xref: /llvm-project/bolt/runtime/instr.cpp (revision 1cf23e5ee8bfdea7f8418d81c060174f20b357c5)
162aa74f8SRafael Auler //===-- instr.cpp -----------------------------------------------*- C++ -*-===//
262aa74f8SRafael Auler //
362aa74f8SRafael Auler //                     The LLVM Compiler Infrastructure
462aa74f8SRafael Auler //
562aa74f8SRafael Auler // This file is distributed under the University of Illinois Open Source
662aa74f8SRafael Auler // License. See LICENSE.TXT for details.
762aa74f8SRafael Auler // This file contains code that is linked to the final binary with a function
862aa74f8SRafael Auler // that is called at program exit to dump instrumented data collected during
962aa74f8SRafael Auler // execution.
1062aa74f8SRafael Auler //
1162aa74f8SRafael Auler //===----------------------------------------------------------------------===//
1262aa74f8SRafael Auler //
1316a497c6SRafael Auler // BOLT runtime instrumentation library for x86 Linux. Currently, BOLT does
1416a497c6SRafael Auler // not support linking modules with dependencies on one another into the final
1516a497c6SRafael Auler // binary (TODO?), which means this library has to be self-contained in a single
1616a497c6SRafael Auler // module.
1716a497c6SRafael Auler //
1816a497c6SRafael Auler // All extern declarations here need to be defined by BOLT itself. Those will be
1916a497c6SRafael Auler // undefined symbols that BOLT needs to resolve by emitting these symbols with
2016a497c6SRafael Auler // MCStreamer. Currently, Passes/Instrumentation.cpp is the pass responsible
2116a497c6SRafael Auler // for defining the symbols here and these two files have a tight coupling: one
2216a497c6SRafael Auler // working statically when you run BOLT and another during program runtime when
2316a497c6SRafael Auler // you run an instrumented binary. The main goal here is to output an fdata file
2416a497c6SRafael Auler // (BOLT profile) with the instrumentation counters inserted by the static pass.
2516a497c6SRafael Auler // Counters for indirect calls are an exception, as we can't know them
2616a497c6SRafael Auler // statically. These counters are created and managed here. To allow this, we
2716a497c6SRafael Auler // need a minimal framework for allocating memory dynamically. We provide this
2816a497c6SRafael Auler // with the BumpPtrAllocator class (not LLVM's, but our own version of it).
2916a497c6SRafael Auler //
3016a497c6SRafael Auler // Since this code is intended to be inserted into any executable, we decided to
3116a497c6SRafael Auler // make it standalone and do not depend on any external libraries (i.e. language
3216a497c6SRafael Auler // support libraries, such as glibc or stdc++). To allow this, we provide a few
3316a497c6SRafael Auler // light implementations of common OS interacting functionalities using direct
3416a497c6SRafael Auler // syscall wrappers. Our simple allocator doesn't manage deallocations that
3516a497c6SRafael Auler // fragment the memory space, so it's stack based. This is the minimal framework
3616a497c6SRafael Auler // provided here to allow processing instrumented counters and writing fdata.
3716a497c6SRafael Auler //
3816a497c6SRafael Auler // In the C++ idiom used here, we never use or rely on constructors or
3916a497c6SRafael Auler // destructors for global objects. That's because those need support from the
4016a497c6SRafael Auler // linker in initialization/finalization code, and we want to keep our linker
4116a497c6SRafael Auler // very simple. Similarly, we don't create any global objects that are zero
4216a497c6SRafael Auler // initialized, since those would need to go .bss, which our simple linker also
4316a497c6SRafael Auler // don't support (TODO?).
4462aa74f8SRafael Auler //
4562aa74f8SRafael Auler //===----------------------------------------------------------------------===//
4662aa74f8SRafael Auler 
479bd71615SXun Li #include "common.h"
4862aa74f8SRafael Auler 
4916a497c6SRafael Auler // Enables a very verbose logging to stderr useful when debugging
50cc4b2fb6SRafael Auler //#define ENABLE_DEBUG
51cc4b2fb6SRafael Auler 
52cc4b2fb6SRafael Auler #ifdef ENABLE_DEBUG
53cc4b2fb6SRafael Auler #define DEBUG(X)                                                               \
54cc4b2fb6SRafael Auler   { X; }
55cc4b2fb6SRafael Auler #else
56cc4b2fb6SRafael Auler #define DEBUG(X)                                                               \
57cc4b2fb6SRafael Auler   {}
58cc4b2fb6SRafael Auler #endif
59cc4b2fb6SRafael Auler 
60bbd9d610SAlexander Shaposhnikov #if !defined(__APPLE__)
61bbd9d610SAlexander Shaposhnikov 
6216a497c6SRafael Auler // Main counters inserted by instrumentation, incremented during runtime when
6316a497c6SRafael Auler // points of interest (locations) in the program are reached. Those are direct
6416a497c6SRafael Auler // calls and direct and indirect branches (local ones). There are also counters
6516a497c6SRafael Auler // for basic block execution if they are a spanning tree leaf and need to be
6616a497c6SRafael Auler // counted in order to infer the execution count of other edges of the CFG.
6762aa74f8SRafael Auler extern uint64_t __bolt_instr_locations[];
6816a497c6SRafael Auler extern uint32_t __bolt_num_counters;
6916a497c6SRafael Auler // Descriptions are serialized metadata about binary functions written by BOLT,
7016a497c6SRafael Auler // so we have a minimal understanding about the program structure. For a
7116a497c6SRafael Auler // reference on the exact format of this metadata, see *Description structs,
7216a497c6SRafael Auler // Location, IntrumentedNode and EntryNode.
7316a497c6SRafael Auler // Number of indirect call site descriptions
7416a497c6SRafael Auler extern uint32_t __bolt_instr_num_ind_calls;
7516a497c6SRafael Auler // Number of indirect call target descriptions
7616a497c6SRafael Auler extern uint32_t __bolt_instr_num_ind_targets;
77cc4b2fb6SRafael Auler // Number of function descriptions
78cc4b2fb6SRafael Auler extern uint32_t __bolt_instr_num_funcs;
7916a497c6SRafael Auler // Time to sleep across dumps (when we write the fdata profile to disk)
8016a497c6SRafael Auler extern uint32_t __bolt_instr_sleep_time;
81cc4b2fb6SRafael Auler // Filename to dump data to
8262aa74f8SRafael Auler extern char __bolt_instr_filename[];
8316a497c6SRafael Auler // If true, append current PID to the fdata filename when creating it so
8416a497c6SRafael Auler // different invocations of the same program can be differentiated.
8516a497c6SRafael Auler extern bool __bolt_instr_use_pid;
8616a497c6SRafael Auler // Functions that will be used to instrument indirect calls. BOLT static pass
8716a497c6SRafael Auler // will identify indirect calls and modify them to load the address in these
8816a497c6SRafael Auler // trampolines and call this address instead. BOLT can't use direct calls to
8916a497c6SRafael Auler // our handlers because our addresses here are not known at analysis time. We
9016a497c6SRafael Auler // only support resolving dependencies from this file to the output of BOLT,
9116a497c6SRafael Auler // *not* the other way around.
9216a497c6SRafael Auler // TODO: We need better linking support to make that happen.
9316a497c6SRafael Auler extern void (*__bolt_trampoline_ind_call)();
9416a497c6SRafael Auler extern void (*__bolt_trampoline_ind_tailcall)();
9516a497c6SRafael Auler // Function pointers to init/fini routines in the binary, so we can resume
9616a497c6SRafael Auler // regular execution of these functions that we hooked
9716a497c6SRafael Auler extern void (*__bolt_instr_init_ptr)();
9816a497c6SRafael Auler extern void (*__bolt_instr_fini_ptr)();
9962aa74f8SRafael Auler 
100cc4b2fb6SRafael Auler namespace {
101cc4b2fb6SRafael Auler 
102cc4b2fb6SRafael Auler /// A simple allocator that mmaps a fixed size region and manages this space
103cc4b2fb6SRafael Auler /// in a stack fashion, meaning you always deallocate the last element that
10416a497c6SRafael Auler /// was allocated. In practice, we don't need to deallocate individual elements.
10516a497c6SRafael Auler /// We monotonically increase our usage and then deallocate everything once we
10616a497c6SRafael Auler /// are done processing something.
107cc4b2fb6SRafael Auler class BumpPtrAllocator {
10816a497c6SRafael Auler   /// This is written before each allocation and act as a canary to detect when
10916a497c6SRafael Auler   /// a bug caused our program to cross allocation boundaries.
110cc4b2fb6SRafael Auler   struct EntryMetadata {
111cc4b2fb6SRafael Auler     uint64_t Magic;
112cc4b2fb6SRafael Auler     uint64_t AllocSize;
113cc4b2fb6SRafael Auler   };
1149bd71615SXun Li 
115cc4b2fb6SRafael Auler public:
116cc4b2fb6SRafael Auler   void *allocate(uintptr_t Size) {
11716a497c6SRafael Auler     Lock L(M);
118cc4b2fb6SRafael Auler     if (StackBase == nullptr) {
11916a497c6SRafael Auler       StackBase = reinterpret_cast<uint8_t *>(
12016a497c6SRafael Auler           __mmap(0, MaxSize, 0x3 /* PROT_READ | PROT_WRITE*/,
12116a497c6SRafael Auler                  Shared ? 0x21 /*MAP_SHARED | MAP_ANONYMOUS*/
12216a497c6SRafael Auler                         : 0x22 /* MAP_PRIVATE | MAP_ANONYMOUS*/,
12316a497c6SRafael Auler                  -1, 0));
124cc4b2fb6SRafael Auler       StackSize = 0;
125cc4b2fb6SRafael Auler     }
126cc4b2fb6SRafael Auler     Size = alignTo(Size + sizeof(EntryMetadata), 16);
127cc4b2fb6SRafael Auler     uint8_t *AllocAddress = StackBase + StackSize + sizeof(EntryMetadata);
128cc4b2fb6SRafael Auler     auto *M = reinterpret_cast<EntryMetadata *>(StackBase + StackSize);
12916a497c6SRafael Auler     M->Magic = Magic;
130cc4b2fb6SRafael Auler     M->AllocSize = Size;
131cc4b2fb6SRafael Auler     StackSize += Size;
13216a497c6SRafael Auler     assert(StackSize < MaxSize, "allocator ran out of memory");
133cc4b2fb6SRafael Auler     return AllocAddress;
134cc4b2fb6SRafael Auler   }
135cc4b2fb6SRafael Auler 
13616a497c6SRafael Auler #ifdef DEBUG
13716a497c6SRafael Auler   /// Element-wise deallocation is only used for debugging to catch memory
13816a497c6SRafael Auler   /// bugs by checking magic bytes. Ordinarily, we reset the allocator once
13916a497c6SRafael Auler   /// we are done with it. Reset is done with clear(). There's no need
14016a497c6SRafael Auler   /// to deallocate each element individually.
141cc4b2fb6SRafael Auler   void deallocate(void *Ptr) {
14216a497c6SRafael Auler     Lock L(M);
143cc4b2fb6SRafael Auler     uint8_t MetadataOffset = sizeof(EntryMetadata);
144cc4b2fb6SRafael Auler     auto *M = reinterpret_cast<EntryMetadata *>(
145cc4b2fb6SRafael Auler         reinterpret_cast<uint8_t *>(Ptr) - MetadataOffset);
146cc4b2fb6SRafael Auler     const uint8_t *StackTop = StackBase + StackSize + MetadataOffset;
147cc4b2fb6SRafael Auler     // Validate size
148cc4b2fb6SRafael Auler     if (Ptr != StackTop - M->AllocSize) {
14916a497c6SRafael Auler       // Failed validation, check if it is a pointer returned by operator new []
150cc4b2fb6SRafael Auler       MetadataOffset +=
151cc4b2fb6SRafael Auler           sizeof(uint64_t); // Space for number of elements alloc'ed
152cc4b2fb6SRafael Auler       M = reinterpret_cast<EntryMetadata *>(reinterpret_cast<uint8_t *>(Ptr) -
153cc4b2fb6SRafael Auler                                             MetadataOffset);
15416a497c6SRafael Auler       // Ok, it failed both checks if this assertion fails. Stop the program, we
15516a497c6SRafael Auler       // have a memory bug.
156cc4b2fb6SRafael Auler       assert(Ptr == StackTop - M->AllocSize,
157cc4b2fb6SRafael Auler              "must deallocate the last element alloc'ed");
158cc4b2fb6SRafael Auler     }
15916a497c6SRafael Auler     assert(M->Magic == Magic, "allocator magic is corrupt");
160cc4b2fb6SRafael Auler     StackSize -= M->AllocSize;
161cc4b2fb6SRafael Auler   }
16216a497c6SRafael Auler #else
16316a497c6SRafael Auler   void deallocate(void *) {}
16416a497c6SRafael Auler #endif
16516a497c6SRafael Auler 
16616a497c6SRafael Auler   void clear() {
16716a497c6SRafael Auler     Lock L(M);
16816a497c6SRafael Auler     StackSize = 0;
16916a497c6SRafael Auler   }
17016a497c6SRafael Auler 
17116a497c6SRafael Auler   /// Set mmap reservation size (only relevant before first allocation)
1729bd71615SXun Li   void setMaxSize(uint64_t Size) { MaxSize = Size; }
17316a497c6SRafael Auler 
17416a497c6SRafael Auler   /// Set mmap reservation privacy (only relevant before first allocation)
1759bd71615SXun Li   void setShared(bool S) { Shared = S; }
17616a497c6SRafael Auler 
17716a497c6SRafael Auler   void destroy() {
17816a497c6SRafael Auler     if (StackBase == nullptr)
17916a497c6SRafael Auler       return;
18016a497c6SRafael Auler     __munmap(StackBase, MaxSize);
18116a497c6SRafael Auler   }
182cc4b2fb6SRafael Auler 
183cc4b2fb6SRafael Auler private:
18416a497c6SRafael Auler   static constexpr uint64_t Magic = 0x1122334455667788ull;
18516a497c6SRafael Auler   uint64_t MaxSize = 0xa00000;
186cc4b2fb6SRafael Auler   uint8_t *StackBase{nullptr};
187cc4b2fb6SRafael Auler   uint64_t StackSize{0};
18816a497c6SRafael Auler   bool Shared{false};
18916a497c6SRafael Auler   Mutex M;
190cc4b2fb6SRafael Auler };
191cc4b2fb6SRafael Auler 
19216a497c6SRafael Auler /// Used for allocating indirect call instrumentation counters. Initialized by
19316a497c6SRafael Auler /// __bolt_instr_setup, our initialization routine.
19416a497c6SRafael Auler BumpPtrAllocator GlobalAlloc;
195cc4b2fb6SRafael Auler } // anonymous namespace
196cc4b2fb6SRafael Auler 
197cc4b2fb6SRafael Auler // User-defined placement new operators. We only use those (as opposed to
198cc4b2fb6SRafael Auler // overriding the regular operator new) so we can keep our allocator in the
199cc4b2fb6SRafael Auler // stack instead of in a data section (global).
2009bd71615SXun Li void *operator new(uintptr_t Sz, BumpPtrAllocator &A) { return A.allocate(Sz); }
201cc4b2fb6SRafael Auler void *operator new(uintptr_t Sz, BumpPtrAllocator &A, char C) {
202cc4b2fb6SRafael Auler   auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz));
203cc4b2fb6SRafael Auler   memSet(Ptr, C, Sz);
204cc4b2fb6SRafael Auler   return Ptr;
205cc4b2fb6SRafael Auler }
206cc4b2fb6SRafael Auler void *operator new[](uintptr_t Sz, BumpPtrAllocator &A) {
207cc4b2fb6SRafael Auler   return A.allocate(Sz);
208cc4b2fb6SRafael Auler }
209cc4b2fb6SRafael Auler void *operator new[](uintptr_t Sz, BumpPtrAllocator &A, char C) {
210cc4b2fb6SRafael Auler   auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz));
211cc4b2fb6SRafael Auler   memSet(Ptr, C, Sz);
212cc4b2fb6SRafael Auler   return Ptr;
213cc4b2fb6SRafael Auler }
214cc4b2fb6SRafael Auler // Only called during exception unwinding (useless). We must manually dealloc.
215cc4b2fb6SRafael Auler // C++ language weirdness
2169bd71615SXun Li void operator delete(void *Ptr, BumpPtrAllocator &A) { A.deallocate(Ptr); }
217cc4b2fb6SRafael Auler 
218cc4b2fb6SRafael Auler namespace {
219cc4b2fb6SRafael Auler 
22016a497c6SRafael Auler /// Basic key-val atom stored in our hash
22116a497c6SRafael Auler struct SimpleHashTableEntryBase {
22216a497c6SRafael Auler   uint64_t Key;
22316a497c6SRafael Auler   uint64_t Val;
22416a497c6SRafael Auler };
22516a497c6SRafael Auler 
22616a497c6SRafael Auler /// This hash table implementation starts by allocating a table of size
22716a497c6SRafael Auler /// InitialSize. When conflicts happen in this main table, it resolves
22816a497c6SRafael Auler /// them by chaining a new table of size IncSize. It never reallocs as our
22916a497c6SRafael Auler /// allocator doesn't support it. The key is intended to be function pointers.
23016a497c6SRafael Auler /// There's no clever hash function (it's just x mod size, size being prime).
23116a497c6SRafael Auler /// I never tuned the coefficientes in the modular equation (TODO)
23216a497c6SRafael Auler /// This is used for indirect calls (each call site has one of this, so it
23316a497c6SRafael Auler /// should have a small footprint) and for tallying call counts globally for
23416a497c6SRafael Auler /// each target to check if we missed the origin of some calls (this one is a
23516a497c6SRafael Auler /// large instantiation of this template, since it is global for all call sites)
23616a497c6SRafael Auler template <typename T = SimpleHashTableEntryBase, uint32_t InitialSize = 7,
23716a497c6SRafael Auler           uint32_t IncSize = 7>
23816a497c6SRafael Auler class SimpleHashTable {
23916a497c6SRafael Auler public:
24016a497c6SRafael Auler   using MapEntry = T;
24116a497c6SRafael Auler 
24216a497c6SRafael Auler   /// Increment by 1 the value of \p Key. If it is not in this table, it will be
24316a497c6SRafael Auler   /// added to the table and its value set to 1.
24416a497c6SRafael Auler   void incrementVal(uint64_t Key, BumpPtrAllocator &Alloc) {
24516a497c6SRafael Auler     ++get(Key, Alloc).Val;
24616a497c6SRafael Auler   }
24716a497c6SRafael Auler 
24816a497c6SRafael Auler   /// Basic member accessing interface. Here we pass the allocator explicitly to
24916a497c6SRafael Auler   /// avoid storing a pointer to it as part of this table (remember there is one
25016a497c6SRafael Auler   /// hash for each indirect call site, so we wan't to minimize our footprint).
25116a497c6SRafael Auler   MapEntry &get(uint64_t Key, BumpPtrAllocator &Alloc) {
25216a497c6SRafael Auler     Lock L(M);
25316a497c6SRafael Auler     if (TableRoot)
25416a497c6SRafael Auler       return getEntry(TableRoot, Key, Key, Alloc, 0);
25516a497c6SRafael Auler     return firstAllocation(Key, Alloc);
25616a497c6SRafael Auler   }
25716a497c6SRafael Auler 
25816a497c6SRafael Auler   /// Traverses all elements in the table
25916a497c6SRafael Auler   template <typename... Args>
26016a497c6SRafael Auler   void forEachElement(void (*Callback)(MapEntry &, Args...), Args... args) {
26116a497c6SRafael Auler     if (!TableRoot)
26216a497c6SRafael Auler       return;
26316a497c6SRafael Auler     return forEachElement(Callback, InitialSize, TableRoot, args...);
26416a497c6SRafael Auler   }
26516a497c6SRafael Auler 
26616a497c6SRafael Auler   void resetCounters();
26716a497c6SRafael Auler 
26816a497c6SRafael Auler private:
26916a497c6SRafael Auler   constexpr static uint64_t VacantMarker = 0;
27016a497c6SRafael Auler   constexpr static uint64_t FollowUpTableMarker = 0x8000000000000000ull;
27116a497c6SRafael Auler 
27216a497c6SRafael Auler   MapEntry *TableRoot{nullptr};
27316a497c6SRafael Auler   Mutex M;
27416a497c6SRafael Auler 
27516a497c6SRafael Auler   template <typename... Args>
27616a497c6SRafael Auler   void forEachElement(void (*Callback)(MapEntry &, Args...),
27716a497c6SRafael Auler                       uint32_t NumEntries, MapEntry *Entries, Args... args) {
27816a497c6SRafael Auler     for (int I = 0; I < NumEntries; ++I) {
27916a497c6SRafael Auler       auto &Entry = Entries[I];
28016a497c6SRafael Auler       if (Entry.Key == VacantMarker)
28116a497c6SRafael Auler         continue;
28216a497c6SRafael Auler       if (Entry.Key & FollowUpTableMarker) {
28316a497c6SRafael Auler         forEachElement(Callback, IncSize,
28416a497c6SRafael Auler                        reinterpret_cast<MapEntry *>(Entry.Key &
28516a497c6SRafael Auler                                                     ~FollowUpTableMarker),
28616a497c6SRafael Auler                        args...);
28716a497c6SRafael Auler         continue;
28816a497c6SRafael Auler       }
28916a497c6SRafael Auler       Callback(Entry, args...);
29016a497c6SRafael Auler     }
29116a497c6SRafael Auler   }
29216a497c6SRafael Auler 
29316a497c6SRafael Auler   MapEntry &firstAllocation(uint64_t Key, BumpPtrAllocator &Alloc) {
29416a497c6SRafael Auler     TableRoot = new (Alloc, 0) MapEntry[InitialSize];
29516a497c6SRafael Auler     auto &Entry = TableRoot[Key % InitialSize];
29616a497c6SRafael Auler     Entry.Key = Key;
29716a497c6SRafael Auler     return Entry;
29816a497c6SRafael Auler   }
29916a497c6SRafael Auler 
30016a497c6SRafael Auler   MapEntry &getEntry(MapEntry *Entries, uint64_t Key, uint64_t Selector,
30116a497c6SRafael Auler                      BumpPtrAllocator &Alloc, int CurLevel) {
30216a497c6SRafael Auler     const uint32_t NumEntries = CurLevel == 0 ? InitialSize : IncSize;
30316a497c6SRafael Auler     uint64_t Remainder = Selector / NumEntries;
30416a497c6SRafael Auler     Selector = Selector % NumEntries;
30516a497c6SRafael Auler     auto &Entry = Entries[Selector];
30616a497c6SRafael Auler 
30716a497c6SRafael Auler     // A hit
30816a497c6SRafael Auler     if (Entry.Key == Key) {
30916a497c6SRafael Auler       return Entry;
31016a497c6SRafael Auler     }
31116a497c6SRafael Auler 
31216a497c6SRafael Auler     // Vacant - add new entry
31316a497c6SRafael Auler     if (Entry.Key == VacantMarker) {
31416a497c6SRafael Auler       Entry.Key = Key;
31516a497c6SRafael Auler       return Entry;
31616a497c6SRafael Auler     }
31716a497c6SRafael Auler 
31816a497c6SRafael Auler     // Defer to the next level
31916a497c6SRafael Auler     if (Entry.Key & FollowUpTableMarker) {
32016a497c6SRafael Auler       return getEntry(
32116a497c6SRafael Auler           reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker),
32216a497c6SRafael Auler           Key, Remainder, Alloc, CurLevel + 1);
32316a497c6SRafael Auler     }
32416a497c6SRafael Auler 
32516a497c6SRafael Auler     // Conflict - create the next level
32616a497c6SRafael Auler     MapEntry *NextLevelTbl = new (Alloc, 0) MapEntry[IncSize];
32716a497c6SRafael Auler     uint64_t CurEntrySelector = Entry.Key / InitialSize;
32816a497c6SRafael Auler     for (int I = 0; I < CurLevel; ++I)
32916a497c6SRafael Auler       CurEntrySelector /= IncSize;
33016a497c6SRafael Auler     CurEntrySelector = CurEntrySelector % IncSize;
33116a497c6SRafael Auler     NextLevelTbl[CurEntrySelector] = Entry;
33216a497c6SRafael Auler     Entry.Key = reinterpret_cast<uint64_t>(NextLevelTbl) | FollowUpTableMarker;
33316a497c6SRafael Auler     return getEntry(NextLevelTbl, Key, Remainder, Alloc, CurLevel + 1);
33416a497c6SRafael Auler   }
33516a497c6SRafael Auler };
33616a497c6SRafael Auler 
33716a497c6SRafael Auler template <typename T> void resetIndCallCounter(T &Entry) {
33816a497c6SRafael Auler   Entry.Val = 0;
33916a497c6SRafael Auler }
34016a497c6SRafael Auler 
34116a497c6SRafael Auler template <typename T, uint32_t X, uint32_t Y>
34216a497c6SRafael Auler void SimpleHashTable<T, X, Y>::resetCounters() {
34316a497c6SRafael Auler   Lock L(M);
34416a497c6SRafael Auler   forEachElement(resetIndCallCounter);
34516a497c6SRafael Auler }
34616a497c6SRafael Auler 
34716a497c6SRafael Auler /// Represents a hash table mapping a function target address to its counter.
34816a497c6SRafael Auler using IndirectCallHashTable = SimpleHashTable<>;
34916a497c6SRafael Auler 
35016a497c6SRafael Auler /// Initialize with number 1 instead of 0 so we don't go into .bss. This is the
35116a497c6SRafael Auler /// global array of all hash tables storing indirect call destinations happening
35216a497c6SRafael Auler /// during runtime, one table per call site.
35316a497c6SRafael Auler IndirectCallHashTable *GlobalIndCallCounters{
35416a497c6SRafael Auler     reinterpret_cast<IndirectCallHashTable *>(1)};
35516a497c6SRafael Auler 
35616a497c6SRafael Auler /// Don't allow reentrancy in the fdata writing phase - only one thread writes
35716a497c6SRafael Auler /// it
35816a497c6SRafael Auler Mutex *GlobalWriteProfileMutex{reinterpret_cast<Mutex *>(1)};
35916a497c6SRafael Auler 
36016a497c6SRafael Auler /// Store number of calls in additional to target address (Key) and frequency
36116a497c6SRafael Auler /// as perceived by the basic block counter (Val).
36216a497c6SRafael Auler struct CallFlowEntryBase : public SimpleHashTableEntryBase {
36316a497c6SRafael Auler   uint64_t Calls;
36416a497c6SRafael Auler };
36516a497c6SRafael Auler 
36616a497c6SRafael Auler using CallFlowHashTableBase = SimpleHashTable<CallFlowEntryBase, 11939, 233>;
36716a497c6SRafael Auler 
36816a497c6SRafael Auler /// This is a large table indexing all possible call targets (indirect and
36916a497c6SRafael Auler /// direct ones). The goal is to find mismatches between number of calls (for
37016a497c6SRafael Auler /// those calls we were able to track) and the entry basic block counter of the
37116a497c6SRafael Auler /// callee. In most cases, these two should be equal. If not, there are two
37216a497c6SRafael Auler /// possible scenarios here:
37316a497c6SRafael Auler ///
37416a497c6SRafael Auler ///  * Entry BB has higher frequency than all known calls to this function.
37516a497c6SRafael Auler ///    In this case, we have dynamic library code or any uninstrumented code
37616a497c6SRafael Auler ///    calling this function. We will write the profile for these untracked
37716a497c6SRafael Auler ///    calls as having source "0 [unknown] 0" in the fdata file.
37816a497c6SRafael Auler ///
37916a497c6SRafael Auler ///  * Number of known calls is higher than the frequency of entry BB
38016a497c6SRafael Auler ///    This only happens when there is no counter for the entry BB / callee
38116a497c6SRafael Auler ///    function is not simple (in BOLT terms). We don't do anything special
38216a497c6SRafael Auler ///    here and just ignore those (we still report all calls to the non-simple
38316a497c6SRafael Auler ///    function, though).
38416a497c6SRafael Auler ///
38516a497c6SRafael Auler class CallFlowHashTable : public CallFlowHashTableBase {
38616a497c6SRafael Auler public:
38716a497c6SRafael Auler   CallFlowHashTable(BumpPtrAllocator &Alloc) : Alloc(Alloc) {}
38816a497c6SRafael Auler 
38916a497c6SRafael Auler   MapEntry &get(uint64_t Key) { return CallFlowHashTableBase::get(Key, Alloc); }
39016a497c6SRafael Auler 
39116a497c6SRafael Auler private:
39216a497c6SRafael Auler   // Different than the hash table for indirect call targets, we do store the
39316a497c6SRafael Auler   // allocator here since there is only one call flow hash and space overhead
39416a497c6SRafael Auler   // is negligible.
39516a497c6SRafael Auler   BumpPtrAllocator &Alloc;
39616a497c6SRafael Auler };
39716a497c6SRafael Auler 
39816a497c6SRafael Auler ///
39916a497c6SRafael Auler /// Description metadata emitted by BOLT to describe the program - refer to
40016a497c6SRafael Auler /// Passes/Instrumentation.cpp - Instrumentation::emitTablesAsELFNote()
40116a497c6SRafael Auler ///
40216a497c6SRafael Auler struct Location {
40316a497c6SRafael Auler   uint32_t FunctionName;
40416a497c6SRafael Auler   uint32_t Offset;
40516a497c6SRafael Auler };
40616a497c6SRafael Auler 
40716a497c6SRafael Auler struct CallDescription {
40816a497c6SRafael Auler   Location From;
40916a497c6SRafael Auler   uint32_t FromNode;
41016a497c6SRafael Auler   Location To;
41116a497c6SRafael Auler   uint32_t Counter;
41216a497c6SRafael Auler   uint64_t TargetAddress;
41316a497c6SRafael Auler };
41416a497c6SRafael Auler 
41516a497c6SRafael Auler using IndCallDescription = Location;
41616a497c6SRafael Auler 
41716a497c6SRafael Auler struct IndCallTargetDescription {
41816a497c6SRafael Auler   Location Loc;
41916a497c6SRafael Auler   uint64_t Address;
42016a497c6SRafael Auler };
42116a497c6SRafael Auler 
42216a497c6SRafael Auler struct EdgeDescription {
42316a497c6SRafael Auler   Location From;
42416a497c6SRafael Auler   uint32_t FromNode;
42516a497c6SRafael Auler   Location To;
42616a497c6SRafael Auler   uint32_t ToNode;
42716a497c6SRafael Auler   uint32_t Counter;
42816a497c6SRafael Auler };
42916a497c6SRafael Auler 
43016a497c6SRafael Auler struct InstrumentedNode {
43116a497c6SRafael Auler   uint32_t Node;
43216a497c6SRafael Auler   uint32_t Counter;
43316a497c6SRafael Auler };
43416a497c6SRafael Auler 
43516a497c6SRafael Auler struct EntryNode {
43616a497c6SRafael Auler   uint64_t Node;
43716a497c6SRafael Auler   uint64_t Address;
43816a497c6SRafael Auler };
43916a497c6SRafael Auler 
44016a497c6SRafael Auler struct FunctionDescription {
44116a497c6SRafael Auler   uint32_t NumLeafNodes;
44216a497c6SRafael Auler   const InstrumentedNode *LeafNodes;
44316a497c6SRafael Auler   uint32_t NumEdges;
44416a497c6SRafael Auler   const EdgeDescription *Edges;
44516a497c6SRafael Auler   uint32_t NumCalls;
44616a497c6SRafael Auler   const CallDescription *Calls;
44716a497c6SRafael Auler   uint32_t NumEntryNodes;
44816a497c6SRafael Auler   const EntryNode *EntryNodes;
44916a497c6SRafael Auler 
45016a497c6SRafael Auler   /// Constructor will parse the serialized function metadata written by BOLT
45116a497c6SRafael Auler   FunctionDescription(const uint8_t *FuncDesc);
45216a497c6SRafael Auler 
45316a497c6SRafael Auler   uint64_t getSize() const {
45416a497c6SRafael Auler     return 16 + NumLeafNodes * sizeof(InstrumentedNode) +
45516a497c6SRafael Auler            NumEdges * sizeof(EdgeDescription) +
45616a497c6SRafael Auler            NumCalls * sizeof(CallDescription) +
45716a497c6SRafael Auler            NumEntryNodes * sizeof(EntryNode);
45816a497c6SRafael Auler   }
45916a497c6SRafael Auler };
46016a497c6SRafael Auler 
46116a497c6SRafael Auler /// The context is created when the fdata profile needs to be written to disk
46216a497c6SRafael Auler /// and we need to interpret our runtime counters. It contains pointers to the
46316a497c6SRafael Auler /// mmaped binary (only the BOLT written metadata section). Deserialization
46416a497c6SRafael Auler /// should be straightforward as most data is POD or an array of POD elements.
46516a497c6SRafael Auler /// This metadata is used to reconstruct function CFGs.
46616a497c6SRafael Auler struct ProfileWriterContext {
46716a497c6SRafael Auler   IndCallDescription *IndCallDescriptions;
46816a497c6SRafael Auler   IndCallTargetDescription *IndCallTargets;
46916a497c6SRafael Auler   uint8_t *FuncDescriptions;
47016a497c6SRafael Auler   char *Strings;  // String table with function names used in this binary
47116a497c6SRafael Auler   int FileDesc;   // File descriptor for the file on disk backing this
47216a497c6SRafael Auler                   // information in memory via mmap
47316a497c6SRafael Auler   void *MMapPtr;  // The mmap ptr
47416a497c6SRafael Auler   int MMapSize;   // The mmap size
47516a497c6SRafael Auler 
47616a497c6SRafael Auler   /// Hash table storing all possible call destinations to detect untracked
47716a497c6SRafael Auler   /// calls and correctly report them as [unknown] in output fdata.
47816a497c6SRafael Auler   CallFlowHashTable *CallFlowTable;
47916a497c6SRafael Auler 
48016a497c6SRafael Auler   /// Lookup the sorted indirect call target vector to fetch function name and
48116a497c6SRafael Auler   /// offset for an arbitrary function pointer.
48216a497c6SRafael Auler   const IndCallTargetDescription *lookupIndCallTarget(uint64_t Target) const;
48316a497c6SRafael Auler };
48416a497c6SRafael Auler 
48516a497c6SRafael Auler /// Perform a string comparison and returns zero if Str1 matches Str2. Compares
48616a497c6SRafael Auler /// at most Size characters.
487cc4b2fb6SRafael Auler int compareStr(const char *Str1, const char *Str2, int Size) {
488821480d2SRafael Auler   while (*Str1 == *Str2) {
489821480d2SRafael Auler     if (*Str1 == '\0' || --Size == 0)
490821480d2SRafael Auler       return 0;
491821480d2SRafael Auler     ++Str1;
492821480d2SRafael Auler     ++Str2;
493821480d2SRafael Auler   }
494821480d2SRafael Auler   return 1;
495821480d2SRafael Auler }
496821480d2SRafael Auler 
49716a497c6SRafael Auler /// Output Location to the fdata file
49816a497c6SRafael Auler char *serializeLoc(const ProfileWriterContext &Ctx, char *OutBuf,
499cc4b2fb6SRafael Auler                    const Location Loc, uint32_t BufSize) {
500821480d2SRafael Auler   // fdata location format: Type Name Offset
501821480d2SRafael Auler   // Type 1 - regular symbol
502821480d2SRafael Auler   OutBuf = strCopy(OutBuf, "1 ");
50316a497c6SRafael Auler   const char *Str = Ctx.Strings + Loc.FunctionName;
504cc4b2fb6SRafael Auler   uint32_t Size = 25;
50562aa74f8SRafael Auler   while (*Str) {
50662aa74f8SRafael Auler     *OutBuf++ = *Str++;
507cc4b2fb6SRafael Auler     if (++Size >= BufSize)
508cc4b2fb6SRafael Auler       break;
50962aa74f8SRafael Auler   }
510cc4b2fb6SRafael Auler   assert(!*Str, "buffer overflow, function name too large");
51162aa74f8SRafael Auler   *OutBuf++ = ' ';
512821480d2SRafael Auler   OutBuf = intToStr(OutBuf, Loc.Offset, 16);
51362aa74f8SRafael Auler   *OutBuf++ = ' ';
51462aa74f8SRafael Auler   return OutBuf;
51562aa74f8SRafael Auler }
51662aa74f8SRafael Auler 
51716a497c6SRafael Auler /// Read and deserialize a function description written by BOLT. \p FuncDesc
51816a497c6SRafael Auler /// points at the beginning of the function metadata structure in the file.
51916a497c6SRafael Auler /// See Instrumentation::emitTablesAsELFNote()
52016a497c6SRafael Auler FunctionDescription::FunctionDescription(const uint8_t *FuncDesc) {
52116a497c6SRafael Auler   NumLeafNodes = *reinterpret_cast<const uint32_t *>(FuncDesc);
52216a497c6SRafael Auler   DEBUG(reportNumber("NumLeafNodes = ", NumLeafNodes, 10));
52316a497c6SRafael Auler   LeafNodes = reinterpret_cast<const InstrumentedNode *>(FuncDesc + 4);
52416a497c6SRafael Auler 
52516a497c6SRafael Auler   NumEdges = *reinterpret_cast<const uint32_t *>(
52616a497c6SRafael Auler       FuncDesc + 4 + NumLeafNodes * sizeof(InstrumentedNode));
52716a497c6SRafael Auler   DEBUG(reportNumber("NumEdges = ", NumEdges, 10));
52816a497c6SRafael Auler   Edges = reinterpret_cast<const EdgeDescription *>(
52916a497c6SRafael Auler       FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode));
53016a497c6SRafael Auler 
53116a497c6SRafael Auler   NumCalls = *reinterpret_cast<const uint32_t *>(
53216a497c6SRafael Auler       FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode) +
53316a497c6SRafael Auler       NumEdges * sizeof(EdgeDescription));
53416a497c6SRafael Auler   DEBUG(reportNumber("NumCalls = ", NumCalls, 10));
53516a497c6SRafael Auler   Calls = reinterpret_cast<const CallDescription *>(
53616a497c6SRafael Auler       FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) +
53716a497c6SRafael Auler       NumEdges * sizeof(EdgeDescription));
53816a497c6SRafael Auler   NumEntryNodes = *reinterpret_cast<const uint32_t *>(
53916a497c6SRafael Auler       FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) +
54016a497c6SRafael Auler       NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription));
54116a497c6SRafael Auler   DEBUG(reportNumber("NumEntryNodes = ", NumEntryNodes, 10));
54216a497c6SRafael Auler   EntryNodes = reinterpret_cast<const EntryNode *>(
54316a497c6SRafael Auler       FuncDesc + 16 + NumLeafNodes * sizeof(InstrumentedNode) +
54416a497c6SRafael Auler       NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription));
54516a497c6SRafael Auler }
54616a497c6SRafael Auler 
54716a497c6SRafael Auler /// Read and mmap descriptions written by BOLT from the executable's notes
54816a497c6SRafael Auler /// section
549ba31344fSRafael Auler #ifdef HAVE_ELF_H
55016a497c6SRafael Auler ProfileWriterContext readDescriptions() {
55116a497c6SRafael Auler   ProfileWriterContext Result;
552821480d2SRafael Auler   uint64_t FD = __open("/proc/self/exe",
553821480d2SRafael Auler                        /*flags=*/0 /*O_RDONLY*/,
554821480d2SRafael Auler                        /*mode=*/0666);
555cc4b2fb6SRafael Auler   assert(static_cast<int64_t>(FD) > 0, "Failed to open /proc/self/exe");
556821480d2SRafael Auler   Result.FileDesc = FD;
557821480d2SRafael Auler 
558821480d2SRafael Auler   // mmap our binary to memory
559821480d2SRafael Auler   uint64_t Size = __lseek(FD, 0, 2 /*SEEK_END*/);
560821480d2SRafael Auler   uint8_t *BinContents = reinterpret_cast<uint8_t *>(
561821480d2SRafael Auler       __mmap(0, Size, 0x1 /* PROT_READ*/, 0x2 /* MAP_PRIVATE*/, FD, 0));
562821480d2SRafael Auler   Result.MMapPtr = BinContents;
563821480d2SRafael Auler   Result.MMapSize = Size;
564821480d2SRafael Auler   Elf64_Ehdr *Hdr = reinterpret_cast<Elf64_Ehdr *>(BinContents);
565821480d2SRafael Auler   Elf64_Shdr *Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff);
566821480d2SRafael Auler   Elf64_Shdr *StringTblHeader = reinterpret_cast<Elf64_Shdr *>(
567821480d2SRafael Auler       BinContents + Hdr->e_shoff + Hdr->e_shstrndx * Hdr->e_shentsize);
568821480d2SRafael Auler 
569821480d2SRafael Auler   // Find .bolt.instr.tables with the data we need and set pointers to it
570821480d2SRafael Auler   for (int I = 0; I < Hdr->e_shnum; ++I) {
571821480d2SRafael Auler     char *SecName = reinterpret_cast<char *>(
572821480d2SRafael Auler         BinContents + StringTblHeader->sh_offset + Shdr->sh_name);
573821480d2SRafael Auler     if (compareStr(SecName, ".bolt.instr.tables", 64) != 0) {
574821480d2SRafael Auler       Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff +
575821480d2SRafael Auler                                             (I + 1) * Hdr->e_shentsize);
576821480d2SRafael Auler       continue;
577821480d2SRafael Auler     }
578821480d2SRafael Auler     // Actual contents of the ELF note start after offset 20 decimal:
579821480d2SRafael Auler     // Offset 0: Producer name size (4 bytes)
580821480d2SRafael Auler     // Offset 4: Contents size (4 bytes)
581821480d2SRafael Auler     // Offset 8: Note type (4 bytes)
582821480d2SRafael Auler     // Offset 12: Producer name (BOLT\0) (5 bytes + align to 4-byte boundary)
583821480d2SRafael Auler     // Offset 20: Contents
58416a497c6SRafael Auler     uint32_t IndCallDescSize =
585cc4b2fb6SRafael Auler         *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 20);
58616a497c6SRafael Auler     uint32_t IndCallTargetDescSize = *reinterpret_cast<uint32_t *>(
58716a497c6SRafael Auler         BinContents + Shdr->sh_offset + 24 + IndCallDescSize);
58816a497c6SRafael Auler     uint32_t FuncDescSize =
58916a497c6SRafael Auler         *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 28 +
59016a497c6SRafael Auler                                       IndCallDescSize + IndCallTargetDescSize);
59116a497c6SRafael Auler     Result.IndCallDescriptions = reinterpret_cast<IndCallDescription *>(
59216a497c6SRafael Auler         BinContents + Shdr->sh_offset + 24);
59316a497c6SRafael Auler     Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>(
59416a497c6SRafael Auler         BinContents + Shdr->sh_offset + 28 + IndCallDescSize);
59516a497c6SRafael Auler     Result.FuncDescriptions = BinContents + Shdr->sh_offset + 32 +
59616a497c6SRafael Auler                               IndCallDescSize + IndCallTargetDescSize;
59716a497c6SRafael Auler     Result.Strings = reinterpret_cast<char *>(
59816a497c6SRafael Auler         BinContents + Shdr->sh_offset + 32 + IndCallDescSize +
59916a497c6SRafael Auler         IndCallTargetDescSize + FuncDescSize);
600821480d2SRafael Auler     return Result;
601821480d2SRafael Auler   }
602821480d2SRafael Auler   const char ErrMsg[] =
603821480d2SRafael Auler       "BOLT instrumentation runtime error: could not find section "
604821480d2SRafael Auler       ".bolt.instr.tables\n";
605821480d2SRafael Auler   reportError(ErrMsg, sizeof(ErrMsg));
606821480d2SRafael Auler   return Result;
607821480d2SRafael Auler }
608ba31344fSRafael Auler #else
60916a497c6SRafael Auler ProfileWriterContext readDescriptions() {
61016a497c6SRafael Auler   ProfileWriterContext Result;
611ba31344fSRafael Auler   const char ErrMsg[] =
612ba31344fSRafael Auler     "BOLT instrumentation runtime error: unsupported binary format.\n";
613ba31344fSRafael Auler   reportError(ErrMsg, sizeof(ErrMsg));
614ba31344fSRafael Auler   return Result;
615ba31344fSRafael Auler }
616ba31344fSRafael Auler #endif
617821480d2SRafael Auler 
61816a497c6SRafael Auler /// Debug by printing overall metadata global numbers to check it is sane
61916a497c6SRafael Auler void printStats(const ProfileWriterContext &Ctx) {
620cc4b2fb6SRafael Auler   char StatMsg[BufSize];
621cc4b2fb6SRafael Auler   char *StatPtr = StatMsg;
62216a497c6SRafael Auler   StatPtr =
62316a497c6SRafael Auler       strCopy(StatPtr,
62416a497c6SRafael Auler               "\nBOLT INSTRUMENTATION RUNTIME STATISTICS\n\nIndCallDescSize: ");
625cc4b2fb6SRafael Auler   StatPtr = intToStr(StatPtr,
62616a497c6SRafael Auler                      Ctx.FuncDescriptions -
62716a497c6SRafael Auler                          reinterpret_cast<uint8_t *>(Ctx.IndCallDescriptions),
628cc4b2fb6SRafael Auler                      10);
629cc4b2fb6SRafael Auler   StatPtr = strCopy(StatPtr, "\nFuncDescSize: ");
630cc4b2fb6SRafael Auler   StatPtr = intToStr(
631cc4b2fb6SRafael Auler       StatPtr,
63216a497c6SRafael Auler       reinterpret_cast<uint8_t *>(Ctx.Strings) - Ctx.FuncDescriptions, 10);
63316a497c6SRafael Auler   StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_ind_calls: ");
63416a497c6SRafael Auler   StatPtr = intToStr(StatPtr, __bolt_instr_num_ind_calls, 10);
635cc4b2fb6SRafael Auler   StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_funcs: ");
636cc4b2fb6SRafael Auler   StatPtr = intToStr(StatPtr, __bolt_instr_num_funcs, 10);
637cc4b2fb6SRafael Auler   StatPtr = strCopy(StatPtr, "\n");
638cc4b2fb6SRafael Auler   __write(2, StatMsg, StatPtr - StatMsg);
639cc4b2fb6SRafael Auler }
640cc4b2fb6SRafael Auler 
641cc4b2fb6SRafael Auler /// This is part of a simple CFG representation in memory, where we store
642cc4b2fb6SRafael Auler /// a dynamically sized array of input and output edges per node, and store
643cc4b2fb6SRafael Auler /// a dynamically sized array of nodes per graph. We also store the spanning
644cc4b2fb6SRafael Auler /// tree edges for that CFG in a separate array of nodes in
645cc4b2fb6SRafael Auler /// \p SpanningTreeNodes, while the regular nodes live in \p CFGNodes.
646cc4b2fb6SRafael Auler struct Edge {
647cc4b2fb6SRafael Auler   uint32_t Node; // Index in nodes array regarding the destination of this edge
648cc4b2fb6SRafael Auler   uint32_t ID;   // Edge index in an array comprising all edges of the graph
649cc4b2fb6SRafael Auler };
650cc4b2fb6SRafael Auler 
651cc4b2fb6SRafael Auler /// A regular graph node or a spanning tree node
652cc4b2fb6SRafael Auler struct Node {
653cc4b2fb6SRafael Auler   uint32_t NumInEdges{0};  // Input edge count used to size InEdge
654cc4b2fb6SRafael Auler   uint32_t NumOutEdges{0}; // Output edge count used to size OutEdges
655cc4b2fb6SRafael Auler   Edge *InEdges{nullptr};  // Created and managed by \p Graph
656cc4b2fb6SRafael Auler   Edge *OutEdges{nullptr}; // ditto
657cc4b2fb6SRafael Auler };
658cc4b2fb6SRafael Auler 
659cc4b2fb6SRafael Auler /// Main class for CFG representation in memory. Manages object creation and
660cc4b2fb6SRafael Auler /// destruction, populates an array of CFG nodes as well as corresponding
661cc4b2fb6SRafael Auler /// spanning tree nodes.
662cc4b2fb6SRafael Auler struct Graph {
663cc4b2fb6SRafael Auler   uint32_t NumNodes;
664cc4b2fb6SRafael Auler   Node *CFGNodes;
665cc4b2fb6SRafael Auler   Node *SpanningTreeNodes;
66616a497c6SRafael Auler   uint64_t *EdgeFreqs;
66716a497c6SRafael Auler   uint64_t *CallFreqs;
668cc4b2fb6SRafael Auler   BumpPtrAllocator &Alloc;
66916a497c6SRafael Auler   const FunctionDescription &D;
670cc4b2fb6SRafael Auler 
67116a497c6SRafael Auler   /// Reads a list of edges from function description \p D and builds
672cc4b2fb6SRafael Auler   /// the graph from it. Allocates several internal dynamic structures that are
67316a497c6SRafael Auler   /// later destroyed by ~Graph() and uses \p Alloc. D.LeafNodes contain all
674cc4b2fb6SRafael Auler   /// spanning tree leaf nodes descriptions (their counters). They are the seed
675cc4b2fb6SRafael Auler   /// used to compute the rest of the missing edge counts in a bottom-up
676cc4b2fb6SRafael Auler   /// traversal of the spanning tree.
67716a497c6SRafael Auler   Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D,
67816a497c6SRafael Auler         const uint64_t *Counters, ProfileWriterContext &Ctx);
679cc4b2fb6SRafael Auler   ~Graph();
680cc4b2fb6SRafael Auler   void dump() const;
68116a497c6SRafael Auler 
68216a497c6SRafael Auler private:
68316a497c6SRafael Auler   void computeEdgeFrequencies(const uint64_t *Counters,
68416a497c6SRafael Auler                               ProfileWriterContext &Ctx);
68516a497c6SRafael Auler   void dumpEdgeFreqs() const;
686cc4b2fb6SRafael Auler };
687cc4b2fb6SRafael Auler 
68816a497c6SRafael Auler Graph::Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D,
68916a497c6SRafael Auler              const uint64_t *Counters, ProfileWriterContext &Ctx)
69016a497c6SRafael Auler     : Alloc(Alloc), D(D) {
691cc4b2fb6SRafael Auler   DEBUG(reportNumber("G = 0x", (uint64_t)this, 16));
692cc4b2fb6SRafael Auler   // First pass to determine number of nodes
69316a497c6SRafael Auler   int32_t MaxNodes = -1;
69416a497c6SRafael Auler   CallFreqs = nullptr;
69516a497c6SRafael Auler   EdgeFreqs = nullptr;
69616a497c6SRafael Auler   for (int I = 0; I < D.NumEdges; ++I) {
69716a497c6SRafael Auler     if (static_cast<int32_t>(D.Edges[I].FromNode) > MaxNodes)
69816a497c6SRafael Auler       MaxNodes = D.Edges[I].FromNode;
69916a497c6SRafael Auler     if (static_cast<int32_t>(D.Edges[I].ToNode) > MaxNodes)
70016a497c6SRafael Auler       MaxNodes = D.Edges[I].ToNode;
701cc4b2fb6SRafael Auler   }
70216a497c6SRafael Auler   for (int I = 0; I < D.NumLeafNodes; ++I) {
70316a497c6SRafael Auler     if (static_cast<int32_t>(D.LeafNodes[I].Node) > MaxNodes)
70416a497c6SRafael Auler       MaxNodes = D.LeafNodes[I].Node;
705cc4b2fb6SRafael Auler   }
70616a497c6SRafael Auler   for (int I = 0; I < D.NumCalls; ++I) {
70716a497c6SRafael Auler     if (static_cast<int32_t>(D.Calls[I].FromNode) > MaxNodes)
70816a497c6SRafael Auler       MaxNodes = D.Calls[I].FromNode;
70916a497c6SRafael Auler   }
71016a497c6SRafael Auler   // No nodes? Nothing to do
71116a497c6SRafael Auler   if (MaxNodes < 0) {
71216a497c6SRafael Auler     DEBUG(report("No nodes!\n"));
713cc4b2fb6SRafael Auler     CFGNodes = nullptr;
714cc4b2fb6SRafael Auler     SpanningTreeNodes = nullptr;
715cc4b2fb6SRafael Auler     NumNodes = 0;
716cc4b2fb6SRafael Auler     return;
717cc4b2fb6SRafael Auler   }
718cc4b2fb6SRafael Auler   ++MaxNodes;
719cc4b2fb6SRafael Auler   DEBUG(reportNumber("NumNodes = ", MaxNodes, 10));
72016a497c6SRafael Auler   NumNodes = static_cast<uint32_t>(MaxNodes);
721cc4b2fb6SRafael Auler 
722cc4b2fb6SRafael Auler   // Initial allocations
723cc4b2fb6SRafael Auler   CFGNodes = new (Alloc) Node[MaxNodes];
724cc4b2fb6SRafael Auler   DEBUG(reportNumber("G->CFGNodes = 0x", (uint64_t)CFGNodes, 16));
725cc4b2fb6SRafael Auler   SpanningTreeNodes = new (Alloc) Node[MaxNodes];
726cc4b2fb6SRafael Auler   DEBUG(reportNumber("G->SpanningTreeNodes = 0x",
727cc4b2fb6SRafael Auler                      (uint64_t)SpanningTreeNodes, 16));
728cc4b2fb6SRafael Auler 
729cc4b2fb6SRafael Auler   // Figure out how much to allocate to each vector (in/out edge sets)
73016a497c6SRafael Auler   for (int I = 0; I < D.NumEdges; ++I) {
73116a497c6SRafael Auler     CFGNodes[D.Edges[I].FromNode].NumOutEdges++;
73216a497c6SRafael Auler     CFGNodes[D.Edges[I].ToNode].NumInEdges++;
73316a497c6SRafael Auler     if (D.Edges[I].Counter != 0xffffffff)
734cc4b2fb6SRafael Auler       continue;
735cc4b2fb6SRafael Auler 
73616a497c6SRafael Auler     SpanningTreeNodes[D.Edges[I].FromNode].NumOutEdges++;
73716a497c6SRafael Auler     SpanningTreeNodes[D.Edges[I].ToNode].NumInEdges++;
738cc4b2fb6SRafael Auler   }
739cc4b2fb6SRafael Auler 
740cc4b2fb6SRafael Auler   // Allocate in/out edge sets
741cc4b2fb6SRafael Auler   for (int I = 0; I < MaxNodes; ++I) {
742cc4b2fb6SRafael Auler     if (CFGNodes[I].NumInEdges > 0)
743cc4b2fb6SRafael Auler       CFGNodes[I].InEdges = new (Alloc) Edge[CFGNodes[I].NumInEdges];
744cc4b2fb6SRafael Auler     if (CFGNodes[I].NumOutEdges > 0)
745cc4b2fb6SRafael Auler       CFGNodes[I].OutEdges = new (Alloc) Edge[CFGNodes[I].NumOutEdges];
746cc4b2fb6SRafael Auler     if (SpanningTreeNodes[I].NumInEdges > 0)
747cc4b2fb6SRafael Auler       SpanningTreeNodes[I].InEdges =
748cc4b2fb6SRafael Auler           new (Alloc) Edge[SpanningTreeNodes[I].NumInEdges];
749cc4b2fb6SRafael Auler     if (SpanningTreeNodes[I].NumOutEdges > 0)
750cc4b2fb6SRafael Auler       SpanningTreeNodes[I].OutEdges =
751cc4b2fb6SRafael Auler           new (Alloc) Edge[SpanningTreeNodes[I].NumOutEdges];
752cc4b2fb6SRafael Auler     CFGNodes[I].NumInEdges = 0;
753cc4b2fb6SRafael Auler     CFGNodes[I].NumOutEdges = 0;
754cc4b2fb6SRafael Auler     SpanningTreeNodes[I].NumInEdges = 0;
755cc4b2fb6SRafael Auler     SpanningTreeNodes[I].NumOutEdges = 0;
756cc4b2fb6SRafael Auler   }
757cc4b2fb6SRafael Auler 
758cc4b2fb6SRafael Auler   // Fill in/out edge sets
75916a497c6SRafael Auler   for (int I = 0; I < D.NumEdges; ++I) {
76016a497c6SRafael Auler     const uint32_t Src = D.Edges[I].FromNode;
76116a497c6SRafael Auler     const uint32_t Dst = D.Edges[I].ToNode;
762cc4b2fb6SRafael Auler     Edge *E = &CFGNodes[Src].OutEdges[CFGNodes[Src].NumOutEdges++];
763cc4b2fb6SRafael Auler     E->Node = Dst;
764cc4b2fb6SRafael Auler     E->ID = I;
765cc4b2fb6SRafael Auler 
766cc4b2fb6SRafael Auler     E = &CFGNodes[Dst].InEdges[CFGNodes[Dst].NumInEdges++];
767cc4b2fb6SRafael Auler     E->Node = Src;
768cc4b2fb6SRafael Auler     E->ID = I;
769cc4b2fb6SRafael Auler 
77016a497c6SRafael Auler     if (D.Edges[I].Counter != 0xffffffff)
771cc4b2fb6SRafael Auler       continue;
772cc4b2fb6SRafael Auler 
773cc4b2fb6SRafael Auler     E = &SpanningTreeNodes[Src]
774cc4b2fb6SRafael Auler              .OutEdges[SpanningTreeNodes[Src].NumOutEdges++];
775cc4b2fb6SRafael Auler     E->Node = Dst;
776cc4b2fb6SRafael Auler     E->ID = I;
777cc4b2fb6SRafael Auler 
778cc4b2fb6SRafael Auler     E = &SpanningTreeNodes[Dst]
779cc4b2fb6SRafael Auler              .InEdges[SpanningTreeNodes[Dst].NumInEdges++];
780cc4b2fb6SRafael Auler     E->Node = Src;
781cc4b2fb6SRafael Auler     E->ID = I;
782cc4b2fb6SRafael Auler   }
78316a497c6SRafael Auler 
78416a497c6SRafael Auler   computeEdgeFrequencies(Counters, Ctx);
785cc4b2fb6SRafael Auler }
786cc4b2fb6SRafael Auler 
787cc4b2fb6SRafael Auler Graph::~Graph() {
78816a497c6SRafael Auler   if (CallFreqs)
78916a497c6SRafael Auler     Alloc.deallocate(CallFreqs);
79016a497c6SRafael Auler   if (EdgeFreqs)
79116a497c6SRafael Auler     Alloc.deallocate(EdgeFreqs);
792cc4b2fb6SRafael Auler   for (int I = NumNodes - 1; I >= 0; --I) {
793cc4b2fb6SRafael Auler     if (SpanningTreeNodes[I].OutEdges)
794cc4b2fb6SRafael Auler       Alloc.deallocate(SpanningTreeNodes[I].OutEdges);
795cc4b2fb6SRafael Auler     if (SpanningTreeNodes[I].InEdges)
796cc4b2fb6SRafael Auler       Alloc.deallocate(SpanningTreeNodes[I].InEdges);
797cc4b2fb6SRafael Auler     if (CFGNodes[I].OutEdges)
798cc4b2fb6SRafael Auler       Alloc.deallocate(CFGNodes[I].OutEdges);
799cc4b2fb6SRafael Auler     if (CFGNodes[I].InEdges)
800cc4b2fb6SRafael Auler       Alloc.deallocate(CFGNodes[I].InEdges);
801cc4b2fb6SRafael Auler   }
802cc4b2fb6SRafael Auler   if (SpanningTreeNodes)
803cc4b2fb6SRafael Auler     Alloc.deallocate(SpanningTreeNodes);
804cc4b2fb6SRafael Auler   if (CFGNodes)
805cc4b2fb6SRafael Auler     Alloc.deallocate(CFGNodes);
806cc4b2fb6SRafael Auler }
807cc4b2fb6SRafael Auler 
808cc4b2fb6SRafael Auler void Graph::dump() const {
809cc4b2fb6SRafael Auler   reportNumber("Dumping graph with number of nodes: ", NumNodes, 10);
810cc4b2fb6SRafael Auler   report("  Full graph:\n");
811cc4b2fb6SRafael Auler   for (int I = 0; I < NumNodes; ++I) {
812cc4b2fb6SRafael Auler     const Node *N = &CFGNodes[I];
813cc4b2fb6SRafael Auler     reportNumber("    Node #", I, 10);
814cc4b2fb6SRafael Auler     reportNumber("      InEdges total ", N->NumInEdges, 10);
815cc4b2fb6SRafael Auler     for (int J = 0; J < N->NumInEdges; ++J)
816cc4b2fb6SRafael Auler       reportNumber("        ", N->InEdges[J].Node, 10);
817cc4b2fb6SRafael Auler     reportNumber("      OutEdges total ", N->NumOutEdges, 10);
818cc4b2fb6SRafael Auler     for (int J = 0; J < N->NumOutEdges; ++J)
819cc4b2fb6SRafael Auler       reportNumber("        ", N->OutEdges[J].Node, 10);
820cc4b2fb6SRafael Auler     report("\n");
821cc4b2fb6SRafael Auler   }
822cc4b2fb6SRafael Auler   report("  Spanning tree:\n");
823cc4b2fb6SRafael Auler   for (int I = 0; I < NumNodes; ++I) {
824cc4b2fb6SRafael Auler     const Node *N = &SpanningTreeNodes[I];
825cc4b2fb6SRafael Auler     reportNumber("    Node #", I, 10);
826cc4b2fb6SRafael Auler     reportNumber("      InEdges total ", N->NumInEdges, 10);
827cc4b2fb6SRafael Auler     for (int J = 0; J < N->NumInEdges; ++J)
828cc4b2fb6SRafael Auler       reportNumber("        ", N->InEdges[J].Node, 10);
829cc4b2fb6SRafael Auler     reportNumber("      OutEdges total ", N->NumOutEdges, 10);
830cc4b2fb6SRafael Auler     for (int J = 0; J < N->NumOutEdges; ++J)
831cc4b2fb6SRafael Auler       reportNumber("        ", N->OutEdges[J].Node, 10);
832cc4b2fb6SRafael Auler     report("\n");
833cc4b2fb6SRafael Auler   }
834cc4b2fb6SRafael Auler }
835cc4b2fb6SRafael Auler 
83616a497c6SRafael Auler void Graph::dumpEdgeFreqs() const {
83716a497c6SRafael Auler   reportNumber(
83816a497c6SRafael Auler       "Dumping edge frequencies for graph with num edges: ", D.NumEdges, 10);
83916a497c6SRafael Auler   for (int I = 0; I < D.NumEdges; ++I) {
84016a497c6SRafael Auler     reportNumber("* Src: ", D.Edges[I].FromNode, 10);
84116a497c6SRafael Auler     reportNumber("  Dst: ", D.Edges[I].ToNode, 10);
842cc4b2fb6SRafael Auler     reportNumber("    Cnt: ", EdgeFreqs[I], 10);
843cc4b2fb6SRafael Auler   }
844cc4b2fb6SRafael Auler }
845cc4b2fb6SRafael Auler 
84616a497c6SRafael Auler /// Auxiliary map structure for fast lookups of which calls map to each node of
84716a497c6SRafael Auler /// the function CFG
84816a497c6SRafael Auler struct NodeToCallsMap {
84916a497c6SRafael Auler   struct MapEntry {
85016a497c6SRafael Auler     uint32_t NumCalls;
85116a497c6SRafael Auler     uint32_t *Calls;
85216a497c6SRafael Auler   };
85316a497c6SRafael Auler   MapEntry *Entries;
85416a497c6SRafael Auler   BumpPtrAllocator &Alloc;
85516a497c6SRafael Auler   const uint32_t NumNodes;
856cc4b2fb6SRafael Auler 
85716a497c6SRafael Auler   NodeToCallsMap(BumpPtrAllocator &Alloc, const FunctionDescription &D,
85816a497c6SRafael Auler                  uint32_t NumNodes)
85916a497c6SRafael Auler       : Alloc(Alloc), NumNodes(NumNodes) {
86016a497c6SRafael Auler     Entries = new (Alloc, 0) MapEntry[NumNodes];
86116a497c6SRafael Auler     for (int I = 0; I < D.NumCalls; ++I) {
86216a497c6SRafael Auler       DEBUG(reportNumber("Registering call in node ", D.Calls[I].FromNode, 10));
86316a497c6SRafael Auler       ++Entries[D.Calls[I].FromNode].NumCalls;
86416a497c6SRafael Auler     }
86516a497c6SRafael Auler     for (int I = 0; I < NumNodes; ++I) {
86616a497c6SRafael Auler       Entries[I].Calls = Entries[I].NumCalls ? new (Alloc)
86716a497c6SRafael Auler                                                    uint32_t[Entries[I].NumCalls]
86816a497c6SRafael Auler                                              : nullptr;
86916a497c6SRafael Auler       Entries[I].NumCalls = 0;
87016a497c6SRafael Auler     }
87116a497c6SRafael Auler     for (int I = 0; I < D.NumCalls; ++I) {
87216a497c6SRafael Auler       auto &Entry = Entries[D.Calls[I].FromNode];
87316a497c6SRafael Auler       Entry.Calls[Entry.NumCalls++] = I;
87416a497c6SRafael Auler     }
87516a497c6SRafael Auler   }
87616a497c6SRafael Auler 
87716a497c6SRafael Auler   /// Set the frequency of all calls in node \p NodeID to Freq. However, if
87816a497c6SRafael Auler   /// the calls have their own counters and do not depend on the basic block
87916a497c6SRafael Auler   /// counter, this means they have landing pads and throw exceptions. In this
88016a497c6SRafael Auler   /// case, set their frequency with their counters and return the maximum
88116a497c6SRafael Auler   /// value observed in such counters. This will be used as the new frequency
88216a497c6SRafael Auler   /// at basic block entry. This is used to fix the CFG edge frequencies in the
88316a497c6SRafael Auler   /// presence of exceptions.
88416a497c6SRafael Auler   uint64_t visitAllCallsIn(uint32_t NodeID, uint64_t Freq, uint64_t *CallFreqs,
88516a497c6SRafael Auler                            const FunctionDescription &D,
88616a497c6SRafael Auler                            const uint64_t *Counters,
88716a497c6SRafael Auler                            ProfileWriterContext &Ctx) const {
88816a497c6SRafael Auler     const auto &Entry = Entries[NodeID];
88916a497c6SRafael Auler     uint64_t MaxValue = 0ull;
89016a497c6SRafael Auler     for (int I = 0, E = Entry.NumCalls; I != E; ++I) {
89116a497c6SRafael Auler       const auto CallID = Entry.Calls[I];
89216a497c6SRafael Auler       DEBUG(reportNumber("  Setting freq for call ID: ", CallID, 10));
89316a497c6SRafael Auler       auto &CallDesc = D.Calls[CallID];
89416a497c6SRafael Auler       if (CallDesc.Counter == 0xffffffff) {
89516a497c6SRafael Auler         CallFreqs[CallID] = Freq;
89616a497c6SRafael Auler         DEBUG(reportNumber("  with : ", Freq, 10));
89716a497c6SRafael Auler       } else {
89816a497c6SRafael Auler         const auto CounterVal = Counters[CallDesc.Counter];
89916a497c6SRafael Auler         CallFreqs[CallID] = CounterVal;
90016a497c6SRafael Auler         MaxValue = CounterVal > MaxValue ? CounterVal : MaxValue;
90116a497c6SRafael Auler         DEBUG(reportNumber("  with (private counter) : ", CounterVal, 10));
90216a497c6SRafael Auler       }
90316a497c6SRafael Auler       DEBUG(reportNumber("  Address: 0x", CallDesc.TargetAddress, 16));
90416a497c6SRafael Auler       if (CallFreqs[CallID] > 0)
90516a497c6SRafael Auler         Ctx.CallFlowTable->get(CallDesc.TargetAddress).Calls +=
90616a497c6SRafael Auler             CallFreqs[CallID];
90716a497c6SRafael Auler     }
90816a497c6SRafael Auler     return MaxValue;
90916a497c6SRafael Auler   }
91016a497c6SRafael Auler 
91116a497c6SRafael Auler   ~NodeToCallsMap() {
91216a497c6SRafael Auler     for (int I = NumNodes - 1; I >= 0; --I) {
91316a497c6SRafael Auler       if (Entries[I].Calls)
91416a497c6SRafael Auler         Alloc.deallocate(Entries[I].Calls);
91516a497c6SRafael Auler     }
91616a497c6SRafael Auler     Alloc.deallocate(Entries);
91716a497c6SRafael Auler   }
91816a497c6SRafael Auler };
91916a497c6SRafael Auler 
92016a497c6SRafael Auler /// Fill an array with the frequency of each edge in the function represented
92116a497c6SRafael Auler /// by G, as well as another array for each call.
92216a497c6SRafael Auler void Graph::computeEdgeFrequencies(const uint64_t *Counters,
92316a497c6SRafael Auler                                    ProfileWriterContext &Ctx) {
92416a497c6SRafael Auler   if (NumNodes == 0)
92516a497c6SRafael Auler     return;
92616a497c6SRafael Auler 
92716a497c6SRafael Auler   EdgeFreqs = D.NumEdges ? new (Alloc, 0) uint64_t [D.NumEdges] : nullptr;
92816a497c6SRafael Auler   CallFreqs = D.NumCalls ? new (Alloc, 0) uint64_t [D.NumCalls] : nullptr;
92916a497c6SRafael Auler 
93016a497c6SRafael Auler   // Setup a lookup for calls present in each node (BB)
93116a497c6SRafael Auler   NodeToCallsMap *CallMap = new (Alloc) NodeToCallsMap(Alloc, D, NumNodes);
932cc4b2fb6SRafael Auler 
933cc4b2fb6SRafael Auler   // Perform a bottom-up, BFS traversal of the spanning tree in G. Edges in the
934cc4b2fb6SRafael Auler   // spanning tree don't have explicit counters. We must infer their value using
935cc4b2fb6SRafael Auler   // a linear combination of other counters (sum of counters of the outgoing
936cc4b2fb6SRafael Auler   // edges minus sum of counters of the incoming edges).
93716a497c6SRafael Auler   uint32_t *Stack = new (Alloc) uint32_t [NumNodes];
938cc4b2fb6SRafael Auler   uint32_t StackTop = 0;
939cc4b2fb6SRafael Auler   enum Status : uint8_t { S_NEW = 0, S_VISITING, S_VISITED };
94016a497c6SRafael Auler   Status *Visited = new (Alloc, 0) Status[NumNodes];
94116a497c6SRafael Auler   uint64_t *LeafFrequency = new (Alloc, 0) uint64_t[NumNodes];
94216a497c6SRafael Auler   uint64_t *EntryAddress = new (Alloc, 0) uint64_t[NumNodes];
943cc4b2fb6SRafael Auler 
944cc4b2fb6SRafael Auler   // Setup a fast lookup for frequency of leaf nodes, which have special
945cc4b2fb6SRafael Auler   // basic block frequency instrumentation (they are not edge profiled).
94616a497c6SRafael Auler   for (int I = 0; I < D.NumLeafNodes; ++I) {
94716a497c6SRafael Auler     LeafFrequency[D.LeafNodes[I].Node] = Counters[D.LeafNodes[I].Counter];
948cc4b2fb6SRafael Auler     DEBUG({
94916a497c6SRafael Auler       if (Counters[D.LeafNodes[I].Counter] > 0) {
95016a497c6SRafael Auler         reportNumber("Leaf Node# ", D.LeafNodes[I].Node, 10);
95116a497c6SRafael Auler         reportNumber("     Counter: ", Counters[D.LeafNodes[I].Counter], 10);
952cc4b2fb6SRafael Auler       }
953cc4b2fb6SRafael Auler     });
95416a497c6SRafael Auler   }
95516a497c6SRafael Auler   for (int I = 0; I < D.NumEntryNodes; ++I) {
95616a497c6SRafael Auler     EntryAddress[D.EntryNodes[I].Node] = D.EntryNodes[I].Address;
95716a497c6SRafael Auler     DEBUG({
95816a497c6SRafael Auler         reportNumber("Entry Node# ", D.EntryNodes[I].Node, 10);
95916a497c6SRafael Auler         reportNumber("      Address: ", D.EntryNodes[I].Address, 16);
96016a497c6SRafael Auler     });
961cc4b2fb6SRafael Auler   }
962cc4b2fb6SRafael Auler   // Add all root nodes to the stack
96316a497c6SRafael Auler   for (int I = 0; I < NumNodes; ++I) {
96416a497c6SRafael Auler     if (SpanningTreeNodes[I].NumInEdges == 0)
965cc4b2fb6SRafael Auler       Stack[StackTop++] = I;
966cc4b2fb6SRafael Auler   }
967cc4b2fb6SRafael Auler   // Empty stack?
968cc4b2fb6SRafael Auler   if (StackTop == 0) {
96916a497c6SRafael Auler     DEBUG(report("Empty stack!\n"));
97016a497c6SRafael Auler     Alloc.deallocate(EntryAddress);
971cc4b2fb6SRafael Auler     Alloc.deallocate(LeafFrequency);
972cc4b2fb6SRafael Auler     Alloc.deallocate(Visited);
973cc4b2fb6SRafael Auler     Alloc.deallocate(Stack);
97416a497c6SRafael Auler     CallMap->~NodeToCallsMap();
97516a497c6SRafael Auler     Alloc.deallocate(CallMap);
97616a497c6SRafael Auler     if (CallFreqs)
97716a497c6SRafael Auler       Alloc.deallocate(CallFreqs);
97816a497c6SRafael Auler     if (EdgeFreqs)
97916a497c6SRafael Auler       Alloc.deallocate(EdgeFreqs);
98016a497c6SRafael Auler     EdgeFreqs = nullptr;
98116a497c6SRafael Auler     CallFreqs = nullptr;
98216a497c6SRafael Auler     return;
983cc4b2fb6SRafael Auler   }
984cc4b2fb6SRafael Auler   // Add all known edge counts, will infer the rest
98516a497c6SRafael Auler   for (int I = 0; I < D.NumEdges; ++I) {
98616a497c6SRafael Auler     const uint32_t C = D.Edges[I].Counter;
987cc4b2fb6SRafael Auler     if (C == 0xffffffff) // inferred counter - we will compute its value
988cc4b2fb6SRafael Auler       continue;
98916a497c6SRafael Auler     EdgeFreqs[I] = Counters[C];
990cc4b2fb6SRafael Auler   }
991cc4b2fb6SRafael Auler 
992cc4b2fb6SRafael Auler   while (StackTop > 0) {
993cc4b2fb6SRafael Auler     const uint32_t Cur = Stack[--StackTop];
994cc4b2fb6SRafael Auler     DEBUG({
995cc4b2fb6SRafael Auler       if (Visited[Cur] == S_VISITING)
996cc4b2fb6SRafael Auler         report("(visiting) ");
997cc4b2fb6SRafael Auler       else
998cc4b2fb6SRafael Auler         report("(new) ");
999cc4b2fb6SRafael Auler       reportNumber("Cur: ", Cur, 10);
1000cc4b2fb6SRafael Auler     });
1001cc4b2fb6SRafael Auler 
1002cc4b2fb6SRafael Auler     // This shouldn't happen in a tree
1003cc4b2fb6SRafael Auler     assert(Visited[Cur] != S_VISITED, "should not have visited nodes in stack");
1004cc4b2fb6SRafael Auler     if (Visited[Cur] == S_NEW) {
1005cc4b2fb6SRafael Auler       Visited[Cur] = S_VISITING;
1006cc4b2fb6SRafael Auler       Stack[StackTop++] = Cur;
100716a497c6SRafael Auler       assert(StackTop <= NumNodes, "stack grew too large");
100816a497c6SRafael Auler       for (int I = 0, E = SpanningTreeNodes[Cur].NumOutEdges; I < E; ++I) {
100916a497c6SRafael Auler         const uint32_t Succ = SpanningTreeNodes[Cur].OutEdges[I].Node;
1010cc4b2fb6SRafael Auler         Stack[StackTop++] = Succ;
101116a497c6SRafael Auler         assert(StackTop <= NumNodes, "stack grew too large");
1012cc4b2fb6SRafael Auler      }
1013cc4b2fb6SRafael Auler       continue;
1014cc4b2fb6SRafael Auler     }
1015cc4b2fb6SRafael Auler     Visited[Cur] = S_VISITED;
1016cc4b2fb6SRafael Auler 
1017cc4b2fb6SRafael Auler     // Establish our node frequency based on outgoing edges, which should all be
1018cc4b2fb6SRafael Auler     // resolved by now.
1019cc4b2fb6SRafael Auler     int64_t CurNodeFreq = LeafFrequency[Cur];
1020cc4b2fb6SRafael Auler     // Not a leaf?
1021cc4b2fb6SRafael Auler     if (!CurNodeFreq) {
102216a497c6SRafael Auler       for (int I = 0, E = CFGNodes[Cur].NumOutEdges; I != E; ++I) {
102316a497c6SRafael Auler         const uint32_t SuccEdge = CFGNodes[Cur].OutEdges[I].ID;
102416a497c6SRafael Auler         CurNodeFreq += EdgeFreqs[SuccEdge];
1025cc4b2fb6SRafael Auler       }
1026cc4b2fb6SRafael Auler     }
102716a497c6SRafael Auler     if (CurNodeFreq < 0)
102816a497c6SRafael Auler       CurNodeFreq = 0;
102916a497c6SRafael Auler 
103016a497c6SRafael Auler     const uint64_t CallFreq = CallMap->visitAllCallsIn(
103116a497c6SRafael Auler         Cur, CurNodeFreq > 0 ? CurNodeFreq : 0, CallFreqs, D, Counters, Ctx);
103216a497c6SRafael Auler 
103316a497c6SRafael Auler     // Exception handling affected our output flow? Fix with calls info
103416a497c6SRafael Auler     DEBUG({
103516a497c6SRafael Auler       if (CallFreq > CurNodeFreq)
103616a497c6SRafael Auler         report("Bumping node frequency with call info\n");
103716a497c6SRafael Auler     });
103816a497c6SRafael Auler     CurNodeFreq = CallFreq > CurNodeFreq ? CallFreq : CurNodeFreq;
103916a497c6SRafael Auler 
104016a497c6SRafael Auler     if (CurNodeFreq > 0) {
104116a497c6SRafael Auler       if (uint64_t Addr = EntryAddress[Cur]) {
104216a497c6SRafael Auler         DEBUG(
104316a497c6SRafael Auler             reportNumber("  Setting flow at entry point address 0x", Addr, 16));
104416a497c6SRafael Auler         DEBUG(reportNumber("  with: ", CurNodeFreq, 10));
104516a497c6SRafael Auler         Ctx.CallFlowTable->get(Addr).Val = CurNodeFreq;
104616a497c6SRafael Auler       }
104716a497c6SRafael Auler     }
104816a497c6SRafael Auler 
104916a497c6SRafael Auler     // No parent? Reached a tree root, limit to call frequency updating.
105016a497c6SRafael Auler     if (SpanningTreeNodes[Cur].NumInEdges == 0) {
105116a497c6SRafael Auler       continue;
105216a497c6SRafael Auler     }
105316a497c6SRafael Auler 
105416a497c6SRafael Auler     assert(SpanningTreeNodes[Cur].NumInEdges == 1, "must have 1 parent");
105516a497c6SRafael Auler     const uint32_t Parent = SpanningTreeNodes[Cur].InEdges[0].Node;
105616a497c6SRafael Auler     const uint32_t ParentEdge = SpanningTreeNodes[Cur].InEdges[0].ID;
105716a497c6SRafael Auler 
1058cc4b2fb6SRafael Auler     // Calculate parent edge freq.
105916a497c6SRafael Auler     int64_t ParentEdgeFreq = CurNodeFreq;
106016a497c6SRafael Auler     for (int I = 0, E = CFGNodes[Cur].NumInEdges; I != E; ++I) {
106116a497c6SRafael Auler       const uint32_t PredEdge = CFGNodes[Cur].InEdges[I].ID;
106216a497c6SRafael Auler       ParentEdgeFreq -= EdgeFreqs[PredEdge];
1063cc4b2fb6SRafael Auler     }
106416a497c6SRafael Auler 
1065cc4b2fb6SRafael Auler     // Sometimes the conservative CFG that BOLT builds will lead to incorrect
1066cc4b2fb6SRafael Auler     // flow computation. For example, in a BB that transitively calls the exit
1067cc4b2fb6SRafael Auler     // syscall, BOLT will add a fall-through successor even though it should not
1068cc4b2fb6SRafael Auler     // have any successors. So this block execution will likely be wrong. We
1069cc4b2fb6SRafael Auler     // tolerate this imperfection since this case should be quite infrequent.
1070cc4b2fb6SRafael Auler     if (ParentEdgeFreq < 0) {
107116a497c6SRafael Auler       DEBUG(dumpEdgeFreqs());
1072cc4b2fb6SRafael Auler       DEBUG(report("WARNING: incorrect flow"));
1073cc4b2fb6SRafael Auler       ParentEdgeFreq = 0;
1074cc4b2fb6SRafael Auler     }
1075cc4b2fb6SRafael Auler     DEBUG(reportNumber("  Setting freq for ParentEdge: ", ParentEdge, 10));
1076cc4b2fb6SRafael Auler     DEBUG(reportNumber("  with ParentEdgeFreq: ", ParentEdgeFreq, 10));
107716a497c6SRafael Auler     EdgeFreqs[ParentEdge] = ParentEdgeFreq;
1078cc4b2fb6SRafael Auler   }
1079cc4b2fb6SRafael Auler 
108016a497c6SRafael Auler   Alloc.deallocate(EntryAddress);
1081cc4b2fb6SRafael Auler   Alloc.deallocate(LeafFrequency);
1082cc4b2fb6SRafael Auler   Alloc.deallocate(Visited);
1083cc4b2fb6SRafael Auler   Alloc.deallocate(Stack);
108416a497c6SRafael Auler   CallMap->~NodeToCallsMap();
108516a497c6SRafael Auler   Alloc.deallocate(CallMap);
108616a497c6SRafael Auler   DEBUG(dumpEdgeFreqs());
1087cc4b2fb6SRafael Auler }
1088cc4b2fb6SRafael Auler 
108916a497c6SRafael Auler /// Write to \p FD all of the edge profiles for function \p FuncDesc. Uses
109016a497c6SRafael Auler /// \p Alloc to allocate helper dynamic structures used to compute profile for
109116a497c6SRafael Auler /// edges that we do not explictly instrument.
109216a497c6SRafael Auler const uint8_t *writeFunctionProfile(int FD, ProfileWriterContext &Ctx,
109316a497c6SRafael Auler                                     const uint8_t *FuncDesc,
109416a497c6SRafael Auler                                     BumpPtrAllocator &Alloc) {
109516a497c6SRafael Auler   const FunctionDescription F(FuncDesc);
109616a497c6SRafael Auler   const uint8_t *next = FuncDesc + F.getSize();
1097cc4b2fb6SRafael Auler 
1098cc4b2fb6SRafael Auler   // Skip funcs we know are cold
1099cc4b2fb6SRafael Auler #ifndef ENABLE_DEBUG
110016a497c6SRafael Auler   uint64_t CountersFreq = 0;
110116a497c6SRafael Auler   for (int I = 0; I < F.NumLeafNodes; ++I) {
110216a497c6SRafael Auler     CountersFreq += __bolt_instr_locations[F.LeafNodes[I].Counter];
1103cc4b2fb6SRafael Auler   }
110416a497c6SRafael Auler   if (CountersFreq == 0) {
110516a497c6SRafael Auler     for (int I = 0; I < F.NumEdges; ++I) {
110616a497c6SRafael Auler       const uint32_t C = F.Edges[I].Counter;
110716a497c6SRafael Auler       if (C == 0xffffffff)
110816a497c6SRafael Auler         continue;
110916a497c6SRafael Auler       CountersFreq += __bolt_instr_locations[C];
111016a497c6SRafael Auler     }
111116a497c6SRafael Auler     if (CountersFreq == 0) {
111216a497c6SRafael Auler       for (int I = 0; I < F.NumCalls; ++I) {
111316a497c6SRafael Auler         const uint32_t C = F.Calls[I].Counter;
111416a497c6SRafael Auler         if (C == 0xffffffff)
111516a497c6SRafael Auler           continue;
111616a497c6SRafael Auler         CountersFreq += __bolt_instr_locations[C];
111716a497c6SRafael Auler       }
111816a497c6SRafael Auler       if (CountersFreq == 0)
1119cc4b2fb6SRafael Auler         return next;
112016a497c6SRafael Auler     }
112116a497c6SRafael Auler   }
1122cc4b2fb6SRafael Auler #endif
1123cc4b2fb6SRafael Auler 
112416a497c6SRafael Auler   Graph *G = new (Alloc) Graph(Alloc, F, __bolt_instr_locations, Ctx);
1125cc4b2fb6SRafael Auler   DEBUG(G->dump());
112616a497c6SRafael Auler   if (!G->EdgeFreqs && !G->CallFreqs) {
1127cc4b2fb6SRafael Auler     G->~Graph();
1128cc4b2fb6SRafael Auler     Alloc.deallocate(G);
1129cc4b2fb6SRafael Auler     return next;
1130cc4b2fb6SRafael Auler   }
1131cc4b2fb6SRafael Auler 
113216a497c6SRafael Auler   for (int I = 0; I < F.NumEdges; ++I) {
113316a497c6SRafael Auler     const uint64_t Freq = G->EdgeFreqs[I];
1134cc4b2fb6SRafael Auler     if (Freq == 0)
1135cc4b2fb6SRafael Auler       continue;
113616a497c6SRafael Auler     const EdgeDescription *Desc = &F.Edges[I];
1137cc4b2fb6SRafael Auler     char LineBuf[BufSize];
1138cc4b2fb6SRafael Auler     char *Ptr = LineBuf;
113916a497c6SRafael Auler     Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize);
114016a497c6SRafael Auler     Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf));
1141cc4b2fb6SRafael Auler     Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 22);
1142cc4b2fb6SRafael Auler     Ptr = intToStr(Ptr, Freq, 10);
1143cc4b2fb6SRafael Auler     *Ptr++ = '\n';
1144cc4b2fb6SRafael Auler     __write(FD, LineBuf, Ptr - LineBuf);
1145cc4b2fb6SRafael Auler   }
1146cc4b2fb6SRafael Auler 
114716a497c6SRafael Auler   for (int I = 0; I < F.NumCalls; ++I) {
114816a497c6SRafael Auler     const uint64_t Freq = G->CallFreqs[I];
114916a497c6SRafael Auler     if (Freq == 0)
115016a497c6SRafael Auler       continue;
115116a497c6SRafael Auler     char LineBuf[BufSize];
115216a497c6SRafael Auler     char *Ptr = LineBuf;
115316a497c6SRafael Auler     const CallDescription *Desc = &F.Calls[I];
115416a497c6SRafael Auler     Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize);
115516a497c6SRafael Auler     Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf));
115616a497c6SRafael Auler     Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25);
115716a497c6SRafael Auler     Ptr = intToStr(Ptr, Freq, 10);
115816a497c6SRafael Auler     *Ptr++ = '\n';
115916a497c6SRafael Auler     __write(FD, LineBuf, Ptr - LineBuf);
116016a497c6SRafael Auler   }
116116a497c6SRafael Auler 
1162cc4b2fb6SRafael Auler   G->~Graph();
1163cc4b2fb6SRafael Auler   Alloc.deallocate(G);
1164cc4b2fb6SRafael Auler   return next;
1165cc4b2fb6SRafael Auler }
1166cc4b2fb6SRafael Auler 
116716a497c6SRafael Auler const IndCallTargetDescription *
116816a497c6SRafael Auler ProfileWriterContext::lookupIndCallTarget(uint64_t Target) const {
116916a497c6SRafael Auler   uint32_t B = 0;
117016a497c6SRafael Auler   uint32_t E = __bolt_instr_num_ind_targets;
117116a497c6SRafael Auler   if (E == 0)
117216a497c6SRafael Auler     return nullptr;
117316a497c6SRafael Auler   do {
117416a497c6SRafael Auler     uint32_t I = (E - B) / 2 + B;
117516a497c6SRafael Auler     if (IndCallTargets[I].Address == Target)
117616a497c6SRafael Auler       return &IndCallTargets[I];
117716a497c6SRafael Auler     if (IndCallTargets[I].Address < Target)
117816a497c6SRafael Auler       B = I + 1;
117916a497c6SRafael Auler     else
118016a497c6SRafael Auler       E = I;
118116a497c6SRafael Auler   } while (B < E);
118216a497c6SRafael Auler   return nullptr;
1183cc4b2fb6SRafael Auler }
118462aa74f8SRafael Auler 
118516a497c6SRafael Auler /// Write a single indirect call <src, target> pair to the fdata file
118616a497c6SRafael Auler void visitIndCallCounter(IndirectCallHashTable::MapEntry &Entry,
118716a497c6SRafael Auler                          int FD, int CallsiteID,
118816a497c6SRafael Auler                          ProfileWriterContext *Ctx) {
118916a497c6SRafael Auler   if (Entry.Val == 0)
119016a497c6SRafael Auler     return;
119116a497c6SRafael Auler   DEBUG(reportNumber("Target func 0x", Entry.Key, 16));
119216a497c6SRafael Auler   DEBUG(reportNumber("Target freq: ", Entry.Val, 10));
119316a497c6SRafael Auler   const IndCallDescription *CallsiteDesc =
119416a497c6SRafael Auler       &Ctx->IndCallDescriptions[CallsiteID];
119516a497c6SRafael Auler   const IndCallTargetDescription *TargetDesc =
119616a497c6SRafael Auler       Ctx->lookupIndCallTarget(Entry.Key);
119716a497c6SRafael Auler   if (!TargetDesc) {
119816a497c6SRafael Auler     DEBUG(report("Failed to lookup indirect call target\n"));
1199cc4b2fb6SRafael Auler     char LineBuf[BufSize];
120062aa74f8SRafael Auler     char *Ptr = LineBuf;
120116a497c6SRafael Auler     Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize);
120216a497c6SRafael Auler     Ptr = strCopy(Ptr, "0 [unknown] 0 0 ", BufSize - (Ptr - LineBuf) - 40);
120316a497c6SRafael Auler     Ptr = intToStr(Ptr, Entry.Val, 10);
120416a497c6SRafael Auler     *Ptr++ = '\n';
120516a497c6SRafael Auler     __write(FD, LineBuf, Ptr - LineBuf);
120616a497c6SRafael Auler     return;
120716a497c6SRafael Auler   }
120816a497c6SRafael Auler   Ctx->CallFlowTable->get(TargetDesc->Address).Calls += Entry.Val;
120916a497c6SRafael Auler   char LineBuf[BufSize];
121016a497c6SRafael Auler   char *Ptr = LineBuf;
121116a497c6SRafael Auler   Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize);
121216a497c6SRafael Auler   Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf));
1213cc4b2fb6SRafael Auler   Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25);
121416a497c6SRafael Auler   Ptr = intToStr(Ptr, Entry.Val, 10);
121562aa74f8SRafael Auler   *Ptr++ = '\n';
1216821480d2SRafael Auler   __write(FD, LineBuf, Ptr - LineBuf);
121762aa74f8SRafael Auler }
1218cc4b2fb6SRafael Auler 
121916a497c6SRafael Auler /// Write to \p FD all of the indirect call profiles.
122016a497c6SRafael Auler void writeIndirectCallProfile(int FD, ProfileWriterContext &Ctx) {
122116a497c6SRafael Auler   for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) {
122216a497c6SRafael Auler     DEBUG(reportNumber("IndCallsite #", I, 10));
122316a497c6SRafael Auler     GlobalIndCallCounters[I].forEachElement(visitIndCallCounter, FD, I, &Ctx);
122416a497c6SRafael Auler   }
122516a497c6SRafael Auler }
122616a497c6SRafael Auler 
122716a497c6SRafael Auler /// Check a single call flow for a callee versus all known callers. If there are
122816a497c6SRafael Auler /// less callers than what the callee expects, write the difference with source
122916a497c6SRafael Auler /// [unknown] in the profile.
123016a497c6SRafael Auler void visitCallFlowEntry(CallFlowHashTable::MapEntry &Entry, int FD,
123116a497c6SRafael Auler                         ProfileWriterContext *Ctx) {
123216a497c6SRafael Auler   DEBUG(reportNumber("Call flow entry address: 0x", Entry.Key, 16));
123316a497c6SRafael Auler   DEBUG(reportNumber("Calls: ", Entry.Calls, 10));
123416a497c6SRafael Auler   DEBUG(reportNumber("Reported entry frequency: ", Entry.Val, 10));
123516a497c6SRafael Auler   DEBUG({
123616a497c6SRafael Auler     if (Entry.Calls > Entry.Val)
123716a497c6SRafael Auler       report("  More calls than expected!\n");
123816a497c6SRafael Auler   });
123916a497c6SRafael Auler   if (Entry.Val <= Entry.Calls)
124016a497c6SRafael Auler     return;
124116a497c6SRafael Auler   DEBUG(reportNumber(
124216a497c6SRafael Auler       "  Balancing calls with traffic: ", Entry.Val - Entry.Calls, 10));
124316a497c6SRafael Auler   const IndCallTargetDescription *TargetDesc =
124416a497c6SRafael Auler       Ctx->lookupIndCallTarget(Entry.Key);
124516a497c6SRafael Auler   if (!TargetDesc) {
124616a497c6SRafael Auler     // There is probably something wrong with this callee and this should be
124716a497c6SRafael Auler     // investigated, but I don't want to assert and lose all data collected.
124816a497c6SRafael Auler     DEBUG(report("WARNING: failed to look up call target!\n"));
124916a497c6SRafael Auler     return;
125016a497c6SRafael Auler   }
125116a497c6SRafael Auler   char LineBuf[BufSize];
125216a497c6SRafael Auler   char *Ptr = LineBuf;
125316a497c6SRafael Auler   Ptr = strCopy(Ptr, "0 [unknown] 0 ", BufSize);
125416a497c6SRafael Auler   Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf));
125516a497c6SRafael Auler   Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25);
125616a497c6SRafael Auler   Ptr = intToStr(Ptr, Entry.Val - Entry.Calls, 10);
125716a497c6SRafael Auler   *Ptr++ = '\n';
125816a497c6SRafael Auler   __write(FD, LineBuf, Ptr - LineBuf);
125916a497c6SRafael Auler }
126016a497c6SRafael Auler 
126116a497c6SRafael Auler /// Open fdata file for writing and return a valid file descriptor, aborting
126216a497c6SRafael Auler /// program upon failure.
126316a497c6SRafael Auler int openProfile() {
126416a497c6SRafael Auler   // Build the profile name string by appending our PID
126516a497c6SRafael Auler   char Buf[BufSize];
126616a497c6SRafael Auler   char *Ptr = Buf;
126716a497c6SRafael Auler   uint64_t PID = __getpid();
126816a497c6SRafael Auler   Ptr = strCopy(Buf, __bolt_instr_filename, BufSize);
126916a497c6SRafael Auler   if (__bolt_instr_use_pid) {
127016a497c6SRafael Auler     Ptr = strCopy(Ptr, ".", BufSize - (Ptr - Buf + 1));
127116a497c6SRafael Auler     Ptr = intToStr(Ptr, PID, 10);
127216a497c6SRafael Auler     Ptr = strCopy(Ptr, ".fdata", BufSize - (Ptr - Buf + 1));
127316a497c6SRafael Auler   }
127416a497c6SRafael Auler   *Ptr++ = '\0';
127516a497c6SRafael Auler   uint64_t FD = __open(Buf,
127616a497c6SRafael Auler                        /*flags=*/0x241 /*O_WRONLY|O_TRUNC|O_CREAT*/,
127716a497c6SRafael Auler                        /*mode=*/0666);
127816a497c6SRafael Auler   if (static_cast<int64_t>(FD) < 0) {
127916a497c6SRafael Auler     report("Error while trying to open profile file for writing: ");
128016a497c6SRafael Auler     report(Buf);
128116a497c6SRafael Auler     reportNumber("\nFailed with error number: 0x",
128216a497c6SRafael Auler                  0 - static_cast<int64_t>(FD), 16);
128316a497c6SRafael Auler     __exit(1);
128416a497c6SRafael Auler   }
128516a497c6SRafael Auler   return FD;
128616a497c6SRafael Auler }
128716a497c6SRafael Auler } // anonymous namespace
128816a497c6SRafael Auler 
128916a497c6SRafael Auler /// Reset all counters in case you want to start profiling a new phase of your
129016a497c6SRafael Auler /// program independently of prior phases.
129116a497c6SRafael Auler /// The address of this function is printed by BOLT and this can be called by
129216a497c6SRafael Auler /// any attached debugger during runtime. There is a useful oneliner for gdb:
129316a497c6SRafael Auler ///
129416a497c6SRafael Auler ///   gdb -p $(pgrep -xo PROCESSNAME) -ex 'p ((void(*)())0xdeadbeef)()' \
129516a497c6SRafael Auler ///     -ex 'set confirm off' -ex quit
129616a497c6SRafael Auler ///
129716a497c6SRafael Auler /// Where 0xdeadbeef is this function address and PROCESSNAME your binary file
129816a497c6SRafael Auler /// name.
129916a497c6SRafael Auler extern "C" void __bolt_instr_clear_counters() {
130016a497c6SRafael Auler   memSet(reinterpret_cast<char *>(__bolt_instr_locations), 0,
130116a497c6SRafael Auler          __bolt_num_counters * 8);
130216a497c6SRafael Auler   for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) {
130316a497c6SRafael Auler     GlobalIndCallCounters[I].resetCounters();
130416a497c6SRafael Auler   }
130516a497c6SRafael Auler }
130616a497c6SRafael Auler 
130716a497c6SRafael Auler /// This is the entry point for profile writing.
130816a497c6SRafael Auler /// There are three ways of getting here:
130916a497c6SRafael Auler ///
131016a497c6SRafael Auler ///  * Program execution ended, finalization methods are running and BOLT
131116a497c6SRafael Auler ///    hooked into FINI from your binary dynamic section;
131216a497c6SRafael Auler ///  * You used the sleep timer option and during initialization we forked
131316a497c6SRafael Auler ///    a separete process that will call this function periodically;
131416a497c6SRafael Auler ///  * BOLT prints this function address so you can attach a debugger and
131516a497c6SRafael Auler ///    call this function directly to get your profile written to disk
131616a497c6SRafael Auler ///    on demand.
131716a497c6SRafael Auler ///
131816a497c6SRafael Auler extern "C" void __bolt_instr_data_dump() {
131916a497c6SRafael Auler   // Already dumping
132016a497c6SRafael Auler   if (!GlobalWriteProfileMutex->acquire())
132116a497c6SRafael Auler     return;
132216a497c6SRafael Auler 
132316a497c6SRafael Auler   BumpPtrAllocator HashAlloc;
132416a497c6SRafael Auler   HashAlloc.setMaxSize(0x6400000);
132516a497c6SRafael Auler   ProfileWriterContext Ctx = readDescriptions();
132616a497c6SRafael Auler   Ctx.CallFlowTable = new (HashAlloc, 0) CallFlowHashTable(HashAlloc);
132716a497c6SRafael Auler 
132816a497c6SRafael Auler   DEBUG(printStats(Ctx));
132916a497c6SRafael Auler 
133016a497c6SRafael Auler   int FD = openProfile();
133116a497c6SRafael Auler 
1332cc4b2fb6SRafael Auler   BumpPtrAllocator Alloc;
133316a497c6SRafael Auler   const uint8_t *FuncDesc = Ctx.FuncDescriptions;
1334cc4b2fb6SRafael Auler   for (int I = 0, E = __bolt_instr_num_funcs; I < E; ++I) {
133516a497c6SRafael Auler     FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc);
133616a497c6SRafael Auler     Alloc.clear();
1337cc4b2fb6SRafael Auler     DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16));
1338cc4b2fb6SRafael Auler   }
133916a497c6SRafael Auler   assert(FuncDesc == (void *)Ctx.Strings,
1340cc4b2fb6SRafael Auler          "FuncDesc ptr must be equal to stringtable");
1341cc4b2fb6SRafael Auler 
134216a497c6SRafael Auler   writeIndirectCallProfile(FD, Ctx);
134316a497c6SRafael Auler   Ctx.CallFlowTable->forEachElement(visitCallFlowEntry, FD, &Ctx);
134416a497c6SRafael Auler 
1345821480d2SRafael Auler   __close(FD);
134616a497c6SRafael Auler   __munmap(Ctx.MMapPtr, Ctx.MMapSize);
134716a497c6SRafael Auler   __close(Ctx.FileDesc);
134816a497c6SRafael Auler   HashAlloc.destroy();
134916a497c6SRafael Auler   GlobalWriteProfileMutex->release();
135016a497c6SRafael Auler   DEBUG(report("Finished writing profile.\n"));
135116a497c6SRafael Auler }
135216a497c6SRafael Auler 
135316a497c6SRafael Auler /// Event loop for our child process spawned during setup to dump profile data
135416a497c6SRafael Auler /// at user-specified intervals
135516a497c6SRafael Auler void watchProcess() {
135616a497c6SRafael Auler   timespec ts, rem;
135716a497c6SRafael Auler   uint64_t Ellapsed = 0ull;
135816a497c6SRafael Auler   ts.tv_sec = 1;
135916a497c6SRafael Auler   ts.tv_nsec = 0;
136016a497c6SRafael Auler   while (1) {
136116a497c6SRafael Auler     __nanosleep(&ts, &rem);
136216a497c6SRafael Auler     // This means our parent process died, so no need for us to keep dumping.
136316a497c6SRafael Auler     // Notice that make and some systems will wait until all child processes
136416a497c6SRafael Auler     // of a command finishes before proceeding, so it is important to exit as
136516a497c6SRafael Auler     // early as possible once our parent dies.
136616a497c6SRafael Auler     if (__getppid() == 1) {
136716a497c6SRafael Auler       break;
136816a497c6SRafael Auler     }
136916a497c6SRafael Auler     if (++Ellapsed < __bolt_instr_sleep_time)
137016a497c6SRafael Auler       continue;
137116a497c6SRafael Auler     Ellapsed = 0;
137216a497c6SRafael Auler     __bolt_instr_data_dump();
137316a497c6SRafael Auler     __bolt_instr_clear_counters();
137416a497c6SRafael Auler   }
137516a497c6SRafael Auler   DEBUG(report("My parent process is dead, bye!\n"));
137616a497c6SRafael Auler   __exit(0);
137716a497c6SRafael Auler }
137816a497c6SRafael Auler 
137916a497c6SRafael Auler extern "C" void __bolt_instr_indirect_call();
138016a497c6SRafael Auler extern "C" void __bolt_instr_indirect_tailcall();
138116a497c6SRafael Auler 
138216a497c6SRafael Auler /// Initialization code
138316a497c6SRafael Auler extern "C" void __bolt_instr_setup() {
138416a497c6SRafael Auler   const uint64_t CountersStart =
138516a497c6SRafael Auler       reinterpret_cast<uint64_t>(&__bolt_instr_locations[0]);
138616a497c6SRafael Auler   const uint64_t CountersEnd = alignTo(
138716a497c6SRafael Auler       reinterpret_cast<uint64_t>(&__bolt_instr_locations[__bolt_num_counters]),
138816a497c6SRafael Auler       0x1000);
138916a497c6SRafael Auler   DEBUG(reportNumber("replace mmap start: ", CountersStart, 16));
139016a497c6SRafael Auler   DEBUG(reportNumber("replace mmap stop: ", CountersEnd, 16));
139116a497c6SRafael Auler   assert (CountersEnd > CountersStart, "no counters");
139216a497c6SRafael Auler   // Maps our counters to be shared instead of private, so we keep counting for
139316a497c6SRafael Auler   // forked processes
139416a497c6SRafael Auler   __mmap(CountersStart, CountersEnd - CountersStart,
139516a497c6SRafael Auler          0x3 /*PROT_READ|PROT_WRITE*/,
139616a497c6SRafael Auler          0x31 /*MAP_ANONYMOUS | MAP_SHARED | MAP_FIXED*/, -1, 0);
139716a497c6SRafael Auler 
139816a497c6SRafael Auler   __bolt_trampoline_ind_call = __bolt_instr_indirect_call;
139916a497c6SRafael Auler   __bolt_trampoline_ind_tailcall = __bolt_instr_indirect_tailcall;
140016a497c6SRafael Auler   // Conservatively reserve 100MiB shared pages
140116a497c6SRafael Auler   GlobalAlloc.setMaxSize(0x6400000);
140216a497c6SRafael Auler   GlobalAlloc.setShared(true);
140316a497c6SRafael Auler   GlobalWriteProfileMutex = new (GlobalAlloc, 0) Mutex();
140416a497c6SRafael Auler   if (__bolt_instr_num_ind_calls > 0)
140516a497c6SRafael Auler     GlobalIndCallCounters =
140616a497c6SRafael Auler         new (GlobalAlloc, 0) IndirectCallHashTable[__bolt_instr_num_ind_calls];
140716a497c6SRafael Auler 
140816a497c6SRafael Auler   if (__bolt_instr_sleep_time != 0) {
140916a497c6SRafael Auler     if (auto PID = __fork())
141016a497c6SRafael Auler       return;
141116a497c6SRafael Auler     watchProcess();
141216a497c6SRafael Auler   }
141316a497c6SRafael Auler }
141416a497c6SRafael Auler 
141516a497c6SRafael Auler extern "C" void instrumentIndirectCall(uint64_t Target, uint64_t IndCallID) {
141616a497c6SRafael Auler   GlobalIndCallCounters[IndCallID].incrementVal(Target, GlobalAlloc);
141716a497c6SRafael Auler }
141816a497c6SRafael Auler 
141916a497c6SRafael Auler /// We receive as in-stack arguments the identifier of the indirect call site
142016a497c6SRafael Auler /// as well as the target address for the call
142116a497c6SRafael Auler extern "C" __attribute((naked)) void __bolt_instr_indirect_call()
142216a497c6SRafael Auler {
142316a497c6SRafael Auler   __asm__ __volatile__(SAVE_ALL
1424c6799a68SRafael Auler                        "mov 0x90(%%rsp), %%rdi\n"
1425c6799a68SRafael Auler                        "mov 0x88(%%rsp), %%rsi\n"
142616a497c6SRafael Auler                        "call instrumentIndirectCall\n"
142716a497c6SRafael Auler                        RESTORE_ALL
142816a497c6SRafael Auler                        "pop %%rdi\n"
142916a497c6SRafael Auler                        "add $16, %%rsp\n"
143016a497c6SRafael Auler                        "xchg (%%rsp), %%rdi\n"
143116a497c6SRafael Auler                        "jmp *-8(%%rsp)\n"
143216a497c6SRafael Auler                        :::);
143316a497c6SRafael Auler }
143416a497c6SRafael Auler 
143516a497c6SRafael Auler extern "C" __attribute((naked)) void __bolt_instr_indirect_tailcall()
143616a497c6SRafael Auler {
143716a497c6SRafael Auler   __asm__ __volatile__(SAVE_ALL
1438c6799a68SRafael Auler                        "mov 0x88(%%rsp), %%rdi\n"
1439c6799a68SRafael Auler                        "mov 0x80(%%rsp), %%rsi\n"
144016a497c6SRafael Auler                        "call instrumentIndirectCall\n"
144116a497c6SRafael Auler                        RESTORE_ALL
144216a497c6SRafael Auler                        "add $16, %%rsp\n"
144316a497c6SRafael Auler                        "pop %%rdi\n"
144416a497c6SRafael Auler                        "jmp *-16(%%rsp)\n"
144516a497c6SRafael Auler                        :::);
144616a497c6SRafael Auler }
144716a497c6SRafael Auler 
144816a497c6SRafael Auler /// This is hooking ELF's entry, it needs to save all machine state.
144916a497c6SRafael Auler extern "C" __attribute((naked)) void __bolt_instr_start()
145016a497c6SRafael Auler {
145116a497c6SRafael Auler   __asm__ __volatile__(SAVE_ALL
145216a497c6SRafael Auler                        "call __bolt_instr_setup\n"
145316a497c6SRafael Auler                        RESTORE_ALL
14548c7f524aSAlexander Shaposhnikov                        "jmp *__bolt_instr_init_ptr(%%rip)\n"
145516a497c6SRafael Auler                        :::);
145616a497c6SRafael Auler }
145716a497c6SRafael Auler 
145816a497c6SRafael Auler /// This is hooking into ELF's DT_FINI
145916a497c6SRafael Auler extern "C" void __bolt_instr_fini() {
146016a497c6SRafael Auler   __bolt_instr_fini_ptr();
146116a497c6SRafael Auler   if (__bolt_instr_sleep_time == 0)
146216a497c6SRafael Auler     __bolt_instr_data_dump();
146316a497c6SRafael Auler   DEBUG(report("Finished.\n"));
146462aa74f8SRafael Auler }
1465bbd9d610SAlexander Shaposhnikov 
1466bbd9d610SAlexander Shaposhnikov #else
1467bbd9d610SAlexander Shaposhnikov 
1468bbd9d610SAlexander Shaposhnikov // On OSX/iOS the final symbol name of an extern "C" function/variable contains
1469bbd9d610SAlexander Shaposhnikov // one extra leading underscore: _bolt_instr_setup -> __bolt_instr_setup.
1470*1cf23e5eSAlexander Shaposhnikov extern "C" __attribute((section("__TEXT,__setup"))) void _bolt_instr_setup() {
1471*1cf23e5eSAlexander Shaposhnikov   const char* Message = "Hello!\n";
1472*1cf23e5eSAlexander Shaposhnikov   __write(2, Message, 7);
1473*1cf23e5eSAlexander Shaposhnikov }
1474bbd9d610SAlexander Shaposhnikov 
1475bbd9d610SAlexander Shaposhnikov #endif
1476