFreqs); 1152 if (EdgeFreqs) 1153 Alloc.deallocate(EdgeFreqs); 1154 EdgeFreqs = nullptr; 1155 CallFreqs = nullptr; 1156 return; 1157 } 1158 // Add all known edge counts, will infer the rest 1159 for (int I = 0; I < D.NumEdges; ++I) { 1160 const uint32_t C = D.Edges[I].Counter; 1161 if (C == 0xffffffff) // inferred counter - we will compute its value 1162 continue; 1163 EdgeFreqs[I] = Counters[C]; 1164 } 1165 1166 while (StackTop > 0) { 1167 const uint32_t Cur = Stack[--StackTop]; 1168 DEBUG({ 1169 if (Visited[Cur] == S_VISITING) 1170 report("(visiting) "); 1171 else 1172 report("(new) "); 1173 reportNumber("Cur: ", Cur, 10); 1174 }); 1175 1176 // This shouldn't happen in a tree 1177 assert(Visited[Cur] != S_VISITED, "should not have visited nodes in stack"); 1178 if (Visited[Cur] == S_NEW) { 1179 Visited[Cur] = S_VISITING; 1180 Stack[StackTop++] = Cur; 1181 assert(StackTop <= NumNodes, "stack grew too large"); 1182 for (int I = 0, E = SpanningTreeNodes[Cur].NumOutEdges; I < E; ++I) { 1183 const uint32_t Succ = SpanningTreeNodes[Cur].OutEdges[I].Node; 1184 Stack[StackTop++] = Succ; 1185 assert(StackTop <= NumNodes, "stack grew too large"); 1186 } 1187 continue; 1188 } 1189 Visited[Cur] = S_VISITED; 1190 1191 // Establish our node frequency based on outgoing edges, which should all be 1192 // resolved by now. 1193 int64_t CurNodeFreq = LeafFrequency[Cur]; 1194 // Not a leaf? 1195 if (!CurNodeFreq) { 1196 for (int I = 0, E = CFGNodes[Cur].NumOutEdges; I != E; ++I) { 1197 const uint32_t SuccEdge = CFGNodes[Cur].OutEdges[I].ID; 1198 CurNodeFreq += EdgeFreqs[SuccEdge]; 1199 } 1200 } 1201 if (CurNodeFreq < 0) 1202 CurNodeFreq = 0; 1203 1204 const uint64_t CallFreq = CallMap->visitAllCallsIn( 1205 Cur, CurNodeFreq > 0 ? CurNodeFreq : 0, CallFreqs, D, Counters, Ctx); 1206 1207 // Exception handling affected our output flow? Fix with calls info 1208 DEBUG({ 1209 if (CallFreq > CurNodeFreq) 1210 report("Bumping node frequency with call info\n"); 1211 }); 1212 CurNodeFreq = CallFreq > CurNodeFreq ? CallFreq : CurNodeFreq; 1213 1214 if (CurNodeFreq > 0) { 1215 if (uint64_t Addr = EntryAddress[Cur]) { 1216 DEBUG( 1217 reportNumber(" Setting flow at entry point address 0x", Addr, 16)); 1218 DEBUG(reportNumber(" with: ", CurNodeFreq, 10)); 1219 Ctx.CallFlowTable->get(Addr).Val = CurNodeFreq; 1220 } 1221 } 1222 1223 // No parent? Reached a tree root, limit to call frequency updating. 1224 if (SpanningTreeNodes[Cur].NumInEdges == 0) 1225 continue; 1226 1227 assert(SpanningTreeNodes[Cur].NumInEdges == 1, "must have 1 parent"); 1228 const uint32_t Parent = SpanningTreeNodes[Cur].InEdges[0].Node; 1229 const uint32_t ParentEdge = SpanningTreeNodes[Cur].InEdges[0].ID; 1230 1231 // Calculate parent edge freq. 1232 int64_t ParentEdgeFreq = CurNodeFreq; 1233 for (int I = 0, E = CFGNodes[Cur].NumInEdges; I != E; ++I) { 1234 const uint32_t PredEdge = CFGNodes[Cur].InEdges[I].ID; 1235 ParentEdgeFreq -= EdgeFreqs[PredEdge]; 1236 } 1237 1238 // Sometimes the conservative CFG that BOLT builds will lead to incorrect 1239 // flow computation. For example, in a BB that transitively calls the exit 1240 // syscall, BOLT will add a fall-through successor even though it should not 1241 // have any successors. So this block execution will likely be wrong. We 1242 // tolerate this imperfection since this case should be quite infrequent. 1243 if (ParentEdgeFreq < 0) { 1244 DEBUG(dumpEdgeFreqs()); 1245 DEBUG(report("WARNING: incorrect flow")); 1246 ParentEdgeFreq = 0; 1247 } 1248 DEBUG(reportNumber(" Setting freq for ParentEdge: ", ParentEdge, 10)); 1249 DEBUG(reportNumber(" with ParentEdgeFreq: ", ParentEdgeFreq, 10)); 1250 EdgeFreqs[ParentEdge] = ParentEdgeFreq; 1251 } 1252 1253 Alloc.deallocate(EntryAddress); 1254 Alloc.deallocate(LeafFrequency); 1255 Alloc.deallocate(Visited); 1256 Alloc.deallocate(Stack); 1257 CallMap->~NodeToCallsMap(); 1258 Alloc.deallocate(CallMap); 1259 DEBUG(dumpEdgeFreqs()); 1260 } 1261 1262 /// Write to \p FD all of the edge profiles for function \p FuncDesc. Uses 1263 /// \p Alloc to allocate helper dynamic structures used to compute profile for 1264 /// edges that we do not explictly instrument. 1265 const uint8_t *writeFunctionProfile(int FD, ProfileWriterContext &Ctx, 1266 const uint8_t *FuncDesc, 1267 BumpPtrAllocator &Alloc) { 1268 const FunctionDescription F(FuncDesc); 1269 const uint8_t *next = FuncDesc + F.getSize(); 1270 1271 #if !defined(__APPLE__) 1272 uint64_t *bolt_instr_locations = __bolt_instr_locations; 1273 #else 1274 uint64_t *bolt_instr_locations = _bolt_instr_locations_getter(); 1275 #endif 1276 1277 // Skip funcs we know are cold 1278 #ifndef ENABLE_DEBUG 1279 uint64_t CountersFreq = 0; 1280 for (int I = 0; I < F.NumLeafNodes; ++I) 1281 CountersFreq += bolt_instr_locations[F.LeafNodes[I].Counter]; 1282 1283 if (CountersFreq == 0) { 1284 for (int I = 0; I < F.NumEdges; ++I) { 1285 const uint32_t C = F.Edges[I].Counter; 1286 if (C == 0xffffffff) 1287 continue; 1288 CountersFreq += bolt_instr_locations[C]; 1289 } 1290 if (CountersFreq == 0) { 1291 for (int I = 0; I < F.NumCalls; ++I) { 1292 const uint32_t C = F.Calls[I].Counter; 1293 if (C == 0xffffffff) 1294 continue; 1295 CountersFreq += bolt_instr_locations[C]; 1296 } 1297 if (CountersFreq == 0) 1298 return next; 1299 } 1300 } 1301 #endif 1302 1303 Graph *G = new (Alloc) Graph(Alloc, F, bolt_instr_locations, Ctx); 1304 DEBUG(G->dump()); 1305 1306 if (!G->EdgeFreqs && !G->CallFreqs) { 1307 G->~Graph(); 1308 Alloc.deallocate(G); 1309 return next; 1310 } 1311 1312 for (int I = 0; I < F.NumEdges; ++I) { 1313 const uint64_t Freq = G->EdgeFreqs[I]; 1314 if (Freq == 0) 1315 continue; 1316 const EdgeDescription *Desc = &F.Edges[I]; 1317 char LineBuf[BufSize]; 1318 char *Ptr = LineBuf; 1319 Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); 1320 Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); 1321 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 22); 1322 Ptr = intToStr(Ptr, Freq, 10); 1323 *Ptr++ = '\n'; 1324 __write(FD, LineBuf, Ptr - LineBuf); 1325 } 1326 1327 for (int I = 0; I < F.NumCalls; ++I) { 1328 const uint64_t Freq = G->CallFreqs[I]; 1329 if (Freq == 0) 1330 continue; 1331 char LineBuf[BufSize]; 1332 char *Ptr = LineBuf; 1333 const CallDescription *Desc = &F.Calls[I]; 1334 Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); 1335 Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); 1336 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 1337 Ptr = intToStr(Ptr, Freq, 10); 1338 *Ptr++ = '\n'; 1339 __write(FD, LineBuf, Ptr - LineBuf); 1340 } 1341 1342 G->~Graph(); 1343 Alloc.deallocate(G); 1344 return next; 1345 } 1346 1347 #if !defined(__APPLE__) 1348 const IndCallTargetDescription * 1349 ProfileWriterContext::lookupIndCallTarget(uint64_t Target) const { 1350 uint32_t B = 0; 1351 uint32_t E = __bolt_instr_num_ind_targets; 1352 if (E == 0) 1353 return nullptr; 1354 do { 1355 uint32_t I = (E - B) / 2 + B; 1356 if (IndCallTargets[I].Address == Target) 1357 return &IndCallTargets[I]; 1358 if (IndCallTargets[I].Address < Target) 1359 B = I + 1; 1360 else 1361 E = I; 1362 } while (B < E); 1363 return nullptr; 1364 } 1365 1366 /// Write a single indirect call <src, target> pair to the fdata file 1367 void visitIndCallCounter(IndirectCallHashTable::MapEntry &Entry, 1368 int FD, int CallsiteID, 1369 ProfileWriterContext *Ctx) { 1370 if (Entry.Val == 0) 1371 return; 1372 DEBUG(reportNumber("Target func 0x", Entry.Key, 16)); 1373 DEBUG(reportNumber("Target freq: ", Entry.Val, 10)); 1374 const IndCallDescription *CallsiteDesc = 1375 &Ctx->IndCallDescriptions[CallsiteID]; 1376 const IndCallTargetDescription *TargetDesc = 1377 Ctx->lookupIndCallTarget(Entry.Key); 1378 if (!TargetDesc) { 1379 DEBUG(report("Failed to lookup indirect call target\n")); 1380 char LineBuf[BufSize]; 1381 char *Ptr = LineBuf; 1382 Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); 1383 Ptr = strCopy(Ptr, "0 [unknown] 0 0 ", BufSize - (Ptr - LineBuf) - 40); 1384 Ptr = intToStr(Ptr, Entry.Val, 10); 1385 *Ptr++ = '\n'; 1386 __write(FD, LineBuf, Ptr - LineBuf); 1387 return; 1388 } 1389 Ctx->CallFlowTable->get(TargetDesc->Address).Calls += Entry.Val; 1390 char LineBuf[BufSize]; 1391 char *Ptr = LineBuf; 1392 Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); 1393 Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); 1394 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 1395 Ptr = intToStr(Ptr, Entry.Val, 10); 1396 *Ptr++ = '\n'; 1397 __write(FD, LineBuf, Ptr - LineBuf); 1398 } 1399 1400 /// Write to \p FD all of the indirect call profiles. 1401 void writeIndirectCallProfile(int FD, ProfileWriterContext &Ctx) { 1402 for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) { 1403 DEBUG(reportNumber("IndCallsite #", I, 10)); 1404 GlobalIndCallCounters[I].forEachElement(visitIndCallCounter, FD, I, &Ctx); 1405 } 1406 } 1407 1408 /// Check a single call flow for a callee versus all known callers. If there are 1409 /// less callers than what the callee expects, write the difference with source 1410 /// [unknown] in the profile. 1411 void visitCallFlowEntry(CallFlowHashTable::MapEntry &Entry, int FD, 1412 ProfileWriterContext *Ctx) { 1413 DEBUG(reportNumber("Call flow entry address: 0x", Entry.Key, 16)); 1414 DEBUG(reportNumber("Calls: ", Entry.Calls, 10)); 1415 DEBUG(reportNumber("Reported entry frequency: ", Entry.Val, 10)); 1416 DEBUG({ 1417 if (Entry.Calls > Entry.Val) 1418 report(" More calls than expected!\n"); 1419 }); 1420 if (Entry.Val <= Entry.Calls) 1421 return; 1422 DEBUG(reportNumber( 1423 " Balancing calls with traffic: ", Entry.Val - Entry.Calls, 10)); 1424 const IndCallTargetDescription *TargetDesc = 1425 Ctx->lookupIndCallTarget(Entry.Key); 1426 if (!TargetDesc) { 1427 // There is probably something wrong with this callee and this should be 1428 // investigated, but I don't want to assert and lose all data collected. 1429 DEBUG(report("WARNING: failed to look up call target!\n")); 1430 return; 1431 } 1432 char LineBuf[BufSize]; 1433 char *Ptr = LineBuf; 1434 Ptr = strCopy(Ptr, "0 [unknown] 0 ", BufSize); 1435 Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); 1436 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 1437 Ptr = intToStr(Ptr, Entry.Val - Entry.Calls, 10); 1438 *Ptr++ = '\n'; 1439 __write(FD, LineBuf, Ptr - LineBuf); 1440 } 1441 1442 /// Open fdata file for writing and return a valid file descriptor, aborting 1443 /// program upon failure. 1444 int openProfile() { 1445 // Build the profile name string by appending our PID 1446 char Buf[BufSize]; 1447 char *Ptr = Buf; 1448 uint64_t PID = __getpid(); 1449 Ptr = strCopy(Buf, __bolt_instr_filename, BufSize); 1450 if (__bolt_instr_use_pid) { 1451 Ptr = strCopy(Ptr, ".", BufSize - (Ptr - Buf + 1)); 1452 Ptr = intToStr(Ptr, PID, 10); 1453 Ptr = strCopy(Ptr, ".fdata", BufSize - (Ptr - Buf + 1)); 1454 } 1455 *Ptr++ = '\0'; 1456 uint64_t FD = __open(Buf, 1457 /*flags=*/0x241 /*O_WRONLY|O_TRUNC|O_CREAT*/, 1458 /*mode=*/0666); 1459 if (static_cast<int64_t>(FD) < 0) { 1460 report("Error while trying to open profile file for writing: "); 1461 report(Buf); 1462 reportNumber("\nFailed with error number: 0x", 1463 0 - static_cast<int64_t>(FD), 16); 1464 __exit(1); 1465 } 1466 return FD; 1467 } 1468 1469 #endif 1470 1471 } // anonymous namespace 1472 1473 #if !defined(__APPLE__) 1474 1475 /// Reset all counters in case you want to start profiling a new phase of your 1476 /// program independently of prior phases. 1477 /// The address of this function is printed by BOLT and this can be called by 1478 /// any attached debugger during runtime. There is a useful oneliner for gdb: 1479 /// 1480 /// gdb -p $(pgrep -xo PROCESSNAME) -ex 'p ((void(*)())0xdeadbeef)()' \ 1481 /// -ex 'set confirm off' -ex quit 1482 /// 1483 /// Where 0xdeadbeef is this function address and PROCESSNAME your binary file 1484 /// name. 1485 extern "C" void __bolt_instr_clear_counters() { 1486 memset(reinterpret_cast<char *>(__bolt_instr_locations), 0, 1487 __bolt_num_counters * 8); 1488 for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) 1489 GlobalIndCallCounters[I].resetCounters(); 1490 } 1491 1492 /// This is the entry point for profile writing. 1493 /// There are three ways of getting here: 1494 /// 1495 /// * Program execution ended, finalization methods are running and BOLT 1496 /// hooked into FINI from your binary dynamic section; 1497 /// * You used the sleep timer option and during initialization we forked 1498 /// a separete process that will call this function periodically; 1499 /// * BOLT prints this function address so you can attach a debugger and 1500 /// call this function directly to get your profile written to disk 1501 /// on demand. 1502 /// 1503 extern "C" void __attribute((force_align_arg_pointer)) 1504 __bolt_instr_data_dump() { 1505 // Already dumping 1506 if (!GlobalWriteProfileMutex->acquire()) 1507 return; 1508 1509 BumpPtrAllocator HashAlloc; 1510 HashAlloc.setMaxSize(0x6400000); 1511 ProfileWriterContext Ctx = readDescriptions(); 1512 Ctx.CallFlowTable = new (HashAlloc, 0) CallFlowHashTable(HashAlloc); 1513 1514 DEBUG(printStats(Ctx)); 1515 1516 int FD = openProfile(); 1517 1518 BumpPtrAllocator Alloc; 1519 Alloc.setMaxSize(0x6400000); 1520 const uint8_t *FuncDesc = Ctx.FuncDescriptions; 1521 for (int I = 0, E = __bolt_instr_num_funcs; I < E; ++I) { 1522 FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); 1523 Alloc.clear(); 1524 DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)); 1525 } 1526 assert(FuncDesc == (void *)Ctx.Strings, 1527 "FuncDesc ptr must be equal to stringtable"); 1528 1529 writeIndirectCallProfile(FD, Ctx); 1530 Ctx.CallFlowTable->forEachElement(visitCallFlowEntry, FD, &Ctx); 1531 1532 __fsync(FD); 1533 __close(FD); 1534 __munmap(Ctx.MMapPtr, Ctx.MMapSize); 1535 __close(Ctx.FileDesc); 1536 HashAlloc.destroy(); 1537 GlobalWriteProfileMutex->release(); 1538 DEBUG(report("Finished writing profile.\n")); 1539 } 1540 1541 /// Event loop for our child process spawned during setup to dump profile data 1542 /// at user-specified intervals 1543 void watchProcess() { 1544 timespec ts, rem; 1545 uint64_t Ellapsed = 0ull; 1546 uint64_t ppid; 1547 if (__bolt_instr_wait_forks) { 1548 // Store parent pgid 1549 ppid = -__getpgid(0); 1550 // And leave parent process group 1551 __setpgid(0, 0); 1552 } else { 1553 // Store parent pid 1554 ppid = __getppid(); 1555 if (ppid == 1) { 1556 // Parent already dead 1557 __bolt_instr_data_dump(); 1558 goto out; 1559 } 1560 } 1561 1562 ts.tv_sec = 1; 1563 ts.tv_nsec = 0; 1564 while (1) { 1565 __nanosleep(&ts, &rem); 1566 // This means our parent process or all its forks are dead, 1567 // so no need for us to keep dumping. 1568 if (__kill(ppid, 0) < 0) { 1569 if (__bolt_instr_no_counters_clear) 1570 __bolt_instr_data_dump(); 1571 break; 1572 } 1573 1574 if (++Ellapsed < __bolt_instr_sleep_time) 1575 continue; 1576 1577 Ellapsed = 0; 1578 __bolt_instr_data_dump(); 1579 if (__bolt_instr_no_counters_clear == false) 1580 __bolt_instr_clear_counters(); 1581 } 1582 1583 out:; 1584 DEBUG(report("My parent process is dead, bye!\n")); 1585 __exit(0); 1586 } 1587 1588 extern "C" void __bolt_instr_indirect_call(); 1589 extern "C" void __bolt_instr_indirect_tailcall(); 1590 1591 /// Initialization code 1592 extern "C" void __attribute((force_align_arg_pointer)) __bolt_instr_setup() { 1593 const uint64_t CountersStart = 1594 reinterpret_cast<uint64_t>(&__bolt_instr_locations[0]); 1595 const uint64_t CountersEnd = alignTo( 1596 reinterpret_cast<uint64_t>(&__bolt_instr_locations[__bolt_num_counters]), 1597 0x1000); 1598 DEBUG(reportNumber("replace mmap start: ", CountersStart, 16)); 1599 DEBUG(reportNumber("replace mmap stop: ", CountersEnd, 16)); 1600 assert (CountersEnd > CountersStart, "no counters"); 1601 // Maps our counters to be shared instead of private, so we keep counting for 1602 // forked processes 1603 __mmap(CountersStart, CountersEnd - CountersStart, 1604 0x3 /*PROT_READ|PROT_WRITE*/, 1605 0x31 /*MAP_ANONYMOUS | MAP_SHARED | MAP_FIXED*/, -1, 0); 1606 1607 __bolt_ind_call_counter_func_pointer = __bolt_instr_indirect_call; 1608 __bolt_ind_tailcall_counter_func_pointer = __bolt_instr_indirect_tailcall; 1609 // Conservatively reserve 100MiB shared pages 1610 GlobalAlloc.setMaxSize(0x6400000); 1611 GlobalAlloc.setShared(true); 1612 GlobalWriteProfileMutex = new (GlobalAlloc, 0) Mutex(); 1613 if (__bolt_instr_num_ind_calls > 0) 1614 GlobalIndCallCounters = 1615 new (GlobalAlloc, 0) IndirectCallHashTable[__bolt_instr_num_ind_calls]; 1616 1617 if (__bolt_instr_sleep_time != 0) { 1618 // Separate instrumented process to the own process group 1619 if (__bolt_instr_wait_forks) 1620 __setpgid(0, 0); 1621 1622 if (long PID = __fork()) 1623 return; 1624 watchProcess(); 1625 } 1626 } 1627 1628 extern "C" __attribute((force_align_arg_pointer)) void 1629 instrumentIndirectCall(uint64_t Target, uint64_t IndCallID) { 1630 GlobalIndCallCounters[IndCallID].incrementVal(Target, GlobalAlloc); 1631 } 1632 1633 /// We receive as in-stack arguments the identifier of the indirect call site 1634 /// as well as the target address for the call 1635 extern "C" __attribute((naked)) void __bolt_instr_indirect_call() 1636 { 1637 __asm__ __volatile__(SAVE_ALL 1638 "mov 0xa0(%%rsp), %%rdi\n" 1639 "mov 0x98(%%rsp), %%rsi\n" 1640 "call instrumentIndirectCall\n" 1641 RESTORE_ALL 1642 "ret\n" 1643 :::); 1644 } 1645 1646 extern "C" __attribute((naked)) void __bolt_instr_indirect_tailcall() 1647 { 1648 __asm__ __volatile__(SAVE_ALL 1649 "mov 0x98(%%rsp), %%rdi\n" 1650 "mov 0x90(%%rsp), %%rsi\n" 1651 "call instrumentIndirectCall\n" 1652 RESTORE_ALL 1653 "ret\n" 1654 :::); 1655 } 1656 1657 /// This is hooking ELF's entry, it needs to save all machine state. 1658 extern "C" __attribute((naked)) void __bolt_instr_start() 1659 { 1660 __asm__ __volatile__(SAVE_ALL 1661 "call __bolt_instr_setup\n" 1662 RESTORE_ALL 1663 "jmp __bolt_start_trampoline\n" 1664 :::); 1665 } 1666 1667 /// This is hooking into ELF's DT_FINI 1668 extern "C" void __bolt_instr_fini() { 1669 __bolt_fini_trampoline(); 1670 if (__bolt_instr_sleep_time == 0) 1671 __bolt_instr_data_dump(); 1672 DEBUG(report("Finished.\n")); 1673 } 1674 1675 #endif 1676 1677 #if defined(__APPLE__) 1678 1679 extern "C" void __bolt_instr_data_dump() { 1680 ProfileWriterContext Ctx = readDescriptions(); 1681 1682 int FD = 2; 1683 BumpPtrAllocator Alloc; 1684 const uint8_t *FuncDesc = Ctx.FuncDescriptions; 1685 uint32_t bolt_instr_num_funcs = _bolt_instr_num_funcs_getter(); 1686 1687 for (int I = 0, E = bolt_instr_num_funcs; I < E; ++I) { 1688 FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); 1689 Alloc.clear(); 1690 DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)); 1691 } 1692 assert(FuncDesc == (void *)Ctx.Strings, 1693 "FuncDesc ptr must be equal to stringtable"); 1694 } 1695 1696 // On OSX/iOS the final symbol name of an extern "C" function/variable contains 1697 // one extra leading underscore: _bolt_instr_setup -> __bolt_instr_setup. 1698 extern "C" 1699 __attribute__((section("__TEXT,__setup"))) 1700 __attribute__((force_align_arg_pointer)) 1701 void _bolt_instr_setup() { 1702 __asm__ __volatile__(SAVE_ALL :::); 1703 1704 report("Hello!\n"); 1705 1706 __asm__ __volatile__(RESTORE_ALL :::); 1707 } 1708 1709 extern "C" 1710 __attribute__((section("__TEXT,__fini"))) 1711 __attribute__((force_align_arg_pointer)) 1712 void _bolt_instr_fini() { 1713 report("Bye!\n"); 1714 __bolt_instr_data_dump(); 1715 } 1716 1717 #endif 1718 #endif 1719