12f09f445SMaksim Panchenko //===- bolt/runtime/instr.cpp ---------------------------------------------===// 262aa74f8SRafael Auler // 3da752c9cSRafael Auler // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4da752c9cSRafael Auler // See https://llvm.org/LICENSE.txt for license information. 5da752c9cSRafael Auler // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 662aa74f8SRafael Auler // 762aa74f8SRafael Auler //===----------------------------------------------------------------------===// 862aa74f8SRafael Auler // 916a497c6SRafael Auler // BOLT runtime instrumentation library for x86 Linux. Currently, BOLT does 1016a497c6SRafael Auler // not support linking modules with dependencies on one another into the final 1116a497c6SRafael Auler // binary (TODO?), which means this library has to be self-contained in a single 1216a497c6SRafael Auler // module. 1316a497c6SRafael Auler // 1416a497c6SRafael Auler // All extern declarations here need to be defined by BOLT itself. Those will be 1516a497c6SRafael Auler // undefined symbols that BOLT needs to resolve by emitting these symbols with 1616a497c6SRafael Auler // MCStreamer. Currently, Passes/Instrumentation.cpp is the pass responsible 1716a497c6SRafael Auler // for defining the symbols here and these two files have a tight coupling: one 1816a497c6SRafael Auler // working statically when you run BOLT and another during program runtime when 1916a497c6SRafael Auler // you run an instrumented binary. The main goal here is to output an fdata file 2016a497c6SRafael Auler // (BOLT profile) with the instrumentation counters inserted by the static pass. 2116a497c6SRafael Auler // Counters for indirect calls are an exception, as we can't know them 2216a497c6SRafael Auler // statically. These counters are created and managed here. To allow this, we 2316a497c6SRafael Auler // need a minimal framework for allocating memory dynamically. We provide this 2416a497c6SRafael Auler // with the BumpPtrAllocator class (not LLVM's, but our own version of it). 2516a497c6SRafael Auler // 2616a497c6SRafael Auler // Since this code is intended to be inserted into any executable, we decided to 2716a497c6SRafael Auler // make it standalone and do not depend on any external libraries (i.e. language 2816a497c6SRafael Auler // support libraries, such as glibc or stdc++). To allow this, we provide a few 2916a497c6SRafael Auler // light implementations of common OS interacting functionalities using direct 3016a497c6SRafael Auler // syscall wrappers. Our simple allocator doesn't manage deallocations that 3116a497c6SRafael Auler // fragment the memory space, so it's stack based. This is the minimal framework 3216a497c6SRafael Auler // provided here to allow processing instrumented counters and writing fdata. 3316a497c6SRafael Auler // 3416a497c6SRafael Auler // In the C++ idiom used here, we never use or rely on constructors or 3516a497c6SRafael Auler // destructors for global objects. That's because those need support from the 3616a497c6SRafael Auler // linker in initialization/finalization code, and we want to keep our linker 3716a497c6SRafael Auler // very simple. Similarly, we don't create any global objects that are zero 3816a497c6SRafael Auler // initialized, since those would need to go .bss, which our simple linker also 3916a497c6SRafael Auler // don't support (TODO?). 4062aa74f8SRafael Auler // 4162aa74f8SRafael Auler //===----------------------------------------------------------------------===// 4262aa74f8SRafael Auler 43cb8d701bSVladislav Khmelevsky #if defined (__x86_64__) 449bd71615SXun Li #include "common.h" 4562aa74f8SRafael Auler 4616a497c6SRafael Auler // Enables a very verbose logging to stderr useful when debugging 47cc4b2fb6SRafael Auler //#define ENABLE_DEBUG 48cc4b2fb6SRafael Auler 49cc4b2fb6SRafael Auler #ifdef ENABLE_DEBUG 50cc4b2fb6SRafael Auler #define DEBUG(X) \ 51cc4b2fb6SRafael Auler { X; } 52cc4b2fb6SRafael Auler #else 53cc4b2fb6SRafael Auler #define DEBUG(X) \ 54cc4b2fb6SRafael Auler {} 55cc4b2fb6SRafael Auler #endif 56cc4b2fb6SRafael Auler 57af58da4eSVladislav Khmelevsky #pragma GCC visibility push(hidden) 583b876cc3SAlexander Shaposhnikov 593b876cc3SAlexander Shaposhnikov extern "C" { 60553f28e9SVladislav Khmelevsky 61553f28e9SVladislav Khmelevsky #if defined(__APPLE__) 623b876cc3SAlexander Shaposhnikov extern uint64_t* _bolt_instr_locations_getter(); 633b876cc3SAlexander Shaposhnikov extern uint32_t _bolt_num_counters_getter(); 643b876cc3SAlexander Shaposhnikov 65a0dd5b05SAlexander Shaposhnikov extern uint8_t* _bolt_instr_tables_getter(); 66a0dd5b05SAlexander Shaposhnikov extern uint32_t _bolt_instr_num_funcs_getter(); 673b876cc3SAlexander Shaposhnikov 683b876cc3SAlexander Shaposhnikov #else 69bbd9d610SAlexander Shaposhnikov 7016a497c6SRafael Auler // Main counters inserted by instrumentation, incremented during runtime when 7116a497c6SRafael Auler // points of interest (locations) in the program are reached. Those are direct 7216a497c6SRafael Auler // calls and direct and indirect branches (local ones). There are also counters 7316a497c6SRafael Auler // for basic block execution if they are a spanning tree leaf and need to be 7416a497c6SRafael Auler // counted in order to infer the execution count of other edges of the CFG. 7562aa74f8SRafael Auler extern uint64_t __bolt_instr_locations[]; 7616a497c6SRafael Auler extern uint32_t __bolt_num_counters; 7716a497c6SRafael Auler // Descriptions are serialized metadata about binary functions written by BOLT, 7816a497c6SRafael Auler // so we have a minimal understanding about the program structure. For a 7916a497c6SRafael Auler // reference on the exact format of this metadata, see *Description structs, 8016a497c6SRafael Auler // Location, IntrumentedNode and EntryNode. 8116a497c6SRafael Auler // Number of indirect call site descriptions 8216a497c6SRafael Auler extern uint32_t __bolt_instr_num_ind_calls; 8316a497c6SRafael Auler // Number of indirect call target descriptions 8416a497c6SRafael Auler extern uint32_t __bolt_instr_num_ind_targets; 85cc4b2fb6SRafael Auler // Number of function descriptions 86cc4b2fb6SRafael Auler extern uint32_t __bolt_instr_num_funcs; 8716a497c6SRafael Auler // Time to sleep across dumps (when we write the fdata profile to disk) 8816a497c6SRafael Auler extern uint32_t __bolt_instr_sleep_time; 8976d346caSVladislav Khmelevsky // Do not clear counters across dumps, rewrite file with the updated values 9076d346caSVladislav Khmelevsky extern bool __bolt_instr_no_counters_clear; 9176d346caSVladislav Khmelevsky // Wait until all forks of instrumented process will finish 9276d346caSVladislav Khmelevsky extern bool __bolt_instr_wait_forks; 93cc4b2fb6SRafael Auler // Filename to dump data to 9462aa74f8SRafael Auler extern char __bolt_instr_filename[]; 95519cbbaaSVasily Leonenko // Instumented binary file path 96519cbbaaSVasily Leonenko extern char __bolt_instr_binpath[]; 9716a497c6SRafael Auler // If true, append current PID to the fdata filename when creating it so 9816a497c6SRafael Auler // different invocations of the same program can be differentiated. 9916a497c6SRafael Auler extern bool __bolt_instr_use_pid; 10016a497c6SRafael Auler // Functions that will be used to instrument indirect calls. BOLT static pass 10116a497c6SRafael Auler // will identify indirect calls and modify them to load the address in these 10216a497c6SRafael Auler // trampolines and call this address instead. BOLT can't use direct calls to 10316a497c6SRafael Auler // our handlers because our addresses here are not known at analysis time. We 10416a497c6SRafael Auler // only support resolving dependencies from this file to the output of BOLT, 10516a497c6SRafael Auler // *not* the other way around. 10616a497c6SRafael Auler // TODO: We need better linking support to make that happen. 107361f3b55SVladislav Khmelevsky extern void (*__bolt_ind_call_counter_func_pointer)(); 108361f3b55SVladislav Khmelevsky extern void (*__bolt_ind_tailcall_counter_func_pointer)(); 109ad79d517SVasily Leonenko // Function pointers to init/fini trampoline routines in the binary, so we can 110ad79d517SVasily Leonenko // resume regular execution of these functions that we hooked 111553f28e9SVladislav Khmelevsky extern void __bolt_start_trampoline(); 112553f28e9SVladislav Khmelevsky extern void __bolt_fini_trampoline(); 11362aa74f8SRafael Auler 114a0dd5b05SAlexander Shaposhnikov #endif 115553f28e9SVladislav Khmelevsky } 116a0dd5b05SAlexander Shaposhnikov 117cc4b2fb6SRafael Auler namespace { 118cc4b2fb6SRafael Auler 119cc4b2fb6SRafael Auler /// A simple allocator that mmaps a fixed size region and manages this space 120cc4b2fb6SRafael Auler /// in a stack fashion, meaning you always deallocate the last element that 12116a497c6SRafael Auler /// was allocated. In practice, we don't need to deallocate individual elements. 12216a497c6SRafael Auler /// We monotonically increase our usage and then deallocate everything once we 12316a497c6SRafael Auler /// are done processing something. 124cc4b2fb6SRafael Auler class BumpPtrAllocator { 12516a497c6SRafael Auler /// This is written before each allocation and act as a canary to detect when 12616a497c6SRafael Auler /// a bug caused our program to cross allocation boundaries. 127cc4b2fb6SRafael Auler struct EntryMetadata { 128cc4b2fb6SRafael Auler uint64_t Magic; 129cc4b2fb6SRafael Auler uint64_t AllocSize; 130cc4b2fb6SRafael Auler }; 1319bd71615SXun Li 132cc4b2fb6SRafael Auler public: 133faaefff6SAlexander Shaposhnikov void *allocate(size_t Size) { 13416a497c6SRafael Auler Lock L(M); 135a0dd5b05SAlexander Shaposhnikov 136cc4b2fb6SRafael Auler if (StackBase == nullptr) { 13716a497c6SRafael Auler StackBase = reinterpret_cast<uint8_t *>( 138f0b45fbaSDenis Revunov __mmap(0, MaxSize, PROT_READ | PROT_WRITE, 139f0b45fbaSDenis Revunov (Shared ? MAP_SHARED : MAP_PRIVATE) | MAP_ANONYMOUS, -1, 0)); 1408f7c53efSDenis Revunov assert(StackBase != MAP_FAILED, 1418f7c53efSDenis Revunov "BumpPtrAllocator: failed to mmap stack!"); 142cc4b2fb6SRafael Auler StackSize = 0; 143cc4b2fb6SRafael Auler } 144a0dd5b05SAlexander Shaposhnikov 145cc4b2fb6SRafael Auler Size = alignTo(Size + sizeof(EntryMetadata), 16); 146cc4b2fb6SRafael Auler uint8_t *AllocAddress = StackBase + StackSize + sizeof(EntryMetadata); 147cc4b2fb6SRafael Auler auto *M = reinterpret_cast<EntryMetadata *>(StackBase + StackSize); 14816a497c6SRafael Auler M->Magic = Magic; 149cc4b2fb6SRafael Auler M->AllocSize = Size; 150cc4b2fb6SRafael Auler StackSize += Size; 15116a497c6SRafael Auler assert(StackSize < MaxSize, "allocator ran out of memory"); 152cc4b2fb6SRafael Auler return AllocAddress; 153cc4b2fb6SRafael Auler } 154cc4b2fb6SRafael Auler 15516a497c6SRafael Auler #ifdef DEBUG 15616a497c6SRafael Auler /// Element-wise deallocation is only used for debugging to catch memory 15716a497c6SRafael Auler /// bugs by checking magic bytes. Ordinarily, we reset the allocator once 15816a497c6SRafael Auler /// we are done with it. Reset is done with clear(). There's no need 15916a497c6SRafael Auler /// to deallocate each element individually. 160cc4b2fb6SRafael Auler void deallocate(void *Ptr) { 16116a497c6SRafael Auler Lock L(M); 162cc4b2fb6SRafael Auler uint8_t MetadataOffset = sizeof(EntryMetadata); 163cc4b2fb6SRafael Auler auto *M = reinterpret_cast<EntryMetadata *>( 164cc4b2fb6SRafael Auler reinterpret_cast<uint8_t *>(Ptr) - MetadataOffset); 165cc4b2fb6SRafael Auler const uint8_t *StackTop = StackBase + StackSize + MetadataOffset; 166cc4b2fb6SRafael Auler // Validate size 167cc4b2fb6SRafael Auler if (Ptr != StackTop - M->AllocSize) { 16816a497c6SRafael Auler // Failed validation, check if it is a pointer returned by operator new [] 169cc4b2fb6SRafael Auler MetadataOffset += 170cc4b2fb6SRafael Auler sizeof(uint64_t); // Space for number of elements alloc'ed 171cc4b2fb6SRafael Auler M = reinterpret_cast<EntryMetadata *>(reinterpret_cast<uint8_t *>(Ptr) - 172cc4b2fb6SRafael Auler MetadataOffset); 17316a497c6SRafael Auler // Ok, it failed both checks if this assertion fails. Stop the program, we 17416a497c6SRafael Auler // have a memory bug. 175cc4b2fb6SRafael Auler assert(Ptr == StackTop - M->AllocSize, 176cc4b2fb6SRafael Auler "must deallocate the last element alloc'ed"); 177cc4b2fb6SRafael Auler } 17816a497c6SRafael Auler assert(M->Magic == Magic, "allocator magic is corrupt"); 179cc4b2fb6SRafael Auler StackSize -= M->AllocSize; 180cc4b2fb6SRafael Auler } 18116a497c6SRafael Auler #else 18216a497c6SRafael Auler void deallocate(void *) {} 18316a497c6SRafael Auler #endif 18416a497c6SRafael Auler 18516a497c6SRafael Auler void clear() { 18616a497c6SRafael Auler Lock L(M); 18716a497c6SRafael Auler StackSize = 0; 18816a497c6SRafael Auler } 18916a497c6SRafael Auler 19016a497c6SRafael Auler /// Set mmap reservation size (only relevant before first allocation) 1919bd71615SXun Li void setMaxSize(uint64_t Size) { MaxSize = Size; } 19216a497c6SRafael Auler 19316a497c6SRafael Auler /// Set mmap reservation privacy (only relevant before first allocation) 1949bd71615SXun Li void setShared(bool S) { Shared = S; } 19516a497c6SRafael Auler 19616a497c6SRafael Auler void destroy() { 19716a497c6SRafael Auler if (StackBase == nullptr) 19816a497c6SRafael Auler return; 19916a497c6SRafael Auler __munmap(StackBase, MaxSize); 20016a497c6SRafael Auler } 201cc4b2fb6SRafael Auler 202cc4b2fb6SRafael Auler private: 20316a497c6SRafael Auler static constexpr uint64_t Magic = 0x1122334455667788ull; 20416a497c6SRafael Auler uint64_t MaxSize = 0xa00000; 205cc4b2fb6SRafael Auler uint8_t *StackBase{nullptr}; 206cc4b2fb6SRafael Auler uint64_t StackSize{0}; 20716a497c6SRafael Auler bool Shared{false}; 20816a497c6SRafael Auler Mutex M; 209cc4b2fb6SRafael Auler }; 210cc4b2fb6SRafael Auler 21116a497c6SRafael Auler /// Used for allocating indirect call instrumentation counters. Initialized by 21216a497c6SRafael Auler /// __bolt_instr_setup, our initialization routine. 2134314f4ceSAmir Ayupov BumpPtrAllocator GlobalAlloc; 214cc4b2fb6SRafael Auler } // anonymous namespace 215cc4b2fb6SRafael Auler 216cc4b2fb6SRafael Auler // User-defined placement new operators. We only use those (as opposed to 217cc4b2fb6SRafael Auler // overriding the regular operator new) so we can keep our allocator in the 218cc4b2fb6SRafael Auler // stack instead of in a data section (global). 219faaefff6SAlexander Shaposhnikov void *operator new(size_t Sz, BumpPtrAllocator &A) { return A.allocate(Sz); } 220faaefff6SAlexander Shaposhnikov void *operator new(size_t Sz, BumpPtrAllocator &A, char C) { 221cc4b2fb6SRafael Auler auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); 222ea2182feSMaksim Panchenko memset(Ptr, C, Sz); 223cc4b2fb6SRafael Auler return Ptr; 224cc4b2fb6SRafael Auler } 225faaefff6SAlexander Shaposhnikov void *operator new[](size_t Sz, BumpPtrAllocator &A) { 226cc4b2fb6SRafael Auler return A.allocate(Sz); 227cc4b2fb6SRafael Auler } 228faaefff6SAlexander Shaposhnikov void *operator new[](size_t Sz, BumpPtrAllocator &A, char C) { 229cc4b2fb6SRafael Auler auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); 230ea2182feSMaksim Panchenko memset(Ptr, C, Sz); 231cc4b2fb6SRafael Auler return Ptr; 232cc4b2fb6SRafael Auler } 233cc4b2fb6SRafael Auler // Only called during exception unwinding (useless). We must manually dealloc. 234cc4b2fb6SRafael Auler // C++ language weirdness 2359bd71615SXun Li void operator delete(void *Ptr, BumpPtrAllocator &A) { A.deallocate(Ptr); } 236cc4b2fb6SRafael Auler 237cc4b2fb6SRafael Auler namespace { 238cc4b2fb6SRafael Auler 2399aa134dcSVasily Leonenko // Disable instrumentation optimizations that sacrifice profile accuracy 2409aa134dcSVasily Leonenko extern "C" bool __bolt_instr_conservative; 2419aa134dcSVasily Leonenko 24216a497c6SRafael Auler /// Basic key-val atom stored in our hash 24316a497c6SRafael Auler struct SimpleHashTableEntryBase { 24416a497c6SRafael Auler uint64_t Key; 24516a497c6SRafael Auler uint64_t Val; 24647934c11SDenis Revunov void dump(const char *Msg = nullptr) { 24747934c11SDenis Revunov // TODO: make some sort of formatting function 24847934c11SDenis Revunov // Currently we have to do it the ugly way because 24947934c11SDenis Revunov // we want every message to be printed atomically via a single call to 25047934c11SDenis Revunov // __write. If we use reportNumber() and others nultiple times, we'll get 25147934c11SDenis Revunov // garbage in mulithreaded environment 25247934c11SDenis Revunov char Buf[BufSize]; 25347934c11SDenis Revunov char *Ptr = Buf; 25447934c11SDenis Revunov Ptr = intToStr(Ptr, __getpid(), 10); 25547934c11SDenis Revunov *Ptr++ = ':'; 25647934c11SDenis Revunov *Ptr++ = ' '; 25747934c11SDenis Revunov if (Msg) 25847934c11SDenis Revunov Ptr = strCopy(Ptr, Msg, strLen(Msg)); 25947934c11SDenis Revunov *Ptr++ = '0'; 26047934c11SDenis Revunov *Ptr++ = 'x'; 26147934c11SDenis Revunov Ptr = intToStr(Ptr, (uint64_t)this, 16); 26247934c11SDenis Revunov *Ptr++ = ':'; 26347934c11SDenis Revunov *Ptr++ = ' '; 26447934c11SDenis Revunov Ptr = strCopy(Ptr, "MapEntry(0x", sizeof("MapEntry(0x") - 1); 26547934c11SDenis Revunov Ptr = intToStr(Ptr, Key, 16); 26647934c11SDenis Revunov *Ptr++ = ','; 26747934c11SDenis Revunov *Ptr++ = ' '; 26847934c11SDenis Revunov *Ptr++ = '0'; 26947934c11SDenis Revunov *Ptr++ = 'x'; 27047934c11SDenis Revunov Ptr = intToStr(Ptr, Val, 16); 27147934c11SDenis Revunov *Ptr++ = ')'; 27247934c11SDenis Revunov *Ptr++ = '\n'; 27347934c11SDenis Revunov assert(Ptr - Buf < BufSize, "Buffer overflow!"); 27447934c11SDenis Revunov // print everything all at once for atomicity 27547934c11SDenis Revunov __write(2, Buf, Ptr - Buf); 27647934c11SDenis Revunov } 27716a497c6SRafael Auler }; 27816a497c6SRafael Auler 27916a497c6SRafael Auler /// This hash table implementation starts by allocating a table of size 28016a497c6SRafael Auler /// InitialSize. When conflicts happen in this main table, it resolves 28116a497c6SRafael Auler /// them by chaining a new table of size IncSize. It never reallocs as our 28216a497c6SRafael Auler /// allocator doesn't support it. The key is intended to be function pointers. 28316a497c6SRafael Auler /// There's no clever hash function (it's just x mod size, size being prime). 28416a497c6SRafael Auler /// I never tuned the coefficientes in the modular equation (TODO) 28516a497c6SRafael Auler /// This is used for indirect calls (each call site has one of this, so it 28616a497c6SRafael Auler /// should have a small footprint) and for tallying call counts globally for 28716a497c6SRafael Auler /// each target to check if we missed the origin of some calls (this one is a 28816a497c6SRafael Auler /// large instantiation of this template, since it is global for all call sites) 28916a497c6SRafael Auler template <typename T = SimpleHashTableEntryBase, uint32_t InitialSize = 7, 29016a497c6SRafael Auler uint32_t IncSize = 7> 29116a497c6SRafael Auler class SimpleHashTable { 29216a497c6SRafael Auler public: 29316a497c6SRafael Auler using MapEntry = T; 29416a497c6SRafael Auler 29516a497c6SRafael Auler /// Increment by 1 the value of \p Key. If it is not in this table, it will be 29616a497c6SRafael Auler /// added to the table and its value set to 1. 29716a497c6SRafael Auler void incrementVal(uint64_t Key, BumpPtrAllocator &Alloc) { 2984314f4ceSAmir Ayupov ++get(Key, Alloc).Val; 29916a497c6SRafael Auler } 30016a497c6SRafael Auler 30116a497c6SRafael Auler /// Basic member accessing interface. Here we pass the allocator explicitly to 30216a497c6SRafael Auler /// avoid storing a pointer to it as part of this table (remember there is one 30316a497c6SRafael Auler /// hash for each indirect call site, so we wan't to minimize our footprint). 30416a497c6SRafael Auler MapEntry &get(uint64_t Key, BumpPtrAllocator &Alloc) { 3059aa134dcSVasily Leonenko if (!__bolt_instr_conservative) { 3069aa134dcSVasily Leonenko TryLock L(M); 3079aa134dcSVasily Leonenko if (!L.isLocked()) 3089aa134dcSVasily Leonenko return NoEntry; 3099aa134dcSVasily Leonenko return getOrAllocEntry(Key, Alloc); 3109aa134dcSVasily Leonenko } 31116a497c6SRafael Auler Lock L(M); 3129aa134dcSVasily Leonenko return getOrAllocEntry(Key, Alloc); 31316a497c6SRafael Auler } 31416a497c6SRafael Auler 31516a497c6SRafael Auler /// Traverses all elements in the table 31616a497c6SRafael Auler template <typename... Args> 31716a497c6SRafael Auler void forEachElement(void (*Callback)(MapEntry &, Args...), Args... args) { 318bd301a41SMichał Chojnowski Lock L(M); 31916a497c6SRafael Auler if (!TableRoot) 32016a497c6SRafael Auler return; 32116a497c6SRafael Auler return forEachElement(Callback, InitialSize, TableRoot, args...); 32216a497c6SRafael Auler } 32316a497c6SRafael Auler 32416a497c6SRafael Auler void resetCounters(); 32516a497c6SRafael Auler 32616a497c6SRafael Auler private: 32716a497c6SRafael Auler constexpr static uint64_t VacantMarker = 0; 32816a497c6SRafael Auler constexpr static uint64_t FollowUpTableMarker = 0x8000000000000000ull; 32916a497c6SRafael Auler 33016a497c6SRafael Auler MapEntry *TableRoot{nullptr}; 3319aa134dcSVasily Leonenko MapEntry NoEntry; 33216a497c6SRafael Auler Mutex M; 33316a497c6SRafael Auler 33416a497c6SRafael Auler template <typename... Args> 33516a497c6SRafael Auler void forEachElement(void (*Callback)(MapEntry &, Args...), 33616a497c6SRafael Auler uint32_t NumEntries, MapEntry *Entries, Args... args) { 337c7306cc2SAmir Ayupov for (uint32_t I = 0; I < NumEntries; ++I) { 338c7306cc2SAmir Ayupov MapEntry &Entry = Entries[I]; 33916a497c6SRafael Auler if (Entry.Key == VacantMarker) 34016a497c6SRafael Auler continue; 34116a497c6SRafael Auler if (Entry.Key & FollowUpTableMarker) { 3424314f4ceSAmir Ayupov forEachElement(Callback, IncSize, 3434314f4ceSAmir Ayupov reinterpret_cast<MapEntry *>(Entry.Key & 3444314f4ceSAmir Ayupov ~FollowUpTableMarker), 3454314f4ceSAmir Ayupov args...); 34616a497c6SRafael Auler continue; 34716a497c6SRafael Auler } 34816a497c6SRafael Auler Callback(Entry, args...); 34916a497c6SRafael Auler } 35016a497c6SRafael Auler } 35116a497c6SRafael Auler 35216a497c6SRafael Auler MapEntry &firstAllocation(uint64_t Key, BumpPtrAllocator &Alloc) { 35316a497c6SRafael Auler TableRoot = new (Alloc, 0) MapEntry[InitialSize]; 354c7306cc2SAmir Ayupov MapEntry &Entry = TableRoot[Key % InitialSize]; 35516a497c6SRafael Auler Entry.Key = Key; 35647934c11SDenis Revunov // DEBUG(Entry.dump("Created root entry: ")); 35716a497c6SRafael Auler return Entry; 35816a497c6SRafael Auler } 35916a497c6SRafael Auler 36016a497c6SRafael Auler MapEntry &getEntry(MapEntry *Entries, uint64_t Key, uint64_t Selector, 36116a497c6SRafael Auler BumpPtrAllocator &Alloc, int CurLevel) { 36247934c11SDenis Revunov // DEBUG(reportNumber("getEntry called, level ", CurLevel, 10)); 36316a497c6SRafael Auler const uint32_t NumEntries = CurLevel == 0 ? InitialSize : IncSize; 36416a497c6SRafael Auler uint64_t Remainder = Selector / NumEntries; 36516a497c6SRafael Auler Selector = Selector % NumEntries; 366c7306cc2SAmir Ayupov MapEntry &Entry = Entries[Selector]; 36716a497c6SRafael Auler 36816a497c6SRafael Auler // A hit 36916a497c6SRafael Auler if (Entry.Key == Key) { 37047934c11SDenis Revunov // DEBUG(Entry.dump("Hit: ")); 37116a497c6SRafael Auler return Entry; 37216a497c6SRafael Auler } 37316a497c6SRafael Auler 37416a497c6SRafael Auler // Vacant - add new entry 37516a497c6SRafael Auler if (Entry.Key == VacantMarker) { 37616a497c6SRafael Auler Entry.Key = Key; 37747934c11SDenis Revunov // DEBUG(Entry.dump("Adding new entry: ")); 37816a497c6SRafael Auler return Entry; 37916a497c6SRafael Auler } 38016a497c6SRafael Auler 38116a497c6SRafael Auler // Defer to the next level 38216a497c6SRafael Auler if (Entry.Key & FollowUpTableMarker) { 38316a497c6SRafael Auler return getEntry( 38416a497c6SRafael Auler reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker), 38516a497c6SRafael Auler Key, Remainder, Alloc, CurLevel + 1); 38616a497c6SRafael Auler } 38716a497c6SRafael Auler 38816a497c6SRafael Auler // Conflict - create the next level 38947934c11SDenis Revunov // DEBUG(Entry.dump("Creating new level: ")); 39047934c11SDenis Revunov 39116a497c6SRafael Auler MapEntry *NextLevelTbl = new (Alloc, 0) MapEntry[IncSize]; 39247934c11SDenis Revunov // DEBUG( 39347934c11SDenis Revunov // reportNumber("Newly allocated level: 0x", uint64_t(NextLevelTbl), 39447934c11SDenis Revunov // 16)); 39516a497c6SRafael Auler uint64_t CurEntrySelector = Entry.Key / InitialSize; 39616a497c6SRafael Auler for (int I = 0; I < CurLevel; ++I) 39716a497c6SRafael Auler CurEntrySelector /= IncSize; 39816a497c6SRafael Auler CurEntrySelector = CurEntrySelector % IncSize; 39916a497c6SRafael Auler NextLevelTbl[CurEntrySelector] = Entry; 40016a497c6SRafael Auler Entry.Key = reinterpret_cast<uint64_t>(NextLevelTbl) | FollowUpTableMarker; 401ad4e0770SDenis Revunov assert((NextLevelTbl[CurEntrySelector].Key & ~FollowUpTableMarker) != 402ad4e0770SDenis Revunov uint64_t(Entries), 403ad4e0770SDenis Revunov "circular reference created!\n"); 40447934c11SDenis Revunov // DEBUG(NextLevelTbl[CurEntrySelector].dump("New level entry: ")); 40547934c11SDenis Revunov // DEBUG(Entry.dump("Updated old entry: ")); 40616a497c6SRafael Auler return getEntry(NextLevelTbl, Key, Remainder, Alloc, CurLevel + 1); 40716a497c6SRafael Auler } 4089aa134dcSVasily Leonenko 4099aa134dcSVasily Leonenko MapEntry &getOrAllocEntry(uint64_t Key, BumpPtrAllocator &Alloc) { 4104314f4ceSAmir Ayupov if (TableRoot) 4114314f4ceSAmir Ayupov return getEntry(TableRoot, Key, Key, Alloc, 0); 4129aa134dcSVasily Leonenko return firstAllocation(Key, Alloc); 4139aa134dcSVasily Leonenko } 41416a497c6SRafael Auler }; 41516a497c6SRafael Auler 41616a497c6SRafael Auler template <typename T> void resetIndCallCounter(T &Entry) { 41716a497c6SRafael Auler Entry.Val = 0; 41816a497c6SRafael Auler } 41916a497c6SRafael Auler 42016a497c6SRafael Auler template <typename T, uint32_t X, uint32_t Y> 42116a497c6SRafael Auler void SimpleHashTable<T, X, Y>::resetCounters() { 42216a497c6SRafael Auler forEachElement(resetIndCallCounter); 42316a497c6SRafael Auler } 42416a497c6SRafael Auler 42516a497c6SRafael Auler /// Represents a hash table mapping a function target address to its counter. 42616a497c6SRafael Auler using IndirectCallHashTable = SimpleHashTable<>; 42716a497c6SRafael Auler 42816a497c6SRafael Auler /// Initialize with number 1 instead of 0 so we don't go into .bss. This is the 42916a497c6SRafael Auler /// global array of all hash tables storing indirect call destinations happening 43016a497c6SRafael Auler /// during runtime, one table per call site. 43116a497c6SRafael Auler IndirectCallHashTable *GlobalIndCallCounters{ 43216a497c6SRafael Auler reinterpret_cast<IndirectCallHashTable *>(1)}; 43316a497c6SRafael Auler 43416a497c6SRafael Auler /// Don't allow reentrancy in the fdata writing phase - only one thread writes 43516a497c6SRafael Auler /// it 43616a497c6SRafael Auler Mutex *GlobalWriteProfileMutex{reinterpret_cast<Mutex *>(1)}; 43716a497c6SRafael Auler 43816a497c6SRafael Auler /// Store number of calls in additional to target address (Key) and frequency 43916a497c6SRafael Auler /// as perceived by the basic block counter (Val). 44016a497c6SRafael Auler struct CallFlowEntryBase : public SimpleHashTableEntryBase { 44116a497c6SRafael Auler uint64_t Calls; 44216a497c6SRafael Auler }; 44316a497c6SRafael Auler 44416a497c6SRafael Auler using CallFlowHashTableBase = SimpleHashTable<CallFlowEntryBase, 11939, 233>; 44516a497c6SRafael Auler 44616a497c6SRafael Auler /// This is a large table indexing all possible call targets (indirect and 44716a497c6SRafael Auler /// direct ones). The goal is to find mismatches between number of calls (for 44816a497c6SRafael Auler /// those calls we were able to track) and the entry basic block counter of the 44916a497c6SRafael Auler /// callee. In most cases, these two should be equal. If not, there are two 45016a497c6SRafael Auler /// possible scenarios here: 45116a497c6SRafael Auler /// 45216a497c6SRafael Auler /// * Entry BB has higher frequency than all known calls to this function. 45316a497c6SRafael Auler /// In this case, we have dynamic library code or any uninstrumented code 45416a497c6SRafael Auler /// calling this function. We will write the profile for these untracked 45516a497c6SRafael Auler /// calls as having source "0 [unknown] 0" in the fdata file. 45616a497c6SRafael Auler /// 45716a497c6SRafael Auler /// * Number of known calls is higher than the frequency of entry BB 45816a497c6SRafael Auler /// This only happens when there is no counter for the entry BB / callee 45916a497c6SRafael Auler /// function is not simple (in BOLT terms). We don't do anything special 46016a497c6SRafael Auler /// here and just ignore those (we still report all calls to the non-simple 46116a497c6SRafael Auler /// function, though). 46216a497c6SRafael Auler /// 46316a497c6SRafael Auler class CallFlowHashTable : public CallFlowHashTableBase { 46416a497c6SRafael Auler public: 46516a497c6SRafael Auler CallFlowHashTable(BumpPtrAllocator &Alloc) : Alloc(Alloc) {} 46616a497c6SRafael Auler 46716a497c6SRafael Auler MapEntry &get(uint64_t Key) { return CallFlowHashTableBase::get(Key, Alloc); } 46816a497c6SRafael Auler 46916a497c6SRafael Auler private: 47016a497c6SRafael Auler // Different than the hash table for indirect call targets, we do store the 47116a497c6SRafael Auler // allocator here since there is only one call flow hash and space overhead 47216a497c6SRafael Auler // is negligible. 47316a497c6SRafael Auler BumpPtrAllocator &Alloc; 47416a497c6SRafael Auler }; 47516a497c6SRafael Auler 47616a497c6SRafael Auler /// 47716a497c6SRafael Auler /// Description metadata emitted by BOLT to describe the program - refer to 47816a497c6SRafael Auler /// Passes/Instrumentation.cpp - Instrumentation::emitTablesAsELFNote() 47916a497c6SRafael Auler /// 48016a497c6SRafael Auler struct Location { 48116a497c6SRafael Auler uint32_t FunctionName; 48216a497c6SRafael Auler uint32_t Offset; 48316a497c6SRafael Auler }; 48416a497c6SRafael Auler 48516a497c6SRafael Auler struct CallDescription { 48616a497c6SRafael Auler Location From; 48716a497c6SRafael Auler uint32_t FromNode; 48816a497c6SRafael Auler Location To; 48916a497c6SRafael Auler uint32_t Counter; 49016a497c6SRafael Auler uint64_t TargetAddress; 49116a497c6SRafael Auler }; 49216a497c6SRafael Auler 49316a497c6SRafael Auler using IndCallDescription = Location; 49416a497c6SRafael Auler 49516a497c6SRafael Auler struct IndCallTargetDescription { 49616a497c6SRafael Auler Location Loc; 49716a497c6SRafael Auler uint64_t Address; 49816a497c6SRafael Auler }; 49916a497c6SRafael Auler 50016a497c6SRafael Auler struct EdgeDescription { 50116a497c6SRafael Auler Location From; 50216a497c6SRafael Auler uint32_t FromNode; 50316a497c6SRafael Auler Location To; 50416a497c6SRafael Auler uint32_t ToNode; 50516a497c6SRafael Auler uint32_t Counter; 50616a497c6SRafael Auler }; 50716a497c6SRafael Auler 50816a497c6SRafael Auler struct InstrumentedNode { 50916a497c6SRafael Auler uint32_t Node; 51016a497c6SRafael Auler uint32_t Counter; 51116a497c6SRafael Auler }; 51216a497c6SRafael Auler 51316a497c6SRafael Auler struct EntryNode { 51416a497c6SRafael Auler uint64_t Node; 51516a497c6SRafael Auler uint64_t Address; 51616a497c6SRafael Auler }; 51716a497c6SRafael Auler 51816a497c6SRafael Auler struct FunctionDescription { 51916a497c6SRafael Auler uint32_t NumLeafNodes; 52016a497c6SRafael Auler const InstrumentedNode *LeafNodes; 52116a497c6SRafael Auler uint32_t NumEdges; 52216a497c6SRafael Auler const EdgeDescription *Edges; 52316a497c6SRafael Auler uint32_t NumCalls; 52416a497c6SRafael Auler const CallDescription *Calls; 52516a497c6SRafael Auler uint32_t NumEntryNodes; 52616a497c6SRafael Auler const EntryNode *EntryNodes; 52716a497c6SRafael Auler 52816a497c6SRafael Auler /// Constructor will parse the serialized function metadata written by BOLT 52916a497c6SRafael Auler FunctionDescription(const uint8_t *FuncDesc); 53016a497c6SRafael Auler 53116a497c6SRafael Auler uint64_t getSize() const { 53216a497c6SRafael Auler return 16 + NumLeafNodes * sizeof(InstrumentedNode) + 53316a497c6SRafael Auler NumEdges * sizeof(EdgeDescription) + 53416a497c6SRafael Auler NumCalls * sizeof(CallDescription) + 53516a497c6SRafael Auler NumEntryNodes * sizeof(EntryNode); 53616a497c6SRafael Auler } 53716a497c6SRafael Auler }; 53816a497c6SRafael Auler 53916a497c6SRafael Auler /// The context is created when the fdata profile needs to be written to disk 54016a497c6SRafael Auler /// and we need to interpret our runtime counters. It contains pointers to the 54116a497c6SRafael Auler /// mmaped binary (only the BOLT written metadata section). Deserialization 54216a497c6SRafael Auler /// should be straightforward as most data is POD or an array of POD elements. 54316a497c6SRafael Auler /// This metadata is used to reconstruct function CFGs. 54416a497c6SRafael Auler struct ProfileWriterContext { 54516a497c6SRafael Auler IndCallDescription *IndCallDescriptions; 54616a497c6SRafael Auler IndCallTargetDescription *IndCallTargets; 54716a497c6SRafael Auler uint8_t *FuncDescriptions; 54816a497c6SRafael Auler char *Strings; // String table with function names used in this binary 54916a497c6SRafael Auler int FileDesc; // File descriptor for the file on disk backing this 55016a497c6SRafael Auler // information in memory via mmap 55116a497c6SRafael Auler void *MMapPtr; // The mmap ptr 55216a497c6SRafael Auler int MMapSize; // The mmap size 55316a497c6SRafael Auler 55416a497c6SRafael Auler /// Hash table storing all possible call destinations to detect untracked 55516a497c6SRafael Auler /// calls and correctly report them as [unknown] in output fdata. 55616a497c6SRafael Auler CallFlowHashTable *CallFlowTable; 55716a497c6SRafael Auler 55816a497c6SRafael Auler /// Lookup the sorted indirect call target vector to fetch function name and 55916a497c6SRafael Auler /// offset for an arbitrary function pointer. 56016a497c6SRafael Auler const IndCallTargetDescription *lookupIndCallTarget(uint64_t Target) const; 56116a497c6SRafael Auler }; 56216a497c6SRafael Auler 56316a497c6SRafael Auler /// Perform a string comparison and returns zero if Str1 matches Str2. Compares 56416a497c6SRafael Auler /// at most Size characters. 565cc4b2fb6SRafael Auler int compareStr(const char *Str1, const char *Str2, int Size) { 566821480d2SRafael Auler while (*Str1 == *Str2) { 567821480d2SRafael Auler if (*Str1 == '\0' || --Size == 0) 568821480d2SRafael Auler return 0; 569821480d2SRafael Auler ++Str1; 570821480d2SRafael Auler ++Str2; 571821480d2SRafael Auler } 572821480d2SRafael Auler return 1; 573821480d2SRafael Auler } 574821480d2SRafael Auler 57516a497c6SRafael Auler /// Output Location to the fdata file 57616a497c6SRafael Auler char *serializeLoc(const ProfileWriterContext &Ctx, char *OutBuf, 577cc4b2fb6SRafael Auler const Location Loc, uint32_t BufSize) { 578821480d2SRafael Auler // fdata location format: Type Name Offset 579821480d2SRafael Auler // Type 1 - regular symbol 580821480d2SRafael Auler OutBuf = strCopy(OutBuf, "1 "); 58116a497c6SRafael Auler const char *Str = Ctx.Strings + Loc.FunctionName; 582cc4b2fb6SRafael Auler uint32_t Size = 25; 58362aa74f8SRafael Auler while (*Str) { 58462aa74f8SRafael Auler *OutBuf++ = *Str++; 585cc4b2fb6SRafael Auler if (++Size >= BufSize) 586cc4b2fb6SRafael Auler break; 58762aa74f8SRafael Auler } 588cc4b2fb6SRafael Auler assert(!*Str, "buffer overflow, function name too large"); 58962aa74f8SRafael Auler *OutBuf++ = ' '; 590821480d2SRafael Auler OutBuf = intToStr(OutBuf, Loc.Offset, 16); 59162aa74f8SRafael Auler *OutBuf++ = ' '; 59262aa74f8SRafael Auler return OutBuf; 59362aa74f8SRafael Auler } 59462aa74f8SRafael Auler 59516a497c6SRafael Auler /// Read and deserialize a function description written by BOLT. \p FuncDesc 59616a497c6SRafael Auler /// points at the beginning of the function metadata structure in the file. 59716a497c6SRafael Auler /// See Instrumentation::emitTablesAsELFNote() 59816a497c6SRafael Auler FunctionDescription::FunctionDescription(const uint8_t *FuncDesc) { 59916a497c6SRafael Auler NumLeafNodes = *reinterpret_cast<const uint32_t *>(FuncDesc); 60016a497c6SRafael Auler DEBUG(reportNumber("NumLeafNodes = ", NumLeafNodes, 10)); 60116a497c6SRafael Auler LeafNodes = reinterpret_cast<const InstrumentedNode *>(FuncDesc + 4); 60216a497c6SRafael Auler 60316a497c6SRafael Auler NumEdges = *reinterpret_cast<const uint32_t *>( 60416a497c6SRafael Auler FuncDesc + 4 + NumLeafNodes * sizeof(InstrumentedNode)); 60516a497c6SRafael Auler DEBUG(reportNumber("NumEdges = ", NumEdges, 10)); 60616a497c6SRafael Auler Edges = reinterpret_cast<const EdgeDescription *>( 60716a497c6SRafael Auler FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode)); 60816a497c6SRafael Auler 60916a497c6SRafael Auler NumCalls = *reinterpret_cast<const uint32_t *>( 61016a497c6SRafael Auler FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode) + 61116a497c6SRafael Auler NumEdges * sizeof(EdgeDescription)); 61216a497c6SRafael Auler DEBUG(reportNumber("NumCalls = ", NumCalls, 10)); 61316a497c6SRafael Auler Calls = reinterpret_cast<const CallDescription *>( 61416a497c6SRafael Auler FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + 61516a497c6SRafael Auler NumEdges * sizeof(EdgeDescription)); 61616a497c6SRafael Auler NumEntryNodes = *reinterpret_cast<const uint32_t *>( 61716a497c6SRafael Auler FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + 61816a497c6SRafael Auler NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); 61916a497c6SRafael Auler DEBUG(reportNumber("NumEntryNodes = ", NumEntryNodes, 10)); 62016a497c6SRafael Auler EntryNodes = reinterpret_cast<const EntryNode *>( 62116a497c6SRafael Auler FuncDesc + 16 + NumLeafNodes * sizeof(InstrumentedNode) + 62216a497c6SRafael Auler NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); 62316a497c6SRafael Auler } 62416a497c6SRafael Auler 62516a497c6SRafael Auler /// Read and mmap descriptions written by BOLT from the executable's notes 62616a497c6SRafael Auler /// section 627a0dd5b05SAlexander Shaposhnikov #if defined(HAVE_ELF_H) and !defined(__APPLE__) 6282ffd6e2bSElvina Yakubova 6292ffd6e2bSElvina Yakubova void *__attribute__((noinline)) __get_pc() { 6302ffd6e2bSElvina Yakubova return __builtin_extract_return_addr(__builtin_return_address(0)); 6312ffd6e2bSElvina Yakubova } 6322ffd6e2bSElvina Yakubova 6332ffd6e2bSElvina Yakubova /// Get string with address and parse it to hex pair <StartAddress, EndAddress> 6342ffd6e2bSElvina Yakubova bool parseAddressRange(const char *Str, uint64_t &StartAddress, 6352ffd6e2bSElvina Yakubova uint64_t &EndAddress) { 6362ffd6e2bSElvina Yakubova if (!Str) 6372ffd6e2bSElvina Yakubova return false; 6382ffd6e2bSElvina Yakubova // Parsed string format: <hex1>-<hex2> 6392ffd6e2bSElvina Yakubova StartAddress = hexToLong(Str, '-'); 6402ffd6e2bSElvina Yakubova while (*Str && *Str != '-') 6412ffd6e2bSElvina Yakubova ++Str; 6422ffd6e2bSElvina Yakubova if (!*Str) 6432ffd6e2bSElvina Yakubova return false; 6442ffd6e2bSElvina Yakubova ++Str; // swallow '-' 6452ffd6e2bSElvina Yakubova EndAddress = hexToLong(Str); 6462ffd6e2bSElvina Yakubova return true; 6472ffd6e2bSElvina Yakubova } 6482ffd6e2bSElvina Yakubova 6492ffd6e2bSElvina Yakubova /// Get full path to the real binary by getting current virtual address 6502ffd6e2bSElvina Yakubova /// and searching for the appropriate link in address range in 6512ffd6e2bSElvina Yakubova /// /proc/self/map_files 6522ffd6e2bSElvina Yakubova static char *getBinaryPath() { 6532ffd6e2bSElvina Yakubova const uint32_t BufSize = 1024; 65446bc197dSMarius Wachtler const uint32_t NameMax = 4096; 6552ffd6e2bSElvina Yakubova const char DirPath[] = "/proc/self/map_files/"; 6562ffd6e2bSElvina Yakubova static char TargetPath[NameMax] = {}; 6572ffd6e2bSElvina Yakubova char Buf[BufSize]; 6582ffd6e2bSElvina Yakubova 659519cbbaaSVasily Leonenko if (__bolt_instr_binpath[0] != '\0') 660519cbbaaSVasily Leonenko return __bolt_instr_binpath; 661519cbbaaSVasily Leonenko 6622ffd6e2bSElvina Yakubova if (TargetPath[0] != '\0') 6632ffd6e2bSElvina Yakubova return TargetPath; 6642ffd6e2bSElvina Yakubova 6652ffd6e2bSElvina Yakubova unsigned long CurAddr = (unsigned long)__get_pc(); 6662ffd6e2bSElvina Yakubova uint64_t FDdir = __open(DirPath, 667821480d2SRafael Auler /*flags=*/0 /*O_RDONLY*/, 668821480d2SRafael Auler /*mode=*/0666); 6693b00a3a2SMarius Wachtler assert(static_cast<int64_t>(FDdir) >= 0, 6702ffd6e2bSElvina Yakubova "failed to open /proc/self/map_files"); 6712ffd6e2bSElvina Yakubova 6722ffd6e2bSElvina Yakubova while (long Nread = __getdents(FDdir, (struct dirent *)Buf, BufSize)) { 6732ffd6e2bSElvina Yakubova assert(static_cast<int64_t>(Nread) != -1, "failed to get folder entries"); 6742ffd6e2bSElvina Yakubova 6752ffd6e2bSElvina Yakubova struct dirent *d; 6762ffd6e2bSElvina Yakubova for (long Bpos = 0; Bpos < Nread; Bpos += d->d_reclen) { 6772ffd6e2bSElvina Yakubova d = (struct dirent *)(Buf + Bpos); 6782ffd6e2bSElvina Yakubova 6792ffd6e2bSElvina Yakubova uint64_t StartAddress, EndAddress; 6802ffd6e2bSElvina Yakubova if (!parseAddressRange(d->d_name, StartAddress, EndAddress)) 6812ffd6e2bSElvina Yakubova continue; 6822ffd6e2bSElvina Yakubova if (CurAddr < StartAddress || CurAddr > EndAddress) 6832ffd6e2bSElvina Yakubova continue; 6842ffd6e2bSElvina Yakubova char FindBuf[NameMax]; 6852ffd6e2bSElvina Yakubova char *C = strCopy(FindBuf, DirPath, NameMax); 6862ffd6e2bSElvina Yakubova C = strCopy(C, d->d_name, NameMax - (C - FindBuf)); 6872ffd6e2bSElvina Yakubova *C = '\0'; 6882ffd6e2bSElvina Yakubova uint32_t Ret = __readlink(FindBuf, TargetPath, sizeof(TargetPath)); 6892ffd6e2bSElvina Yakubova assert(Ret != -1 && Ret != BufSize, "readlink error"); 6902ffd6e2bSElvina Yakubova TargetPath[Ret] = '\0'; 6912ffd6e2bSElvina Yakubova return TargetPath; 6922ffd6e2bSElvina Yakubova } 6932ffd6e2bSElvina Yakubova } 6942ffd6e2bSElvina Yakubova return nullptr; 6952ffd6e2bSElvina Yakubova } 6962ffd6e2bSElvina Yakubova 6972ffd6e2bSElvina Yakubova ProfileWriterContext readDescriptions() { 6982ffd6e2bSElvina Yakubova ProfileWriterContext Result; 6992ffd6e2bSElvina Yakubova char *BinPath = getBinaryPath(); 7002ffd6e2bSElvina Yakubova assert(BinPath && BinPath[0] != '\0', "failed to find binary path"); 7012ffd6e2bSElvina Yakubova 7022ffd6e2bSElvina Yakubova uint64_t FD = __open(BinPath, 7032ffd6e2bSElvina Yakubova /*flags=*/0 /*O_RDONLY*/, 7042ffd6e2bSElvina Yakubova /*mode=*/0666); 7053b00a3a2SMarius Wachtler assert(static_cast<int64_t>(FD) >= 0, "failed to open binary path"); 7062ffd6e2bSElvina Yakubova 707821480d2SRafael Auler Result.FileDesc = FD; 708821480d2SRafael Auler 709821480d2SRafael Auler // mmap our binary to memory 710821480d2SRafael Auler uint64_t Size = __lseek(FD, 0, 2 /*SEEK_END*/); 711821480d2SRafael Auler uint8_t *BinContents = reinterpret_cast<uint8_t *>( 712f0b45fbaSDenis Revunov __mmap(0, Size, PROT_READ, MAP_PRIVATE, FD, 0)); 7138f7c53efSDenis Revunov assert(BinContents != MAP_FAILED, "readDescriptions: Failed to mmap self!"); 714821480d2SRafael Auler Result.MMapPtr = BinContents; 715821480d2SRafael Auler Result.MMapSize = Size; 716821480d2SRafael Auler Elf64_Ehdr *Hdr = reinterpret_cast<Elf64_Ehdr *>(BinContents); 717821480d2SRafael Auler Elf64_Shdr *Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff); 718821480d2SRafael Auler Elf64_Shdr *StringTblHeader = reinterpret_cast<Elf64_Shdr *>( 719821480d2SRafael Auler BinContents + Hdr->e_shoff + Hdr->e_shstrndx * Hdr->e_shentsize); 720821480d2SRafael Auler 721821480d2SRafael Auler // Find .bolt.instr.tables with the data we need and set pointers to it 722821480d2SRafael Auler for (int I = 0; I < Hdr->e_shnum; ++I) { 723821480d2SRafael Auler char *SecName = reinterpret_cast<char *>( 724821480d2SRafael Auler BinContents + StringTblHeader->sh_offset + Shdr->sh_name); 725821480d2SRafael Auler if (compareStr(SecName, ".bolt.instr.tables", 64) != 0) { 726821480d2SRafael Auler Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff + 727821480d2SRafael Auler (I + 1) * Hdr->e_shentsize); 728821480d2SRafael Auler continue; 729821480d2SRafael Auler } 730821480d2SRafael Auler // Actual contents of the ELF note start after offset 20 decimal: 731821480d2SRafael Auler // Offset 0: Producer name size (4 bytes) 732821480d2SRafael Auler // Offset 4: Contents size (4 bytes) 733821480d2SRafael Auler // Offset 8: Note type (4 bytes) 734821480d2SRafael Auler // Offset 12: Producer name (BOLT\0) (5 bytes + align to 4-byte boundary) 735821480d2SRafael Auler // Offset 20: Contents 73616a497c6SRafael Auler uint32_t IndCallDescSize = 737cc4b2fb6SRafael Auler *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 20); 73816a497c6SRafael Auler uint32_t IndCallTargetDescSize = *reinterpret_cast<uint32_t *>( 73916a497c6SRafael Auler BinContents + Shdr->sh_offset + 24 + IndCallDescSize); 74016a497c6SRafael Auler uint32_t FuncDescSize = 74116a497c6SRafael Auler *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 28 + 74216a497c6SRafael Auler IndCallDescSize + IndCallTargetDescSize); 74316a497c6SRafael Auler Result.IndCallDescriptions = reinterpret_cast<IndCallDescription *>( 74416a497c6SRafael Auler BinContents + Shdr->sh_offset + 24); 74516a497c6SRafael Auler Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( 74616a497c6SRafael Auler BinContents + Shdr->sh_offset + 28 + IndCallDescSize); 74716a497c6SRafael Auler Result.FuncDescriptions = BinContents + Shdr->sh_offset + 32 + 74816a497c6SRafael Auler IndCallDescSize + IndCallTargetDescSize; 74916a497c6SRafael Auler Result.Strings = reinterpret_cast<char *>( 75016a497c6SRafael Auler BinContents + Shdr->sh_offset + 32 + IndCallDescSize + 75116a497c6SRafael Auler IndCallTargetDescSize + FuncDescSize); 752821480d2SRafael Auler return Result; 753821480d2SRafael Auler } 754821480d2SRafael Auler const char ErrMsg[] = 755821480d2SRafael Auler "BOLT instrumentation runtime error: could not find section " 756821480d2SRafael Auler ".bolt.instr.tables\n"; 757821480d2SRafael Auler reportError(ErrMsg, sizeof(ErrMsg)); 758821480d2SRafael Auler return Result; 759821480d2SRafael Auler } 760a0dd5b05SAlexander Shaposhnikov 761ba31344fSRafael Auler #else 762a0dd5b05SAlexander Shaposhnikov 76316a497c6SRafael Auler ProfileWriterContext readDescriptions() { 76416a497c6SRafael Auler ProfileWriterContext Result; 765a0dd5b05SAlexander Shaposhnikov uint8_t *Tables = _bolt_instr_tables_getter(); 766a0dd5b05SAlexander Shaposhnikov uint32_t IndCallDescSize = *reinterpret_cast<uint32_t *>(Tables); 767a0dd5b05SAlexander Shaposhnikov uint32_t IndCallTargetDescSize = 768a0dd5b05SAlexander Shaposhnikov *reinterpret_cast<uint32_t *>(Tables + 4 + IndCallDescSize); 769a0dd5b05SAlexander Shaposhnikov uint32_t FuncDescSize = *reinterpret_cast<uint32_t *>( 770a0dd5b05SAlexander Shaposhnikov Tables + 8 + IndCallDescSize + IndCallTargetDescSize); 771a0dd5b05SAlexander Shaposhnikov Result.IndCallDescriptions = 772a0dd5b05SAlexander Shaposhnikov reinterpret_cast<IndCallDescription *>(Tables + 4); 773a0dd5b05SAlexander Shaposhnikov Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( 774a0dd5b05SAlexander Shaposhnikov Tables + 8 + IndCallDescSize); 775a0dd5b05SAlexander Shaposhnikov Result.FuncDescriptions = 776a0dd5b05SAlexander Shaposhnikov Tables + 12 + IndCallDescSize + IndCallTargetDescSize; 777a0dd5b05SAlexander Shaposhnikov Result.Strings = reinterpret_cast<char *>( 778a0dd5b05SAlexander Shaposhnikov Tables + 12 + IndCallDescSize + IndCallTargetDescSize + FuncDescSize); 779ba31344fSRafael Auler return Result; 780ba31344fSRafael Auler } 781a0dd5b05SAlexander Shaposhnikov 782ba31344fSRafael Auler #endif 783821480d2SRafael Auler 784a0dd5b05SAlexander Shaposhnikov #if !defined(__APPLE__) 78516a497c6SRafael Auler /// Debug by printing overall metadata global numbers to check it is sane 78616a497c6SRafael Auler void printStats(const ProfileWriterContext &Ctx) { 787cc4b2fb6SRafael Auler char StatMsg[BufSize]; 788cc4b2fb6SRafael Auler char *StatPtr = StatMsg; 78916a497c6SRafael Auler StatPtr = 79016a497c6SRafael Auler strCopy(StatPtr, 79116a497c6SRafael Auler "\nBOLT INSTRUMENTATION RUNTIME STATISTICS\n\nIndCallDescSize: "); 792cc4b2fb6SRafael Auler StatPtr = intToStr(StatPtr, 79316a497c6SRafael Auler Ctx.FuncDescriptions - 79416a497c6SRafael Auler reinterpret_cast<uint8_t *>(Ctx.IndCallDescriptions), 795cc4b2fb6SRafael Auler 10); 796cc4b2fb6SRafael Auler StatPtr = strCopy(StatPtr, "\nFuncDescSize: "); 797cc4b2fb6SRafael Auler StatPtr = intToStr( 798cc4b2fb6SRafael Auler StatPtr, 79916a497c6SRafael Auler reinterpret_cast<uint8_t *>(Ctx.Strings) - Ctx.FuncDescriptions, 10); 80016a497c6SRafael Auler StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_ind_calls: "); 80116a497c6SRafael Auler StatPtr = intToStr(StatPtr, __bolt_instr_num_ind_calls, 10); 802cc4b2fb6SRafael Auler StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_funcs: "); 803cc4b2fb6SRafael Auler StatPtr = intToStr(StatPtr, __bolt_instr_num_funcs, 10); 804cc4b2fb6SRafael Auler StatPtr = strCopy(StatPtr, "\n"); 805cc4b2fb6SRafael Auler __write(2, StatMsg, StatPtr - StatMsg); 806cc4b2fb6SRafael Auler } 807a0dd5b05SAlexander Shaposhnikov #endif 808a0dd5b05SAlexander Shaposhnikov 809cc4b2fb6SRafael Auler 810cc4b2fb6SRafael Auler /// This is part of a simple CFG representation in memory, where we store 811cc4b2fb6SRafael Auler /// a dynamically sized array of input and output edges per node, and store 812cc4b2fb6SRafael Auler /// a dynamically sized array of nodes per graph. We also store the spanning 813cc4b2fb6SRafael Auler /// tree edges for that CFG in a separate array of nodes in 814cc4b2fb6SRafael Auler /// \p SpanningTreeNodes, while the regular nodes live in \p CFGNodes. 815cc4b2fb6SRafael Auler struct Edge { 816cc4b2fb6SRafael Auler uint32_t Node; // Index in nodes array regarding the destination of this edge 817cc4b2fb6SRafael Auler uint32_t ID; // Edge index in an array comprising all edges of the graph 818cc4b2fb6SRafael Auler }; 819cc4b2fb6SRafael Auler 820cc4b2fb6SRafael Auler /// A regular graph node or a spanning tree node 821cc4b2fb6SRafael Auler struct Node { 822cc4b2fb6SRafael Auler uint32_t NumInEdges{0}; // Input edge count used to size InEdge 823cc4b2fb6SRafael Auler uint32_t NumOutEdges{0}; // Output edge count used to size OutEdges 824cc4b2fb6SRafael Auler Edge *InEdges{nullptr}; // Created and managed by \p Graph 825cc4b2fb6SRafael Auler Edge *OutEdges{nullptr}; // ditto 826cc4b2fb6SRafael Auler }; 827cc4b2fb6SRafael Auler 828cc4b2fb6SRafael Auler /// Main class for CFG representation in memory. Manages object creation and 829cc4b2fb6SRafael Auler /// destruction, populates an array of CFG nodes as well as corresponding 830cc4b2fb6SRafael Auler /// spanning tree nodes. 831cc4b2fb6SRafael Auler struct Graph { 832cc4b2fb6SRafael Auler uint32_t NumNodes; 833cc4b2fb6SRafael Auler Node *CFGNodes; 834cc4b2fb6SRafael Auler Node *SpanningTreeNodes; 83516a497c6SRafael Auler uint64_t *EdgeFreqs; 83616a497c6SRafael Auler uint64_t *CallFreqs; 837cc4b2fb6SRafael Auler BumpPtrAllocator &Alloc; 83816a497c6SRafael Auler const FunctionDescription &D; 839cc4b2fb6SRafael Auler 84016a497c6SRafael Auler /// Reads a list of edges from function description \p D and builds 841cc4b2fb6SRafael Auler /// the graph from it. Allocates several internal dynamic structures that are 84216a497c6SRafael Auler /// later destroyed by ~Graph() and uses \p Alloc. D.LeafNodes contain all 843cc4b2fb6SRafael Auler /// spanning tree leaf nodes descriptions (their counters). They are the seed 844cc4b2fb6SRafael Auler /// used to compute the rest of the missing edge counts in a bottom-up 845cc4b2fb6SRafael Auler /// traversal of the spanning tree. 84616a497c6SRafael Auler Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, 84716a497c6SRafael Auler const uint64_t *Counters, ProfileWriterContext &Ctx); 848cc4b2fb6SRafael Auler ~Graph(); 849cc4b2fb6SRafael Auler void dump() const; 85016a497c6SRafael Auler 85116a497c6SRafael Auler private: 85216a497c6SRafael Auler void computeEdgeFrequencies(const uint64_t *Counters, 85316a497c6SRafael Auler ProfileWriterContext &Ctx); 85416a497c6SRafael Auler void dumpEdgeFreqs() const; 855cc4b2fb6SRafael Auler }; 856cc4b2fb6SRafael Auler 85716a497c6SRafael Auler Graph::Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, 85816a497c6SRafael Auler const uint64_t *Counters, ProfileWriterContext &Ctx) 85916a497c6SRafael Auler : Alloc(Alloc), D(D) { 860cc4b2fb6SRafael Auler DEBUG(reportNumber("G = 0x", (uint64_t)this, 16)); 861cc4b2fb6SRafael Auler // First pass to determine number of nodes 86216a497c6SRafael Auler int32_t MaxNodes = -1; 86316a497c6SRafael Auler CallFreqs = nullptr; 86416a497c6SRafael Auler EdgeFreqs = nullptr; 86516a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 86616a497c6SRafael Auler if (static_cast<int32_t>(D.Edges[I].FromNode) > MaxNodes) 86716a497c6SRafael Auler MaxNodes = D.Edges[I].FromNode; 86816a497c6SRafael Auler if (static_cast<int32_t>(D.Edges[I].ToNode) > MaxNodes) 86916a497c6SRafael Auler MaxNodes = D.Edges[I].ToNode; 870cc4b2fb6SRafael Auler } 871a0dd5b05SAlexander Shaposhnikov 872883bf0e8SAmir Ayupov for (int I = 0; I < D.NumLeafNodes; ++I) 87316a497c6SRafael Auler if (static_cast<int32_t>(D.LeafNodes[I].Node) > MaxNodes) 87416a497c6SRafael Auler MaxNodes = D.LeafNodes[I].Node; 875883bf0e8SAmir Ayupov 876883bf0e8SAmir Ayupov for (int I = 0; I < D.NumCalls; ++I) 87716a497c6SRafael Auler if (static_cast<int32_t>(D.Calls[I].FromNode) > MaxNodes) 87816a497c6SRafael Auler MaxNodes = D.Calls[I].FromNode; 879883bf0e8SAmir Ayupov 88016a497c6SRafael Auler // No nodes? Nothing to do 88116a497c6SRafael Auler if (MaxNodes < 0) { 88216a497c6SRafael Auler DEBUG(report("No nodes!\n")); 883cc4b2fb6SRafael Auler CFGNodes = nullptr; 884cc4b2fb6SRafael Auler SpanningTreeNodes = nullptr; 885cc4b2fb6SRafael Auler NumNodes = 0; 886cc4b2fb6SRafael Auler return; 887cc4b2fb6SRafael Auler } 888cc4b2fb6SRafael Auler ++MaxNodes; 889cc4b2fb6SRafael Auler DEBUG(reportNumber("NumNodes = ", MaxNodes, 10)); 89016a497c6SRafael Auler NumNodes = static_cast<uint32_t>(MaxNodes); 891cc4b2fb6SRafael Auler 892cc4b2fb6SRafael Auler // Initial allocations 893cc4b2fb6SRafael Auler CFGNodes = new (Alloc) Node[MaxNodes]; 894a0dd5b05SAlexander Shaposhnikov 895cc4b2fb6SRafael Auler DEBUG(reportNumber("G->CFGNodes = 0x", (uint64_t)CFGNodes, 16)); 896cc4b2fb6SRafael Auler SpanningTreeNodes = new (Alloc) Node[MaxNodes]; 897cc4b2fb6SRafael Auler DEBUG(reportNumber("G->SpanningTreeNodes = 0x", 898cc4b2fb6SRafael Auler (uint64_t)SpanningTreeNodes, 16)); 899cc4b2fb6SRafael Auler 900cc4b2fb6SRafael Auler // Figure out how much to allocate to each vector (in/out edge sets) 90116a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 90216a497c6SRafael Auler CFGNodes[D.Edges[I].FromNode].NumOutEdges++; 90316a497c6SRafael Auler CFGNodes[D.Edges[I].ToNode].NumInEdges++; 90416a497c6SRafael Auler if (D.Edges[I].Counter != 0xffffffff) 905cc4b2fb6SRafael Auler continue; 906cc4b2fb6SRafael Auler 90716a497c6SRafael Auler SpanningTreeNodes[D.Edges[I].FromNode].NumOutEdges++; 90816a497c6SRafael Auler SpanningTreeNodes[D.Edges[I].ToNode].NumInEdges++; 909cc4b2fb6SRafael Auler } 910cc4b2fb6SRafael Auler 911cc4b2fb6SRafael Auler // Allocate in/out edge sets 912cc4b2fb6SRafael Auler for (int I = 0; I < MaxNodes; ++I) { 913cc4b2fb6SRafael Auler if (CFGNodes[I].NumInEdges > 0) 914cc4b2fb6SRafael Auler CFGNodes[I].InEdges = new (Alloc) Edge[CFGNodes[I].NumInEdges]; 915cc4b2fb6SRafael Auler if (CFGNodes[I].NumOutEdges > 0) 916cc4b2fb6SRafael Auler CFGNodes[I].OutEdges = new (Alloc) Edge[CFGNodes[I].NumOutEdges]; 917cc4b2fb6SRafael Auler if (SpanningTreeNodes[I].NumInEdges > 0) 918cc4b2fb6SRafael Auler SpanningTreeNodes[I].InEdges = 919cc4b2fb6SRafael Auler new (Alloc) Edge[SpanningTreeNodes[I].NumInEdges]; 920cc4b2fb6SRafael Auler if (SpanningTreeNodes[I].NumOutEdges > 0) 921cc4b2fb6SRafael Auler SpanningTreeNodes[I].OutEdges = 922cc4b2fb6SRafael Auler new (Alloc) Edge[SpanningTreeNodes[I].NumOutEdges]; 923cc4b2fb6SRafael Auler CFGNodes[I].NumInEdges = 0; 924cc4b2fb6SRafael Auler CFGNodes[I].NumOutEdges = 0; 925cc4b2fb6SRafael Auler SpanningTreeNodes[I].NumInEdges = 0; 926cc4b2fb6SRafael Auler SpanningTreeNodes[I].NumOutEdges = 0; 927cc4b2fb6SRafael Auler } 928cc4b2fb6SRafael Auler 929cc4b2fb6SRafael Auler // Fill in/out edge sets 93016a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 93116a497c6SRafael Auler const uint32_t Src = D.Edges[I].FromNode; 93216a497c6SRafael Auler const uint32_t Dst = D.Edges[I].ToNode; 933cc4b2fb6SRafael Auler Edge *E = &CFGNodes[Src].OutEdges[CFGNodes[Src].NumOutEdges++]; 934cc4b2fb6SRafael Auler E->Node = Dst; 935cc4b2fb6SRafael Auler E->ID = I; 936cc4b2fb6SRafael Auler 937cc4b2fb6SRafael Auler E = &CFGNodes[Dst].InEdges[CFGNodes[Dst].NumInEdges++]; 938cc4b2fb6SRafael Auler E->Node = Src; 939cc4b2fb6SRafael Auler E->ID = I; 940cc4b2fb6SRafael Auler 94116a497c6SRafael Auler if (D.Edges[I].Counter != 0xffffffff) 942cc4b2fb6SRafael Auler continue; 943cc4b2fb6SRafael Auler 944cc4b2fb6SRafael Auler E = &SpanningTreeNodes[Src] 945cc4b2fb6SRafael Auler .OutEdges[SpanningTreeNodes[Src].NumOutEdges++]; 946cc4b2fb6SRafael Auler E->Node = Dst; 947cc4b2fb6SRafael Auler E->ID = I; 948cc4b2fb6SRafael Auler 949cc4b2fb6SRafael Auler E = &SpanningTreeNodes[Dst] 950cc4b2fb6SRafael Auler .InEdges[SpanningTreeNodes[Dst].NumInEdges++]; 951cc4b2fb6SRafael Auler E->Node = Src; 952cc4b2fb6SRafael Auler E->ID = I; 953cc4b2fb6SRafael Auler } 95416a497c6SRafael Auler 95516a497c6SRafael Auler computeEdgeFrequencies(Counters, Ctx); 956cc4b2fb6SRafael Auler } 957cc4b2fb6SRafael Auler 958cc4b2fb6SRafael Auler Graph::~Graph() { 95916a497c6SRafael Auler if (CallFreqs) 96016a497c6SRafael Auler Alloc.deallocate(CallFreqs); 96116a497c6SRafael Auler if (EdgeFreqs) 96216a497c6SRafael Auler Alloc.deallocate(EdgeFreqs); 963cc4b2fb6SRafael Auler for (int I = NumNodes - 1; I >= 0; --I) { 964cc4b2fb6SRafael Auler if (SpanningTreeNodes[I].OutEdges) 965cc4b2fb6SRafael Auler Alloc.deallocate(SpanningTreeNodes[I].OutEdges); 966cc4b2fb6SRafael Auler if (SpanningTreeNodes[I].InEdges) 967cc4b2fb6SRafael Auler Alloc.deallocate(SpanningTreeNodes[I].InEdges); 968cc4b2fb6SRafael Auler if (CFGNodes[I].OutEdges) 969cc4b2fb6SRafael Auler Alloc.deallocate(CFGNodes[I].OutEdges); 970cc4b2fb6SRafael Auler if (CFGNodes[I].InEdges) 971cc4b2fb6SRafael Auler Alloc.deallocate(CFGNodes[I].InEdges); 972cc4b2fb6SRafael Auler } 973cc4b2fb6SRafael Auler if (SpanningTreeNodes) 974cc4b2fb6SRafael Auler Alloc.deallocate(SpanningTreeNodes); 975cc4b2fb6SRafael Auler if (CFGNodes) 976cc4b2fb6SRafael Auler Alloc.deallocate(CFGNodes); 977cc4b2fb6SRafael Auler } 978cc4b2fb6SRafael Auler 979cc4b2fb6SRafael Auler void Graph::dump() const { 980cc4b2fb6SRafael Auler reportNumber("Dumping graph with number of nodes: ", NumNodes, 10); 981cc4b2fb6SRafael Auler report(" Full graph:\n"); 982cc4b2fb6SRafael Auler for (int I = 0; I < NumNodes; ++I) { 983cc4b2fb6SRafael Auler const Node *N = &CFGNodes[I]; 984cc4b2fb6SRafael Auler reportNumber(" Node #", I, 10); 985cc4b2fb6SRafael Auler reportNumber(" InEdges total ", N->NumInEdges, 10); 986cc4b2fb6SRafael Auler for (int J = 0; J < N->NumInEdges; ++J) 987cc4b2fb6SRafael Auler reportNumber(" ", N->InEdges[J].Node, 10); 988cc4b2fb6SRafael Auler reportNumber(" OutEdges total ", N->NumOutEdges, 10); 989cc4b2fb6SRafael Auler for (int J = 0; J < N->NumOutEdges; ++J) 990cc4b2fb6SRafael Auler reportNumber(" ", N->OutEdges[J].Node, 10); 991cc4b2fb6SRafael Auler report("\n"); 992cc4b2fb6SRafael Auler } 993cc4b2fb6SRafael Auler report(" Spanning tree:\n"); 994cc4b2fb6SRafael Auler for (int I = 0; I < NumNodes; ++I) { 995cc4b2fb6SRafael Auler const Node *N = &SpanningTreeNodes[I]; 996cc4b2fb6SRafael Auler reportNumber(" Node #", I, 10); 997cc4b2fb6SRafael Auler reportNumber(" InEdges total ", N->NumInEdges, 10); 998cc4b2fb6SRafael Auler for (int J = 0; J < N->NumInEdges; ++J) 999cc4b2fb6SRafael Auler reportNumber(" ", N->InEdges[J].Node, 10); 1000cc4b2fb6SRafael Auler reportNumber(" OutEdges total ", N->NumOutEdges, 10); 1001cc4b2fb6SRafael Auler for (int J = 0; J < N->NumOutEdges; ++J) 1002cc4b2fb6SRafael Auler reportNumber(" ", N->OutEdges[J].Node, 10); 1003cc4b2fb6SRafael Auler report("\n"); 1004cc4b2fb6SRafael Auler } 1005cc4b2fb6SRafael Auler } 1006cc4b2fb6SRafael Auler 100716a497c6SRafael Auler void Graph::dumpEdgeFreqs() const { 100816a497c6SRafael Auler reportNumber( 100916a497c6SRafael Auler "Dumping edge frequencies for graph with num edges: ", D.NumEdges, 10); 101016a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 101116a497c6SRafael Auler reportNumber("* Src: ", D.Edges[I].FromNode, 10); 101216a497c6SRafael Auler reportNumber(" Dst: ", D.Edges[I].ToNode, 10); 1013cc4b2fb6SRafael Auler reportNumber(" Cnt: ", EdgeFreqs[I], 10); 1014cc4b2fb6SRafael Auler } 1015cc4b2fb6SRafael Auler } 1016cc4b2fb6SRafael Auler 101716a497c6SRafael Auler /// Auxiliary map structure for fast lookups of which calls map to each node of 101816a497c6SRafael Auler /// the function CFG 101916a497c6SRafael Auler struct NodeToCallsMap { 102016a497c6SRafael Auler struct MapEntry { 102116a497c6SRafael Auler uint32_t NumCalls; 102216a497c6SRafael Auler uint32_t *Calls; 102316a497c6SRafael Auler }; 102416a497c6SRafael Auler MapEntry *Entries; 102516a497c6SRafael Auler BumpPtrAllocator &Alloc; 102616a497c6SRafael Auler const uint32_t NumNodes; 1027cc4b2fb6SRafael Auler 102816a497c6SRafael Auler NodeToCallsMap(BumpPtrAllocator &Alloc, const FunctionDescription &D, 102916a497c6SRafael Auler uint32_t NumNodes) 103016a497c6SRafael Auler : Alloc(Alloc), NumNodes(NumNodes) { 103116a497c6SRafael Auler Entries = new (Alloc, 0) MapEntry[NumNodes]; 103216a497c6SRafael Auler for (int I = 0; I < D.NumCalls; ++I) { 103316a497c6SRafael Auler DEBUG(reportNumber("Registering call in node ", D.Calls[I].FromNode, 10)); 103416a497c6SRafael Auler ++Entries[D.Calls[I].FromNode].NumCalls; 103516a497c6SRafael Auler } 103616a497c6SRafael Auler for (int I = 0; I < NumNodes; ++I) { 103716a497c6SRafael Auler Entries[I].Calls = Entries[I].NumCalls ? new (Alloc) 103816a497c6SRafael Auler uint32_t[Entries[I].NumCalls] 103916a497c6SRafael Auler : nullptr; 104016a497c6SRafael Auler Entries[I].NumCalls = 0; 104116a497c6SRafael Auler } 104216a497c6SRafael Auler for (int I = 0; I < D.NumCalls; ++I) { 1043c7306cc2SAmir Ayupov MapEntry &Entry = Entries[D.Calls[I].FromNode]; 104416a497c6SRafael Auler Entry.Calls[Entry.NumCalls++] = I; 104516a497c6SRafael Auler } 104616a497c6SRafael Auler } 104716a497c6SRafael Auler 104816a497c6SRafael Auler /// Set the frequency of all calls in node \p NodeID to Freq. However, if 104916a497c6SRafael Auler /// the calls have their own counters and do not depend on the basic block 105016a497c6SRafael Auler /// counter, this means they have landing pads and throw exceptions. In this 105116a497c6SRafael Auler /// case, set their frequency with their counters and return the maximum 105216a497c6SRafael Auler /// value observed in such counters. This will be used as the new frequency 105316a497c6SRafael Auler /// at basic block entry. This is used to fix the CFG edge frequencies in the 105416a497c6SRafael Auler /// presence of exceptions. 105516a497c6SRafael Auler uint64_t visitAllCallsIn(uint32_t NodeID, uint64_t Freq, uint64_t *CallFreqs, 105616a497c6SRafael Auler const FunctionDescription &D, 105716a497c6SRafael Auler const uint64_t *Counters, 105816a497c6SRafael Auler ProfileWriterContext &Ctx) const { 1059c7306cc2SAmir Ayupov const MapEntry &Entry = Entries[NodeID]; 106016a497c6SRafael Auler uint64_t MaxValue = 0ull; 106116a497c6SRafael Auler for (int I = 0, E = Entry.NumCalls; I != E; ++I) { 1062c7306cc2SAmir Ayupov const uint32_t CallID = Entry.Calls[I]; 106316a497c6SRafael Auler DEBUG(reportNumber(" Setting freq for call ID: ", CallID, 10)); 1064c7306cc2SAmir Ayupov const CallDescription &CallDesc = D.Calls[CallID]; 106516a497c6SRafael Auler if (CallDesc.Counter == 0xffffffff) { 106616a497c6SRafael Auler CallFreqs[CallID] = Freq; 106716a497c6SRafael Auler DEBUG(reportNumber(" with : ", Freq, 10)); 106816a497c6SRafael Auler } else { 1069c7306cc2SAmir Ayupov const uint64_t CounterVal = Counters[CallDesc.Counter]; 107016a497c6SRafael Auler CallFreqs[CallID] = CounterVal; 107116a497c6SRafael Auler MaxValue = CounterVal > MaxValue ? CounterVal : MaxValue; 107216a497c6SRafael Auler DEBUG(reportNumber(" with (private counter) : ", CounterVal, 10)); 107316a497c6SRafael Auler } 107416a497c6SRafael Auler DEBUG(reportNumber(" Address: 0x", CallDesc.TargetAddress, 16)); 107516a497c6SRafael Auler if (CallFreqs[CallID] > 0) 107616a497c6SRafael Auler Ctx.CallFlowTable->get(CallDesc.TargetAddress).Calls += 107716a497c6SRafael Auler CallFreqs[CallID]; 107816a497c6SRafael Auler } 107916a497c6SRafael Auler return MaxValue; 108016a497c6SRafael Auler } 108116a497c6SRafael Auler 108216a497c6SRafael Auler ~NodeToCallsMap() { 1083883bf0e8SAmir Ayupov for (int I = NumNodes - 1; I >= 0; --I) 108416a497c6SRafael Auler if (Entries[I].Calls) 108516a497c6SRafael Auler Alloc.deallocate(Entries[I].Calls); 108616a497c6SRafael Auler Alloc.deallocate(Entries); 108716a497c6SRafael Auler } 108816a497c6SRafael Auler }; 108916a497c6SRafael Auler 109016a497c6SRafael Auler /// Fill an array with the frequency of each edge in the function represented 109116a497c6SRafael Auler /// by G, as well as another array for each call. 109216a497c6SRafael Auler void Graph::computeEdgeFrequencies(const uint64_t *Counters, 109316a497c6SRafael Auler ProfileWriterContext &Ctx) { 109416a497c6SRafael Auler if (NumNodes == 0) 109516a497c6SRafael Auler return; 109616a497c6SRafael Auler 109716a497c6SRafael Auler EdgeFreqs = D.NumEdges ? new (Alloc, 0) uint64_t [D.NumEdges] : nullptr; 109816a497c6SRafael Auler CallFreqs = D.NumCalls ? new (Alloc, 0) uint64_t [D.NumCalls] : nullptr; 109916a497c6SRafael Auler 110016a497c6SRafael Auler // Setup a lookup for calls present in each node (BB) 110116a497c6SRafael Auler NodeToCallsMap *CallMap = new (Alloc) NodeToCallsMap(Alloc, D, NumNodes); 1102cc4b2fb6SRafael Auler 1103cc4b2fb6SRafael Auler // Perform a bottom-up, BFS traversal of the spanning tree in G. Edges in the 1104cc4b2fb6SRafael Auler // spanning tree don't have explicit counters. We must infer their value using 1105cc4b2fb6SRafael Auler // a linear combination of other counters (sum of counters of the outgoing 1106cc4b2fb6SRafael Auler // edges minus sum of counters of the incoming edges). 110716a497c6SRafael Auler uint32_t *Stack = new (Alloc) uint32_t [NumNodes]; 1108cc4b2fb6SRafael Auler uint32_t StackTop = 0; 1109cc4b2fb6SRafael Auler enum Status : uint8_t { S_NEW = 0, S_VISITING, S_VISITED }; 111016a497c6SRafael Auler Status *Visited = new (Alloc, 0) Status[NumNodes]; 111116a497c6SRafael Auler uint64_t *LeafFrequency = new (Alloc, 0) uint64_t[NumNodes]; 111216a497c6SRafael Auler uint64_t *EntryAddress = new (Alloc, 0) uint64_t[NumNodes]; 1113cc4b2fb6SRafael Auler 1114cc4b2fb6SRafael Auler // Setup a fast lookup for frequency of leaf nodes, which have special 1115cc4b2fb6SRafael Auler // basic block frequency instrumentation (they are not edge profiled). 111616a497c6SRafael Auler for (int I = 0; I < D.NumLeafNodes; ++I) { 111716a497c6SRafael Auler LeafFrequency[D.LeafNodes[I].Node] = Counters[D.LeafNodes[I].Counter]; 1118cc4b2fb6SRafael Auler DEBUG({ 111916a497c6SRafael Auler if (Counters[D.LeafNodes[I].Counter] > 0) { 112016a497c6SRafael Auler reportNumber("Leaf Node# ", D.LeafNodes[I].Node, 10); 112116a497c6SRafael Auler reportNumber(" Counter: ", Counters[D.LeafNodes[I].Counter], 10); 1122cc4b2fb6SRafael Auler } 1123cc4b2fb6SRafael Auler }); 112416a497c6SRafael Auler } 112516a497c6SRafael Auler for (int I = 0; I < D.NumEntryNodes; ++I) { 112616a497c6SRafael Auler EntryAddress[D.EntryNodes[I].Node] = D.EntryNodes[I].Address; 112716a497c6SRafael Auler DEBUG({ 112816a497c6SRafael Auler reportNumber("Entry Node# ", D.EntryNodes[I].Node, 10); 112916a497c6SRafael Auler reportNumber(" Address: ", D.EntryNodes[I].Address, 16); 113016a497c6SRafael Auler }); 1131cc4b2fb6SRafael Auler } 1132cc4b2fb6SRafael Auler // Add all root nodes to the stack 1133883bf0e8SAmir Ayupov for (int I = 0; I < NumNodes; ++I) 113416a497c6SRafael Auler if (SpanningTreeNodes[I].NumInEdges == 0) 1135cc4b2fb6SRafael Auler Stack[StackTop++] = I; 1136883bf0e8SAmir Ayupov 1137cc4b2fb6SRafael Auler // Empty stack? 1138cc4b2fb6SRafael Auler if (StackTop == 0) { 113916a497c6SRafael Auler DEBUG(report("Empty stack!\n")); 114016a497c6SRafael Auler Alloc.deallocate(EntryAddress); 1141cc4b2fb6SRafael Auler Alloc.deallocate(LeafFrequency); 1142cc4b2fb6SRafael Auler Alloc.deallocate(Visited); 1143cc4b2fb6SRafael Auler Alloc.deallocate(Stack); 114416a497c6SRafael Auler CallMap->~NodeToCallsMap(); 114516a497c6SRafael Auler Alloc.deallocate(CallMap); 114616a497c6SRafael Auler if (CallFreqs) 114716a497c6SRafael Auler Alloc.deallocate(CallFreqs); 114816a497c6SRafael Auler if (EdgeFreqs) 114916a497c6SRafael Auler Alloc.deallocate(EdgeFreqs); 115016a497c6SRafael Auler EdgeFreqs = nullptr; 115116a497c6SRafael Auler CallFreqs = nullptr; 115216a497c6SRafael Auler return; 1153cc4b2fb6SRafael Auler } 1154cc4b2fb6SRafael Auler // Add all known edge counts, will infer the rest 115516a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 115616a497c6SRafael Auler const uint32_t C = D.Edges[I].Counter; 1157cc4b2fb6SRafael Auler if (C == 0xffffffff) // inferred counter - we will compute its value 1158cc4b2fb6SRafael Auler continue; 115916a497c6SRafael Auler EdgeFreqs[I] = Counters[C]; 1160cc4b2fb6SRafael Auler } 1161cc4b2fb6SRafael Auler 1162cc4b2fb6SRafael Auler while (StackTop > 0) { 1163cc4b2fb6SRafael Auler const uint32_t Cur = Stack[--StackTop]; 1164cc4b2fb6SRafael Auler DEBUG({ 1165cc4b2fb6SRafael Auler if (Visited[Cur] == S_VISITING) 1166cc4b2fb6SRafael Auler report("(visiting) "); 1167cc4b2fb6SRafael Auler else 1168cc4b2fb6SRafael Auler report("(new) "); 1169cc4b2fb6SRafael Auler reportNumber("Cur: ", Cur, 10); 1170cc4b2fb6SRafael Auler }); 1171cc4b2fb6SRafael Auler 1172cc4b2fb6SRafael Auler // This shouldn't happen in a tree 1173cc4b2fb6SRafael Auler assert(Visited[Cur] != S_VISITED, "should not have visited nodes in stack"); 1174cc4b2fb6SRafael Auler if (Visited[Cur] == S_NEW) { 1175cc4b2fb6SRafael Auler Visited[Cur] = S_VISITING; 1176cc4b2fb6SRafael Auler Stack[StackTop++] = Cur; 117716a497c6SRafael Auler assert(StackTop <= NumNodes, "stack grew too large"); 117816a497c6SRafael Auler for (int I = 0, E = SpanningTreeNodes[Cur].NumOutEdges; I < E; ++I) { 117916a497c6SRafael Auler const uint32_t Succ = SpanningTreeNodes[Cur].OutEdges[I].Node; 1180cc4b2fb6SRafael Auler Stack[StackTop++] = Succ; 118116a497c6SRafael Auler assert(StackTop <= NumNodes, "stack grew too large"); 1182cc4b2fb6SRafael Auler } 1183cc4b2fb6SRafael Auler continue; 1184cc4b2fb6SRafael Auler } 1185cc4b2fb6SRafael Auler Visited[Cur] = S_VISITED; 1186cc4b2fb6SRafael Auler 1187cc4b2fb6SRafael Auler // Establish our node frequency based on outgoing edges, which should all be 1188cc4b2fb6SRafael Auler // resolved by now. 1189cc4b2fb6SRafael Auler int64_t CurNodeFreq = LeafFrequency[Cur]; 1190cc4b2fb6SRafael Auler // Not a leaf? 1191cc4b2fb6SRafael Auler if (!CurNodeFreq) { 119216a497c6SRafael Auler for (int I = 0, E = CFGNodes[Cur].NumOutEdges; I != E; ++I) { 119316a497c6SRafael Auler const uint32_t SuccEdge = CFGNodes[Cur].OutEdges[I].ID; 119416a497c6SRafael Auler CurNodeFreq += EdgeFreqs[SuccEdge]; 1195cc4b2fb6SRafael Auler } 1196cc4b2fb6SRafael Auler } 119716a497c6SRafael Auler if (CurNodeFreq < 0) 119816a497c6SRafael Auler CurNodeFreq = 0; 119916a497c6SRafael Auler 120016a497c6SRafael Auler const uint64_t CallFreq = CallMap->visitAllCallsIn( 120116a497c6SRafael Auler Cur, CurNodeFreq > 0 ? CurNodeFreq : 0, CallFreqs, D, Counters, Ctx); 120216a497c6SRafael Auler 120316a497c6SRafael Auler // Exception handling affected our output flow? Fix with calls info 120416a497c6SRafael Auler DEBUG({ 120516a497c6SRafael Auler if (CallFreq > CurNodeFreq) 120616a497c6SRafael Auler report("Bumping node frequency with call info\n"); 120716a497c6SRafael Auler }); 120816a497c6SRafael Auler CurNodeFreq = CallFreq > CurNodeFreq ? CallFreq : CurNodeFreq; 120916a497c6SRafael Auler 121016a497c6SRafael Auler if (CurNodeFreq > 0) { 121116a497c6SRafael Auler if (uint64_t Addr = EntryAddress[Cur]) { 121216a497c6SRafael Auler DEBUG( 121316a497c6SRafael Auler reportNumber(" Setting flow at entry point address 0x", Addr, 16)); 121416a497c6SRafael Auler DEBUG(reportNumber(" with: ", CurNodeFreq, 10)); 121516a497c6SRafael Auler Ctx.CallFlowTable->get(Addr).Val = CurNodeFreq; 121616a497c6SRafael Auler } 121716a497c6SRafael Auler } 121816a497c6SRafael Auler 121916a497c6SRafael Auler // No parent? Reached a tree root, limit to call frequency updating. 1220883bf0e8SAmir Ayupov if (SpanningTreeNodes[Cur].NumInEdges == 0) 122116a497c6SRafael Auler continue; 122216a497c6SRafael Auler 122316a497c6SRafael Auler assert(SpanningTreeNodes[Cur].NumInEdges == 1, "must have 1 parent"); 122416a497c6SRafael Auler const uint32_t Parent = SpanningTreeNodes[Cur].InEdges[0].Node; 122516a497c6SRafael Auler const uint32_t ParentEdge = SpanningTreeNodes[Cur].InEdges[0].ID; 122616a497c6SRafael Auler 1227cc4b2fb6SRafael Auler // Calculate parent edge freq. 122816a497c6SRafael Auler int64_t ParentEdgeFreq = CurNodeFreq; 122916a497c6SRafael Auler for (int I = 0, E = CFGNodes[Cur].NumInEdges; I != E; ++I) { 123016a497c6SRafael Auler const uint32_t PredEdge = CFGNodes[Cur].InEdges[I].ID; 123116a497c6SRafael Auler ParentEdgeFreq -= EdgeFreqs[PredEdge]; 1232cc4b2fb6SRafael Auler } 123316a497c6SRafael Auler 1234cc4b2fb6SRafael Auler // Sometimes the conservative CFG that BOLT builds will lead to incorrect 1235cc4b2fb6SRafael Auler // flow computation. For example, in a BB that transitively calls the exit 1236cc4b2fb6SRafael Auler // syscall, BOLT will add a fall-through successor even though it should not 1237cc4b2fb6SRafael Auler // have any successors. So this block execution will likely be wrong. We 1238cc4b2fb6SRafael Auler // tolerate this imperfection since this case should be quite infrequent. 1239cc4b2fb6SRafael Auler if (ParentEdgeFreq < 0) { 124016a497c6SRafael Auler DEBUG(dumpEdgeFreqs()); 1241cc4b2fb6SRafael Auler DEBUG(report("WARNING: incorrect flow")); 1242cc4b2fb6SRafael Auler ParentEdgeFreq = 0; 1243cc4b2fb6SRafael Auler } 1244cc4b2fb6SRafael Auler DEBUG(reportNumber(" Setting freq for ParentEdge: ", ParentEdge, 10)); 1245cc4b2fb6SRafael Auler DEBUG(reportNumber(" with ParentEdgeFreq: ", ParentEdgeFreq, 10)); 124616a497c6SRafael Auler EdgeFreqs[ParentEdge] = ParentEdgeFreq; 1247cc4b2fb6SRafael Auler } 1248cc4b2fb6SRafael Auler 124916a497c6SRafael Auler Alloc.deallocate(EntryAddress); 1250cc4b2fb6SRafael Auler Alloc.deallocate(LeafFrequency); 1251cc4b2fb6SRafael Auler Alloc.deallocate(Visited); 1252cc4b2fb6SRafael Auler Alloc.deallocate(Stack); 125316a497c6SRafael Auler CallMap->~NodeToCallsMap(); 125416a497c6SRafael Auler Alloc.deallocate(CallMap); 125516a497c6SRafael Auler DEBUG(dumpEdgeFreqs()); 1256cc4b2fb6SRafael Auler } 1257cc4b2fb6SRafael Auler 125816a497c6SRafael Auler /// Write to \p FD all of the edge profiles for function \p FuncDesc. Uses 125916a497c6SRafael Auler /// \p Alloc to allocate helper dynamic structures used to compute profile for 126016a497c6SRafael Auler /// edges that we do not explictly instrument. 126116a497c6SRafael Auler const uint8_t *writeFunctionProfile(int FD, ProfileWriterContext &Ctx, 126216a497c6SRafael Auler const uint8_t *FuncDesc, 126316a497c6SRafael Auler BumpPtrAllocator &Alloc) { 126416a497c6SRafael Auler const FunctionDescription F(FuncDesc); 126516a497c6SRafael Auler const uint8_t *next = FuncDesc + F.getSize(); 1266cc4b2fb6SRafael Auler 1267a0dd5b05SAlexander Shaposhnikov #if !defined(__APPLE__) 1268a0dd5b05SAlexander Shaposhnikov uint64_t *bolt_instr_locations = __bolt_instr_locations; 1269a0dd5b05SAlexander Shaposhnikov #else 1270a0dd5b05SAlexander Shaposhnikov uint64_t *bolt_instr_locations = _bolt_instr_locations_getter(); 1271a0dd5b05SAlexander Shaposhnikov #endif 1272a0dd5b05SAlexander Shaposhnikov 1273cc4b2fb6SRafael Auler // Skip funcs we know are cold 1274cc4b2fb6SRafael Auler #ifndef ENABLE_DEBUG 127516a497c6SRafael Auler uint64_t CountersFreq = 0; 1276883bf0e8SAmir Ayupov for (int I = 0; I < F.NumLeafNodes; ++I) 1277a0dd5b05SAlexander Shaposhnikov CountersFreq += bolt_instr_locations[F.LeafNodes[I].Counter]; 1278883bf0e8SAmir Ayupov 127916a497c6SRafael Auler if (CountersFreq == 0) { 128016a497c6SRafael Auler for (int I = 0; I < F.NumEdges; ++I) { 128116a497c6SRafael Auler const uint32_t C = F.Edges[I].Counter; 128216a497c6SRafael Auler if (C == 0xffffffff) 128316a497c6SRafael Auler continue; 1284a0dd5b05SAlexander Shaposhnikov CountersFreq += bolt_instr_locations[C]; 128516a497c6SRafael Auler } 128616a497c6SRafael Auler if (CountersFreq == 0) { 128716a497c6SRafael Auler for (int I = 0; I < F.NumCalls; ++I) { 128816a497c6SRafael Auler const uint32_t C = F.Calls[I].Counter; 128916a497c6SRafael Auler if (C == 0xffffffff) 129016a497c6SRafael Auler continue; 1291a0dd5b05SAlexander Shaposhnikov CountersFreq += bolt_instr_locations[C]; 129216a497c6SRafael Auler } 129316a497c6SRafael Auler if (CountersFreq == 0) 1294cc4b2fb6SRafael Auler return next; 129516a497c6SRafael Auler } 129616a497c6SRafael Auler } 1297cc4b2fb6SRafael Auler #endif 1298cc4b2fb6SRafael Auler 1299a0dd5b05SAlexander Shaposhnikov Graph *G = new (Alloc) Graph(Alloc, F, bolt_instr_locations, Ctx); 1300cc4b2fb6SRafael Auler DEBUG(G->dump()); 1301a0dd5b05SAlexander Shaposhnikov 130216a497c6SRafael Auler if (!G->EdgeFreqs && !G->CallFreqs) { 1303cc4b2fb6SRafael Auler G->~Graph(); 1304cc4b2fb6SRafael Auler Alloc.deallocate(G); 1305cc4b2fb6SRafael Auler return next; 1306cc4b2fb6SRafael Auler } 1307cc4b2fb6SRafael Auler 130816a497c6SRafael Auler for (int I = 0; I < F.NumEdges; ++I) { 130916a497c6SRafael Auler const uint64_t Freq = G->EdgeFreqs[I]; 1310cc4b2fb6SRafael Auler if (Freq == 0) 1311cc4b2fb6SRafael Auler continue; 131216a497c6SRafael Auler const EdgeDescription *Desc = &F.Edges[I]; 1313cc4b2fb6SRafael Auler char LineBuf[BufSize]; 1314cc4b2fb6SRafael Auler char *Ptr = LineBuf; 131516a497c6SRafael Auler Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); 131616a497c6SRafael Auler Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); 1317cc4b2fb6SRafael Auler Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 22); 1318cc4b2fb6SRafael Auler Ptr = intToStr(Ptr, Freq, 10); 1319cc4b2fb6SRafael Auler *Ptr++ = '\n'; 1320cc4b2fb6SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 1321cc4b2fb6SRafael Auler } 1322cc4b2fb6SRafael Auler 132316a497c6SRafael Auler for (int I = 0; I < F.NumCalls; ++I) { 132416a497c6SRafael Auler const uint64_t Freq = G->CallFreqs[I]; 132516a497c6SRafael Auler if (Freq == 0) 132616a497c6SRafael Auler continue; 132716a497c6SRafael Auler char LineBuf[BufSize]; 132816a497c6SRafael Auler char *Ptr = LineBuf; 132916a497c6SRafael Auler const CallDescription *Desc = &F.Calls[I]; 133016a497c6SRafael Auler Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); 133116a497c6SRafael Auler Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); 133216a497c6SRafael Auler Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 133316a497c6SRafael Auler Ptr = intToStr(Ptr, Freq, 10); 133416a497c6SRafael Auler *Ptr++ = '\n'; 133516a497c6SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 133616a497c6SRafael Auler } 133716a497c6SRafael Auler 1338cc4b2fb6SRafael Auler G->~Graph(); 1339cc4b2fb6SRafael Auler Alloc.deallocate(G); 1340cc4b2fb6SRafael Auler return next; 1341cc4b2fb6SRafael Auler } 1342cc4b2fb6SRafael Auler 1343a0dd5b05SAlexander Shaposhnikov #if !defined(__APPLE__) 134416a497c6SRafael Auler const IndCallTargetDescription * 134516a497c6SRafael Auler ProfileWriterContext::lookupIndCallTarget(uint64_t Target) const { 134616a497c6SRafael Auler uint32_t B = 0; 134716a497c6SRafael Auler uint32_t E = __bolt_instr_num_ind_targets; 134816a497c6SRafael Auler if (E == 0) 134916a497c6SRafael Auler return nullptr; 135016a497c6SRafael Auler do { 135116a497c6SRafael Auler uint32_t I = (E - B) / 2 + B; 135216a497c6SRafael Auler if (IndCallTargets[I].Address == Target) 135316a497c6SRafael Auler return &IndCallTargets[I]; 135416a497c6SRafael Auler if (IndCallTargets[I].Address < Target) 135516a497c6SRafael Auler B = I + 1; 135616a497c6SRafael Auler else 135716a497c6SRafael Auler E = I; 135816a497c6SRafael Auler } while (B < E); 135916a497c6SRafael Auler return nullptr; 1360cc4b2fb6SRafael Auler } 136162aa74f8SRafael Auler 136216a497c6SRafael Auler /// Write a single indirect call <src, target> pair to the fdata file 136316a497c6SRafael Auler void visitIndCallCounter(IndirectCallHashTable::MapEntry &Entry, 136416a497c6SRafael Auler int FD, int CallsiteID, 136516a497c6SRafael Auler ProfileWriterContext *Ctx) { 136616a497c6SRafael Auler if (Entry.Val == 0) 136716a497c6SRafael Auler return; 136816a497c6SRafael Auler DEBUG(reportNumber("Target func 0x", Entry.Key, 16)); 136916a497c6SRafael Auler DEBUG(reportNumber("Target freq: ", Entry.Val, 10)); 137016a497c6SRafael Auler const IndCallDescription *CallsiteDesc = 137116a497c6SRafael Auler &Ctx->IndCallDescriptions[CallsiteID]; 137216a497c6SRafael Auler const IndCallTargetDescription *TargetDesc = 137316a497c6SRafael Auler Ctx->lookupIndCallTarget(Entry.Key); 137416a497c6SRafael Auler if (!TargetDesc) { 137516a497c6SRafael Auler DEBUG(report("Failed to lookup indirect call target\n")); 1376cc4b2fb6SRafael Auler char LineBuf[BufSize]; 137762aa74f8SRafael Auler char *Ptr = LineBuf; 137816a497c6SRafael Auler Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); 137916a497c6SRafael Auler Ptr = strCopy(Ptr, "0 [unknown] 0 0 ", BufSize - (Ptr - LineBuf) - 40); 138016a497c6SRafael Auler Ptr = intToStr(Ptr, Entry.Val, 10); 138116a497c6SRafael Auler *Ptr++ = '\n'; 138216a497c6SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 138316a497c6SRafael Auler return; 138416a497c6SRafael Auler } 138516a497c6SRafael Auler Ctx->CallFlowTable->get(TargetDesc->Address).Calls += Entry.Val; 138616a497c6SRafael Auler char LineBuf[BufSize]; 138716a497c6SRafael Auler char *Ptr = LineBuf; 138816a497c6SRafael Auler Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); 138916a497c6SRafael Auler Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); 1390cc4b2fb6SRafael Auler Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 139116a497c6SRafael Auler Ptr = intToStr(Ptr, Entry.Val, 10); 139262aa74f8SRafael Auler *Ptr++ = '\n'; 1393821480d2SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 139462aa74f8SRafael Auler } 1395cc4b2fb6SRafael Auler 139616a497c6SRafael Auler /// Write to \p FD all of the indirect call profiles. 139716a497c6SRafael Auler void writeIndirectCallProfile(int FD, ProfileWriterContext &Ctx) { 139816a497c6SRafael Auler for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) { 139916a497c6SRafael Auler DEBUG(reportNumber("IndCallsite #", I, 10)); 140016a497c6SRafael Auler GlobalIndCallCounters[I].forEachElement(visitIndCallCounter, FD, I, &Ctx); 140116a497c6SRafael Auler } 140216a497c6SRafael Auler } 140316a497c6SRafael Auler 140416a497c6SRafael Auler /// Check a single call flow for a callee versus all known callers. If there are 140516a497c6SRafael Auler /// less callers than what the callee expects, write the difference with source 140616a497c6SRafael Auler /// [unknown] in the profile. 140716a497c6SRafael Auler void visitCallFlowEntry(CallFlowHashTable::MapEntry &Entry, int FD, 140816a497c6SRafael Auler ProfileWriterContext *Ctx) { 140916a497c6SRafael Auler DEBUG(reportNumber("Call flow entry address: 0x", Entry.Key, 16)); 141016a497c6SRafael Auler DEBUG(reportNumber("Calls: ", Entry.Calls, 10)); 141116a497c6SRafael Auler DEBUG(reportNumber("Reported entry frequency: ", Entry.Val, 10)); 141216a497c6SRafael Auler DEBUG({ 141316a497c6SRafael Auler if (Entry.Calls > Entry.Val) 141416a497c6SRafael Auler report(" More calls than expected!\n"); 141516a497c6SRafael Auler }); 141616a497c6SRafael Auler if (Entry.Val <= Entry.Calls) 141716a497c6SRafael Auler return; 141816a497c6SRafael Auler DEBUG(reportNumber( 141916a497c6SRafael Auler " Balancing calls with traffic: ", Entry.Val - Entry.Calls, 10)); 142016a497c6SRafael Auler const IndCallTargetDescription *TargetDesc = 142116a497c6SRafael Auler Ctx->lookupIndCallTarget(Entry.Key); 142216a497c6SRafael Auler if (!TargetDesc) { 142316a497c6SRafael Auler // There is probably something wrong with this callee and this should be 142416a497c6SRafael Auler // investigated, but I don't want to assert and lose all data collected. 142516a497c6SRafael Auler DEBUG(report("WARNING: failed to look up call target!\n")); 142616a497c6SRafael Auler return; 142716a497c6SRafael Auler } 142816a497c6SRafael Auler char LineBuf[BufSize]; 142916a497c6SRafael Auler char *Ptr = LineBuf; 143016a497c6SRafael Auler Ptr = strCopy(Ptr, "0 [unknown] 0 ", BufSize); 143116a497c6SRafael Auler Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); 143216a497c6SRafael Auler Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 143316a497c6SRafael Auler Ptr = intToStr(Ptr, Entry.Val - Entry.Calls, 10); 143416a497c6SRafael Auler *Ptr++ = '\n'; 143516a497c6SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 143616a497c6SRafael Auler } 143716a497c6SRafael Auler 143816a497c6SRafael Auler /// Open fdata file for writing and return a valid file descriptor, aborting 143916a497c6SRafael Auler /// program upon failure. 144016a497c6SRafael Auler int openProfile() { 144116a497c6SRafael Auler // Build the profile name string by appending our PID 144216a497c6SRafael Auler char Buf[BufSize]; 144316a497c6SRafael Auler char *Ptr = Buf; 144416a497c6SRafael Auler uint64_t PID = __getpid(); 144516a497c6SRafael Auler Ptr = strCopy(Buf, __bolt_instr_filename, BufSize); 144616a497c6SRafael Auler if (__bolt_instr_use_pid) { 144716a497c6SRafael Auler Ptr = strCopy(Ptr, ".", BufSize - (Ptr - Buf + 1)); 144816a497c6SRafael Auler Ptr = intToStr(Ptr, PID, 10); 144916a497c6SRafael Auler Ptr = strCopy(Ptr, ".fdata", BufSize - (Ptr - Buf + 1)); 145016a497c6SRafael Auler } 145116a497c6SRafael Auler *Ptr++ = '\0'; 145216a497c6SRafael Auler uint64_t FD = __open(Buf, 145316a497c6SRafael Auler /*flags=*/0x241 /*O_WRONLY|O_TRUNC|O_CREAT*/, 145416a497c6SRafael Auler /*mode=*/0666); 145516a497c6SRafael Auler if (static_cast<int64_t>(FD) < 0) { 145616a497c6SRafael Auler report("Error while trying to open profile file for writing: "); 145716a497c6SRafael Auler report(Buf); 145816a497c6SRafael Auler reportNumber("\nFailed with error number: 0x", 145916a497c6SRafael Auler 0 - static_cast<int64_t>(FD), 16); 146016a497c6SRafael Auler __exit(1); 146116a497c6SRafael Auler } 146216a497c6SRafael Auler return FD; 146316a497c6SRafael Auler } 1464a0dd5b05SAlexander Shaposhnikov 1465a0dd5b05SAlexander Shaposhnikov #endif 1466a0dd5b05SAlexander Shaposhnikov 146716a497c6SRafael Auler } // anonymous namespace 146816a497c6SRafael Auler 1469a0dd5b05SAlexander Shaposhnikov #if !defined(__APPLE__) 1470a0dd5b05SAlexander Shaposhnikov 147116a497c6SRafael Auler /// Reset all counters in case you want to start profiling a new phase of your 147216a497c6SRafael Auler /// program independently of prior phases. 147316a497c6SRafael Auler /// The address of this function is printed by BOLT and this can be called by 147416a497c6SRafael Auler /// any attached debugger during runtime. There is a useful oneliner for gdb: 147516a497c6SRafael Auler /// 147616a497c6SRafael Auler /// gdb -p $(pgrep -xo PROCESSNAME) -ex 'p ((void(*)())0xdeadbeef)()' \ 147716a497c6SRafael Auler /// -ex 'set confirm off' -ex quit 147816a497c6SRafael Auler /// 147916a497c6SRafael Auler /// Where 0xdeadbeef is this function address and PROCESSNAME your binary file 148016a497c6SRafael Auler /// name. 148116a497c6SRafael Auler extern "C" void __bolt_instr_clear_counters() { 1482ea2182feSMaksim Panchenko memset(reinterpret_cast<char *>(__bolt_instr_locations), 0, 148316a497c6SRafael Auler __bolt_num_counters * 8); 1484883bf0e8SAmir Ayupov for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) 148516a497c6SRafael Auler GlobalIndCallCounters[I].resetCounters(); 148616a497c6SRafael Auler } 148716a497c6SRafael Auler 148816a497c6SRafael Auler /// This is the entry point for profile writing. 148916a497c6SRafael Auler /// There are three ways of getting here: 149016a497c6SRafael Auler /// 149116a497c6SRafael Auler /// * Program execution ended, finalization methods are running and BOLT 149216a497c6SRafael Auler /// hooked into FINI from your binary dynamic section; 149316a497c6SRafael Auler /// * You used the sleep timer option and during initialization we forked 149416a497c6SRafael Auler /// a separete process that will call this function periodically; 149516a497c6SRafael Auler /// * BOLT prints this function address so you can attach a debugger and 149616a497c6SRafael Auler /// call this function directly to get your profile written to disk 149716a497c6SRafael Auler /// on demand. 149816a497c6SRafael Auler /// 1499ad79d517SVasily Leonenko extern "C" void __attribute((force_align_arg_pointer)) 1500ad79d517SVasily Leonenko __bolt_instr_data_dump() { 150116a497c6SRafael Auler // Already dumping 150216a497c6SRafael Auler if (!GlobalWriteProfileMutex->acquire()) 150316a497c6SRafael Auler return; 150416a497c6SRafael Auler 150516a497c6SRafael Auler BumpPtrAllocator HashAlloc; 150616a497c6SRafael Auler HashAlloc.setMaxSize(0x6400000); 150716a497c6SRafael Auler ProfileWriterContext Ctx = readDescriptions(); 150816a497c6SRafael Auler Ctx.CallFlowTable = new (HashAlloc, 0) CallFlowHashTable(HashAlloc); 150916a497c6SRafael Auler 151016a497c6SRafael Auler DEBUG(printStats(Ctx)); 151116a497c6SRafael Auler 151216a497c6SRafael Auler int FD = openProfile(); 151316a497c6SRafael Auler 1514cc4b2fb6SRafael Auler BumpPtrAllocator Alloc; 1515eaf1b566SJakub Beránek Alloc.setMaxSize(0x6400000); 151616a497c6SRafael Auler const uint8_t *FuncDesc = Ctx.FuncDescriptions; 1517cc4b2fb6SRafael Auler for (int I = 0, E = __bolt_instr_num_funcs; I < E; ++I) { 151816a497c6SRafael Auler FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); 151916a497c6SRafael Auler Alloc.clear(); 1520cc4b2fb6SRafael Auler DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)); 1521cc4b2fb6SRafael Auler } 152216a497c6SRafael Auler assert(FuncDesc == (void *)Ctx.Strings, 1523cc4b2fb6SRafael Auler "FuncDesc ptr must be equal to stringtable"); 1524cc4b2fb6SRafael Auler 152516a497c6SRafael Auler writeIndirectCallProfile(FD, Ctx); 152616a497c6SRafael Auler Ctx.CallFlowTable->forEachElement(visitCallFlowEntry, FD, &Ctx); 152716a497c6SRafael Auler 1528dcdd37fdSVladislav Khmelevsky __fsync(FD); 1529821480d2SRafael Auler __close(FD); 153016a497c6SRafael Auler __munmap(Ctx.MMapPtr, Ctx.MMapSize); 153116a497c6SRafael Auler __close(Ctx.FileDesc); 153216a497c6SRafael Auler HashAlloc.destroy(); 153316a497c6SRafael Auler GlobalWriteProfileMutex->release(); 153416a497c6SRafael Auler DEBUG(report("Finished writing profile.\n")); 153516a497c6SRafael Auler } 153616a497c6SRafael Auler 153716a497c6SRafael Auler /// Event loop for our child process spawned during setup to dump profile data 153816a497c6SRafael Auler /// at user-specified intervals 153916a497c6SRafael Auler void watchProcess() { 154016a497c6SRafael Auler timespec ts, rem; 154116a497c6SRafael Auler uint64_t Ellapsed = 0ull; 154276d346caSVladislav Khmelevsky uint64_t ppid; 154376d346caSVladislav Khmelevsky if (__bolt_instr_wait_forks) { 154476d346caSVladislav Khmelevsky // Store parent pgid 154576d346caSVladislav Khmelevsky ppid = -__getpgid(0); 154676d346caSVladislav Khmelevsky // And leave parent process group 154776d346caSVladislav Khmelevsky __setpgid(0, 0); 154876d346caSVladislav Khmelevsky } else { 154976d346caSVladislav Khmelevsky // Store parent pid 155076d346caSVladislav Khmelevsky ppid = __getppid(); 155176d346caSVladislav Khmelevsky if (ppid == 1) { 155276d346caSVladislav Khmelevsky // Parent already dead 1553dcdd37fdSVladislav Khmelevsky __bolt_instr_data_dump(); 155476d346caSVladislav Khmelevsky goto out; 155576d346caSVladislav Khmelevsky } 155676d346caSVladislav Khmelevsky } 155776d346caSVladislav Khmelevsky 155816a497c6SRafael Auler ts.tv_sec = 1; 155916a497c6SRafael Auler ts.tv_nsec = 0; 156016a497c6SRafael Auler while (1) { 156116a497c6SRafael Auler __nanosleep(&ts, &rem); 156276d346caSVladislav Khmelevsky // This means our parent process or all its forks are dead, 156376d346caSVladislav Khmelevsky // so no need for us to keep dumping. 156476d346caSVladislav Khmelevsky if (__kill(ppid, 0) < 0) { 156576d346caSVladislav Khmelevsky if (__bolt_instr_no_counters_clear) 156676d346caSVladislav Khmelevsky __bolt_instr_data_dump(); 156716a497c6SRafael Auler break; 156816a497c6SRafael Auler } 156976d346caSVladislav Khmelevsky 157016a497c6SRafael Auler if (++Ellapsed < __bolt_instr_sleep_time) 157116a497c6SRafael Auler continue; 157276d346caSVladislav Khmelevsky 157316a497c6SRafael Auler Ellapsed = 0; 157416a497c6SRafael Auler __bolt_instr_data_dump(); 157576d346caSVladislav Khmelevsky if (__bolt_instr_no_counters_clear == false) 157616a497c6SRafael Auler __bolt_instr_clear_counters(); 157716a497c6SRafael Auler } 157876d346caSVladislav Khmelevsky 157976d346caSVladislav Khmelevsky out:; 158016a497c6SRafael Auler DEBUG(report("My parent process is dead, bye!\n")); 158116a497c6SRafael Auler __exit(0); 158216a497c6SRafael Auler } 158316a497c6SRafael Auler 158416a497c6SRafael Auler extern "C" void __bolt_instr_indirect_call(); 158516a497c6SRafael Auler extern "C" void __bolt_instr_indirect_tailcall(); 158616a497c6SRafael Auler 158716a497c6SRafael Auler /// Initialization code 1588ad79d517SVasily Leonenko extern "C" void __attribute((force_align_arg_pointer)) __bolt_instr_setup() { 158916a497c6SRafael Auler const uint64_t CountersStart = 159016a497c6SRafael Auler reinterpret_cast<uint64_t>(&__bolt_instr_locations[0]); 159116a497c6SRafael Auler const uint64_t CountersEnd = alignTo( 159216a497c6SRafael Auler reinterpret_cast<uint64_t>(&__bolt_instr_locations[__bolt_num_counters]), 159316a497c6SRafael Auler 0x1000); 159416a497c6SRafael Auler DEBUG(reportNumber("replace mmap start: ", CountersStart, 16)); 159516a497c6SRafael Auler DEBUG(reportNumber("replace mmap stop: ", CountersEnd, 16)); 159616a497c6SRafael Auler assert (CountersEnd > CountersStart, "no counters"); 1597*c15e9b68SAmir Ayupov // Maps our counters to be shared instead of private, so we keep counting for 1598*c15e9b68SAmir Ayupov // forked processes 1599f0b45fbaSDenis Revunov void *Ret = 1600f0b45fbaSDenis Revunov __mmap(CountersStart, CountersEnd - CountersStart, PROT_READ | PROT_WRITE, 1601*c15e9b68SAmir Ayupov MAP_ANONYMOUS | MAP_SHARED | MAP_FIXED, -1, 0); 16028f7c53efSDenis Revunov assert(Ret != MAP_FAILED, "__bolt_instr_setup: Failed to mmap counters!"); 1603*c15e9b68SAmir Ayupov __bolt_ind_call_counter_func_pointer = __bolt_instr_indirect_call; 1604*c15e9b68SAmir Ayupov __bolt_ind_tailcall_counter_func_pointer = __bolt_instr_indirect_tailcall; 16054314f4ceSAmir Ayupov // Conservatively reserve 100MiB shared pages 16064314f4ceSAmir Ayupov GlobalAlloc.setMaxSize(0x6400000); 1607*c15e9b68SAmir Ayupov GlobalAlloc.setShared(true); 16084314f4ceSAmir Ayupov GlobalWriteProfileMutex = new (GlobalAlloc, 0) Mutex(); 160916a497c6SRafael Auler if (__bolt_instr_num_ind_calls > 0) 161016a497c6SRafael Auler GlobalIndCallCounters = 16114314f4ceSAmir Ayupov new (GlobalAlloc, 0) IndirectCallHashTable[__bolt_instr_num_ind_calls]; 161216a497c6SRafael Auler 161316a497c6SRafael Auler if (__bolt_instr_sleep_time != 0) { 161476d346caSVladislav Khmelevsky // Separate instrumented process to the own process group 161576d346caSVladislav Khmelevsky if (__bolt_instr_wait_forks) 161676d346caSVladislav Khmelevsky __setpgid(0, 0); 161776d346caSVladislav Khmelevsky 1618c7306cc2SAmir Ayupov if (long PID = __fork()) 161916a497c6SRafael Auler return; 162016a497c6SRafael Auler watchProcess(); 162116a497c6SRafael Auler } 162216a497c6SRafael Auler } 162316a497c6SRafael Auler 1624361f3b55SVladislav Khmelevsky extern "C" __attribute((force_align_arg_pointer)) void 1625361f3b55SVladislav Khmelevsky instrumentIndirectCall(uint64_t Target, uint64_t IndCallID) { 16264314f4ceSAmir Ayupov GlobalIndCallCounters[IndCallID].incrementVal(Target, GlobalAlloc); 162716a497c6SRafael Auler } 162816a497c6SRafael Auler 162916a497c6SRafael Auler /// We receive as in-stack arguments the identifier of the indirect call site 163016a497c6SRafael Auler /// as well as the target address for the call 163116a497c6SRafael Auler extern "C" __attribute((naked)) void __bolt_instr_indirect_call() 163216a497c6SRafael Auler { 163316a497c6SRafael Auler __asm__ __volatile__(SAVE_ALL 1634361f3b55SVladislav Khmelevsky "mov 0xa0(%%rsp), %%rdi\n" 1635361f3b55SVladislav Khmelevsky "mov 0x98(%%rsp), %%rsi\n" 163616a497c6SRafael Auler "call instrumentIndirectCall\n" 163716a497c6SRafael Auler RESTORE_ALL 1638361f3b55SVladislav Khmelevsky "ret\n" 163916a497c6SRafael Auler :::); 164016a497c6SRafael Auler } 164116a497c6SRafael Auler 164216a497c6SRafael Auler extern "C" __attribute((naked)) void __bolt_instr_indirect_tailcall() 164316a497c6SRafael Auler { 164416a497c6SRafael Auler __asm__ __volatile__(SAVE_ALL 1645361f3b55SVladislav Khmelevsky "mov 0x98(%%rsp), %%rdi\n" 1646361f3b55SVladislav Khmelevsky "mov 0x90(%%rsp), %%rsi\n" 164716a497c6SRafael Auler "call instrumentIndirectCall\n" 164816a497c6SRafael Auler RESTORE_ALL 1649361f3b55SVladislav Khmelevsky "ret\n" 165016a497c6SRafael Auler :::); 165116a497c6SRafael Auler } 165216a497c6SRafael Auler 165316a497c6SRafael Auler /// This is hooking ELF's entry, it needs to save all machine state. 165416a497c6SRafael Auler extern "C" __attribute((naked)) void __bolt_instr_start() 165516a497c6SRafael Auler { 165616a497c6SRafael Auler __asm__ __volatile__(SAVE_ALL 165716a497c6SRafael Auler "call __bolt_instr_setup\n" 165816a497c6SRafael Auler RESTORE_ALL 1659ad79d517SVasily Leonenko "jmp __bolt_start_trampoline\n" 166016a497c6SRafael Auler :::); 166116a497c6SRafael Auler } 166216a497c6SRafael Auler 166316a497c6SRafael Auler /// This is hooking into ELF's DT_FINI 166416a497c6SRafael Auler extern "C" void __bolt_instr_fini() { 1665553f28e9SVladislav Khmelevsky __bolt_fini_trampoline(); 166616a497c6SRafael Auler if (__bolt_instr_sleep_time == 0) 166716a497c6SRafael Auler __bolt_instr_data_dump(); 166816a497c6SRafael Auler DEBUG(report("Finished.\n")); 166962aa74f8SRafael Auler } 1670bbd9d610SAlexander Shaposhnikov 16713b876cc3SAlexander Shaposhnikov #endif 16723b876cc3SAlexander Shaposhnikov 16733b876cc3SAlexander Shaposhnikov #if defined(__APPLE__) 1674bbd9d610SAlexander Shaposhnikov 1675a0dd5b05SAlexander Shaposhnikov extern "C" void __bolt_instr_data_dump() { 1676a0dd5b05SAlexander Shaposhnikov ProfileWriterContext Ctx = readDescriptions(); 1677a0dd5b05SAlexander Shaposhnikov 1678a0dd5b05SAlexander Shaposhnikov int FD = 2; 1679a0dd5b05SAlexander Shaposhnikov BumpPtrAllocator Alloc; 1680a0dd5b05SAlexander Shaposhnikov const uint8_t *FuncDesc = Ctx.FuncDescriptions; 1681a0dd5b05SAlexander Shaposhnikov uint32_t bolt_instr_num_funcs = _bolt_instr_num_funcs_getter(); 1682a0dd5b05SAlexander Shaposhnikov 1683a0dd5b05SAlexander Shaposhnikov for (int I = 0, E = bolt_instr_num_funcs; I < E; ++I) { 1684a0dd5b05SAlexander Shaposhnikov FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); 1685a0dd5b05SAlexander Shaposhnikov Alloc.clear(); 1686a0dd5b05SAlexander Shaposhnikov DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)); 1687a0dd5b05SAlexander Shaposhnikov } 1688a0dd5b05SAlexander Shaposhnikov assert(FuncDesc == (void *)Ctx.Strings, 1689a0dd5b05SAlexander Shaposhnikov "FuncDesc ptr must be equal to stringtable"); 1690a0dd5b05SAlexander Shaposhnikov } 1691a0dd5b05SAlexander Shaposhnikov 1692bbd9d610SAlexander Shaposhnikov // On OSX/iOS the final symbol name of an extern "C" function/variable contains 1693bbd9d610SAlexander Shaposhnikov // one extra leading underscore: _bolt_instr_setup -> __bolt_instr_setup. 16943b876cc3SAlexander Shaposhnikov extern "C" 16953b876cc3SAlexander Shaposhnikov __attribute__((section("__TEXT,__setup"))) 16963b876cc3SAlexander Shaposhnikov __attribute__((force_align_arg_pointer)) 16973b876cc3SAlexander Shaposhnikov void _bolt_instr_setup() { 1698a0dd5b05SAlexander Shaposhnikov __asm__ __volatile__(SAVE_ALL :::); 16993b876cc3SAlexander Shaposhnikov 1700a0dd5b05SAlexander Shaposhnikov report("Hello!\n"); 17013b876cc3SAlexander Shaposhnikov 1702a0dd5b05SAlexander Shaposhnikov __asm__ __volatile__(RESTORE_ALL :::); 17031cf23e5eSAlexander Shaposhnikov } 1704bbd9d610SAlexander Shaposhnikov 17053b876cc3SAlexander Shaposhnikov extern "C" 17063b876cc3SAlexander Shaposhnikov __attribute__((section("__TEXT,__fini"))) 17073b876cc3SAlexander Shaposhnikov __attribute__((force_align_arg_pointer)) 17083b876cc3SAlexander Shaposhnikov void _bolt_instr_fini() { 1709a0dd5b05SAlexander Shaposhnikov report("Bye!\n"); 1710a0dd5b05SAlexander Shaposhnikov __bolt_instr_data_dump(); 1711e067f2adSAlexander Shaposhnikov } 1712e067f2adSAlexander Shaposhnikov 1713bbd9d610SAlexander Shaposhnikov #endif 1714cb8d701bSVladislav Khmelevsky #endif 1715