xref: /llvm-project/bolt/runtime/instr.cpp (revision 1a2f83366b86433bb86f3b60fa19b3f096313a21)
1 //===- bolt/runtime/instr.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // BOLT runtime instrumentation library for x86 Linux. Currently, BOLT does
10 // not support linking modules with dependencies on one another into the final
11 // binary (TODO?), which means this library has to be self-contained in a single
12 // module.
13 //
14 // All extern declarations here need to be defined by BOLT itself. Those will be
15 // undefined symbols that BOLT needs to resolve by emitting these symbols with
16 // MCStreamer. Currently, Passes/Instrumentation.cpp is the pass responsible
17 // for defining the symbols here and these two files have a tight coupling: one
18 // working statically when you run BOLT and another during program runtime when
19 // you run an instrumented binary. The main goal here is to output an fdata file
20 // (BOLT profile) with the instrumentation counters inserted by the static pass.
21 // Counters for indirect calls are an exception, as we can't know them
22 // statically. These counters are created and managed here. To allow this, we
23 // need a minimal framework for allocating memory dynamically. We provide this
24 // with the BumpPtrAllocator class (not LLVM's, but our own version of it).
25 //
26 // Since this code is intended to be inserted into any executable, we decided to
27 // make it standalone and do not depend on any external libraries (i.e. language
28 // support libraries, such as glibc or stdc++). To allow this, we provide a few
29 // light implementations of common OS interacting functionalities using direct
30 // syscall wrappers. Our simple allocator doesn't manage deallocations that
31 // fragment the memory space, so it's stack based. This is the minimal framework
32 // provided here to allow processing instrumented counters and writing fdata.
33 //
34 // In the C++ idiom used here, we never use or rely on constructors or
35 // destructors for global objects. That's because those need support from the
36 // linker in initialization/finalization code, and we want to keep our linker
37 // very simple. Similarly, we don't create any global objects that are zero
38 // initialized, since those would need to go .bss, which our simple linker also
39 // don't support (TODO?).
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "common.h"
44 
45 // Enables a very verbose logging to stderr useful when debugging
46 //#define ENABLE_DEBUG
47 
48 #ifdef ENABLE_DEBUG
49 #define DEBUG(X)                                                               \
50   { X; }
51 #else
52 #define DEBUG(X)                                                               \
53   {}
54 #endif
55 
56 #pragma GCC visibility push(hidden)
57 
58 extern "C" {
59 
60 #if defined(__APPLE__)
61 extern uint64_t* _bolt_instr_locations_getter();
62 extern uint32_t _bolt_num_counters_getter();
63 
64 extern uint8_t* _bolt_instr_tables_getter();
65 extern uint32_t _bolt_instr_num_funcs_getter();
66 
67 #else
68 
69 // Main counters inserted by instrumentation, incremented during runtime when
70 // points of interest (locations) in the program are reached. Those are direct
71 // calls and direct and indirect branches (local ones). There are also counters
72 // for basic block execution if they are a spanning tree leaf and need to be
73 // counted in order to infer the execution count of other edges of the CFG.
74 extern uint64_t __bolt_instr_locations[];
75 extern uint32_t __bolt_num_counters;
76 // Descriptions are serialized metadata about binary functions written by BOLT,
77 // so we have a minimal understanding about the program structure. For a
78 // reference on the exact format of this metadata, see *Description structs,
79 // Location, IntrumentedNode and EntryNode.
80 // Number of indirect call site descriptions
81 extern uint32_t __bolt_instr_num_ind_calls;
82 // Number of indirect call target descriptions
83 extern uint32_t __bolt_instr_num_ind_targets;
84 // Number of function descriptions
85 extern uint32_t __bolt_instr_num_funcs;
86 // Time to sleep across dumps (when we write the fdata profile to disk)
87 extern uint32_t __bolt_instr_sleep_time;
88 // Do not clear counters across dumps, rewrite file with the updated values
89 extern bool __bolt_instr_no_counters_clear;
90 // Wait until all forks of instrumented process will finish
91 extern bool __bolt_instr_wait_forks;
92 // Filename to dump data to
93 extern char __bolt_instr_filename[];
94 // Instumented binary file path
95 extern char __bolt_instr_binpath[];
96 // If true, append current PID to the fdata filename when creating it so
97 // different invocations of the same program can be differentiated.
98 extern bool __bolt_instr_use_pid;
99 // Functions that will be used to instrument indirect calls. BOLT static pass
100 // will identify indirect calls and modify them to load the address in these
101 // trampolines and call this address instead. BOLT can't use direct calls to
102 // our handlers because our addresses here are not known at analysis time. We
103 // only support resolving dependencies from this file to the output of BOLT,
104 // *not* the other way around.
105 // TODO: We need better linking support to make that happen.
106 extern void (*__bolt_ind_call_counter_func_pointer)();
107 extern void (*__bolt_ind_tailcall_counter_func_pointer)();
108 // Function pointers to init/fini trampoline routines in the binary, so we can
109 // resume regular execution of these functions that we hooked
110 extern void __bolt_start_trampoline();
111 extern void __bolt_fini_trampoline();
112 
113 #endif
114 }
115 
116 namespace {
117 
118 /// A simple allocator that mmaps a fixed size region and manages this space
119 /// in a stack fashion, meaning you always deallocate the last element that
120 /// was allocated. In practice, we don't need to deallocate individual elements.
121 /// We monotonically increase our usage and then deallocate everything once we
122 /// are done processing something.
123 class BumpPtrAllocator {
124   /// This is written before each allocation and act as a canary to detect when
125   /// a bug caused our program to cross allocation boundaries.
126   struct EntryMetadata {
127     uint64_t Magic;
128     uint64_t AllocSize;
129   };
130 
131 public:
132   void *allocate(size_t Size) {
133     Lock L(M);
134 
135     if (StackBase == nullptr) {
136       StackBase = reinterpret_cast<uint8_t *>(
137           __mmap(0, MaxSize, PROT_READ | PROT_WRITE,
138                  (Shared ? MAP_SHARED : MAP_PRIVATE) | MAP_ANONYMOUS, -1, 0));
139       assert(StackBase != MAP_FAILED,
140              "BumpPtrAllocator: failed to mmap stack!");
141       StackSize = 0;
142     }
143 
144     Size = alignTo(Size + sizeof(EntryMetadata), 16);
145     uint8_t *AllocAddress = StackBase + StackSize + sizeof(EntryMetadata);
146     auto *M = reinterpret_cast<EntryMetadata *>(StackBase + StackSize);
147     M->Magic = Magic;
148     M->AllocSize = Size;
149     StackSize += Size;
150     assert(StackSize < MaxSize, "allocator ran out of memory");
151     return AllocAddress;
152   }
153 
154 #ifdef DEBUG
155   /// Element-wise deallocation is only used for debugging to catch memory
156   /// bugs by checking magic bytes. Ordinarily, we reset the allocator once
157   /// we are done with it. Reset is done with clear(). There's no need
158   /// to deallocate each element individually.
159   void deallocate(void *Ptr) {
160     Lock L(M);
161     uint8_t MetadataOffset = sizeof(EntryMetadata);
162     auto *M = reinterpret_cast<EntryMetadata *>(
163         reinterpret_cast<uint8_t *>(Ptr) - MetadataOffset);
164     const uint8_t *StackTop = StackBase + StackSize + MetadataOffset;
165     // Validate size
166     if (Ptr != StackTop - M->AllocSize) {
167       // Failed validation, check if it is a pointer returned by operator new []
168       MetadataOffset +=
169           sizeof(uint64_t); // Space for number of elements alloc'ed
170       M = reinterpret_cast<EntryMetadata *>(reinterpret_cast<uint8_t *>(Ptr) -
171                                             MetadataOffset);
172       // Ok, it failed both checks if this assertion fails. Stop the program, we
173       // have a memory bug.
174       assert(Ptr == StackTop - M->AllocSize,
175              "must deallocate the last element alloc'ed");
176     }
177     assert(M->Magic == Magic, "allocator magic is corrupt");
178     StackSize -= M->AllocSize;
179   }
180 #else
181   void deallocate(void *) {}
182 #endif
183 
184   void clear() {
185     Lock L(M);
186     StackSize = 0;
187   }
188 
189   /// Set mmap reservation size (only relevant before first allocation)
190   void setMaxSize(uint64_t Size) { MaxSize = Size; }
191 
192   /// Set mmap reservation privacy (only relevant before first allocation)
193   void setShared(bool S) { Shared = S; }
194 
195   void destroy() {
196     if (StackBase == nullptr)
197       return;
198     __munmap(StackBase, MaxSize);
199   }
200 
201   // Placement operator to construct allocator in possibly shared mmaped memory
202   static void *operator new(size_t, void *Ptr) { return Ptr; };
203 
204 private:
205   static constexpr uint64_t Magic = 0x1122334455667788ull;
206   uint64_t MaxSize = 0xa00000;
207   uint8_t *StackBase{nullptr};
208   uint64_t StackSize{0};
209   bool Shared{false};
210   Mutex M;
211 };
212 
213 /// Used for allocating indirect call instrumentation counters. Initialized by
214 /// __bolt_instr_setup, our initialization routine.
215 BumpPtrAllocator *GlobalAlloc;
216 
217 // Base address which we substract from recorded PC values when searching for
218 // indirect call description entries. Needed because indCall descriptions are
219 // mapped read-only and contain static addresses. Initialized in
220 // __bolt_instr_setup.
221 uint64_t TextBaseAddress = 0;
222 
223 // Storage for GlobalAlloc which can be shared if not using
224 // instrumentation-file-append-pid.
225 void *GlobalMetadataStorage;
226 
227 } // anonymous namespace
228 
229 // User-defined placement new operators. We only use those (as opposed to
230 // overriding the regular operator new) so we can keep our allocator in the
231 // stack instead of in a data section (global).
232 void *operator new(size_t Sz, BumpPtrAllocator &A) { return A.allocate(Sz); }
233 void *operator new(size_t Sz, BumpPtrAllocator &A, char C) {
234   auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz));
235   memset(Ptr, C, Sz);
236   return Ptr;
237 }
238 void *operator new[](size_t Sz, BumpPtrAllocator &A) {
239   return A.allocate(Sz);
240 }
241 void *operator new[](size_t Sz, BumpPtrAllocator &A, char C) {
242   auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz));
243   memset(Ptr, C, Sz);
244   return Ptr;
245 }
246 // Only called during exception unwinding (useless). We must manually dealloc.
247 // C++ language weirdness
248 void operator delete(void *Ptr, BumpPtrAllocator &A) { A.deallocate(Ptr); }
249 
250 namespace {
251 
252 // Disable instrumentation optimizations that sacrifice profile accuracy
253 extern "C" bool __bolt_instr_conservative;
254 
255 /// Basic key-val atom stored in our hash
256 struct SimpleHashTableEntryBase {
257   uint64_t Key;
258   uint64_t Val;
259   void dump(const char *Msg = nullptr) {
260     // TODO: make some sort of formatting function
261     // Currently we have to do it the ugly way because
262     // we want every message to be printed atomically via a single call to
263     // __write. If we use reportNumber() and others nultiple times, we'll get
264     // garbage in mulithreaded environment
265     char Buf[BufSize];
266     char *Ptr = Buf;
267     Ptr = intToStr(Ptr, __getpid(), 10);
268     *Ptr++ = ':';
269     *Ptr++ = ' ';
270     if (Msg)
271       Ptr = strCopy(Ptr, Msg, strLen(Msg));
272     *Ptr++ = '0';
273     *Ptr++ = 'x';
274     Ptr = intToStr(Ptr, (uint64_t)this, 16);
275     *Ptr++ = ':';
276     *Ptr++ = ' ';
277     Ptr = strCopy(Ptr, "MapEntry(0x", sizeof("MapEntry(0x") - 1);
278     Ptr = intToStr(Ptr, Key, 16);
279     *Ptr++ = ',';
280     *Ptr++ = ' ';
281     *Ptr++ = '0';
282     *Ptr++ = 'x';
283     Ptr = intToStr(Ptr, Val, 16);
284     *Ptr++ = ')';
285     *Ptr++ = '\n';
286     assert(Ptr - Buf < BufSize, "Buffer overflow!");
287     // print everything all at once for atomicity
288     __write(2, Buf, Ptr - Buf);
289   }
290 };
291 
292 /// This hash table implementation starts by allocating a table of size
293 /// InitialSize. When conflicts happen in this main table, it resolves
294 /// them by chaining a new table of size IncSize. It never reallocs as our
295 /// allocator doesn't support it. The key is intended to be function pointers.
296 /// There's no clever hash function (it's just x mod size, size being prime).
297 /// I never tuned the coefficientes in the modular equation (TODO)
298 /// This is used for indirect calls (each call site has one of this, so it
299 /// should have a small footprint) and for tallying call counts globally for
300 /// each target to check if we missed the origin of some calls (this one is a
301 /// large instantiation of this template, since it is global for all call sites)
302 template <typename T = SimpleHashTableEntryBase, uint32_t InitialSize = 7,
303           uint32_t IncSize = 7>
304 class SimpleHashTable {
305 public:
306   using MapEntry = T;
307 
308   /// Increment by 1 the value of \p Key. If it is not in this table, it will be
309   /// added to the table and its value set to 1.
310   void incrementVal(uint64_t Key, BumpPtrAllocator &Alloc) {
311     if (!__bolt_instr_conservative) {
312       TryLock L(M);
313       if (!L.isLocked())
314         return;
315       auto &E = getOrAllocEntry(Key, Alloc);
316       ++E.Val;
317       return;
318     }
319     Lock L(M);
320     auto &E = getOrAllocEntry(Key, Alloc);
321     ++E.Val;
322   }
323 
324   /// Basic member accessing interface. Here we pass the allocator explicitly to
325   /// avoid storing a pointer to it as part of this table (remember there is one
326   /// hash for each indirect call site, so we want to minimize our footprint).
327   MapEntry &get(uint64_t Key, BumpPtrAllocator &Alloc) {
328     if (!__bolt_instr_conservative) {
329       TryLock L(M);
330       if (!L.isLocked())
331         return NoEntry;
332       return getOrAllocEntry(Key, Alloc);
333     }
334     Lock L(M);
335     return getOrAllocEntry(Key, Alloc);
336   }
337 
338   /// Traverses all elements in the table
339   template <typename... Args>
340   void forEachElement(void (*Callback)(MapEntry &, Args...), Args... args) {
341     Lock L(M);
342     if (!TableRoot)
343       return;
344     return forEachElement(Callback, InitialSize, TableRoot, args...);
345   }
346 
347   void resetCounters();
348 
349 private:
350   constexpr static uint64_t VacantMarker = 0;
351   constexpr static uint64_t FollowUpTableMarker = 0x8000000000000000ull;
352 
353   MapEntry *TableRoot{nullptr};
354   MapEntry NoEntry;
355   Mutex M;
356 
357   template <typename... Args>
358   void forEachElement(void (*Callback)(MapEntry &, Args...),
359                       uint32_t NumEntries, MapEntry *Entries, Args... args) {
360     for (uint32_t I = 0; I < NumEntries; ++I) {
361       MapEntry &Entry = Entries[I];
362       if (Entry.Key == VacantMarker)
363         continue;
364       if (Entry.Key & FollowUpTableMarker) {
365         MapEntry *Next =
366             reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker);
367         assert(Next != Entries, "Circular reference!");
368         forEachElement(Callback, IncSize, Next, args...);
369         continue;
370       }
371       Callback(Entry, args...);
372     }
373   }
374 
375   MapEntry &firstAllocation(uint64_t Key, BumpPtrAllocator &Alloc) {
376     TableRoot = new (Alloc, 0) MapEntry[InitialSize];
377     MapEntry &Entry = TableRoot[Key % InitialSize];
378     Entry.Key = Key;
379     // DEBUG(Entry.dump("Created root entry: "));
380     return Entry;
381   }
382 
383   MapEntry &getEntry(MapEntry *Entries, uint64_t Key, uint64_t Selector,
384                      BumpPtrAllocator &Alloc, int CurLevel) {
385     // DEBUG(reportNumber("getEntry called, level ", CurLevel, 10));
386     const uint32_t NumEntries = CurLevel == 0 ? InitialSize : IncSize;
387     uint64_t Remainder = Selector / NumEntries;
388     Selector = Selector % NumEntries;
389     MapEntry &Entry = Entries[Selector];
390 
391     // A hit
392     if (Entry.Key == Key) {
393       // DEBUG(Entry.dump("Hit: "));
394       return Entry;
395     }
396 
397     // Vacant - add new entry
398     if (Entry.Key == VacantMarker) {
399       Entry.Key = Key;
400       // DEBUG(Entry.dump("Adding new entry: "));
401       return Entry;
402     }
403 
404     // Defer to the next level
405     if (Entry.Key & FollowUpTableMarker) {
406       return getEntry(
407           reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker),
408           Key, Remainder, Alloc, CurLevel + 1);
409     }
410 
411     // Conflict - create the next level
412     // DEBUG(Entry.dump("Creating new level: "));
413 
414     MapEntry *NextLevelTbl = new (Alloc, 0) MapEntry[IncSize];
415     // DEBUG(
416     //     reportNumber("Newly allocated level: 0x", uint64_t(NextLevelTbl),
417     //     16));
418     uint64_t CurEntrySelector = Entry.Key / InitialSize;
419     for (int I = 0; I < CurLevel; ++I)
420       CurEntrySelector /= IncSize;
421     CurEntrySelector = CurEntrySelector % IncSize;
422     NextLevelTbl[CurEntrySelector] = Entry;
423     Entry.Key = reinterpret_cast<uint64_t>(NextLevelTbl) | FollowUpTableMarker;
424     assert((NextLevelTbl[CurEntrySelector].Key & ~FollowUpTableMarker) !=
425                uint64_t(Entries),
426            "circular reference created!\n");
427     // DEBUG(NextLevelTbl[CurEntrySelector].dump("New level entry: "));
428     // DEBUG(Entry.dump("Updated old entry: "));
429     return getEntry(NextLevelTbl, Key, Remainder, Alloc, CurLevel + 1);
430   }
431 
432   MapEntry &getOrAllocEntry(uint64_t Key, BumpPtrAllocator &Alloc) {
433     if (TableRoot) {
434       MapEntry &E = getEntry(TableRoot, Key, Key, Alloc, 0);
435       assert(!(E.Key & FollowUpTableMarker), "Invalid entry!");
436       return E;
437     }
438     return firstAllocation(Key, Alloc);
439   }
440 };
441 
442 template <typename T> void resetIndCallCounter(T &Entry) {
443   Entry.Val = 0;
444 }
445 
446 template <typename T, uint32_t X, uint32_t Y>
447 void SimpleHashTable<T, X, Y>::resetCounters() {
448   forEachElement(resetIndCallCounter);
449 }
450 
451 /// Represents a hash table mapping a function target address to its counter.
452 using IndirectCallHashTable = SimpleHashTable<>;
453 
454 /// Initialize with number 1 instead of 0 so we don't go into .bss. This is the
455 /// global array of all hash tables storing indirect call destinations happening
456 /// during runtime, one table per call site.
457 IndirectCallHashTable *GlobalIndCallCounters{
458     reinterpret_cast<IndirectCallHashTable *>(1)};
459 
460 /// Don't allow reentrancy in the fdata writing phase - only one thread writes
461 /// it
462 Mutex *GlobalWriteProfileMutex{reinterpret_cast<Mutex *>(1)};
463 
464 /// Store number of calls in additional to target address (Key) and frequency
465 /// as perceived by the basic block counter (Val).
466 struct CallFlowEntryBase : public SimpleHashTableEntryBase {
467   uint64_t Calls;
468 };
469 
470 using CallFlowHashTableBase = SimpleHashTable<CallFlowEntryBase, 11939, 233>;
471 
472 /// This is a large table indexing all possible call targets (indirect and
473 /// direct ones). The goal is to find mismatches between number of calls (for
474 /// those calls we were able to track) and the entry basic block counter of the
475 /// callee. In most cases, these two should be equal. If not, there are two
476 /// possible scenarios here:
477 ///
478 ///  * Entry BB has higher frequency than all known calls to this function.
479 ///    In this case, we have dynamic library code or any uninstrumented code
480 ///    calling this function. We will write the profile for these untracked
481 ///    calls as having source "0 [unknown] 0" in the fdata file.
482 ///
483 ///  * Number of known calls is higher than the frequency of entry BB
484 ///    This only happens when there is no counter for the entry BB / callee
485 ///    function is not simple (in BOLT terms). We don't do anything special
486 ///    here and just ignore those (we still report all calls to the non-simple
487 ///    function, though).
488 ///
489 class CallFlowHashTable : public CallFlowHashTableBase {
490 public:
491   CallFlowHashTable(BumpPtrAllocator &Alloc) : Alloc(Alloc) {}
492 
493   MapEntry &get(uint64_t Key) { return CallFlowHashTableBase::get(Key, Alloc); }
494 
495 private:
496   // Different than the hash table for indirect call targets, we do store the
497   // allocator here since there is only one call flow hash and space overhead
498   // is negligible.
499   BumpPtrAllocator &Alloc;
500 };
501 
502 ///
503 /// Description metadata emitted by BOLT to describe the program - refer to
504 /// Passes/Instrumentation.cpp - Instrumentation::emitTablesAsELFNote()
505 ///
506 struct Location {
507   uint32_t FunctionName;
508   uint32_t Offset;
509 };
510 
511 struct CallDescription {
512   Location From;
513   uint32_t FromNode;
514   Location To;
515   uint32_t Counter;
516   uint64_t TargetAddress;
517 };
518 
519 using IndCallDescription = Location;
520 
521 struct IndCallTargetDescription {
522   Location Loc;
523   uint64_t Address;
524 };
525 
526 struct EdgeDescription {
527   Location From;
528   uint32_t FromNode;
529   Location To;
530   uint32_t ToNode;
531   uint32_t Counter;
532 };
533 
534 struct InstrumentedNode {
535   uint32_t Node;
536   uint32_t Counter;
537 };
538 
539 struct EntryNode {
540   uint64_t Node;
541   uint64_t Address;
542 };
543 
544 struct FunctionDescription {
545   uint32_t NumLeafNodes;
546   const InstrumentedNode *LeafNodes;
547   uint32_t NumEdges;
548   const EdgeDescription *Edges;
549   uint32_t NumCalls;
550   const CallDescription *Calls;
551   uint32_t NumEntryNodes;
552   const EntryNode *EntryNodes;
553 
554   /// Constructor will parse the serialized function metadata written by BOLT
555   FunctionDescription(const uint8_t *FuncDesc);
556 
557   uint64_t getSize() const {
558     return 16 + NumLeafNodes * sizeof(InstrumentedNode) +
559            NumEdges * sizeof(EdgeDescription) +
560            NumCalls * sizeof(CallDescription) +
561            NumEntryNodes * sizeof(EntryNode);
562   }
563 };
564 
565 /// The context is created when the fdata profile needs to be written to disk
566 /// and we need to interpret our runtime counters. It contains pointers to the
567 /// mmaped binary (only the BOLT written metadata section). Deserialization
568 /// should be straightforward as most data is POD or an array of POD elements.
569 /// This metadata is used to reconstruct function CFGs.
570 struct ProfileWriterContext {
571   IndCallDescription *IndCallDescriptions;
572   IndCallTargetDescription *IndCallTargets;
573   uint8_t *FuncDescriptions;
574   char *Strings;  // String table with function names used in this binary
575   int FileDesc;   // File descriptor for the file on disk backing this
576                   // information in memory via mmap
577   void *MMapPtr;  // The mmap ptr
578   int MMapSize;   // The mmap size
579 
580   /// Hash table storing all possible call destinations to detect untracked
581   /// calls and correctly report them as [unknown] in output fdata.
582   CallFlowHashTable *CallFlowTable;
583 
584   /// Lookup the sorted indirect call target vector to fetch function name and
585   /// offset for an arbitrary function pointer.
586   const IndCallTargetDescription *lookupIndCallTarget(uint64_t Target) const;
587 };
588 
589 /// Perform a string comparison and returns zero if Str1 matches Str2. Compares
590 /// at most Size characters.
591 int compareStr(const char *Str1, const char *Str2, int Size) {
592   while (*Str1 == *Str2) {
593     if (*Str1 == '\0' || --Size == 0)
594       return 0;
595     ++Str1;
596     ++Str2;
597   }
598   return 1;
599 }
600 
601 /// Output Location to the fdata file
602 char *serializeLoc(const ProfileWriterContext &Ctx, char *OutBuf,
603                    const Location Loc, uint32_t BufSize) {
604   // fdata location format: Type Name Offset
605   // Type 1 - regular symbol
606   OutBuf = strCopy(OutBuf, "1 ");
607   const char *Str = Ctx.Strings + Loc.FunctionName;
608   uint32_t Size = 25;
609   while (*Str) {
610     *OutBuf++ = *Str++;
611     if (++Size >= BufSize)
612       break;
613   }
614   assert(!*Str, "buffer overflow, function name too large");
615   *OutBuf++ = ' ';
616   OutBuf = intToStr(OutBuf, Loc.Offset, 16);
617   *OutBuf++ = ' ';
618   return OutBuf;
619 }
620 
621 /// Read and deserialize a function description written by BOLT. \p FuncDesc
622 /// points at the beginning of the function metadata structure in the file.
623 /// See Instrumentation::emitTablesAsELFNote()
624 FunctionDescription::FunctionDescription(const uint8_t *FuncDesc) {
625   NumLeafNodes = *reinterpret_cast<const uint32_t *>(FuncDesc);
626   DEBUG(reportNumber("NumLeafNodes = ", NumLeafNodes, 10));
627   LeafNodes = reinterpret_cast<const InstrumentedNode *>(FuncDesc + 4);
628 
629   NumEdges = *reinterpret_cast<const uint32_t *>(
630       FuncDesc + 4 + NumLeafNodes * sizeof(InstrumentedNode));
631   DEBUG(reportNumber("NumEdges = ", NumEdges, 10));
632   Edges = reinterpret_cast<const EdgeDescription *>(
633       FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode));
634 
635   NumCalls = *reinterpret_cast<const uint32_t *>(
636       FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode) +
637       NumEdges * sizeof(EdgeDescription));
638   DEBUG(reportNumber("NumCalls = ", NumCalls, 10));
639   Calls = reinterpret_cast<const CallDescription *>(
640       FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) +
641       NumEdges * sizeof(EdgeDescription));
642   NumEntryNodes = *reinterpret_cast<const uint32_t *>(
643       FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) +
644       NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription));
645   DEBUG(reportNumber("NumEntryNodes = ", NumEntryNodes, 10));
646   EntryNodes = reinterpret_cast<const EntryNode *>(
647       FuncDesc + 16 + NumLeafNodes * sizeof(InstrumentedNode) +
648       NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription));
649 }
650 
651 /// Read and mmap descriptions written by BOLT from the executable's notes
652 /// section
653 #if defined(HAVE_ELF_H) and !defined(__APPLE__)
654 
655 void *__attribute__((noinline)) __get_pc() {
656   return __builtin_extract_return_addr(__builtin_return_address(0));
657 }
658 
659 /// Get string with address and parse it to hex pair <StartAddress, EndAddress>
660 bool parseAddressRange(const char *Str, uint64_t &StartAddress,
661                        uint64_t &EndAddress) {
662   if (!Str)
663     return false;
664   // Parsed string format: <hex1>-<hex2>
665   StartAddress = hexToLong(Str, '-');
666   while (*Str && *Str != '-')
667     ++Str;
668   if (!*Str)
669     return false;
670   ++Str; // swallow '-'
671   EndAddress = hexToLong(Str);
672   return true;
673 }
674 
675 /// Get full path to the real binary by getting current virtual address
676 /// and searching for the appropriate link in address range in
677 /// /proc/self/map_files
678 static char *getBinaryPath() {
679   const uint32_t BufSize = 1024;
680   const uint32_t NameMax = 4096;
681   const char DirPath[] = "/proc/self/map_files/";
682   static char TargetPath[NameMax] = {};
683   char Buf[BufSize];
684 
685   if (__bolt_instr_binpath[0] != '\0')
686     return __bolt_instr_binpath;
687 
688   if (TargetPath[0] != '\0')
689     return TargetPath;
690 
691   unsigned long CurAddr = (unsigned long)__get_pc();
692   uint64_t FDdir = __open(DirPath, O_RDONLY,
693                           /*mode=*/0666);
694   assert(static_cast<int64_t>(FDdir) >= 0,
695          "failed to open /proc/self/map_files");
696 
697   while (long Nread = __getdents64(FDdir, (struct dirent64 *)Buf, BufSize)) {
698     assert(static_cast<int64_t>(Nread) != -1, "failed to get folder entries");
699 
700     struct dirent64 *d;
701     for (long Bpos = 0; Bpos < Nread; Bpos += d->d_reclen) {
702       d = (struct dirent64 *)(Buf + Bpos);
703 
704       uint64_t StartAddress, EndAddress;
705       if (!parseAddressRange(d->d_name, StartAddress, EndAddress))
706         continue;
707       if (CurAddr < StartAddress || CurAddr > EndAddress)
708         continue;
709       char FindBuf[NameMax];
710       char *C = strCopy(FindBuf, DirPath, NameMax);
711       C = strCopy(C, d->d_name, NameMax - (C - FindBuf));
712       *C = '\0';
713       uint32_t Ret = __readlink(FindBuf, TargetPath, sizeof(TargetPath));
714       assert(Ret != -1 && Ret != BufSize, "readlink error");
715       TargetPath[Ret] = '\0';
716       return TargetPath;
717     }
718   }
719   return nullptr;
720 }
721 
722 ProfileWriterContext readDescriptions() {
723   ProfileWriterContext Result;
724   char *BinPath = getBinaryPath();
725   assert(BinPath && BinPath[0] != '\0', "failed to find binary path");
726 
727   uint64_t FD = __open(BinPath, O_RDONLY,
728                        /*mode=*/0666);
729   assert(static_cast<int64_t>(FD) >= 0, "failed to open binary path");
730 
731   Result.FileDesc = FD;
732 
733   // mmap our binary to memory
734   uint64_t Size = __lseek(FD, 0, SEEK_END);
735   uint8_t *BinContents = reinterpret_cast<uint8_t *>(
736       __mmap(0, Size, PROT_READ, MAP_PRIVATE, FD, 0));
737   assert(BinContents != MAP_FAILED, "readDescriptions: Failed to mmap self!");
738   Result.MMapPtr = BinContents;
739   Result.MMapSize = Size;
740   Elf64_Ehdr *Hdr = reinterpret_cast<Elf64_Ehdr *>(BinContents);
741   Elf64_Shdr *Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff);
742   Elf64_Shdr *StringTblHeader = reinterpret_cast<Elf64_Shdr *>(
743       BinContents + Hdr->e_shoff + Hdr->e_shstrndx * Hdr->e_shentsize);
744 
745   // Find .bolt.instr.tables with the data we need and set pointers to it
746   for (int I = 0; I < Hdr->e_shnum; ++I) {
747     char *SecName = reinterpret_cast<char *>(
748         BinContents + StringTblHeader->sh_offset + Shdr->sh_name);
749     if (compareStr(SecName, ".bolt.instr.tables", 64) != 0) {
750       Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff +
751                                             (I + 1) * Hdr->e_shentsize);
752       continue;
753     }
754     // Actual contents of the ELF note start after offset 20 decimal:
755     // Offset 0: Producer name size (4 bytes)
756     // Offset 4: Contents size (4 bytes)
757     // Offset 8: Note type (4 bytes)
758     // Offset 12: Producer name (BOLT\0) (5 bytes + align to 4-byte boundary)
759     // Offset 20: Contents
760     uint32_t IndCallDescSize =
761         *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 20);
762     uint32_t IndCallTargetDescSize = *reinterpret_cast<uint32_t *>(
763         BinContents + Shdr->sh_offset + 24 + IndCallDescSize);
764     uint32_t FuncDescSize =
765         *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 28 +
766                                       IndCallDescSize + IndCallTargetDescSize);
767     Result.IndCallDescriptions = reinterpret_cast<IndCallDescription *>(
768         BinContents + Shdr->sh_offset + 24);
769     Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>(
770         BinContents + Shdr->sh_offset + 28 + IndCallDescSize);
771     Result.FuncDescriptions = BinContents + Shdr->sh_offset + 32 +
772                               IndCallDescSize + IndCallTargetDescSize;
773     Result.Strings = reinterpret_cast<char *>(
774         BinContents + Shdr->sh_offset + 32 + IndCallDescSize +
775         IndCallTargetDescSize + FuncDescSize);
776     return Result;
777   }
778   const char ErrMsg[] =
779       "BOLT instrumentation runtime error: could not find section "
780       ".bolt.instr.tables\n";
781   reportError(ErrMsg, sizeof(ErrMsg));
782   return Result;
783 }
784 
785 #else
786 
787 ProfileWriterContext readDescriptions() {
788   ProfileWriterContext Result;
789   uint8_t *Tables = _bolt_instr_tables_getter();
790   uint32_t IndCallDescSize = *reinterpret_cast<uint32_t *>(Tables);
791   uint32_t IndCallTargetDescSize =
792       *reinterpret_cast<uint32_t *>(Tables + 4 + IndCallDescSize);
793   uint32_t FuncDescSize = *reinterpret_cast<uint32_t *>(
794       Tables + 8 + IndCallDescSize + IndCallTargetDescSize);
795   Result.IndCallDescriptions =
796       reinterpret_cast<IndCallDescription *>(Tables + 4);
797   Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>(
798       Tables + 8 + IndCallDescSize);
799   Result.FuncDescriptions =
800       Tables + 12 + IndCallDescSize + IndCallTargetDescSize;
801   Result.Strings = reinterpret_cast<char *>(
802       Tables + 12 + IndCallDescSize + IndCallTargetDescSize + FuncDescSize);
803   return Result;
804 }
805 
806 #endif
807 
808 #if !defined(__APPLE__)
809 /// Debug by printing overall metadata global numbers to check it is sane
810 void printStats(const ProfileWriterContext &Ctx) {
811   char StatMsg[BufSize];
812   char *StatPtr = StatMsg;
813   StatPtr =
814       strCopy(StatPtr,
815               "\nBOLT INSTRUMENTATION RUNTIME STATISTICS\n\nIndCallDescSize: ");
816   StatPtr = intToStr(StatPtr,
817                      Ctx.FuncDescriptions -
818                          reinterpret_cast<uint8_t *>(Ctx.IndCallDescriptions),
819                      10);
820   StatPtr = strCopy(StatPtr, "\nFuncDescSize: ");
821   StatPtr = intToStr(
822       StatPtr,
823       reinterpret_cast<uint8_t *>(Ctx.Strings) - Ctx.FuncDescriptions, 10);
824   StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_ind_calls: ");
825   StatPtr = intToStr(StatPtr, __bolt_instr_num_ind_calls, 10);
826   StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_funcs: ");
827   StatPtr = intToStr(StatPtr, __bolt_instr_num_funcs, 10);
828   StatPtr = strCopy(StatPtr, "\n");
829   __write(2, StatMsg, StatPtr - StatMsg);
830 }
831 #endif
832 
833 
834 /// This is part of a simple CFG representation in memory, where we store
835 /// a dynamically sized array of input and output edges per node, and store
836 /// a dynamically sized array of nodes per graph. We also store the spanning
837 /// tree edges for that CFG in a separate array of nodes in
838 /// \p SpanningTreeNodes, while the regular nodes live in \p CFGNodes.
839 struct Edge {
840   uint32_t Node; // Index in nodes array regarding the destination of this edge
841   uint32_t ID;   // Edge index in an array comprising all edges of the graph
842 };
843 
844 /// A regular graph node or a spanning tree node
845 struct Node {
846   uint32_t NumInEdges{0};  // Input edge count used to size InEdge
847   uint32_t NumOutEdges{0}; // Output edge count used to size OutEdges
848   Edge *InEdges{nullptr};  // Created and managed by \p Graph
849   Edge *OutEdges{nullptr}; // ditto
850 };
851 
852 /// Main class for CFG representation in memory. Manages object creation and
853 /// destruction, populates an array of CFG nodes as well as corresponding
854 /// spanning tree nodes.
855 struct Graph {
856   uint32_t NumNodes;
857   Node *CFGNodes;
858   Node *SpanningTreeNodes;
859   uint64_t *EdgeFreqs;
860   uint64_t *CallFreqs;
861   BumpPtrAllocator &Alloc;
862   const FunctionDescription &D;
863 
864   /// Reads a list of edges from function description \p D and builds
865   /// the graph from it. Allocates several internal dynamic structures that are
866   /// later destroyed by ~Graph() and uses \p Alloc. D.LeafNodes contain all
867   /// spanning tree leaf nodes descriptions (their counters). They are the seed
868   /// used to compute the rest of the missing edge counts in a bottom-up
869   /// traversal of the spanning tree.
870   Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D,
871         const uint64_t *Counters, ProfileWriterContext &Ctx);
872   ~Graph();
873   void dump() const;
874 
875 private:
876   void computeEdgeFrequencies(const uint64_t *Counters,
877                               ProfileWriterContext &Ctx);
878   void dumpEdgeFreqs() const;
879 };
880 
881 Graph::Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D,
882              const uint64_t *Counters, ProfileWriterContext &Ctx)
883     : Alloc(Alloc), D(D) {
884   DEBUG(reportNumber("G = 0x", (uint64_t)this, 16));
885   // First pass to determine number of nodes
886   int32_t MaxNodes = -1;
887   CallFreqs = nullptr;
888   EdgeFreqs = nullptr;
889   for (int I = 0; I < D.NumEdges; ++I) {
890     if (static_cast<int32_t>(D.Edges[I].FromNode) > MaxNodes)
891       MaxNodes = D.Edges[I].FromNode;
892     if (static_cast<int32_t>(D.Edges[I].ToNode) > MaxNodes)
893       MaxNodes = D.Edges[I].ToNode;
894   }
895 
896   for (int I = 0; I < D.NumLeafNodes; ++I)
897     if (static_cast<int32_t>(D.LeafNodes[I].Node) > MaxNodes)
898       MaxNodes = D.LeafNodes[I].Node;
899 
900   for (int I = 0; I < D.NumCalls; ++I)
901     if (static_cast<int32_t>(D.Calls[I].FromNode) > MaxNodes)
902       MaxNodes = D.Calls[I].FromNode;
903 
904   // No nodes? Nothing to do
905   if (MaxNodes < 0) {
906     DEBUG(report("No nodes!\n"));
907     CFGNodes = nullptr;
908     SpanningTreeNodes = nullptr;
909     NumNodes = 0;
910     return;
911   }
912   ++MaxNodes;
913   DEBUG(reportNumber("NumNodes = ", MaxNodes, 10));
914   NumNodes = static_cast<uint32_t>(MaxNodes);
915 
916   // Initial allocations
917   CFGNodes = new (Alloc) Node[MaxNodes];
918 
919   DEBUG(reportNumber("G->CFGNodes = 0x", (uint64_t)CFGNodes, 16));
920   SpanningTreeNodes = new (Alloc) Node[MaxNodes];
921   DEBUG(reportNumber("G->SpanningTreeNodes = 0x",
922                      (uint64_t)SpanningTreeNodes, 16));
923 
924   // Figure out how much to allocate to each vector (in/out edge sets)
925   for (int I = 0; I < D.NumEdges; ++I) {
926     CFGNodes[D.Edges[I].FromNode].NumOutEdges++;
927     CFGNodes[D.Edges[I].ToNode].NumInEdges++;
928     if (D.Edges[I].Counter != 0xffffffff)
929       continue;
930 
931     SpanningTreeNodes[D.Edges[I].FromNode].NumOutEdges++;
932     SpanningTreeNodes[D.Edges[I].ToNode].NumInEdges++;
933   }
934 
935   // Allocate in/out edge sets
936   for (int I = 0; I < MaxNodes; ++I) {
937     if (CFGNodes[I].NumInEdges > 0)
938       CFGNodes[I].InEdges = new (Alloc) Edge[CFGNodes[I].NumInEdges];
939     if (CFGNodes[I].NumOutEdges > 0)
940       CFGNodes[I].OutEdges = new (Alloc) Edge[CFGNodes[I].NumOutEdges];
941     if (SpanningTreeNodes[I].NumInEdges > 0)
942       SpanningTreeNodes[I].InEdges =
943           new (Alloc) Edge[SpanningTreeNodes[I].NumInEdges];
944     if (SpanningTreeNodes[I].NumOutEdges > 0)
945       SpanningTreeNodes[I].OutEdges =
946           new (Alloc) Edge[SpanningTreeNodes[I].NumOutEdges];
947     CFGNodes[I].NumInEdges = 0;
948     CFGNodes[I].NumOutEdges = 0;
949     SpanningTreeNodes[I].NumInEdges = 0;
950     SpanningTreeNodes[I].NumOutEdges = 0;
951   }
952 
953   // Fill in/out edge sets
954   for (int I = 0; I < D.NumEdges; ++I) {
955     const uint32_t Src = D.Edges[I].FromNode;
956     const uint32_t Dst = D.Edges[I].ToNode;
957     Edge *E = &CFGNodes[Src].OutEdges[CFGNodes[Src].NumOutEdges++];
958     E->Node = Dst;
959     E->ID = I;
960 
961     E = &CFGNodes[Dst].InEdges[CFGNodes[Dst].NumInEdges++];
962     E->Node = Src;
963     E->ID = I;
964 
965     if (D.Edges[I].Counter != 0xffffffff)
966       continue;
967 
968     E = &SpanningTreeNodes[Src]
969              .OutEdges[SpanningTreeNodes[Src].NumOutEdges++];
970     E->Node = Dst;
971     E->ID = I;
972 
973     E = &SpanningTreeNodes[Dst]
974              .InEdges[SpanningTreeNodes[Dst].NumInEdges++];
975     E->Node = Src;
976     E->ID = I;
977   }
978 
979   computeEdgeFrequencies(Counters, Ctx);
980 }
981 
982 Graph::~Graph() {
983   if (CallFreqs)
984     Alloc.deallocate(CallFreqs);
985   if (EdgeFreqs)
986     Alloc.deallocate(EdgeFreqs);
987   for (int I = NumNodes - 1; I >= 0; --I) {
988     if (SpanningTreeNodes[I].OutEdges)
989       Alloc.deallocate(SpanningTreeNodes[I].OutEdges);
990     if (SpanningTreeNodes[I].InEdges)
991       Alloc.deallocate(SpanningTreeNodes[I].InEdges);
992     if (CFGNodes[I].OutEdges)
993       Alloc.deallocate(CFGNodes[I].OutEdges);
994     if (CFGNodes[I].InEdges)
995       Alloc.deallocate(CFGNodes[I].InEdges);
996   }
997   if (SpanningTreeNodes)
998     Alloc.deallocate(SpanningTreeNodes);
999   if (CFGNodes)
1000     Alloc.deallocate(CFGNodes);
1001 }
1002 
1003 void Graph::dump() const {
1004   reportNumber("Dumping graph with number of nodes: ", NumNodes, 10);
1005   report("  Full graph:\n");
1006   for (int I = 0; I < NumNodes; ++I) {
1007     const Node *N = &CFGNodes[I];
1008     reportNumber("    Node #", I, 10);
1009     reportNumber("      InEdges total ", N->NumInEdges, 10);
1010     for (int J = 0; J < N->NumInEdges; ++J)
1011       reportNumber("        ", N->InEdges[J].Node, 10);
1012     reportNumber("      OutEdges total ", N->NumOutEdges, 10);
1013     for (int J = 0; J < N->NumOutEdges; ++J)
1014       reportNumber("        ", N->OutEdges[J].Node, 10);
1015     report("\n");
1016   }
1017   report("  Spanning tree:\n");
1018   for (int I = 0; I < NumNodes; ++I) {
1019     const Node *N = &SpanningTreeNodes[I];
1020     reportNumber("    Node #", I, 10);
1021     reportNumber("      InEdges total ", N->NumInEdges, 10);
1022     for (int J = 0; J < N->NumInEdges; ++J)
1023       reportNumber("        ", N->InEdges[J].Node, 10);
1024     reportNumber("      OutEdges total ", N->NumOutEdges, 10);
1025     for (int J = 0; J < N->NumOutEdges; ++J)
1026       reportNumber("        ", N->OutEdges[J].Node, 10);
1027     report("\n");
1028   }
1029 }
1030 
1031 void Graph::dumpEdgeFreqs() const {
1032   reportNumber(
1033       "Dumping edge frequencies for graph with num edges: ", D.NumEdges, 10);
1034   for (int I = 0; I < D.NumEdges; ++I) {
1035     reportNumber("* Src: ", D.Edges[I].FromNode, 10);
1036     reportNumber("  Dst: ", D.Edges[I].ToNode, 10);
1037     reportNumber("    Cnt: ", EdgeFreqs[I], 10);
1038   }
1039 }
1040 
1041 /// Auxiliary map structure for fast lookups of which calls map to each node of
1042 /// the function CFG
1043 struct NodeToCallsMap {
1044   struct MapEntry {
1045     uint32_t NumCalls;
1046     uint32_t *Calls;
1047   };
1048   MapEntry *Entries;
1049   BumpPtrAllocator &Alloc;
1050   const uint32_t NumNodes;
1051 
1052   NodeToCallsMap(BumpPtrAllocator &Alloc, const FunctionDescription &D,
1053                  uint32_t NumNodes)
1054       : Alloc(Alloc), NumNodes(NumNodes) {
1055     Entries = new (Alloc, 0) MapEntry[NumNodes];
1056     for (int I = 0; I < D.NumCalls; ++I) {
1057       DEBUG(reportNumber("Registering call in node ", D.Calls[I].FromNode, 10));
1058       ++Entries[D.Calls[I].FromNode].NumCalls;
1059     }
1060     for (int I = 0; I < NumNodes; ++I) {
1061       Entries[I].Calls = Entries[I].NumCalls ? new (Alloc)
1062                                                    uint32_t[Entries[I].NumCalls]
1063                                              : nullptr;
1064       Entries[I].NumCalls = 0;
1065     }
1066     for (int I = 0; I < D.NumCalls; ++I) {
1067       MapEntry &Entry = Entries[D.Calls[I].FromNode];
1068       Entry.Calls[Entry.NumCalls++] = I;
1069     }
1070   }
1071 
1072   /// Set the frequency of all calls in node \p NodeID to Freq. However, if
1073   /// the calls have their own counters and do not depend on the basic block
1074   /// counter, this means they have landing pads and throw exceptions. In this
1075   /// case, set their frequency with their counters and return the maximum
1076   /// value observed in such counters. This will be used as the new frequency
1077   /// at basic block entry. This is used to fix the CFG edge frequencies in the
1078   /// presence of exceptions.
1079   uint64_t visitAllCallsIn(uint32_t NodeID, uint64_t Freq, uint64_t *CallFreqs,
1080                            const FunctionDescription &D,
1081                            const uint64_t *Counters,
1082                            ProfileWriterContext &Ctx) const {
1083     const MapEntry &Entry = Entries[NodeID];
1084     uint64_t MaxValue = 0ull;
1085     for (int I = 0, E = Entry.NumCalls; I != E; ++I) {
1086       const uint32_t CallID = Entry.Calls[I];
1087       DEBUG(reportNumber("  Setting freq for call ID: ", CallID, 10));
1088       const CallDescription &CallDesc = D.Calls[CallID];
1089       if (CallDesc.Counter == 0xffffffff) {
1090         CallFreqs[CallID] = Freq;
1091         DEBUG(reportNumber("  with : ", Freq, 10));
1092       } else {
1093         const uint64_t CounterVal = Counters[CallDesc.Counter];
1094         CallFreqs[CallID] = CounterVal;
1095         MaxValue = CounterVal > MaxValue ? CounterVal : MaxValue;
1096         DEBUG(reportNumber("  with (private counter) : ", CounterVal, 10));
1097       }
1098       DEBUG(reportNumber("  Address: 0x", CallDesc.TargetAddress, 16));
1099       if (CallFreqs[CallID] > 0)
1100         Ctx.CallFlowTable->get(CallDesc.TargetAddress).Calls +=
1101             CallFreqs[CallID];
1102     }
1103     return MaxValue;
1104   }
1105 
1106   ~NodeToCallsMap() {
1107     for (int I = NumNodes - 1; I >= 0; --I)
1108       if (Entries[I].Calls)
1109         Alloc.deallocate(Entries[I].Calls);
1110     Alloc.deallocate(Entries);
1111   }
1112 };
1113 
1114 /// Fill an array with the frequency of each edge in the function represented
1115 /// by G, as well as another array for each call.
1116 void Graph::computeEdgeFrequencies(const uint64_t *Counters,
1117                                    ProfileWriterContext &Ctx) {
1118   if (NumNodes == 0)
1119     return;
1120 
1121   EdgeFreqs = D.NumEdges ? new (Alloc, 0) uint64_t [D.NumEdges] : nullptr;
1122   CallFreqs = D.NumCalls ? new (Alloc, 0) uint64_t [D.NumCalls] : nullptr;
1123 
1124   // Setup a lookup for calls present in each node (BB)
1125   NodeToCallsMap *CallMap = new (Alloc) NodeToCallsMap(Alloc, D, NumNodes);
1126 
1127   // Perform a bottom-up, BFS traversal of the spanning tree in G. Edges in the
1128   // spanning tree don't have explicit counters. We must infer their value using
1129   // a linear combination of other counters (sum of counters of the outgoing
1130   // edges minus sum of counters of the incoming edges).
1131   uint32_t *Stack = new (Alloc) uint32_t [NumNodes];
1132   uint32_t StackTop = 0;
1133   enum Status : uint8_t { S_NEW = 0, S_VISITING, S_VISITED };
1134   Status *Visited = new (Alloc, 0) Status[NumNodes];
1135   uint64_t *LeafFrequency = new (Alloc, 0) uint64_t[NumNodes];
1136   uint64_t *EntryAddress = new (Alloc, 0) uint64_t[NumNodes];
1137 
1138   // Setup a fast lookup for frequency of leaf nodes, which have special
1139   // basic block frequency instrumentation (they are not edge profiled).
1140   for (int I = 0; I < D.NumLeafNodes; ++I) {
1141     LeafFrequency[D.LeafNodes[I].Node] = Counters[D.LeafNodes[I].Counter];
1142     DEBUG({
1143       if (Counters[D.LeafNodes[I].Counter] > 0) {
1144         reportNumber("Leaf Node# ", D.LeafNodes[I].Node, 10);
1145         reportNumber("     Counter: ", Counters[D.LeafNodes[I].Counter], 10);
1146       }
1147     });
1148   }
1149   for (int I = 0; I < D.NumEntryNodes; ++I) {
1150     EntryAddress[D.EntryNodes[I].Node] = D.EntryNodes[I].Address;
1151     DEBUG({
1152         reportNumber("Entry Node# ", D.EntryNodes[I].Node, 10);
1153         reportNumber("      Address: ", D.EntryNodes[I].Address, 16);
1154     });
1155   }
1156   // Add all root nodes to the stack
1157   for (int I = 0; I < NumNodes; ++I)
1158     if (SpanningTreeNodes[I].NumInEdges == 0)
1159       Stack[StackTop++] = I;
1160 
1161   // Empty stack?
1162   if (StackTop == 0) {
1163     DEBUG(report("Empty stack!\n"));
1164     Alloc.deallocate(EntryAddress);
1165     Alloc.deallocate(LeafFrequency);
1166     Alloc.deallocate(Visited);
1167     Alloc.deallocate(Stack);
1168     CallMap->~NodeToCallsMap();
1169     Alloc.deallocate(CallMap);
1170     if (CallFreqs)
1171       Alloc.deallocate(CallFreqs);
1172     if (EdgeFreqs)
1173       Alloc.deallocate(EdgeFreqs);
1174     EdgeFreqs = nullptr;
1175     CallFreqs = nullptr;
1176     return;
1177   }
1178   // Add all known edge counts, will infer the rest
1179   for (int I = 0; I < D.NumEdges; ++I) {
1180     const uint32_t C = D.Edges[I].Counter;
1181     if (C == 0xffffffff) // inferred counter - we will compute its value
1182       continue;
1183     EdgeFreqs[I] = Counters[C];
1184   }
1185 
1186   while (StackTop > 0) {
1187     const uint32_t Cur = Stack[--StackTop];
1188     DEBUG({
1189       if (Visited[Cur] == S_VISITING)
1190         report("(visiting) ");
1191       else
1192         report("(new) ");
1193       reportNumber("Cur: ", Cur, 10);
1194     });
1195 
1196     // This shouldn't happen in a tree
1197     assert(Visited[Cur] != S_VISITED, "should not have visited nodes in stack");
1198     if (Visited[Cur] == S_NEW) {
1199       Visited[Cur] = S_VISITING;
1200       Stack[StackTop++] = Cur;
1201       assert(StackTop <= NumNodes, "stack grew too large");
1202       for (int I = 0, E = SpanningTreeNodes[Cur].NumOutEdges; I < E; ++I) {
1203         const uint32_t Succ = SpanningTreeNodes[Cur].OutEdges[I].Node;
1204         Stack[StackTop++] = Succ;
1205         assert(StackTop <= NumNodes, "stack grew too large");
1206       }
1207       continue;
1208     }
1209     Visited[Cur] = S_VISITED;
1210 
1211     // Establish our node frequency based on outgoing edges, which should all be
1212     // resolved by now.
1213     int64_t CurNodeFreq = LeafFrequency[Cur];
1214     // Not a leaf?
1215     if (!CurNodeFreq) {
1216       for (int I = 0, E = CFGNodes[Cur].NumOutEdges; I != E; ++I) {
1217         const uint32_t SuccEdge = CFGNodes[Cur].OutEdges[I].ID;
1218         CurNodeFreq += EdgeFreqs[SuccEdge];
1219       }
1220     }
1221     if (CurNodeFreq < 0)
1222       CurNodeFreq = 0;
1223 
1224     const uint64_t CallFreq = CallMap->visitAllCallsIn(
1225         Cur, CurNodeFreq > 0 ? CurNodeFreq : 0, CallFreqs, D, Counters, Ctx);
1226 
1227     // Exception handling affected our output flow? Fix with calls info
1228     DEBUG({
1229       if (CallFreq > CurNodeFreq)
1230         report("Bumping node frequency with call info\n");
1231     });
1232     CurNodeFreq = CallFreq > CurNodeFreq ? CallFreq : CurNodeFreq;
1233 
1234     if (CurNodeFreq > 0) {
1235       if (uint64_t Addr = EntryAddress[Cur]) {
1236         DEBUG(
1237             reportNumber("  Setting flow at entry point address 0x", Addr, 16));
1238         DEBUG(reportNumber("  with: ", CurNodeFreq, 10));
1239         Ctx.CallFlowTable->get(Addr).Val = CurNodeFreq;
1240       }
1241     }
1242 
1243     // No parent? Reached a tree root, limit to call frequency updating.
1244     if (SpanningTreeNodes[Cur].NumInEdges == 0)
1245       continue;
1246 
1247     assert(SpanningTreeNodes[Cur].NumInEdges == 1, "must have 1 parent");
1248     const uint32_t Parent = SpanningTreeNodes[Cur].InEdges[0].Node;
1249     const uint32_t ParentEdge = SpanningTreeNodes[Cur].InEdges[0].ID;
1250 
1251     // Calculate parent edge freq.
1252     int64_t ParentEdgeFreq = CurNodeFreq;
1253     for (int I = 0, E = CFGNodes[Cur].NumInEdges; I != E; ++I) {
1254       const uint32_t PredEdge = CFGNodes[Cur].InEdges[I].ID;
1255       ParentEdgeFreq -= EdgeFreqs[PredEdge];
1256     }
1257 
1258     // Sometimes the conservative CFG that BOLT builds will lead to incorrect
1259     // flow computation. For example, in a BB that transitively calls the exit
1260     // syscall, BOLT will add a fall-through successor even though it should not
1261     // have any successors. So this block execution will likely be wrong. We
1262     // tolerate this imperfection since this case should be quite infrequent.
1263     if (ParentEdgeFreq < 0) {
1264       DEBUG(dumpEdgeFreqs());
1265       DEBUG(report("WARNING: incorrect flow"));
1266       ParentEdgeFreq = 0;
1267     }
1268     DEBUG(reportNumber("  Setting freq for ParentEdge: ", ParentEdge, 10));
1269     DEBUG(reportNumber("  with ParentEdgeFreq: ", ParentEdgeFreq, 10));
1270     EdgeFreqs[ParentEdge] = ParentEdgeFreq;
1271   }
1272 
1273   Alloc.deallocate(EntryAddress);
1274   Alloc.deallocate(LeafFrequency);
1275   Alloc.deallocate(Visited);
1276   Alloc.deallocate(Stack);
1277   CallMap->~NodeToCallsMap();
1278   Alloc.deallocate(CallMap);
1279   DEBUG(dumpEdgeFreqs());
1280 }
1281 
1282 /// Write to \p FD all of the edge profiles for function \p FuncDesc. Uses
1283 /// \p Alloc to allocate helper dynamic structures used to compute profile for
1284 /// edges that we do not explicitly instrument.
1285 const uint8_t *writeFunctionProfile(int FD, ProfileWriterContext &Ctx,
1286                                     const uint8_t *FuncDesc,
1287                                     BumpPtrAllocator &Alloc) {
1288   const FunctionDescription F(FuncDesc);
1289   const uint8_t *next = FuncDesc + F.getSize();
1290 
1291 #if !defined(__APPLE__)
1292   uint64_t *bolt_instr_locations = __bolt_instr_locations;
1293 #else
1294   uint64_t *bolt_instr_locations = _bolt_instr_locations_getter();
1295 #endif
1296 
1297   // Skip funcs we know are cold
1298 #ifndef ENABLE_DEBUG
1299   uint64_t CountersFreq = 0;
1300   for (int I = 0; I < F.NumLeafNodes; ++I)
1301     CountersFreq += bolt_instr_locations[F.LeafNodes[I].Counter];
1302 
1303   if (CountersFreq == 0) {
1304     for (int I = 0; I < F.NumEdges; ++I) {
1305       const uint32_t C = F.Edges[I].Counter;
1306       if (C == 0xffffffff)
1307         continue;
1308       CountersFreq += bolt_instr_locations[C];
1309     }
1310     if (CountersFreq == 0) {
1311       for (int I = 0; I < F.NumCalls; ++I) {
1312         const uint32_t C = F.Calls[I].Counter;
1313         if (C == 0xffffffff)
1314           continue;
1315         CountersFreq += bolt_instr_locations[C];
1316       }
1317       if (CountersFreq == 0)
1318         return next;
1319     }
1320   }
1321 #endif
1322 
1323   Graph *G = new (Alloc) Graph(Alloc, F, bolt_instr_locations, Ctx);
1324   DEBUG(G->dump());
1325 
1326   if (!G->EdgeFreqs && !G->CallFreqs) {
1327     G->~Graph();
1328     Alloc.deallocate(G);
1329     return next;
1330   }
1331 
1332   for (int I = 0; I < F.NumEdges; ++I) {
1333     const uint64_t Freq = G->EdgeFreqs[I];
1334     if (Freq == 0)
1335       continue;
1336     const EdgeDescription *Desc = &F.Edges[I];
1337     char LineBuf[BufSize];
1338     char *Ptr = LineBuf;
1339     Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize);
1340     Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf));
1341     Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 22);
1342     Ptr = intToStr(Ptr, Freq, 10);
1343     *Ptr++ = '\n';
1344     __write(FD, LineBuf, Ptr - LineBuf);
1345   }
1346 
1347   for (int I = 0; I < F.NumCalls; ++I) {
1348     const uint64_t Freq = G->CallFreqs[I];
1349     if (Freq == 0)
1350       continue;
1351     char LineBuf[BufSize];
1352     char *Ptr = LineBuf;
1353     const CallDescription *Desc = &F.Calls[I];
1354     Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize);
1355     Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf));
1356     Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25);
1357     Ptr = intToStr(Ptr, Freq, 10);
1358     *Ptr++ = '\n';
1359     __write(FD, LineBuf, Ptr - LineBuf);
1360   }
1361 
1362   G->~Graph();
1363   Alloc.deallocate(G);
1364   return next;
1365 }
1366 
1367 #if !defined(__APPLE__)
1368 const IndCallTargetDescription *
1369 ProfileWriterContext::lookupIndCallTarget(uint64_t Target) const {
1370   uint32_t B = 0;
1371   uint32_t E = __bolt_instr_num_ind_targets;
1372   if (E == 0)
1373     return nullptr;
1374   do {
1375     uint32_t I = (E - B) / 2 + B;
1376     if (IndCallTargets[I].Address == Target)
1377       return &IndCallTargets[I];
1378     if (IndCallTargets[I].Address < Target)
1379       B = I + 1;
1380     else
1381       E = I;
1382   } while (B < E);
1383   return nullptr;
1384 }
1385 
1386 /// Write a single indirect call <src, target> pair to the fdata file
1387 void visitIndCallCounter(IndirectCallHashTable::MapEntry &Entry,
1388                          int FD, int CallsiteID,
1389                          ProfileWriterContext *Ctx) {
1390   if (Entry.Val == 0)
1391     return;
1392   DEBUG(reportNumber("Target func 0x", Entry.Key, 16));
1393   DEBUG(reportNumber("Target freq: ", Entry.Val, 10));
1394   const IndCallDescription *CallsiteDesc =
1395       &Ctx->IndCallDescriptions[CallsiteID];
1396   const IndCallTargetDescription *TargetDesc =
1397       Ctx->lookupIndCallTarget(Entry.Key - TextBaseAddress);
1398   if (!TargetDesc) {
1399     DEBUG(report("Failed to lookup indirect call target\n"));
1400     char LineBuf[BufSize];
1401     char *Ptr = LineBuf;
1402     Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize);
1403     Ptr = strCopy(Ptr, "0 [unknown] 0 0 ", BufSize - (Ptr - LineBuf) - 40);
1404     Ptr = intToStr(Ptr, Entry.Val, 10);
1405     *Ptr++ = '\n';
1406     __write(FD, LineBuf, Ptr - LineBuf);
1407     return;
1408   }
1409   Ctx->CallFlowTable->get(TargetDesc->Address).Calls += Entry.Val;
1410   char LineBuf[BufSize];
1411   char *Ptr = LineBuf;
1412   Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize);
1413   Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf));
1414   Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25);
1415   Ptr = intToStr(Ptr, Entry.Val, 10);
1416   *Ptr++ = '\n';
1417   __write(FD, LineBuf, Ptr - LineBuf);
1418 }
1419 
1420 /// Write to \p FD all of the indirect call profiles.
1421 void writeIndirectCallProfile(int FD, ProfileWriterContext &Ctx) {
1422   for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) {
1423     DEBUG(reportNumber("IndCallsite #", I, 10));
1424     GlobalIndCallCounters[I].forEachElement(visitIndCallCounter, FD, I, &Ctx);
1425   }
1426 }
1427 
1428 /// Check a single call flow for a callee versus all known callers. If there are
1429 /// less callers than what the callee expects, write the difference with source
1430 /// [unknown] in the profile.
1431 void visitCallFlowEntry(CallFlowHashTable::MapEntry &Entry, int FD,
1432                         ProfileWriterContext *Ctx) {
1433   DEBUG(reportNumber("Call flow entry address: 0x", Entry.Key, 16));
1434   DEBUG(reportNumber("Calls: ", Entry.Calls, 10));
1435   DEBUG(reportNumber("Reported entry frequency: ", Entry.Val, 10));
1436   DEBUG({
1437     if (Entry.Calls > Entry.Val)
1438       report("  More calls than expected!\n");
1439   });
1440   if (Entry.Val <= Entry.Calls)
1441     return;
1442   DEBUG(reportNumber(
1443       "  Balancing calls with traffic: ", Entry.Val - Entry.Calls, 10));
1444   const IndCallTargetDescription *TargetDesc =
1445       Ctx->lookupIndCallTarget(Entry.Key);
1446   if (!TargetDesc) {
1447     // There is probably something wrong with this callee and this should be
1448     // investigated, but I don't want to assert and lose all data collected.
1449     DEBUG(report("WARNING: failed to look up call target!\n"));
1450     return;
1451   }
1452   char LineBuf[BufSize];
1453   char *Ptr = LineBuf;
1454   Ptr = strCopy(Ptr, "0 [unknown] 0 ", BufSize);
1455   Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf));
1456   Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25);
1457   Ptr = intToStr(Ptr, Entry.Val - Entry.Calls, 10);
1458   *Ptr++ = '\n';
1459   __write(FD, LineBuf, Ptr - LineBuf);
1460 }
1461 
1462 /// Open fdata file for writing and return a valid file descriptor, aborting
1463 /// program upon failure.
1464 int openProfile() {
1465   // Build the profile name string by appending our PID
1466   char Buf[BufSize];
1467   char *Ptr = Buf;
1468   uint64_t PID = __getpid();
1469   Ptr = strCopy(Buf, __bolt_instr_filename, BufSize);
1470   if (__bolt_instr_use_pid) {
1471     Ptr = strCopy(Ptr, ".", BufSize - (Ptr - Buf + 1));
1472     Ptr = intToStr(Ptr, PID, 10);
1473     Ptr = strCopy(Ptr, ".fdata", BufSize - (Ptr - Buf + 1));
1474   }
1475   *Ptr++ = '\0';
1476   uint64_t FD = __open(Buf, O_WRONLY | O_TRUNC | O_CREAT,
1477                        /*mode=*/0666);
1478   if (static_cast<int64_t>(FD) < 0) {
1479     report("Error while trying to open profile file for writing: ");
1480     report(Buf);
1481     reportNumber("\nFailed with error number: 0x",
1482                  0 - static_cast<int64_t>(FD), 16);
1483     __exit(1);
1484   }
1485   return FD;
1486 }
1487 
1488 #endif
1489 
1490 } // anonymous namespace
1491 
1492 #if !defined(__APPLE__)
1493 
1494 /// Reset all counters in case you want to start profiling a new phase of your
1495 /// program independently of prior phases.
1496 /// The address of this function is printed by BOLT and this can be called by
1497 /// any attached debugger during runtime. There is a useful oneliner for gdb:
1498 ///
1499 ///   gdb -p $(pgrep -xo PROCESSNAME) -ex 'p ((void(*)())0xdeadbeef)()' \
1500 ///     -ex 'set confirm off' -ex quit
1501 ///
1502 /// Where 0xdeadbeef is this function address and PROCESSNAME your binary file
1503 /// name.
1504 extern "C" void __bolt_instr_clear_counters() {
1505   memset(reinterpret_cast<char *>(__bolt_instr_locations), 0,
1506          __bolt_num_counters * 8);
1507   for (int I = 0; I < __bolt_instr_num_ind_calls; ++I)
1508     GlobalIndCallCounters[I].resetCounters();
1509 }
1510 
1511 /// This is the entry point for profile writing.
1512 /// There are three ways of getting here:
1513 ///
1514 ///  * Program execution ended, finalization methods are running and BOLT
1515 ///    hooked into FINI from your binary dynamic section;
1516 ///  * You used the sleep timer option and during initialization we forked
1517 ///    a separate process that will call this function periodically;
1518 ///  * BOLT prints this function address so you can attach a debugger and
1519 ///    call this function directly to get your profile written to disk
1520 ///    on demand.
1521 ///
1522 extern "C" void __attribute((force_align_arg_pointer))
1523 __bolt_instr_data_dump(int FD) {
1524   // Already dumping
1525   if (!GlobalWriteProfileMutex->acquire())
1526     return;
1527 
1528   int ret = __lseek(FD, 0, SEEK_SET);
1529   assert(ret == 0, "Failed to lseek!");
1530   ret = __ftruncate(FD, 0);
1531   assert(ret == 0, "Failed to ftruncate!");
1532   BumpPtrAllocator HashAlloc;
1533   HashAlloc.setMaxSize(0x6400000);
1534   ProfileWriterContext Ctx = readDescriptions();
1535   Ctx.CallFlowTable = new (HashAlloc, 0) CallFlowHashTable(HashAlloc);
1536 
1537   DEBUG(printStats(Ctx));
1538 
1539   BumpPtrAllocator Alloc;
1540   Alloc.setMaxSize(0x6400000);
1541   const uint8_t *FuncDesc = Ctx.FuncDescriptions;
1542   for (int I = 0, E = __bolt_instr_num_funcs; I < E; ++I) {
1543     FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc);
1544     Alloc.clear();
1545     DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16));
1546   }
1547   assert(FuncDesc == (void *)Ctx.Strings,
1548          "FuncDesc ptr must be equal to stringtable");
1549 
1550   writeIndirectCallProfile(FD, Ctx);
1551   Ctx.CallFlowTable->forEachElement(visitCallFlowEntry, FD, &Ctx);
1552 
1553   __fsync(FD);
1554   __munmap(Ctx.MMapPtr, Ctx.MMapSize);
1555   __close(Ctx.FileDesc);
1556   HashAlloc.destroy();
1557   GlobalWriteProfileMutex->release();
1558   DEBUG(report("Finished writing profile.\n"));
1559 }
1560 
1561 /// Event loop for our child process spawned during setup to dump profile data
1562 /// at user-specified intervals
1563 void watchProcess() {
1564   timespec ts, rem;
1565   uint64_t Ellapsed = 0ull;
1566   int FD = openProfile();
1567   uint64_t ppid;
1568   if (__bolt_instr_wait_forks) {
1569     // Store parent pgid
1570     ppid = -__getpgid(0);
1571     // And leave parent process group
1572     __setpgid(0, 0);
1573   } else {
1574     // Store parent pid
1575     ppid = __getppid();
1576     if (ppid == 1) {
1577       // Parent already dead
1578       __bolt_instr_data_dump(FD);
1579       goto out;
1580     }
1581   }
1582 
1583   ts.tv_sec = 1;
1584   ts.tv_nsec = 0;
1585   while (1) {
1586     __nanosleep(&ts, &rem);
1587     // This means our parent process or all its forks are dead,
1588     // so no need for us to keep dumping.
1589     if (__kill(ppid, 0) < 0) {
1590       if (__bolt_instr_no_counters_clear)
1591         __bolt_instr_data_dump(FD);
1592       break;
1593     }
1594 
1595     if (++Ellapsed < __bolt_instr_sleep_time)
1596       continue;
1597 
1598     Ellapsed = 0;
1599     __bolt_instr_data_dump(FD);
1600     if (__bolt_instr_no_counters_clear == false)
1601       __bolt_instr_clear_counters();
1602   }
1603 
1604 out:;
1605   DEBUG(report("My parent process is dead, bye!\n"));
1606   __close(FD);
1607   __exit(0);
1608 }
1609 
1610 extern "C" void __bolt_instr_indirect_call();
1611 extern "C" void __bolt_instr_indirect_tailcall();
1612 
1613 /// Initialization code
1614 extern "C" void __attribute((force_align_arg_pointer)) __bolt_instr_setup() {
1615   __bolt_ind_call_counter_func_pointer = __bolt_instr_indirect_call;
1616   __bolt_ind_tailcall_counter_func_pointer = __bolt_instr_indirect_tailcall;
1617   TextBaseAddress = getTextBaseAddress();
1618 
1619   const uint64_t CountersStart =
1620       reinterpret_cast<uint64_t>(&__bolt_instr_locations[0]);
1621   const uint64_t CountersEnd = alignTo(
1622       reinterpret_cast<uint64_t>(&__bolt_instr_locations[__bolt_num_counters]),
1623       0x1000);
1624   DEBUG(reportNumber("replace mmap start: ", CountersStart, 16));
1625   DEBUG(reportNumber("replace mmap stop: ", CountersEnd, 16));
1626   assert(CountersEnd > CountersStart, "no counters");
1627 
1628   const bool Shared = !__bolt_instr_use_pid;
1629   const uint64_t MapPrivateOrShared = Shared ? MAP_SHARED : MAP_PRIVATE;
1630 
1631   void *Ret =
1632       __mmap(CountersStart, CountersEnd - CountersStart, PROT_READ | PROT_WRITE,
1633              MAP_ANONYMOUS | MapPrivateOrShared | MAP_FIXED, -1, 0);
1634   assert(Ret != MAP_FAILED, "__bolt_instr_setup: Failed to mmap counters!");
1635 
1636   GlobalMetadataStorage = __mmap(0, 4096, PROT_READ | PROT_WRITE,
1637                                  MapPrivateOrShared | MAP_ANONYMOUS, -1, 0);
1638   assert(GlobalMetadataStorage != MAP_FAILED,
1639          "__bolt_instr_setup: failed to mmap page for metadata!");
1640 
1641   GlobalAlloc = new (GlobalMetadataStorage) BumpPtrAllocator;
1642   // Conservatively reserve 100MiB
1643   GlobalAlloc->setMaxSize(0x6400000);
1644   GlobalAlloc->setShared(Shared);
1645   GlobalWriteProfileMutex = new (*GlobalAlloc, 0) Mutex();
1646   if (__bolt_instr_num_ind_calls > 0)
1647     GlobalIndCallCounters =
1648         new (*GlobalAlloc, 0) IndirectCallHashTable[__bolt_instr_num_ind_calls];
1649 
1650   if (__bolt_instr_sleep_time != 0) {
1651     // Separate instrumented process to the own process group
1652     if (__bolt_instr_wait_forks)
1653       __setpgid(0, 0);
1654 
1655     if (long PID = __fork())
1656       return;
1657     watchProcess();
1658   }
1659 }
1660 
1661 extern "C" __attribute((force_align_arg_pointer)) void
1662 instrumentIndirectCall(uint64_t Target, uint64_t IndCallID) {
1663   GlobalIndCallCounters[IndCallID].incrementVal(Target, *GlobalAlloc);
1664 }
1665 
1666 /// We receive as in-stack arguments the identifier of the indirect call site
1667 /// as well as the target address for the call
1668 extern "C" __attribute((naked)) void __bolt_instr_indirect_call()
1669 {
1670 #if defined(__aarch64__)
1671   // clang-format off
1672   __asm__ __volatile__(SAVE_ALL
1673                        "ldp x0, x1, [sp, #288]\n"
1674                        "bl instrumentIndirectCall\n"
1675                        RESTORE_ALL
1676                        "ret\n"
1677                        :::);
1678   // clang-format on
1679 #else
1680   // clang-format off
1681   __asm__ __volatile__(SAVE_ALL
1682                        "mov 0xa0(%%rsp), %%rdi\n"
1683                        "mov 0x98(%%rsp), %%rsi\n"
1684                        "call instrumentIndirectCall\n"
1685                        RESTORE_ALL
1686                        "ret\n"
1687                        :::);
1688   // clang-format on
1689 #endif
1690 }
1691 
1692 extern "C" __attribute((naked)) void __bolt_instr_indirect_tailcall()
1693 {
1694 #if defined(__aarch64__)
1695   // clang-format off
1696   __asm__ __volatile__(SAVE_ALL
1697                        "ldp x0, x1, [sp, #288]\n"
1698                        "bl instrumentIndirectCall\n"
1699                        RESTORE_ALL
1700                        "ret\n"
1701                        :::);
1702   // clang-format on
1703 #else
1704   // clang-format off
1705   __asm__ __volatile__(SAVE_ALL
1706                        "mov 0x98(%%rsp), %%rdi\n"
1707                        "mov 0x90(%%rsp), %%rsi\n"
1708                        "call instrumentIndirectCall\n"
1709                        RESTORE_ALL
1710                        "ret\n"
1711                        :::);
1712   // clang-format on
1713 #endif
1714 }
1715 
1716 /// This is hooking ELF's entry, it needs to save all machine state.
1717 extern "C" __attribute((naked)) void __bolt_instr_start()
1718 {
1719 #if defined(__aarch64__)
1720   // clang-format off
1721   __asm__ __volatile__(SAVE_ALL
1722                        "bl __bolt_instr_setup\n"
1723                        RESTORE_ALL
1724                        "adrp x16, __bolt_start_trampoline\n"
1725                        "add x16, x16, #:lo12:__bolt_start_trampoline\n"
1726                        "br x16\n"
1727                        :::);
1728   // clang-format on
1729 #else
1730   // clang-format off
1731   __asm__ __volatile__(SAVE_ALL
1732                        "call __bolt_instr_setup\n"
1733                        RESTORE_ALL
1734                        "jmp __bolt_start_trampoline\n"
1735                        :::);
1736   // clang-format on
1737 #endif
1738 }
1739 
1740 /// This is hooking into ELF's DT_FINI
1741 extern "C" void __bolt_instr_fini() {
1742 #if defined(__aarch64__)
1743   // clang-format off
1744   __asm__ __volatile__(SAVE_ALL
1745                        "adrp x16, __bolt_fini_trampoline\n"
1746                        "add x16, x16, #:lo12:__bolt_fini_trampoline\n"
1747                        "blr x16\n"
1748                        RESTORE_ALL
1749                        :::);
1750   // clang-format on
1751 #else
1752   __asm__ __volatile__("call __bolt_fini_trampoline\n" :::);
1753 #endif
1754   if (__bolt_instr_sleep_time == 0) {
1755     int FD = openProfile();
1756     __bolt_instr_data_dump(FD);
1757     __close(FD);
1758   }
1759   DEBUG(report("Finished.\n"));
1760 }
1761 
1762 #endif
1763 
1764 #if defined(__APPLE__)
1765 
1766 extern "C" void __bolt_instr_data_dump() {
1767   ProfileWriterContext Ctx = readDescriptions();
1768 
1769   int FD = 2;
1770   BumpPtrAllocator Alloc;
1771   const uint8_t *FuncDesc = Ctx.FuncDescriptions;
1772   uint32_t bolt_instr_num_funcs = _bolt_instr_num_funcs_getter();
1773 
1774   for (int I = 0, E = bolt_instr_num_funcs; I < E; ++I) {
1775     FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc);
1776     Alloc.clear();
1777     DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16));
1778   }
1779   assert(FuncDesc == (void *)Ctx.Strings,
1780          "FuncDesc ptr must be equal to stringtable");
1781 }
1782 
1783 // On OSX/iOS the final symbol name of an extern "C" function/variable contains
1784 // one extra leading underscore: _bolt_instr_setup -> __bolt_instr_setup.
1785 extern "C"
1786 __attribute__((section("__TEXT,__setup")))
1787 __attribute__((force_align_arg_pointer))
1788 void _bolt_instr_setup() {
1789   __asm__ __volatile__(SAVE_ALL :::);
1790 
1791   report("Hello!\n");
1792 
1793   __asm__ __volatile__(RESTORE_ALL :::);
1794 }
1795 
1796 extern "C"
1797 __attribute__((section("__TEXT,__fini")))
1798 __attribute__((force_align_arg_pointer))
1799 void _bolt_instr_fini() {
1800   report("Bye!\n");
1801   __bolt_instr_data_dump();
1802 }
1803 
1804 #endif
1805