12f09f445SMaksim Panchenko //===- bolt/runtime/instr.cpp ---------------------------------------------===// 262aa74f8SRafael Auler // 3da752c9cSRafael Auler // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4da752c9cSRafael Auler // See https://llvm.org/LICENSE.txt for license information. 5da752c9cSRafael Auler // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 662aa74f8SRafael Auler // 762aa74f8SRafael Auler //===----------------------------------------------------------------------===// 862aa74f8SRafael Auler // 916a497c6SRafael Auler // BOLT runtime instrumentation library for x86 Linux. Currently, BOLT does 1016a497c6SRafael Auler // not support linking modules with dependencies on one another into the final 1116a497c6SRafael Auler // binary (TODO?), which means this library has to be self-contained in a single 1216a497c6SRafael Auler // module. 1316a497c6SRafael Auler // 1416a497c6SRafael Auler // All extern declarations here need to be defined by BOLT itself. Those will be 1516a497c6SRafael Auler // undefined symbols that BOLT needs to resolve by emitting these symbols with 1616a497c6SRafael Auler // MCStreamer. Currently, Passes/Instrumentation.cpp is the pass responsible 1716a497c6SRafael Auler // for defining the symbols here and these two files have a tight coupling: one 1816a497c6SRafael Auler // working statically when you run BOLT and another during program runtime when 1916a497c6SRafael Auler // you run an instrumented binary. The main goal here is to output an fdata file 2016a497c6SRafael Auler // (BOLT profile) with the instrumentation counters inserted by the static pass. 2116a497c6SRafael Auler // Counters for indirect calls are an exception, as we can't know them 2216a497c6SRafael Auler // statically. These counters are created and managed here. To allow this, we 2316a497c6SRafael Auler // need a minimal framework for allocating memory dynamically. We provide this 2416a497c6SRafael Auler // with the BumpPtrAllocator class (not LLVM's, but our own version of it). 2516a497c6SRafael Auler // 2616a497c6SRafael Auler // Since this code is intended to be inserted into any executable, we decided to 2716a497c6SRafael Auler // make it standalone and do not depend on any external libraries (i.e. language 2816a497c6SRafael Auler // support libraries, such as glibc or stdc++). To allow this, we provide a few 2916a497c6SRafael Auler // light implementations of common OS interacting functionalities using direct 3016a497c6SRafael Auler // syscall wrappers. Our simple allocator doesn't manage deallocations that 3116a497c6SRafael Auler // fragment the memory space, so it's stack based. This is the minimal framework 3216a497c6SRafael Auler // provided here to allow processing instrumented counters and writing fdata. 3316a497c6SRafael Auler // 3416a497c6SRafael Auler // In the C++ idiom used here, we never use or rely on constructors or 3516a497c6SRafael Auler // destructors for global objects. That's because those need support from the 3616a497c6SRafael Auler // linker in initialization/finalization code, and we want to keep our linker 3716a497c6SRafael Auler // very simple. Similarly, we don't create any global objects that are zero 3816a497c6SRafael Auler // initialized, since those would need to go .bss, which our simple linker also 3916a497c6SRafael Auler // don't support (TODO?). 4062aa74f8SRafael Auler // 4162aa74f8SRafael Auler //===----------------------------------------------------------------------===// 4262aa74f8SRafael Auler 43cb8d701bSVladislav Khmelevsky #if defined (__x86_64__) 449bd71615SXun Li #include "common.h" 4562aa74f8SRafael Auler 4616a497c6SRafael Auler // Enables a very verbose logging to stderr useful when debugging 47cc4b2fb6SRafael Auler //#define ENABLE_DEBUG 48cc4b2fb6SRafael Auler 49cc4b2fb6SRafael Auler #ifdef ENABLE_DEBUG 50cc4b2fb6SRafael Auler #define DEBUG(X) \ 51cc4b2fb6SRafael Auler { X; } 52cc4b2fb6SRafael Auler #else 53cc4b2fb6SRafael Auler #define DEBUG(X) \ 54cc4b2fb6SRafael Auler {} 55cc4b2fb6SRafael Auler #endif 56cc4b2fb6SRafael Auler 57af58da4eSVladislav Khmelevsky #pragma GCC visibility push(hidden) 583b876cc3SAlexander Shaposhnikov 593b876cc3SAlexander Shaposhnikov extern "C" { 60553f28e9SVladislav Khmelevsky 61553f28e9SVladislav Khmelevsky #if defined(__APPLE__) 623b876cc3SAlexander Shaposhnikov extern uint64_t* _bolt_instr_locations_getter(); 633b876cc3SAlexander Shaposhnikov extern uint32_t _bolt_num_counters_getter(); 643b876cc3SAlexander Shaposhnikov 65a0dd5b05SAlexander Shaposhnikov extern uint8_t* _bolt_instr_tables_getter(); 66a0dd5b05SAlexander Shaposhnikov extern uint32_t _bolt_instr_num_funcs_getter(); 673b876cc3SAlexander Shaposhnikov 683b876cc3SAlexander Shaposhnikov #else 69bbd9d610SAlexander Shaposhnikov 7016a497c6SRafael Auler // Main counters inserted by instrumentation, incremented during runtime when 7116a497c6SRafael Auler // points of interest (locations) in the program are reached. Those are direct 7216a497c6SRafael Auler // calls and direct and indirect branches (local ones). There are also counters 7316a497c6SRafael Auler // for basic block execution if they are a spanning tree leaf and need to be 7416a497c6SRafael Auler // counted in order to infer the execution count of other edges of the CFG. 7562aa74f8SRafael Auler extern uint64_t __bolt_instr_locations[]; 7616a497c6SRafael Auler extern uint32_t __bolt_num_counters; 7716a497c6SRafael Auler // Descriptions are serialized metadata about binary functions written by BOLT, 7816a497c6SRafael Auler // so we have a minimal understanding about the program structure. For a 7916a497c6SRafael Auler // reference on the exact format of this metadata, see *Description structs, 8016a497c6SRafael Auler // Location, IntrumentedNode and EntryNode. 8116a497c6SRafael Auler // Number of indirect call site descriptions 8216a497c6SRafael Auler extern uint32_t __bolt_instr_num_ind_calls; 8316a497c6SRafael Auler // Number of indirect call target descriptions 8416a497c6SRafael Auler extern uint32_t __bolt_instr_num_ind_targets; 85cc4b2fb6SRafael Auler // Number of function descriptions 86cc4b2fb6SRafael Auler extern uint32_t __bolt_instr_num_funcs; 8716a497c6SRafael Auler // Time to sleep across dumps (when we write the fdata profile to disk) 8816a497c6SRafael Auler extern uint32_t __bolt_instr_sleep_time; 8976d346caSVladislav Khmelevsky // Do not clear counters across dumps, rewrite file with the updated values 9076d346caSVladislav Khmelevsky extern bool __bolt_instr_no_counters_clear; 9176d346caSVladislav Khmelevsky // Wait until all forks of instrumented process will finish 9276d346caSVladislav Khmelevsky extern bool __bolt_instr_wait_forks; 93cc4b2fb6SRafael Auler // Filename to dump data to 9462aa74f8SRafael Auler extern char __bolt_instr_filename[]; 95519cbbaaSVasily Leonenko // Instumented binary file path 96519cbbaaSVasily Leonenko extern char __bolt_instr_binpath[]; 9716a497c6SRafael Auler // If true, append current PID to the fdata filename when creating it so 9816a497c6SRafael Auler // different invocations of the same program can be differentiated. 9916a497c6SRafael Auler extern bool __bolt_instr_use_pid; 10016a497c6SRafael Auler // Functions that will be used to instrument indirect calls. BOLT static pass 10116a497c6SRafael Auler // will identify indirect calls and modify them to load the address in these 10216a497c6SRafael Auler // trampolines and call this address instead. BOLT can't use direct calls to 10316a497c6SRafael Auler // our handlers because our addresses here are not known at analysis time. We 10416a497c6SRafael Auler // only support resolving dependencies from this file to the output of BOLT, 10516a497c6SRafael Auler // *not* the other way around. 10616a497c6SRafael Auler // TODO: We need better linking support to make that happen. 107361f3b55SVladislav Khmelevsky extern void (*__bolt_ind_call_counter_func_pointer)(); 108361f3b55SVladislav Khmelevsky extern void (*__bolt_ind_tailcall_counter_func_pointer)(); 109ad79d517SVasily Leonenko // Function pointers to init/fini trampoline routines in the binary, so we can 110ad79d517SVasily Leonenko // resume regular execution of these functions that we hooked 111553f28e9SVladislav Khmelevsky extern void __bolt_start_trampoline(); 112553f28e9SVladislav Khmelevsky extern void __bolt_fini_trampoline(); 11362aa74f8SRafael Auler 114a0dd5b05SAlexander Shaposhnikov #endif 115553f28e9SVladislav Khmelevsky } 116a0dd5b05SAlexander Shaposhnikov 117cc4b2fb6SRafael Auler namespace { 118cc4b2fb6SRafael Auler 119cc4b2fb6SRafael Auler /// A simple allocator that mmaps a fixed size region and manages this space 120cc4b2fb6SRafael Auler /// in a stack fashion, meaning you always deallocate the last element that 12116a497c6SRafael Auler /// was allocated. In practice, we don't need to deallocate individual elements. 12216a497c6SRafael Auler /// We monotonically increase our usage and then deallocate everything once we 12316a497c6SRafael Auler /// are done processing something. 124cc4b2fb6SRafael Auler class BumpPtrAllocator { 12516a497c6SRafael Auler /// This is written before each allocation and act as a canary to detect when 12616a497c6SRafael Auler /// a bug caused our program to cross allocation boundaries. 127cc4b2fb6SRafael Auler struct EntryMetadata { 128cc4b2fb6SRafael Auler uint64_t Magic; 129cc4b2fb6SRafael Auler uint64_t AllocSize; 130cc4b2fb6SRafael Auler }; 1319bd71615SXun Li 132cc4b2fb6SRafael Auler public: 133faaefff6SAlexander Shaposhnikov void *allocate(size_t Size) { 13416a497c6SRafael Auler Lock L(M); 135a0dd5b05SAlexander Shaposhnikov 136cc4b2fb6SRafael Auler if (StackBase == nullptr) { 137a0dd5b05SAlexander Shaposhnikov #if defined(__APPLE__) 138a0dd5b05SAlexander Shaposhnikov int MAP_PRIVATE_MAP_ANONYMOUS = 0x1002; 139a0dd5b05SAlexander Shaposhnikov #else 140a0dd5b05SAlexander Shaposhnikov int MAP_PRIVATE_MAP_ANONYMOUS = 0x22; 141a0dd5b05SAlexander Shaposhnikov #endif 14216a497c6SRafael Auler StackBase = reinterpret_cast<uint8_t *>( 14316a497c6SRafael Auler __mmap(0, MaxSize, 0x3 /* PROT_READ | PROT_WRITE*/, 14416a497c6SRafael Auler Shared ? 0x21 /*MAP_SHARED | MAP_ANONYMOUS*/ 145a0dd5b05SAlexander Shaposhnikov : MAP_PRIVATE_MAP_ANONYMOUS /* MAP_PRIVATE | MAP_ANONYMOUS*/, 14616a497c6SRafael Auler -1, 0)); 147cc4b2fb6SRafael Auler StackSize = 0; 148cc4b2fb6SRafael Auler } 149a0dd5b05SAlexander Shaposhnikov 150cc4b2fb6SRafael Auler Size = alignTo(Size + sizeof(EntryMetadata), 16); 151cc4b2fb6SRafael Auler uint8_t *AllocAddress = StackBase + StackSize + sizeof(EntryMetadata); 152cc4b2fb6SRafael Auler auto *M = reinterpret_cast<EntryMetadata *>(StackBase + StackSize); 15316a497c6SRafael Auler M->Magic = Magic; 154cc4b2fb6SRafael Auler M->AllocSize = Size; 155cc4b2fb6SRafael Auler StackSize += Size; 15616a497c6SRafael Auler assert(StackSize < MaxSize, "allocator ran out of memory"); 157cc4b2fb6SRafael Auler return AllocAddress; 158cc4b2fb6SRafael Auler } 159cc4b2fb6SRafael Auler 16016a497c6SRafael Auler #ifdef DEBUG 16116a497c6SRafael Auler /// Element-wise deallocation is only used for debugging to catch memory 16216a497c6SRafael Auler /// bugs by checking magic bytes. Ordinarily, we reset the allocator once 16316a497c6SRafael Auler /// we are done with it. Reset is done with clear(). There's no need 16416a497c6SRafael Auler /// to deallocate each element individually. 165cc4b2fb6SRafael Auler void deallocate(void *Ptr) { 16616a497c6SRafael Auler Lock L(M); 167cc4b2fb6SRafael Auler uint8_t MetadataOffset = sizeof(EntryMetadata); 168cc4b2fb6SRafael Auler auto *M = reinterpret_cast<EntryMetadata *>( 169cc4b2fb6SRafael Auler reinterpret_cast<uint8_t *>(Ptr) - MetadataOffset); 170cc4b2fb6SRafael Auler const uint8_t *StackTop = StackBase + StackSize + MetadataOffset; 171cc4b2fb6SRafael Auler // Validate size 172cc4b2fb6SRafael Auler if (Ptr != StackTop - M->AllocSize) { 17316a497c6SRafael Auler // Failed validation, check if it is a pointer returned by operator new [] 174cc4b2fb6SRafael Auler MetadataOffset += 175cc4b2fb6SRafael Auler sizeof(uint64_t); // Space for number of elements alloc'ed 176cc4b2fb6SRafael Auler M = reinterpret_cast<EntryMetadata *>(reinterpret_cast<uint8_t *>(Ptr) - 177cc4b2fb6SRafael Auler MetadataOffset); 17816a497c6SRafael Auler // Ok, it failed both checks if this assertion fails. Stop the program, we 17916a497c6SRafael Auler // have a memory bug. 180cc4b2fb6SRafael Auler assert(Ptr == StackTop - M->AllocSize, 181cc4b2fb6SRafael Auler "must deallocate the last element alloc'ed"); 182cc4b2fb6SRafael Auler } 18316a497c6SRafael Auler assert(M->Magic == Magic, "allocator magic is corrupt"); 184cc4b2fb6SRafael Auler StackSize -= M->AllocSize; 185cc4b2fb6SRafael Auler } 18616a497c6SRafael Auler #else 18716a497c6SRafael Auler void deallocate(void *) {} 18816a497c6SRafael Auler #endif 18916a497c6SRafael Auler 19016a497c6SRafael Auler void clear() { 19116a497c6SRafael Auler Lock L(M); 19216a497c6SRafael Auler StackSize = 0; 19316a497c6SRafael Auler } 19416a497c6SRafael Auler 19516a497c6SRafael Auler /// Set mmap reservation size (only relevant before first allocation) 1969bd71615SXun Li void setMaxSize(uint64_t Size) { MaxSize = Size; } 19716a497c6SRafael Auler 19816a497c6SRafael Auler /// Set mmap reservation privacy (only relevant before first allocation) 1999bd71615SXun Li void setShared(bool S) { Shared = S; } 20016a497c6SRafael Auler 20116a497c6SRafael Auler void destroy() { 20216a497c6SRafael Auler if (StackBase == nullptr) 20316a497c6SRafael Auler return; 20416a497c6SRafael Auler __munmap(StackBase, MaxSize); 20516a497c6SRafael Auler } 206cc4b2fb6SRafael Auler 207cc4b2fb6SRafael Auler private: 20816a497c6SRafael Auler static constexpr uint64_t Magic = 0x1122334455667788ull; 20916a497c6SRafael Auler uint64_t MaxSize = 0xa00000; 210cc4b2fb6SRafael Auler uint8_t *StackBase{nullptr}; 211cc4b2fb6SRafael Auler uint64_t StackSize{0}; 21216a497c6SRafael Auler bool Shared{false}; 21316a497c6SRafael Auler Mutex M; 214cc4b2fb6SRafael Auler }; 215cc4b2fb6SRafael Auler 21616a497c6SRafael Auler /// Used for allocating indirect call instrumentation counters. Initialized by 21716a497c6SRafael Auler /// __bolt_instr_setup, our initialization routine. 21816a497c6SRafael Auler BumpPtrAllocator GlobalAlloc; 219cc4b2fb6SRafael Auler } // anonymous namespace 220cc4b2fb6SRafael Auler 221cc4b2fb6SRafael Auler // User-defined placement new operators. We only use those (as opposed to 222cc4b2fb6SRafael Auler // overriding the regular operator new) so we can keep our allocator in the 223cc4b2fb6SRafael Auler // stack instead of in a data section (global). 224faaefff6SAlexander Shaposhnikov void *operator new(size_t Sz, BumpPtrAllocator &A) { return A.allocate(Sz); } 225faaefff6SAlexander Shaposhnikov void *operator new(size_t Sz, BumpPtrAllocator &A, char C) { 226cc4b2fb6SRafael Auler auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); 227ea2182feSMaksim Panchenko memset(Ptr, C, Sz); 228cc4b2fb6SRafael Auler return Ptr; 229cc4b2fb6SRafael Auler } 230faaefff6SAlexander Shaposhnikov void *operator new[](size_t Sz, BumpPtrAllocator &A) { 231cc4b2fb6SRafael Auler return A.allocate(Sz); 232cc4b2fb6SRafael Auler } 233faaefff6SAlexander Shaposhnikov void *operator new[](size_t Sz, BumpPtrAllocator &A, char C) { 234cc4b2fb6SRafael Auler auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); 235ea2182feSMaksim Panchenko memset(Ptr, C, Sz); 236cc4b2fb6SRafael Auler return Ptr; 237cc4b2fb6SRafael Auler } 238cc4b2fb6SRafael Auler // Only called during exception unwinding (useless). We must manually dealloc. 239cc4b2fb6SRafael Auler // C++ language weirdness 2409bd71615SXun Li void operator delete(void *Ptr, BumpPtrAllocator &A) { A.deallocate(Ptr); } 241cc4b2fb6SRafael Auler 242cc4b2fb6SRafael Auler namespace { 243cc4b2fb6SRafael Auler 2449aa134dcSVasily Leonenko // Disable instrumentation optimizations that sacrifice profile accuracy 2459aa134dcSVasily Leonenko extern "C" bool __bolt_instr_conservative; 2469aa134dcSVasily Leonenko 24716a497c6SRafael Auler /// Basic key-val atom stored in our hash 24816a497c6SRafael Auler struct SimpleHashTableEntryBase { 24916a497c6SRafael Auler uint64_t Key; 25016a497c6SRafael Auler uint64_t Val; 25116a497c6SRafael Auler }; 25216a497c6SRafael Auler 25316a497c6SRafael Auler /// This hash table implementation starts by allocating a table of size 25416a497c6SRafael Auler /// InitialSize. When conflicts happen in this main table, it resolves 25516a497c6SRafael Auler /// them by chaining a new table of size IncSize. It never reallocs as our 25616a497c6SRafael Auler /// allocator doesn't support it. The key is intended to be function pointers. 25716a497c6SRafael Auler /// There's no clever hash function (it's just x mod size, size being prime). 25816a497c6SRafael Auler /// I never tuned the coefficientes in the modular equation (TODO) 25916a497c6SRafael Auler /// This is used for indirect calls (each call site has one of this, so it 26016a497c6SRafael Auler /// should have a small footprint) and for tallying call counts globally for 26116a497c6SRafael Auler /// each target to check if we missed the origin of some calls (this one is a 26216a497c6SRafael Auler /// large instantiation of this template, since it is global for all call sites) 26316a497c6SRafael Auler template <typename T = SimpleHashTableEntryBase, uint32_t InitialSize = 7, 26416a497c6SRafael Auler uint32_t IncSize = 7> 26516a497c6SRafael Auler class SimpleHashTable { 26616a497c6SRafael Auler public: 26716a497c6SRafael Auler using MapEntry = T; 26816a497c6SRafael Auler 26916a497c6SRafael Auler /// Increment by 1 the value of \p Key. If it is not in this table, it will be 27016a497c6SRafael Auler /// added to the table and its value set to 1. 27116a497c6SRafael Auler void incrementVal(uint64_t Key, BumpPtrAllocator &Alloc) { 27216a497c6SRafael Auler ++get(Key, Alloc).Val; 27316a497c6SRafael Auler } 27416a497c6SRafael Auler 27516a497c6SRafael Auler /// Basic member accessing interface. Here we pass the allocator explicitly to 27616a497c6SRafael Auler /// avoid storing a pointer to it as part of this table (remember there is one 27716a497c6SRafael Auler /// hash for each indirect call site, so we wan't to minimize our footprint). 27816a497c6SRafael Auler MapEntry &get(uint64_t Key, BumpPtrAllocator &Alloc) { 2799aa134dcSVasily Leonenko if (!__bolt_instr_conservative) { 2809aa134dcSVasily Leonenko TryLock L(M); 2819aa134dcSVasily Leonenko if (!L.isLocked()) 2829aa134dcSVasily Leonenko return NoEntry; 2839aa134dcSVasily Leonenko return getOrAllocEntry(Key, Alloc); 2849aa134dcSVasily Leonenko } 28516a497c6SRafael Auler Lock L(M); 2869aa134dcSVasily Leonenko return getOrAllocEntry(Key, Alloc); 28716a497c6SRafael Auler } 28816a497c6SRafael Auler 28916a497c6SRafael Auler /// Traverses all elements in the table 29016a497c6SRafael Auler template <typename... Args> 29116a497c6SRafael Auler void forEachElement(void (*Callback)(MapEntry &, Args...), Args... args) { 292bd301a41SMichał Chojnowski Lock L(M); 29316a497c6SRafael Auler if (!TableRoot) 29416a497c6SRafael Auler return; 29516a497c6SRafael Auler return forEachElement(Callback, InitialSize, TableRoot, args...); 29616a497c6SRafael Auler } 29716a497c6SRafael Auler 29816a497c6SRafael Auler void resetCounters(); 29916a497c6SRafael Auler 30016a497c6SRafael Auler private: 30116a497c6SRafael Auler constexpr static uint64_t VacantMarker = 0; 30216a497c6SRafael Auler constexpr static uint64_t FollowUpTableMarker = 0x8000000000000000ull; 30316a497c6SRafael Auler 30416a497c6SRafael Auler MapEntry *TableRoot{nullptr}; 3059aa134dcSVasily Leonenko MapEntry NoEntry; 30616a497c6SRafael Auler Mutex M; 30716a497c6SRafael Auler 30816a497c6SRafael Auler template <typename... Args> 30916a497c6SRafael Auler void forEachElement(void (*Callback)(MapEntry &, Args...), 31016a497c6SRafael Auler uint32_t NumEntries, MapEntry *Entries, Args... args) { 311c7306cc2SAmir Ayupov for (uint32_t I = 0; I < NumEntries; ++I) { 312c7306cc2SAmir Ayupov MapEntry &Entry = Entries[I]; 31316a497c6SRafael Auler if (Entry.Key == VacantMarker) 31416a497c6SRafael Auler continue; 31516a497c6SRafael Auler if (Entry.Key & FollowUpTableMarker) { 31616a497c6SRafael Auler forEachElement(Callback, IncSize, 31716a497c6SRafael Auler reinterpret_cast<MapEntry *>(Entry.Key & 31816a497c6SRafael Auler ~FollowUpTableMarker), 31916a497c6SRafael Auler args...); 32016a497c6SRafael Auler continue; 32116a497c6SRafael Auler } 32216a497c6SRafael Auler Callback(Entry, args...); 32316a497c6SRafael Auler } 32416a497c6SRafael Auler } 32516a497c6SRafael Auler 32616a497c6SRafael Auler MapEntry &firstAllocation(uint64_t Key, BumpPtrAllocator &Alloc) { 32716a497c6SRafael Auler TableRoot = new (Alloc, 0) MapEntry[InitialSize]; 328c7306cc2SAmir Ayupov MapEntry &Entry = TableRoot[Key % InitialSize]; 32916a497c6SRafael Auler Entry.Key = Key; 33016a497c6SRafael Auler return Entry; 33116a497c6SRafael Auler } 33216a497c6SRafael Auler 33316a497c6SRafael Auler MapEntry &getEntry(MapEntry *Entries, uint64_t Key, uint64_t Selector, 33416a497c6SRafael Auler BumpPtrAllocator &Alloc, int CurLevel) { 33516a497c6SRafael Auler const uint32_t NumEntries = CurLevel == 0 ? InitialSize : IncSize; 33616a497c6SRafael Auler uint64_t Remainder = Selector / NumEntries; 33716a497c6SRafael Auler Selector = Selector % NumEntries; 338c7306cc2SAmir Ayupov MapEntry &Entry = Entries[Selector]; 33916a497c6SRafael Auler 34016a497c6SRafael Auler // A hit 34116a497c6SRafael Auler if (Entry.Key == Key) { 34216a497c6SRafael Auler return Entry; 34316a497c6SRafael Auler } 34416a497c6SRafael Auler 34516a497c6SRafael Auler // Vacant - add new entry 34616a497c6SRafael Auler if (Entry.Key == VacantMarker) { 34716a497c6SRafael Auler Entry.Key = Key; 34816a497c6SRafael Auler return Entry; 34916a497c6SRafael Auler } 35016a497c6SRafael Auler 35116a497c6SRafael Auler // Defer to the next level 35216a497c6SRafael Auler if (Entry.Key & FollowUpTableMarker) { 35316a497c6SRafael Auler return getEntry( 35416a497c6SRafael Auler reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker), 35516a497c6SRafael Auler Key, Remainder, Alloc, CurLevel + 1); 35616a497c6SRafael Auler } 35716a497c6SRafael Auler 35816a497c6SRafael Auler // Conflict - create the next level 35916a497c6SRafael Auler MapEntry *NextLevelTbl = new (Alloc, 0) MapEntry[IncSize]; 36016a497c6SRafael Auler uint64_t CurEntrySelector = Entry.Key / InitialSize; 36116a497c6SRafael Auler for (int I = 0; I < CurLevel; ++I) 36216a497c6SRafael Auler CurEntrySelector /= IncSize; 36316a497c6SRafael Auler CurEntrySelector = CurEntrySelector % IncSize; 36416a497c6SRafael Auler NextLevelTbl[CurEntrySelector] = Entry; 36516a497c6SRafael Auler Entry.Key = reinterpret_cast<uint64_t>(NextLevelTbl) | FollowUpTableMarker; 36616a497c6SRafael Auler return getEntry(NextLevelTbl, Key, Remainder, Alloc, CurLevel + 1); 36716a497c6SRafael Auler } 3689aa134dcSVasily Leonenko 3699aa134dcSVasily Leonenko MapEntry &getOrAllocEntry(uint64_t Key, BumpPtrAllocator &Alloc) { 3709aa134dcSVasily Leonenko if (TableRoot) 3719aa134dcSVasily Leonenko return getEntry(TableRoot, Key, Key, Alloc, 0); 3729aa134dcSVasily Leonenko return firstAllocation(Key, Alloc); 3739aa134dcSVasily Leonenko } 37416a497c6SRafael Auler }; 37516a497c6SRafael Auler 37616a497c6SRafael Auler template <typename T> void resetIndCallCounter(T &Entry) { 37716a497c6SRafael Auler Entry.Val = 0; 37816a497c6SRafael Auler } 37916a497c6SRafael Auler 38016a497c6SRafael Auler template <typename T, uint32_t X, uint32_t Y> 38116a497c6SRafael Auler void SimpleHashTable<T, X, Y>::resetCounters() { 38216a497c6SRafael Auler forEachElement(resetIndCallCounter); 38316a497c6SRafael Auler } 38416a497c6SRafael Auler 38516a497c6SRafael Auler /// Represents a hash table mapping a function target address to its counter. 38616a497c6SRafael Auler using IndirectCallHashTable = SimpleHashTable<>; 38716a497c6SRafael Auler 38816a497c6SRafael Auler /// Initialize with number 1 instead of 0 so we don't go into .bss. This is the 38916a497c6SRafael Auler /// global array of all hash tables storing indirect call destinations happening 39016a497c6SRafael Auler /// during runtime, one table per call site. 39116a497c6SRafael Auler IndirectCallHashTable *GlobalIndCallCounters{ 39216a497c6SRafael Auler reinterpret_cast<IndirectCallHashTable *>(1)}; 39316a497c6SRafael Auler 39416a497c6SRafael Auler /// Don't allow reentrancy in the fdata writing phase - only one thread writes 39516a497c6SRafael Auler /// it 39616a497c6SRafael Auler Mutex *GlobalWriteProfileMutex{reinterpret_cast<Mutex *>(1)}; 39716a497c6SRafael Auler 39816a497c6SRafael Auler /// Store number of calls in additional to target address (Key) and frequency 39916a497c6SRafael Auler /// as perceived by the basic block counter (Val). 40016a497c6SRafael Auler struct CallFlowEntryBase : public SimpleHashTableEntryBase { 40116a497c6SRafael Auler uint64_t Calls; 40216a497c6SRafael Auler }; 40316a497c6SRafael Auler 40416a497c6SRafael Auler using CallFlowHashTableBase = SimpleHashTable<CallFlowEntryBase, 11939, 233>; 40516a497c6SRafael Auler 40616a497c6SRafael Auler /// This is a large table indexing all possible call targets (indirect and 40716a497c6SRafael Auler /// direct ones). The goal is to find mismatches between number of calls (for 40816a497c6SRafael Auler /// those calls we were able to track) and the entry basic block counter of the 40916a497c6SRafael Auler /// callee. In most cases, these two should be equal. If not, there are two 41016a497c6SRafael Auler /// possible scenarios here: 41116a497c6SRafael Auler /// 41216a497c6SRafael Auler /// * Entry BB has higher frequency than all known calls to this function. 41316a497c6SRafael Auler /// In this case, we have dynamic library code or any uninstrumented code 41416a497c6SRafael Auler /// calling this function. We will write the profile for these untracked 41516a497c6SRafael Auler /// calls as having source "0 [unknown] 0" in the fdata file. 41616a497c6SRafael Auler /// 41716a497c6SRafael Auler /// * Number of known calls is higher than the frequency of entry BB 41816a497c6SRafael Auler /// This only happens when there is no counter for the entry BB / callee 41916a497c6SRafael Auler /// function is not simple (in BOLT terms). We don't do anything special 42016a497c6SRafael Auler /// here and just ignore those (we still report all calls to the non-simple 42116a497c6SRafael Auler /// function, though). 42216a497c6SRafael Auler /// 42316a497c6SRafael Auler class CallFlowHashTable : public CallFlowHashTableBase { 42416a497c6SRafael Auler public: 42516a497c6SRafael Auler CallFlowHashTable(BumpPtrAllocator &Alloc) : Alloc(Alloc) {} 42616a497c6SRafael Auler 42716a497c6SRafael Auler MapEntry &get(uint64_t Key) { return CallFlowHashTableBase::get(Key, Alloc); } 42816a497c6SRafael Auler 42916a497c6SRafael Auler private: 43016a497c6SRafael Auler // Different than the hash table for indirect call targets, we do store the 43116a497c6SRafael Auler // allocator here since there is only one call flow hash and space overhead 43216a497c6SRafael Auler // is negligible. 43316a497c6SRafael Auler BumpPtrAllocator &Alloc; 43416a497c6SRafael Auler }; 43516a497c6SRafael Auler 43616a497c6SRafael Auler /// 43716a497c6SRafael Auler /// Description metadata emitted by BOLT to describe the program - refer to 43816a497c6SRafael Auler /// Passes/Instrumentation.cpp - Instrumentation::emitTablesAsELFNote() 43916a497c6SRafael Auler /// 44016a497c6SRafael Auler struct Location { 44116a497c6SRafael Auler uint32_t FunctionName; 44216a497c6SRafael Auler uint32_t Offset; 44316a497c6SRafael Auler }; 44416a497c6SRafael Auler 44516a497c6SRafael Auler struct CallDescription { 44616a497c6SRafael Auler Location From; 44716a497c6SRafael Auler uint32_t FromNode; 44816a497c6SRafael Auler Location To; 44916a497c6SRafael Auler uint32_t Counter; 45016a497c6SRafael Auler uint64_t TargetAddress; 45116a497c6SRafael Auler }; 45216a497c6SRafael Auler 45316a497c6SRafael Auler using IndCallDescription = Location; 45416a497c6SRafael Auler 45516a497c6SRafael Auler struct IndCallTargetDescription { 45616a497c6SRafael Auler Location Loc; 45716a497c6SRafael Auler uint64_t Address; 45816a497c6SRafael Auler }; 45916a497c6SRafael Auler 46016a497c6SRafael Auler struct EdgeDescription { 46116a497c6SRafael Auler Location From; 46216a497c6SRafael Auler uint32_t FromNode; 46316a497c6SRafael Auler Location To; 46416a497c6SRafael Auler uint32_t ToNode; 46516a497c6SRafael Auler uint32_t Counter; 46616a497c6SRafael Auler }; 46716a497c6SRafael Auler 46816a497c6SRafael Auler struct InstrumentedNode { 46916a497c6SRafael Auler uint32_t Node; 47016a497c6SRafael Auler uint32_t Counter; 47116a497c6SRafael Auler }; 47216a497c6SRafael Auler 47316a497c6SRafael Auler struct EntryNode { 47416a497c6SRafael Auler uint64_t Node; 47516a497c6SRafael Auler uint64_t Address; 47616a497c6SRafael Auler }; 47716a497c6SRafael Auler 47816a497c6SRafael Auler struct FunctionDescription { 47916a497c6SRafael Auler uint32_t NumLeafNodes; 48016a497c6SRafael Auler const InstrumentedNode *LeafNodes; 48116a497c6SRafael Auler uint32_t NumEdges; 48216a497c6SRafael Auler const EdgeDescription *Edges; 48316a497c6SRafael Auler uint32_t NumCalls; 48416a497c6SRafael Auler const CallDescription *Calls; 48516a497c6SRafael Auler uint32_t NumEntryNodes; 48616a497c6SRafael Auler const EntryNode *EntryNodes; 48716a497c6SRafael Auler 48816a497c6SRafael Auler /// Constructor will parse the serialized function metadata written by BOLT 48916a497c6SRafael Auler FunctionDescription(const uint8_t *FuncDesc); 49016a497c6SRafael Auler 49116a497c6SRafael Auler uint64_t getSize() const { 49216a497c6SRafael Auler return 16 + NumLeafNodes * sizeof(InstrumentedNode) + 49316a497c6SRafael Auler NumEdges * sizeof(EdgeDescription) + 49416a497c6SRafael Auler NumCalls * sizeof(CallDescription) + 49516a497c6SRafael Auler NumEntryNodes * sizeof(EntryNode); 49616a497c6SRafael Auler } 49716a497c6SRafael Auler }; 49816a497c6SRafael Auler 49916a497c6SRafael Auler /// The context is created when the fdata profile needs to be written to disk 50016a497c6SRafael Auler /// and we need to interpret our runtime counters. It contains pointers to the 50116a497c6SRafael Auler /// mmaped binary (only the BOLT written metadata section). Deserialization 50216a497c6SRafael Auler /// should be straightforward as most data is POD or an array of POD elements. 50316a497c6SRafael Auler /// This metadata is used to reconstruct function CFGs. 50416a497c6SRafael Auler struct ProfileWriterContext { 50516a497c6SRafael Auler IndCallDescription *IndCallDescriptions; 50616a497c6SRafael Auler IndCallTargetDescription *IndCallTargets; 50716a497c6SRafael Auler uint8_t *FuncDescriptions; 50816a497c6SRafael Auler char *Strings; // String table with function names used in this binary 50916a497c6SRafael Auler int FileDesc; // File descriptor for the file on disk backing this 51016a497c6SRafael Auler // information in memory via mmap 51116a497c6SRafael Auler void *MMapPtr; // The mmap ptr 51216a497c6SRafael Auler int MMapSize; // The mmap size 51316a497c6SRafael Auler 51416a497c6SRafael Auler /// Hash table storing all possible call destinations to detect untracked 51516a497c6SRafael Auler /// calls and correctly report them as [unknown] in output fdata. 51616a497c6SRafael Auler CallFlowHashTable *CallFlowTable; 51716a497c6SRafael Auler 51816a497c6SRafael Auler /// Lookup the sorted indirect call target vector to fetch function name and 51916a497c6SRafael Auler /// offset for an arbitrary function pointer. 52016a497c6SRafael Auler const IndCallTargetDescription *lookupIndCallTarget(uint64_t Target) const; 52116a497c6SRafael Auler }; 52216a497c6SRafael Auler 52316a497c6SRafael Auler /// Perform a string comparison and returns zero if Str1 matches Str2. Compares 52416a497c6SRafael Auler /// at most Size characters. 525cc4b2fb6SRafael Auler int compareStr(const char *Str1, const char *Str2, int Size) { 526821480d2SRafael Auler while (*Str1 == *Str2) { 527821480d2SRafael Auler if (*Str1 == '\0' || --Size == 0) 528821480d2SRafael Auler return 0; 529821480d2SRafael Auler ++Str1; 530821480d2SRafael Auler ++Str2; 531821480d2SRafael Auler } 532821480d2SRafael Auler return 1; 533821480d2SRafael Auler } 534821480d2SRafael Auler 53516a497c6SRafael Auler /// Output Location to the fdata file 53616a497c6SRafael Auler char *serializeLoc(const ProfileWriterContext &Ctx, char *OutBuf, 537cc4b2fb6SRafael Auler const Location Loc, uint32_t BufSize) { 538821480d2SRafael Auler // fdata location format: Type Name Offset 539821480d2SRafael Auler // Type 1 - regular symbol 540821480d2SRafael Auler OutBuf = strCopy(OutBuf, "1 "); 54116a497c6SRafael Auler const char *Str = Ctx.Strings + Loc.FunctionName; 542cc4b2fb6SRafael Auler uint32_t Size = 25; 54362aa74f8SRafael Auler while (*Str) { 54462aa74f8SRafael Auler *OutBuf++ = *Str++; 545cc4b2fb6SRafael Auler if (++Size >= BufSize) 546cc4b2fb6SRafael Auler break; 54762aa74f8SRafael Auler } 548cc4b2fb6SRafael Auler assert(!*Str, "buffer overflow, function name too large"); 54962aa74f8SRafael Auler *OutBuf++ = ' '; 550821480d2SRafael Auler OutBuf = intToStr(OutBuf, Loc.Offset, 16); 55162aa74f8SRafael Auler *OutBuf++ = ' '; 55262aa74f8SRafael Auler return OutBuf; 55362aa74f8SRafael Auler } 55462aa74f8SRafael Auler 55516a497c6SRafael Auler /// Read and deserialize a function description written by BOLT. \p FuncDesc 55616a497c6SRafael Auler /// points at the beginning of the function metadata structure in the file. 55716a497c6SRafael Auler /// See Instrumentation::emitTablesAsELFNote() 55816a497c6SRafael Auler FunctionDescription::FunctionDescription(const uint8_t *FuncDesc) { 55916a497c6SRafael Auler NumLeafNodes = *reinterpret_cast<const uint32_t *>(FuncDesc); 56016a497c6SRafael Auler DEBUG(reportNumber("NumLeafNodes = ", NumLeafNodes, 10)); 56116a497c6SRafael Auler LeafNodes = reinterpret_cast<const InstrumentedNode *>(FuncDesc + 4); 56216a497c6SRafael Auler 56316a497c6SRafael Auler NumEdges = *reinterpret_cast<const uint32_t *>( 56416a497c6SRafael Auler FuncDesc + 4 + NumLeafNodes * sizeof(InstrumentedNode)); 56516a497c6SRafael Auler DEBUG(reportNumber("NumEdges = ", NumEdges, 10)); 56616a497c6SRafael Auler Edges = reinterpret_cast<const EdgeDescription *>( 56716a497c6SRafael Auler FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode)); 56816a497c6SRafael Auler 56916a497c6SRafael Auler NumCalls = *reinterpret_cast<const uint32_t *>( 57016a497c6SRafael Auler FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode) + 57116a497c6SRafael Auler NumEdges * sizeof(EdgeDescription)); 57216a497c6SRafael Auler DEBUG(reportNumber("NumCalls = ", NumCalls, 10)); 57316a497c6SRafael Auler Calls = reinterpret_cast<const CallDescription *>( 57416a497c6SRafael Auler FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + 57516a497c6SRafael Auler NumEdges * sizeof(EdgeDescription)); 57616a497c6SRafael Auler NumEntryNodes = *reinterpret_cast<const uint32_t *>( 57716a497c6SRafael Auler FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + 57816a497c6SRafael Auler NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); 57916a497c6SRafael Auler DEBUG(reportNumber("NumEntryNodes = ", NumEntryNodes, 10)); 58016a497c6SRafael Auler EntryNodes = reinterpret_cast<const EntryNode *>( 58116a497c6SRafael Auler FuncDesc + 16 + NumLeafNodes * sizeof(InstrumentedNode) + 58216a497c6SRafael Auler NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); 58316a497c6SRafael Auler } 58416a497c6SRafael Auler 58516a497c6SRafael Auler /// Read and mmap descriptions written by BOLT from the executable's notes 58616a497c6SRafael Auler /// section 587a0dd5b05SAlexander Shaposhnikov #if defined(HAVE_ELF_H) and !defined(__APPLE__) 5882ffd6e2bSElvina Yakubova 5892ffd6e2bSElvina Yakubova void *__attribute__((noinline)) __get_pc() { 5902ffd6e2bSElvina Yakubova return __builtin_extract_return_addr(__builtin_return_address(0)); 5912ffd6e2bSElvina Yakubova } 5922ffd6e2bSElvina Yakubova 5932ffd6e2bSElvina Yakubova /// Get string with address and parse it to hex pair <StartAddress, EndAddress> 5942ffd6e2bSElvina Yakubova bool parseAddressRange(const char *Str, uint64_t &StartAddress, 5952ffd6e2bSElvina Yakubova uint64_t &EndAddress) { 5962ffd6e2bSElvina Yakubova if (!Str) 5972ffd6e2bSElvina Yakubova return false; 5982ffd6e2bSElvina Yakubova // Parsed string format: <hex1>-<hex2> 5992ffd6e2bSElvina Yakubova StartAddress = hexToLong(Str, '-'); 6002ffd6e2bSElvina Yakubova while (*Str && *Str != '-') 6012ffd6e2bSElvina Yakubova ++Str; 6022ffd6e2bSElvina Yakubova if (!*Str) 6032ffd6e2bSElvina Yakubova return false; 6042ffd6e2bSElvina Yakubova ++Str; // swallow '-' 6052ffd6e2bSElvina Yakubova EndAddress = hexToLong(Str); 6062ffd6e2bSElvina Yakubova return true; 6072ffd6e2bSElvina Yakubova } 6082ffd6e2bSElvina Yakubova 6092ffd6e2bSElvina Yakubova /// Get full path to the real binary by getting current virtual address 6102ffd6e2bSElvina Yakubova /// and searching for the appropriate link in address range in 6112ffd6e2bSElvina Yakubova /// /proc/self/map_files 6122ffd6e2bSElvina Yakubova static char *getBinaryPath() { 6132ffd6e2bSElvina Yakubova const uint32_t BufSize = 1024; 61446bc197dSMarius Wachtler const uint32_t NameMax = 4096; 6152ffd6e2bSElvina Yakubova const char DirPath[] = "/proc/self/map_files/"; 6162ffd6e2bSElvina Yakubova static char TargetPath[NameMax] = {}; 6172ffd6e2bSElvina Yakubova char Buf[BufSize]; 6182ffd6e2bSElvina Yakubova 619519cbbaaSVasily Leonenko if (__bolt_instr_binpath[0] != '\0') 620519cbbaaSVasily Leonenko return __bolt_instr_binpath; 621519cbbaaSVasily Leonenko 6222ffd6e2bSElvina Yakubova if (TargetPath[0] != '\0') 6232ffd6e2bSElvina Yakubova return TargetPath; 6242ffd6e2bSElvina Yakubova 6252ffd6e2bSElvina Yakubova unsigned long CurAddr = (unsigned long)__get_pc(); 6262ffd6e2bSElvina Yakubova uint64_t FDdir = __open(DirPath, 627821480d2SRafael Auler /*flags=*/0 /*O_RDONLY*/, 628821480d2SRafael Auler /*mode=*/0666); 6293b00a3a2SMarius Wachtler assert(static_cast<int64_t>(FDdir) >= 0, 6302ffd6e2bSElvina Yakubova "failed to open /proc/self/map_files"); 6312ffd6e2bSElvina Yakubova 6322ffd6e2bSElvina Yakubova while (long Nread = __getdents(FDdir, (struct dirent *)Buf, BufSize)) { 6332ffd6e2bSElvina Yakubova assert(static_cast<int64_t>(Nread) != -1, "failed to get folder entries"); 6342ffd6e2bSElvina Yakubova 6352ffd6e2bSElvina Yakubova struct dirent *d; 6362ffd6e2bSElvina Yakubova for (long Bpos = 0; Bpos < Nread; Bpos += d->d_reclen) { 6372ffd6e2bSElvina Yakubova d = (struct dirent *)(Buf + Bpos); 6382ffd6e2bSElvina Yakubova 6392ffd6e2bSElvina Yakubova uint64_t StartAddress, EndAddress; 6402ffd6e2bSElvina Yakubova if (!parseAddressRange(d->d_name, StartAddress, EndAddress)) 6412ffd6e2bSElvina Yakubova continue; 6422ffd6e2bSElvina Yakubova if (CurAddr < StartAddress || CurAddr > EndAddress) 6432ffd6e2bSElvina Yakubova continue; 6442ffd6e2bSElvina Yakubova char FindBuf[NameMax]; 6452ffd6e2bSElvina Yakubova char *C = strCopy(FindBuf, DirPath, NameMax); 6462ffd6e2bSElvina Yakubova C = strCopy(C, d->d_name, NameMax - (C - FindBuf)); 6472ffd6e2bSElvina Yakubova *C = '\0'; 6482ffd6e2bSElvina Yakubova uint32_t Ret = __readlink(FindBuf, TargetPath, sizeof(TargetPath)); 6492ffd6e2bSElvina Yakubova assert(Ret != -1 && Ret != BufSize, "readlink error"); 6502ffd6e2bSElvina Yakubova TargetPath[Ret] = '\0'; 6512ffd6e2bSElvina Yakubova return TargetPath; 6522ffd6e2bSElvina Yakubova } 6532ffd6e2bSElvina Yakubova } 6542ffd6e2bSElvina Yakubova return nullptr; 6552ffd6e2bSElvina Yakubova } 6562ffd6e2bSElvina Yakubova 6572ffd6e2bSElvina Yakubova ProfileWriterContext readDescriptions() { 6582ffd6e2bSElvina Yakubova ProfileWriterContext Result; 6592ffd6e2bSElvina Yakubova char *BinPath = getBinaryPath(); 6602ffd6e2bSElvina Yakubova assert(BinPath && BinPath[0] != '\0', "failed to find binary path"); 6612ffd6e2bSElvina Yakubova 6622ffd6e2bSElvina Yakubova uint64_t FD = __open(BinPath, 6632ffd6e2bSElvina Yakubova /*flags=*/0 /*O_RDONLY*/, 6642ffd6e2bSElvina Yakubova /*mode=*/0666); 6653b00a3a2SMarius Wachtler assert(static_cast<int64_t>(FD) >= 0, "failed to open binary path"); 6662ffd6e2bSElvina Yakubova 667821480d2SRafael Auler Result.FileDesc = FD; 668821480d2SRafael Auler 669821480d2SRafael Auler // mmap our binary to memory 670821480d2SRafael Auler uint64_t Size = __lseek(FD, 0, 2 /*SEEK_END*/); 671821480d2SRafael Auler uint8_t *BinContents = reinterpret_cast<uint8_t *>( 672821480d2SRafael Auler __mmap(0, Size, 0x1 /* PROT_READ*/, 0x2 /* MAP_PRIVATE*/, FD, 0)); 673821480d2SRafael Auler Result.MMapPtr = BinContents; 674821480d2SRafael Auler Result.MMapSize = Size; 675821480d2SRafael Auler Elf64_Ehdr *Hdr = reinterpret_cast<Elf64_Ehdr *>(BinContents); 676821480d2SRafael Auler Elf64_Shdr *Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff); 677821480d2SRafael Auler Elf64_Shdr *StringTblHeader = reinterpret_cast<Elf64_Shdr *>( 678821480d2SRafael Auler BinContents + Hdr->e_shoff + Hdr->e_shstrndx * Hdr->e_shentsize); 679821480d2SRafael Auler 680821480d2SRafael Auler // Find .bolt.instr.tables with the data we need and set pointers to it 681821480d2SRafael Auler for (int I = 0; I < Hdr->e_shnum; ++I) { 682821480d2SRafael Auler char *SecName = reinterpret_cast<char *>( 683821480d2SRafael Auler BinContents + StringTblHeader->sh_offset + Shdr->sh_name); 684821480d2SRafael Auler if (compareStr(SecName, ".bolt.instr.tables", 64) != 0) { 685821480d2SRafael Auler Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff + 686821480d2SRafael Auler (I + 1) * Hdr->e_shentsize); 687821480d2SRafael Auler continue; 688821480d2SRafael Auler } 689821480d2SRafael Auler // Actual contents of the ELF note start after offset 20 decimal: 690821480d2SRafael Auler // Offset 0: Producer name size (4 bytes) 691821480d2SRafael Auler // Offset 4: Contents size (4 bytes) 692821480d2SRafael Auler // Offset 8: Note type (4 bytes) 693821480d2SRafael Auler // Offset 12: Producer name (BOLT\0) (5 bytes + align to 4-byte boundary) 694821480d2SRafael Auler // Offset 20: Contents 69516a497c6SRafael Auler uint32_t IndCallDescSize = 696cc4b2fb6SRafael Auler *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 20); 69716a497c6SRafael Auler uint32_t IndCallTargetDescSize = *reinterpret_cast<uint32_t *>( 69816a497c6SRafael Auler BinContents + Shdr->sh_offset + 24 + IndCallDescSize); 69916a497c6SRafael Auler uint32_t FuncDescSize = 70016a497c6SRafael Auler *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 28 + 70116a497c6SRafael Auler IndCallDescSize + IndCallTargetDescSize); 70216a497c6SRafael Auler Result.IndCallDescriptions = reinterpret_cast<IndCallDescription *>( 70316a497c6SRafael Auler BinContents + Shdr->sh_offset + 24); 70416a497c6SRafael Auler Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( 70516a497c6SRafael Auler BinContents + Shdr->sh_offset + 28 + IndCallDescSize); 70616a497c6SRafael Auler Result.FuncDescriptions = BinContents + Shdr->sh_offset + 32 + 70716a497c6SRafael Auler IndCallDescSize + IndCallTargetDescSize; 70816a497c6SRafael Auler Result.Strings = reinterpret_cast<char *>( 70916a497c6SRafael Auler BinContents + Shdr->sh_offset + 32 + IndCallDescSize + 71016a497c6SRafael Auler IndCallTargetDescSize + FuncDescSize); 711821480d2SRafael Auler return Result; 712821480d2SRafael Auler } 713821480d2SRafael Auler const char ErrMsg[] = 714821480d2SRafael Auler "BOLT instrumentation runtime error: could not find section " 715821480d2SRafael Auler ".bolt.instr.tables\n"; 716821480d2SRafael Auler reportError(ErrMsg, sizeof(ErrMsg)); 717821480d2SRafael Auler return Result; 718821480d2SRafael Auler } 719a0dd5b05SAlexander Shaposhnikov 720ba31344fSRafael Auler #else 721a0dd5b05SAlexander Shaposhnikov 72216a497c6SRafael Auler ProfileWriterContext readDescriptions() { 72316a497c6SRafael Auler ProfileWriterContext Result; 724a0dd5b05SAlexander Shaposhnikov uint8_t *Tables = _bolt_instr_tables_getter(); 725a0dd5b05SAlexander Shaposhnikov uint32_t IndCallDescSize = *reinterpret_cast<uint32_t *>(Tables); 726a0dd5b05SAlexander Shaposhnikov uint32_t IndCallTargetDescSize = 727a0dd5b05SAlexander Shaposhnikov *reinterpret_cast<uint32_t *>(Tables + 4 + IndCallDescSize); 728a0dd5b05SAlexander Shaposhnikov uint32_t FuncDescSize = *reinterpret_cast<uint32_t *>( 729a0dd5b05SAlexander Shaposhnikov Tables + 8 + IndCallDescSize + IndCallTargetDescSize); 730a0dd5b05SAlexander Shaposhnikov Result.IndCallDescriptions = 731a0dd5b05SAlexander Shaposhnikov reinterpret_cast<IndCallDescription *>(Tables + 4); 732a0dd5b05SAlexander Shaposhnikov Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( 733a0dd5b05SAlexander Shaposhnikov Tables + 8 + IndCallDescSize); 734a0dd5b05SAlexander Shaposhnikov Result.FuncDescriptions = 735a0dd5b05SAlexander Shaposhnikov Tables + 12 + IndCallDescSize + IndCallTargetDescSize; 736a0dd5b05SAlexander Shaposhnikov Result.Strings = reinterpret_cast<char *>( 737a0dd5b05SAlexander Shaposhnikov Tables + 12 + IndCallDescSize + IndCallTargetDescSize + FuncDescSize); 738ba31344fSRafael Auler return Result; 739ba31344fSRafael Auler } 740a0dd5b05SAlexander Shaposhnikov 741ba31344fSRafael Auler #endif 742821480d2SRafael Auler 743a0dd5b05SAlexander Shaposhnikov #if !defined(__APPLE__) 74416a497c6SRafael Auler /// Debug by printing overall metadata global numbers to check it is sane 74516a497c6SRafael Auler void printStats(const ProfileWriterContext &Ctx) { 746cc4b2fb6SRafael Auler char StatMsg[BufSize]; 747cc4b2fb6SRafael Auler char *StatPtr = StatMsg; 74816a497c6SRafael Auler StatPtr = 74916a497c6SRafael Auler strCopy(StatPtr, 75016a497c6SRafael Auler "\nBOLT INSTRUMENTATION RUNTIME STATISTICS\n\nIndCallDescSize: "); 751cc4b2fb6SRafael Auler StatPtr = intToStr(StatPtr, 75216a497c6SRafael Auler Ctx.FuncDescriptions - 75316a497c6SRafael Auler reinterpret_cast<uint8_t *>(Ctx.IndCallDescriptions), 754cc4b2fb6SRafael Auler 10); 755cc4b2fb6SRafael Auler StatPtr = strCopy(StatPtr, "\nFuncDescSize: "); 756cc4b2fb6SRafael Auler StatPtr = intToStr( 757cc4b2fb6SRafael Auler StatPtr, 75816a497c6SRafael Auler reinterpret_cast<uint8_t *>(Ctx.Strings) - Ctx.FuncDescriptions, 10); 75916a497c6SRafael Auler StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_ind_calls: "); 76016a497c6SRafael Auler StatPtr = intToStr(StatPtr, __bolt_instr_num_ind_calls, 10); 761cc4b2fb6SRafael Auler StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_funcs: "); 762cc4b2fb6SRafael Auler StatPtr = intToStr(StatPtr, __bolt_instr_num_funcs, 10); 763cc4b2fb6SRafael Auler StatPtr = strCopy(StatPtr, "\n"); 764cc4b2fb6SRafael Auler __write(2, StatMsg, StatPtr - StatMsg); 765cc4b2fb6SRafael Auler } 766a0dd5b05SAlexander Shaposhnikov #endif 767a0dd5b05SAlexander Shaposhnikov 768cc4b2fb6SRafael Auler 769cc4b2fb6SRafael Auler /// This is part of a simple CFG representation in memory, where we store 770cc4b2fb6SRafael Auler /// a dynamically sized array of input and output edges per node, and store 771cc4b2fb6SRafael Auler /// a dynamically sized array of nodes per graph. We also store the spanning 772cc4b2fb6SRafael Auler /// tree edges for that CFG in a separate array of nodes in 773cc4b2fb6SRafael Auler /// \p SpanningTreeNodes, while the regular nodes live in \p CFGNodes. 774cc4b2fb6SRafael Auler struct Edge { 775cc4b2fb6SRafael Auler uint32_t Node; // Index in nodes array regarding the destination of this edge 776cc4b2fb6SRafael Auler uint32_t ID; // Edge index in an array comprising all edges of the graph 777cc4b2fb6SRafael Auler }; 778cc4b2fb6SRafael Auler 779cc4b2fb6SRafael Auler /// A regular graph node or a spanning tree node 780cc4b2fb6SRafael Auler struct Node { 781cc4b2fb6SRafael Auler uint32_t NumInEdges{0}; // Input edge count used to size InEdge 782cc4b2fb6SRafael Auler uint32_t NumOutEdges{0}; // Output edge count used to size OutEdges 783cc4b2fb6SRafael Auler Edge *InEdges{nullptr}; // Created and managed by \p Graph 784cc4b2fb6SRafael Auler Edge *OutEdges{nullptr}; // ditto 785cc4b2fb6SRafael Auler }; 786cc4b2fb6SRafael Auler 787cc4b2fb6SRafael Auler /// Main class for CFG representation in memory. Manages object creation and 788cc4b2fb6SRafael Auler /// destruction, populates an array of CFG nodes as well as corresponding 789cc4b2fb6SRafael Auler /// spanning tree nodes. 790cc4b2fb6SRafael Auler struct Graph { 791cc4b2fb6SRafael Auler uint32_t NumNodes; 792cc4b2fb6SRafael Auler Node *CFGNodes; 793cc4b2fb6SRafael Auler Node *SpanningTreeNodes; 79416a497c6SRafael Auler uint64_t *EdgeFreqs; 79516a497c6SRafael Auler uint64_t *CallFreqs; 796cc4b2fb6SRafael Auler BumpPtrAllocator &Alloc; 79716a497c6SRafael Auler const FunctionDescription &D; 798cc4b2fb6SRafael Auler 79916a497c6SRafael Auler /// Reads a list of edges from function description \p D and builds 800cc4b2fb6SRafael Auler /// the graph from it. Allocates several internal dynamic structures that are 80116a497c6SRafael Auler /// later destroyed by ~Graph() and uses \p Alloc. D.LeafNodes contain all 802cc4b2fb6SRafael Auler /// spanning tree leaf nodes descriptions (their counters). They are the seed 803cc4b2fb6SRafael Auler /// used to compute the rest of the missing edge counts in a bottom-up 804cc4b2fb6SRafael Auler /// traversal of the spanning tree. 80516a497c6SRafael Auler Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, 80616a497c6SRafael Auler const uint64_t *Counters, ProfileWriterContext &Ctx); 807cc4b2fb6SRafael Auler ~Graph(); 808cc4b2fb6SRafael Auler void dump() const; 80916a497c6SRafael Auler 81016a497c6SRafael Auler private: 81116a497c6SRafael Auler void computeEdgeFrequencies(const uint64_t *Counters, 81216a497c6SRafael Auler ProfileWriterContext &Ctx); 81316a497c6SRafael Auler void dumpEdgeFreqs() const; 814cc4b2fb6SRafael Auler }; 815cc4b2fb6SRafael Auler 81616a497c6SRafael Auler Graph::Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, 81716a497c6SRafael Auler const uint64_t *Counters, ProfileWriterContext &Ctx) 81816a497c6SRafael Auler : Alloc(Alloc), D(D) { 819cc4b2fb6SRafael Auler DEBUG(reportNumber("G = 0x", (uint64_t)this, 16)); 820cc4b2fb6SRafael Auler // First pass to determine number of nodes 82116a497c6SRafael Auler int32_t MaxNodes = -1; 82216a497c6SRafael Auler CallFreqs = nullptr; 82316a497c6SRafael Auler EdgeFreqs = nullptr; 82416a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 82516a497c6SRafael Auler if (static_cast<int32_t>(D.Edges[I].FromNode) > MaxNodes) 82616a497c6SRafael Auler MaxNodes = D.Edges[I].FromNode; 82716a497c6SRafael Auler if (static_cast<int32_t>(D.Edges[I].ToNode) > MaxNodes) 82816a497c6SRafael Auler MaxNodes = D.Edges[I].ToNode; 829cc4b2fb6SRafael Auler } 830a0dd5b05SAlexander Shaposhnikov 831883bf0e8SAmir Ayupov for (int I = 0; I < D.NumLeafNodes; ++I) 83216a497c6SRafael Auler if (static_cast<int32_t>(D.LeafNodes[I].Node) > MaxNodes) 83316a497c6SRafael Auler MaxNodes = D.LeafNodes[I].Node; 834883bf0e8SAmir Ayupov 835883bf0e8SAmir Ayupov for (int I = 0; I < D.NumCalls; ++I) 83616a497c6SRafael Auler if (static_cast<int32_t>(D.Calls[I].FromNode) > MaxNodes) 83716a497c6SRafael Auler MaxNodes = D.Calls[I].FromNode; 838883bf0e8SAmir Ayupov 83916a497c6SRafael Auler // No nodes? Nothing to do 84016a497c6SRafael Auler if (MaxNodes < 0) { 84116a497c6SRafael Auler DEBUG(report("No nodes!\n")); 842cc4b2fb6SRafael Auler CFGNodes = nullptr; 843cc4b2fb6SRafael Auler SpanningTreeNodes = nullptr; 844cc4b2fb6SRafael Auler NumNodes = 0; 845cc4b2fb6SRafael Auler return; 846cc4b2fb6SRafael Auler } 847cc4b2fb6SRafael Auler ++MaxNodes; 848cc4b2fb6SRafael Auler DEBUG(reportNumber("NumNodes = ", MaxNodes, 10)); 84916a497c6SRafael Auler NumNodes = static_cast<uint32_t>(MaxNodes); 850cc4b2fb6SRafael Auler 851cc4b2fb6SRafael Auler // Initial allocations 852cc4b2fb6SRafael Auler CFGNodes = new (Alloc) Node[MaxNodes]; 853a0dd5b05SAlexander Shaposhnikov 854cc4b2fb6SRafael Auler DEBUG(reportNumber("G->CFGNodes = 0x", (uint64_t)CFGNodes, 16)); 855cc4b2fb6SRafael Auler SpanningTreeNodes = new (Alloc) Node[MaxNodes]; 856cc4b2fb6SRafael Auler DEBUG(reportNumber("G->SpanningTreeNodes = 0x", 857cc4b2fb6SRafael Auler (uint64_t)SpanningTreeNodes, 16)); 858cc4b2fb6SRafael Auler 859cc4b2fb6SRafael Auler // Figure out how much to allocate to each vector (in/out edge sets) 86016a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 86116a497c6SRafael Auler CFGNodes[D.Edges[I].FromNode].NumOutEdges++; 86216a497c6SRafael Auler CFGNodes[D.Edges[I].ToNode].NumInEdges++; 86316a497c6SRafael Auler if (D.Edges[I].Counter != 0xffffffff) 864cc4b2fb6SRafael Auler continue; 865cc4b2fb6SRafael Auler 86616a497c6SRafael Auler SpanningTreeNodes[D.Edges[I].FromNode].NumOutEdges++; 86716a497c6SRafael Auler SpanningTreeNodes[D.Edges[I].ToNode].NumInEdges++; 868cc4b2fb6SRafael Auler } 869cc4b2fb6SRafael Auler 870cc4b2fb6SRafael Auler // Allocate in/out edge sets 871cc4b2fb6SRafael Auler for (int I = 0; I < MaxNodes; ++I) { 872cc4b2fb6SRafael Auler if (CFGNodes[I].NumInEdges > 0) 873cc4b2fb6SRafael Auler CFGNodes[I].InEdges = new (Alloc) Edge[CFGNodes[I].NumInEdges]; 874cc4b2fb6SRafael Auler if (CFGNodes[I].NumOutEdges > 0) 875cc4b2fb6SRafael Auler CFGNodes[I].OutEdges = new (Alloc) Edge[CFGNodes[I].NumOutEdges]; 876cc4b2fb6SRafael Auler if (SpanningTreeNodes[I].NumInEdges > 0) 877cc4b2fb6SRafael Auler SpanningTreeNodes[I].InEdges = 878cc4b2fb6SRafael Auler new (Alloc) Edge[SpanningTreeNodes[I].NumInEdges]; 879cc4b2fb6SRafael Auler if (SpanningTreeNodes[I].NumOutEdges > 0) 880cc4b2fb6SRafael Auler SpanningTreeNodes[I].OutEdges = 881cc4b2fb6SRafael Auler new (Alloc) Edge[SpanningTreeNodes[I].NumOutEdges]; 882cc4b2fb6SRafael Auler CFGNodes[I].NumInEdges = 0; 883cc4b2fb6SRafael Auler CFGNodes[I].NumOutEdges = 0; 884cc4b2fb6SRafael Auler SpanningTreeNodes[I].NumInEdges = 0; 885cc4b2fb6SRafael Auler SpanningTreeNodes[I].NumOutEdges = 0; 886cc4b2fb6SRafael Auler } 887cc4b2fb6SRafael Auler 888cc4b2fb6SRafael Auler // Fill in/out edge sets 88916a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 89016a497c6SRafael Auler const uint32_t Src = D.Edges[I].FromNode; 89116a497c6SRafael Auler const uint32_t Dst = D.Edges[I].ToNode; 892cc4b2fb6SRafael Auler Edge *E = &CFGNodes[Src].OutEdges[CFGNodes[Src].NumOutEdges++]; 893cc4b2fb6SRafael Auler E->Node = Dst; 894cc4b2fb6SRafael Auler E->ID = I; 895cc4b2fb6SRafael Auler 896cc4b2fb6SRafael Auler E = &CFGNodes[Dst].InEdges[CFGNodes[Dst].NumInEdges++]; 897cc4b2fb6SRafael Auler E->Node = Src; 898cc4b2fb6SRafael Auler E->ID = I; 899cc4b2fb6SRafael Auler 90016a497c6SRafael Auler if (D.Edges[I].Counter != 0xffffffff) 901cc4b2fb6SRafael Auler continue; 902cc4b2fb6SRafael Auler 903cc4b2fb6SRafael Auler E = &SpanningTreeNodes[Src] 904cc4b2fb6SRafael Auler .OutEdges[SpanningTreeNodes[Src].NumOutEdges++]; 905cc4b2fb6SRafael Auler E->Node = Dst; 906cc4b2fb6SRafael Auler E->ID = I; 907cc4b2fb6SRafael Auler 908cc4b2fb6SRafael Auler E = &SpanningTreeNodes[Dst] 909cc4b2fb6SRafael Auler .InEdges[SpanningTreeNodes[Dst].NumInEdges++]; 910cc4b2fb6SRafael Auler E->Node = Src; 911cc4b2fb6SRafael Auler E->ID = I; 912cc4b2fb6SRafael Auler } 91316a497c6SRafael Auler 91416a497c6SRafael Auler computeEdgeFrequencies(Counters, Ctx); 915cc4b2fb6SRafael Auler } 916cc4b2fb6SRafael Auler 917cc4b2fb6SRafael Auler Graph::~Graph() { 91816a497c6SRafael Auler if (CallFreqs) 91916a497c6SRafael Auler Alloc.deallocate(CallFreqs); 92016a497c6SRafael Auler if (EdgeFreqs) 92116a497c6SRafael Auler Alloc.deallocate(EdgeFreqs); 922cc4b2fb6SRafael Auler for (int I = NumNodes - 1; I >= 0; --I) { 923cc4b2fb6SRafael Auler if (SpanningTreeNodes[I].OutEdges) 924cc4b2fb6SRafael Auler Alloc.deallocate(SpanningTreeNodes[I].OutEdges); 925cc4b2fb6SRafael Auler if (SpanningTreeNodes[I].InEdges) 926cc4b2fb6SRafael Auler Alloc.deallocate(SpanningTreeNodes[I].InEdges); 927cc4b2fb6SRafael Auler if (CFGNodes[I].OutEdges) 928cc4b2fb6SRafael Auler Alloc.deallocate(CFGNodes[I].OutEdges); 929cc4b2fb6SRafael Auler if (CFGNodes[I].InEdges) 930cc4b2fb6SRafael Auler Alloc.deallocate(CFGNodes[I].InEdges); 931cc4b2fb6SRafael Auler } 932cc4b2fb6SRafael Auler if (SpanningTreeNodes) 933cc4b2fb6SRafael Auler Alloc.deallocate(SpanningTreeNodes); 934cc4b2fb6SRafael Auler if (CFGNodes) 935cc4b2fb6SRafael Auler Alloc.deallocate(CFGNodes); 936cc4b2fb6SRafael Auler } 937cc4b2fb6SRafael Auler 938cc4b2fb6SRafael Auler void Graph::dump() const { 939cc4b2fb6SRafael Auler reportNumber("Dumping graph with number of nodes: ", NumNodes, 10); 940cc4b2fb6SRafael Auler report(" Full graph:\n"); 941cc4b2fb6SRafael Auler for (int I = 0; I < NumNodes; ++I) { 942cc4b2fb6SRafael Auler const Node *N = &CFGNodes[I]; 943cc4b2fb6SRafael Auler reportNumber(" Node #", I, 10); 944cc4b2fb6SRafael Auler reportNumber(" InEdges total ", N->NumInEdges, 10); 945cc4b2fb6SRafael Auler for (int J = 0; J < N->NumInEdges; ++J) 946cc4b2fb6SRafael Auler reportNumber(" ", N->InEdges[J].Node, 10); 947cc4b2fb6SRafael Auler reportNumber(" OutEdges total ", N->NumOutEdges, 10); 948cc4b2fb6SRafael Auler for (int J = 0; J < N->NumOutEdges; ++J) 949cc4b2fb6SRafael Auler reportNumber(" ", N->OutEdges[J].Node, 10); 950cc4b2fb6SRafael Auler report("\n"); 951cc4b2fb6SRafael Auler } 952cc4b2fb6SRafael Auler report(" Spanning tree:\n"); 953cc4b2fb6SRafael Auler for (int I = 0; I < NumNodes; ++I) { 954cc4b2fb6SRafael Auler const Node *N = &SpanningTreeNodes[I]; 955cc4b2fb6SRafael Auler reportNumber(" Node #", I, 10); 956cc4b2fb6SRafael Auler reportNumber(" InEdges total ", N->NumInEdges, 10); 957cc4b2fb6SRafael Auler for (int J = 0; J < N->NumInEdges; ++J) 958cc4b2fb6SRafael Auler reportNumber(" ", N->InEdges[J].Node, 10); 959cc4b2fb6SRafael Auler reportNumber(" OutEdges total ", N->NumOutEdges, 10); 960cc4b2fb6SRafael Auler for (int J = 0; J < N->NumOutEdges; ++J) 961cc4b2fb6SRafael Auler reportNumber(" ", N->OutEdges[J].Node, 10); 962cc4b2fb6SRafael Auler report("\n"); 963cc4b2fb6SRafael Auler } 964cc4b2fb6SRafael Auler } 965cc4b2fb6SRafael Auler 96616a497c6SRafael Auler void Graph::dumpEdgeFreqs() const { 96716a497c6SRafael Auler reportNumber( 96816a497c6SRafael Auler "Dumping edge frequencies for graph with num edges: ", D.NumEdges, 10); 96916a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 97016a497c6SRafael Auler reportNumber("* Src: ", D.Edges[I].FromNode, 10); 97116a497c6SRafael Auler reportNumber(" Dst: ", D.Edges[I].ToNode, 10); 972cc4b2fb6SRafael Auler reportNumber(" Cnt: ", EdgeFreqs[I], 10); 973cc4b2fb6SRafael Auler } 974cc4b2fb6SRafael Auler } 975cc4b2fb6SRafael Auler 97616a497c6SRafael Auler /// Auxiliary map structure for fast lookups of which calls map to each node of 97716a497c6SRafael Auler /// the function CFG 97816a497c6SRafael Auler struct NodeToCallsMap { 97916a497c6SRafael Auler struct MapEntry { 98016a497c6SRafael Auler uint32_t NumCalls; 98116a497c6SRafael Auler uint32_t *Calls; 98216a497c6SRafael Auler }; 98316a497c6SRafael Auler MapEntry *Entries; 98416a497c6SRafael Auler BumpPtrAllocator &Alloc; 98516a497c6SRafael Auler const uint32_t NumNodes; 986cc4b2fb6SRafael Auler 98716a497c6SRafael Auler NodeToCallsMap(BumpPtrAllocator &Alloc, const FunctionDescription &D, 98816a497c6SRafael Auler uint32_t NumNodes) 98916a497c6SRafael Auler : Alloc(Alloc), NumNodes(NumNodes) { 99016a497c6SRafael Auler Entries = new (Alloc, 0) MapEntry[NumNodes]; 99116a497c6SRafael Auler for (int I = 0; I < D.NumCalls; ++I) { 99216a497c6SRafael Auler DEBUG(reportNumber("Registering call in node ", D.Calls[I].FromNode, 10)); 99316a497c6SRafael Auler ++Entries[D.Calls[I].FromNode].NumCalls; 99416a497c6SRafael Auler } 99516a497c6SRafael Auler for (int I = 0; I < NumNodes; ++I) { 99616a497c6SRafael Auler Entries[I].Calls = Entries[I].NumCalls ? new (Alloc) 99716a497c6SRafael Auler uint32_t[Entries[I].NumCalls] 99816a497c6SRafael Auler : nullptr; 99916a497c6SRafael Auler Entries[I].NumCalls = 0; 100016a497c6SRafael Auler } 100116a497c6SRafael Auler for (int I = 0; I < D.NumCalls; ++I) { 1002c7306cc2SAmir Ayupov MapEntry &Entry = Entries[D.Calls[I].FromNode]; 100316a497c6SRafael Auler Entry.Calls[Entry.NumCalls++] = I; 100416a497c6SRafael Auler } 100516a497c6SRafael Auler } 100616a497c6SRafael Auler 100716a497c6SRafael Auler /// Set the frequency of all calls in node \p NodeID to Freq. However, if 100816a497c6SRafael Auler /// the calls have their own counters and do not depend on the basic block 100916a497c6SRafael Auler /// counter, this means they have landing pads and throw exceptions. In this 101016a497c6SRafael Auler /// case, set their frequency with their counters and return the maximum 101116a497c6SRafael Auler /// value observed in such counters. This will be used as the new frequency 101216a497c6SRafael Auler /// at basic block entry. This is used to fix the CFG edge frequencies in the 101316a497c6SRafael Auler /// presence of exceptions. 101416a497c6SRafael Auler uint64_t visitAllCallsIn(uint32_t NodeID, uint64_t Freq, uint64_t *CallFreqs, 101516a497c6SRafael Auler const FunctionDescription &D, 101616a497c6SRafael Auler const uint64_t *Counters, 101716a497c6SRafael Auler ProfileWriterContext &Ctx) const { 1018c7306cc2SAmir Ayupov const MapEntry &Entry = Entries[NodeID]; 101916a497c6SRafael Auler uint64_t MaxValue = 0ull; 102016a497c6SRafael Auler for (int I = 0, E = Entry.NumCalls; I != E; ++I) { 1021c7306cc2SAmir Ayupov const uint32_t CallID = Entry.Calls[I]; 102216a497c6SRafael Auler DEBUG(reportNumber(" Setting freq for call ID: ", CallID, 10)); 1023c7306cc2SAmir Ayupov const CallDescription &CallDesc = D.Calls[CallID]; 102416a497c6SRafael Auler if (CallDesc.Counter == 0xffffffff) { 102516a497c6SRafael Auler CallFreqs[CallID] = Freq; 102616a497c6SRafael Auler DEBUG(reportNumber(" with : ", Freq, 10)); 102716a497c6SRafael Auler } else { 1028c7306cc2SAmir Ayupov const uint64_t CounterVal = Counters[CallDesc.Counter]; 102916a497c6SRafael Auler CallFreqs[CallID] = CounterVal; 103016a497c6SRafael Auler MaxValue = CounterVal > MaxValue ? CounterVal : MaxValue; 103116a497c6SRafael Auler DEBUG(reportNumber(" with (private counter) : ", CounterVal, 10)); 103216a497c6SRafael Auler } 103316a497c6SRafael Auler DEBUG(reportNumber(" Address: 0x", CallDesc.TargetAddress, 16)); 103416a497c6SRafael Auler if (CallFreqs[CallID] > 0) 103516a497c6SRafael Auler Ctx.CallFlowTable->get(CallDesc.TargetAddress).Calls += 103616a497c6SRafael Auler CallFreqs[CallID]; 103716a497c6SRafael Auler } 103816a497c6SRafael Auler return MaxValue; 103916a497c6SRafael Auler } 104016a497c6SRafael Auler 104116a497c6SRafael Auler ~NodeToCallsMap() { 1042883bf0e8SAmir Ayupov for (int I = NumNodes - 1; I >= 0; --I) 104316a497c6SRafael Auler if (Entries[I].Calls) 104416a497c6SRafael Auler Alloc.deallocate(Entries[I].Calls); 104516a497c6SRafael Auler Alloc.deallocate(Entries); 104616a497c6SRafael Auler } 104716a497c6SRafael Auler }; 104816a497c6SRafael Auler 104916a497c6SRafael Auler /// Fill an array with the frequency of each edge in the function represented 105016a497c6SRafael Auler /// by G, as well as another array for each call. 105116a497c6SRafael Auler void Graph::computeEdgeFrequencies(const uint64_t *Counters, 105216a497c6SRafael Auler ProfileWriterContext &Ctx) { 105316a497c6SRafael Auler if (NumNodes == 0) 105416a497c6SRafael Auler return; 105516a497c6SRafael Auler 105616a497c6SRafael Auler EdgeFreqs = D.NumEdges ? new (Alloc, 0) uint64_t [D.NumEdges] : nullptr; 105716a497c6SRafael Auler CallFreqs = D.NumCalls ? new (Alloc, 0) uint64_t [D.NumCalls] : nullptr; 105816a497c6SRafael Auler 105916a497c6SRafael Auler // Setup a lookup for calls present in each node (BB) 106016a497c6SRafael Auler NodeToCallsMap *CallMap = new (Alloc) NodeToCallsMap(Alloc, D, NumNodes); 1061cc4b2fb6SRafael Auler 1062cc4b2fb6SRafael Auler // Perform a bottom-up, BFS traversal of the spanning tree in G. Edges in the 1063cc4b2fb6SRafael Auler // spanning tree don't have explicit counters. We must infer their value using 1064cc4b2fb6SRafael Auler // a linear combination of other counters (sum of counters of the outgoing 1065cc4b2fb6SRafael Auler // edges minus sum of counters of the incoming edges). 106616a497c6SRafael Auler uint32_t *Stack = new (Alloc) uint32_t [NumNodes]; 1067cc4b2fb6SRafael Auler uint32_t StackTop = 0; 1068cc4b2fb6SRafael Auler enum Status : uint8_t { S_NEW = 0, S_VISITING, S_VISITED }; 106916a497c6SRafael Auler Status *Visited = new (Alloc, 0) Status[NumNodes]; 107016a497c6SRafael Auler uint64_t *LeafFrequency = new (Alloc, 0) uint64_t[NumNodes]; 107116a497c6SRafael Auler uint64_t *EntryAddress = new (Alloc, 0) uint64_t[NumNodes]; 1072cc4b2fb6SRafael Auler 1073cc4b2fb6SRafael Auler // Setup a fast lookup for frequency of leaf nodes, which have special 1074cc4b2fb6SRafael Auler // basic block frequency instrumentation (they are not edge profiled). 107516a497c6SRafael Auler for (int I = 0; I < D.NumLeafNodes; ++I) { 107616a497c6SRafael Auler LeafFrequency[D.LeafNodes[I].Node] = Counters[D.LeafNodes[I].Counter]; 1077cc4b2fb6SRafael Auler DEBUG({ 107816a497c6SRafael Auler if (Counters[D.LeafNodes[I].Counter] > 0) { 107916a497c6SRafael Auler reportNumber("Leaf Node# ", D.LeafNodes[I].Node, 10); 108016a497c6SRafael Auler reportNumber(" Counter: ", Counters[D.LeafNodes[I].Counter], 10); 1081cc4b2fb6SRafael Auler } 1082cc4b2fb6SRafael Auler }); 108316a497c6SRafael Auler } 108416a497c6SRafael Auler for (int I = 0; I < D.NumEntryNodes; ++I) { 108516a497c6SRafael Auler EntryAddress[D.EntryNodes[I].Node] = D.EntryNodes[I].Address; 108616a497c6SRafael Auler DEBUG({ 108716a497c6SRafael Auler reportNumber("Entry Node# ", D.EntryNodes[I].Node, 10); 108816a497c6SRafael Auler reportNumber(" Address: ", D.EntryNodes[I].Address, 16); 108916a497c6SRafael Auler }); 1090cc4b2fb6SRafael Auler } 1091cc4b2fb6SRafael Auler // Add all root nodes to the stack 1092883bf0e8SAmir Ayupov for (int I = 0; I < NumNodes; ++I) 109316a497c6SRafael Auler if (SpanningTreeNodes[I].NumInEdges == 0) 1094cc4b2fb6SRafael Auler Stack[StackTop++] = I; 1095883bf0e8SAmir Ayupov 1096cc4b2fb6SRafael Auler // Empty stack? 1097cc4b2fb6SRafael Auler if (StackTop == 0) { 109816a497c6SRafael Auler DEBUG(report("Empty stack!\n")); 109916a497c6SRafael Auler Alloc.deallocate(EntryAddress); 1100cc4b2fb6SRafael Auler Alloc.deallocate(LeafFrequency); 1101cc4b2fb6SRafael Auler Alloc.deallocate(Visited); 1102cc4b2fb6SRafael Auler Alloc.deallocate(Stack); 110316a497c6SRafael Auler CallMap->~NodeToCallsMap(); 110416a497c6SRafael Auler Alloc.deallocate(CallMap); 110516a497c6SRafael Auler if (CallFreqs) 110616a497c6SRafael Auler Alloc.deallocate(CallFreqs); 110716a497c6SRafael Auler if (EdgeFreqs) 110816a497c6SRafael Auler Alloc.deallocate(EdgeFreqs); 110916a497c6SRafael Auler EdgeFreqs = nullptr; 111016a497c6SRafael Auler CallFreqs = nullptr; 111116a497c6SRafael Auler return; 1112cc4b2fb6SRafael Auler } 1113cc4b2fb6SRafael Auler // Add all known edge counts, will infer the rest 111416a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 111516a497c6SRafael Auler const uint32_t C = D.Edges[I].Counter; 1116cc4b2fb6SRafael Auler if (C == 0xffffffff) // inferred counter - we will compute its value 1117cc4b2fb6SRafael Auler continue; 111816a497c6SRafael Auler EdgeFreqs[I] = Counters[C]; 1119cc4b2fb6SRafael Auler } 1120cc4b2fb6SRafael Auler 1121cc4b2fb6SRafael Auler while (StackTop > 0) { 1122cc4b2fb6SRafael Auler const uint32_t Cur = Stack[--StackTop]; 1123cc4b2fb6SRafael Auler DEBUG({ 1124cc4b2fb6SRafael Auler if (Visited[Cur] == S_VISITING) 1125cc4b2fb6SRafael Auler report("(visiting) "); 1126cc4b2fb6SRafael Auler else 1127cc4b2fb6SRafael Auler report("(new) "); 1128cc4b2fb6SRafael Auler reportNumber("Cur: ", Cur, 10); 1129cc4b2fb6SRafael Auler }); 1130cc4b2fb6SRafael Auler 1131cc4b2fb6SRafael Auler // This shouldn't happen in a tree 1132cc4b2fb6SRafael Auler assert(Visited[Cur] != S_VISITED, "should not have visited nodes in stack"); 1133cc4b2fb6SRafael Auler if (Visited[Cur] == S_NEW) { 1134cc4b2fb6SRafael Auler Visited[Cur] = S_VISITING; 1135cc4b2fb6SRafael Auler Stack[StackTop++] = Cur; 113616a497c6SRafael Auler assert(StackTop <= NumNodes, "stack grew too large"); 113716a497c6SRafael Auler for (int I = 0, E = SpanningTreeNodes[Cur].NumOutEdges; I < E; ++I) { 113816a497c6SRafael Auler const uint32_t Succ = SpanningTreeNodes[Cur].OutEdges[I].Node; 1139cc4b2fb6SRafael Auler Stack[StackTop++] = Succ; 114016a497c6SRafael Auler assert(StackTop <= NumNodes, "stack grew too large"); 1141cc4b2fb6SRafael Auler } 1142cc4b2fb6SRafael Auler continue; 1143cc4b2fb6SRafael Auler } 1144cc4b2fb6SRafael Auler Visited[Cur] = S_VISITED; 1145cc4b2fb6SRafael Auler 1146cc4b2fb6SRafael Auler // Establish our node frequency based on outgoing edges, which should all be 1147cc4b2fb6SRafael Auler // resolved by now. 1148cc4b2fb6SRafael Auler int64_t CurNodeFreq = LeafFrequency[Cur]; 1149cc4b2fb6SRafael Auler // Not a leaf? 1150cc4b2fb6SRafael Auler if (!CurNodeFreq) { 115116a497c6SRafael Auler for (int I = 0, E = CFGNodes[Cur].NumOutEdges; I != E; ++I) { 115216a497c6SRafael Auler const uint32_t SuccEdge = CFGNodes[Cur].OutEdges[I].ID; 115316a497c6SRafael Auler CurNodeFreq += EdgeFreqs[SuccEdge]; 1154cc4b2fb6SRafael Auler } 1155cc4b2fb6SRafael Auler } 115616a497c6SRafael Auler if (CurNodeFreq < 0) 115716a497c6SRafael Auler CurNodeFreq = 0; 115816a497c6SRafael Auler 115916a497c6SRafael Auler const uint64_t CallFreq = CallMap->visitAllCallsIn( 116016a497c6SRafael Auler Cur, CurNodeFreq > 0 ? CurNodeFreq : 0, CallFreqs, D, Counters, Ctx); 116116a497c6SRafael Auler 116216a497c6SRafael Auler // Exception handling affected our output flow? Fix with calls info 116316a497c6SRafael Auler DEBUG({ 116416a497c6SRafael Auler if (CallFreq > CurNodeFreq) 116516a497c6SRafael Auler report("Bumping node frequency with call info\n"); 116616a497c6SRafael Auler }); 116716a497c6SRafael Auler CurNodeFreq = CallFreq > CurNodeFreq ? CallFreq : CurNodeFreq; 116816a497c6SRafael Auler 116916a497c6SRafael Auler if (CurNodeFreq > 0) { 117016a497c6SRafael Auler if (uint64_t Addr = EntryAddress[Cur]) { 117116a497c6SRafael Auler DEBUG( 117216a497c6SRafael Auler reportNumber(" Setting flow at entry point address 0x", Addr, 16)); 117316a497c6SRafael Auler DEBUG(reportNumber(" with: ", CurNodeFreq, 10)); 117416a497c6SRafael Auler Ctx.CallFlowTable->get(Addr).Val = CurNodeFreq; 117516a497c6SRafael Auler } 117616a497c6SRafael Auler } 117716a497c6SRafael Auler 117816a497c6SRafael Auler // No parent? Reached a tree root, limit to call frequency updating. 1179883bf0e8SAmir Ayupov if (SpanningTreeNodes[Cur].NumInEdges == 0) 118016a497c6SRafael Auler continue; 118116a497c6SRafael Auler 118216a497c6SRafael Auler assert(SpanningTreeNodes[Cur].NumInEdges == 1, "must have 1 parent"); 118316a497c6SRafael Auler const uint32_t Parent = SpanningTreeNodes[Cur].InEdges[0].Node; 118416a497c6SRafael Auler const uint32_t ParentEdge = SpanningTreeNodes[Cur].InEdges[0].ID; 118516a497c6SRafael Auler 1186cc4b2fb6SRafael Auler // Calculate parent edge freq. 118716a497c6SRafael Auler int64_t ParentEdgeFreq = CurNodeFreq; 118816a497c6SRafael Auler for (int I = 0, E = CFGNodes[Cur].NumInEdges; I != E; ++I) { 118916a497c6SRafael Auler const uint32_t PredEdge = CFGNodes[Cur].InEdges[I].ID; 119016a497c6SRafael Auler ParentEdgeFreq -= EdgeFreqs[PredEdge]; 1191cc4b2fb6SRafael Auler } 119216a497c6SRafael Auler 1193cc4b2fb6SRafael Auler // Sometimes the conservative CFG that BOLT builds will lead to incorrect 1194cc4b2fb6SRafael Auler // flow computation. For example, in a BB that transitively calls the exit 1195cc4b2fb6SRafael Auler // syscall, BOLT will add a fall-through successor even though it should not 1196cc4b2fb6SRafael Auler // have any successors. So this block execution will likely be wrong. We 1197cc4b2fb6SRafael Auler // tolerate this imperfection since this case should be quite infrequent. 1198cc4b2fb6SRafael Auler if (ParentEdgeFreq < 0) { 119916a497c6SRafael Auler DEBUG(dumpEdgeFreqs()); 1200cc4b2fb6SRafael Auler DEBUG(report("WARNING: incorrect flow")); 1201cc4b2fb6SRafael Auler ParentEdgeFreq = 0; 1202cc4b2fb6SRafael Auler } 1203cc4b2fb6SRafael Auler DEBUG(reportNumber(" Setting freq for ParentEdge: ", ParentEdge, 10)); 1204cc4b2fb6SRafael Auler DEBUG(reportNumber(" with ParentEdgeFreq: ", ParentEdgeFreq, 10)); 120516a497c6SRafael Auler EdgeFreqs[ParentEdge] = ParentEdgeFreq; 1206cc4b2fb6SRafael Auler } 1207cc4b2fb6SRafael Auler 120816a497c6SRafael Auler Alloc.deallocate(EntryAddress); 1209cc4b2fb6SRafael Auler Alloc.deallocate(LeafFrequency); 1210cc4b2fb6SRafael Auler Alloc.deallocate(Visited); 1211cc4b2fb6SRafael Auler Alloc.deallocate(Stack); 121216a497c6SRafael Auler CallMap->~NodeToCallsMap(); 121316a497c6SRafael Auler Alloc.deallocate(CallMap); 121416a497c6SRafael Auler DEBUG(dumpEdgeFreqs()); 1215cc4b2fb6SRafael Auler } 1216cc4b2fb6SRafael Auler 121716a497c6SRafael Auler /// Write to \p FD all of the edge profiles for function \p FuncDesc. Uses 121816a497c6SRafael Auler /// \p Alloc to allocate helper dynamic structures used to compute profile for 121916a497c6SRafael Auler /// edges that we do not explictly instrument. 122016a497c6SRafael Auler const uint8_t *writeFunctionProfile(int FD, ProfileWriterContext &Ctx, 122116a497c6SRafael Auler const uint8_t *FuncDesc, 122216a497c6SRafael Auler BumpPtrAllocator &Alloc) { 122316a497c6SRafael Auler const FunctionDescription F(FuncDesc); 122416a497c6SRafael Auler const uint8_t *next = FuncDesc + F.getSize(); 1225cc4b2fb6SRafael Auler 1226a0dd5b05SAlexander Shaposhnikov #if !defined(__APPLE__) 1227a0dd5b05SAlexander Shaposhnikov uint64_t *bolt_instr_locations = __bolt_instr_locations; 1228a0dd5b05SAlexander Shaposhnikov #else 1229a0dd5b05SAlexander Shaposhnikov uint64_t *bolt_instr_locations = _bolt_instr_locations_getter(); 1230a0dd5b05SAlexander Shaposhnikov #endif 1231a0dd5b05SAlexander Shaposhnikov 1232cc4b2fb6SRafael Auler // Skip funcs we know are cold 1233cc4b2fb6SRafael Auler #ifndef ENABLE_DEBUG 123416a497c6SRafael Auler uint64_t CountersFreq = 0; 1235883bf0e8SAmir Ayupov for (int I = 0; I < F.NumLeafNodes; ++I) 1236a0dd5b05SAlexander Shaposhnikov CountersFreq += bolt_instr_locations[F.LeafNodes[I].Counter]; 1237883bf0e8SAmir Ayupov 123816a497c6SRafael Auler if (CountersFreq == 0) { 123916a497c6SRafael Auler for (int I = 0; I < F.NumEdges; ++I) { 124016a497c6SRafael Auler const uint32_t C = F.Edges[I].Counter; 124116a497c6SRafael Auler if (C == 0xffffffff) 124216a497c6SRafael Auler continue; 1243a0dd5b05SAlexander Shaposhnikov CountersFreq += bolt_instr_locations[C]; 124416a497c6SRafael Auler } 124516a497c6SRafael Auler if (CountersFreq == 0) { 124616a497c6SRafael Auler for (int I = 0; I < F.NumCalls; ++I) { 124716a497c6SRafael Auler const uint32_t C = F.Calls[I].Counter; 124816a497c6SRafael Auler if (C == 0xffffffff) 124916a497c6SRafael Auler continue; 1250a0dd5b05SAlexander Shaposhnikov CountersFreq += bolt_instr_locations[C]; 125116a497c6SRafael Auler } 125216a497c6SRafael Auler if (CountersFreq == 0) 1253cc4b2fb6SRafael Auler return next; 125416a497c6SRafael Auler } 125516a497c6SRafael Auler } 1256cc4b2fb6SRafael Auler #endif 1257cc4b2fb6SRafael Auler 1258a0dd5b05SAlexander Shaposhnikov Graph *G = new (Alloc) Graph(Alloc, F, bolt_instr_locations, Ctx); 1259cc4b2fb6SRafael Auler DEBUG(G->dump()); 1260a0dd5b05SAlexander Shaposhnikov 126116a497c6SRafael Auler if (!G->EdgeFreqs && !G->CallFreqs) { 1262cc4b2fb6SRafael Auler G->~Graph(); 1263cc4b2fb6SRafael Auler Alloc.deallocate(G); 1264cc4b2fb6SRafael Auler return next; 1265cc4b2fb6SRafael Auler } 1266cc4b2fb6SRafael Auler 126716a497c6SRafael Auler for (int I = 0; I < F.NumEdges; ++I) { 126816a497c6SRafael Auler const uint64_t Freq = G->EdgeFreqs[I]; 1269cc4b2fb6SRafael Auler if (Freq == 0) 1270cc4b2fb6SRafael Auler continue; 127116a497c6SRafael Auler const EdgeDescription *Desc = &F.Edges[I]; 1272cc4b2fb6SRafael Auler char LineBuf[BufSize]; 1273cc4b2fb6SRafael Auler char *Ptr = LineBuf; 127416a497c6SRafael Auler Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); 127516a497c6SRafael Auler Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); 1276cc4b2fb6SRafael Auler Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 22); 1277cc4b2fb6SRafael Auler Ptr = intToStr(Ptr, Freq, 10); 1278cc4b2fb6SRafael Auler *Ptr++ = '\n'; 1279cc4b2fb6SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 1280cc4b2fb6SRafael Auler } 1281cc4b2fb6SRafael Auler 128216a497c6SRafael Auler for (int I = 0; I < F.NumCalls; ++I) { 128316a497c6SRafael Auler const uint64_t Freq = G->CallFreqs[I]; 128416a497c6SRafael Auler if (Freq == 0) 128516a497c6SRafael Auler continue; 128616a497c6SRafael Auler char LineBuf[BufSize]; 128716a497c6SRafael Auler char *Ptr = LineBuf; 128816a497c6SRafael Auler const CallDescription *Desc = &F.Calls[I]; 128916a497c6SRafael Auler Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); 129016a497c6SRafael Auler Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); 129116a497c6SRafael Auler Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 129216a497c6SRafael Auler Ptr = intToStr(Ptr, Freq, 10); 129316a497c6SRafael Auler *Ptr++ = '\n'; 129416a497c6SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 129516a497c6SRafael Auler } 129616a497c6SRafael Auler 1297cc4b2fb6SRafael Auler G->~Graph(); 1298cc4b2fb6SRafael Auler Alloc.deallocate(G); 1299cc4b2fb6SRafael Auler return next; 1300cc4b2fb6SRafael Auler } 1301cc4b2fb6SRafael Auler 1302a0dd5b05SAlexander Shaposhnikov #if !defined(__APPLE__) 130316a497c6SRafael Auler const IndCallTargetDescription * 130416a497c6SRafael Auler ProfileWriterContext::lookupIndCallTarget(uint64_t Target) const { 130516a497c6SRafael Auler uint32_t B = 0; 130616a497c6SRafael Auler uint32_t E = __bolt_instr_num_ind_targets; 130716a497c6SRafael Auler if (E == 0) 130816a497c6SRafael Auler return nullptr; 130916a497c6SRafael Auler do { 131016a497c6SRafael Auler uint32_t I = (E - B) / 2 + B; 131116a497c6SRafael Auler if (IndCallTargets[I].Address == Target) 131216a497c6SRafael Auler return &IndCallTargets[I]; 131316a497c6SRafael Auler if (IndCallTargets[I].Address < Target) 131416a497c6SRafael Auler B = I + 1; 131516a497c6SRafael Auler else 131616a497c6SRafael Auler E = I; 131716a497c6SRafael Auler } while (B < E); 131816a497c6SRafael Auler return nullptr; 1319cc4b2fb6SRafael Auler } 132062aa74f8SRafael Auler 132116a497c6SRafael Auler /// Write a single indirect call <src, target> pair to the fdata file 132216a497c6SRafael Auler void visitIndCallCounter(IndirectCallHashTable::MapEntry &Entry, 132316a497c6SRafael Auler int FD, int CallsiteID, 132416a497c6SRafael Auler ProfileWriterContext *Ctx) { 132516a497c6SRafael Auler if (Entry.Val == 0) 132616a497c6SRafael Auler return; 132716a497c6SRafael Auler DEBUG(reportNumber("Target func 0x", Entry.Key, 16)); 132816a497c6SRafael Auler DEBUG(reportNumber("Target freq: ", Entry.Val, 10)); 132916a497c6SRafael Auler const IndCallDescription *CallsiteDesc = 133016a497c6SRafael Auler &Ctx->IndCallDescriptions[CallsiteID]; 133116a497c6SRafael Auler const IndCallTargetDescription *TargetDesc = 133216a497c6SRafael Auler Ctx->lookupIndCallTarget(Entry.Key); 133316a497c6SRafael Auler if (!TargetDesc) { 133416a497c6SRafael Auler DEBUG(report("Failed to lookup indirect call target\n")); 1335cc4b2fb6SRafael Auler char LineBuf[BufSize]; 133662aa74f8SRafael Auler char *Ptr = LineBuf; 133716a497c6SRafael Auler Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); 133816a497c6SRafael Auler Ptr = strCopy(Ptr, "0 [unknown] 0 0 ", BufSize - (Ptr - LineBuf) - 40); 133916a497c6SRafael Auler Ptr = intToStr(Ptr, Entry.Val, 10); 134016a497c6SRafael Auler *Ptr++ = '\n'; 134116a497c6SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 134216a497c6SRafael Auler return; 134316a497c6SRafael Auler } 134416a497c6SRafael Auler Ctx->CallFlowTable->get(TargetDesc->Address).Calls += Entry.Val; 134516a497c6SRafael Auler char LineBuf[BufSize]; 134616a497c6SRafael Auler char *Ptr = LineBuf; 134716a497c6SRafael Auler Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); 134816a497c6SRafael Auler Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); 1349cc4b2fb6SRafael Auler Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 135016a497c6SRafael Auler Ptr = intToStr(Ptr, Entry.Val, 10); 135162aa74f8SRafael Auler *Ptr++ = '\n'; 1352821480d2SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 135362aa74f8SRafael Auler } 1354cc4b2fb6SRafael Auler 135516a497c6SRafael Auler /// Write to \p FD all of the indirect call profiles. 135616a497c6SRafael Auler void writeIndirectCallProfile(int FD, ProfileWriterContext &Ctx) { 135716a497c6SRafael Auler for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) { 135816a497c6SRafael Auler DEBUG(reportNumber("IndCallsite #", I, 10)); 135916a497c6SRafael Auler GlobalIndCallCounters[I].forEachElement(visitIndCallCounter, FD, I, &Ctx); 136016a497c6SRafael Auler } 136116a497c6SRafael Auler } 136216a497c6SRafael Auler 136316a497c6SRafael Auler /// Check a single call flow for a callee versus all known callers. If there are 136416a497c6SRafael Auler /// less callers than what the callee expects, write the difference with source 136516a497c6SRafael Auler /// [unknown] in the profile. 136616a497c6SRafael Auler void visitCallFlowEntry(CallFlowHashTable::MapEntry &Entry, int FD, 136716a497c6SRafael Auler ProfileWriterContext *Ctx) { 136816a497c6SRafael Auler DEBUG(reportNumber("Call flow entry address: 0x", Entry.Key, 16)); 136916a497c6SRafael Auler DEBUG(reportNumber("Calls: ", Entry.Calls, 10)); 137016a497c6SRafael Auler DEBUG(reportNumber("Reported entry frequency: ", Entry.Val, 10)); 137116a497c6SRafael Auler DEBUG({ 137216a497c6SRafael Auler if (Entry.Calls > Entry.Val) 137316a497c6SRafael Auler report(" More calls than expected!\n"); 137416a497c6SRafael Auler }); 137516a497c6SRafael Auler if (Entry.Val <= Entry.Calls) 137616a497c6SRafael Auler return; 137716a497c6SRafael Auler DEBUG(reportNumber( 137816a497c6SRafael Auler " Balancing calls with traffic: ", Entry.Val - Entry.Calls, 10)); 137916a497c6SRafael Auler const IndCallTargetDescription *TargetDesc = 138016a497c6SRafael Auler Ctx->lookupIndCallTarget(Entry.Key); 138116a497c6SRafael Auler if (!TargetDesc) { 138216a497c6SRafael Auler // There is probably something wrong with this callee and this should be 138316a497c6SRafael Auler // investigated, but I don't want to assert and lose all data collected. 138416a497c6SRafael Auler DEBUG(report("WARNING: failed to look up call target!\n")); 138516a497c6SRafael Auler return; 138616a497c6SRafael Auler } 138716a497c6SRafael Auler char LineBuf[BufSize]; 138816a497c6SRafael Auler char *Ptr = LineBuf; 138916a497c6SRafael Auler Ptr = strCopy(Ptr, "0 [unknown] 0 ", BufSize); 139016a497c6SRafael Auler Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); 139116a497c6SRafael Auler Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 139216a497c6SRafael Auler Ptr = intToStr(Ptr, Entry.Val - Entry.Calls, 10); 139316a497c6SRafael Auler *Ptr++ = '\n'; 139416a497c6SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 139516a497c6SRafael Auler } 139616a497c6SRafael Auler 139716a497c6SRafael Auler /// Open fdata file for writing and return a valid file descriptor, aborting 139816a497c6SRafael Auler /// program upon failure. 139916a497c6SRafael Auler int openProfile() { 140016a497c6SRafael Auler // Build the profile name string by appending our PID 140116a497c6SRafael Auler char Buf[BufSize]; 140216a497c6SRafael Auler char *Ptr = Buf; 140316a497c6SRafael Auler uint64_t PID = __getpid(); 140416a497c6SRafael Auler Ptr = strCopy(Buf, __bolt_instr_filename, BufSize); 140516a497c6SRafael Auler if (__bolt_instr_use_pid) { 140616a497c6SRafael Auler Ptr = strCopy(Ptr, ".", BufSize - (Ptr - Buf + 1)); 140716a497c6SRafael Auler Ptr = intToStr(Ptr, PID, 10); 140816a497c6SRafael Auler Ptr = strCopy(Ptr, ".fdata", BufSize - (Ptr - Buf + 1)); 140916a497c6SRafael Auler } 141016a497c6SRafael Auler *Ptr++ = '\0'; 141116a497c6SRafael Auler uint64_t FD = __open(Buf, 141216a497c6SRafael Auler /*flags=*/0x241 /*O_WRONLY|O_TRUNC|O_CREAT*/, 141316a497c6SRafael Auler /*mode=*/0666); 141416a497c6SRafael Auler if (static_cast<int64_t>(FD) < 0) { 141516a497c6SRafael Auler report("Error while trying to open profile file for writing: "); 141616a497c6SRafael Auler report(Buf); 141716a497c6SRafael Auler reportNumber("\nFailed with error number: 0x", 141816a497c6SRafael Auler 0 - static_cast<int64_t>(FD), 16); 141916a497c6SRafael Auler __exit(1); 142016a497c6SRafael Auler } 142116a497c6SRafael Auler return FD; 142216a497c6SRafael Auler } 1423a0dd5b05SAlexander Shaposhnikov 1424a0dd5b05SAlexander Shaposhnikov #endif 1425a0dd5b05SAlexander Shaposhnikov 142616a497c6SRafael Auler } // anonymous namespace 142716a497c6SRafael Auler 1428a0dd5b05SAlexander Shaposhnikov #if !defined(__APPLE__) 1429a0dd5b05SAlexander Shaposhnikov 143016a497c6SRafael Auler /// Reset all counters in case you want to start profiling a new phase of your 143116a497c6SRafael Auler /// program independently of prior phases. 143216a497c6SRafael Auler /// The address of this function is printed by BOLT and this can be called by 143316a497c6SRafael Auler /// any attached debugger during runtime. There is a useful oneliner for gdb: 143416a497c6SRafael Auler /// 143516a497c6SRafael Auler /// gdb -p $(pgrep -xo PROCESSNAME) -ex 'p ((void(*)())0xdeadbeef)()' \ 143616a497c6SRafael Auler /// -ex 'set confirm off' -ex quit 143716a497c6SRafael Auler /// 143816a497c6SRafael Auler /// Where 0xdeadbeef is this function address and PROCESSNAME your binary file 143916a497c6SRafael Auler /// name. 144016a497c6SRafael Auler extern "C" void __bolt_instr_clear_counters() { 1441ea2182feSMaksim Panchenko memset(reinterpret_cast<char *>(__bolt_instr_locations), 0, 144216a497c6SRafael Auler __bolt_num_counters * 8); 1443883bf0e8SAmir Ayupov for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) 144416a497c6SRafael Auler GlobalIndCallCounters[I].resetCounters(); 144516a497c6SRafael Auler } 144616a497c6SRafael Auler 144716a497c6SRafael Auler /// This is the entry point for profile writing. 144816a497c6SRafael Auler /// There are three ways of getting here: 144916a497c6SRafael Auler /// 145016a497c6SRafael Auler /// * Program execution ended, finalization methods are running and BOLT 145116a497c6SRafael Auler /// hooked into FINI from your binary dynamic section; 145216a497c6SRafael Auler /// * You used the sleep timer option and during initialization we forked 145316a497c6SRafael Auler /// a separete process that will call this function periodically; 145416a497c6SRafael Auler /// * BOLT prints this function address so you can attach a debugger and 145516a497c6SRafael Auler /// call this function directly to get your profile written to disk 145616a497c6SRafael Auler /// on demand. 145716a497c6SRafael Auler /// 1458ad79d517SVasily Leonenko extern "C" void __attribute((force_align_arg_pointer)) 1459ad79d517SVasily Leonenko __bolt_instr_data_dump() { 146016a497c6SRafael Auler // Already dumping 146116a497c6SRafael Auler if (!GlobalWriteProfileMutex->acquire()) 146216a497c6SRafael Auler return; 146316a497c6SRafael Auler 146416a497c6SRafael Auler BumpPtrAllocator HashAlloc; 146516a497c6SRafael Auler HashAlloc.setMaxSize(0x6400000); 146616a497c6SRafael Auler ProfileWriterContext Ctx = readDescriptions(); 146716a497c6SRafael Auler Ctx.CallFlowTable = new (HashAlloc, 0) CallFlowHashTable(HashAlloc); 146816a497c6SRafael Auler 146916a497c6SRafael Auler DEBUG(printStats(Ctx)); 147016a497c6SRafael Auler 147116a497c6SRafael Auler int FD = openProfile(); 147216a497c6SRafael Auler 1473cc4b2fb6SRafael Auler BumpPtrAllocator Alloc; 1474*eaf1b566SJakub Beránek Alloc.setMaxSize(0x6400000); 147516a497c6SRafael Auler const uint8_t *FuncDesc = Ctx.FuncDescriptions; 1476cc4b2fb6SRafael Auler for (int I = 0, E = __bolt_instr_num_funcs; I < E; ++I) { 147716a497c6SRafael Auler FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); 147816a497c6SRafael Auler Alloc.clear(); 1479cc4b2fb6SRafael Auler DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)); 1480cc4b2fb6SRafael Auler } 148116a497c6SRafael Auler assert(FuncDesc == (void *)Ctx.Strings, 1482cc4b2fb6SRafael Auler "FuncDesc ptr must be equal to stringtable"); 1483cc4b2fb6SRafael Auler 148416a497c6SRafael Auler writeIndirectCallProfile(FD, Ctx); 148516a497c6SRafael Auler Ctx.CallFlowTable->forEachElement(visitCallFlowEntry, FD, &Ctx); 148616a497c6SRafael Auler 1487dcdd37fdSVladislav Khmelevsky __fsync(FD); 1488821480d2SRafael Auler __close(FD); 148916a497c6SRafael Auler __munmap(Ctx.MMapPtr, Ctx.MMapSize); 149016a497c6SRafael Auler __close(Ctx.FileDesc); 149116a497c6SRafael Auler HashAlloc.destroy(); 149216a497c6SRafael Auler GlobalWriteProfileMutex->release(); 149316a497c6SRafael Auler DEBUG(report("Finished writing profile.\n")); 149416a497c6SRafael Auler } 149516a497c6SRafael Auler 149616a497c6SRafael Auler /// Event loop for our child process spawned during setup to dump profile data 149716a497c6SRafael Auler /// at user-specified intervals 149816a497c6SRafael Auler void watchProcess() { 149916a497c6SRafael Auler timespec ts, rem; 150016a497c6SRafael Auler uint64_t Ellapsed = 0ull; 150176d346caSVladislav Khmelevsky uint64_t ppid; 150276d346caSVladislav Khmelevsky if (__bolt_instr_wait_forks) { 150376d346caSVladislav Khmelevsky // Store parent pgid 150476d346caSVladislav Khmelevsky ppid = -__getpgid(0); 150576d346caSVladislav Khmelevsky // And leave parent process group 150676d346caSVladislav Khmelevsky __setpgid(0, 0); 150776d346caSVladislav Khmelevsky } else { 150876d346caSVladislav Khmelevsky // Store parent pid 150976d346caSVladislav Khmelevsky ppid = __getppid(); 151076d346caSVladislav Khmelevsky if (ppid == 1) { 151176d346caSVladislav Khmelevsky // Parent already dead 1512dcdd37fdSVladislav Khmelevsky __bolt_instr_data_dump(); 151376d346caSVladislav Khmelevsky goto out; 151476d346caSVladislav Khmelevsky } 151576d346caSVladislav Khmelevsky } 151676d346caSVladislav Khmelevsky 151716a497c6SRafael Auler ts.tv_sec = 1; 151816a497c6SRafael Auler ts.tv_nsec = 0; 151916a497c6SRafael Auler while (1) { 152016a497c6SRafael Auler __nanosleep(&ts, &rem); 152176d346caSVladislav Khmelevsky // This means our parent process or all its forks are dead, 152276d346caSVladislav Khmelevsky // so no need for us to keep dumping. 152376d346caSVladislav Khmelevsky if (__kill(ppid, 0) < 0) { 152476d346caSVladislav Khmelevsky if (__bolt_instr_no_counters_clear) 152576d346caSVladislav Khmelevsky __bolt_instr_data_dump(); 152616a497c6SRafael Auler break; 152716a497c6SRafael Auler } 152876d346caSVladislav Khmelevsky 152916a497c6SRafael Auler if (++Ellapsed < __bolt_instr_sleep_time) 153016a497c6SRafael Auler continue; 153176d346caSVladislav Khmelevsky 153216a497c6SRafael Auler Ellapsed = 0; 153316a497c6SRafael Auler __bolt_instr_data_dump(); 153476d346caSVladislav Khmelevsky if (__bolt_instr_no_counters_clear == false) 153516a497c6SRafael Auler __bolt_instr_clear_counters(); 153616a497c6SRafael Auler } 153776d346caSVladislav Khmelevsky 153876d346caSVladislav Khmelevsky out:; 153916a497c6SRafael Auler DEBUG(report("My parent process is dead, bye!\n")); 154016a497c6SRafael Auler __exit(0); 154116a497c6SRafael Auler } 154216a497c6SRafael Auler 154316a497c6SRafael Auler extern "C" void __bolt_instr_indirect_call(); 154416a497c6SRafael Auler extern "C" void __bolt_instr_indirect_tailcall(); 154516a497c6SRafael Auler 154616a497c6SRafael Auler /// Initialization code 1547ad79d517SVasily Leonenko extern "C" void __attribute((force_align_arg_pointer)) __bolt_instr_setup() { 154816a497c6SRafael Auler const uint64_t CountersStart = 154916a497c6SRafael Auler reinterpret_cast<uint64_t>(&__bolt_instr_locations[0]); 155016a497c6SRafael Auler const uint64_t CountersEnd = alignTo( 155116a497c6SRafael Auler reinterpret_cast<uint64_t>(&__bolt_instr_locations[__bolt_num_counters]), 155216a497c6SRafael Auler 0x1000); 155316a497c6SRafael Auler DEBUG(reportNumber("replace mmap start: ", CountersStart, 16)); 155416a497c6SRafael Auler DEBUG(reportNumber("replace mmap stop: ", CountersEnd, 16)); 155516a497c6SRafael Auler assert (CountersEnd > CountersStart, "no counters"); 155616a497c6SRafael Auler // Maps our counters to be shared instead of private, so we keep counting for 155716a497c6SRafael Auler // forked processes 155816a497c6SRafael Auler __mmap(CountersStart, CountersEnd - CountersStart, 155916a497c6SRafael Auler 0x3 /*PROT_READ|PROT_WRITE*/, 156016a497c6SRafael Auler 0x31 /*MAP_ANONYMOUS | MAP_SHARED | MAP_FIXED*/, -1, 0); 156116a497c6SRafael Auler 1562361f3b55SVladislav Khmelevsky __bolt_ind_call_counter_func_pointer = __bolt_instr_indirect_call; 1563361f3b55SVladislav Khmelevsky __bolt_ind_tailcall_counter_func_pointer = __bolt_instr_indirect_tailcall; 156416a497c6SRafael Auler // Conservatively reserve 100MiB shared pages 156516a497c6SRafael Auler GlobalAlloc.setMaxSize(0x6400000); 156616a497c6SRafael Auler GlobalAlloc.setShared(true); 156716a497c6SRafael Auler GlobalWriteProfileMutex = new (GlobalAlloc, 0) Mutex(); 156816a497c6SRafael Auler if (__bolt_instr_num_ind_calls > 0) 156916a497c6SRafael Auler GlobalIndCallCounters = 157016a497c6SRafael Auler new (GlobalAlloc, 0) IndirectCallHashTable[__bolt_instr_num_ind_calls]; 157116a497c6SRafael Auler 157216a497c6SRafael Auler if (__bolt_instr_sleep_time != 0) { 157376d346caSVladislav Khmelevsky // Separate instrumented process to the own process group 157476d346caSVladislav Khmelevsky if (__bolt_instr_wait_forks) 157576d346caSVladislav Khmelevsky __setpgid(0, 0); 157676d346caSVladislav Khmelevsky 1577c7306cc2SAmir Ayupov if (long PID = __fork()) 157816a497c6SRafael Auler return; 157916a497c6SRafael Auler watchProcess(); 158016a497c6SRafael Auler } 158116a497c6SRafael Auler } 158216a497c6SRafael Auler 1583361f3b55SVladislav Khmelevsky extern "C" __attribute((force_align_arg_pointer)) void 1584361f3b55SVladislav Khmelevsky instrumentIndirectCall(uint64_t Target, uint64_t IndCallID) { 158516a497c6SRafael Auler GlobalIndCallCounters[IndCallID].incrementVal(Target, GlobalAlloc); 158616a497c6SRafael Auler } 158716a497c6SRafael Auler 158816a497c6SRafael Auler /// We receive as in-stack arguments the identifier of the indirect call site 158916a497c6SRafael Auler /// as well as the target address for the call 159016a497c6SRafael Auler extern "C" __attribute((naked)) void __bolt_instr_indirect_call() 159116a497c6SRafael Auler { 159216a497c6SRafael Auler __asm__ __volatile__(SAVE_ALL 1593361f3b55SVladislav Khmelevsky "mov 0xa0(%%rsp), %%rdi\n" 1594361f3b55SVladislav Khmelevsky "mov 0x98(%%rsp), %%rsi\n" 159516a497c6SRafael Auler "call instrumentIndirectCall\n" 159616a497c6SRafael Auler RESTORE_ALL 1597361f3b55SVladislav Khmelevsky "ret\n" 159816a497c6SRafael Auler :::); 159916a497c6SRafael Auler } 160016a497c6SRafael Auler 160116a497c6SRafael Auler extern "C" __attribute((naked)) void __bolt_instr_indirect_tailcall() 160216a497c6SRafael Auler { 160316a497c6SRafael Auler __asm__ __volatile__(SAVE_ALL 1604361f3b55SVladislav Khmelevsky "mov 0x98(%%rsp), %%rdi\n" 1605361f3b55SVladislav Khmelevsky "mov 0x90(%%rsp), %%rsi\n" 160616a497c6SRafael Auler "call instrumentIndirectCall\n" 160716a497c6SRafael Auler RESTORE_ALL 1608361f3b55SVladislav Khmelevsky "ret\n" 160916a497c6SRafael Auler :::); 161016a497c6SRafael Auler } 161116a497c6SRafael Auler 161216a497c6SRafael Auler /// This is hooking ELF's entry, it needs to save all machine state. 161316a497c6SRafael Auler extern "C" __attribute((naked)) void __bolt_instr_start() 161416a497c6SRafael Auler { 161516a497c6SRafael Auler __asm__ __volatile__(SAVE_ALL 161616a497c6SRafael Auler "call __bolt_instr_setup\n" 161716a497c6SRafael Auler RESTORE_ALL 1618ad79d517SVasily Leonenko "jmp __bolt_start_trampoline\n" 161916a497c6SRafael Auler :::); 162016a497c6SRafael Auler } 162116a497c6SRafael Auler 162216a497c6SRafael Auler /// This is hooking into ELF's DT_FINI 162316a497c6SRafael Auler extern "C" void __bolt_instr_fini() { 1624553f28e9SVladislav Khmelevsky __bolt_fini_trampoline(); 162516a497c6SRafael Auler if (__bolt_instr_sleep_time == 0) 162616a497c6SRafael Auler __bolt_instr_data_dump(); 162716a497c6SRafael Auler DEBUG(report("Finished.\n")); 162862aa74f8SRafael Auler } 1629bbd9d610SAlexander Shaposhnikov 16303b876cc3SAlexander Shaposhnikov #endif 16313b876cc3SAlexander Shaposhnikov 16323b876cc3SAlexander Shaposhnikov #if defined(__APPLE__) 1633bbd9d610SAlexander Shaposhnikov 1634a0dd5b05SAlexander Shaposhnikov extern "C" void __bolt_instr_data_dump() { 1635a0dd5b05SAlexander Shaposhnikov ProfileWriterContext Ctx = readDescriptions(); 1636a0dd5b05SAlexander Shaposhnikov 1637a0dd5b05SAlexander Shaposhnikov int FD = 2; 1638a0dd5b05SAlexander Shaposhnikov BumpPtrAllocator Alloc; 1639a0dd5b05SAlexander Shaposhnikov const uint8_t *FuncDesc = Ctx.FuncDescriptions; 1640a0dd5b05SAlexander Shaposhnikov uint32_t bolt_instr_num_funcs = _bolt_instr_num_funcs_getter(); 1641a0dd5b05SAlexander Shaposhnikov 1642a0dd5b05SAlexander Shaposhnikov for (int I = 0, E = bolt_instr_num_funcs; I < E; ++I) { 1643a0dd5b05SAlexander Shaposhnikov FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); 1644a0dd5b05SAlexander Shaposhnikov Alloc.clear(); 1645a0dd5b05SAlexander Shaposhnikov DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)); 1646a0dd5b05SAlexander Shaposhnikov } 1647a0dd5b05SAlexander Shaposhnikov assert(FuncDesc == (void *)Ctx.Strings, 1648a0dd5b05SAlexander Shaposhnikov "FuncDesc ptr must be equal to stringtable"); 1649a0dd5b05SAlexander Shaposhnikov } 1650a0dd5b05SAlexander Shaposhnikov 1651bbd9d610SAlexander Shaposhnikov // On OSX/iOS the final symbol name of an extern "C" function/variable contains 1652bbd9d610SAlexander Shaposhnikov // one extra leading underscore: _bolt_instr_setup -> __bolt_instr_setup. 16533b876cc3SAlexander Shaposhnikov extern "C" 16543b876cc3SAlexander Shaposhnikov __attribute__((section("__TEXT,__setup"))) 16553b876cc3SAlexander Shaposhnikov __attribute__((force_align_arg_pointer)) 16563b876cc3SAlexander Shaposhnikov void _bolt_instr_setup() { 1657a0dd5b05SAlexander Shaposhnikov __asm__ __volatile__(SAVE_ALL :::); 16583b876cc3SAlexander Shaposhnikov 1659a0dd5b05SAlexander Shaposhnikov report("Hello!\n"); 16603b876cc3SAlexander Shaposhnikov 1661a0dd5b05SAlexander Shaposhnikov __asm__ __volatile__(RESTORE_ALL :::); 16621cf23e5eSAlexander Shaposhnikov } 1663bbd9d610SAlexander Shaposhnikov 16643b876cc3SAlexander Shaposhnikov extern "C" 16653b876cc3SAlexander Shaposhnikov __attribute__((section("__TEXT,__fini"))) 16663b876cc3SAlexander Shaposhnikov __attribute__((force_align_arg_pointer)) 16673b876cc3SAlexander Shaposhnikov void _bolt_instr_fini() { 1668a0dd5b05SAlexander Shaposhnikov report("Bye!\n"); 1669a0dd5b05SAlexander Shaposhnikov __bolt_instr_data_dump(); 1670e067f2adSAlexander Shaposhnikov } 1671e067f2adSAlexander Shaposhnikov 1672bbd9d610SAlexander Shaposhnikov #endif 1673cb8d701bSVladislav Khmelevsky #endif 1674