162aa74f8SRafael Auler //===-- instr.cpp -----------------------------------------------*- C++ -*-===// 262aa74f8SRafael Auler // 3da752c9cSRafael Auler // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4da752c9cSRafael Auler // See https://llvm.org/LICENSE.txt for license information. 5da752c9cSRafael Auler // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 662aa74f8SRafael Auler // 762aa74f8SRafael Auler //===----------------------------------------------------------------------===// 862aa74f8SRafael Auler // 916a497c6SRafael Auler // BOLT runtime instrumentation library for x86 Linux. Currently, BOLT does 1016a497c6SRafael Auler // not support linking modules with dependencies on one another into the final 1116a497c6SRafael Auler // binary (TODO?), which means this library has to be self-contained in a single 1216a497c6SRafael Auler // module. 1316a497c6SRafael Auler // 1416a497c6SRafael Auler // All extern declarations here need to be defined by BOLT itself. Those will be 1516a497c6SRafael Auler // undefined symbols that BOLT needs to resolve by emitting these symbols with 1616a497c6SRafael Auler // MCStreamer. Currently, Passes/Instrumentation.cpp is the pass responsible 1716a497c6SRafael Auler // for defining the symbols here and these two files have a tight coupling: one 1816a497c6SRafael Auler // working statically when you run BOLT and another during program runtime when 1916a497c6SRafael Auler // you run an instrumented binary. The main goal here is to output an fdata file 2016a497c6SRafael Auler // (BOLT profile) with the instrumentation counters inserted by the static pass. 2116a497c6SRafael Auler // Counters for indirect calls are an exception, as we can't know them 2216a497c6SRafael Auler // statically. These counters are created and managed here. To allow this, we 2316a497c6SRafael Auler // need a minimal framework for allocating memory dynamically. We provide this 2416a497c6SRafael Auler // with the BumpPtrAllocator class (not LLVM's, but our own version of it). 2516a497c6SRafael Auler // 2616a497c6SRafael Auler // Since this code is intended to be inserted into any executable, we decided to 2716a497c6SRafael Auler // make it standalone and do not depend on any external libraries (i.e. language 2816a497c6SRafael Auler // support libraries, such as glibc or stdc++). To allow this, we provide a few 2916a497c6SRafael Auler // light implementations of common OS interacting functionalities using direct 3016a497c6SRafael Auler // syscall wrappers. Our simple allocator doesn't manage deallocations that 3116a497c6SRafael Auler // fragment the memory space, so it's stack based. This is the minimal framework 3216a497c6SRafael Auler // provided here to allow processing instrumented counters and writing fdata. 3316a497c6SRafael Auler // 3416a497c6SRafael Auler // In the C++ idiom used here, we never use or rely on constructors or 3516a497c6SRafael Auler // destructors for global objects. That's because those need support from the 3616a497c6SRafael Auler // linker in initialization/finalization code, and we want to keep our linker 3716a497c6SRafael Auler // very simple. Similarly, we don't create any global objects that are zero 3816a497c6SRafael Auler // initialized, since those would need to go .bss, which our simple linker also 3916a497c6SRafael Auler // don't support (TODO?). 4062aa74f8SRafael Auler // 4162aa74f8SRafael Auler //===----------------------------------------------------------------------===// 4262aa74f8SRafael Auler 439bd71615SXun Li #include "common.h" 4462aa74f8SRafael Auler 4516a497c6SRafael Auler // Enables a very verbose logging to stderr useful when debugging 46cc4b2fb6SRafael Auler //#define ENABLE_DEBUG 47cc4b2fb6SRafael Auler 48cc4b2fb6SRafael Auler #ifdef ENABLE_DEBUG 49cc4b2fb6SRafael Auler #define DEBUG(X) \ 50cc4b2fb6SRafael Auler { X; } 51cc4b2fb6SRafael Auler #else 52cc4b2fb6SRafael Auler #define DEBUG(X) \ 53cc4b2fb6SRafael Auler {} 54cc4b2fb6SRafael Auler #endif 55cc4b2fb6SRafael Auler 563b876cc3SAlexander Shaposhnikov 573b876cc3SAlexander Shaposhnikov #if defined(__APPLE__) 583b876cc3SAlexander Shaposhnikov extern "C" { 593b876cc3SAlexander Shaposhnikov extern uint64_t* _bolt_instr_locations_getter(); 603b876cc3SAlexander Shaposhnikov extern uint32_t _bolt_num_counters_getter(); 613b876cc3SAlexander Shaposhnikov 62a0dd5b05SAlexander Shaposhnikov extern uint8_t* _bolt_instr_tables_getter(); 63a0dd5b05SAlexander Shaposhnikov extern uint32_t _bolt_instr_num_funcs_getter(); 643b876cc3SAlexander Shaposhnikov } 653b876cc3SAlexander Shaposhnikov 663b876cc3SAlexander Shaposhnikov #else 67bbd9d610SAlexander Shaposhnikov 6816a497c6SRafael Auler // Main counters inserted by instrumentation, incremented during runtime when 6916a497c6SRafael Auler // points of interest (locations) in the program are reached. Those are direct 7016a497c6SRafael Auler // calls and direct and indirect branches (local ones). There are also counters 7116a497c6SRafael Auler // for basic block execution if they are a spanning tree leaf and need to be 7216a497c6SRafael Auler // counted in order to infer the execution count of other edges of the CFG. 7362aa74f8SRafael Auler extern uint64_t __bolt_instr_locations[]; 7416a497c6SRafael Auler extern uint32_t __bolt_num_counters; 7516a497c6SRafael Auler // Descriptions are serialized metadata about binary functions written by BOLT, 7616a497c6SRafael Auler // so we have a minimal understanding about the program structure. For a 7716a497c6SRafael Auler // reference on the exact format of this metadata, see *Description structs, 7816a497c6SRafael Auler // Location, IntrumentedNode and EntryNode. 7916a497c6SRafael Auler // Number of indirect call site descriptions 8016a497c6SRafael Auler extern uint32_t __bolt_instr_num_ind_calls; 8116a497c6SRafael Auler // Number of indirect call target descriptions 8216a497c6SRafael Auler extern uint32_t __bolt_instr_num_ind_targets; 83cc4b2fb6SRafael Auler // Number of function descriptions 84cc4b2fb6SRafael Auler extern uint32_t __bolt_instr_num_funcs; 8516a497c6SRafael Auler // Time to sleep across dumps (when we write the fdata profile to disk) 8616a497c6SRafael Auler extern uint32_t __bolt_instr_sleep_time; 8776d346caSVladislav Khmelevsky // Do not clear counters across dumps, rewrite file with the updated values 8876d346caSVladislav Khmelevsky extern bool __bolt_instr_no_counters_clear; 8976d346caSVladislav Khmelevsky // Wait until all forks of instrumented process will finish 9076d346caSVladislav Khmelevsky extern bool __bolt_instr_wait_forks; 91cc4b2fb6SRafael Auler // Filename to dump data to 9262aa74f8SRafael Auler extern char __bolt_instr_filename[]; 9316a497c6SRafael Auler // If true, append current PID to the fdata filename when creating it so 9416a497c6SRafael Auler // different invocations of the same program can be differentiated. 9516a497c6SRafael Auler extern bool __bolt_instr_use_pid; 9616a497c6SRafael Auler // Functions that will be used to instrument indirect calls. BOLT static pass 9716a497c6SRafael Auler // will identify indirect calls and modify them to load the address in these 9816a497c6SRafael Auler // trampolines and call this address instead. BOLT can't use direct calls to 9916a497c6SRafael Auler // our handlers because our addresses here are not known at analysis time. We 10016a497c6SRafael Auler // only support resolving dependencies from this file to the output of BOLT, 10116a497c6SRafael Auler // *not* the other way around. 10216a497c6SRafael Auler // TODO: We need better linking support to make that happen. 103*361f3b55SVladislav Khmelevsky extern void (*__bolt_ind_call_counter_func_pointer)(); 104*361f3b55SVladislav Khmelevsky extern void (*__bolt_ind_tailcall_counter_func_pointer)(); 105ad79d517SVasily Leonenko // Function pointers to init/fini trampoline routines in the binary, so we can 106ad79d517SVasily Leonenko // resume regular execution of these functions that we hooked 107ad79d517SVasily Leonenko extern void (*__bolt_start_trampoline)(); 108ad79d517SVasily Leonenko extern void (*__bolt_fini_trampoline)(); 10962aa74f8SRafael Auler 110a0dd5b05SAlexander Shaposhnikov #endif 111a0dd5b05SAlexander Shaposhnikov 112cc4b2fb6SRafael Auler namespace { 113cc4b2fb6SRafael Auler 114cc4b2fb6SRafael Auler /// A simple allocator that mmaps a fixed size region and manages this space 115cc4b2fb6SRafael Auler /// in a stack fashion, meaning you always deallocate the last element that 11616a497c6SRafael Auler /// was allocated. In practice, we don't need to deallocate individual elements. 11716a497c6SRafael Auler /// We monotonically increase our usage and then deallocate everything once we 11816a497c6SRafael Auler /// are done processing something. 119cc4b2fb6SRafael Auler class BumpPtrAllocator { 12016a497c6SRafael Auler /// This is written before each allocation and act as a canary to detect when 12116a497c6SRafael Auler /// a bug caused our program to cross allocation boundaries. 122cc4b2fb6SRafael Auler struct EntryMetadata { 123cc4b2fb6SRafael Auler uint64_t Magic; 124cc4b2fb6SRafael Auler uint64_t AllocSize; 125cc4b2fb6SRafael Auler }; 1269bd71615SXun Li 127cc4b2fb6SRafael Auler public: 128faaefff6SAlexander Shaposhnikov void *allocate(size_t Size) { 12916a497c6SRafael Auler Lock L(M); 130a0dd5b05SAlexander Shaposhnikov 131cc4b2fb6SRafael Auler if (StackBase == nullptr) { 132a0dd5b05SAlexander Shaposhnikov #if defined(__APPLE__) 133a0dd5b05SAlexander Shaposhnikov int MAP_PRIVATE_MAP_ANONYMOUS = 0x1002; 134a0dd5b05SAlexander Shaposhnikov #else 135a0dd5b05SAlexander Shaposhnikov int MAP_PRIVATE_MAP_ANONYMOUS = 0x22; 136a0dd5b05SAlexander Shaposhnikov #endif 13716a497c6SRafael Auler StackBase = reinterpret_cast<uint8_t *>( 13816a497c6SRafael Auler __mmap(0, MaxSize, 0x3 /* PROT_READ | PROT_WRITE*/, 13916a497c6SRafael Auler Shared ? 0x21 /*MAP_SHARED | MAP_ANONYMOUS*/ 140a0dd5b05SAlexander Shaposhnikov : MAP_PRIVATE_MAP_ANONYMOUS /* MAP_PRIVATE | MAP_ANONYMOUS*/, 14116a497c6SRafael Auler -1, 0)); 142cc4b2fb6SRafael Auler StackSize = 0; 143cc4b2fb6SRafael Auler } 144a0dd5b05SAlexander Shaposhnikov 145cc4b2fb6SRafael Auler Size = alignTo(Size + sizeof(EntryMetadata), 16); 146cc4b2fb6SRafael Auler uint8_t *AllocAddress = StackBase + StackSize + sizeof(EntryMetadata); 147cc4b2fb6SRafael Auler auto *M = reinterpret_cast<EntryMetadata *>(StackBase + StackSize); 14816a497c6SRafael Auler M->Magic = Magic; 149cc4b2fb6SRafael Auler M->AllocSize = Size; 150cc4b2fb6SRafael Auler StackSize += Size; 15116a497c6SRafael Auler assert(StackSize < MaxSize, "allocator ran out of memory"); 152cc4b2fb6SRafael Auler return AllocAddress; 153cc4b2fb6SRafael Auler } 154cc4b2fb6SRafael Auler 15516a497c6SRafael Auler #ifdef DEBUG 15616a497c6SRafael Auler /// Element-wise deallocation is only used for debugging to catch memory 15716a497c6SRafael Auler /// bugs by checking magic bytes. Ordinarily, we reset the allocator once 15816a497c6SRafael Auler /// we are done with it. Reset is done with clear(). There's no need 15916a497c6SRafael Auler /// to deallocate each element individually. 160cc4b2fb6SRafael Auler void deallocate(void *Ptr) { 16116a497c6SRafael Auler Lock L(M); 162cc4b2fb6SRafael Auler uint8_t MetadataOffset = sizeof(EntryMetadata); 163cc4b2fb6SRafael Auler auto *M = reinterpret_cast<EntryMetadata *>( 164cc4b2fb6SRafael Auler reinterpret_cast<uint8_t *>(Ptr) - MetadataOffset); 165cc4b2fb6SRafael Auler const uint8_t *StackTop = StackBase + StackSize + MetadataOffset; 166cc4b2fb6SRafael Auler // Validate size 167cc4b2fb6SRafael Auler if (Ptr != StackTop - M->AllocSize) { 16816a497c6SRafael Auler // Failed validation, check if it is a pointer returned by operator new [] 169cc4b2fb6SRafael Auler MetadataOffset += 170cc4b2fb6SRafael Auler sizeof(uint64_t); // Space for number of elements alloc'ed 171cc4b2fb6SRafael Auler M = reinterpret_cast<EntryMetadata *>(reinterpret_cast<uint8_t *>(Ptr) - 172cc4b2fb6SRafael Auler MetadataOffset); 17316a497c6SRafael Auler // Ok, it failed both checks if this assertion fails. Stop the program, we 17416a497c6SRafael Auler // have a memory bug. 175cc4b2fb6SRafael Auler assert(Ptr == StackTop - M->AllocSize, 176cc4b2fb6SRafael Auler "must deallocate the last element alloc'ed"); 177cc4b2fb6SRafael Auler } 17816a497c6SRafael Auler assert(M->Magic == Magic, "allocator magic is corrupt"); 179cc4b2fb6SRafael Auler StackSize -= M->AllocSize; 180cc4b2fb6SRafael Auler } 18116a497c6SRafael Auler #else 18216a497c6SRafael Auler void deallocate(void *) {} 18316a497c6SRafael Auler #endif 18416a497c6SRafael Auler 18516a497c6SRafael Auler void clear() { 18616a497c6SRafael Auler Lock L(M); 18716a497c6SRafael Auler StackSize = 0; 18816a497c6SRafael Auler } 18916a497c6SRafael Auler 19016a497c6SRafael Auler /// Set mmap reservation size (only relevant before first allocation) 1919bd71615SXun Li void setMaxSize(uint64_t Size) { MaxSize = Size; } 19216a497c6SRafael Auler 19316a497c6SRafael Auler /// Set mmap reservation privacy (only relevant before first allocation) 1949bd71615SXun Li void setShared(bool S) { Shared = S; } 19516a497c6SRafael Auler 19616a497c6SRafael Auler void destroy() { 19716a497c6SRafael Auler if (StackBase == nullptr) 19816a497c6SRafael Auler return; 19916a497c6SRafael Auler __munmap(StackBase, MaxSize); 20016a497c6SRafael Auler } 201cc4b2fb6SRafael Auler 202cc4b2fb6SRafael Auler private: 20316a497c6SRafael Auler static constexpr uint64_t Magic = 0x1122334455667788ull; 20416a497c6SRafael Auler uint64_t MaxSize = 0xa00000; 205cc4b2fb6SRafael Auler uint8_t *StackBase{nullptr}; 206cc4b2fb6SRafael Auler uint64_t StackSize{0}; 20716a497c6SRafael Auler bool Shared{false}; 20816a497c6SRafael Auler Mutex M; 209cc4b2fb6SRafael Auler }; 210cc4b2fb6SRafael Auler 21116a497c6SRafael Auler /// Used for allocating indirect call instrumentation counters. Initialized by 21216a497c6SRafael Auler /// __bolt_instr_setup, our initialization routine. 21316a497c6SRafael Auler BumpPtrAllocator GlobalAlloc; 214cc4b2fb6SRafael Auler } // anonymous namespace 215cc4b2fb6SRafael Auler 216cc4b2fb6SRafael Auler // User-defined placement new operators. We only use those (as opposed to 217cc4b2fb6SRafael Auler // overriding the regular operator new) so we can keep our allocator in the 218cc4b2fb6SRafael Auler // stack instead of in a data section (global). 219faaefff6SAlexander Shaposhnikov void *operator new(size_t Sz, BumpPtrAllocator &A) { return A.allocate(Sz); } 220faaefff6SAlexander Shaposhnikov void *operator new(size_t Sz, BumpPtrAllocator &A, char C) { 221cc4b2fb6SRafael Auler auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); 222cc4b2fb6SRafael Auler memSet(Ptr, C, Sz); 223cc4b2fb6SRafael Auler return Ptr; 224cc4b2fb6SRafael Auler } 225faaefff6SAlexander Shaposhnikov void *operator new[](size_t Sz, BumpPtrAllocator &A) { 226cc4b2fb6SRafael Auler return A.allocate(Sz); 227cc4b2fb6SRafael Auler } 228faaefff6SAlexander Shaposhnikov void *operator new[](size_t Sz, BumpPtrAllocator &A, char C) { 229cc4b2fb6SRafael Auler auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); 230cc4b2fb6SRafael Auler memSet(Ptr, C, Sz); 231cc4b2fb6SRafael Auler return Ptr; 232cc4b2fb6SRafael Auler } 233cc4b2fb6SRafael Auler // Only called during exception unwinding (useless). We must manually dealloc. 234cc4b2fb6SRafael Auler // C++ language weirdness 2359bd71615SXun Li void operator delete(void *Ptr, BumpPtrAllocator &A) { A.deallocate(Ptr); } 236cc4b2fb6SRafael Auler 237cc4b2fb6SRafael Auler namespace { 238cc4b2fb6SRafael Auler 23916a497c6SRafael Auler /// Basic key-val atom stored in our hash 24016a497c6SRafael Auler struct SimpleHashTableEntryBase { 24116a497c6SRafael Auler uint64_t Key; 24216a497c6SRafael Auler uint64_t Val; 24316a497c6SRafael Auler }; 24416a497c6SRafael Auler 24516a497c6SRafael Auler /// This hash table implementation starts by allocating a table of size 24616a497c6SRafael Auler /// InitialSize. When conflicts happen in this main table, it resolves 24716a497c6SRafael Auler /// them by chaining a new table of size IncSize. It never reallocs as our 24816a497c6SRafael Auler /// allocator doesn't support it. The key is intended to be function pointers. 24916a497c6SRafael Auler /// There's no clever hash function (it's just x mod size, size being prime). 25016a497c6SRafael Auler /// I never tuned the coefficientes in the modular equation (TODO) 25116a497c6SRafael Auler /// This is used for indirect calls (each call site has one of this, so it 25216a497c6SRafael Auler /// should have a small footprint) and for tallying call counts globally for 25316a497c6SRafael Auler /// each target to check if we missed the origin of some calls (this one is a 25416a497c6SRafael Auler /// large instantiation of this template, since it is global for all call sites) 25516a497c6SRafael Auler template <typename T = SimpleHashTableEntryBase, uint32_t InitialSize = 7, 25616a497c6SRafael Auler uint32_t IncSize = 7> 25716a497c6SRafael Auler class SimpleHashTable { 25816a497c6SRafael Auler public: 25916a497c6SRafael Auler using MapEntry = T; 26016a497c6SRafael Auler 26116a497c6SRafael Auler /// Increment by 1 the value of \p Key. If it is not in this table, it will be 26216a497c6SRafael Auler /// added to the table and its value set to 1. 26316a497c6SRafael Auler void incrementVal(uint64_t Key, BumpPtrAllocator &Alloc) { 26416a497c6SRafael Auler ++get(Key, Alloc).Val; 26516a497c6SRafael Auler } 26616a497c6SRafael Auler 26716a497c6SRafael Auler /// Basic member accessing interface. Here we pass the allocator explicitly to 26816a497c6SRafael Auler /// avoid storing a pointer to it as part of this table (remember there is one 26916a497c6SRafael Auler /// hash for each indirect call site, so we wan't to minimize our footprint). 27016a497c6SRafael Auler MapEntry &get(uint64_t Key, BumpPtrAllocator &Alloc) { 27116a497c6SRafael Auler Lock L(M); 27216a497c6SRafael Auler if (TableRoot) 27316a497c6SRafael Auler return getEntry(TableRoot, Key, Key, Alloc, 0); 27416a497c6SRafael Auler return firstAllocation(Key, Alloc); 27516a497c6SRafael Auler } 27616a497c6SRafael Auler 27716a497c6SRafael Auler /// Traverses all elements in the table 27816a497c6SRafael Auler template <typename... Args> 27916a497c6SRafael Auler void forEachElement(void (*Callback)(MapEntry &, Args...), Args... args) { 28016a497c6SRafael Auler if (!TableRoot) 28116a497c6SRafael Auler return; 28216a497c6SRafael Auler return forEachElement(Callback, InitialSize, TableRoot, args...); 28316a497c6SRafael Auler } 28416a497c6SRafael Auler 28516a497c6SRafael Auler void resetCounters(); 28616a497c6SRafael Auler 28716a497c6SRafael Auler private: 28816a497c6SRafael Auler constexpr static uint64_t VacantMarker = 0; 28916a497c6SRafael Auler constexpr static uint64_t FollowUpTableMarker = 0x8000000000000000ull; 29016a497c6SRafael Auler 29116a497c6SRafael Auler MapEntry *TableRoot{nullptr}; 29216a497c6SRafael Auler Mutex M; 29316a497c6SRafael Auler 29416a497c6SRafael Auler template <typename... Args> 29516a497c6SRafael Auler void forEachElement(void (*Callback)(MapEntry &, Args...), 29616a497c6SRafael Auler uint32_t NumEntries, MapEntry *Entries, Args... args) { 297c7306cc2SAmir Ayupov for (uint32_t I = 0; I < NumEntries; ++I) { 298c7306cc2SAmir Ayupov MapEntry &Entry = Entries[I]; 29916a497c6SRafael Auler if (Entry.Key == VacantMarker) 30016a497c6SRafael Auler continue; 30116a497c6SRafael Auler if (Entry.Key & FollowUpTableMarker) { 30216a497c6SRafael Auler forEachElement(Callback, IncSize, 30316a497c6SRafael Auler reinterpret_cast<MapEntry *>(Entry.Key & 30416a497c6SRafael Auler ~FollowUpTableMarker), 30516a497c6SRafael Auler args...); 30616a497c6SRafael Auler continue; 30716a497c6SRafael Auler } 30816a497c6SRafael Auler Callback(Entry, args...); 30916a497c6SRafael Auler } 31016a497c6SRafael Auler } 31116a497c6SRafael Auler 31216a497c6SRafael Auler MapEntry &firstAllocation(uint64_t Key, BumpPtrAllocator &Alloc) { 31316a497c6SRafael Auler TableRoot = new (Alloc, 0) MapEntry[InitialSize]; 314c7306cc2SAmir Ayupov MapEntry &Entry = TableRoot[Key % InitialSize]; 31516a497c6SRafael Auler Entry.Key = Key; 31616a497c6SRafael Auler return Entry; 31716a497c6SRafael Auler } 31816a497c6SRafael Auler 31916a497c6SRafael Auler MapEntry &getEntry(MapEntry *Entries, uint64_t Key, uint64_t Selector, 32016a497c6SRafael Auler BumpPtrAllocator &Alloc, int CurLevel) { 32116a497c6SRafael Auler const uint32_t NumEntries = CurLevel == 0 ? InitialSize : IncSize; 32216a497c6SRafael Auler uint64_t Remainder = Selector / NumEntries; 32316a497c6SRafael Auler Selector = Selector % NumEntries; 324c7306cc2SAmir Ayupov MapEntry &Entry = Entries[Selector]; 32516a497c6SRafael Auler 32616a497c6SRafael Auler // A hit 32716a497c6SRafael Auler if (Entry.Key == Key) { 32816a497c6SRafael Auler return Entry; 32916a497c6SRafael Auler } 33016a497c6SRafael Auler 33116a497c6SRafael Auler // Vacant - add new entry 33216a497c6SRafael Auler if (Entry.Key == VacantMarker) { 33316a497c6SRafael Auler Entry.Key = Key; 33416a497c6SRafael Auler return Entry; 33516a497c6SRafael Auler } 33616a497c6SRafael Auler 33716a497c6SRafael Auler // Defer to the next level 33816a497c6SRafael Auler if (Entry.Key & FollowUpTableMarker) { 33916a497c6SRafael Auler return getEntry( 34016a497c6SRafael Auler reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker), 34116a497c6SRafael Auler Key, Remainder, Alloc, CurLevel + 1); 34216a497c6SRafael Auler } 34316a497c6SRafael Auler 34416a497c6SRafael Auler // Conflict - create the next level 34516a497c6SRafael Auler MapEntry *NextLevelTbl = new (Alloc, 0) MapEntry[IncSize]; 34616a497c6SRafael Auler uint64_t CurEntrySelector = Entry.Key / InitialSize; 34716a497c6SRafael Auler for (int I = 0; I < CurLevel; ++I) 34816a497c6SRafael Auler CurEntrySelector /= IncSize; 34916a497c6SRafael Auler CurEntrySelector = CurEntrySelector % IncSize; 35016a497c6SRafael Auler NextLevelTbl[CurEntrySelector] = Entry; 35116a497c6SRafael Auler Entry.Key = reinterpret_cast<uint64_t>(NextLevelTbl) | FollowUpTableMarker; 35216a497c6SRafael Auler return getEntry(NextLevelTbl, Key, Remainder, Alloc, CurLevel + 1); 35316a497c6SRafael Auler } 35416a497c6SRafael Auler }; 35516a497c6SRafael Auler 35616a497c6SRafael Auler template <typename T> void resetIndCallCounter(T &Entry) { 35716a497c6SRafael Auler Entry.Val = 0; 35816a497c6SRafael Auler } 35916a497c6SRafael Auler 36016a497c6SRafael Auler template <typename T, uint32_t X, uint32_t Y> 36116a497c6SRafael Auler void SimpleHashTable<T, X, Y>::resetCounters() { 36216a497c6SRafael Auler Lock L(M); 36316a497c6SRafael Auler forEachElement(resetIndCallCounter); 36416a497c6SRafael Auler } 36516a497c6SRafael Auler 36616a497c6SRafael Auler /// Represents a hash table mapping a function target address to its counter. 36716a497c6SRafael Auler using IndirectCallHashTable = SimpleHashTable<>; 36816a497c6SRafael Auler 36916a497c6SRafael Auler /// Initialize with number 1 instead of 0 so we don't go into .bss. This is the 37016a497c6SRafael Auler /// global array of all hash tables storing indirect call destinations happening 37116a497c6SRafael Auler /// during runtime, one table per call site. 37216a497c6SRafael Auler IndirectCallHashTable *GlobalIndCallCounters{ 37316a497c6SRafael Auler reinterpret_cast<IndirectCallHashTable *>(1)}; 37416a497c6SRafael Auler 37516a497c6SRafael Auler /// Don't allow reentrancy in the fdata writing phase - only one thread writes 37616a497c6SRafael Auler /// it 37716a497c6SRafael Auler Mutex *GlobalWriteProfileMutex{reinterpret_cast<Mutex *>(1)}; 37816a497c6SRafael Auler 37916a497c6SRafael Auler /// Store number of calls in additional to target address (Key) and frequency 38016a497c6SRafael Auler /// as perceived by the basic block counter (Val). 38116a497c6SRafael Auler struct CallFlowEntryBase : public SimpleHashTableEntryBase { 38216a497c6SRafael Auler uint64_t Calls; 38316a497c6SRafael Auler }; 38416a497c6SRafael Auler 38516a497c6SRafael Auler using CallFlowHashTableBase = SimpleHashTable<CallFlowEntryBase, 11939, 233>; 38616a497c6SRafael Auler 38716a497c6SRafael Auler /// This is a large table indexing all possible call targets (indirect and 38816a497c6SRafael Auler /// direct ones). The goal is to find mismatches between number of calls (for 38916a497c6SRafael Auler /// those calls we were able to track) and the entry basic block counter of the 39016a497c6SRafael Auler /// callee. In most cases, these two should be equal. If not, there are two 39116a497c6SRafael Auler /// possible scenarios here: 39216a497c6SRafael Auler /// 39316a497c6SRafael Auler /// * Entry BB has higher frequency than all known calls to this function. 39416a497c6SRafael Auler /// In this case, we have dynamic library code or any uninstrumented code 39516a497c6SRafael Auler /// calling this function. We will write the profile for these untracked 39616a497c6SRafael Auler /// calls as having source "0 [unknown] 0" in the fdata file. 39716a497c6SRafael Auler /// 39816a497c6SRafael Auler /// * Number of known calls is higher than the frequency of entry BB 39916a497c6SRafael Auler /// This only happens when there is no counter for the entry BB / callee 40016a497c6SRafael Auler /// function is not simple (in BOLT terms). We don't do anything special 40116a497c6SRafael Auler /// here and just ignore those (we still report all calls to the non-simple 40216a497c6SRafael Auler /// function, though). 40316a497c6SRafael Auler /// 40416a497c6SRafael Auler class CallFlowHashTable : public CallFlowHashTableBase { 40516a497c6SRafael Auler public: 40616a497c6SRafael Auler CallFlowHashTable(BumpPtrAllocator &Alloc) : Alloc(Alloc) {} 40716a497c6SRafael Auler 40816a497c6SRafael Auler MapEntry &get(uint64_t Key) { return CallFlowHashTableBase::get(Key, Alloc); } 40916a497c6SRafael Auler 41016a497c6SRafael Auler private: 41116a497c6SRafael Auler // Different than the hash table for indirect call targets, we do store the 41216a497c6SRafael Auler // allocator here since there is only one call flow hash and space overhead 41316a497c6SRafael Auler // is negligible. 41416a497c6SRafael Auler BumpPtrAllocator &Alloc; 41516a497c6SRafael Auler }; 41616a497c6SRafael Auler 41716a497c6SRafael Auler /// 41816a497c6SRafael Auler /// Description metadata emitted by BOLT to describe the program - refer to 41916a497c6SRafael Auler /// Passes/Instrumentation.cpp - Instrumentation::emitTablesAsELFNote() 42016a497c6SRafael Auler /// 42116a497c6SRafael Auler struct Location { 42216a497c6SRafael Auler uint32_t FunctionName; 42316a497c6SRafael Auler uint32_t Offset; 42416a497c6SRafael Auler }; 42516a497c6SRafael Auler 42616a497c6SRafael Auler struct CallDescription { 42716a497c6SRafael Auler Location From; 42816a497c6SRafael Auler uint32_t FromNode; 42916a497c6SRafael Auler Location To; 43016a497c6SRafael Auler uint32_t Counter; 43116a497c6SRafael Auler uint64_t TargetAddress; 43216a497c6SRafael Auler }; 43316a497c6SRafael Auler 43416a497c6SRafael Auler using IndCallDescription = Location; 43516a497c6SRafael Auler 43616a497c6SRafael Auler struct IndCallTargetDescription { 43716a497c6SRafael Auler Location Loc; 43816a497c6SRafael Auler uint64_t Address; 43916a497c6SRafael Auler }; 44016a497c6SRafael Auler 44116a497c6SRafael Auler struct EdgeDescription { 44216a497c6SRafael Auler Location From; 44316a497c6SRafael Auler uint32_t FromNode; 44416a497c6SRafael Auler Location To; 44516a497c6SRafael Auler uint32_t ToNode; 44616a497c6SRafael Auler uint32_t Counter; 44716a497c6SRafael Auler }; 44816a497c6SRafael Auler 44916a497c6SRafael Auler struct InstrumentedNode { 45016a497c6SRafael Auler uint32_t Node; 45116a497c6SRafael Auler uint32_t Counter; 45216a497c6SRafael Auler }; 45316a497c6SRafael Auler 45416a497c6SRafael Auler struct EntryNode { 45516a497c6SRafael Auler uint64_t Node; 45616a497c6SRafael Auler uint64_t Address; 45716a497c6SRafael Auler }; 45816a497c6SRafael Auler 45916a497c6SRafael Auler struct FunctionDescription { 46016a497c6SRafael Auler uint32_t NumLeafNodes; 46116a497c6SRafael Auler const InstrumentedNode *LeafNodes; 46216a497c6SRafael Auler uint32_t NumEdges; 46316a497c6SRafael Auler const EdgeDescription *Edges; 46416a497c6SRafael Auler uint32_t NumCalls; 46516a497c6SRafael Auler const CallDescription *Calls; 46616a497c6SRafael Auler uint32_t NumEntryNodes; 46716a497c6SRafael Auler const EntryNode *EntryNodes; 46816a497c6SRafael Auler 46916a497c6SRafael Auler /// Constructor will parse the serialized function metadata written by BOLT 47016a497c6SRafael Auler FunctionDescription(const uint8_t *FuncDesc); 47116a497c6SRafael Auler 47216a497c6SRafael Auler uint64_t getSize() const { 47316a497c6SRafael Auler return 16 + NumLeafNodes * sizeof(InstrumentedNode) + 47416a497c6SRafael Auler NumEdges * sizeof(EdgeDescription) + 47516a497c6SRafael Auler NumCalls * sizeof(CallDescription) + 47616a497c6SRafael Auler NumEntryNodes * sizeof(EntryNode); 47716a497c6SRafael Auler } 47816a497c6SRafael Auler }; 47916a497c6SRafael Auler 48016a497c6SRafael Auler /// The context is created when the fdata profile needs to be written to disk 48116a497c6SRafael Auler /// and we need to interpret our runtime counters. It contains pointers to the 48216a497c6SRafael Auler /// mmaped binary (only the BOLT written metadata section). Deserialization 48316a497c6SRafael Auler /// should be straightforward as most data is POD or an array of POD elements. 48416a497c6SRafael Auler /// This metadata is used to reconstruct function CFGs. 48516a497c6SRafael Auler struct ProfileWriterContext { 48616a497c6SRafael Auler IndCallDescription *IndCallDescriptions; 48716a497c6SRafael Auler IndCallTargetDescription *IndCallTargets; 48816a497c6SRafael Auler uint8_t *FuncDescriptions; 48916a497c6SRafael Auler char *Strings; // String table with function names used in this binary 49016a497c6SRafael Auler int FileDesc; // File descriptor for the file on disk backing this 49116a497c6SRafael Auler // information in memory via mmap 49216a497c6SRafael Auler void *MMapPtr; // The mmap ptr 49316a497c6SRafael Auler int MMapSize; // The mmap size 49416a497c6SRafael Auler 49516a497c6SRafael Auler /// Hash table storing all possible call destinations to detect untracked 49616a497c6SRafael Auler /// calls and correctly report them as [unknown] in output fdata. 49716a497c6SRafael Auler CallFlowHashTable *CallFlowTable; 49816a497c6SRafael Auler 49916a497c6SRafael Auler /// Lookup the sorted indirect call target vector to fetch function name and 50016a497c6SRafael Auler /// offset for an arbitrary function pointer. 50116a497c6SRafael Auler const IndCallTargetDescription *lookupIndCallTarget(uint64_t Target) const; 50216a497c6SRafael Auler }; 50316a497c6SRafael Auler 50416a497c6SRafael Auler /// Perform a string comparison and returns zero if Str1 matches Str2. Compares 50516a497c6SRafael Auler /// at most Size characters. 506cc4b2fb6SRafael Auler int compareStr(const char *Str1, const char *Str2, int Size) { 507821480d2SRafael Auler while (*Str1 == *Str2) { 508821480d2SRafael Auler if (*Str1 == '\0' || --Size == 0) 509821480d2SRafael Auler return 0; 510821480d2SRafael Auler ++Str1; 511821480d2SRafael Auler ++Str2; 512821480d2SRafael Auler } 513821480d2SRafael Auler return 1; 514821480d2SRafael Auler } 515821480d2SRafael Auler 51616a497c6SRafael Auler /// Output Location to the fdata file 51716a497c6SRafael Auler char *serializeLoc(const ProfileWriterContext &Ctx, char *OutBuf, 518cc4b2fb6SRafael Auler const Location Loc, uint32_t BufSize) { 519821480d2SRafael Auler // fdata location format: Type Name Offset 520821480d2SRafael Auler // Type 1 - regular symbol 521821480d2SRafael Auler OutBuf = strCopy(OutBuf, "1 "); 52216a497c6SRafael Auler const char *Str = Ctx.Strings + Loc.FunctionName; 523cc4b2fb6SRafael Auler uint32_t Size = 25; 52462aa74f8SRafael Auler while (*Str) { 52562aa74f8SRafael Auler *OutBuf++ = *Str++; 526cc4b2fb6SRafael Auler if (++Size >= BufSize) 527cc4b2fb6SRafael Auler break; 52862aa74f8SRafael Auler } 529cc4b2fb6SRafael Auler assert(!*Str, "buffer overflow, function name too large"); 53062aa74f8SRafael Auler *OutBuf++ = ' '; 531821480d2SRafael Auler OutBuf = intToStr(OutBuf, Loc.Offset, 16); 53262aa74f8SRafael Auler *OutBuf++ = ' '; 53362aa74f8SRafael Auler return OutBuf; 53462aa74f8SRafael Auler } 53562aa74f8SRafael Auler 53616a497c6SRafael Auler /// Read and deserialize a function description written by BOLT. \p FuncDesc 53716a497c6SRafael Auler /// points at the beginning of the function metadata structure in the file. 53816a497c6SRafael Auler /// See Instrumentation::emitTablesAsELFNote() 53916a497c6SRafael Auler FunctionDescription::FunctionDescription(const uint8_t *FuncDesc) { 54016a497c6SRafael Auler NumLeafNodes = *reinterpret_cast<const uint32_t *>(FuncDesc); 54116a497c6SRafael Auler DEBUG(reportNumber("NumLeafNodes = ", NumLeafNodes, 10)); 54216a497c6SRafael Auler LeafNodes = reinterpret_cast<const InstrumentedNode *>(FuncDesc + 4); 54316a497c6SRafael Auler 54416a497c6SRafael Auler NumEdges = *reinterpret_cast<const uint32_t *>( 54516a497c6SRafael Auler FuncDesc + 4 + NumLeafNodes * sizeof(InstrumentedNode)); 54616a497c6SRafael Auler DEBUG(reportNumber("NumEdges = ", NumEdges, 10)); 54716a497c6SRafael Auler Edges = reinterpret_cast<const EdgeDescription *>( 54816a497c6SRafael Auler FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode)); 54916a497c6SRafael Auler 55016a497c6SRafael Auler NumCalls = *reinterpret_cast<const uint32_t *>( 55116a497c6SRafael Auler FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode) + 55216a497c6SRafael Auler NumEdges * sizeof(EdgeDescription)); 55316a497c6SRafael Auler DEBUG(reportNumber("NumCalls = ", NumCalls, 10)); 55416a497c6SRafael Auler Calls = reinterpret_cast<const CallDescription *>( 55516a497c6SRafael Auler FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + 55616a497c6SRafael Auler NumEdges * sizeof(EdgeDescription)); 55716a497c6SRafael Auler NumEntryNodes = *reinterpret_cast<const uint32_t *>( 55816a497c6SRafael Auler FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + 55916a497c6SRafael Auler NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); 56016a497c6SRafael Auler DEBUG(reportNumber("NumEntryNodes = ", NumEntryNodes, 10)); 56116a497c6SRafael Auler EntryNodes = reinterpret_cast<const EntryNode *>( 56216a497c6SRafael Auler FuncDesc + 16 + NumLeafNodes * sizeof(InstrumentedNode) + 56316a497c6SRafael Auler NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); 56416a497c6SRafael Auler } 56516a497c6SRafael Auler 56616a497c6SRafael Auler /// Read and mmap descriptions written by BOLT from the executable's notes 56716a497c6SRafael Auler /// section 568a0dd5b05SAlexander Shaposhnikov #if defined(HAVE_ELF_H) and !defined(__APPLE__) 5692ffd6e2bSElvina Yakubova 5702ffd6e2bSElvina Yakubova void *__attribute__((noinline)) __get_pc() { 5712ffd6e2bSElvina Yakubova return __builtin_extract_return_addr(__builtin_return_address(0)); 5722ffd6e2bSElvina Yakubova } 5732ffd6e2bSElvina Yakubova 5742ffd6e2bSElvina Yakubova /// Get string with address and parse it to hex pair <StartAddress, EndAddress> 5752ffd6e2bSElvina Yakubova bool parseAddressRange(const char *Str, uint64_t &StartAddress, 5762ffd6e2bSElvina Yakubova uint64_t &EndAddress) { 5772ffd6e2bSElvina Yakubova if (!Str) 5782ffd6e2bSElvina Yakubova return false; 5792ffd6e2bSElvina Yakubova // Parsed string format: <hex1>-<hex2> 5802ffd6e2bSElvina Yakubova StartAddress = hexToLong(Str, '-'); 5812ffd6e2bSElvina Yakubova while (*Str && *Str != '-') 5822ffd6e2bSElvina Yakubova ++Str; 5832ffd6e2bSElvina Yakubova if (!*Str) 5842ffd6e2bSElvina Yakubova return false; 5852ffd6e2bSElvina Yakubova ++Str; // swallow '-' 5862ffd6e2bSElvina Yakubova EndAddress = hexToLong(Str); 5872ffd6e2bSElvina Yakubova return true; 5882ffd6e2bSElvina Yakubova } 5892ffd6e2bSElvina Yakubova 5902ffd6e2bSElvina Yakubova /// Get full path to the real binary by getting current virtual address 5912ffd6e2bSElvina Yakubova /// and searching for the appropriate link in address range in 5922ffd6e2bSElvina Yakubova /// /proc/self/map_files 5932ffd6e2bSElvina Yakubova static char *getBinaryPath() { 5942ffd6e2bSElvina Yakubova const uint32_t BufSize = 1024; 5952ffd6e2bSElvina Yakubova const uint32_t NameMax = 256; 5962ffd6e2bSElvina Yakubova const char DirPath[] = "/proc/self/map_files/"; 5972ffd6e2bSElvina Yakubova static char TargetPath[NameMax] = {}; 5982ffd6e2bSElvina Yakubova char Buf[BufSize]; 5992ffd6e2bSElvina Yakubova 6002ffd6e2bSElvina Yakubova if (TargetPath[0] != '\0') 6012ffd6e2bSElvina Yakubova return TargetPath; 6022ffd6e2bSElvina Yakubova 6032ffd6e2bSElvina Yakubova unsigned long CurAddr = (unsigned long)__get_pc(); 6042ffd6e2bSElvina Yakubova uint64_t FDdir = __open(DirPath, 605821480d2SRafael Auler /*flags=*/0 /*O_RDONLY*/, 606821480d2SRafael Auler /*mode=*/0666); 6072ffd6e2bSElvina Yakubova assert(static_cast<int64_t>(FDdir) > 0, 6082ffd6e2bSElvina Yakubova "failed to open /proc/self/map_files"); 6092ffd6e2bSElvina Yakubova 6102ffd6e2bSElvina Yakubova while (long Nread = __getdents(FDdir, (struct dirent *)Buf, BufSize)) { 6112ffd6e2bSElvina Yakubova assert(static_cast<int64_t>(Nread) != -1, "failed to get folder entries"); 6122ffd6e2bSElvina Yakubova 6132ffd6e2bSElvina Yakubova struct dirent *d; 6142ffd6e2bSElvina Yakubova for (long Bpos = 0; Bpos < Nread; Bpos += d->d_reclen) { 6152ffd6e2bSElvina Yakubova d = (struct dirent *)(Buf + Bpos); 6162ffd6e2bSElvina Yakubova 6172ffd6e2bSElvina Yakubova uint64_t StartAddress, EndAddress; 6182ffd6e2bSElvina Yakubova if (!parseAddressRange(d->d_name, StartAddress, EndAddress)) 6192ffd6e2bSElvina Yakubova continue; 6202ffd6e2bSElvina Yakubova if (CurAddr < StartAddress || CurAddr > EndAddress) 6212ffd6e2bSElvina Yakubova continue; 6222ffd6e2bSElvina Yakubova char FindBuf[NameMax]; 6232ffd6e2bSElvina Yakubova char *C = strCopy(FindBuf, DirPath, NameMax); 6242ffd6e2bSElvina Yakubova C = strCopy(C, d->d_name, NameMax - (C - FindBuf)); 6252ffd6e2bSElvina Yakubova *C = '\0'; 6262ffd6e2bSElvina Yakubova uint32_t Ret = __readlink(FindBuf, TargetPath, sizeof(TargetPath)); 6272ffd6e2bSElvina Yakubova assert(Ret != -1 && Ret != BufSize, "readlink error"); 6282ffd6e2bSElvina Yakubova TargetPath[Ret] = '\0'; 6292ffd6e2bSElvina Yakubova return TargetPath; 6302ffd6e2bSElvina Yakubova } 6312ffd6e2bSElvina Yakubova } 6322ffd6e2bSElvina Yakubova return nullptr; 6332ffd6e2bSElvina Yakubova } 6342ffd6e2bSElvina Yakubova 6352ffd6e2bSElvina Yakubova ProfileWriterContext readDescriptions() { 6362ffd6e2bSElvina Yakubova ProfileWriterContext Result; 6372ffd6e2bSElvina Yakubova char *BinPath = getBinaryPath(); 6382ffd6e2bSElvina Yakubova assert(BinPath && BinPath[0] != '\0', "failed to find binary path"); 6392ffd6e2bSElvina Yakubova 6402ffd6e2bSElvina Yakubova uint64_t FD = __open(BinPath, 6412ffd6e2bSElvina Yakubova /*flags=*/0 /*O_RDONLY*/, 6422ffd6e2bSElvina Yakubova /*mode=*/0666); 6432ffd6e2bSElvina Yakubova assert(static_cast<int64_t>(FD) > 0, "failed to open binary path"); 6442ffd6e2bSElvina Yakubova 645821480d2SRafael Auler Result.FileDesc = FD; 646821480d2SRafael Auler 647821480d2SRafael Auler // mmap our binary to memory 648821480d2SRafael Auler uint64_t Size = __lseek(FD, 0, 2 /*SEEK_END*/); 649821480d2SRafael Auler uint8_t *BinContents = reinterpret_cast<uint8_t *>( 650821480d2SRafael Auler __mmap(0, Size, 0x1 /* PROT_READ*/, 0x2 /* MAP_PRIVATE*/, FD, 0)); 651821480d2SRafael Auler Result.MMapPtr = BinContents; 652821480d2SRafael Auler Result.MMapSize = Size; 653821480d2SRafael Auler Elf64_Ehdr *Hdr = reinterpret_cast<Elf64_Ehdr *>(BinContents); 654821480d2SRafael Auler Elf64_Shdr *Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff); 655821480d2SRafael Auler Elf64_Shdr *StringTblHeader = reinterpret_cast<Elf64_Shdr *>( 656821480d2SRafael Auler BinContents + Hdr->e_shoff + Hdr->e_shstrndx * Hdr->e_shentsize); 657821480d2SRafael Auler 658821480d2SRafael Auler // Find .bolt.instr.tables with the data we need and set pointers to it 659821480d2SRafael Auler for (int I = 0; I < Hdr->e_shnum; ++I) { 660821480d2SRafael Auler char *SecName = reinterpret_cast<char *>( 661821480d2SRafael Auler BinContents + StringTblHeader->sh_offset + Shdr->sh_name); 662821480d2SRafael Auler if (compareStr(SecName, ".bolt.instr.tables", 64) != 0) { 663821480d2SRafael Auler Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff + 664821480d2SRafael Auler (I + 1) * Hdr->e_shentsize); 665821480d2SRafael Auler continue; 666821480d2SRafael Auler } 667821480d2SRafael Auler // Actual contents of the ELF note start after offset 20 decimal: 668821480d2SRafael Auler // Offset 0: Producer name size (4 bytes) 669821480d2SRafael Auler // Offset 4: Contents size (4 bytes) 670821480d2SRafael Auler // Offset 8: Note type (4 bytes) 671821480d2SRafael Auler // Offset 12: Producer name (BOLT\0) (5 bytes + align to 4-byte boundary) 672821480d2SRafael Auler // Offset 20: Contents 67316a497c6SRafael Auler uint32_t IndCallDescSize = 674cc4b2fb6SRafael Auler *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 20); 67516a497c6SRafael Auler uint32_t IndCallTargetDescSize = *reinterpret_cast<uint32_t *>( 67616a497c6SRafael Auler BinContents + Shdr->sh_offset + 24 + IndCallDescSize); 67716a497c6SRafael Auler uint32_t FuncDescSize = 67816a497c6SRafael Auler *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 28 + 67916a497c6SRafael Auler IndCallDescSize + IndCallTargetDescSize); 68016a497c6SRafael Auler Result.IndCallDescriptions = reinterpret_cast<IndCallDescription *>( 68116a497c6SRafael Auler BinContents + Shdr->sh_offset + 24); 68216a497c6SRafael Auler Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( 68316a497c6SRafael Auler BinContents + Shdr->sh_offset + 28 + IndCallDescSize); 68416a497c6SRafael Auler Result.FuncDescriptions = BinContents + Shdr->sh_offset + 32 + 68516a497c6SRafael Auler IndCallDescSize + IndCallTargetDescSize; 68616a497c6SRafael Auler Result.Strings = reinterpret_cast<char *>( 68716a497c6SRafael Auler BinContents + Shdr->sh_offset + 32 + IndCallDescSize + 68816a497c6SRafael Auler IndCallTargetDescSize + FuncDescSize); 689821480d2SRafael Auler return Result; 690821480d2SRafael Auler } 691821480d2SRafael Auler const char ErrMsg[] = 692821480d2SRafael Auler "BOLT instrumentation runtime error: could not find section " 693821480d2SRafael Auler ".bolt.instr.tables\n"; 694821480d2SRafael Auler reportError(ErrMsg, sizeof(ErrMsg)); 695821480d2SRafael Auler return Result; 696821480d2SRafael Auler } 697a0dd5b05SAlexander Shaposhnikov 698ba31344fSRafael Auler #else 699a0dd5b05SAlexander Shaposhnikov 70016a497c6SRafael Auler ProfileWriterContext readDescriptions() { 70116a497c6SRafael Auler ProfileWriterContext Result; 702a0dd5b05SAlexander Shaposhnikov uint8_t *Tables = _bolt_instr_tables_getter(); 703a0dd5b05SAlexander Shaposhnikov uint32_t IndCallDescSize = *reinterpret_cast<uint32_t *>(Tables); 704a0dd5b05SAlexander Shaposhnikov uint32_t IndCallTargetDescSize = 705a0dd5b05SAlexander Shaposhnikov *reinterpret_cast<uint32_t *>(Tables + 4 + IndCallDescSize); 706a0dd5b05SAlexander Shaposhnikov uint32_t FuncDescSize = *reinterpret_cast<uint32_t *>( 707a0dd5b05SAlexander Shaposhnikov Tables + 8 + IndCallDescSize + IndCallTargetDescSize); 708a0dd5b05SAlexander Shaposhnikov Result.IndCallDescriptions = 709a0dd5b05SAlexander Shaposhnikov reinterpret_cast<IndCallDescription *>(Tables + 4); 710a0dd5b05SAlexander Shaposhnikov Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( 711a0dd5b05SAlexander Shaposhnikov Tables + 8 + IndCallDescSize); 712a0dd5b05SAlexander Shaposhnikov Result.FuncDescriptions = 713a0dd5b05SAlexander Shaposhnikov Tables + 12 + IndCallDescSize + IndCallTargetDescSize; 714a0dd5b05SAlexander Shaposhnikov Result.Strings = reinterpret_cast<char *>( 715a0dd5b05SAlexander Shaposhnikov Tables + 12 + IndCallDescSize + IndCallTargetDescSize + FuncDescSize); 716ba31344fSRafael Auler return Result; 717ba31344fSRafael Auler } 718a0dd5b05SAlexander Shaposhnikov 719ba31344fSRafael Auler #endif 720821480d2SRafael Auler 721a0dd5b05SAlexander Shaposhnikov #if !defined(__APPLE__) 72216a497c6SRafael Auler /// Debug by printing overall metadata global numbers to check it is sane 72316a497c6SRafael Auler void printStats(const ProfileWriterContext &Ctx) { 724cc4b2fb6SRafael Auler char StatMsg[BufSize]; 725cc4b2fb6SRafael Auler char *StatPtr = StatMsg; 72616a497c6SRafael Auler StatPtr = 72716a497c6SRafael Auler strCopy(StatPtr, 72816a497c6SRafael Auler "\nBOLT INSTRUMENTATION RUNTIME STATISTICS\n\nIndCallDescSize: "); 729cc4b2fb6SRafael Auler StatPtr = intToStr(StatPtr, 73016a497c6SRafael Auler Ctx.FuncDescriptions - 73116a497c6SRafael Auler reinterpret_cast<uint8_t *>(Ctx.IndCallDescriptions), 732cc4b2fb6SRafael Auler 10); 733cc4b2fb6SRafael Auler StatPtr = strCopy(StatPtr, "\nFuncDescSize: "); 734cc4b2fb6SRafael Auler StatPtr = intToStr( 735cc4b2fb6SRafael Auler StatPtr, 73616a497c6SRafael Auler reinterpret_cast<uint8_t *>(Ctx.Strings) - Ctx.FuncDescriptions, 10); 73716a497c6SRafael Auler StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_ind_calls: "); 73816a497c6SRafael Auler StatPtr = intToStr(StatPtr, __bolt_instr_num_ind_calls, 10); 739cc4b2fb6SRafael Auler StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_funcs: "); 740cc4b2fb6SRafael Auler StatPtr = intToStr(StatPtr, __bolt_instr_num_funcs, 10); 741cc4b2fb6SRafael Auler StatPtr = strCopy(StatPtr, "\n"); 742cc4b2fb6SRafael Auler __write(2, StatMsg, StatPtr - StatMsg); 743cc4b2fb6SRafael Auler } 744a0dd5b05SAlexander Shaposhnikov #endif 745a0dd5b05SAlexander Shaposhnikov 746cc4b2fb6SRafael Auler 747cc4b2fb6SRafael Auler /// This is part of a simple CFG representation in memory, where we store 748cc4b2fb6SRafael Auler /// a dynamically sized array of input and output edges per node, and store 749cc4b2fb6SRafael Auler /// a dynamically sized array of nodes per graph. We also store the spanning 750cc4b2fb6SRafael Auler /// tree edges for that CFG in a separate array of nodes in 751cc4b2fb6SRafael Auler /// \p SpanningTreeNodes, while the regular nodes live in \p CFGNodes. 752cc4b2fb6SRafael Auler struct Edge { 753cc4b2fb6SRafael Auler uint32_t Node; // Index in nodes array regarding the destination of this edge 754cc4b2fb6SRafael Auler uint32_t ID; // Edge index in an array comprising all edges of the graph 755cc4b2fb6SRafael Auler }; 756cc4b2fb6SRafael Auler 757cc4b2fb6SRafael Auler /// A regular graph node or a spanning tree node 758cc4b2fb6SRafael Auler struct Node { 759cc4b2fb6SRafael Auler uint32_t NumInEdges{0}; // Input edge count used to size InEdge 760cc4b2fb6SRafael Auler uint32_t NumOutEdges{0}; // Output edge count used to size OutEdges 761cc4b2fb6SRafael Auler Edge *InEdges{nullptr}; // Created and managed by \p Graph 762cc4b2fb6SRafael Auler Edge *OutEdges{nullptr}; // ditto 763cc4b2fb6SRafael Auler }; 764cc4b2fb6SRafael Auler 765cc4b2fb6SRafael Auler /// Main class for CFG representation in memory. Manages object creation and 766cc4b2fb6SRafael Auler /// destruction, populates an array of CFG nodes as well as corresponding 767cc4b2fb6SRafael Auler /// spanning tree nodes. 768cc4b2fb6SRafael Auler struct Graph { 769cc4b2fb6SRafael Auler uint32_t NumNodes; 770cc4b2fb6SRafael Auler Node *CFGNodes; 771cc4b2fb6SRafael Auler Node *SpanningTreeNodes; 77216a497c6SRafael Auler uint64_t *EdgeFreqs; 77316a497c6SRafael Auler uint64_t *CallFreqs; 774cc4b2fb6SRafael Auler BumpPtrAllocator &Alloc; 77516a497c6SRafael Auler const FunctionDescription &D; 776cc4b2fb6SRafael Auler 77716a497c6SRafael Auler /// Reads a list of edges from function description \p D and builds 778cc4b2fb6SRafael Auler /// the graph from it. Allocates several internal dynamic structures that are 77916a497c6SRafael Auler /// later destroyed by ~Graph() and uses \p Alloc. D.LeafNodes contain all 780cc4b2fb6SRafael Auler /// spanning tree leaf nodes descriptions (their counters). They are the seed 781cc4b2fb6SRafael Auler /// used to compute the rest of the missing edge counts in a bottom-up 782cc4b2fb6SRafael Auler /// traversal of the spanning tree. 78316a497c6SRafael Auler Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, 78416a497c6SRafael Auler const uint64_t *Counters, ProfileWriterContext &Ctx); 785cc4b2fb6SRafael Auler ~Graph(); 786cc4b2fb6SRafael Auler void dump() const; 78716a497c6SRafael Auler 78816a497c6SRafael Auler private: 78916a497c6SRafael Auler void computeEdgeFrequencies(const uint64_t *Counters, 79016a497c6SRafael Auler ProfileWriterContext &Ctx); 79116a497c6SRafael Auler void dumpEdgeFreqs() const; 792cc4b2fb6SRafael Auler }; 793cc4b2fb6SRafael Auler 79416a497c6SRafael Auler Graph::Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, 79516a497c6SRafael Auler const uint64_t *Counters, ProfileWriterContext &Ctx) 79616a497c6SRafael Auler : Alloc(Alloc), D(D) { 797cc4b2fb6SRafael Auler DEBUG(reportNumber("G = 0x", (uint64_t)this, 16)); 798cc4b2fb6SRafael Auler // First pass to determine number of nodes 79916a497c6SRafael Auler int32_t MaxNodes = -1; 80016a497c6SRafael Auler CallFreqs = nullptr; 80116a497c6SRafael Auler EdgeFreqs = nullptr; 80216a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 80316a497c6SRafael Auler if (static_cast<int32_t>(D.Edges[I].FromNode) > MaxNodes) 80416a497c6SRafael Auler MaxNodes = D.Edges[I].FromNode; 80516a497c6SRafael Auler if (static_cast<int32_t>(D.Edges[I].ToNode) > MaxNodes) 80616a497c6SRafael Auler MaxNodes = D.Edges[I].ToNode; 807cc4b2fb6SRafael Auler } 808a0dd5b05SAlexander Shaposhnikov 80916a497c6SRafael Auler for (int I = 0; I < D.NumLeafNodes; ++I) { 81016a497c6SRafael Auler if (static_cast<int32_t>(D.LeafNodes[I].Node) > MaxNodes) 81116a497c6SRafael Auler MaxNodes = D.LeafNodes[I].Node; 812cc4b2fb6SRafael Auler } 81316a497c6SRafael Auler for (int I = 0; I < D.NumCalls; ++I) { 81416a497c6SRafael Auler if (static_cast<int32_t>(D.Calls[I].FromNode) > MaxNodes) 81516a497c6SRafael Auler MaxNodes = D.Calls[I].FromNode; 81616a497c6SRafael Auler } 81716a497c6SRafael Auler // No nodes? Nothing to do 81816a497c6SRafael Auler if (MaxNodes < 0) { 81916a497c6SRafael Auler DEBUG(report("No nodes!\n")); 820cc4b2fb6SRafael Auler CFGNodes = nullptr; 821cc4b2fb6SRafael Auler SpanningTreeNodes = nullptr; 822cc4b2fb6SRafael Auler NumNodes = 0; 823cc4b2fb6SRafael Auler return; 824cc4b2fb6SRafael Auler } 825cc4b2fb6SRafael Auler ++MaxNodes; 826cc4b2fb6SRafael Auler DEBUG(reportNumber("NumNodes = ", MaxNodes, 10)); 82716a497c6SRafael Auler NumNodes = static_cast<uint32_t>(MaxNodes); 828cc4b2fb6SRafael Auler 829cc4b2fb6SRafael Auler // Initial allocations 830cc4b2fb6SRafael Auler CFGNodes = new (Alloc) Node[MaxNodes]; 831a0dd5b05SAlexander Shaposhnikov 832cc4b2fb6SRafael Auler DEBUG(reportNumber("G->CFGNodes = 0x", (uint64_t)CFGNodes, 16)); 833cc4b2fb6SRafael Auler SpanningTreeNodes = new (Alloc) Node[MaxNodes]; 834cc4b2fb6SRafael Auler DEBUG(reportNumber("G->SpanningTreeNodes = 0x", 835cc4b2fb6SRafael Auler (uint64_t)SpanningTreeNodes, 16)); 836cc4b2fb6SRafael Auler 837cc4b2fb6SRafael Auler // Figure out how much to allocate to each vector (in/out edge sets) 83816a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 83916a497c6SRafael Auler CFGNodes[D.Edges[I].FromNode].NumOutEdges++; 84016a497c6SRafael Auler CFGNodes[D.Edges[I].ToNode].NumInEdges++; 84116a497c6SRafael Auler if (D.Edges[I].Counter != 0xffffffff) 842cc4b2fb6SRafael Auler continue; 843cc4b2fb6SRafael Auler 84416a497c6SRafael Auler SpanningTreeNodes[D.Edges[I].FromNode].NumOutEdges++; 84516a497c6SRafael Auler SpanningTreeNodes[D.Edges[I].ToNode].NumInEdges++; 846cc4b2fb6SRafael Auler } 847cc4b2fb6SRafael Auler 848cc4b2fb6SRafael Auler // Allocate in/out edge sets 849cc4b2fb6SRafael Auler for (int I = 0; I < MaxNodes; ++I) { 850cc4b2fb6SRafael Auler if (CFGNodes[I].NumInEdges > 0) 851cc4b2fb6SRafael Auler CFGNodes[I].InEdges = new (Alloc) Edge[CFGNodes[I].NumInEdges]; 852cc4b2fb6SRafael Auler if (CFGNodes[I].NumOutEdges > 0) 853cc4b2fb6SRafael Auler CFGNodes[I].OutEdges = new (Alloc) Edge[CFGNodes[I].NumOutEdges]; 854cc4b2fb6SRafael Auler if (SpanningTreeNodes[I].NumInEdges > 0) 855cc4b2fb6SRafael Auler SpanningTreeNodes[I].InEdges = 856cc4b2fb6SRafael Auler new (Alloc) Edge[SpanningTreeNodes[I].NumInEdges]; 857cc4b2fb6SRafael Auler if (SpanningTreeNodes[I].NumOutEdges > 0) 858cc4b2fb6SRafael Auler SpanningTreeNodes[I].OutEdges = 859cc4b2fb6SRafael Auler new (Alloc) Edge[SpanningTreeNodes[I].NumOutEdges]; 860cc4b2fb6SRafael Auler CFGNodes[I].NumInEdges = 0; 861cc4b2fb6SRafael Auler CFGNodes[I].NumOutEdges = 0; 862cc4b2fb6SRafael Auler SpanningTreeNodes[I].NumInEdges = 0; 863cc4b2fb6SRafael Auler SpanningTreeNodes[I].NumOutEdges = 0; 864cc4b2fb6SRafael Auler } 865cc4b2fb6SRafael Auler 866cc4b2fb6SRafael Auler // Fill in/out edge sets 86716a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 86816a497c6SRafael Auler const uint32_t Src = D.Edges[I].FromNode; 86916a497c6SRafael Auler const uint32_t Dst = D.Edges[I].ToNode; 870cc4b2fb6SRafael Auler Edge *E = &CFGNodes[Src].OutEdges[CFGNodes[Src].NumOutEdges++]; 871cc4b2fb6SRafael Auler E->Node = Dst; 872cc4b2fb6SRafael Auler E->ID = I; 873cc4b2fb6SRafael Auler 874cc4b2fb6SRafael Auler E = &CFGNodes[Dst].InEdges[CFGNodes[Dst].NumInEdges++]; 875cc4b2fb6SRafael Auler E->Node = Src; 876cc4b2fb6SRafael Auler E->ID = I; 877cc4b2fb6SRafael Auler 87816a497c6SRafael Auler if (D.Edges[I].Counter != 0xffffffff) 879cc4b2fb6SRafael Auler continue; 880cc4b2fb6SRafael Auler 881cc4b2fb6SRafael Auler E = &SpanningTreeNodes[Src] 882cc4b2fb6SRafael Auler .OutEdges[SpanningTreeNodes[Src].NumOutEdges++]; 883cc4b2fb6SRafael Auler E->Node = Dst; 884cc4b2fb6SRafael Auler E->ID = I; 885cc4b2fb6SRafael Auler 886cc4b2fb6SRafael Auler E = &SpanningTreeNodes[Dst] 887cc4b2fb6SRafael Auler .InEdges[SpanningTreeNodes[Dst].NumInEdges++]; 888cc4b2fb6SRafael Auler E->Node = Src; 889cc4b2fb6SRafael Auler E->ID = I; 890cc4b2fb6SRafael Auler } 89116a497c6SRafael Auler 89216a497c6SRafael Auler computeEdgeFrequencies(Counters, Ctx); 893cc4b2fb6SRafael Auler } 894cc4b2fb6SRafael Auler 895cc4b2fb6SRafael Auler Graph::~Graph() { 89616a497c6SRafael Auler if (CallFreqs) 89716a497c6SRafael Auler Alloc.deallocate(CallFreqs); 89816a497c6SRafael Auler if (EdgeFreqs) 89916a497c6SRafael Auler Alloc.deallocate(EdgeFreqs); 900cc4b2fb6SRafael Auler for (int I = NumNodes - 1; I >= 0; --I) { 901cc4b2fb6SRafael Auler if (SpanningTreeNodes[I].OutEdges) 902cc4b2fb6SRafael Auler Alloc.deallocate(SpanningTreeNodes[I].OutEdges); 903cc4b2fb6SRafael Auler if (SpanningTreeNodes[I].InEdges) 904cc4b2fb6SRafael Auler Alloc.deallocate(SpanningTreeNodes[I].InEdges); 905cc4b2fb6SRafael Auler if (CFGNodes[I].OutEdges) 906cc4b2fb6SRafael Auler Alloc.deallocate(CFGNodes[I].OutEdges); 907cc4b2fb6SRafael Auler if (CFGNodes[I].InEdges) 908cc4b2fb6SRafael Auler Alloc.deallocate(CFGNodes[I].InEdges); 909cc4b2fb6SRafael Auler } 910cc4b2fb6SRafael Auler if (SpanningTreeNodes) 911cc4b2fb6SRafael Auler Alloc.deallocate(SpanningTreeNodes); 912cc4b2fb6SRafael Auler if (CFGNodes) 913cc4b2fb6SRafael Auler Alloc.deallocate(CFGNodes); 914cc4b2fb6SRafael Auler } 915cc4b2fb6SRafael Auler 916cc4b2fb6SRafael Auler void Graph::dump() const { 917cc4b2fb6SRafael Auler reportNumber("Dumping graph with number of nodes: ", NumNodes, 10); 918cc4b2fb6SRafael Auler report(" Full graph:\n"); 919cc4b2fb6SRafael Auler for (int I = 0; I < NumNodes; ++I) { 920cc4b2fb6SRafael Auler const Node *N = &CFGNodes[I]; 921cc4b2fb6SRafael Auler reportNumber(" Node #", I, 10); 922cc4b2fb6SRafael Auler reportNumber(" InEdges total ", N->NumInEdges, 10); 923cc4b2fb6SRafael Auler for (int J = 0; J < N->NumInEdges; ++J) 924cc4b2fb6SRafael Auler reportNumber(" ", N->InEdges[J].Node, 10); 925cc4b2fb6SRafael Auler reportNumber(" OutEdges total ", N->NumOutEdges, 10); 926cc4b2fb6SRafael Auler for (int J = 0; J < N->NumOutEdges; ++J) 927cc4b2fb6SRafael Auler reportNumber(" ", N->OutEdges[J].Node, 10); 928cc4b2fb6SRafael Auler report("\n"); 929cc4b2fb6SRafael Auler } 930cc4b2fb6SRafael Auler report(" Spanning tree:\n"); 931cc4b2fb6SRafael Auler for (int I = 0; I < NumNodes; ++I) { 932cc4b2fb6SRafael Auler const Node *N = &SpanningTreeNodes[I]; 933cc4b2fb6SRafael Auler reportNumber(" Node #", I, 10); 934cc4b2fb6SRafael Auler reportNumber(" InEdges total ", N->NumInEdges, 10); 935cc4b2fb6SRafael Auler for (int J = 0; J < N->NumInEdges; ++J) 936cc4b2fb6SRafael Auler reportNumber(" ", N->InEdges[J].Node, 10); 937cc4b2fb6SRafael Auler reportNumber(" OutEdges total ", N->NumOutEdges, 10); 938cc4b2fb6SRafael Auler for (int J = 0; J < N->NumOutEdges; ++J) 939cc4b2fb6SRafael Auler reportNumber(" ", N->OutEdges[J].Node, 10); 940cc4b2fb6SRafael Auler report("\n"); 941cc4b2fb6SRafael Auler } 942cc4b2fb6SRafael Auler } 943cc4b2fb6SRafael Auler 94416a497c6SRafael Auler void Graph::dumpEdgeFreqs() const { 94516a497c6SRafael Auler reportNumber( 94616a497c6SRafael Auler "Dumping edge frequencies for graph with num edges: ", D.NumEdges, 10); 94716a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 94816a497c6SRafael Auler reportNumber("* Src: ", D.Edges[I].FromNode, 10); 94916a497c6SRafael Auler reportNumber(" Dst: ", D.Edges[I].ToNode, 10); 950cc4b2fb6SRafael Auler reportNumber(" Cnt: ", EdgeFreqs[I], 10); 951cc4b2fb6SRafael Auler } 952cc4b2fb6SRafael Auler } 953cc4b2fb6SRafael Auler 95416a497c6SRafael Auler /// Auxiliary map structure for fast lookups of which calls map to each node of 95516a497c6SRafael Auler /// the function CFG 95616a497c6SRafael Auler struct NodeToCallsMap { 95716a497c6SRafael Auler struct MapEntry { 95816a497c6SRafael Auler uint32_t NumCalls; 95916a497c6SRafael Auler uint32_t *Calls; 96016a497c6SRafael Auler }; 96116a497c6SRafael Auler MapEntry *Entries; 96216a497c6SRafael Auler BumpPtrAllocator &Alloc; 96316a497c6SRafael Auler const uint32_t NumNodes; 964cc4b2fb6SRafael Auler 96516a497c6SRafael Auler NodeToCallsMap(BumpPtrAllocator &Alloc, const FunctionDescription &D, 96616a497c6SRafael Auler uint32_t NumNodes) 96716a497c6SRafael Auler : Alloc(Alloc), NumNodes(NumNodes) { 96816a497c6SRafael Auler Entries = new (Alloc, 0) MapEntry[NumNodes]; 96916a497c6SRafael Auler for (int I = 0; I < D.NumCalls; ++I) { 97016a497c6SRafael Auler DEBUG(reportNumber("Registering call in node ", D.Calls[I].FromNode, 10)); 97116a497c6SRafael Auler ++Entries[D.Calls[I].FromNode].NumCalls; 97216a497c6SRafael Auler } 97316a497c6SRafael Auler for (int I = 0; I < NumNodes; ++I) { 97416a497c6SRafael Auler Entries[I].Calls = Entries[I].NumCalls ? new (Alloc) 97516a497c6SRafael Auler uint32_t[Entries[I].NumCalls] 97616a497c6SRafael Auler : nullptr; 97716a497c6SRafael Auler Entries[I].NumCalls = 0; 97816a497c6SRafael Auler } 97916a497c6SRafael Auler for (int I = 0; I < D.NumCalls; ++I) { 980c7306cc2SAmir Ayupov MapEntry &Entry = Entries[D.Calls[I].FromNode]; 98116a497c6SRafael Auler Entry.Calls[Entry.NumCalls++] = I; 98216a497c6SRafael Auler } 98316a497c6SRafael Auler } 98416a497c6SRafael Auler 98516a497c6SRafael Auler /// Set the frequency of all calls in node \p NodeID to Freq. However, if 98616a497c6SRafael Auler /// the calls have their own counters and do not depend on the basic block 98716a497c6SRafael Auler /// counter, this means they have landing pads and throw exceptions. In this 98816a497c6SRafael Auler /// case, set their frequency with their counters and return the maximum 98916a497c6SRafael Auler /// value observed in such counters. This will be used as the new frequency 99016a497c6SRafael Auler /// at basic block entry. This is used to fix the CFG edge frequencies in the 99116a497c6SRafael Auler /// presence of exceptions. 99216a497c6SRafael Auler uint64_t visitAllCallsIn(uint32_t NodeID, uint64_t Freq, uint64_t *CallFreqs, 99316a497c6SRafael Auler const FunctionDescription &D, 99416a497c6SRafael Auler const uint64_t *Counters, 99516a497c6SRafael Auler ProfileWriterContext &Ctx) const { 996c7306cc2SAmir Ayupov const MapEntry &Entry = Entries[NodeID]; 99716a497c6SRafael Auler uint64_t MaxValue = 0ull; 99816a497c6SRafael Auler for (int I = 0, E = Entry.NumCalls; I != E; ++I) { 999c7306cc2SAmir Ayupov const uint32_t CallID = Entry.Calls[I]; 100016a497c6SRafael Auler DEBUG(reportNumber(" Setting freq for call ID: ", CallID, 10)); 1001c7306cc2SAmir Ayupov const CallDescription &CallDesc = D.Calls[CallID]; 100216a497c6SRafael Auler if (CallDesc.Counter == 0xffffffff) { 100316a497c6SRafael Auler CallFreqs[CallID] = Freq; 100416a497c6SRafael Auler DEBUG(reportNumber(" with : ", Freq, 10)); 100516a497c6SRafael Auler } else { 1006c7306cc2SAmir Ayupov const uint64_t CounterVal = Counters[CallDesc.Counter]; 100716a497c6SRafael Auler CallFreqs[CallID] = CounterVal; 100816a497c6SRafael Auler MaxValue = CounterVal > MaxValue ? CounterVal : MaxValue; 100916a497c6SRafael Auler DEBUG(reportNumber(" with (private counter) : ", CounterVal, 10)); 101016a497c6SRafael Auler } 101116a497c6SRafael Auler DEBUG(reportNumber(" Address: 0x", CallDesc.TargetAddress, 16)); 101216a497c6SRafael Auler if (CallFreqs[CallID] > 0) 101316a497c6SRafael Auler Ctx.CallFlowTable->get(CallDesc.TargetAddress).Calls += 101416a497c6SRafael Auler CallFreqs[CallID]; 101516a497c6SRafael Auler } 101616a497c6SRafael Auler return MaxValue; 101716a497c6SRafael Auler } 101816a497c6SRafael Auler 101916a497c6SRafael Auler ~NodeToCallsMap() { 102016a497c6SRafael Auler for (int I = NumNodes - 1; I >= 0; --I) { 102116a497c6SRafael Auler if (Entries[I].Calls) 102216a497c6SRafael Auler Alloc.deallocate(Entries[I].Calls); 102316a497c6SRafael Auler } 102416a497c6SRafael Auler Alloc.deallocate(Entries); 102516a497c6SRafael Auler } 102616a497c6SRafael Auler }; 102716a497c6SRafael Auler 102816a497c6SRafael Auler /// Fill an array with the frequency of each edge in the function represented 102916a497c6SRafael Auler /// by G, as well as another array for each call. 103016a497c6SRafael Auler void Graph::computeEdgeFrequencies(const uint64_t *Counters, 103116a497c6SRafael Auler ProfileWriterContext &Ctx) { 103216a497c6SRafael Auler if (NumNodes == 0) 103316a497c6SRafael Auler return; 103416a497c6SRafael Auler 103516a497c6SRafael Auler EdgeFreqs = D.NumEdges ? new (Alloc, 0) uint64_t [D.NumEdges] : nullptr; 103616a497c6SRafael Auler CallFreqs = D.NumCalls ? new (Alloc, 0) uint64_t [D.NumCalls] : nullptr; 103716a497c6SRafael Auler 103816a497c6SRafael Auler // Setup a lookup for calls present in each node (BB) 103916a497c6SRafael Auler NodeToCallsMap *CallMap = new (Alloc) NodeToCallsMap(Alloc, D, NumNodes); 1040cc4b2fb6SRafael Auler 1041cc4b2fb6SRafael Auler // Perform a bottom-up, BFS traversal of the spanning tree in G. Edges in the 1042cc4b2fb6SRafael Auler // spanning tree don't have explicit counters. We must infer their value using 1043cc4b2fb6SRafael Auler // a linear combination of other counters (sum of counters of the outgoing 1044cc4b2fb6SRafael Auler // edges minus sum of counters of the incoming edges). 104516a497c6SRafael Auler uint32_t *Stack = new (Alloc) uint32_t [NumNodes]; 1046cc4b2fb6SRafael Auler uint32_t StackTop = 0; 1047cc4b2fb6SRafael Auler enum Status : uint8_t { S_NEW = 0, S_VISITING, S_VISITED }; 104816a497c6SRafael Auler Status *Visited = new (Alloc, 0) Status[NumNodes]; 104916a497c6SRafael Auler uint64_t *LeafFrequency = new (Alloc, 0) uint64_t[NumNodes]; 105016a497c6SRafael Auler uint64_t *EntryAddress = new (Alloc, 0) uint64_t[NumNodes]; 1051cc4b2fb6SRafael Auler 1052cc4b2fb6SRafael Auler // Setup a fast lookup for frequency of leaf nodes, which have special 1053cc4b2fb6SRafael Auler // basic block frequency instrumentation (they are not edge profiled). 105416a497c6SRafael Auler for (int I = 0; I < D.NumLeafNodes; ++I) { 105516a497c6SRafael Auler LeafFrequency[D.LeafNodes[I].Node] = Counters[D.LeafNodes[I].Counter]; 1056cc4b2fb6SRafael Auler DEBUG({ 105716a497c6SRafael Auler if (Counters[D.LeafNodes[I].Counter] > 0) { 105816a497c6SRafael Auler reportNumber("Leaf Node# ", D.LeafNodes[I].Node, 10); 105916a497c6SRafael Auler reportNumber(" Counter: ", Counters[D.LeafNodes[I].Counter], 10); 1060cc4b2fb6SRafael Auler } 1061cc4b2fb6SRafael Auler }); 106216a497c6SRafael Auler } 106316a497c6SRafael Auler for (int I = 0; I < D.NumEntryNodes; ++I) { 106416a497c6SRafael Auler EntryAddress[D.EntryNodes[I].Node] = D.EntryNodes[I].Address; 106516a497c6SRafael Auler DEBUG({ 106616a497c6SRafael Auler reportNumber("Entry Node# ", D.EntryNodes[I].Node, 10); 106716a497c6SRafael Auler reportNumber(" Address: ", D.EntryNodes[I].Address, 16); 106816a497c6SRafael Auler }); 1069cc4b2fb6SRafael Auler } 1070cc4b2fb6SRafael Auler // Add all root nodes to the stack 107116a497c6SRafael Auler for (int I = 0; I < NumNodes; ++I) { 107216a497c6SRafael Auler if (SpanningTreeNodes[I].NumInEdges == 0) 1073cc4b2fb6SRafael Auler Stack[StackTop++] = I; 1074cc4b2fb6SRafael Auler } 1075cc4b2fb6SRafael Auler // Empty stack? 1076cc4b2fb6SRafael Auler if (StackTop == 0) { 107716a497c6SRafael Auler DEBUG(report("Empty stack!\n")); 107816a497c6SRafael Auler Alloc.deallocate(EntryAddress); 1079cc4b2fb6SRafael Auler Alloc.deallocate(LeafFrequency); 1080cc4b2fb6SRafael Auler Alloc.deallocate(Visited); 1081cc4b2fb6SRafael Auler Alloc.deallocate(Stack); 108216a497c6SRafael Auler CallMap->~NodeToCallsMap(); 108316a497c6SRafael Auler Alloc.deallocate(CallMap); 108416a497c6SRafael Auler if (CallFreqs) 108516a497c6SRafael Auler Alloc.deallocate(CallFreqs); 108616a497c6SRafael Auler if (EdgeFreqs) 108716a497c6SRafael Auler Alloc.deallocate(EdgeFreqs); 108816a497c6SRafael Auler EdgeFreqs = nullptr; 108916a497c6SRafael Auler CallFreqs = nullptr; 109016a497c6SRafael Auler return; 1091cc4b2fb6SRafael Auler } 1092cc4b2fb6SRafael Auler // Add all known edge counts, will infer the rest 109316a497c6SRafael Auler for (int I = 0; I < D.NumEdges; ++I) { 109416a497c6SRafael Auler const uint32_t C = D.Edges[I].Counter; 1095cc4b2fb6SRafael Auler if (C == 0xffffffff) // inferred counter - we will compute its value 1096cc4b2fb6SRafael Auler continue; 109716a497c6SRafael Auler EdgeFreqs[I] = Counters[C]; 1098cc4b2fb6SRafael Auler } 1099cc4b2fb6SRafael Auler 1100cc4b2fb6SRafael Auler while (StackTop > 0) { 1101cc4b2fb6SRafael Auler const uint32_t Cur = Stack[--StackTop]; 1102cc4b2fb6SRafael Auler DEBUG({ 1103cc4b2fb6SRafael Auler if (Visited[Cur] == S_VISITING) 1104cc4b2fb6SRafael Auler report("(visiting) "); 1105cc4b2fb6SRafael Auler else 1106cc4b2fb6SRafael Auler report("(new) "); 1107cc4b2fb6SRafael Auler reportNumber("Cur: ", Cur, 10); 1108cc4b2fb6SRafael Auler }); 1109cc4b2fb6SRafael Auler 1110cc4b2fb6SRafael Auler // This shouldn't happen in a tree 1111cc4b2fb6SRafael Auler assert(Visited[Cur] != S_VISITED, "should not have visited nodes in stack"); 1112cc4b2fb6SRafael Auler if (Visited[Cur] == S_NEW) { 1113cc4b2fb6SRafael Auler Visited[Cur] = S_VISITING; 1114cc4b2fb6SRafael Auler Stack[StackTop++] = Cur; 111516a497c6SRafael Auler assert(StackTop <= NumNodes, "stack grew too large"); 111616a497c6SRafael Auler for (int I = 0, E = SpanningTreeNodes[Cur].NumOutEdges; I < E; ++I) { 111716a497c6SRafael Auler const uint32_t Succ = SpanningTreeNodes[Cur].OutEdges[I].Node; 1118cc4b2fb6SRafael Auler Stack[StackTop++] = Succ; 111916a497c6SRafael Auler assert(StackTop <= NumNodes, "stack grew too large"); 1120cc4b2fb6SRafael Auler } 1121cc4b2fb6SRafael Auler continue; 1122cc4b2fb6SRafael Auler } 1123cc4b2fb6SRafael Auler Visited[Cur] = S_VISITED; 1124cc4b2fb6SRafael Auler 1125cc4b2fb6SRafael Auler // Establish our node frequency based on outgoing edges, which should all be 1126cc4b2fb6SRafael Auler // resolved by now. 1127cc4b2fb6SRafael Auler int64_t CurNodeFreq = LeafFrequency[Cur]; 1128cc4b2fb6SRafael Auler // Not a leaf? 1129cc4b2fb6SRafael Auler if (!CurNodeFreq) { 113016a497c6SRafael Auler for (int I = 0, E = CFGNodes[Cur].NumOutEdges; I != E; ++I) { 113116a497c6SRafael Auler const uint32_t SuccEdge = CFGNodes[Cur].OutEdges[I].ID; 113216a497c6SRafael Auler CurNodeFreq += EdgeFreqs[SuccEdge]; 1133cc4b2fb6SRafael Auler } 1134cc4b2fb6SRafael Auler } 113516a497c6SRafael Auler if (CurNodeFreq < 0) 113616a497c6SRafael Auler CurNodeFreq = 0; 113716a497c6SRafael Auler 113816a497c6SRafael Auler const uint64_t CallFreq = CallMap->visitAllCallsIn( 113916a497c6SRafael Auler Cur, CurNodeFreq > 0 ? CurNodeFreq : 0, CallFreqs, D, Counters, Ctx); 114016a497c6SRafael Auler 114116a497c6SRafael Auler // Exception handling affected our output flow? Fix with calls info 114216a497c6SRafael Auler DEBUG({ 114316a497c6SRafael Auler if (CallFreq > CurNodeFreq) 114416a497c6SRafael Auler report("Bumping node frequency with call info\n"); 114516a497c6SRafael Auler }); 114616a497c6SRafael Auler CurNodeFreq = CallFreq > CurNodeFreq ? CallFreq : CurNodeFreq; 114716a497c6SRafael Auler 114816a497c6SRafael Auler if (CurNodeFreq > 0) { 114916a497c6SRafael Auler if (uint64_t Addr = EntryAddress[Cur]) { 115016a497c6SRafael Auler DEBUG( 115116a497c6SRafael Auler reportNumber(" Setting flow at entry point address 0x", Addr, 16)); 115216a497c6SRafael Auler DEBUG(reportNumber(" with: ", CurNodeFreq, 10)); 115316a497c6SRafael Auler Ctx.CallFlowTable->get(Addr).Val = CurNodeFreq; 115416a497c6SRafael Auler } 115516a497c6SRafael Auler } 115616a497c6SRafael Auler 115716a497c6SRafael Auler // No parent? Reached a tree root, limit to call frequency updating. 115816a497c6SRafael Auler if (SpanningTreeNodes[Cur].NumInEdges == 0) { 115916a497c6SRafael Auler continue; 116016a497c6SRafael Auler } 116116a497c6SRafael Auler 116216a497c6SRafael Auler assert(SpanningTreeNodes[Cur].NumInEdges == 1, "must have 1 parent"); 116316a497c6SRafael Auler const uint32_t Parent = SpanningTreeNodes[Cur].InEdges[0].Node; 116416a497c6SRafael Auler const uint32_t ParentEdge = SpanningTreeNodes[Cur].InEdges[0].ID; 116516a497c6SRafael Auler 1166cc4b2fb6SRafael Auler // Calculate parent edge freq. 116716a497c6SRafael Auler int64_t ParentEdgeFreq = CurNodeFreq; 116816a497c6SRafael Auler for (int I = 0, E = CFGNodes[Cur].NumInEdges; I != E; ++I) { 116916a497c6SRafael Auler const uint32_t PredEdge = CFGNodes[Cur].InEdges[I].ID; 117016a497c6SRafael Auler ParentEdgeFreq -= EdgeFreqs[PredEdge]; 1171cc4b2fb6SRafael Auler } 117216a497c6SRafael Auler 1173cc4b2fb6SRafael Auler // Sometimes the conservative CFG that BOLT builds will lead to incorrect 1174cc4b2fb6SRafael Auler // flow computation. For example, in a BB that transitively calls the exit 1175cc4b2fb6SRafael Auler // syscall, BOLT will add a fall-through successor even though it should not 1176cc4b2fb6SRafael Auler // have any successors. So this block execution will likely be wrong. We 1177cc4b2fb6SRafael Auler // tolerate this imperfection since this case should be quite infrequent. 1178cc4b2fb6SRafael Auler if (ParentEdgeFreq < 0) { 117916a497c6SRafael Auler DEBUG(dumpEdgeFreqs()); 1180cc4b2fb6SRafael Auler DEBUG(report("WARNING: incorrect flow")); 1181cc4b2fb6SRafael Auler ParentEdgeFreq = 0; 1182cc4b2fb6SRafael Auler } 1183cc4b2fb6SRafael Auler DEBUG(reportNumber(" Setting freq for ParentEdge: ", ParentEdge, 10)); 1184cc4b2fb6SRafael Auler DEBUG(reportNumber(" with ParentEdgeFreq: ", ParentEdgeFreq, 10)); 118516a497c6SRafael Auler EdgeFreqs[ParentEdge] = ParentEdgeFreq; 1186cc4b2fb6SRafael Auler } 1187cc4b2fb6SRafael Auler 118816a497c6SRafael Auler Alloc.deallocate(EntryAddress); 1189cc4b2fb6SRafael Auler Alloc.deallocate(LeafFrequency); 1190cc4b2fb6SRafael Auler Alloc.deallocate(Visited); 1191cc4b2fb6SRafael Auler Alloc.deallocate(Stack); 119216a497c6SRafael Auler CallMap->~NodeToCallsMap(); 119316a497c6SRafael Auler Alloc.deallocate(CallMap); 119416a497c6SRafael Auler DEBUG(dumpEdgeFreqs()); 1195cc4b2fb6SRafael Auler } 1196cc4b2fb6SRafael Auler 119716a497c6SRafael Auler /// Write to \p FD all of the edge profiles for function \p FuncDesc. Uses 119816a497c6SRafael Auler /// \p Alloc to allocate helper dynamic structures used to compute profile for 119916a497c6SRafael Auler /// edges that we do not explictly instrument. 120016a497c6SRafael Auler const uint8_t *writeFunctionProfile(int FD, ProfileWriterContext &Ctx, 120116a497c6SRafael Auler const uint8_t *FuncDesc, 120216a497c6SRafael Auler BumpPtrAllocator &Alloc) { 120316a497c6SRafael Auler const FunctionDescription F(FuncDesc); 120416a497c6SRafael Auler const uint8_t *next = FuncDesc + F.getSize(); 1205cc4b2fb6SRafael Auler 1206a0dd5b05SAlexander Shaposhnikov #if !defined(__APPLE__) 1207a0dd5b05SAlexander Shaposhnikov uint64_t *bolt_instr_locations = __bolt_instr_locations; 1208a0dd5b05SAlexander Shaposhnikov #else 1209a0dd5b05SAlexander Shaposhnikov uint64_t *bolt_instr_locations = _bolt_instr_locations_getter(); 1210a0dd5b05SAlexander Shaposhnikov #endif 1211a0dd5b05SAlexander Shaposhnikov 1212cc4b2fb6SRafael Auler // Skip funcs we know are cold 1213cc4b2fb6SRafael Auler #ifndef ENABLE_DEBUG 121416a497c6SRafael Auler uint64_t CountersFreq = 0; 121516a497c6SRafael Auler for (int I = 0; I < F.NumLeafNodes; ++I) { 1216a0dd5b05SAlexander Shaposhnikov CountersFreq += bolt_instr_locations[F.LeafNodes[I].Counter]; 1217cc4b2fb6SRafael Auler } 121816a497c6SRafael Auler if (CountersFreq == 0) { 121916a497c6SRafael Auler for (int I = 0; I < F.NumEdges; ++I) { 122016a497c6SRafael Auler const uint32_t C = F.Edges[I].Counter; 122116a497c6SRafael Auler if (C == 0xffffffff) 122216a497c6SRafael Auler continue; 1223a0dd5b05SAlexander Shaposhnikov CountersFreq += bolt_instr_locations[C]; 122416a497c6SRafael Auler } 122516a497c6SRafael Auler if (CountersFreq == 0) { 122616a497c6SRafael Auler for (int I = 0; I < F.NumCalls; ++I) { 122716a497c6SRafael Auler const uint32_t C = F.Calls[I].Counter; 122816a497c6SRafael Auler if (C == 0xffffffff) 122916a497c6SRafael Auler continue; 1230a0dd5b05SAlexander Shaposhnikov CountersFreq += bolt_instr_locations[C]; 123116a497c6SRafael Auler } 123216a497c6SRafael Auler if (CountersFreq == 0) 1233cc4b2fb6SRafael Auler return next; 123416a497c6SRafael Auler } 123516a497c6SRafael Auler } 1236cc4b2fb6SRafael Auler #endif 1237cc4b2fb6SRafael Auler 1238a0dd5b05SAlexander Shaposhnikov Graph *G = new (Alloc) Graph(Alloc, F, bolt_instr_locations, Ctx); 1239cc4b2fb6SRafael Auler DEBUG(G->dump()); 1240a0dd5b05SAlexander Shaposhnikov 124116a497c6SRafael Auler if (!G->EdgeFreqs && !G->CallFreqs) { 1242cc4b2fb6SRafael Auler G->~Graph(); 1243cc4b2fb6SRafael Auler Alloc.deallocate(G); 1244cc4b2fb6SRafael Auler return next; 1245cc4b2fb6SRafael Auler } 1246cc4b2fb6SRafael Auler 124716a497c6SRafael Auler for (int I = 0; I < F.NumEdges; ++I) { 124816a497c6SRafael Auler const uint64_t Freq = G->EdgeFreqs[I]; 1249cc4b2fb6SRafael Auler if (Freq == 0) 1250cc4b2fb6SRafael Auler continue; 125116a497c6SRafael Auler const EdgeDescription *Desc = &F.Edges[I]; 1252cc4b2fb6SRafael Auler char LineBuf[BufSize]; 1253cc4b2fb6SRafael Auler char *Ptr = LineBuf; 125416a497c6SRafael Auler Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); 125516a497c6SRafael Auler Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); 1256cc4b2fb6SRafael Auler Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 22); 1257cc4b2fb6SRafael Auler Ptr = intToStr(Ptr, Freq, 10); 1258cc4b2fb6SRafael Auler *Ptr++ = '\n'; 1259cc4b2fb6SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 1260cc4b2fb6SRafael Auler } 1261cc4b2fb6SRafael Auler 126216a497c6SRafael Auler for (int I = 0; I < F.NumCalls; ++I) { 126316a497c6SRafael Auler const uint64_t Freq = G->CallFreqs[I]; 126416a497c6SRafael Auler if (Freq == 0) 126516a497c6SRafael Auler continue; 126616a497c6SRafael Auler char LineBuf[BufSize]; 126716a497c6SRafael Auler char *Ptr = LineBuf; 126816a497c6SRafael Auler const CallDescription *Desc = &F.Calls[I]; 126916a497c6SRafael Auler Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); 127016a497c6SRafael Auler Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); 127116a497c6SRafael Auler Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 127216a497c6SRafael Auler Ptr = intToStr(Ptr, Freq, 10); 127316a497c6SRafael Auler *Ptr++ = '\n'; 127416a497c6SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 127516a497c6SRafael Auler } 127616a497c6SRafael Auler 1277cc4b2fb6SRafael Auler G->~Graph(); 1278cc4b2fb6SRafael Auler Alloc.deallocate(G); 1279cc4b2fb6SRafael Auler return next; 1280cc4b2fb6SRafael Auler } 1281cc4b2fb6SRafael Auler 1282a0dd5b05SAlexander Shaposhnikov #if !defined(__APPLE__) 128316a497c6SRafael Auler const IndCallTargetDescription * 128416a497c6SRafael Auler ProfileWriterContext::lookupIndCallTarget(uint64_t Target) const { 128516a497c6SRafael Auler uint32_t B = 0; 128616a497c6SRafael Auler uint32_t E = __bolt_instr_num_ind_targets; 128716a497c6SRafael Auler if (E == 0) 128816a497c6SRafael Auler return nullptr; 128916a497c6SRafael Auler do { 129016a497c6SRafael Auler uint32_t I = (E - B) / 2 + B; 129116a497c6SRafael Auler if (IndCallTargets[I].Address == Target) 129216a497c6SRafael Auler return &IndCallTargets[I]; 129316a497c6SRafael Auler if (IndCallTargets[I].Address < Target) 129416a497c6SRafael Auler B = I + 1; 129516a497c6SRafael Auler else 129616a497c6SRafael Auler E = I; 129716a497c6SRafael Auler } while (B < E); 129816a497c6SRafael Auler return nullptr; 1299cc4b2fb6SRafael Auler } 130062aa74f8SRafael Auler 130116a497c6SRafael Auler /// Write a single indirect call <src, target> pair to the fdata file 130216a497c6SRafael Auler void visitIndCallCounter(IndirectCallHashTable::MapEntry &Entry, 130316a497c6SRafael Auler int FD, int CallsiteID, 130416a497c6SRafael Auler ProfileWriterContext *Ctx) { 130516a497c6SRafael Auler if (Entry.Val == 0) 130616a497c6SRafael Auler return; 130716a497c6SRafael Auler DEBUG(reportNumber("Target func 0x", Entry.Key, 16)); 130816a497c6SRafael Auler DEBUG(reportNumber("Target freq: ", Entry.Val, 10)); 130916a497c6SRafael Auler const IndCallDescription *CallsiteDesc = 131016a497c6SRafael Auler &Ctx->IndCallDescriptions[CallsiteID]; 131116a497c6SRafael Auler const IndCallTargetDescription *TargetDesc = 131216a497c6SRafael Auler Ctx->lookupIndCallTarget(Entry.Key); 131316a497c6SRafael Auler if (!TargetDesc) { 131416a497c6SRafael Auler DEBUG(report("Failed to lookup indirect call target\n")); 1315cc4b2fb6SRafael Auler char LineBuf[BufSize]; 131662aa74f8SRafael Auler char *Ptr = LineBuf; 131716a497c6SRafael Auler Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); 131816a497c6SRafael Auler Ptr = strCopy(Ptr, "0 [unknown] 0 0 ", BufSize - (Ptr - LineBuf) - 40); 131916a497c6SRafael Auler Ptr = intToStr(Ptr, Entry.Val, 10); 132016a497c6SRafael Auler *Ptr++ = '\n'; 132116a497c6SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 132216a497c6SRafael Auler return; 132316a497c6SRafael Auler } 132416a497c6SRafael Auler Ctx->CallFlowTable->get(TargetDesc->Address).Calls += Entry.Val; 132516a497c6SRafael Auler char LineBuf[BufSize]; 132616a497c6SRafael Auler char *Ptr = LineBuf; 132716a497c6SRafael Auler Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); 132816a497c6SRafael Auler Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); 1329cc4b2fb6SRafael Auler Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 133016a497c6SRafael Auler Ptr = intToStr(Ptr, Entry.Val, 10); 133162aa74f8SRafael Auler *Ptr++ = '\n'; 1332821480d2SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 133362aa74f8SRafael Auler } 1334cc4b2fb6SRafael Auler 133516a497c6SRafael Auler /// Write to \p FD all of the indirect call profiles. 133616a497c6SRafael Auler void writeIndirectCallProfile(int FD, ProfileWriterContext &Ctx) { 133716a497c6SRafael Auler for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) { 133816a497c6SRafael Auler DEBUG(reportNumber("IndCallsite #", I, 10)); 133916a497c6SRafael Auler GlobalIndCallCounters[I].forEachElement(visitIndCallCounter, FD, I, &Ctx); 134016a497c6SRafael Auler } 134116a497c6SRafael Auler } 134216a497c6SRafael Auler 134316a497c6SRafael Auler /// Check a single call flow for a callee versus all known callers. If there are 134416a497c6SRafael Auler /// less callers than what the callee expects, write the difference with source 134516a497c6SRafael Auler /// [unknown] in the profile. 134616a497c6SRafael Auler void visitCallFlowEntry(CallFlowHashTable::MapEntry &Entry, int FD, 134716a497c6SRafael Auler ProfileWriterContext *Ctx) { 134816a497c6SRafael Auler DEBUG(reportNumber("Call flow entry address: 0x", Entry.Key, 16)); 134916a497c6SRafael Auler DEBUG(reportNumber("Calls: ", Entry.Calls, 10)); 135016a497c6SRafael Auler DEBUG(reportNumber("Reported entry frequency: ", Entry.Val, 10)); 135116a497c6SRafael Auler DEBUG({ 135216a497c6SRafael Auler if (Entry.Calls > Entry.Val) 135316a497c6SRafael Auler report(" More calls than expected!\n"); 135416a497c6SRafael Auler }); 135516a497c6SRafael Auler if (Entry.Val <= Entry.Calls) 135616a497c6SRafael Auler return; 135716a497c6SRafael Auler DEBUG(reportNumber( 135816a497c6SRafael Auler " Balancing calls with traffic: ", Entry.Val - Entry.Calls, 10)); 135916a497c6SRafael Auler const IndCallTargetDescription *TargetDesc = 136016a497c6SRafael Auler Ctx->lookupIndCallTarget(Entry.Key); 136116a497c6SRafael Auler if (!TargetDesc) { 136216a497c6SRafael Auler // There is probably something wrong with this callee and this should be 136316a497c6SRafael Auler // investigated, but I don't want to assert and lose all data collected. 136416a497c6SRafael Auler DEBUG(report("WARNING: failed to look up call target!\n")); 136516a497c6SRafael Auler return; 136616a497c6SRafael Auler } 136716a497c6SRafael Auler char LineBuf[BufSize]; 136816a497c6SRafael Auler char *Ptr = LineBuf; 136916a497c6SRafael Auler Ptr = strCopy(Ptr, "0 [unknown] 0 ", BufSize); 137016a497c6SRafael Auler Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); 137116a497c6SRafael Auler Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); 137216a497c6SRafael Auler Ptr = intToStr(Ptr, Entry.Val - Entry.Calls, 10); 137316a497c6SRafael Auler *Ptr++ = '\n'; 137416a497c6SRafael Auler __write(FD, LineBuf, Ptr - LineBuf); 137516a497c6SRafael Auler } 137616a497c6SRafael Auler 137716a497c6SRafael Auler /// Open fdata file for writing and return a valid file descriptor, aborting 137816a497c6SRafael Auler /// program upon failure. 137916a497c6SRafael Auler int openProfile() { 138016a497c6SRafael Auler // Build the profile name string by appending our PID 138116a497c6SRafael Auler char Buf[BufSize]; 138216a497c6SRafael Auler char *Ptr = Buf; 138316a497c6SRafael Auler uint64_t PID = __getpid(); 138416a497c6SRafael Auler Ptr = strCopy(Buf, __bolt_instr_filename, BufSize); 138516a497c6SRafael Auler if (__bolt_instr_use_pid) { 138616a497c6SRafael Auler Ptr = strCopy(Ptr, ".", BufSize - (Ptr - Buf + 1)); 138716a497c6SRafael Auler Ptr = intToStr(Ptr, PID, 10); 138816a497c6SRafael Auler Ptr = strCopy(Ptr, ".fdata", BufSize - (Ptr - Buf + 1)); 138916a497c6SRafael Auler } 139016a497c6SRafael Auler *Ptr++ = '\0'; 139116a497c6SRafael Auler uint64_t FD = __open(Buf, 139216a497c6SRafael Auler /*flags=*/0x241 /*O_WRONLY|O_TRUNC|O_CREAT*/, 139316a497c6SRafael Auler /*mode=*/0666); 139416a497c6SRafael Auler if (static_cast<int64_t>(FD) < 0) { 139516a497c6SRafael Auler report("Error while trying to open profile file for writing: "); 139616a497c6SRafael Auler report(Buf); 139716a497c6SRafael Auler reportNumber("\nFailed with error number: 0x", 139816a497c6SRafael Auler 0 - static_cast<int64_t>(FD), 16); 139916a497c6SRafael Auler __exit(1); 140016a497c6SRafael Auler } 140116a497c6SRafael Auler return FD; 140216a497c6SRafael Auler } 1403a0dd5b05SAlexander Shaposhnikov 1404a0dd5b05SAlexander Shaposhnikov #endif 1405a0dd5b05SAlexander Shaposhnikov 140616a497c6SRafael Auler } // anonymous namespace 140716a497c6SRafael Auler 1408a0dd5b05SAlexander Shaposhnikov #if !defined(__APPLE__) 1409a0dd5b05SAlexander Shaposhnikov 141016a497c6SRafael Auler /// Reset all counters in case you want to start profiling a new phase of your 141116a497c6SRafael Auler /// program independently of prior phases. 141216a497c6SRafael Auler /// The address of this function is printed by BOLT and this can be called by 141316a497c6SRafael Auler /// any attached debugger during runtime. There is a useful oneliner for gdb: 141416a497c6SRafael Auler /// 141516a497c6SRafael Auler /// gdb -p $(pgrep -xo PROCESSNAME) -ex 'p ((void(*)())0xdeadbeef)()' \ 141616a497c6SRafael Auler /// -ex 'set confirm off' -ex quit 141716a497c6SRafael Auler /// 141816a497c6SRafael Auler /// Where 0xdeadbeef is this function address and PROCESSNAME your binary file 141916a497c6SRafael Auler /// name. 142016a497c6SRafael Auler extern "C" void __bolt_instr_clear_counters() { 142116a497c6SRafael Auler memSet(reinterpret_cast<char *>(__bolt_instr_locations), 0, 142216a497c6SRafael Auler __bolt_num_counters * 8); 142316a497c6SRafael Auler for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) { 142416a497c6SRafael Auler GlobalIndCallCounters[I].resetCounters(); 142516a497c6SRafael Auler } 142616a497c6SRafael Auler } 142716a497c6SRafael Auler 142816a497c6SRafael Auler /// This is the entry point for profile writing. 142916a497c6SRafael Auler /// There are three ways of getting here: 143016a497c6SRafael Auler /// 143116a497c6SRafael Auler /// * Program execution ended, finalization methods are running and BOLT 143216a497c6SRafael Auler /// hooked into FINI from your binary dynamic section; 143316a497c6SRafael Auler /// * You used the sleep timer option and during initialization we forked 143416a497c6SRafael Auler /// a separete process that will call this function periodically; 143516a497c6SRafael Auler /// * BOLT prints this function address so you can attach a debugger and 143616a497c6SRafael Auler /// call this function directly to get your profile written to disk 143716a497c6SRafael Auler /// on demand. 143816a497c6SRafael Auler /// 1439ad79d517SVasily Leonenko extern "C" void __attribute((force_align_arg_pointer)) 1440ad79d517SVasily Leonenko __bolt_instr_data_dump() { 144116a497c6SRafael Auler // Already dumping 144216a497c6SRafael Auler if (!GlobalWriteProfileMutex->acquire()) 144316a497c6SRafael Auler return; 144416a497c6SRafael Auler 144516a497c6SRafael Auler BumpPtrAllocator HashAlloc; 144616a497c6SRafael Auler HashAlloc.setMaxSize(0x6400000); 144716a497c6SRafael Auler ProfileWriterContext Ctx = readDescriptions(); 144816a497c6SRafael Auler Ctx.CallFlowTable = new (HashAlloc, 0) CallFlowHashTable(HashAlloc); 144916a497c6SRafael Auler 145016a497c6SRafael Auler DEBUG(printStats(Ctx)); 145116a497c6SRafael Auler 145216a497c6SRafael Auler int FD = openProfile(); 145316a497c6SRafael Auler 1454cc4b2fb6SRafael Auler BumpPtrAllocator Alloc; 145516a497c6SRafael Auler const uint8_t *FuncDesc = Ctx.FuncDescriptions; 1456cc4b2fb6SRafael Auler for (int I = 0, E = __bolt_instr_num_funcs; I < E; ++I) { 145716a497c6SRafael Auler FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); 145816a497c6SRafael Auler Alloc.clear(); 1459cc4b2fb6SRafael Auler DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)); 1460cc4b2fb6SRafael Auler } 146116a497c6SRafael Auler assert(FuncDesc == (void *)Ctx.Strings, 1462cc4b2fb6SRafael Auler "FuncDesc ptr must be equal to stringtable"); 1463cc4b2fb6SRafael Auler 146416a497c6SRafael Auler writeIndirectCallProfile(FD, Ctx); 146516a497c6SRafael Auler Ctx.CallFlowTable->forEachElement(visitCallFlowEntry, FD, &Ctx); 146616a497c6SRafael Auler 1467821480d2SRafael Auler __close(FD); 146816a497c6SRafael Auler __munmap(Ctx.MMapPtr, Ctx.MMapSize); 146916a497c6SRafael Auler __close(Ctx.FileDesc); 147016a497c6SRafael Auler HashAlloc.destroy(); 147116a497c6SRafael Auler GlobalWriteProfileMutex->release(); 147216a497c6SRafael Auler DEBUG(report("Finished writing profile.\n")); 147316a497c6SRafael Auler } 147416a497c6SRafael Auler 147516a497c6SRafael Auler /// Event loop for our child process spawned during setup to dump profile data 147616a497c6SRafael Auler /// at user-specified intervals 147716a497c6SRafael Auler void watchProcess() { 147816a497c6SRafael Auler timespec ts, rem; 147916a497c6SRafael Auler uint64_t Ellapsed = 0ull; 148076d346caSVladislav Khmelevsky uint64_t ppid; 148176d346caSVladislav Khmelevsky if (__bolt_instr_wait_forks) { 148276d346caSVladislav Khmelevsky // Store parent pgid 148376d346caSVladislav Khmelevsky ppid = -__getpgid(0); 148476d346caSVladislav Khmelevsky // And leave parent process group 148576d346caSVladislav Khmelevsky __setpgid(0, 0); 148676d346caSVladislav Khmelevsky } else { 148776d346caSVladislav Khmelevsky // Store parent pid 148876d346caSVladislav Khmelevsky ppid = __getppid(); 148976d346caSVladislav Khmelevsky if (ppid == 1) { 149076d346caSVladislav Khmelevsky // Parent already dead 149176d346caSVladislav Khmelevsky goto out; 149276d346caSVladislav Khmelevsky } 149376d346caSVladislav Khmelevsky } 149476d346caSVladislav Khmelevsky 149516a497c6SRafael Auler ts.tv_sec = 1; 149616a497c6SRafael Auler ts.tv_nsec = 0; 149716a497c6SRafael Auler while (1) { 149816a497c6SRafael Auler __nanosleep(&ts, &rem); 149976d346caSVladislav Khmelevsky // This means our parent process or all its forks are dead, 150076d346caSVladislav Khmelevsky // so no need for us to keep dumping. 150176d346caSVladislav Khmelevsky if (__kill(ppid, 0) < 0) { 150276d346caSVladislav Khmelevsky if (__bolt_instr_no_counters_clear) 150376d346caSVladislav Khmelevsky __bolt_instr_data_dump(); 150416a497c6SRafael Auler break; 150516a497c6SRafael Auler } 150676d346caSVladislav Khmelevsky 150716a497c6SRafael Auler if (++Ellapsed < __bolt_instr_sleep_time) 150816a497c6SRafael Auler continue; 150976d346caSVladislav Khmelevsky 151016a497c6SRafael Auler Ellapsed = 0; 151116a497c6SRafael Auler __bolt_instr_data_dump(); 151276d346caSVladislav Khmelevsky if (__bolt_instr_no_counters_clear == false) 151316a497c6SRafael Auler __bolt_instr_clear_counters(); 151416a497c6SRafael Auler } 151576d346caSVladislav Khmelevsky 151676d346caSVladislav Khmelevsky out:; 151716a497c6SRafael Auler DEBUG(report("My parent process is dead, bye!\n")); 151816a497c6SRafael Auler __exit(0); 151916a497c6SRafael Auler } 152016a497c6SRafael Auler 152116a497c6SRafael Auler extern "C" void __bolt_instr_indirect_call(); 152216a497c6SRafael Auler extern "C" void __bolt_instr_indirect_tailcall(); 152316a497c6SRafael Auler 152416a497c6SRafael Auler /// Initialization code 1525ad79d517SVasily Leonenko extern "C" void __attribute((force_align_arg_pointer)) __bolt_instr_setup() { 152616a497c6SRafael Auler const uint64_t CountersStart = 152716a497c6SRafael Auler reinterpret_cast<uint64_t>(&__bolt_instr_locations[0]); 152816a497c6SRafael Auler const uint64_t CountersEnd = alignTo( 152916a497c6SRafael Auler reinterpret_cast<uint64_t>(&__bolt_instr_locations[__bolt_num_counters]), 153016a497c6SRafael Auler 0x1000); 153116a497c6SRafael Auler DEBUG(reportNumber("replace mmap start: ", CountersStart, 16)); 153216a497c6SRafael Auler DEBUG(reportNumber("replace mmap stop: ", CountersEnd, 16)); 153316a497c6SRafael Auler assert (CountersEnd > CountersStart, "no counters"); 153416a497c6SRafael Auler // Maps our counters to be shared instead of private, so we keep counting for 153516a497c6SRafael Auler // forked processes 153616a497c6SRafael Auler __mmap(CountersStart, CountersEnd - CountersStart, 153716a497c6SRafael Auler 0x3 /*PROT_READ|PROT_WRITE*/, 153816a497c6SRafael Auler 0x31 /*MAP_ANONYMOUS | MAP_SHARED | MAP_FIXED*/, -1, 0); 153916a497c6SRafael Auler 1540*361f3b55SVladislav Khmelevsky __bolt_ind_call_counter_func_pointer = __bolt_instr_indirect_call; 1541*361f3b55SVladislav Khmelevsky __bolt_ind_tailcall_counter_func_pointer = __bolt_instr_indirect_tailcall; 154216a497c6SRafael Auler // Conservatively reserve 100MiB shared pages 154316a497c6SRafael Auler GlobalAlloc.setMaxSize(0x6400000); 154416a497c6SRafael Auler GlobalAlloc.setShared(true); 154516a497c6SRafael Auler GlobalWriteProfileMutex = new (GlobalAlloc, 0) Mutex(); 154616a497c6SRafael Auler if (__bolt_instr_num_ind_calls > 0) 154716a497c6SRafael Auler GlobalIndCallCounters = 154816a497c6SRafael Auler new (GlobalAlloc, 0) IndirectCallHashTable[__bolt_instr_num_ind_calls]; 154916a497c6SRafael Auler 155016a497c6SRafael Auler if (__bolt_instr_sleep_time != 0) { 155176d346caSVladislav Khmelevsky // Separate instrumented process to the own process group 155276d346caSVladislav Khmelevsky if (__bolt_instr_wait_forks) 155376d346caSVladislav Khmelevsky __setpgid(0, 0); 155476d346caSVladislav Khmelevsky 1555c7306cc2SAmir Ayupov if (long PID = __fork()) 155616a497c6SRafael Auler return; 155716a497c6SRafael Auler watchProcess(); 155816a497c6SRafael Auler } 155916a497c6SRafael Auler } 156016a497c6SRafael Auler 1561*361f3b55SVladislav Khmelevsky extern "C" __attribute((force_align_arg_pointer)) void 1562*361f3b55SVladislav Khmelevsky instrumentIndirectCall(uint64_t Target, uint64_t IndCallID) { 156316a497c6SRafael Auler GlobalIndCallCounters[IndCallID].incrementVal(Target, GlobalAlloc); 156416a497c6SRafael Auler } 156516a497c6SRafael Auler 156616a497c6SRafael Auler /// We receive as in-stack arguments the identifier of the indirect call site 156716a497c6SRafael Auler /// as well as the target address for the call 156816a497c6SRafael Auler extern "C" __attribute((naked)) void __bolt_instr_indirect_call() 156916a497c6SRafael Auler { 157016a497c6SRafael Auler __asm__ __volatile__(SAVE_ALL 1571*361f3b55SVladislav Khmelevsky "mov 0xa0(%%rsp), %%rdi\n" 1572*361f3b55SVladislav Khmelevsky "mov 0x98(%%rsp), %%rsi\n" 157316a497c6SRafael Auler "call instrumentIndirectCall\n" 157416a497c6SRafael Auler RESTORE_ALL 1575*361f3b55SVladislav Khmelevsky "ret\n" 157616a497c6SRafael Auler :::); 157716a497c6SRafael Auler } 157816a497c6SRafael Auler 157916a497c6SRafael Auler extern "C" __attribute((naked)) void __bolt_instr_indirect_tailcall() 158016a497c6SRafael Auler { 158116a497c6SRafael Auler __asm__ __volatile__(SAVE_ALL 1582*361f3b55SVladislav Khmelevsky "mov 0x98(%%rsp), %%rdi\n" 1583*361f3b55SVladislav Khmelevsky "mov 0x90(%%rsp), %%rsi\n" 158416a497c6SRafael Auler "call instrumentIndirectCall\n" 158516a497c6SRafael Auler RESTORE_ALL 1586*361f3b55SVladislav Khmelevsky "ret\n" 158716a497c6SRafael Auler :::); 158816a497c6SRafael Auler } 158916a497c6SRafael Auler 159016a497c6SRafael Auler /// This is hooking ELF's entry, it needs to save all machine state. 159116a497c6SRafael Auler extern "C" __attribute((naked)) void __bolt_instr_start() 159216a497c6SRafael Auler { 159316a497c6SRafael Auler __asm__ __volatile__(SAVE_ALL 159416a497c6SRafael Auler "call __bolt_instr_setup\n" 159516a497c6SRafael Auler RESTORE_ALL 1596ad79d517SVasily Leonenko "jmp __bolt_start_trampoline\n" 159716a497c6SRafael Auler :::); 159816a497c6SRafael Auler } 159916a497c6SRafael Auler 160016a497c6SRafael Auler /// This is hooking into ELF's DT_FINI 160116a497c6SRafael Auler extern "C" void __bolt_instr_fini() { 1602ad79d517SVasily Leonenko // Currently using assembly inline for trampoline function call 1603ad79d517SVasily Leonenko // due to issues with function pointer dereferencing in case of 1604ad79d517SVasily Leonenko // C function call. 1605ad79d517SVasily Leonenko __asm__ __volatile__("call __bolt_fini_trampoline\n" :::); 160616a497c6SRafael Auler if (__bolt_instr_sleep_time == 0) 160716a497c6SRafael Auler __bolt_instr_data_dump(); 160816a497c6SRafael Auler DEBUG(report("Finished.\n")); 160962aa74f8SRafael Auler } 1610bbd9d610SAlexander Shaposhnikov 16113b876cc3SAlexander Shaposhnikov #endif 16123b876cc3SAlexander Shaposhnikov 16133b876cc3SAlexander Shaposhnikov #if defined(__APPLE__) 1614bbd9d610SAlexander Shaposhnikov 1615a0dd5b05SAlexander Shaposhnikov extern "C" void __bolt_instr_data_dump() { 1616a0dd5b05SAlexander Shaposhnikov ProfileWriterContext Ctx = readDescriptions(); 1617a0dd5b05SAlexander Shaposhnikov 1618a0dd5b05SAlexander Shaposhnikov int FD = 2; 1619a0dd5b05SAlexander Shaposhnikov BumpPtrAllocator Alloc; 1620a0dd5b05SAlexander Shaposhnikov const uint8_t *FuncDesc = Ctx.FuncDescriptions; 1621a0dd5b05SAlexander Shaposhnikov uint32_t bolt_instr_num_funcs = _bolt_instr_num_funcs_getter(); 1622a0dd5b05SAlexander Shaposhnikov 1623a0dd5b05SAlexander Shaposhnikov for (int I = 0, E = bolt_instr_num_funcs; I < E; ++I) { 1624a0dd5b05SAlexander Shaposhnikov FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); 1625a0dd5b05SAlexander Shaposhnikov Alloc.clear(); 1626a0dd5b05SAlexander Shaposhnikov DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)); 1627a0dd5b05SAlexander Shaposhnikov } 1628a0dd5b05SAlexander Shaposhnikov assert(FuncDesc == (void *)Ctx.Strings, 1629a0dd5b05SAlexander Shaposhnikov "FuncDesc ptr must be equal to stringtable"); 1630a0dd5b05SAlexander Shaposhnikov } 1631a0dd5b05SAlexander Shaposhnikov 1632bbd9d610SAlexander Shaposhnikov // On OSX/iOS the final symbol name of an extern "C" function/variable contains 1633bbd9d610SAlexander Shaposhnikov // one extra leading underscore: _bolt_instr_setup -> __bolt_instr_setup. 16343b876cc3SAlexander Shaposhnikov extern "C" 16353b876cc3SAlexander Shaposhnikov __attribute__((section("__TEXT,__setup"))) 16363b876cc3SAlexander Shaposhnikov __attribute__((force_align_arg_pointer)) 16373b876cc3SAlexander Shaposhnikov void _bolt_instr_setup() { 1638a0dd5b05SAlexander Shaposhnikov __asm__ __volatile__(SAVE_ALL :::); 16393b876cc3SAlexander Shaposhnikov 1640a0dd5b05SAlexander Shaposhnikov report("Hello!\n"); 16413b876cc3SAlexander Shaposhnikov 1642a0dd5b05SAlexander Shaposhnikov __asm__ __volatile__(RESTORE_ALL :::); 16431cf23e5eSAlexander Shaposhnikov } 1644bbd9d610SAlexander Shaposhnikov 16453b876cc3SAlexander Shaposhnikov extern "C" 16463b876cc3SAlexander Shaposhnikov __attribute__((section("__TEXT,__fini"))) 16473b876cc3SAlexander Shaposhnikov __attribute__((force_align_arg_pointer)) 16483b876cc3SAlexander Shaposhnikov void _bolt_instr_fini() { 1649a0dd5b05SAlexander Shaposhnikov report("Bye!\n"); 1650a0dd5b05SAlexander Shaposhnikov __bolt_instr_data_dump(); 1651e067f2adSAlexander Shaposhnikov } 1652e067f2adSAlexander Shaposhnikov 1653bbd9d610SAlexander Shaposhnikov #endif 1654