12f09f445SMaksim Panchenko //===- bolt/runtime/instr.cpp ---------------------------------------------===// 262aa74f8SRafael Auler // 3da752c9cSRafael Auler // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4da752c9cSRafael Auler // See https://llvm.org/LICENSE.txt for license information. 5da752c9cSRafael Auler // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 662aa74f8SRafael Auler // 762aa74f8SRafael Auler //===----------------------------------------------------------------------===// 862aa74f8SRafael Auler // 916a497c6SRafael Auler // BOLT runtime instrumentation library for x86 Linux. Currently, BOLT does 1016a497c6SRafael Auler // not support linking modules with dependencies on one another into the final 1116a497c6SRafael Auler // binary (TODO?), which means this library has to be self-contained in a single 1216a497c6SRafael Auler // module. 1316a497c6SRafael Auler // 1416a497c6SRafael Auler // All extern declarations here need to be defined by BOLT itself. Those will be 1516a497c6SRafael Auler // undefined symbols that BOLT needs to resolve by emitting these symbols with 1616a497c6SRafael Auler // MCStreamer. Currently, Passes/Instrumentation.cpp is the pass responsible 1716a497c6SRafael Auler // for defining the symbols here and these two files have a tight coupling: one 1816a497c6SRafael Auler // working statically when you run BOLT and another during program runtime when 1916a497c6SRafael Auler // you run an instrumented binary. The main goal here is to output an fdata file 2016a497c6SRafael Auler // (BOLT profile) with the instrumentation counters inserted by the static pass. 2116a497c6SRafael Auler // Counters for indirect calls are an exception, as we can't know them 2216a497c6SRafael Auler // statically. These counters are created and managed here. To allow this, we 2316a497c6SRafael Auler // need a minimal framework for allocating memory dynamically. We provide this 2416a497c6SRafael Auler // with the BumpPtrAllocator class (not LLVM's, but our own version of it). 2516a497c6SRafael Auler // 2616a497c6SRafael Auler // Since this code is intended to be inserted into any executable, we decided to 2716a497c6SRafael Auler // make it standalone and do not depend on any external libraries (i.e. language 2816a497c6SRafael Auler // support libraries, such as glibc or stdc++). To allow this, we provide a few 2916a497c6SRafael Auler // light implementations of common OS interacting functionalities using direct 3016a497c6SRafael Auler // syscall wrappers. Our simple allocator doesn't manage deallocations that 3116a497c6SRafael Auler // fragment the memory space, so it's stack based. This is the minimal framework 3216a497c6SRafael Auler // provided here to allow processing instrumented counters and writing fdata. 3316a497c6SRafael Auler // 3416a497c6SRafael Auler // In the C++ idiom used here, we never use or rely on constructors or 3516a497c6SRafael Auler // destructors for global objects. That's because those need support from the 3616a497c6SRafael Auler // linker in initialization/finalization code, and we want to keep our linker 3716a497c6SRafael Auler // very simple. Similarly, we don't create any global objects that are zero 3816a497c6SRafael Auler // initialized, since those would need to go .bss, which our simple linker also 3916a497c6SRafael Auler // don't support (TODO?). 4062aa74f8SRafael Auler // 4162aa74f8SRafael Auler //===----------------------------------------------------------------------===// 4262aa74f8SRafael Auler 43cb8d701bSVladislav Khmelevsky #if defined (__x86_64__) 449bd71615SXun Li #include "common.h" 4562aa74f8SRafael Auler 4616a497c6SRafael Auler // Enables a very verbose logging to stderr useful when debugging 47cc4b2fb6SRafael Auler //#define ENABLE_DEBUG 48cc4b2fb6SRafael Auler 49cc4b2fb6SRafael Auler #ifdef ENABLE_DEBUG 50cc4b2fb6SRafael Auler #define DEBUG(X) \ 51cc4b2fb6SRafael Auler { X; } 52cc4b2fb6SRafael Auler #else 53cc4b2fb6SRafael Auler #define DEBUG(X) \ 54cc4b2fb6SRafael Auler {} 55cc4b2fb6SRafael Auler #endif 56cc4b2fb6SRafael Auler 57af58da4eSVladislav Khmelevsky #pragma GCC visibility push(hidden) 583b876cc3SAlexander Shaposhnikov 593b876cc3SAlexander Shaposhnikov extern "C" { 60553f28e9SVladislav Khmelevsky 61553f28e9SVladislav Khmelevsky #if defined(__APPLE__) 623b876cc3SAlexander Shaposhnikov extern uint64_t* _bolt_instr_locations_getter(); 633b876cc3SAlexander Shaposhnikov extern uint32_t _bolt_num_counters_getter(); 643b876cc3SAlexander Shaposhnikov 65a0dd5b05SAlexander Shaposhnikov extern uint8_t* _bolt_instr_tables_getter(); 66a0dd5b05SAlexander Shaposhnikov extern uint32_t _bolt_instr_num_funcs_getter(); 673b876cc3SAlexander Shaposhnikov 683b876cc3SAlexander Shaposhnikov #else 69bbd9d610SAlexander Shaposhnikov 7016a497c6SRafael Auler // Main counters inserted by instrumentation, incremented during runtime when 7116a497c6SRafael Auler // points of interest (locations) in the program are reached. Those are direct 7216a497c6SRafael Auler // calls and direct and indirect branches (local ones). There are also counters 7316a497c6SRafael Auler // for basic block execution if they are a spanning tree leaf and need to be 7416a497c6SRafael Auler // counted in order to infer the execution count of other edges of the CFG. 7562aa74f8SRafael Auler extern uint64_t __bolt_instr_locations[]; 7616a497c6SRafael Auler extern uint32_t __bolt_num_counters; 7716a497c6SRafael Auler // Descriptions are serialized metadata about binary functions written by BOLT, 7816a497c6SRafael Auler // so we have a minimal understanding about the program structure. For a 7916a497c6SRafael Auler // reference on the exact format of this metadata, see *Description structs, 8016a497c6SRafael Auler // Location, IntrumentedNode and EntryNode. 8116a497c6SRafael Auler // Number of indirect call site descriptions 8216a497c6SRafael Auler extern uint32_t __bolt_instr_num_ind_calls; 8316a497c6SRafael Auler // Number of indirect call target descriptions 8416a497c6SRafael Auler extern uint32_t __bolt_instr_num_ind_targets; 85cc4b2fb6SRafael Auler // Number of function descriptions 86cc4b2fb6SRafael Auler extern uint32_t __bolt_instr_num_funcs; 8716a497c6SRafael Auler // Time to sleep across dumps (when we write the fdata profile to disk) 8816a497c6SRafael Auler extern uint32_t __bolt_instr_sleep_time; 8976d346caSVladislav Khmelevsky // Do not clear counters across dumps, rewrite file with the updated values 9076d346caSVladislav Khmelevsky extern bool __bolt_instr_no_counters_clear; 9176d346caSVladislav Khmelevsky // Wait until all forks of instrumented process will finish 9276d346caSVladislav Khmelevsky extern bool __bolt_instr_wait_forks; 93cc4b2fb6SRafael Auler // Filename to dump data to 9462aa74f8SRafael Auler extern char __bolt_instr_filename[]; 95519cbbaaSVasily Leonenko // Instumented binary file path 96519cbbaaSVasily Leonenko extern char __bolt_instr_binpath[]; 9716a497c6SRafael Auler // If true, append current PID to the fdata filename when creating it so 9816a497c6SRafael Auler // different invocations of the same program can be differentiated. 9916a497c6SRafael Auler extern bool __bolt_instr_use_pid; 10016a497c6SRafael Auler // Functions that will be used to instrument indirect calls. BOLT static pass 10116a497c6SRafael Auler // will identify indirect calls and modify them to load the address in these 10216a497c6SRafael Auler // trampolines and call this address instead. BOLT can't use direct calls to 10316a497c6SRafael Auler // our handlers because our addresses here are not known at analysis time. We 10416a497c6SRafael Auler // only support resolving dependencies from this file to the output of BOLT, 10516a497c6SRafael Auler // *not* the other way around. 10616a497c6SRafael Auler // TODO: We need better linking support to make that happen. 107361f3b55SVladislav Khmelevsky extern void (*__bolt_ind_call_counter_func_pointer)(); 108361f3b55SVladislav Khmelevsky extern void (*__bolt_ind_tailcall_counter_func_pointer)(); 109ad79d517SVasily Leonenko // Function pointers to init/fini trampoline routines in the binary, so we can 110ad79d517SVasily Leonenko // resume regular execution of these functions that we hooked 111553f28e9SVladislav Khmelevsky extern void __bolt_start_trampoline(); 112553f28e9SVladislav Khmelevsky extern void __bolt_fini_trampoline(); 11362aa74f8SRafael Auler 114a0dd5b05SAlexander Shaposhnikov #endif 115553f28e9SVladislav Khmelevsky } 116a0dd5b05SAlexander Shaposhnikov 117cc4b2fb6SRafael Auler namespace { 118cc4b2fb6SRafael Auler 119cc4b2fb6SRafael Auler /// A simple allocator that mmaps a fixed size region and manages this space 120cc4b2fb6SRafael Auler /// in a stack fashion, meaning you always deallocate the last element that 12116a497c6SRafael Auler /// was allocated. In practice, we don't need to deallocate individual elements. 12216a497c6SRafael Auler /// We monotonically increase our usage and then deallocate everything once we 12316a497c6SRafael Auler /// are done processing something. 124cc4b2fb6SRafael Auler class BumpPtrAllocator { 12516a497c6SRafael Auler /// This is written before each allocation and act as a canary to detect when 12616a497c6SRafael Auler /// a bug caused our program to cross allocation boundaries. 127cc4b2fb6SRafael Auler struct EntryMetadata { 128cc4b2fb6SRafael Auler uint64_t Magic; 129cc4b2fb6SRafael Auler uint64_t AllocSize; 130cc4b2fb6SRafael Auler }; 1319bd71615SXun Li 132cc4b2fb6SRafael Auler public: 133faaefff6SAlexander Shaposhnikov void *allocate(size_t Size) { 13416a497c6SRafael Auler Lock L(M); 135a0dd5b05SAlexander Shaposhnikov 136cc4b2fb6SRafael Auler if (StackBase == nullptr) { 13716a497c6SRafael Auler StackBase = reinterpret_cast<uint8_t *>( 138*8b23a853SDenis Revunov __mmap(0, MaxSize, PROT_READ | PROT_WRITE, 139*8b23a853SDenis Revunov (Shared ? MAP_SHARED : MAP_PRIVATE) | MAP_ANONYMOUS, -1, 0)); 140cc4b2fb6SRafael Auler StackSize = 0; 141cc4b2fb6SRafael Auler } 142a0dd5b05SAlexander Shaposhnikov 143cc4b2fb6SRafael Auler Size = alignTo(Size + sizeof(EntryMetadata), 16); 144cc4b2fb6SRafael Auler uint8_t *AllocAddress = StackBase + StackSize + sizeof(EntryMetadata); 145cc4b2fb6SRafael Auler auto *M = reinterpret_cast<EntryMetadata *>(StackBase + StackSize); 14616a497c6SRafael Auler M->Magic = Magic; 147cc4b2fb6SRafael Auler M->AllocSize = Size; 148cc4b2fb6SRafael Auler StackSize += Size; 14916a497c6SRafael Auler assert(StackSize < MaxSize, "allocator ran out of memory"); 150cc4b2fb6SRafael Auler return AllocAddress; 151cc4b2fb6SRafael Auler } 152cc4b2fb6SRafael Auler 15316a497c6SRafael Auler #ifdef DEBUG 15416a497c6SRafael Auler /// Element-wise deallocation is only used for debugging to catch memory 15516a497c6SRafael Auler /// bugs by checking magic bytes. Ordinarily, we reset the allocator once 15616a497c6SRafael Auler /// we are done with it. Reset is done with clear(). There's no need 15716a497c6SRafael Auler /// to deallocate each element individually. 158cc4b2fb6SRafael Auler void deallocate(void *Ptr) { 15916a497c6SRafael Auler Lock L(M); 160cc4b2fb6SRafael Auler uint8_t MetadataOffset = sizeof(EntryMetadata); 161cc4b2fb6SRafael Auler auto *M = reinterpret_cast<EntryMetadata *>( 162cc4b2fb6SRafael Auler reinterpret_cast<uint8_t *>(Ptr) - MetadataOffset); 163cc4b2fb6SRafael Auler const uint8_t *StackTop = StackBase + StackSize + MetadataOffset; 164cc4b2fb6SRafael Auler // Validate size 165cc4b2fb6SRafael Auler if (Ptr != StackTop - M->AllocSize) { 16616a497c6SRafael Auler // Failed validation, check if it is a pointer returned by operator new [] 167cc4b2fb6SRafael Auler MetadataOffset += 168cc4b2fb6SRafael Auler sizeof(uint64_t); // Space for number of elements alloc'ed 169cc4b2fb6SRafael Auler M = reinterpret_cast<EntryMetadata *>(reinterpret_cast<uint8_t *>(Ptr) - 170cc4b2fb6SRafael Auler MetadataOffset); 17116a497c6SRafael Auler // Ok, it failed both checks if this assertion fails. Stop the program, we 17216a497c6SRafael Auler // have a memory bug. 173cc4b2fb6SRafael Auler assert(Ptr == StackTop - M->AllocSize, 174cc4b2fb6SRafael Auler "must deallocate the last element alloc'ed"); 175cc4b2fb6SRafael Auler } 17616a497c6SRafael Auler assert(M->Magic == Magic, "allocator magic is corrupt"); 177cc4b2fb6SRafael Auler StackSize -= M->AllocSize; 178cc4b2fb6SRafael Auler } 17916a497c6SRafael Auler #else 18016a497c6SRafael Auler void deallocate(void *) {} 18116a497c6SRafael Auler #endif 18216a497c6SRafael Auler 18316a497c6SRafael Auler void clear() { 18416a497c6SRafael Auler Lock L(M); 18516a497c6SRafael Auler StackSize = 0; 18616a497c6SRafael Auler } 18716a497c6SRafael Auler 18816a497c6SRafael Auler /// Set mmap reservation size (only relevant before first allocation) 1899bd71615SXun Li void setMaxSize(uint64_t Size) { MaxSize = Size; } 19016a497c6SRafael Auler 19116a497c6SRafael Auler /// Set mmap reservation privacy (only relevant before first allocation) 1929bd71615SXun Li void setShared(bool S) { Shared = S; } 19316a497c6SRafael Auler 19416a497c6SRafael Auler void destroy() { 19516a497c6SRafael Auler if (StackBase == nullptr) 19616a497c6SRafael Auler return; 19716a497c6SRafael Auler __munmap(StackBase, MaxSize); 19816a497c6SRafael Auler } 199cc4b2fb6SRafael Auler 200cc4b2fb6SRafael Auler private: 20116a497c6SRafael Auler static constexpr uint64_t Magic = 0x1122334455667788ull; 20216a497c6SRafael Auler uint64_t MaxSize = 0xa00000; 203cc4b2fb6SRafael Auler uint8_t *StackBase{nullptr}; 204cc4b2fb6SRafael Auler uint64_t StackSize{0}; 20516a497c6SRafael Auler bool Shared{false}; 20616a497c6SRafael Auler Mutex M; 207cc4b2fb6SRafael Auler }; 208cc4b2fb6SRafael Auler 20916a497c6SRafael Auler /// Used for allocating indirect call instrumentation counters. Initialized by 21016a497c6SRafael Auler /// __bolt_instr_setup, our initialization routine. 2114314f4ceSAmir Ayupov BumpPtrAllocator GlobalAlloc; 212cc4b2fb6SRafael Auler } // anonymous namespace 213cc4b2fb6SRafael Auler 214cc4b2fb6SRafael Auler // User-defined placement new operators. We only use those (as opposed to 215cc4b2fb6SRafael Auler // overriding the regular operator new) so we can keep our allocator in the 216cc4b2fb6SRafael Auler // stack instead of in a data section (global). 217faaefff6SAlexander Shaposhnikov void *operator new(size_t Sz, BumpPtrAllocator &A) { return A.allocate(Sz); } 218faaefff6SAlexander Shaposhnikov void *operator new(size_t Sz, BumpPtrAllocator &A, char C) { 219cc4b2fb6SRafael Auler auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); 220ea2182feSMaksim Panchenko memset(Ptr, C, Sz); 221cc4b2fb6SRafael Auler return Ptr; 222cc4b2fb6SRafael Auler } 223faaefff6SAlexander Shaposhnikov void *operator new[](size_t Sz, BumpPtrAllocator &A) { 224cc4b2fb6SRafael Auler return A.allocate(Sz); 225cc4b2fb6SRafael Auler } 226faaefff6SAlexander Shaposhnikov void *operator new[](size_t Sz, BumpPtrAllocator &A, char C) { 227cc4b2fb6SRafael Auler auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); 228ea2182feSMaksim Panchenko memset(Ptr, C, Sz); 229cc4b2fb6SRafael Auler return Ptr; 230cc4b2fb6SRafael Auler } 231cc4b2fb6SRafael Auler // Only called during exception unwinding (useless). We must manually dealloc. 232cc4b2fb6SRafael Auler // C++ language weirdness 2339bd71615SXun Li void operator delete(void *Ptr, BumpPtrAllocator &A) { A.deallocate(Ptr); } 234cc4b2fb6SRafael Auler 235cc4b2fb6SRafael Auler namespace { 236cc4b2fb6SRafael Auler 2379aa134dcSVasily Leonenko // Disable instrumentation optimizations that sacrifice profile accuracy 2389aa134dcSVasily Leonenko extern "C" bool __bolt_instr_conservative; 2399aa134dcSVasily Leonenko 24016a497c6SRafael Auler /// Basic key-val atom stored in our hash 24116a497c6SRafael Auler struct SimpleHashTableEntryBase { 24216a497c6SRafael Auler uint64_t Key; 24316a497c6SRafael Auler uint64_t Val; 24447934c11SDenis Revunov void dump(const char *Msg = nullptr) { 24547934c11SDenis Revunov // TODO: make some sort of formatting function 24647934c11SDenis Revunov // Currently we have to do it the ugly way because 24747934c11SDenis Revunov // we want every message to be printed atomically via a single call to 24847934c11SDenis Revunov // __write. If we use reportNumber() and others nultiple times, we'll get 24947934c11SDenis Revunov // garbage in mulithreaded environment 25047934c11SDenis Revunov char Buf[BufSize]; 25147934c11SDenis Revunov char *Ptr = Buf; 25247934c11SDenis Revunov Ptr = intToStr(Ptr, __getpid(), 10); 25347934c11SDenis Revunov *Ptr++ = ':'; 25447934c11SDenis Revunov *Ptr++ = ' '; 25547934c11SDenis Revunov if (Msg) 25647934c11SDenis Revunov Ptr = strCopy(Ptr, Msg, strLen(Msg)); 25747934c11SDenis Revunov *Ptr++ = '0'; 25847934c11SDenis Revunov *Ptr++ = 'x'; 25947934c11SDenis Revunov Ptr = intToStr(Ptr, (uint64_t)this, 16); 26047934c11SDenis Revunov *Ptr++ = ':'; 26147934c11SDenis Revunov *Ptr++ = ' '; 26247934c11SDenis Revunov Ptr = strCopy(Ptr, "MapEntry(0x", sizeof("MapEntry(0x") - 1); 26347934c11SDenis Revunov Ptr = intToStr(Ptr, Key, 16); 26447934c11SDenis Revunov *Ptr++ = ','; 26547934c11SDenis Revunov *Ptr++ = ' '; 26647934c11SDenis Revunov *Ptr++ = '0'; 26747934c11SDenis Revunov *Ptr++ = 'x'; 26847934c11SDenis Revunov Ptr = intToStr(Ptr, Val, 16); 26947934c11SDenis Revunov *Ptr++ = ')'; 27047934c11SDenis Revunov *Ptr++ = '\n'; 27147934c11SDenis Revunov assert(Ptr - Buf < BufSize, "Buffer overflow!"); 27247934c11SDenis Revunov // print everything all at once for atomicity 27347934c11SDenis Revunov __write(2, Buf, Ptr - Buf); 27447934c11SDenis Revunov } 27516a497c6SRafael Auler }; 27616a497c6SRafael Auler 27716a497c6SRafael Auler /// This hash table implementation starts by allocating a table of size 27816a497c6SRafael Auler /// InitialSize. When conflicts happen in this main table, it resolves 27916a497c6SRafael Auler /// them by chaining a new table of size IncSize. It never reallocs as our 28016a497c6SRafael Auler /// allocator doesn't support it. The key is intended to be function pointers. 28116a497c6SRafael Auler /// There's no clever hash function (it's just x mod size, size being prime). 28216a497c6SRafael Auler /// I never tuned the coefficientes in the modular equation (TODO) 28316a497c6SRafael Auler /// This is used for indirect calls (each call site has one of this, so it 28416a497c6SRafael Auler /// should have a small footprint) and for tallying call counts globally for 28516a497c6SRafael Auler /// each target to check if we missed the origin of some calls (this one is a 28616a497c6SRafael Auler /// large instantiation of this template, since it is global for all call sites) 28716a497c6SRafael Auler template <typename T = SimpleHashTableEntryBase, uint32_t InitialSize = 7, 28816a497c6SRafael Auler uint32_t IncSize = 7> 28916a497c6SRafael Auler class SimpleHashTable { 29016a497c6SRafael Auler public: 29116a497c6SRafael Auler using MapEntry = T; 29216a497c6SRafael Auler 29316a497c6SRafael Auler /// Increment by 1 the value of \p Key. If it is not in this table, it will be 29416a497c6SRafael Auler /// added to the table and its value set to 1. 29516a497c6SRafael Auler void incrementVal(uint64_t Key, BumpPtrAllocator &Alloc) { 2964314f4ceSAmir Ayupov ++get(Key, Alloc).Val; 29716a497c6SRafael Auler } 29816a497c6SRafael Auler 29916a497c6SRafael Auler /// Basic member accessing interface. Here we pass the allocator explicitly to 30016a497c6SRafael Auler /// avoid storing a pointer to it as part of this table (remember there is one 30116a497c6SRafael Auler /// hash for each indirect call site, so we wan't to minimize our footprint). 30216a497c6SRafael Auler MapEntry &get(uint64_t Key, BumpPtrAllocator &Alloc) { 3039aa134dcSVasily Leonenko if (!__bolt_instr_conservative) { 3049aa134dcSVasily Leonenko TryLock L(M); 3059aa134dcSVasily Leonenko if (!L.isLocked()) 3069aa134dcSVasily Leonenko return NoEntry; 3079aa134dcSVasily Leonenko return getOrAllocEntry(Key, Alloc); 3089aa134dcSVasily Leonenko } 30916a497c6SRafael Auler Lock L(M); 3109aa134dcSVasily Leonenko return getOrAllocEntry(Key, Alloc); 31116a497c6SRafael Auler } 31216a497c6SRafael Auler 31316a497c6SRafael Auler /// Traverses all elements in the table 31416a497c6SRafael Auler template <typename... Args> 31516a497c6SRafael Auler void forEachElement(void (*Callback)(MapEntry &, Args...), Args... args) { 316bd301a41SMichał Chojnowski Lock L(M); 31716a497c6SRafael Auler if (!TableRoot) 31816a497c6SRafael Auler return; 31916a497c6SRafael Auler return forEachElement(Callback, InitialSize, TableRoot, args...); 32016a497c6SRafael Auler } 32116a497c6SRafael Auler 32216a497c6SRafael Auler void resetCounters(); 32316a497c6SRafael Auler 32416a497c6SRafael Auler private: 32516a497c6SRafael Auler constexpr static uint64_t VacantMarker = 0; 32616a497c6SRafael Auler constexpr static uint64_t FollowUpTableMarker = 0x8000000000000000ull; 32716a497c6SRafael Auler 32816a497c6SRafael Auler MapEntry *TableRoot{nullptr}; 3299aa134dcSVasily Leonenko MapEntry NoEntry; 33016a497c6SRafael Auler Mutex M; 33116a497c6SRafael Auler 33216a497c6SRafael Auler template <typename... Args> 33316a497c6SRafael Auler void forEachElement(void (*Callback)(MapEntry &, Args...), 33416a497c6SRafael Auler uint32_t NumEntries, MapEntry *Entries, Args... args) { 335c7306cc2SAmir Ayupov for (uint32_t I = 0; I < NumEntries; ++I) { 336c7306cc2SAmir Ayupov MapEntry &Entry = Entries[I]; 33716a497c6SRafael Auler if (Entry.Key == VacantMarker) 33816a497c6SRafael Auler continue; 33916a497c6SRafael Auler if (Entry.Key & FollowUpTableMarker) { 3404314f4ceSAmir Ayupov forEachElement(Callback, IncSize, 3414314f4ceSAmir Ayupov reinterpret_cast<MapEntry *>(Entry.Key & 3424314f4ceSAmir Ayupov ~FollowUpTableMarker), 3434314f4ceSAmir Ayupov args...); 34416a497c6SRafael Auler continue; 34516a497c6SRafael Auler } 34616a497c6SRafael Auler Callback(Entry, args...); 34716a497c6SRafael Auler } 34816a497c6SRafael Auler } 34916a497c6SRafael Auler 35016a497c6SRafael Auler MapEntry &firstAllocation(uint64_t Key, BumpPtrAllocator &Alloc) { 35116a497c6SRafael Auler TableRoot = new (Alloc, 0) MapEntry[InitialSize]; 352c7306cc2SAmir Ayupov MapEntry &Entry = TableRoot[Key % InitialSize]; 35316a497c6SRafael Auler Entry.Key = Key; 35447934c11SDenis Revunov // DEBUG(Entry.dump("Created root entry: ")); 35516a497c6SRafael Auler return Entry; 35616a497c6SRafael Auler } 35716a497c6SRafael Auler 35816a497c6SRafael Auler MapEntry &getEntry(MapEntry *Entries, uint64_t Key, uint64_t Selector, 35916a497c6SRafael Auler BumpPtrAllocator &Alloc, int CurLevel) { 36047934c11SDenis Revunov // DEBUG(reportNumber("getEntry called, level ", CurLevel, 10)); 36116a497c6SRafael Auler const uint32_t NumEntries = CurLevel == 0 ? InitialSize : IncSize; 36216a497c6SRafael Auler uint64_t Remainder = Selector / NumEntries; 36316a497c6SRafael Auler Selector = Selector % NumEntries; 364c7306cc2SAmir Ayupov MapEntry &Entry = Entries[Selector]; 36516a497c6SRafael Auler 36616a497c6SRafael Auler // A hit 36716a497c6SRafael Auler if (Entry.Key == Key) { 36847934c11SDenis Revunov // DEBUG(Entry.dump("Hit: ")); 36916a497c6SRafael Auler return Entry; 37016a497c6SRafael Auler } 37116a497c6SRafael Auler 37216a497c6SRafael Auler // Vacant - add new entry 37316a497c6SRafael Auler if (Entry.Key == VacantMarker) { 37416a497c6SRafael Auler Entry.Key = Key; 37547934c11SDenis Revunov // DEBUG(Entry.dump("Adding new entry: ")); 37616a497c6SRafael Auler return Entry; 37716a497c6SRafael Auler } 37816a497c6SRafael Auler 37916a497c6SRafael Auler // Defer to the next level 38016a497c6SRafael Auler if (Entry.Key & FollowUpTableMarker) { 38116a497c6SRafael Auler return getEntry( 38216a497c6SRafael Auler reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker), 38316a497c6SRafael Auler Key, Remainder, Alloc, CurLevel + 1); 38416a497c6SRafael Auler } 38516a497c6SRafael Auler 38616a497c6SRafael Auler // Conflict - create the next level 38747934c11SDenis Revunov // DEBUG(Entry.dump("Creating new level: ")); 38847934c11SDenis Revunov 38916a497c6SRafael Auler MapEntry *NextLevelTbl = new (Alloc, 0) MapEntry[IncSize]; 39047934c11SDenis Revunov // DEBUG( 39147934c11SDenis Revunov // reportNumber("Newly allocated level: 0x", uint64_t(NextLevelTbl), 39247934c11SDenis Revunov // 16)); 39316a497c6SRafael Auler uint64_t CurEntrySelector = Entry.Key / InitialSize; 39416a497c6SRafael Auler for (int I = 0; I < CurLevel; ++I) 39516a497c6SRafael Auler CurEntrySelector /= IncSize; 39616a497c6SRafael Auler CurEntrySelector = CurEntrySelector % IncSize; 39716a497c6SRafael Auler NextLevelTbl[CurEntrySelector] = Entry; 39816a497c6SRafael Auler Entry.Key = reinterpret_cast<uint64_t>(NextLevelTbl) | FollowUpTableMarker; 399ad4e0770SDenis Revunov assert((NextLevelTbl[CurEntrySelector].Key & ~FollowUpTableMarker) != 400ad4e0770SDenis Revunov uint64_t(Entries), 401ad4e0770SDenis Revunov "circular reference created!\n"); 40247934c11SDenis Revunov // DEBUG(NextLevelTbl[CurEntrySelector].dump("New level entry: ")); 40347934c11SDenis Revunov // DEBUG(Entry.dump("Updated old entry: ")); 40416a497c6SRafael Auler return getEntry(NextLevelTbl, Key, Remainder, Alloc, CurLevel + 1); 40516a497c6SRafael Auler } 4069aa134dcSVasily Leonenko 4079aa134dcSVasily Leonenko MapEntry &getOrAllocEntry(uint64_t Key, BumpPtrAllocator &Alloc) { 4084314f4ceSAmir Ayupov if (TableRoot) 4094314f4ceSAmir Ayupov return getEntry(TableRoot, Key, Key, Alloc, 0); 4109aa134dcSVasily Leonenko return firstAllocation(Key, Alloc); 4119aa134dcSVasily Leonenko } 41216a497c6SRafael Auler }; 41316a497c6SRafael Auler 41416a497c6SRafael Auler template <typename T> void resetIndCallCounter(T &Entry) { 41516a497c6SRafael Auler Entry.Val = 0; 41616a497c6SRafael Auler } 41716a497c6SRafael Auler 41816a497c6SRafael Auler template <typename T, uint32_t X, uint32_t Y> 41916a497c6SRafael Auler void SimpleHashTable<T, X, Y>::resetCounters() { 42016a497c6SRafael Auler forEachElement(resetIndCallCounter); 42116a497c6SRafael Auler } 42216a497c6SRafael Auler 42316a497c6SRafael Auler /// Represents a hash table mapping a function target address to its counter. 42416a497c6SRafael Auler using IndirectCallHashTable = SimpleHashTable<>; 42516a497c6SRafael Auler 42616a497c6SRafael Auler /// Initialize with number 1 instead of 0 so we don't go into .bss. This is the 42716a497c6SRafael Auler /// global array of all hash tables storing indirect call destinations happening 42816a497c6SRafael Auler /// during runtime, one table per call site. 42916a497c6SRafael Auler IndirectCallHashTable *GlobalIndCallCounters{ 43016a497c6SRafael Auler reinterpret_cast<IndirectCallHashTable *>(1)}; 43116a497c6SRafael Auler 43216a497c6SRafael Auler /// Don't allow reentrancy in the fdata writing phase - only one thread writes 43316a497c6SRafael Auler /// it 43416a497c6SRafael Auler Mutex *GlobalWriteProfileMutex{reinterpret_cast<Mutex *>(1)}; 43516a497c6SRafael Auler 43616a497c6SRafael Auler /// Store number of calls in additional to target address (Key) and frequency 43716a497c6SRafael Auler /// as perceived by the basic block counter (Val). 43816a497c6SRafael Auler struct CallFlowEntryBase : public SimpleHashTableEntryBase { 43916a497c6SRafael Auler uint64_t Calls; 44016a497c6SRafael Auler }; 44116a497c6SRafael Auler 44216a497c6SRafael Auler using CallFlowHashTableBase = SimpleHashTable<CallFlowEntryBase, 11939, 233>; 44316a497c6SRafael Auler 44416a497c6SRafael Auler /// This is a large table indexing all possible call targets (indirect and 44516a497c6SRafael Auler /// direct ones). The goal is to find mismatches between number of calls (for 44616a497c6SRafael Auler /// those calls we were able to track) and the entry basic block counter of the 44716a497c6SRafael Auler /// callee. In most cases, these two should be equal. If not, there are two 44816a497c6SRafael Auler /// possible scenarios here: 44916a497c6SRafael Auler /// 45016a497c6SRafael Auler /// * Entry BB has higher frequency than all known calls to this function. 45116a497c6SRafael Auler /// In this case, we have dynamic library code or any uninstrumented code 45216a497c6SRafael Auler /// calling this function. We will write the profile for these untracked 45316a497c6SRafael Auler /// calls as having source "0 [unknown] 0" in the fdata file. 45416a497c6SRafael Auler /// 45516a497c6SRafael Auler /// * Number of known calls is higher than the frequency of entry BB 45616a497c6SRafael Auler /// This only happens when there is no counter for the entry BB / callee 45716a497c6SRafael Auler /// function is not simple (in BOLT terms). We don't do anything special 45816a497c6SRafael Auler /// here and just ignore those (we still report all calls to the non-simple 45916a497c6SRafael Auler /// function, though). 46016a497c6SRafael Auler /// 46116a497c6SRafael Auler class CallFlowHashTable : public CallFlowHashTableBase { 46216a497c6SRafael Auler public: 46316a497c6SRafael Auler CallFlowHashTable(BumpPtrAllocator &Alloc) : Alloc(Alloc) {} 46416a497c6SRafael Auler 46516a497c6SRafael Auler MapEntry &get(uint64_t Key) { return CallFlowHashTableBase::get(Key, Alloc); } 46616a497c6SRafael Auler 46716a497c6SRafael Auler private: 46816a497c6SRafael Auler // Different than the hash table for indirect call targets, we do store the 46916a497c6SRafael Auler // allocator here since there is only one call flow hash and space overhead 47016a497c6SRafael Auler // is negligible. 47116a497c6SRafael Auler BumpPtrAllocator &Alloc; 47216a497c6SRafael Auler }; 47316a497c6SRafael Auler 47416a497c6SRafael Auler /// 47516a497c6SRafael Auler /// Description metadata emitted by BOLT to describe the program - refer to 47616a497c6SRafael Auler /// Passes/Instrumentation.cpp - Instrumentation::emitTablesAsELFNote() 47716a497c6SRafael Auler /// 47816a497c6SRafael Auler struct Location { 47916a497c6SRafael Auler uint32_t FunctionName; 48016a497c6SRafael Auler uint32_t Offset; 48116a497c6SRafael Auler }; 48216a497c6SRafael Auler 48316a497c6SRafael Auler struct CallDescription { 48416a497c6SRafael Auler Location From; 48516a497c6SRafael Auler uint32_t FromNode; 48616a497c6SRafael Auler Location To; 48716a497c6SRafael Auler uint32_t Counter; 48816a497c6SRafael Auler uint64_t TargetAddress; 48916a497c6SRafael Auler }; 49016a497c6SRafael Auler 49116a497c6SRafael Auler using IndCallDescription = Location; 49216a497c6SRafael Auler 49316a497c6SRafael Auler struct IndCallTargetDescription { 49416a497c6SRafael Auler Location Loc; 49516a497c6SRafael Auler uint64_t Address; 49616a497c6SRafael Auler }; 49716a497c6SRafael Auler 49816a497c6SRafael Auler struct EdgeDescription { 49916a497c6SRafael Auler Location From; 50016a497c6SRafael Auler uint32_t FromNode; 50116a497c6SRafael Auler Location To; 50216a497c6SRafael Auler uint32_t ToNode; 50316a497c6SRafael Auler uint32_t Counter; 50416a497c6SRafael Auler }; 50516a497c6SRafael Auler 50616a497c6SRafael Auler struct InstrumentedNode { 50716a497c6SRafael Auler uint32_t Node; 50816a497c6SRafael Auler uint32_t Counter; 50916a497c6SRafael Auler }; 51016a497c6SRafael Auler 51116a497c6SRafael Auler struct EntryNode { 51216a497c6SRafael Auler uint64_t Node; 51316a497c6SRafael Auler uint64_t Address; 51416a497c6SRafael Auler }; 51516a497c6SRafael Auler 51616a497c6SRafael Auler struct FunctionDescription { 51716a497c6SRafael Auler uint32_t NumLeafNodes; 51816a497c6SRafael Auler const InstrumentedNode *LeafNodes; 51916a497c6SRafael Auler uint32_t NumEdges; 52016a497c6SRafael Auler const EdgeDescription *Edges; 52116a497c6SRafael Auler uint32_t NumCalls; 52216a497c6SRafael Auler const CallDescription *Calls; 52316a497c6SRafael Auler uint32_t NumEntryNodes; 52416a497c6SRafael Auler const EntryNode *EntryNodes; 52516a497c6SRafael Auler 52616a497c6SRafael Auler /// Constructor will parse the serialized function metadata written by BOLT 52716a497c6SRafael Auler FunctionDescription(const uint8_t *FuncDesc); 52816a497c6SRafael Auler 52916a497c6SRafael Auler uint64_t getSize() const { 53016a497c6SRafael Auler return 16 + NumLeafNodes * sizeof(InstrumentedNode) + 53116a497c6SRafael Auler NumEdges * sizeof(EdgeDescription) + 53216a497c6SRafael Auler NumCalls * sizeof(CallDescription) + 53316a497c6SRafael Auler NumEntryNodes * sizeof(EntryNode); 53416a497c6SRafael Auler } 53516a497c6SRafael Auler }; 53616a497c6SRafael Auler 53716a497c6SRafael Auler /// The context is created when the fdata profile needs to be written to disk 53816a497c6SRafael Auler /// and we need to interpret our runtime counters. It contains pointers to the 53916a497c6SRafael Auler /// mmaped binary (only the BOLT written metadata section). Deserialization 54016a497c6SRafael Auler /// should be straightforward as most data is POD or an array of POD elements. 54116a497c6SRafael Auler /// This metadata is used to reconstruct function CFGs. 54216a497c6SRafael Auler struct ProfileWriterContext { 54316a497c6SRafael Auler IndCallDescription *IndCallDescriptions; 54416a497c6SRafael Auler IndCallTargetDescription *IndCallTargets; 54516a497c6SRafael Auler uint8_t *FuncDescriptions; 54616a497c6SRafael Auler char *Strings; // String table with function names used in this binary 54716a497c6SRafael Auler int FileDesc; // File descriptor for the file on disk backing this 54816a497c6SRafael Auler // information in memory via mmap 54916a497c6SRafael Auler void *MMapPtr; // The mmap ptr 55016a497c6SRafael Auler int MMapSize; // The mmap size 55116a497c6SRafael Auler 55216a497c6SRafael Auler /// Hash table storing all possible call destinations to detect untracked 55316a497c6SRafael Auler /// calls and correctly report them as [unknown] in output fdata. 55416a497c6SRafael Auler CallFlowHashTable *CallFlowTable; 55516a497c6SRafael Auler 55616a497c6SRafael Auler /// Lookup the sorted indirect call target vector to fetch function name and 55716a497c6SRafael Auler /// offset for an arbitrary function pointer. 55816a497c6SRafael Auler const IndCallTargetDescription *lookupIndCallTarget(uint64_t Target) const; 55916a497c6SRafael Auler }; 56016a497c6SRafael Auler 56116a497c6SRafael Auler /// Perform a string comparison and returns zero if Str1 matches Str2. Compares 56216a497c6SRafael Auler /// at most Size characters. 563cc4b2fb6SRafael Auler int compareStr(const char *Str1, const char *Str2, int Size) { 564821480d2SRafael Auler while (*Str1 == *Str2) { 565821480d2SRafael Auler if (*Str1 == '\0' || --Size == 0) 566821480d2SRafael Auler return 0; 567821480d2SRafael Auler ++Str1; 568821480d2SRafael Auler ++Str2; 569821480d2SRafael Auler } 570821480d2SRafael Auler return 1; 571821480d2SRafael Auler } 572821480d2SRafael Auler 57316a497c6SRafael Auler /// Output Location to the fdata file 57416a497c6SRafael Auler char *serializeLoc(const ProfileWriterContext &Ctx, char *OutBuf, 575cc4b2fb6SRafael Auler const Location Loc, uint32_t BufSize) { 576821480d2SRafael Auler // fdata location format: Type Name Offset 577821480d2SRafael Auler // Type 1 - regular symbol 578821480d2SRafael Auler OutBuf = strCopy(OutBuf, "1 "); 57916a497c6SRafael Auler const char *Str = Ctx.Strings + Loc.FunctionName; 580cc4b2fb6SRafael Auler uint32_t Size = 25; 58162aa74f8SRafael Auler while (*Str) { 58262aa74f8SRafael Auler *OutBuf++ = *Str++; 583cc4b2fb6SRafael Auler if (++Size >= BufSize) 584cc4b2fb6SRafael Auler break; 58562aa74f8SRafael Auler } 586cc4b2fb6SRafael Auler assert(!*Str, "buffer overflow, function name too large"); 58762aa74f8SRafael Auler *OutBuf++ = ' '; 588821480d2SRafael Auler OutBuf = intToStr(OutBuf, Loc.Offset, 16); 58962aa74f8SRafael Auler *OutBuf++ = ' '; 59062aa74f8SRafael Auler return OutBuf; 59162aa74f8SRafael Auler } 59262aa74f8SRafael Auler 59316a497c6SRafael Auler /// Read and deserialize a function description written by BOLT. \p FuncDesc 59416a497c6SRafael Auler /// points at the beginning of the function metadata structure in the file. 59516a497c6SRafael Auler /// See Instrumentation::emitTablesAsELFNote() 59616a497c6SRafael Auler FunctionDescription::FunctionDescription(const uint8_t *FuncDesc) { 59716a497c6SRafael Auler NumLeafNodes = *reinterpret_cast<const uint32_t *>(FuncDesc); 59816a497c6SRafael Auler DEBUG(reportNumber("NumLeafNodes = ", NumLeafNodes, 10)); 59916a497c6SRafael Auler LeafNodes = reinterpret_cast<const InstrumentedNode *>(FuncDesc + 4); 60016a497c6SRafael Auler 60116a497c6SRafael Auler NumEdges = *reinterpret_cast<const uint32_t *>( 60216a497c6SRafael Auler FuncDesc + 4 + NumLeafNodes * sizeof(InstrumentedNode)); 60316a497c6SRafael Auler DEBUG(reportNumber("NumEdges = ", NumEdges, 10)); 60416a497c6SRafael Auler Edges = reinterpret_cast<const EdgeDescription *>( 60516a497c6SRafael Auler FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode)); 60616a497c6SRafael Auler 60716a497c6SRafael Auler NumCalls = *reinterpret_cast<const uint32_t *>( 60816a497c6SRafael Auler FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode) + 60916a497c6SRafael Auler NumEdges * sizeof(EdgeDescription)); 61016a497c6SRafael Auler DEBUG(reportNumber("NumCalls = ", NumCalls, 10)); 61116a497c6SRafael Auler Calls = reinterpret_cast<const CallDescription *>( 61216a497c6SRafael Auler FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + 61316a497c6SRafael Auler NumEdges * sizeof(EdgeDescription)); 61416a497c6SRafael Auler NumEntryNodes = *reinterpret_cast<const uint32_t *>( 61516a497c6SRafael Auler FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + 61616a497c6SRafael Auler NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); 61716a497c6SRafael Auler DEBUG(reportNumber("NumEntryNodes = ", NumEntryNodes, 10)); 61816a497c6SRafael Auler EntryNodes = reinterpret_cast<const EntryNode *>( 61916a497c6SRafael Auler FuncDesc + 16 + NumLeafNodes * sizeof(InstrumentedNode) + 62016a497c6SRafael Auler NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); 62116a497c6SRafael Auler } 62216a497c6SRafael Auler 62316a497c6SRafael Auler /// Read and mmap descriptions written by BOLT from the executable's notes 62416a497c6SRafael Auler /// section 625a0dd5b05SAlexander Shaposhnikov #if defined(HAVE_ELF_H) and !defined(__APPLE__) 6262ffd6e2bSElvina Yakubova 6272ffd6e2bSElvina Yakubova void *__attribute__((noinline)) __get_pc() { 6282ffd6e2bSElvina Yakubova return __builtin_extract_return_addr(__builtin_return_address(0)); 6292ffd6e2bSElvina Yakubova } 6302ffd6e2bSElvina Yakubova 6312ffd6e2bSElvina Yakubova /// Get string with address and parse it to hex pair <StartAddress, EndAddress> 6322ffd6e2bSElvina Yakubova bool parseAddressRange(const char *Str, uint64_t &StartAddress, 6332ffd6e2bSElvina Yakubova uint64_t &EndAddress) { 6342ffd6e2bSElvina Yakubova if (!Str) 6352ffd6e2bSElvina Yakubova return false; 6362ffd6e2bSElvina Yakubova // Parsed string format: <hex1>-<hex2> 6372ffd6e2bSElvina Yakubova StartAddress = hexToLong(Str, '-'); 6382ffd6e2bSElvina Yakubova while (*Str && *Str != '-') 6392ffd6e2bSElvina Yakubova ++Str; 6402ffd6e2bSElvina Yakubova if (!*Str) 6412ffd6e2bSElvina Yakubova return false; 6422ffd6e2bSElvina Yakubova ++Str; // swallow '-' 6432ffd6e2bSElvina Yakubova EndAddress = hexToLong(Str); 6442ffd6e2bSElvina Yakubova return true; 6452ffd6e2bSElvina Yakubova } 6462ffd6e2bSElvina Yakubova 6472ffd6e2bSElvina Yakubova /// Get full path to the real binary by getting current virtual address 6482ffd6e2bSElvina Yakubova /// and searching for the appropriate link in address range in 6492ffd6e2bSElvina Yakubova /// /proc/self/map_files 6502ffd6e2bSElvina Yakubova static char *getBinaryPath() { 6512ffd6e2bSElvina Yakubova const uint32_t BufSize = 1024; 65246bc197dSMarius Wachtler const uint32_t NameMax = 4096; 6532ffd6e2bSElvina Yakubova const char DirPath[] = "/proc/self/map_files/"; 6542ffd6e2bSElvina Yakubova static char TargetPath[NameMax] = {}; 6552ffd6e2bSElvina Yakubova char Buf[BufSize]; 6562ffd6e2bSElvina Yakubova 657519cbbaaSVasily Leonenko if (__bolt_instr_binpath[0] != '\0') 658519cbbaaSVasily Leonenko return __bolt_instr_binpath; 659519cbbaaSVasily Leonenko 6602ffd6e2bSElvina Yakubova if (TargetPath[0] != '\0') 6612ffd6e2bSElvina Yakubova return TargetPath; 6622ffd6e2bSElvina Yakubova 6632ffd6e2bSElvina Yakubova unsigned long CurAddr = (unsigned long)__get_pc(); 6642ffd6e2bSElvina Yakubova uint64_t FDdir = __open(DirPath, 665821480d2SRafael Auler /*flags=*/0 /*O_RDONLY*/, 666821480d2SRafael Auler /*mode=*/0666); 6673b00a3a2SMarius Wachtler assert(static_cast<int64_t>(FDdir) >= 0, 6682ffd6e2bSElvina Yakubova "failed to open /proc/self/map_files"); 6692ffd6e2bSElvina Yakubova 6702ffd6e2bSElvina Yakubova while (long Nread = __getdents(FDdir, (struct dirent *)Buf, BufSize)) { 6712ffd6e2bSElvina Yakubova assert(static_cast<int64_t>(Nread) != -1, "failed to get folder entries"); 6722ffd6e2bSElvina Yakubova 6732ffd6e2bSElvina Yakubova struct dirent *d; 6742ffd6e2bSElvina Yakubova for (long Bpos = 0; Bpos < Nread; Bpos += d->d_reclen) { 6752ffd6e2bSElvina Yakubova d = (struct dirent *)(Buf + Bpos); 6762ffd6e2bSElvina Yakubova 6772ffd6e2bSElvina Yakubova uint64_t StartAddress, EndAddress; 6782ffd6e2bSElvina Yakubova if (!parseAddressRange(d->d_name, StartAddress, EndAddress)) 6792ffd6e2bSElvina Yakubova continue; 6802ffd6e2bSElvina Yakubova if (CurAddr < StartAddress || CurAddr > EndAddress) 6812ffd6e2bSElvina Yakubova continue; 6822ffd6e2bSElvina Yakubova char FindBuf[NameMax]; 6832ffd6e2bSElvina Yakubova char *C = strCopy(FindBuf, DirPath, NameMax); 6842ffd6e2bSElvina Yakubova C = strCopy(C, d->d_name, NameMax - (C - FindBuf)); 6852ffd6e2bSElvina Yakubova *C = '\0'; 6862ffd6e2bSElvina Yakubova uint32_t Ret = __readlink(FindBuf, TargetPath, sizeof(TargetPath)); 6872ffd6e2bSElvina Yakubova assert(Ret != -1 && Ret != BufSize, "readlink error"); 6882ffd6e2bSElvina Yakubova TargetPath[Ret] = '\0'; 6892ffd6e2bSElvina Yakubova return TargetPath; 6902ffd6e2bSElvina Yakubova } 6912ffd6e2bSElvina Yakubova } 6922ffd6e2bSElvina Yakubova return nullptr; 6932ffd6e2bSElvina Yakubova } 6942ffd6e2bSElvina Yakubova 6952ffd6e2bSElvina Yakubova ProfileWriterContext readDescriptions() { 6962ffd6e2bSElvina Yakubova ProfileWriterContext Result; 6972ffd6e2bSElvina Yakubova char *BinPath = getBinaryPath(); 6982ffd6e2bSElvina Yakubova assert(BinPath && BinPath[0] != '\0', "failed to find binary path"); 6992ffd6e2bSElvina Yakubova 7002ffd6e2bSElvina Yakubova uint64_t FD = __open(BinPath, 7012ffd6e2bSElvina Yakubova /*flags=*/0 /*O_RDONLY*/, 7022ffd6e2bSElvina Yakubova /*mode=*/0666); 7033b00a3a2SMarius Wachtler assert(static_cast<int64_t>(FD) >= 0, "failed to open binary path"); 7042ffd6e2bSElvina Yakubova 705821480d2SRafael Auler Result.FileDesc = FD; 706821480d2SRafael Auler 707821480d2SRafael Auler // mmap our binary to memory 708821480d2SRafael Auler uint64_t Size = __lseek(FD, 0, 2 /*SEEK_END*/); 709821480d2SRafael Auler uint8_t *BinContents = reinterpret_cast<uint8_t *>( 710*8b23a853SDenis Revunov __mmap(0, Size, PROT_READ, MAP_PRIVATE, FD, 0)); 711821480d2SRafael Auler Result.MMapPtr = BinContents; 712821480d2SRafael Auler Result.MMapSize = Size; 713821480d2SRafael Auler Elf64_Ehdr *Hdr = reinterpret_cast<Elf64_Ehdr *>(BinContents); 714821480d2SRafael Auler Elf64_Shdr *Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff); 715821480d2SRafael Auler Elf64_Shdr *StringTblHeader = reinterpret_cast<Elf64_Shdr *>( 716821480d2SRafael Auler BinContents + Hdr->e_shoff + Hdr->e_shstrndx * Hdr->e_shentsize); 717821480d2SRafael Auler 718821480d2SRafael Auler // Find .bolt.instr.tables with the data we need and set pointers to it 719821480d2SRafael Auler for (int I = 0; I < Hdr->e_shnum; ++I) { 720821480d2SRafael Auler char *SecName = reinterpret_cast<char *>( 721821480d2SRafael Auler BinContents + StringTblHeader->sh_offset + Shdr->sh_name); 722821480d2SRafael Auler if (compareStr(SecName, ".bolt.instr.tables", 64) != 0) { 723821480d2SRafael Auler Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff + 724821480d2SRafael Auler (I + 1) * Hdr->e_shentsize); 725821480d2SRafael Auler continue; 726821480d2SRafael Auler } 727821480d2SRafael Auler // Actual contents of the ELF note start after offset 20 decimal: 728821480d2SRafael Auler // Offset 0: Producer name size (4 bytes) 729821480d2SRafael Auler // Offset 4: Contents size (4 bytes) 730821480d2SRafael Auler // Offset 8: Note type (4 bytes) 731821480d2SRafael Auler // Offset 12: Producer name (BOLT\0) (5 bytes + align to 4-byte boundary) 732821480d2SRafael Auler // Offset 20: Contents 73316a497c6SRafael Auler uint32_t IndCallDescSize = 734cc4b2fb6SRafael Auler *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 20); 73516a497c6SRafael Auler uint32_t IndCallTargetDescSize = *reinterpret_cast<uint32_t *>( 73616a497c6SRafael Auler BinContents + Shdr->sh_offset + 24 + IndCallDescSize); 73716a497c6SRafael Auler uint32_t FuncDescSize = 73816a497c6SRafael Auler *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 28 + 73916a497c6SRafael Auler IndCallDescSize + IndCallTargetDescSize); 74016a497c6SRafael Auler Result.IndCallDescriptions = reinterpret_cast<IndCallDescription *>( 74116a497c6SRafael Auler BinContents + Shdr->sh_offset + 24); 74216a497c6SRafael Auler Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( 74316a497c6SRafael Auler BinContents + Shdr->sh_offset + 28 + IndCallDescSize); 74416a497c6SRafael Auler Result.FuncDescriptions = BinContents + Shdr->sh_offset + 32 + 74516a497c6SRafael Auler IndCallDescSize + IndCallTargetDescSize; 74616a497c6SRafael Auler Result.Strings = reinterpret_cast<char *>( 74716a497c6SRafael Auler BinContents + Shdr->sh_offset + 32 + IndCallDescSize + 74816a497c6SRafael Auler IndCallTargetDescSize + FuncDescSize); 749821480d2SRafael Auler return Result; 750821480d2SRafael Auler } 751821480d2SRafael Auler const char ErrMsg[] = 752821480d2SRafael Auler "BOLT instrumentation runtime error: could not find section " 753821480d2SRafael Auler ".bolt.instr.tables\n"; 754821480d2SRafael Auler reportError(ErrMsg, sizeof(ErrMsg)); 755821480d2SRafael Auler return Result; 756821480d2SRafael Auler } 757a0dd5b05SAlexander Shaposhnikov 758ba31344fSRafael Auler #else 759a0dd5b05SAlexander Shaposhnikov 76016a497c6SRafael Auler ProfileWriterContext readDescriptions() { 76116a497c6SRafael Auler ProfileWriterContext Result; 762a0dd5b05SAlexander Shaposhnikov uint8_t *Tables = _bolt_instr_tables_getter(); 763a0dd5b05SAlexander Shaposhnikov uint32_t IndCallDescSize = *reinterpret_cast<uint32_t *>(Tables); 764a0dd5b05SAlexander Shaposhnikov uint32_t IndCallTargetDescSize = 765a0dd5b05SAlexander Shaposhnikov *reinterpret_cast<uint32_t *>(Tables + 4 + IndCallDescSize); 766a0dd5b05SAlexander Shaposhnikov uint32_t FuncDescSize = *reinterpret_cast<uint32_t *>( 767a0dd5b05SAlexander Shaposhnikov Tables + 8 + IndCallDescSize + IndCallTargetDescSize); 768a0dd5b05SAlexander Shaposhnikov Result.IndCallDescriptions = 769a0dd5b05SAlexander Shaposhnikov reinterpret_cast<IndCallDescription *>(Tables + 4); 770a0dd5b05SAlexander Shaposhnikov Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( 771a0dd5b05SAlexander Shaposhnikov Tables + 8 + IndCallDescSize); 772a0dd5b05SAlexander Shaposhnikov Result.FuncDescriptions = 773a0dd5b05SAlexander Shaposhnikov Tables + 12 + IndCallDescSize + IndCallTargetDescSize; 774a0dd5b05SAlexander Shaposhnikov Result.Strings = reinterpret_cast<char *>( 775a0dd5b05SAlexander Shaposhnikov Tables + 12 + IndCallDescSize + IndCallTargetDescSize + FuncDescSize); 776ba31344fSRafael Auler return Result; 777ba31344fSRafael Auler } 778a0dd5b05SAlexander Shaposhnikov 779ba31344fSRafael Auler #endif 780821480d2SRafael Auler 781a0dd5b05SAlexander Shaposhnikov #if !defined(__APPLE__) 78216a497c6SRafael Auler /// Debug by printing overall metadata global numbers to check it is sane 78316a497c6SRafael Auler void printStats(const ProfileWriterContext &Ctx) { 784cc4b2fb6SRafael Auler char StatMsg[BufSize]; 785cc4b2fb6SRafael Auler char *StatPtr = StatMsg; 78616a497c6SRafael Auler StatPtr = 78716a497c6SRafael Auler strCopy(StatPtr, 78816a497c6SRafael Auler "\nBOLT INSTRUMENTATION RUNTIME STATISTICS\n\nIndCallDescSize: "); 789cc4b2fb6SRafael Auler StatPtr = intToStr(StatPtr, 79016a497c6SRafael Auler Ctx.FuncDescriptions - 79116a497c6SRafael Auler reinterpret_cast<uint8_t *>(Ctx.IndCallDescriptions), 792cc4b2fb6SRafael Auler 10); 793cc4b2fb6SRafael Auler StatPtr = strCopy(StatPtr, "\nFuncDescSize: "); 794cc4b2fb6SRafael Auler StatPtr = intToStr( 795cc4b2fb6SRafael Auler StatPtr, 79616a497c6SRafael Auler reinterpret_cast<uint8_t *>(Ctx.Strings) - Ctx.FuncDescriptions, 10); 79716a497c6SRafael Auler StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_ind_calls: "); 79816a497c6SRafael Auler StatPtr = intToStr(StatPtr, __bolt_instr_num_ind_calls, 10); 799cc4b2fb6SRafael Auler StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_funcs: "); 800cc4b2fb6SRafael Auler StatPtr = intToStr(StatPtr, __bolt_instr_num_funcs, 10); 801cc4b2fb6SRafael Auler StatPtr = strCopy(StatPtr, "\n"); 802cc4b2fb6SRafael Auler __write(2, StatMsg, StatPtr - StatMsg); 803cc4b2fb6SRafael Auler } 804a0dd5b05SAlexander Shaposhnikov #endif 805a0dd5b05SAlexander Shaposhnikov 806cc4b2fb6SRafael Auler 807cc4b2fb6SRafael Auler /// This is part of a simple CFG representation in memory, where we store 808cc4b2fb6SRafael Auler /// a dynamically sized array of input and output edges per node, and store 809cc4b2fb6SRafael Auler /// a dynamically sized array of nodes per graph. We also store the spanning 810cc4b2fb6SRafael Auler /// tree edges for that CFG in a separate array of nodes in 811cc4b2fb6SRafael Auler /// \p SpanningTreeNodes, while the regular nodes live in \p CFGNodes. 812cc4b2fb6SRafael Auler struct Edge { 813cc4b2fb6SRafael Auler uint32_t Node; // Index in nodes array regarding the destination of this edge 814cc4b2fb6SRafael Auler uint32_t ID; // Edge index in an array comprising all edges of the graph 815cc4b2fb6SRafael Auler }; 816cc4b2fb6SRafael Auler 817cc4b2fb6SRafael Auler /// A regular graph node or a spanning tree node 818cc4b2fb6SRafael Auler struct Node { 819cc4b2fb6SRafael Auler uint32_t NumInEdges{0}; // Input edge count used to size InEdge 820cc4b2fb6SRafael Auler uint32_t NumOutEdges{0}; // Output edge count used to size OutEdges 821cc4b2fb6SRafael Auler Edge *InEdges{nullptr}; // Created and managed by \p Graph 822cc4b2fb6SRafael Auler Edge *OutEdges{nullptr}; // ditto 823cc4b2fb6SRafael Auler }; 824cc4b2fb6SRafael Auler 825cc4b2fb6SRafael Auler /// Main class for CFG representation in memory. Manages object creation and 826cc4b2fb6SRafael Auler /// destruction, populates an array of CFG nodes as well as corresponding 827cc4b2fb6SRafael Auler /// spanning tree nodes. 828cc4b2fb6SRafael Auler struct Graph { 829cc4b2fb6SRafael Auler uint32_t NumNodes; 830cc4b2fb6SRafael Auler Node *CFGNodes; 831cc4b2fb6SRafael Auler Node *SpanningTreeNodes; 83216a497c6SRafael Auler uint64_t *EdgeFreqs; 83316a497c6SRafael Auler uint64_t *CallFreqs; 834cc4b2fb6SRafael Auler BumpPtrAllocator &Alloc; 83516a497c6SRafael Auler const FunctionDescription &D; 836cc4b2fb6SRafael Auler 83716a497c6SRafael Auler /// Reads a list of edges from function description \p D and builds 838cc4b2fb6SRafael Auler /// the graph from it. Allocates several internal dynamic structures that are 83916a497c6SRafael Auler /// later destroyed by ~Graph() and uses \p Alloc. D.LeafNodes contain all 840cc4b2fb6SRafael Auler /// spanning tree leaf nodes descriptions (their counters). They are the seed 841cc4b2fb6SRafael Auler /// used to compute the rest of the missing edge counts in a bottom-up 842cc4b2fb6SRafael Auler /// traversal of the spanning tree. 84316a497c6SRafael Auler Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, 84416a497c6SRafael Auler const uint64_t *Counters, ProfileWriterContext &Ctx); 845cc4b2fb6SRafael Auler ~Graph(); 846cc4b2fb6SRafael Auler void dump() const; 84716a497c6SRafael Auler 84816a497c6SRafael Auler private: 84916a497c6SRafael Auler void computeEdgeFrequencies(const uint64_t *Counters, 85016a497c6SRafael Auler ProfileWriterContext &Ctx); 85116a497c6SRafael Auler void dumpEdgeFreqs() const; 852cc4b2fb6SRafael Auler }; 853cc4b2fb6SRafael Auler 85416a497c6SRafael Auler Graph::Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, 85516a497c6SRafael Auler const uint64_t *Counters, ProfileWriterContext &Ctx) 85616a497c6SRafael Auler : Alloc(Alloc), D(D) { 857cc4b2fb6SRafael Auler DEBUG(reportNumber("G = 0x", (uint64_t)this, 16)); 858cc4b2fb6SRafael Auler // First pass to determine number of nodes 85916a497c6SRafael Auler int32_t MaxNodes = -1; 86016a497c6SRafael Auler CallFreqs = nullptr; 86116a497c6SRafael Auler EdgeFreqs = nullptr; 86216a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 86316a497c6SRafael Auler if (static_cast<int32_t>(D.Edges[I].FromNode) > MaxNodes) 86416a497c6SRafael Auler MaxNodes = D.Edges[I].FromNode; 86516a497c6SRafael Auler if (static_cast<int32_t>(D.Edges[I].ToNode) > MaxNodes) 86616a497c6SRafael Auler MaxNodes = D.Edges[I].ToNode; 867cc4b2fb6SRafael Auler } 868a0dd5b05SAlexander Shaposhnikov 869883bf0e8SAmir Ayupov for (int I = 0; I < D.NumLeafNodes; ++I) 87016a497c6SRafael Auler if (static_cast<int32_t>(D.LeafNodes[I].Node) > MaxNodes) 87116a497c6SRafael Auler MaxNodes = D.LeafNodes[I].Node; 872883bf0e8SAmir Ayupov 873883bf0e8SAmir Ayupov for (int I = 0; I < D.NumCalls; ++I) 87416a497c6SRafael Auler if (static_cast<int32_t>(D.Calls[I].FromNode) > MaxNodes) 87516a497c6SRafael Auler MaxNodes = D.Calls[I].FromNode; 876883bf0e8SAmir Ayupov 87716a497c6SRafael Auler // No nodes? Nothing to do 87816a497c6SRafael Auler if (MaxNodes < 0) { 87916a497c6SRafael Auler DEBUG(report("No nodes!\n")); 880cc4b2fb6SRafael Auler CFGNodes = nullptr; 881cc4b2fb6SRafael Auler SpanningTreeNodes = nullptr; 882cc4b2fb6SRafael Auler NumNodes = 0; 883cc4b2fb6SRafael Auler return; 884cc4b2fb6SRafael Auler } 885cc4b2fb6SRafael Auler ++MaxNodes; 886cc4b2fb6SRafael Auler DEBUG(reportNumber("NumNodes = ", MaxNodes, 10)); 88716a497c6SRafael Auler NumNodes = static_cast<uint32_t>(MaxNodes); 888cc4b2fb6SRafael Auler 889cc4b2fb6SRafael Auler // Initial allocations 890cc4b2fb6SRafael Auler CFGNodes = new (Alloc) Node[MaxNodes]; 891a0dd5b05SAlexander Shaposhnikov 892cc4b2fb6SRafael Auler DEBUG(reportNumber("G->CFGNodes = 0x", (uint64_t)CFGNodes, 16)); 893cc4b2fb6SRafael Auler SpanningTreeNodes = new (Alloc) Node[MaxNodes]; 894cc4b2fb6SRafael Auler DEBUG(reportNumber("G->SpanningTreeNodes = 0x", 895cc4b2fb6SRafael Auler (uint64_t)SpanningTreeNodes, 16)); 896cc4b2fb6SRafael Auler 897cc4b2fb6SRafael Auler // Figure out how much to allocate to each vector (in/out edge sets) 89816a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 89916a497c6SRafael Auler CFGNodes[D.Edges[I].FromNode].NumOutEdges++; 90016a497c6SRafael Auler CFGNodes[D.Edges[I].ToNode].NumInEdges++; 90116a497c6SRafael Auler if (D.Edges[I].Counter != 0xffffffff) 902cc4b2fb6SRafael Auler continue; 903cc4b2fb6SRafael Auler 90416a497c6SRafael Auler SpanningTreeNodes[D.Edges[I].FromNode].NumOutEdges++; 90516a497c6SRafael Auler SpanningTreeNodes[D.Edges[I].ToNode].NumInEdges++; 906cc4b2fb6SRafael Auler } 907cc4b2fb6SRafael Auler 908cc4b2fb6SRafael Auler // Allocate in/out edge sets 909cc4b2fb6SRafael Auler for (int I = 0; I < MaxNodes; ++I) { 910cc4b2fb6SRafael Auler if (CFGNodes[I].NumInEdges > 0) 911cc4b2fb6SRafael Auler CFGNodes[I].InEdges = new (Alloc) Edge[CFGNodes[I].NumInEdges]; 912cc4b2fb6SRafael Auler if (CFGNodes[I].NumOutEdges > 0) 913cc4b2fb6SRafael Auler CFGNodes[I].OutEdges = new (Alloc) Edge[CFGNodes[I].NumOutEdges]; 914cc4b2fb6SRafael Auler if (SpanningTreeNodes[I].NumInEdges > 0) 915cc4b2fb6SRafael Auler SpanningTreeNodes[I].InEdges = 916cc4b2fb6SRafael Auler new (Alloc) Edge[SpanningTreeNodes[I].NumInEdges]; 917cc4b2fb6SRafael Auler if (SpanningTreeNodes[I].NumOutEdges > 0) 918cc4b2fb6SRafael Auler SpanningTreeNodes[I].OutEdges = 919cc4b2fb6SRafael Auler new (Alloc) Edge[SpanningTreeNodes[I].NumOutEdges]; 920cc4b2fb6SRafael Auler CFGNodes[I].NumInEdges = 0; 921cc4b2fb6SRafael Auler CFGNodes[I].NumOutEdges = 0; 922cc4b2fb6SRafael Auler SpanningTreeNodes[I].NumInEdges = 0; 923cc4b2fb6SRafael Auler SpanningTreeNodes[I].NumOutEdges = 0; 924cc4b2fb6SRafael Auler } 925cc4b2fb6SRafael Auler 926cc4b2fb6SRafael Auler // Fill in/out edge sets 92716a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 92816a497c6SRafael Auler const uint32_t Src = D.Edges[I].FromNode; 92916a497c6SRafael Auler const uint32_t Dst = D.Edges[I].ToNode; 930cc4b2fb6SRafael Auler Edge *E = &CFGNodes[Src].OutEdges[CFGNodes[Src].NumOutEdges++]; 931cc4b2fb6SRafael Auler E->Node = Dst; 932cc4b2fb6SRafael Auler E->ID = I; 933cc4b2fb6SRafael Auler 934cc4b2fb6SRafael Auler E = &CFGNodes[Dst].InEdges[CFGNodes[Dst].NumInEdges++]; 935cc4b2fb6SRafael Auler E->Node = Src; 936cc4b2fb6SRafael Auler E->ID = I; 937cc4b2fb6SRafael Auler 93816a497c6SRafael Auler if (D.Edges[I].Counter != 0xffffffff) 939cc4b2fb6SRafael Auler continue; 940cc4b2fb6SRafael Auler 941cc4b2fb6SRafael Auler E = &SpanningTreeNodes[Src] 942cc4b2fb6SRafael Auler .OutEdges[SpanningTreeNodes[Src].NumOutEdges++]; 943cc4b2fb6SRafael Auler E->Node = Dst; 944cc4b2fb6SRafael Auler E->ID = I; 945cc4b2fb6SRafael Auler 946cc4b2fb6SRafael Auler E = &SpanningTreeNodes[Dst] 947cc4b2fb6SRafael Auler .InEdges[SpanningTreeNodes[Dst].NumInEdges++]; 948cc4b2fb6SRafael Auler E->Node = Src; 949cc4b2fb6SRafael Auler E->ID = I; 950cc4b2fb6SRafael Auler } 95116a497c6SRafael Auler 95216a497c6SRafael Auler computeEdgeFrequencies(Counters, Ctx); 953cc4b2fb6SRafael Auler } 954cc4b2fb6SRafael Auler 955cc4b2fb6SRafael Auler Graph::~Graph() { 95616a497c6SRafael Auler if (CallFreqs) 95716a497c6SRafael Auler Alloc.deallocate(CallFreqs); 95816a497c6SRafael Auler if (EdgeFreqs) 95916a497c6SRafael Auler Alloc.deallocate(EdgeFreqs); 960cc4b2fb6SRafael Auler for (int I = NumNodes - 1; I >= 0; --I) { 961cc4b2fb6SRafael Auler if (SpanningTreeNodes[I].OutEdges) 962cc4b2fb6SRafael Auler Alloc.deallocate(SpanningTreeNodes[I].OutEdges); 963cc4b2fb6SRafael Auler if (SpanningTreeNodes[I].InEdges) 964cc4b2fb6SRafael Auler Alloc.deallocate(SpanningTreeNodes[I].InEdges); 965cc4b2fb6SRafael Auler if (CFGNodes[I].OutEdges) 966cc4b2fb6SRafael Auler Alloc.deallocate(CFGNodes[I].OutEdges); 967cc4b2fb6SRafael Auler if (CFGNodes[I].InEdges) 968cc4b2fb6SRafael Auler Alloc.deallocate(CFGNodes[I].InEdges); 969cc4b2fb6SRafael Auler } 970cc4b2fb6SRafael Auler if (SpanningTreeNodes) 971cc4b2fb6SRafael Auler Alloc.deallocate(SpanningTreeNodes); 972cc4b2fb6SRafael Auler if (CFGNodes) 973cc4b2fb6SRafael Auler Alloc.deallocate(CFGNodes); 974cc4b2fb6SRafael Auler } 975cc4b2fb6SRafael Auler 976cc4b2fb6SRafael Auler void Graph::dump() const { 977cc4b2fb6SRafael Auler reportNumber("Dumping graph with number of nodes: ", NumNodes, 10); 978cc4b2fb6SRafael Auler report(" Full graph:\n"); 979cc4b2fb6SRafael Auler for (int I = 0; I < NumNodes; ++I) { 980cc4b2fb6SRafael Auler const Node *N = &CFGNodes[I]; 981cc4b2fb6SRafael Auler reportNumber(" Node #", I, 10); 982cc4b2fb6SRafael Auler reportNumber(" InEdges total ", N->NumInEdges, 10); 983cc4b2fb6SRafael Auler for (int J = 0; J < N->NumInEdges; ++J) 984cc4b2fb6SRafael Auler reportNumber(" ", N->InEdges[J].Node, 10); 985cc4b2fb6SRafael Auler reportNumber(" OutEdges total ", N->NumOutEdges, 10); 986cc4b2fb6SRafael Auler for (int J = 0; J < N->NumOutEdges; ++J) 987cc4b2fb6SRafael Auler reportNumber(" ", N->OutEdges[J].Node, 10); 988cc4b2fb6SRafael Auler report("\n"); 989cc4b2fb6SRafael Auler } 990cc4b2fb6SRafael Auler report(" Spanning tree:\n"); 991cc4b2fb6SRafael Auler for (int I = 0; I < NumNodes; ++I) { 992cc4b2fb6SRafael Auler const Node *N = &SpanningTreeNodes[I]; 993cc4b2fb6SRafael Auler reportNumber(" Node #", I, 10); 994cc4b2fb6SRafael Auler reportNumber(" InEdges total ", N->NumInEdges, 10); 995cc4b2fb6SRafael Auler for (int J = 0; J < N->NumInEdges; ++J) 996cc4b2fb6SRafael Auler reportNumber(" ", N->InEdges[J].Node, 10); 997cc4b2fb6SRafael Auler reportNumber(" OutEdges total ", N->NumOutEdges, 10); 998cc4b2fb6SRafael Auler for (int J = 0; J < N->NumOutEdges; ++J) 999cc4b2fb6SRafael Auler reportNumber(" ", N->OutEdges[J].Node, 10); 1000cc4b2fb6SRafael Auler report("\n"); 1001cc4b2fb6SRafael Auler } 1002cc4b2fb6SRafael Auler } 1003cc4b2fb6SRafael Auler 100416a497c6SRafael Auler void Graph::dumpEdgeFreqs() const { 100516a497c6SRafael Auler reportNumber( 100616a497c6SRafael Auler "Dumping edge frequencies for graph with num edges: ", D.NumEdges, 10); 100716a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 100816a497c6SRafael Auler reportNumber("* Src: ", D.Edges[I].FromNode, 10); 100916a497c6SRafael Auler reportNumber(" Dst: ", D.Edges[I].ToNode, 10); 1010cc4b2fb6SRafael Auler reportNumber(" Cnt: ", EdgeFreqs[I], 10); 1011cc4b2fb6SRafael Auler } 1012cc4b2fb6SRafael Auler } 1013cc4b2fb6SRafael Auler 101416a497c6SRafael Auler /// Auxiliary map structure for fast lookups of which calls map to each node of 101516a497c6SRafael Auler /// the function CFG 101616a497c6SRafael Auler struct NodeToCallsMap { 101716a497c6SRafael Auler struct MapEntry { 101816a497c6SRafael Auler uint32_t NumCalls; 101916a497c6SRafael Auler uint32_t *Calls; 102016a497c6SRafael Auler }; 102116a497c6SRafael Auler MapEntry *Entries; 102216a497c6SRafael Auler BumpPtrAllocator &Alloc; 102316a497c6SRafael Auler const uint32_t NumNodes; 1024cc4b2fb6SRafael Auler 102516a497c6SRafael Auler NodeToCallsMap(BumpPtrAllocator &Alloc, const FunctionDescription &D, 102616a497c6SRafael Auler uint32_t NumNodes) 102716a497c6SRafael Auler : Alloc(Alloc), NumNodes(NumNodes) { 102816a497c6SRafael Auler Entries = new (Alloc, 0) MapEntry[NumNodes]; 102916a497c6SRafael Auler for (int I = 0; I < D.NumCalls; ++I) { 103016a497c6SRafael Auler DEBUG(reportNumber("Registering call in node ", D.Calls[I].FromNode, 10)); 103116a497c6SRafael Auler ++Entries[D.Calls[I].FromNode].NumCalls; 103216a497c6SRafael Auler } 103316a497c6SRafael Auler for (int I = 0; I < NumNodes; ++I) { 103416a497c6SRafael Auler Entries[I].Calls = Entries[I].NumCalls ? new (Alloc) 103516a497c6SRafael Auler uint32_t[Entries[I].NumCalls] 103616a497c6SRafael Auler : nullptr; 103716a497c6SRafael Auler Entries[I].NumCalls = 0; 103816a497c6SRafael Auler } 103916a497c6SRafael Auler for (int I = 0; I < D.NumCalls; ++I) { 1040c7306cc2SAmir Ayupov MapEntry &Entry = Entries[D.Calls[I].FromNode]; 104116a497c6SRafael Auler Entry.Calls[Entry.NumCalls++] = I; 104216a497c6SRafael Auler } 104316a497c6SRafael Auler } 104416a497c6SRafael Auler 104516a497c6SRafael Auler /// Set the frequency of all calls in node \p NodeID to Freq. However, if 104616a497c6SRafael Auler /// the calls have their own counters and do not depend on the basic block 104716a497c6SRafael Auler /// counter, this means they have landing pads and throw exceptions. In this 104816a497c6SRafael Auler /// case, set their frequency with their counters and return the maximum 104916a497c6SRafael Auler /// value observed in such counters. This will be used as the new frequency 105016a497c6SRafael Auler /// at basic block entry. This is used to fix the CFG edge frequencies in the 105116a497c6SRafael Auler /// presence of exceptions. 105216a497c6SRafael Auler uint64_t visitAllCallsIn(uint32_t NodeID, uint64_t Freq, uint64_t *CallFreqs, 105316a497c6SRafael Auler const FunctionDescription &D, 105416a497c6SRafael Auler const uint64_t *Counters, 105516a497c6SRafael Auler ProfileWriterContext &Ctx) const { 1056c7306cc2SAmir Ayupov const MapEntry &Entry = Entries[NodeID]; 105716a497c6SRafael Auler uint64_t MaxValue = 0ull; 105816a497c6SRafael Auler for (int I = 0, E = Entry.NumCalls; I != E; ++I) { 1059c7306cc2SAmir Ayupov const uint32_t CallID = Entry.Calls[I]; 106016a497c6SRafael Auler DEBUG(reportNumber(" Setting freq for call ID: ", CallID, 10)); 1061c7306cc2SAmir Ayupov const CallDescription &CallDesc = D.Calls[CallID]; 106216a497c6SRafael Auler if (CallDesc.Counter == 0xffffffff) { 106316a497c6SRafael Auler CallFreqs[CallID] = Freq; 106416a497c6SRafael Auler DEBUG(reportNumber(" with : ", Freq, 10)); 106516a497c6SRafael Auler } else { 1066c7306cc2SAmir Ayupov const uint64_t CounterVal = Counters[CallDesc.Counter]; 106716a497c6SRafael Auler CallFreqs[CallID] = CounterVal; 106816a497c6SRafael Auler MaxValue = CounterVal > MaxValue ? CounterVal : MaxValue; 106916a497c6SRafael Auler DEBUG(reportNumber(" with (private counter) : ", CounterVal, 10)); 107016a497c6SRafael Auler } 107116a497c6SRafael Auler DEBUG(reportNumber(" Address: 0x", CallDesc.TargetAddress, 16)); 107216a497c6SRafael Auler if (CallFreqs[CallID] > 0) 107316a497c6SRafael Auler Ctx.CallFlowTable->get(CallDesc.TargetAddress).Calls += 107416a497c6SRafael Auler CallFreqs[CallID]; 107516a497c6SRafael Auler } 107616a497c6SRafael Auler return MaxValue; 107716a497c6SRafael Auler } 107816a497c6SRafael Auler 107916a497c6SRafael Auler ~NodeToCallsMap() { 1080883bf0e8SAmir Ayupov for (int I = NumNodes - 1; I >= 0; --I) 108116a497c6SRafael Auler if (Entries[I].Calls) 108216a497c6SRafael Auler Alloc.deallocate(Entries[I].Calls); 108316a497c6SRafael Auler Alloc.deallocate(Entries); 108416a497c6SRafael Auler } 108516a497c6SRafael Auler }; 108616a497c6SRafael Auler 108716a497c6SRafael Auler /// Fill an array with the frequency of each edge in the function represented 108816a497c6SRafael Auler /// by G, as well as another array for each call. 108916a497c6SRafael Auler void Graph::computeEdgeFrequencies(const uint64_t *Counters, 109016a497c6SRafael Auler ProfileWriterContext &Ctx) { 109116a497c6SRafael Auler if (NumNodes == 0) 109216a497c6SRafael Auler return; 109316a497c6SRafael Auler 109416a497c6SRafael Auler EdgeFreqs = D.NumEdges ? new (Alloc, 0) uint64_t [D.NumEdges] : nullptr; 109516a497c6SRafael Auler CallFreqs = D.NumCalls ? new (Alloc, 0) uint64_t [D.NumCalls] : nullptr; 109616a497c6SRafael Auler 109716a497c6SRafael Auler // Setup a lookup for calls present in each node (BB) 109816a497c6SRafael Auler NodeToCallsMap *CallMap = new (Alloc) NodeToCallsMap(Alloc, D, NumNodes); 1099cc4b2fb6SRafael Auler 1100cc4b2fb6SRafael Auler // Perform a bottom-up, BFS traversal of the spanning tree in G. Edges in the 1101cc4b2fb6SRafael Auler // spanning tree don't have explicit counters. We must infer their value using 1102cc4b2fb6SRafael Auler // a linear combination of other counters (sum of counters of the outgoing 1103cc4b2fb6SRafael Auler // edges minus sum of counters of the incoming edges). 110416a497c6SRafael Auler uint32_t *Stack = new (Alloc) uint32_t [NumNodes]; 1105cc4b2fb6SRafael Auler uint32_t StackTop = 0; 1106cc4b2fb6SRafael Auler enum Status : uint8_t { S_NEW = 0, S_VISITING, S_VISITED }; 110716a497c6SRafael Auler Status *Visited = new (Alloc, 0) Status[NumNodes]; 110816a497c6SRafael Auler uint64_t *LeafFrequency = new (Alloc, 0) uint64_t[NumNodes]; 110916a497c6SRafael Auler uint64_t *EntryAddress = new (Alloc, 0) uint64_t[NumNodes]; 1110cc4b2fb6SRafael Auler 1111cc4b2fb6SRafael Auler // Setup a fast lookup for frequency of leaf nodes, which have special 1112cc4b2fb6SRafael Auler // basic block frequency instrumentation (they are not edge profiled). 111316a497c6SRafael Auler for (int I = 0; I < D.NumLeafNodes; ++I) { 111416a497c6SRafael Auler LeafFrequency[D.LeafNodes[I].Node] = Counters[D.LeafNodes[I].Counter]; 1115cc4b2fb6SRafael Auler DEBUG({ 111616a497c6SRafael Auler if (Counters[D.LeafNodes[I].Counter] > 0) { 111716a497c6SRafael Auler reportNumber("Leaf Node# ", D.LeafNodes[I].Node, 10); 111816a497c6SRafael Auler reportNumber(" Counter: ", Counters[D.LeafNodes[I].Counter], 10); 1119cc4b2fb6SRafael Auler } 1120cc4b2fb6SRafael Auler }); 112116a497c6SRafael Auler } 112216a497c6SRafael Auler for (int I = 0; I < D.NumEntryNodes; ++I) { 112316a497c6SRafael Auler EntryAddress[D.EntryNodes[I].Node] = D.EntryNodes[I].Address; 112416a497c6SRafael Auler DEBUG({ 112516a497c6SRafael Auler reportNumber("Entry Node# ", D.EntryNodes[I].Node, 10); 112616a497c6SRafael Auler reportNumber(" Address: ", D.EntryNodes[I].Address, 16); 112716a497c6SRafael Auler }); 1128cc4b2fb6SRafael Auler } 1129cc4b2fb6SRafael Auler // Add all root nodes to the stack 1130883bf0e8SAmir Ayupov for (int I = 0; I < NumNodes; ++I) 113116a497c6SRafael Auler if (SpanningTreeNodes[I].NumInEdges == 0) 1132cc4b2fb6SRafael Auler Stack[StackTop++] = I; 1133883bf0e8SAmir Ayupov 1134cc4b2fb6SRafael Auler // Empty stack? 1135cc4b2fb6SRafael Auler if (StackTop == 0) { 113616a497c6SRafael Auler DEBUG(report("Empty stack!\n")); 113716a497c6SRafael Auler Alloc.deallocate(EntryAddress); 1138cc4b2fb6SRafael Auler Alloc.deallocate(LeafFrequency); 1139cc4b2fb6SRafael Auler Alloc.deallocate(Visited); 1140cc4b2fb6SRafael Auler Alloc.deallocate(Stack); 114116a497c6SRafael Auler CallMap->~NodeToCallsMap(); 114216a497c6SRafael Auler Alloc.deallocate(CallMap); 114316a497c6SRafael Auler if (CallFreqs) 114416a497c6SRafael Auler Alloc.deallocate(CallFreqs); 114516a497c6SRafael Auler if (EdgeFreqs) 114616a497c6SRafael Auler Alloc.deallocate(EdgeFreqs); 114716a497c6SRafael Auler EdgeFreqs = nullptr; 114816a497c6SRafael Auler CallFreqs = nullptr; 114916a497c6SRafael Auler return; 1150cc4b2fb6SRafael Auler } 1151cc4b2fb6SRafael Auler // Add all known edge counts, will infer the rest 115216a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 115316a497c6SRafael Auler const uint32_t C = D.Edges[I].Counter; 1154cc4b2fb6SRafael Auler if (C == 0xffffffff) // inferred counter - we will compute its value 1155cc4b2fb6SRafael Auler continue; 115616a497c6SRafael Auler EdgeFreqs[I] = Counters[C]; 1157cc4b2fb6SRafael Auler } 1158cc4b2fb6SRafael Auler 1159cc4b2fb6SRafael Auler while (StackTop > 0) { 1160cc4b2fb6SRafael Auler const uint32_t Cur = Stack[--StackTop]; 1161cc4b2fb6SRafael Auler DEBUG({ 1162cc4b2fb6SRafael Auler if (Visited[Cur] == S_VISITING) 1163cc4b2fb6SRafael Auler report("(visiting) "); 1164cc4b2fb6SRafael Auler else 1165cc4b2fb6SRafael Auler report("(new) "); 1166cc4b2fb6SRafael Auler reportNumber("Cur: ", Cur, 10); 1167cc4b2fb6SRafael Auler }); 1168cc4b2fb6SRafael Auler 1169cc4b2fb6SRafael Auler // This shouldn't happen in a tree 1170cc4b2fb6SRafael Auler assert(Visited[Cur] != S_VISITED, "should not have visited nodes in stack"); 1171cc4b2fb6SRafael Auler if (Visited[Cur] == S_NEW) { 1172cc4b2fb6SRafael Auler Visited[Cur] = S_VISITING; 1173cc4b2fb6SRafael Auler Stack[StackTop++] = Cur; 117416a497c6SRafael Auler assert(StackTop <= NumNodes, "stack grew too large"); 117516a497c6SRafael Auler for (int I = 0, E = SpanningTreeNodes[Cur].NumOutEdges; I < E; ++I) { 117616a497c6SRafael Auler const uint32_t Succ = SpanningTreeNodes[Cur].OutEdges[I].Node; 1177cc4b2fb6SRafael Auler Stack[StackTop++] = Succ; 117816a497c6SRafael Auler assert(StackTop <= NumNodes, "stack grew too large"); 1179cc4b2fb6SRafael Auler } 1180cc4b2fb6SRafael Auler continue; 1181cc4b2fb6SRafael Auler } 1182cc4b2fb6SRafael Auler Visited[Cur] = S_VISITED; 1183cc4b2fb6SRafael Auler 1184cc4b2fb6SRafael Auler // Establish our node frequency based on outgoing edges, which should all be 1185cc4b2fb6SRafael Auler // resolved by now. 1186cc4b2fb6SRafael Auler int64_t CurNodeFreq = LeafFrequency[Cur]; 1187cc4b2fb6SRafael Auler // Not a leaf? 1188cc4b2fb6SRafael Auler if (!CurNodeFreq) { 118916a497c6SRafael Auler for (int I = 0, E = CFGNodes[Cur].NumOutEdges; I != E; ++I) { 119016a497c6SRafael Auler const uint32_t SuccEdge = CFGNodes[Cur].OutEdges[I].ID; 119116a497c6SRafael Auler CurNodeFreq += EdgeFreqs[SuccEdge]; 1192cc4b2fb6SRafael Auler } 1193cc4b2fb6SRafael Auler } 119416a497c6SRafael Auler if (CurNodeFreq < 0) 119516a497c6SRafael Auler CurNodeFreq = 0; 119616a497c6SRafael Auler 119716a497c6SRafael Auler const uint64_t CallFreq = CallMap->visitAllCallsIn( 119816a497c6SRafael Auler Cur, CurNodeFreq > 0 ? CurNodeFreq : 0, CallFreqs, D, Counters, Ctx); 119916a497c6SRafael Auler 120016a497c6SRafael Auler // Exception handling affected our output flow? Fix with calls info 120116a497c6SRafael Auler DEBUG({ 120216a497c6SRafael Auler if (CallFreq > CurNodeFreq) 120316a497c6SRafael Auler report("Bumping node frequency with call info\n"); 120416a497c6SRafael Auler }); 120516a497c6SRafael Auler CurNodeFreq = CallFreq > CurNodeFreq ? CallFreq : CurNodeFreq; 120616a497c6SRafael Auler 120716a497c6SRafael Auler if (CurNodeFreq > 0) { 120816a497c6SRafael Auler if (uint64_t Addr = EntryAddress[Cur]) { 120916a497c6SRafael Auler DEBUG( 121016a497c6SRafael Auler reportNumber(" Setting flow at entry point address 0x", Addr, 16)); 121116a497c6SRafael Auler DEBUG(reportNumber(" with: ", CurNodeFreq, 10)); 121216a497c6SRafael Auler Ctx.CallFlowTable->get(Addr).Val = CurNodeFreq; 121316a497c6SRafael Auler } 121416a497c6SRafael Auler } 121516a497c6SRafael Auler 121616a497c6SRafael Auler // No parent? Reached a tree root, limit to call frequency updating. 1217883bf0e8SAmir Ayupov if (SpanningTreeNodes[Cur].NumInEdges == 0) 121816a497c6SRafael Auler continue; 121916a497c6SRafael Auler 122016a497c6SRafael Auler assert(SpanningTreeNodes[Cur].NumInEdges == 1, "must have 1 parent"); 122116a497c6SRafael Auler const uint32_t Parent = SpanningTreeNodes[Cur].InEdges[0].Node; 122216a497c6SRafael Auler const uint32_t ParentEdge = SpanningTreeNodes[Cur].InEdges[0].ID; 122316a497c6SRafael Auler 1224cc4b2fb6SRafael Auler // Calculate parent edge freq. 122516a497c6SRafael Auler int64_t ParentEdgeFreq = CurNodeFreq; 122616a497c6SRafael Auler for (int I = 0, E = CFGNodes[Cur].NumInEdges; I != E; ++I) { 122716a497c6SRafael Auler const uint32_t PredEdge = CFGNodes[Cur].InEdges[I].ID; 122816a497c6SRafael Auler ParentEdgeFreq -= EdgeFreqs[PredEdge]; 1229cc4b2fb6SRafael Auler } 123016a497c6SRafael Auler 1231cc4b2fb6SRafael Auler // Sometimes the conservative CFG that BOLT builds will lead to incorrect 1232cc4b2fb6SRafael Auler // flow computation. For example, in a BB that transitively calls the exit 1233cc4b2fb6SRafael Auler // syscall, BOLT will add a fall-through successor even though it should not 1234cc4b2fb6SRafael Auler // have any successors. So this block execution will likely be wrong. We 1235cc4b2fb6SRafael Auler // tolerate this imperfection since this case should be quite infrequent. 1236cc4b2fb6SRafael Auler if (ParentEdgeFreq < 0) { 123716a497c6SRafael Auler DEBUG(dumpEdgeFreqs()); 1238cc4b2fb6SRafael Auler DEBUG(report("WARNING: incorrect flow")); 1239cc4b2fb6SRafael Auler ParentEdgeFreq = 0; 1240cc4b2fb6SRafael Auler } 1241cc4b2fb6SRafael Auler DEBUG(reportNumber(" Setting freq for ParentEdge: ", ParentEdge, 10)); 1242cc4b2fb6SRafael Auler DEBUG(reportNumber(" with ParentEdgeFreq: ", ParentEdgeFreq, 10)); 124316a497c6SRafael Auler EdgeFreqs[ParentEdge] = ParentEdgeFreq; 1244cc4b2fb6SRafael Auler } 1245cc4b2fb6SRafael Auler 124616a497c6SRafael Auler Alloc.deallocate(EntryAddress); 1247cc4b2fb6SRafael Auler Alloc.deallocate(LeafFrequency); 1248cc4b2fb6SRafael Auler Alloc.deallocate(Visited); 1249cc4b2fb6SRafael Auler Alloc.deallocate(Stack); 125016a497c6SRafael Auler CallMap->~NodeToCallsMap(); 125116a497c6SRafael Auler Alloc.deallocate(CallMap); 125216a497c6SRafael Auler DEBUG(dumpEdgeFreqs()); 1253cc4b2fb6SRafael Auler } 1254cc4b2fb6SRafael Auler 125516a497c6SRafael Auler /// Write to \p FD all of the edge profiles for function \p FuncDesc. Uses 125616a497c6SRafael Auler /// \p Alloc to allocate helper dynamic structures used to compute profile for 125716a497c6SRafael Auler /// edges that we do not explictly instrument. 125816a497c6SRafael Auler const uint8_t *writeFunctionProfile(int FD, ProfileWriterContext &Ctx, 125916a497c6SRafael Auler const uint8_t *FuncDesc, 126016a497c6SRafael Auler BumpPtrAllocator &Alloc) { 126116a497c6SRafael Auler const FunctionDescription F(FuncDesc); 126216a497c6SRafael Auler const uint8_t *next = FuncDesc + F.getSize(); 1263cc4b2fb6SRafael Auler 1264a0dd5b05SAlexander Shaposhnikov #if !defined(__APPLE__) 1265a0dd5b05SAlexander Shaposhnikov uint64_t *bolt_instr_locations = __bolt_instr_locations; 1266a0dd5b05SAlexander Shaposhnikov #else 1267a0dd5b05SAlexander Shaposhnikov uint64_t *bolt_instr_locations = _bolt_instr_locations_getter(); 1268a0dd5b05SAlexander Shaposhnikov #endif 1269a0dd5b05SAlexander Shaposhnikov 1270cc4b2fb6SRafael Auler // Skip funcs we know are cold 1271cc4b2fb6SRafael Auler #ifndef ENABLE_DEBUG 127216a497c6SRafael Auler uint64_t CountersFreq = 0; 1273883bf0e8SAmir Ayupov for (int I = 0; I < F.NumLeafNodes; ++I) 1274a0dd5b05SAlexander Shaposhnikov CountersFreq += bolt_instr_locations[F.LeafNodes[I].Counter]; 1275883bf0e8SAmir Ayupov 127616a497c6SRafael Auler if (CountersFreq == 0) { 127716a497c6SRafael Auler for (int I = 0; I < F.NumEdges; ++I) { 127816a497c6SRafael Auler const uint32_t C = F.Edges[I].Counter; 127916a497c6SRafael Auler if (C == 0xffffffff) 128016a497c6SRafael Auler continue; 1281a0dd5b05SAlexander Shaposhnikov CountersFreq += bolt_instr_locations[C]; 128216a497c6SRafael Auler } 128316a497c6SRafael Auler if (CountersFreq == 0) { 128416a497c6SRafael Auler for (int I = 0; I < F.NumCalls; ++I) { 128516a497c6SRafael Auler const uint32_t C = F.Calls[I].Counter; 128616a497c6SRafael Auler if (C == 0xffffffff) 128716a497c6SRafael Auler continue; 1288a0dd5b05SAlexander Shaposhnikov CountersFreq += bolt_instr_locations[C]; 128916a497c6SRafael Auler } 129016a497c6SRafael Auler if (CountersFreq == 0) 1291cc4b2fb6SRafael Auler return next; 129216a497c6SRafael Auler } 129316a497c6SRafael Auler } 1294cc4b2fb6SRafael Auler #endif 1295cc4b2fb6SRafael Auler 1296a0dd5b05SAlexander Shaposhnikov Graph *G = new (Alloc) Graph(Alloc, F, bolt_instr_locations, Ctx); 1297cc4b2fb6SRafael Auler DEBUG(G->dump()); 1298a0dd5b05SAlexander Shaposhnikov 129916a497c6SRafael Auler if (!G->EdgeFreqs && !G->CallFreqs) { 1300cc4b2fb6SRafael Auler G->~Graph(); 1301cc4b2fb6SRafael Auler Alloc.deallocate(G); 1302cc4b2fb6SRafael Auler return next; 1303cc4b2fb6SRafael Auler } 1304cc4b2fb6SRafael Auler 130516a497c6SRafael Auler for (int I = 0; I < F.NumEdges; ++I) { 130616a497c6SRafael Auler const uint64_t Freq = G->EdgeFreqs[I]; 1307cc4b2fb6SRafael Auler if (Freq == 0) 1308cc4b2fb6SRafael Auler continue; 130916a497c6SRafael Auler const EdgeDescription *Desc = &F.Edges[I]; 1310cc4b2fb6SRafael Auler char LineBuf[BufSize]; 1311cc4b2fb6SRafael Auler char *Ptr = LineBuf; 131216a497c6SRafael Auler Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); 131316a497c6SRafael Auler Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); 1314cc4b2fb6SRafael Auler Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 22); 1315cc4b2fb6SRafael Auler Ptr = intToStr(Ptr, Freq, 10); 1316cc4b2fb6SRafael Auler *Ptr++ = '\n'; 1317cc4b2fb6SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 1318cc4b2fb6SRafael Auler } 1319cc4b2fb6SRafael Auler 132016a497c6SRafael Auler for (int I = 0; I < F.NumCalls; ++I) { 132116a497c6SRafael Auler const uint64_t Freq = G->CallFreqs[I]; 132216a497c6SRafael Auler if (Freq == 0) 132316a497c6SRafael Auler continue; 132416a497c6SRafael Auler char LineBuf[BufSize]; 132516a497c6SRafael Auler char *Ptr = LineBuf; 132616a497c6SRafael Auler const CallDescription *Desc = &F.Calls[I]; 132716a497c6SRafael Auler Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); 132816a497c6SRafael Auler Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); 132916a497c6SRafael Auler Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 133016a497c6SRafael Auler Ptr = intToStr(Ptr, Freq, 10); 133116a497c6SRafael Auler *Ptr++ = '\n'; 133216a497c6SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 133316a497c6SRafael Auler } 133416a497c6SRafael Auler 1335cc4b2fb6SRafael Auler G->~Graph(); 1336cc4b2fb6SRafael Auler Alloc.deallocate(G); 1337cc4b2fb6SRafael Auler return next; 1338cc4b2fb6SRafael Auler } 1339cc4b2fb6SRafael Auler 1340a0dd5b05SAlexander Shaposhnikov #if !defined(__APPLE__) 134116a497c6SRafael Auler const IndCallTargetDescription * 134216a497c6SRafael Auler ProfileWriterContext::lookupIndCallTarget(uint64_t Target) const { 134316a497c6SRafael Auler uint32_t B = 0; 134416a497c6SRafael Auler uint32_t E = __bolt_instr_num_ind_targets; 134516a497c6SRafael Auler if (E == 0) 134616a497c6SRafael Auler return nullptr; 134716a497c6SRafael Auler do { 134816a497c6SRafael Auler uint32_t I = (E - B) / 2 + B; 134916a497c6SRafael Auler if (IndCallTargets[I].Address == Target) 135016a497c6SRafael Auler return &IndCallTargets[I]; 135116a497c6SRafael Auler if (IndCallTargets[I].Address < Target) 135216a497c6SRafael Auler B = I + 1; 135316a497c6SRafael Auler else 135416a497c6SRafael Auler E = I; 135516a497c6SRafael Auler } while (B < E); 135616a497c6SRafael Auler return nullptr; 1357cc4b2fb6SRafael Auler } 135862aa74f8SRafael Auler 135916a497c6SRafael Auler /// Write a single indirect call <src, target> pair to the fdata file 136016a497c6SRafael Auler void visitIndCallCounter(IndirectCallHashTable::MapEntry &Entry, 136116a497c6SRafael Auler int FD, int CallsiteID, 136216a497c6SRafael Auler ProfileWriterContext *Ctx) { 136316a497c6SRafael Auler if (Entry.Val == 0) 136416a497c6SRafael Auler return; 136516a497c6SRafael Auler DEBUG(reportNumber("Target func 0x", Entry.Key, 16)); 136616a497c6SRafael Auler DEBUG(reportNumber("Target freq: ", Entry.Val, 10)); 136716a497c6SRafael Auler const IndCallDescription *CallsiteDesc = 136816a497c6SRafael Auler &Ctx->IndCallDescriptions[CallsiteID]; 136916a497c6SRafael Auler const IndCallTargetDescription *TargetDesc = 137016a497c6SRafael Auler Ctx->lookupIndCallTarget(Entry.Key); 137116a497c6SRafael Auler if (!TargetDesc) { 137216a497c6SRafael Auler DEBUG(report("Failed to lookup indirect call target\n")); 1373cc4b2fb6SRafael Auler char LineBuf[BufSize]; 137462aa74f8SRafael Auler char *Ptr = LineBuf; 137516a497c6SRafael Auler Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); 137616a497c6SRafael Auler Ptr = strCopy(Ptr, "0 [unknown] 0 0 ", BufSize - (Ptr - LineBuf) - 40); 137716a497c6SRafael Auler Ptr = intToStr(Ptr, Entry.Val, 10); 137816a497c6SRafael Auler *Ptr++ = '\n'; 137916a497c6SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 138016a497c6SRafael Auler return; 138116a497c6SRafael Auler } 138216a497c6SRafael Auler Ctx->CallFlowTable->get(TargetDesc->Address).Calls += Entry.Val; 138316a497c6SRafael Auler char LineBuf[BufSize]; 138416a497c6SRafael Auler char *Ptr = LineBuf; 138516a497c6SRafael Auler Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); 138616a497c6SRafael Auler Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); 1387cc4b2fb6SRafael Auler Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 138816a497c6SRafael Auler Ptr = intToStr(Ptr, Entry.Val, 10); 138962aa74f8SRafael Auler *Ptr++ = '\n'; 1390821480d2SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 139162aa74f8SRafael Auler } 1392cc4b2fb6SRafael Auler 139316a497c6SRafael Auler /// Write to \p FD all of the indirect call profiles. 139416a497c6SRafael Auler void writeIndirectCallProfile(int FD, ProfileWriterContext &Ctx) { 139516a497c6SRafael Auler for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) { 139616a497c6SRafael Auler DEBUG(reportNumber("IndCallsite #", I, 10)); 139716a497c6SRafael Auler GlobalIndCallCounters[I].forEachElement(visitIndCallCounter, FD, I, &Ctx); 139816a497c6SRafael Auler } 139916a497c6SRafael Auler } 140016a497c6SRafael Auler 140116a497c6SRafael Auler /// Check a single call flow for a callee versus all known callers. If there are 140216a497c6SRafael Auler /// less callers than what the callee expects, write the difference with source 140316a497c6SRafael Auler /// [unknown] in the profile. 140416a497c6SRafael Auler void visitCallFlowEntry(CallFlowHashTable::MapEntry &Entry, int FD, 140516a497c6SRafael Auler ProfileWriterContext *Ctx) { 140616a497c6SRafael Auler DEBUG(reportNumber("Call flow entry address: 0x", Entry.Key, 16)); 140716a497c6SRafael Auler DEBUG(reportNumber("Calls: ", Entry.Calls, 10)); 140816a497c6SRafael Auler DEBUG(reportNumber("Reported entry frequency: ", Entry.Val, 10)); 140916a497c6SRafael Auler DEBUG({ 141016a497c6SRafael Auler if (Entry.Calls > Entry.Val) 141116a497c6SRafael Auler report(" More calls than expected!\n"); 141216a497c6SRafael Auler }); 141316a497c6SRafael Auler if (Entry.Val <= Entry.Calls) 141416a497c6SRafael Auler return; 141516a497c6SRafael Auler DEBUG(reportNumber( 141616a497c6SRafael Auler " Balancing calls with traffic: ", Entry.Val - Entry.Calls, 10)); 141716a497c6SRafael Auler const IndCallTargetDescription *TargetDesc = 141816a497c6SRafael Auler Ctx->lookupIndCallTarget(Entry.Key); 141916a497c6SRafael Auler if (!TargetDesc) { 142016a497c6SRafael Auler // There is probably something wrong with this callee and this should be 142116a497c6SRafael Auler // investigated, but I don't want to assert and lose all data collected. 142216a497c6SRafael Auler DEBUG(report("WARNING: failed to look up call target!\n")); 142316a497c6SRafael Auler return; 142416a497c6SRafael Auler } 142516a497c6SRafael Auler char LineBuf[BufSize]; 142616a497c6SRafael Auler char *Ptr = LineBuf; 142716a497c6SRafael Auler Ptr = strCopy(Ptr, "0 [unknown] 0 ", BufSize); 142816a497c6SRafael Auler Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); 142916a497c6SRafael Auler Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 143016a497c6SRafael Auler Ptr = intToStr(Ptr, Entry.Val - Entry.Calls, 10); 143116a497c6SRafael Auler *Ptr++ = '\n'; 143216a497c6SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 143316a497c6SRafael Auler } 143416a497c6SRafael Auler 143516a497c6SRafael Auler /// Open fdata file for writing and return a valid file descriptor, aborting 143616a497c6SRafael Auler /// program upon failure. 143716a497c6SRafael Auler int openProfile() { 143816a497c6SRafael Auler // Build the profile name string by appending our PID 143916a497c6SRafael Auler char Buf[BufSize]; 144016a497c6SRafael Auler char *Ptr = Buf; 144116a497c6SRafael Auler uint64_t PID = __getpid(); 144216a497c6SRafael Auler Ptr = strCopy(Buf, __bolt_instr_filename, BufSize); 144316a497c6SRafael Auler if (__bolt_instr_use_pid) { 144416a497c6SRafael Auler Ptr = strCopy(Ptr, ".", BufSize - (Ptr - Buf + 1)); 144516a497c6SRafael Auler Ptr = intToStr(Ptr, PID, 10); 144616a497c6SRafael Auler Ptr = strCopy(Ptr, ".fdata", BufSize - (Ptr - Buf + 1)); 144716a497c6SRafael Auler } 144816a497c6SRafael Auler *Ptr++ = '\0'; 144916a497c6SRafael Auler uint64_t FD = __open(Buf, 145016a497c6SRafael Auler /*flags=*/0x241 /*O_WRONLY|O_TRUNC|O_CREAT*/, 145116a497c6SRafael Auler /*mode=*/0666); 145216a497c6SRafael Auler if (static_cast<int64_t>(FD) < 0) { 145316a497c6SRafael Auler report("Error while trying to open profile file for writing: "); 145416a497c6SRafael Auler report(Buf); 145516a497c6SRafael Auler reportNumber("\nFailed with error number: 0x", 145616a497c6SRafael Auler 0 - static_cast<int64_t>(FD), 16); 145716a497c6SRafael Auler __exit(1); 145816a497c6SRafael Auler } 145916a497c6SRafael Auler return FD; 146016a497c6SRafael Auler } 1461a0dd5b05SAlexander Shaposhnikov 1462a0dd5b05SAlexander Shaposhnikov #endif 1463a0dd5b05SAlexander Shaposhnikov 146416a497c6SRafael Auler } // anonymous namespace 146516a497c6SRafael Auler 1466a0dd5b05SAlexander Shaposhnikov #if !defined(__APPLE__) 1467a0dd5b05SAlexander Shaposhnikov 146816a497c6SRafael Auler /// Reset all counters in case you want to start profiling a new phase of your 146916a497c6SRafael Auler /// program independently of prior phases. 147016a497c6SRafael Auler /// The address of this function is printed by BOLT and this can be called by 147116a497c6SRafael Auler /// any attached debugger during runtime. There is a useful oneliner for gdb: 147216a497c6SRafael Auler /// 147316a497c6SRafael Auler /// gdb -p $(pgrep -xo PROCESSNAME) -ex 'p ((void(*)())0xdeadbeef)()' \ 147416a497c6SRafael Auler /// -ex 'set confirm off' -ex quit 147516a497c6SRafael Auler /// 147616a497c6SRafael Auler /// Where 0xdeadbeef is this function address and PROCESSNAME your binary file 147716a497c6SRafael Auler /// name. 147816a497c6SRafael Auler extern "C" void __bolt_instr_clear_counters() { 1479ea2182feSMaksim Panchenko memset(reinterpret_cast<char *>(__bolt_instr_locations), 0, 148016a497c6SRafael Auler __bolt_num_counters * 8); 1481883bf0e8SAmir Ayupov for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) 148216a497c6SRafael Auler GlobalIndCallCounters[I].resetCounters(); 148316a497c6SRafael Auler } 148416a497c6SRafael Auler 148516a497c6SRafael Auler /// This is the entry point for profile writing. 148616a497c6SRafael Auler /// There are three ways of getting here: 148716a497c6SRafael Auler /// 148816a497c6SRafael Auler /// * Program execution ended, finalization methods are running and BOLT 148916a497c6SRafael Auler /// hooked into FINI from your binary dynamic section; 149016a497c6SRafael Auler /// * You used the sleep timer option and during initialization we forked 149116a497c6SRafael Auler /// a separete process that will call this function periodically; 149216a497c6SRafael Auler /// * BOLT prints this function address so you can attach a debugger and 149316a497c6SRafael Auler /// call this function directly to get your profile written to disk 149416a497c6SRafael Auler /// on demand. 149516a497c6SRafael Auler /// 1496ad79d517SVasily Leonenko extern "C" void __attribute((force_align_arg_pointer)) 1497ad79d517SVasily Leonenko __bolt_instr_data_dump() { 149816a497c6SRafael Auler // Already dumping 149916a497c6SRafael Auler if (!GlobalWriteProfileMutex->acquire()) 150016a497c6SRafael Auler return; 150116a497c6SRafael Auler 150216a497c6SRafael Auler BumpPtrAllocator HashAlloc; 150316a497c6SRafael Auler HashAlloc.setMaxSize(0x6400000); 150416a497c6SRafael Auler ProfileWriterContext Ctx = readDescriptions(); 150516a497c6SRafael Auler Ctx.CallFlowTable = new (HashAlloc, 0) CallFlowHashTable(HashAlloc); 150616a497c6SRafael Auler 150716a497c6SRafael Auler DEBUG(printStats(Ctx)); 150816a497c6SRafael Auler 150916a497c6SRafael Auler int FD = openProfile(); 151016a497c6SRafael Auler 1511cc4b2fb6SRafael Auler BumpPtrAllocator Alloc; 1512eaf1b566SJakub Beránek Alloc.setMaxSize(0x6400000); 151316a497c6SRafael Auler const uint8_t *FuncDesc = Ctx.FuncDescriptions; 1514cc4b2fb6SRafael Auler for (int I = 0, E = __bolt_instr_num_funcs; I < E; ++I) { 151516a497c6SRafael Auler FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); 151616a497c6SRafael Auler Alloc.clear(); 1517cc4b2fb6SRafael Auler DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)); 1518cc4b2fb6SRafael Auler } 151916a497c6SRafael Auler assert(FuncDesc == (void *)Ctx.Strings, 1520cc4b2fb6SRafael Auler "FuncDesc ptr must be equal to stringtable"); 1521cc4b2fb6SRafael Auler 152216a497c6SRafael Auler writeIndirectCallProfile(FD, Ctx); 152316a497c6SRafael Auler Ctx.CallFlowTable->forEachElement(visitCallFlowEntry, FD, &Ctx); 152416a497c6SRafael Auler 1525dcdd37fdSVladislav Khmelevsky __fsync(FD); 1526821480d2SRafael Auler __close(FD); 152716a497c6SRafael Auler __munmap(Ctx.MMapPtr, Ctx.MMapSize); 152816a497c6SRafael Auler __close(Ctx.FileDesc); 152916a497c6SRafael Auler HashAlloc.destroy(); 153016a497c6SRafael Auler GlobalWriteProfileMutex->release(); 153116a497c6SRafael Auler DEBUG(report("Finished writing profile.\n")); 153216a497c6SRafael Auler } 153316a497c6SRafael Auler 153416a497c6SRafael Auler /// Event loop for our child process spawned during setup to dump profile data 153516a497c6SRafael Auler /// at user-specified intervals 153616a497c6SRafael Auler void watchProcess() { 153716a497c6SRafael Auler timespec ts, rem; 153816a497c6SRafael Auler uint64_t Ellapsed = 0ull; 153976d346caSVladislav Khmelevsky uint64_t ppid; 154076d346caSVladislav Khmelevsky if (__bolt_instr_wait_forks) { 154176d346caSVladislav Khmelevsky // Store parent pgid 154276d346caSVladislav Khmelevsky ppid = -__getpgid(0); 154376d346caSVladislav Khmelevsky // And leave parent process group 154476d346caSVladislav Khmelevsky __setpgid(0, 0); 154576d346caSVladislav Khmelevsky } else { 154676d346caSVladislav Khmelevsky // Store parent pid 154776d346caSVladislav Khmelevsky ppid = __getppid(); 154876d346caSVladislav Khmelevsky if (ppid == 1) { 154976d346caSVladislav Khmelevsky // Parent already dead 1550dcdd37fdSVladislav Khmelevsky __bolt_instr_data_dump(); 155176d346caSVladislav Khmelevsky goto out; 155276d346caSVladislav Khmelevsky } 155376d346caSVladislav Khmelevsky } 155476d346caSVladislav Khmelevsky 155516a497c6SRafael Auler ts.tv_sec = 1; 155616a497c6SRafael Auler ts.tv_nsec = 0; 155716a497c6SRafael Auler while (1) { 155816a497c6SRafael Auler __nanosleep(&ts, &rem); 155976d346caSVladislav Khmelevsky // This means our parent process or all its forks are dead, 156076d346caSVladislav Khmelevsky // so no need for us to keep dumping. 156176d346caSVladislav Khmelevsky if (__kill(ppid, 0) < 0) { 156276d346caSVladislav Khmelevsky if (__bolt_instr_no_counters_clear) 156376d346caSVladislav Khmelevsky __bolt_instr_data_dump(); 156416a497c6SRafael Auler break; 156516a497c6SRafael Auler } 156676d346caSVladislav Khmelevsky 156716a497c6SRafael Auler if (++Ellapsed < __bolt_instr_sleep_time) 156816a497c6SRafael Auler continue; 156976d346caSVladislav Khmelevsky 157016a497c6SRafael Auler Ellapsed = 0; 157116a497c6SRafael Auler __bolt_instr_data_dump(); 157276d346caSVladislav Khmelevsky if (__bolt_instr_no_counters_clear == false) 157316a497c6SRafael Auler __bolt_instr_clear_counters(); 157416a497c6SRafael Auler } 157576d346caSVladislav Khmelevsky 157676d346caSVladislav Khmelevsky out:; 157716a497c6SRafael Auler DEBUG(report("My parent process is dead, bye!\n")); 157816a497c6SRafael Auler __exit(0); 157916a497c6SRafael Auler } 158016a497c6SRafael Auler 158116a497c6SRafael Auler extern "C" void __bolt_instr_indirect_call(); 158216a497c6SRafael Auler extern "C" void __bolt_instr_indirect_tailcall(); 158316a497c6SRafael Auler 158416a497c6SRafael Auler /// Initialization code 1585ad79d517SVasily Leonenko extern "C" void __attribute((force_align_arg_pointer)) __bolt_instr_setup() { 158616a497c6SRafael Auler const uint64_t CountersStart = 158716a497c6SRafael Auler reinterpret_cast<uint64_t>(&__bolt_instr_locations[0]); 158816a497c6SRafael Auler const uint64_t CountersEnd = alignTo( 158916a497c6SRafael Auler reinterpret_cast<uint64_t>(&__bolt_instr_locations[__bolt_num_counters]), 159016a497c6SRafael Auler 0x1000); 159116a497c6SRafael Auler DEBUG(reportNumber("replace mmap start: ", CountersStart, 16)); 159216a497c6SRafael Auler DEBUG(reportNumber("replace mmap stop: ", CountersEnd, 16)); 159316a497c6SRafael Auler assert (CountersEnd > CountersStart, "no counters"); 1594c15e9b68SAmir Ayupov // Maps our counters to be shared instead of private, so we keep counting for 1595c15e9b68SAmir Ayupov // forked processes 1596*8b23a853SDenis Revunov void *Ret = 1597*8b23a853SDenis Revunov __mmap(CountersStart, CountersEnd - CountersStart, PROT_READ | PROT_WRITE, 1598*8b23a853SDenis Revunov MAP_ANONYMOUS | MAP_SHARED | MAP_FIXED, -1, 0); 1599c15e9b68SAmir Ayupov __bolt_ind_call_counter_func_pointer = __bolt_instr_indirect_call; 1600c15e9b68SAmir Ayupov __bolt_ind_tailcall_counter_func_pointer = __bolt_instr_indirect_tailcall; 16014314f4ceSAmir Ayupov // Conservatively reserve 100MiB shared pages 16024314f4ceSAmir Ayupov GlobalAlloc.setMaxSize(0x6400000); 1603c15e9b68SAmir Ayupov GlobalAlloc.setShared(true); 16044314f4ceSAmir Ayupov GlobalWriteProfileMutex = new (GlobalAlloc, 0) Mutex(); 160516a497c6SRafael Auler if (__bolt_instr_num_ind_calls > 0) 160616a497c6SRafael Auler GlobalIndCallCounters = 16074314f4ceSAmir Ayupov new (GlobalAlloc, 0) IndirectCallHashTable[__bolt_instr_num_ind_calls]; 160816a497c6SRafael Auler 160916a497c6SRafael Auler if (__bolt_instr_sleep_time != 0) { 161076d346caSVladislav Khmelevsky // Separate instrumented process to the own process group 161176d346caSVladislav Khmelevsky if (__bolt_instr_wait_forks) 161276d346caSVladislav Khmelevsky __setpgid(0, 0); 161376d346caSVladislav Khmelevsky 1614c7306cc2SAmir Ayupov if (long PID = __fork()) 161516a497c6SRafael Auler return; 161616a497c6SRafael Auler watchProcess(); 161716a497c6SRafael Auler } 161816a497c6SRafael Auler } 161916a497c6SRafael Auler 1620361f3b55SVladislav Khmelevsky extern "C" __attribute((force_align_arg_pointer)) void 1621361f3b55SVladislav Khmelevsky instrumentIndirectCall(uint64_t Target, uint64_t IndCallID) { 16224314f4ceSAmir Ayupov GlobalIndCallCounters[IndCallID].incrementVal(Target, GlobalAlloc); 162316a497c6SRafael Auler } 162416a497c6SRafael Auler 162516a497c6SRafael Auler /// We receive as in-stack arguments the identifier of the indirect call site 162616a497c6SRafael Auler /// as well as the target address for the call 162716a497c6SRafael Auler extern "C" __attribute((naked)) void __bolt_instr_indirect_call() 162816a497c6SRafael Auler { 162916a497c6SRafael Auler __asm__ __volatile__(SAVE_ALL 1630361f3b55SVladislav Khmelevsky "mov 0xa0(%%rsp), %%rdi\n" 1631361f3b55SVladislav Khmelevsky "mov 0x98(%%rsp), %%rsi\n" 163216a497c6SRafael Auler "call instrumentIndirectCall\n" 163316a497c6SRafael Auler RESTORE_ALL 1634361f3b55SVladislav Khmelevsky "ret\n" 163516a497c6SRafael Auler :::); 163616a497c6SRafael Auler } 163716a497c6SRafael Auler 163816a497c6SRafael Auler extern "C" __attribute((naked)) void __bolt_instr_indirect_tailcall() 163916a497c6SRafael Auler { 164016a497c6SRafael Auler __asm__ __volatile__(SAVE_ALL 1641361f3b55SVladislav Khmelevsky "mov 0x98(%%rsp), %%rdi\n" 1642361f3b55SVladislav Khmelevsky "mov 0x90(%%rsp), %%rsi\n" 164316a497c6SRafael Auler "call instrumentIndirectCall\n" 164416a497c6SRafael Auler RESTORE_ALL 1645361f3b55SVladislav Khmelevsky "ret\n" 164616a497c6SRafael Auler :::); 164716a497c6SRafael Auler } 164816a497c6SRafael Auler 164916a497c6SRafael Auler /// This is hooking ELF's entry, it needs to save all machine state. 165016a497c6SRafael Auler extern "C" __attribute((naked)) void __bolt_instr_start() 165116a497c6SRafael Auler { 165216a497c6SRafael Auler __asm__ __volatile__(SAVE_ALL 165316a497c6SRafael Auler "call __bolt_instr_setup\n" 165416a497c6SRafael Auler RESTORE_ALL 1655ad79d517SVasily Leonenko "jmp __bolt_start_trampoline\n" 165616a497c6SRafael Auler :::); 165716a497c6SRafael Auler } 165816a497c6SRafael Auler 165916a497c6SRafael Auler /// This is hooking into ELF's DT_FINI 166016a497c6SRafael Auler extern "C" void __bolt_instr_fini() { 1661553f28e9SVladislav Khmelevsky __bolt_fini_trampoline(); 166216a497c6SRafael Auler if (__bolt_instr_sleep_time == 0) 166316a497c6SRafael Auler __bolt_instr_data_dump(); 166416a497c6SRafael Auler DEBUG(report("Finished.\n")); 166562aa74f8SRafael Auler } 1666bbd9d610SAlexander Shaposhnikov 16673b876cc3SAlexander Shaposhnikov #endif 16683b876cc3SAlexander Shaposhnikov 16693b876cc3SAlexander Shaposhnikov #if defined(__APPLE__) 1670bbd9d610SAlexander Shaposhnikov 1671a0dd5b05SAlexander Shaposhnikov extern "C" void __bolt_instr_data_dump() { 1672a0dd5b05SAlexander Shaposhnikov ProfileWriterContext Ctx = readDescriptions(); 1673a0dd5b05SAlexander Shaposhnikov 1674a0dd5b05SAlexander Shaposhnikov int FD = 2; 1675a0dd5b05SAlexander Shaposhnikov BumpPtrAllocator Alloc; 1676a0dd5b05SAlexander Shaposhnikov const uint8_t *FuncDesc = Ctx.FuncDescriptions; 1677a0dd5b05SAlexander Shaposhnikov uint32_t bolt_instr_num_funcs = _bolt_instr_num_funcs_getter(); 1678a0dd5b05SAlexander Shaposhnikov 1679a0dd5b05SAlexander Shaposhnikov for (int I = 0, E = bolt_instr_num_funcs; I < E; ++I) { 1680a0dd5b05SAlexander Shaposhnikov FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); 1681a0dd5b05SAlexander Shaposhnikov Alloc.clear(); 1682a0dd5b05SAlexander Shaposhnikov DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)); 1683a0dd5b05SAlexander Shaposhnikov } 1684a0dd5b05SAlexander Shaposhnikov assert(FuncDesc == (void *)Ctx.Strings, 1685a0dd5b05SAlexander Shaposhnikov "FuncDesc ptr must be equal to stringtable"); 1686a0dd5b05SAlexander Shaposhnikov } 1687a0dd5b05SAlexander Shaposhnikov 1688bbd9d610SAlexander Shaposhnikov // On OSX/iOS the final symbol name of an extern "C" function/variable contains 1689bbd9d610SAlexander Shaposhnikov // one extra leading underscore: _bolt_instr_setup -> __bolt_instr_setup. 16903b876cc3SAlexander Shaposhnikov extern "C" 16913b876cc3SAlexander Shaposhnikov __attribute__((section("__TEXT,__setup"))) 16923b876cc3SAlexander Shaposhnikov __attribute__((force_align_arg_pointer)) 16933b876cc3SAlexander Shaposhnikov void _bolt_instr_setup() { 1694a0dd5b05SAlexander Shaposhnikov __asm__ __volatile__(SAVE_ALL :::); 16953b876cc3SAlexander Shaposhnikov 1696a0dd5b05SAlexander Shaposhnikov report("Hello!\n"); 16973b876cc3SAlexander Shaposhnikov 1698a0dd5b05SAlexander Shaposhnikov __asm__ __volatile__(RESTORE_ALL :::); 16991cf23e5eSAlexander Shaposhnikov } 1700bbd9d610SAlexander Shaposhnikov 17013b876cc3SAlexander Shaposhnikov extern "C" 17023b876cc3SAlexander Shaposhnikov __attribute__((section("__TEXT,__fini"))) 17033b876cc3SAlexander Shaposhnikov __attribute__((force_align_arg_pointer)) 17043b876cc3SAlexander Shaposhnikov void _bolt_instr_fini() { 1705a0dd5b05SAlexander Shaposhnikov report("Bye!\n"); 1706a0dd5b05SAlexander Shaposhnikov __bolt_instr_data_dump(); 1707e067f2adSAlexander Shaposhnikov } 1708e067f2adSAlexander Shaposhnikov 1709bbd9d610SAlexander Shaposhnikov #endif 1710cb8d701bSVladislav Khmelevsky #endif 1711