1 //===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "bolt/Rewrite/RewriteInstance.h" 10 #include "bolt/Core/AddressMap.h" 11 #include "bolt/Core/BinaryContext.h" 12 #include "bolt/Core/BinaryEmitter.h" 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/DebugData.h" 15 #include "bolt/Core/Exceptions.h" 16 #include "bolt/Core/FunctionLayout.h" 17 #include "bolt/Core/MCPlusBuilder.h" 18 #include "bolt/Core/ParallelUtilities.h" 19 #include "bolt/Core/Relocation.h" 20 #include "bolt/Passes/BinaryPasses.h" 21 #include "bolt/Passes/CacheMetrics.h" 22 #include "bolt/Passes/ReorderFunctions.h" 23 #include "bolt/Profile/BoltAddressTranslation.h" 24 #include "bolt/Profile/DataAggregator.h" 25 #include "bolt/Profile/DataReader.h" 26 #include "bolt/Profile/YAMLProfileReader.h" 27 #include "bolt/Profile/YAMLProfileWriter.h" 28 #include "bolt/Rewrite/BinaryPassManager.h" 29 #include "bolt/Rewrite/DWARFRewriter.h" 30 #include "bolt/Rewrite/ExecutableFileMemoryManager.h" 31 #include "bolt/Rewrite/JITLinkLinker.h" 32 #include "bolt/Rewrite/MetadataRewriters.h" 33 #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h" 34 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h" 35 #include "bolt/Utils/CommandLineOpts.h" 36 #include "bolt/Utils/Utils.h" 37 #include "llvm/ADT/AddressRanges.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 40 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" 41 #include "llvm/MC/MCAsmBackend.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 44 #include "llvm/MC/MCObjectStreamer.h" 45 #include "llvm/MC/MCStreamer.h" 46 #include "llvm/MC/MCSymbol.h" 47 #include "llvm/MC/TargetRegistry.h" 48 #include "llvm/Object/ObjectFile.h" 49 #include "llvm/Support/Alignment.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/DataExtractor.h" 53 #include "llvm/Support/Errc.h" 54 #include "llvm/Support/Error.h" 55 #include "llvm/Support/FileSystem.h" 56 #include "llvm/Support/ManagedStatic.h" 57 #include "llvm/Support/Timer.h" 58 #include "llvm/Support/ToolOutputFile.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <fstream> 62 #include <memory> 63 #include <optional> 64 #include <system_error> 65 66 #undef DEBUG_TYPE 67 #define DEBUG_TYPE "bolt" 68 69 using namespace llvm; 70 using namespace object; 71 using namespace bolt; 72 73 extern cl::opt<uint32_t> X86AlignBranchBoundary; 74 extern cl::opt<bool> X86AlignBranchWithin32BBoundaries; 75 76 namespace opts { 77 78 extern cl::list<std::string> HotTextMoveSections; 79 extern cl::opt<bool> Hugify; 80 extern cl::opt<bool> Instrument; 81 extern cl::opt<JumpTableSupportLevel> JumpTables; 82 extern cl::opt<bool> KeepNops; 83 extern cl::opt<bool> Lite; 84 extern cl::list<std::string> ReorderData; 85 extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions; 86 extern cl::opt<bool> TerminalTrap; 87 extern cl::opt<bool> TimeBuild; 88 extern cl::opt<bool> TimeRewrite; 89 90 cl::opt<bool> AllowStripped("allow-stripped", 91 cl::desc("allow processing of stripped binaries"), 92 cl::Hidden, cl::cat(BoltCategory)); 93 94 static cl::opt<bool> ForceToDataRelocations( 95 "force-data-relocations", 96 cl::desc("force relocations to data sections to always be processed"), 97 98 cl::Hidden, cl::cat(BoltCategory)); 99 100 cl::opt<std::string> 101 BoltID("bolt-id", 102 cl::desc("add any string to tag this execution in the " 103 "output binary via bolt info section"), 104 cl::cat(BoltCategory)); 105 106 cl::opt<bool> DumpDotAll( 107 "dump-dot-all", 108 cl::desc("dump function CFGs to graphviz format after each stage;" 109 "enable '-print-loops' for color-coded blocks"), 110 cl::Hidden, cl::cat(BoltCategory)); 111 112 static cl::list<std::string> 113 ForceFunctionNames("funcs", 114 cl::CommaSeparated, 115 cl::desc("limit optimizations to functions from the list"), 116 cl::value_desc("func1,func2,func3,..."), 117 cl::Hidden, 118 cl::cat(BoltCategory)); 119 120 static cl::opt<std::string> 121 FunctionNamesFile("funcs-file", 122 cl::desc("file with list of functions to optimize"), 123 cl::Hidden, 124 cl::cat(BoltCategory)); 125 126 static cl::list<std::string> ForceFunctionNamesNR( 127 "funcs-no-regex", cl::CommaSeparated, 128 cl::desc("limit optimizations to functions from the list (non-regex)"), 129 cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory)); 130 131 static cl::opt<std::string> FunctionNamesFileNR( 132 "funcs-file-no-regex", 133 cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden, 134 cl::cat(BoltCategory)); 135 136 cl::opt<bool> 137 KeepTmp("keep-tmp", 138 cl::desc("preserve intermediate .o file"), 139 cl::Hidden, 140 cl::cat(BoltCategory)); 141 142 static cl::opt<unsigned> 143 LiteThresholdPct("lite-threshold-pct", 144 cl::desc("threshold (in percent) for selecting functions to process in lite " 145 "mode. Higher threshold means fewer functions to process. E.g " 146 "threshold of 90 means only top 10 percent of functions with " 147 "profile will be processed."), 148 cl::init(0), 149 cl::ZeroOrMore, 150 cl::Hidden, 151 cl::cat(BoltOptCategory)); 152 153 static cl::opt<unsigned> LiteThresholdCount( 154 "lite-threshold-count", 155 cl::desc("similar to '-lite-threshold-pct' but specify threshold using " 156 "absolute function call count. I.e. limit processing to functions " 157 "executed at least the specified number of times."), 158 cl::init(0), cl::Hidden, cl::cat(BoltOptCategory)); 159 160 static cl::opt<unsigned> 161 MaxFunctions("max-funcs", 162 cl::desc("maximum number of functions to process"), cl::Hidden, 163 cl::cat(BoltCategory)); 164 165 static cl::opt<unsigned> MaxDataRelocations( 166 "max-data-relocations", 167 cl::desc("maximum number of data relocations to process"), cl::Hidden, 168 cl::cat(BoltCategory)); 169 170 cl::opt<bool> PrintAll("print-all", 171 cl::desc("print functions after each stage"), cl::Hidden, 172 cl::cat(BoltCategory)); 173 174 cl::opt<bool> PrintProfile("print-profile", 175 cl::desc("print functions after attaching profile"), 176 cl::Hidden, cl::cat(BoltCategory)); 177 178 cl::opt<bool> PrintCFG("print-cfg", 179 cl::desc("print functions after CFG construction"), 180 cl::Hidden, cl::cat(BoltCategory)); 181 182 cl::opt<bool> PrintDisasm("print-disasm", 183 cl::desc("print function after disassembly"), 184 cl::Hidden, cl::cat(BoltCategory)); 185 186 static cl::opt<bool> 187 PrintGlobals("print-globals", 188 cl::desc("print global symbols after disassembly"), cl::Hidden, 189 cl::cat(BoltCategory)); 190 191 extern cl::opt<bool> PrintSections; 192 193 static cl::opt<bool> PrintLoopInfo("print-loops", 194 cl::desc("print loop related information"), 195 cl::Hidden, cl::cat(BoltCategory)); 196 197 static cl::opt<cl::boolOrDefault> RelocationMode( 198 "relocs", cl::desc("use relocations in the binary (default=autodetect)"), 199 cl::cat(BoltCategory)); 200 201 extern cl::opt<std::string> SaveProfile; 202 203 static cl::list<std::string> 204 SkipFunctionNames("skip-funcs", 205 cl::CommaSeparated, 206 cl::desc("list of functions to skip"), 207 cl::value_desc("func1,func2,func3,..."), 208 cl::Hidden, 209 cl::cat(BoltCategory)); 210 211 static cl::opt<std::string> 212 SkipFunctionNamesFile("skip-funcs-file", 213 cl::desc("file with list of functions to skip"), 214 cl::Hidden, 215 cl::cat(BoltCategory)); 216 217 cl::opt<bool> 218 TrapOldCode("trap-old-code", 219 cl::desc("insert traps in old function bodies (relocation mode)"), 220 cl::Hidden, 221 cl::cat(BoltCategory)); 222 223 static cl::opt<std::string> DWPPathName("dwp", 224 cl::desc("Path and name to DWP file."), 225 cl::Hidden, cl::init(""), 226 cl::cat(BoltCategory)); 227 228 static cl::opt<bool> 229 UseGnuStack("use-gnu-stack", 230 cl::desc("use GNU_STACK program header for new segment (workaround for " 231 "issues with strip/objcopy)"), 232 cl::ZeroOrMore, 233 cl::cat(BoltCategory)); 234 235 static cl::opt<bool> 236 SequentialDisassembly("sequential-disassembly", 237 cl::desc("performs disassembly sequentially"), 238 cl::init(false), 239 cl::cat(BoltOptCategory)); 240 241 static cl::opt<bool> WriteBoltInfoSection( 242 "bolt-info", cl::desc("write bolt info section in the output binary"), 243 cl::init(true), cl::Hidden, cl::cat(BoltOutputCategory)); 244 245 } // namespace opts 246 247 // FIXME: implement a better way to mark sections for replacement. 248 constexpr const char *RewriteInstance::SectionsToOverwrite[]; 249 std::vector<std::string> RewriteInstance::DebugSectionsToOverwrite = { 250 ".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_line_str", 251 ".debug_loc", ".debug_loclists", ".debug_ranges", ".debug_rnglists", 252 ".gdb_index", ".debug_addr", ".debug_abbrev", ".debug_info", 253 ".debug_types", ".pseudo_probe"}; 254 255 const char RewriteInstance::TimerGroupName[] = "rewrite"; 256 const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes"; 257 258 namespace llvm { 259 namespace bolt { 260 261 extern const char *BoltRevision; 262 263 // Weird location for createMCPlusBuilder, but this is here to avoid a 264 // cyclic dependency of libCore (its natural place) and libTarget. libRewrite 265 // can depend on libTarget, but not libCore. Since libRewrite is the only 266 // user of this function, we define it here. 267 MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch, 268 const MCInstrAnalysis *Analysis, 269 const MCInstrInfo *Info, 270 const MCRegisterInfo *RegInfo, 271 const MCSubtargetInfo *STI) { 272 #ifdef X86_AVAILABLE 273 if (Arch == Triple::x86_64) 274 return createX86MCPlusBuilder(Analysis, Info, RegInfo, STI); 275 #endif 276 277 #ifdef AARCH64_AVAILABLE 278 if (Arch == Triple::aarch64) 279 return createAArch64MCPlusBuilder(Analysis, Info, RegInfo, STI); 280 #endif 281 282 #ifdef RISCV_AVAILABLE 283 if (Arch == Triple::riscv64) 284 return createRISCVMCPlusBuilder(Analysis, Info, RegInfo, STI); 285 #endif 286 287 llvm_unreachable("architecture unsupported by MCPlusBuilder"); 288 } 289 290 } // namespace bolt 291 } // namespace llvm 292 293 using ELF64LEPhdrTy = ELF64LEFile::Elf_Phdr; 294 295 namespace { 296 297 bool refersToReorderedSection(ErrorOr<BinarySection &> Section) { 298 return llvm::any_of(opts::ReorderData, [&](const std::string &SectionName) { 299 return Section && Section->getName() == SectionName; 300 }); 301 } 302 303 } // anonymous namespace 304 305 Expected<std::unique_ptr<RewriteInstance>> 306 RewriteInstance::create(ELFObjectFileBase *File, const int Argc, 307 const char *const *Argv, StringRef ToolPath, 308 raw_ostream &Stdout, raw_ostream &Stderr) { 309 Error Err = Error::success(); 310 auto RI = std::make_unique<RewriteInstance>(File, Argc, Argv, ToolPath, 311 Stdout, Stderr, Err); 312 if (Err) 313 return std::move(Err); 314 return std::move(RI); 315 } 316 317 RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc, 318 const char *const *Argv, StringRef ToolPath, 319 raw_ostream &Stdout, raw_ostream &Stderr, 320 Error &Err) 321 : InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath), 322 SHStrTab(StringTableBuilder::ELF) { 323 ErrorAsOutParameter EAO(&Err); 324 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 325 if (!ELF64LEFile) { 326 Err = createStringError(errc::not_supported, 327 "Only 64-bit LE ELF binaries are supported"); 328 return; 329 } 330 331 bool IsPIC = false; 332 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 333 if (Obj.getHeader().e_type != ELF::ET_EXEC) { 334 Stdout << "BOLT-INFO: shared object or position-independent executable " 335 "detected\n"; 336 IsPIC = true; 337 } 338 339 // Make sure we don't miss any output on core dumps. 340 Stdout.SetUnbuffered(); 341 Stderr.SetUnbuffered(); 342 LLVM_DEBUG(dbgs().SetUnbuffered()); 343 344 // Read RISCV subtarget features from input file 345 std::unique_ptr<SubtargetFeatures> Features; 346 Triple TheTriple = File->makeTriple(); 347 if (TheTriple.getArch() == llvm::Triple::riscv64) { 348 Expected<SubtargetFeatures> FeaturesOrErr = File->getFeatures(); 349 if (auto E = FeaturesOrErr.takeError()) { 350 Err = std::move(E); 351 return; 352 } else { 353 Features.reset(new SubtargetFeatures(*FeaturesOrErr)); 354 } 355 } 356 357 Relocation::Arch = TheTriple.getArch(); 358 auto BCOrErr = BinaryContext::createBinaryContext( 359 TheTriple, File->getFileName(), Features.get(), IsPIC, 360 DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore, 361 nullptr, opts::DWPPathName, 362 WithColor::defaultErrorHandler, 363 WithColor::defaultWarningHandler), 364 JournalingStreams{Stdout, Stderr}); 365 if (Error E = BCOrErr.takeError()) { 366 Err = std::move(E); 367 return; 368 } 369 BC = std::move(BCOrErr.get()); 370 BC->initializeTarget(std::unique_ptr<MCPlusBuilder>( 371 createMCPlusBuilder(BC->TheTriple->getArch(), BC->MIA.get(), 372 BC->MII.get(), BC->MRI.get(), BC->STI.get()))); 373 374 BAT = std::make_unique<BoltAddressTranslation>(); 375 376 if (opts::UpdateDebugSections) 377 DebugInfoRewriter = std::make_unique<DWARFRewriter>(*BC); 378 379 if (opts::Instrument) 380 BC->setRuntimeLibrary(std::make_unique<InstrumentationRuntimeLibrary>()); 381 else if (opts::Hugify) 382 BC->setRuntimeLibrary(std::make_unique<HugifyRuntimeLibrary>()); 383 } 384 385 RewriteInstance::~RewriteInstance() {} 386 387 Error RewriteInstance::setProfile(StringRef Filename) { 388 if (!sys::fs::exists(Filename)) 389 return errorCodeToError(make_error_code(errc::no_such_file_or_directory)); 390 391 if (ProfileReader) { 392 // Already exists 393 return make_error<StringError>(Twine("multiple profiles specified: ") + 394 ProfileReader->getFilename() + " and " + 395 Filename, 396 inconvertibleErrorCode()); 397 } 398 399 // Spawn a profile reader based on file contents. 400 if (DataAggregator::checkPerfDataMagic(Filename)) 401 ProfileReader = std::make_unique<DataAggregator>(Filename); 402 else if (YAMLProfileReader::isYAML(Filename)) 403 ProfileReader = std::make_unique<YAMLProfileReader>(Filename); 404 else 405 ProfileReader = std::make_unique<DataReader>(Filename); 406 407 return Error::success(); 408 } 409 410 /// Return true if the function \p BF should be disassembled. 411 static bool shouldDisassemble(const BinaryFunction &BF) { 412 if (BF.isPseudo()) 413 return false; 414 415 if (opts::processAllFunctions()) 416 return true; 417 418 return !BF.isIgnored(); 419 } 420 421 // Return if a section stored in the image falls into a segment address space. 422 // If not, Set \p Overlap to true if there's a partial overlap. 423 template <class ELFT> 424 static bool checkOffsets(const typename ELFT::Phdr &Phdr, 425 const typename ELFT::Shdr &Sec, bool &Overlap) { 426 // SHT_NOBITS sections don't need to have an offset inside the segment. 427 if (Sec.sh_type == ELF::SHT_NOBITS) 428 return true; 429 430 // Only non-empty sections can be at the end of a segment. 431 uint64_t SectionSize = Sec.sh_size ? Sec.sh_size : 1ull; 432 AddressRange SectionAddressRange((uint64_t)Sec.sh_offset, 433 Sec.sh_offset + SectionSize); 434 AddressRange SegmentAddressRange(Phdr.p_offset, 435 Phdr.p_offset + Phdr.p_filesz); 436 if (SegmentAddressRange.contains(SectionAddressRange)) 437 return true; 438 439 Overlap = SegmentAddressRange.intersects(SectionAddressRange); 440 return false; 441 } 442 443 // Check that an allocatable section belongs to a virtual address 444 // space of a segment. 445 template <class ELFT> 446 static bool checkVMA(const typename ELFT::Phdr &Phdr, 447 const typename ELFT::Shdr &Sec, bool &Overlap) { 448 // Only non-empty sections can be at the end of a segment. 449 uint64_t SectionSize = Sec.sh_size ? Sec.sh_size : 1ull; 450 AddressRange SectionAddressRange((uint64_t)Sec.sh_addr, 451 Sec.sh_addr + SectionSize); 452 AddressRange SegmentAddressRange(Phdr.p_vaddr, Phdr.p_vaddr + Phdr.p_memsz); 453 454 if (SegmentAddressRange.contains(SectionAddressRange)) 455 return true; 456 Overlap = SegmentAddressRange.intersects(SectionAddressRange); 457 return false; 458 } 459 460 void RewriteInstance::markGnuRelroSections() { 461 using ELFT = ELF64LE; 462 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 463 auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile); 464 const ELFFile<ELFT> &Obj = ELF64LEFile->getELFFile(); 465 466 auto handleSection = [&](const ELFT::Phdr &Phdr, SectionRef SecRef) { 467 BinarySection *BinarySection = BC->getSectionForSectionRef(SecRef); 468 // If the section is non-allocatable, ignore it for GNU_RELRO purposes: 469 // it can't be made read-only after runtime relocations processing. 470 if (!BinarySection || !BinarySection->isAllocatable()) 471 return; 472 const ELFShdrTy *Sec = cantFail(Obj.getSection(SecRef.getIndex())); 473 bool ImageOverlap{false}, VMAOverlap{false}; 474 bool ImageContains = checkOffsets<ELFT>(Phdr, *Sec, ImageOverlap); 475 bool VMAContains = checkVMA<ELFT>(Phdr, *Sec, VMAOverlap); 476 if (ImageOverlap) { 477 if (opts::Verbosity >= 1) 478 BC->errs() << "BOLT-WARNING: GNU_RELRO segment has partial file offset " 479 << "overlap with section " << BinarySection->getName() 480 << '\n'; 481 return; 482 } 483 if (VMAOverlap) { 484 if (opts::Verbosity >= 1) 485 BC->errs() << "BOLT-WARNING: GNU_RELRO segment has partial VMA overlap " 486 << "with section " << BinarySection->getName() << '\n'; 487 return; 488 } 489 if (!ImageContains || !VMAContains) 490 return; 491 BinarySection->setRelro(); 492 if (opts::Verbosity >= 1) 493 BC->outs() << "BOLT-INFO: marking " << BinarySection->getName() 494 << " as GNU_RELRO\n"; 495 }; 496 497 for (const ELFT::Phdr &Phdr : cantFail(Obj.program_headers())) 498 if (Phdr.p_type == ELF::PT_GNU_RELRO) 499 for (SectionRef SecRef : InputFile->sections()) 500 handleSection(Phdr, SecRef); 501 } 502 503 Error RewriteInstance::discoverStorage() { 504 NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName, 505 TimerGroupDesc, opts::TimeRewrite); 506 507 auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile); 508 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 509 510 BC->StartFunctionAddress = Obj.getHeader().e_entry; 511 512 NextAvailableAddress = 0; 513 uint64_t NextAvailableOffset = 0; 514 Expected<ELF64LE::PhdrRange> PHsOrErr = Obj.program_headers(); 515 if (Error E = PHsOrErr.takeError()) 516 return E; 517 518 ELF64LE::PhdrRange PHs = PHsOrErr.get(); 519 for (const ELF64LE::Phdr &Phdr : PHs) { 520 switch (Phdr.p_type) { 521 case ELF::PT_LOAD: 522 BC->FirstAllocAddress = std::min(BC->FirstAllocAddress, 523 static_cast<uint64_t>(Phdr.p_vaddr)); 524 NextAvailableAddress = std::max(NextAvailableAddress, 525 Phdr.p_vaddr + Phdr.p_memsz); 526 NextAvailableOffset = std::max(NextAvailableOffset, 527 Phdr.p_offset + Phdr.p_filesz); 528 529 BC->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{Phdr.p_vaddr, 530 Phdr.p_memsz, 531 Phdr.p_offset, 532 Phdr.p_filesz, 533 Phdr.p_align}; 534 if (BC->TheTriple->getArch() == llvm::Triple::x86_64 && 535 Phdr.p_vaddr >= BinaryContext::KernelStartX86_64) 536 BC->IsLinuxKernel = true; 537 break; 538 case ELF::PT_INTERP: 539 BC->HasInterpHeader = true; 540 break; 541 } 542 } 543 544 if (BC->IsLinuxKernel) 545 BC->outs() << "BOLT-INFO: Linux kernel binary detected\n"; 546 547 for (const SectionRef &Section : InputFile->sections()) { 548 Expected<StringRef> SectionNameOrErr = Section.getName(); 549 if (Error E = SectionNameOrErr.takeError()) 550 return E; 551 StringRef SectionName = SectionNameOrErr.get(); 552 if (SectionName == BC->getMainCodeSectionName()) { 553 BC->OldTextSectionAddress = Section.getAddress(); 554 BC->OldTextSectionSize = Section.getSize(); 555 556 Expected<StringRef> SectionContentsOrErr = Section.getContents(); 557 if (Error E = SectionContentsOrErr.takeError()) 558 return E; 559 StringRef SectionContents = SectionContentsOrErr.get(); 560 BC->OldTextSectionOffset = 561 SectionContents.data() - InputFile->getData().data(); 562 } 563 564 if (!opts::HeatmapMode && 565 !(opts::AggregateOnly && BAT->enabledFor(InputFile)) && 566 (SectionName.starts_with(getOrgSecPrefix()) || 567 SectionName == getBOLTTextSectionName())) 568 return createStringError( 569 errc::function_not_supported, 570 "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize"); 571 } 572 573 if (!NextAvailableAddress || !NextAvailableOffset) 574 return createStringError(errc::executable_format_error, 575 "no PT_LOAD pheader seen"); 576 577 BC->outs() << "BOLT-INFO: first alloc address is 0x" 578 << Twine::utohexstr(BC->FirstAllocAddress) << '\n'; 579 580 FirstNonAllocatableOffset = NextAvailableOffset; 581 582 NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign); 583 NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign); 584 585 // Hugify: Additional huge page from left side due to 586 // weird ASLR mapping addresses (4KB aligned) 587 if (opts::Hugify && !BC->HasFixedLoadAddress) 588 NextAvailableAddress += BC->PageAlign; 589 590 if (!opts::UseGnuStack && !BC->IsLinuxKernel) { 591 // This is where the black magic happens. Creating PHDR table in a segment 592 // other than that containing ELF header is tricky. Some loaders and/or 593 // parts of loaders will apply e_phoff from ELF header assuming both are in 594 // the same segment, while others will do the proper calculation. 595 // We create the new PHDR table in such a way that both of the methods 596 // of loading and locating the table work. There's a slight file size 597 // overhead because of that. 598 // 599 // NB: bfd's strip command cannot do the above and will corrupt the 600 // binary during the process of stripping non-allocatable sections. 601 if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress) 602 NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress; 603 else 604 NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress; 605 606 assert(NextAvailableOffset == 607 NextAvailableAddress - BC->FirstAllocAddress && 608 "PHDR table address calculation error"); 609 610 BC->outs() << "BOLT-INFO: creating new program header table at address 0x" 611 << Twine::utohexstr(NextAvailableAddress) << ", offset 0x" 612 << Twine::utohexstr(NextAvailableOffset) << '\n'; 613 614 PHDRTableAddress = NextAvailableAddress; 615 PHDRTableOffset = NextAvailableOffset; 616 617 // Reserve space for 3 extra pheaders. 618 unsigned Phnum = Obj.getHeader().e_phnum; 619 Phnum += 3; 620 621 NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy); 622 NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy); 623 } 624 625 // Align at cache line. 626 NextAvailableAddress = alignTo(NextAvailableAddress, 64); 627 NextAvailableOffset = alignTo(NextAvailableOffset, 64); 628 629 NewTextSegmentAddress = NextAvailableAddress; 630 NewTextSegmentOffset = NextAvailableOffset; 631 BC->LayoutStartAddress = NextAvailableAddress; 632 633 // Tools such as objcopy can strip section contents but leave header 634 // entries. Check that at least .text is mapped in the file. 635 if (!getFileOffsetForAddress(BC->OldTextSectionAddress)) 636 return createStringError(errc::executable_format_error, 637 "BOLT-ERROR: input binary is not a valid ELF " 638 "executable as its text section is not " 639 "mapped to a valid segment"); 640 return Error::success(); 641 } 642 643 Error RewriteInstance::run() { 644 assert(BC && "failed to create a binary context"); 645 646 BC->outs() << "BOLT-INFO: Target architecture: " 647 << Triple::getArchTypeName( 648 (llvm::Triple::ArchType)InputFile->getArch()) 649 << "\n"; 650 BC->outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n"; 651 652 if (Error E = discoverStorage()) 653 return E; 654 if (Error E = readSpecialSections()) 655 return E; 656 adjustCommandLineOptions(); 657 discoverFileObjects(); 658 659 if (opts::Instrument && !BC->IsStaticExecutable) 660 if (Error E = discoverRtFiniAddress()) 661 return E; 662 663 preprocessProfileData(); 664 665 // Skip disassembling if we have a translation table and we are running an 666 // aggregation job. 667 if (opts::AggregateOnly && BAT->enabledFor(InputFile)) { 668 // YAML profile in BAT mode requires CFG for .bolt.org.text functions 669 if (!opts::SaveProfile.empty() || 670 opts::ProfileFormat == opts::ProfileFormatKind::PF_YAML) { 671 selectFunctionsToProcess(); 672 disassembleFunctions(); 673 processMetadataPreCFG(); 674 buildFunctionsCFG(); 675 } 676 processProfileData(); 677 return Error::success(); 678 } 679 680 selectFunctionsToProcess(); 681 682 readDebugInfo(); 683 684 disassembleFunctions(); 685 686 processMetadataPreCFG(); 687 688 buildFunctionsCFG(); 689 690 processProfileData(); 691 692 // Save input binary metadata if BAT section needs to be emitted 693 if (opts::EnableBAT) 694 BAT->saveMetadata(*BC); 695 696 postProcessFunctions(); 697 698 processMetadataPostCFG(); 699 700 if (opts::DiffOnly) 701 return Error::success(); 702 703 preregisterSections(); 704 705 runOptimizationPasses(); 706 707 finalizeMetadataPreEmit(); 708 709 emitAndLink(); 710 711 updateMetadata(); 712 713 if (opts::Instrument && !BC->IsStaticExecutable) 714 updateRtFiniReloc(); 715 716 if (opts::OutputFilename == "/dev/null") { 717 BC->outs() << "BOLT-INFO: skipping writing final binary to disk\n"; 718 return Error::success(); 719 } else if (BC->IsLinuxKernel) { 720 BC->errs() << "BOLT-WARNING: Linux kernel support is experimental\n"; 721 } 722 723 // Rewrite allocatable contents and copy non-allocatable parts with mods. 724 rewriteFile(); 725 return Error::success(); 726 } 727 728 void RewriteInstance::discoverFileObjects() { 729 NamedRegionTimer T("discoverFileObjects", "discover file objects", 730 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 731 732 // For local symbols we want to keep track of associated FILE symbol name for 733 // disambiguation by combined name. 734 StringRef FileSymbolName; 735 bool SeenFileName = false; 736 struct SymbolRefHash { 737 size_t operator()(SymbolRef const &S) const { 738 return std::hash<decltype(DataRefImpl::p)>{}(S.getRawDataRefImpl().p); 739 } 740 }; 741 std::unordered_map<SymbolRef, StringRef, SymbolRefHash> SymbolToFileName; 742 for (const ELFSymbolRef &Symbol : InputFile->symbols()) { 743 Expected<StringRef> NameOrError = Symbol.getName(); 744 if (NameOrError && NameOrError->starts_with("__asan_init")) { 745 BC->errs() 746 << "BOLT-ERROR: input file was compiled or linked with sanitizer " 747 "support. Cannot optimize.\n"; 748 exit(1); 749 } 750 if (NameOrError && NameOrError->starts_with("__llvm_coverage_mapping")) { 751 BC->errs() 752 << "BOLT-ERROR: input file was compiled or linked with coverage " 753 "support. Cannot optimize.\n"; 754 exit(1); 755 } 756 757 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) 758 continue; 759 760 if (cantFail(Symbol.getType()) == SymbolRef::ST_File) { 761 FileSymbols.emplace_back(Symbol); 762 StringRef Name = 763 cantFail(std::move(NameOrError), "cannot get symbol name for file"); 764 // Ignore Clang LTO artificial FILE symbol as it is not always generated, 765 // and this uncertainty is causing havoc in function name matching. 766 if (Name == "ld-temp.o") 767 continue; 768 FileSymbolName = Name; 769 SeenFileName = true; 770 continue; 771 } 772 if (!FileSymbolName.empty() && 773 !(cantFail(Symbol.getFlags()) & SymbolRef::SF_Global)) 774 SymbolToFileName[Symbol] = FileSymbolName; 775 } 776 777 // Sort symbols in the file by value. Ignore symbols from non-allocatable 778 // sections. We memoize getAddress(), as it has rather high overhead. 779 struct SymbolInfo { 780 uint64_t Address; 781 SymbolRef Symbol; 782 }; 783 std::vector<SymbolInfo> SortedSymbols; 784 auto isSymbolInMemory = [this](const SymbolRef &Sym) { 785 if (cantFail(Sym.getType()) == SymbolRef::ST_File) 786 return false; 787 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute) 788 return true; 789 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined) 790 return false; 791 BinarySection Section(*BC, *cantFail(Sym.getSection())); 792 return Section.isAllocatable(); 793 }; 794 for (const SymbolRef &Symbol : InputFile->symbols()) 795 if (isSymbolInMemory(Symbol)) 796 SortedSymbols.push_back({cantFail(Symbol.getAddress()), Symbol}); 797 798 auto CompareSymbols = [this](const SymbolInfo &A, const SymbolInfo &B) { 799 if (A.Address != B.Address) 800 return A.Address < B.Address; 801 802 const bool AMarker = BC->isMarker(A.Symbol); 803 const bool BMarker = BC->isMarker(B.Symbol); 804 if (AMarker || BMarker) { 805 return AMarker && !BMarker; 806 } 807 808 const auto AType = cantFail(A.Symbol.getType()); 809 const auto BType = cantFail(B.Symbol.getType()); 810 if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function) 811 return true; 812 if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug) 813 return true; 814 815 return false; 816 }; 817 llvm::stable_sort(SortedSymbols, CompareSymbols); 818 819 auto LastSymbol = SortedSymbols.end(); 820 if (!SortedSymbols.empty()) 821 --LastSymbol; 822 823 // For aarch64, the ABI defines mapping symbols so we identify data in the 824 // code section (see IHI0056B). $d identifies data contents. 825 // Compilers usually merge multiple data objects in a single $d-$x interval, 826 // but we need every data object to be marked with $d. Because of that we 827 // create a vector of MarkerSyms with all locations of data objects. 828 829 struct MarkerSym { 830 uint64_t Address; 831 MarkerSymType Type; 832 }; 833 834 std::vector<MarkerSym> SortedMarkerSymbols; 835 auto addExtraDataMarkerPerSymbol = [&]() { 836 bool IsData = false; 837 uint64_t LastAddr = 0; 838 for (const auto &SymInfo : SortedSymbols) { 839 if (LastAddr == SymInfo.Address) // don't repeat markers 840 continue; 841 842 MarkerSymType MarkerType = BC->getMarkerType(SymInfo.Symbol); 843 if (MarkerType != MarkerSymType::NONE) { 844 SortedMarkerSymbols.push_back(MarkerSym{SymInfo.Address, MarkerType}); 845 LastAddr = SymInfo.Address; 846 IsData = MarkerType == MarkerSymType::DATA; 847 continue; 848 } 849 850 if (IsData) { 851 SortedMarkerSymbols.push_back({SymInfo.Address, MarkerSymType::DATA}); 852 LastAddr = SymInfo.Address; 853 } 854 } 855 }; 856 857 if (BC->isAArch64() || BC->isRISCV()) { 858 addExtraDataMarkerPerSymbol(); 859 LastSymbol = std::stable_partition( 860 SortedSymbols.begin(), SortedSymbols.end(), 861 [this](const SymbolInfo &S) { return !BC->isMarker(S.Symbol); }); 862 if (!SortedSymbols.empty()) 863 --LastSymbol; 864 } 865 866 BinaryFunction *PreviousFunction = nullptr; 867 unsigned AnonymousId = 0; 868 869 const auto SortedSymbolsEnd = 870 LastSymbol == SortedSymbols.end() ? LastSymbol : std::next(LastSymbol); 871 for (auto Iter = SortedSymbols.begin(); Iter != SortedSymbolsEnd; ++Iter) { 872 const SymbolRef &Symbol = Iter->Symbol; 873 const uint64_t SymbolAddress = Iter->Address; 874 const auto SymbolFlags = cantFail(Symbol.getFlags()); 875 const SymbolRef::Type SymbolType = cantFail(Symbol.getType()); 876 877 if (SymbolType == SymbolRef::ST_File) 878 continue; 879 880 StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name"); 881 if (SymbolAddress == 0) { 882 if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function) 883 BC->errs() << "BOLT-WARNING: function with 0 address seen\n"; 884 continue; 885 } 886 887 // Ignore input hot markers 888 if (SymName == "__hot_start" || SymName == "__hot_end") 889 continue; 890 891 FileSymRefs.emplace(SymbolAddress, Symbol); 892 893 // Skip section symbols that will be registered by disassemblePLT(). 894 if (SymbolType == SymbolRef::ST_Debug) { 895 ErrorOr<BinarySection &> BSection = 896 BC->getSectionForAddress(SymbolAddress); 897 if (BSection && getPLTSectionInfo(BSection->getName())) 898 continue; 899 } 900 901 /// It is possible we are seeing a globalized local. LLVM might treat it as 902 /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to 903 /// change the prefix to enforce global scope of the symbol. 904 std::string Name = 905 SymName.starts_with(BC->AsmInfo->getPrivateGlobalPrefix()) 906 ? "PG" + std::string(SymName) 907 : std::string(SymName); 908 909 // Disambiguate all local symbols before adding to symbol table. 910 // Since we don't know if we will see a global with the same name, 911 // always modify the local name. 912 // 913 // NOTE: the naming convention for local symbols should match 914 // the one we use for profile data. 915 std::string UniqueName; 916 std::string AlternativeName; 917 if (Name.empty()) { 918 UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++); 919 } else if (SymbolFlags & SymbolRef::SF_Global) { 920 if (const BinaryData *BD = BC->getBinaryDataByName(Name)) { 921 if (BD->getSize() == ELFSymbolRef(Symbol).getSize() && 922 BD->getAddress() == SymbolAddress) { 923 if (opts::Verbosity > 1) 924 BC->errs() << "BOLT-WARNING: ignoring duplicate global symbol " 925 << Name << "\n"; 926 // Ignore duplicate entry - possibly a bug in the linker 927 continue; 928 } 929 BC->errs() << "BOLT-ERROR: bad input binary, global symbol \"" << Name 930 << "\" is not unique\n"; 931 exit(1); 932 } 933 UniqueName = Name; 934 } else { 935 // If we have a local file name, we should create 2 variants for the 936 // function name. The reason is that perf profile might have been 937 // collected on a binary that did not have the local file name (e.g. as 938 // a side effect of stripping debug info from the binary): 939 // 940 // primary: <function>/<id> 941 // alternative: <function>/<file>/<id2> 942 // 943 // The <id> field is used for disambiguation of local symbols since there 944 // could be identical function names coming from identical file names 945 // (e.g. from different directories). 946 std::string AltPrefix; 947 auto SFI = SymbolToFileName.find(Symbol); 948 if (SymbolType == SymbolRef::ST_Function && SFI != SymbolToFileName.end()) 949 AltPrefix = Name + "/" + std::string(SFI->second); 950 951 UniqueName = NR.uniquify(Name); 952 if (!AltPrefix.empty()) 953 AlternativeName = NR.uniquify(AltPrefix); 954 } 955 956 uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 957 uint64_t SymbolAlignment = Symbol.getAlignment(); 958 959 auto registerName = [&](uint64_t FinalSize) { 960 // Register names even if it's not a function, e.g. for an entry point. 961 BC->registerNameAtAddress(UniqueName, SymbolAddress, FinalSize, 962 SymbolAlignment, SymbolFlags); 963 if (!AlternativeName.empty()) 964 BC->registerNameAtAddress(AlternativeName, SymbolAddress, FinalSize, 965 SymbolAlignment, SymbolFlags); 966 }; 967 968 section_iterator Section = 969 cantFail(Symbol.getSection(), "cannot get symbol section"); 970 if (Section == InputFile->section_end()) { 971 // Could be an absolute symbol. Used on RISC-V for __global_pointer$ so we 972 // need to record it to handle relocations against it. For other instances 973 // of absolute symbols, we record for pretty printing. 974 LLVM_DEBUG(if (opts::Verbosity > 1) { 975 dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n"; 976 }); 977 registerName(SymbolSize); 978 continue; 979 } 980 981 if (SymName == getBOLTReservedStart() || SymName == getBOLTReservedEnd()) { 982 registerName(SymbolSize); 983 continue; 984 } 985 986 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName 987 << " for function\n"); 988 989 if (SymbolAddress == Section->getAddress() + Section->getSize()) { 990 assert(SymbolSize == 0 && 991 "unexpect non-zero sized symbol at end of section"); 992 LLVM_DEBUG( 993 dbgs() 994 << "BOLT-DEBUG: rejecting as symbol points to end of its section\n"); 995 registerName(SymbolSize); 996 continue; 997 } 998 999 if (!Section->isText()) { 1000 assert(SymbolType != SymbolRef::ST_Function && 1001 "unexpected function inside non-code section"); 1002 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n"); 1003 registerName(SymbolSize); 1004 continue; 1005 } 1006 1007 // Assembly functions could be ST_NONE with 0 size. Check that the 1008 // corresponding section is a code section and they are not inside any 1009 // other known function to consider them. 1010 // 1011 // Sometimes assembly functions are not marked as functions and neither are 1012 // their local labels. The only way to tell them apart is to look at 1013 // symbol scope - global vs local. 1014 if (PreviousFunction && SymbolType != SymbolRef::ST_Function) { 1015 if (PreviousFunction->containsAddress(SymbolAddress)) { 1016 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1017 LLVM_DEBUG(dbgs() 1018 << "BOLT-DEBUG: symbol is a function local symbol\n"); 1019 } else if (SymbolAddress == PreviousFunction->getAddress() && 1020 !SymbolSize) { 1021 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n"); 1022 } else if (opts::Verbosity > 1) { 1023 BC->errs() << "BOLT-WARNING: symbol " << UniqueName 1024 << " seen in the middle of function " << *PreviousFunction 1025 << ". Could be a new entry.\n"; 1026 } 1027 registerName(SymbolSize); 1028 continue; 1029 } else if (PreviousFunction->getSize() == 0 && 1030 PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1031 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n"); 1032 registerName(SymbolSize); 1033 continue; 1034 } 1035 } 1036 1037 if (PreviousFunction && PreviousFunction->containsAddress(SymbolAddress) && 1038 PreviousFunction->getAddress() != SymbolAddress) { 1039 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1040 if (opts::Verbosity >= 1) 1041 BC->outs() 1042 << "BOLT-INFO: skipping possibly another entry for function " 1043 << *PreviousFunction << " : " << UniqueName << '\n'; 1044 registerName(SymbolSize); 1045 } else { 1046 BC->outs() << "BOLT-INFO: using " << UniqueName 1047 << " as another entry to " 1048 << "function " << *PreviousFunction << '\n'; 1049 1050 registerName(0); 1051 1052 PreviousFunction->addEntryPointAtOffset(SymbolAddress - 1053 PreviousFunction->getAddress()); 1054 1055 // Remove the symbol from FileSymRefs so that we can skip it from 1056 // in the future. 1057 auto SI = llvm::find_if( 1058 llvm::make_range(FileSymRefs.equal_range(SymbolAddress)), 1059 [&](auto SymIt) { return SymIt.second == Symbol; }); 1060 assert(SI != FileSymRefs.end() && "symbol expected to be present"); 1061 assert(SI->second == Symbol && "wrong symbol found"); 1062 FileSymRefs.erase(SI); 1063 } 1064 continue; 1065 } 1066 1067 // Checkout for conflicts with function data from FDEs. 1068 bool IsSimple = true; 1069 auto FDEI = CFIRdWrt->getFDEs().lower_bound(SymbolAddress); 1070 if (FDEI != CFIRdWrt->getFDEs().end()) { 1071 const dwarf::FDE &FDE = *FDEI->second; 1072 if (FDEI->first != SymbolAddress) { 1073 // There's no matching starting address in FDE. Make sure the previous 1074 // FDE does not contain this address. 1075 if (FDEI != CFIRdWrt->getFDEs().begin()) { 1076 --FDEI; 1077 const dwarf::FDE &PrevFDE = *FDEI->second; 1078 uint64_t PrevStart = PrevFDE.getInitialLocation(); 1079 uint64_t PrevLength = PrevFDE.getAddressRange(); 1080 if (SymbolAddress > PrevStart && 1081 SymbolAddress < PrevStart + PrevLength) { 1082 BC->errs() << "BOLT-ERROR: function " << UniqueName 1083 << " is in conflict with FDE [" 1084 << Twine::utohexstr(PrevStart) << ", " 1085 << Twine::utohexstr(PrevStart + PrevLength) 1086 << "). Skipping.\n"; 1087 IsSimple = false; 1088 } 1089 } 1090 } else if (FDE.getAddressRange() != SymbolSize) { 1091 if (SymbolSize) { 1092 // Function addresses match but sizes differ. 1093 BC->errs() << "BOLT-WARNING: sizes differ for function " << UniqueName 1094 << ". FDE : " << FDE.getAddressRange() 1095 << "; symbol table : " << SymbolSize 1096 << ". Using max size.\n"; 1097 } 1098 SymbolSize = std::max(SymbolSize, FDE.getAddressRange()); 1099 if (BC->getBinaryDataAtAddress(SymbolAddress)) { 1100 BC->setBinaryDataSize(SymbolAddress, SymbolSize); 1101 } else { 1102 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x" 1103 << Twine::utohexstr(SymbolAddress) << "\n"); 1104 } 1105 } 1106 } 1107 1108 BinaryFunction *BF = nullptr; 1109 // Since function may not have yet obtained its real size, do a search 1110 // using the list of registered functions instead of calling 1111 // getBinaryFunctionAtAddress(). 1112 auto BFI = BC->getBinaryFunctions().find(SymbolAddress); 1113 if (BFI != BC->getBinaryFunctions().end()) { 1114 BF = &BFI->second; 1115 // Duplicate the function name. Make sure everything matches before we add 1116 // an alternative name. 1117 if (SymbolSize != BF->getSize()) { 1118 if (opts::Verbosity >= 1) { 1119 if (SymbolSize && BF->getSize()) 1120 BC->errs() << "BOLT-WARNING: size mismatch for duplicate entries " 1121 << *BF << " and " << UniqueName << '\n'; 1122 BC->outs() << "BOLT-INFO: adjusting size of function " << *BF 1123 << " old " << BF->getSize() << " new " << SymbolSize 1124 << "\n"; 1125 } 1126 BF->setSize(std::max(SymbolSize, BF->getSize())); 1127 BC->setBinaryDataSize(SymbolAddress, BF->getSize()); 1128 } 1129 BF->addAlternativeName(UniqueName); 1130 } else { 1131 ErrorOr<BinarySection &> Section = 1132 BC->getSectionForAddress(SymbolAddress); 1133 // Skip symbols from invalid sections 1134 if (!Section) { 1135 BC->errs() << "BOLT-WARNING: " << UniqueName << " (0x" 1136 << Twine::utohexstr(SymbolAddress) 1137 << ") does not have any section\n"; 1138 continue; 1139 } 1140 1141 // Skip symbols from zero-sized sections. 1142 if (!Section->getSize()) 1143 continue; 1144 1145 BF = BC->createBinaryFunction(UniqueName, *Section, SymbolAddress, 1146 SymbolSize); 1147 if (!IsSimple) 1148 BF->setSimple(false); 1149 } 1150 1151 // Check if it's a cold function fragment. 1152 if (FunctionFragmentTemplate.match(SymName)) { 1153 static bool PrintedWarning = false; 1154 if (!PrintedWarning) { 1155 PrintedWarning = true; 1156 BC->errs() << "BOLT-WARNING: split function detected on input : " 1157 << SymName; 1158 if (BC->HasRelocations) 1159 BC->errs() << ". The support is limited in relocation mode\n"; 1160 else 1161 BC->errs() << '\n'; 1162 } 1163 BC->HasSplitFunctions = true; 1164 BF->IsFragment = true; 1165 } 1166 1167 if (!AlternativeName.empty()) 1168 BF->addAlternativeName(AlternativeName); 1169 1170 registerName(SymbolSize); 1171 PreviousFunction = BF; 1172 } 1173 1174 // Read dynamic relocation first as their presence affects the way we process 1175 // static relocations. E.g. we will ignore a static relocation at an address 1176 // that is a subject to dynamic relocation processing. 1177 processDynamicRelocations(); 1178 1179 // Process PLT section. 1180 disassemblePLT(); 1181 1182 // See if we missed any functions marked by FDE. 1183 for (const auto &FDEI : CFIRdWrt->getFDEs()) { 1184 const uint64_t Address = FDEI.first; 1185 const dwarf::FDE *FDE = FDEI.second; 1186 const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address); 1187 if (BF) 1188 continue; 1189 1190 BF = BC->getBinaryFunctionContainingAddress(Address); 1191 if (BF) { 1192 BC->errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) 1193 << ", 0x" << Twine::utohexstr(Address + FDE->getAddressRange()) 1194 << ") conflicts with function " << *BF << '\n'; 1195 continue; 1196 } 1197 1198 if (opts::Verbosity >= 1) 1199 BC->errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) 1200 << ", 0x" << Twine::utohexstr(Address + FDE->getAddressRange()) 1201 << ") has no corresponding symbol table entry\n"; 1202 1203 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 1204 assert(Section && "cannot get section for address from FDE"); 1205 std::string FunctionName = 1206 "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str(); 1207 BC->createBinaryFunction(FunctionName, *Section, Address, 1208 FDE->getAddressRange()); 1209 } 1210 1211 BC->setHasSymbolsWithFileName(SeenFileName); 1212 1213 // Now that all the functions were created - adjust their boundaries. 1214 adjustFunctionBoundaries(); 1215 1216 // Annotate functions with code/data markers in AArch64 1217 for (auto ISym = SortedMarkerSymbols.begin(); 1218 ISym != SortedMarkerSymbols.end(); ++ISym) { 1219 1220 auto *BF = 1221 BC->getBinaryFunctionContainingAddress(ISym->Address, true, true); 1222 1223 if (!BF) { 1224 // Stray marker 1225 continue; 1226 } 1227 const auto EntryOffset = ISym->Address - BF->getAddress(); 1228 if (ISym->Type == MarkerSymType::CODE) { 1229 BF->markCodeAtOffset(EntryOffset); 1230 continue; 1231 } 1232 if (ISym->Type == MarkerSymType::DATA) { 1233 BF->markDataAtOffset(EntryOffset); 1234 BC->AddressToConstantIslandMap[ISym->Address] = BF; 1235 continue; 1236 } 1237 llvm_unreachable("Unknown marker"); 1238 } 1239 1240 if (BC->isAArch64()) { 1241 // Check for dynamic relocations that might be contained in 1242 // constant islands. 1243 for (const BinarySection &Section : BC->allocatableSections()) { 1244 const uint64_t SectionAddress = Section.getAddress(); 1245 for (const Relocation &Rel : Section.dynamicRelocations()) { 1246 const uint64_t RelAddress = SectionAddress + Rel.Offset; 1247 BinaryFunction *BF = 1248 BC->getBinaryFunctionContainingAddress(RelAddress, 1249 /*CheckPastEnd*/ false, 1250 /*UseMaxSize*/ true); 1251 if (BF) { 1252 assert(Rel.isRelative() && "Expected relative relocation for island"); 1253 BC->logBOLTErrorsAndQuitOnFatal( 1254 BF->markIslandDynamicRelocationAtAddress(RelAddress)); 1255 } 1256 } 1257 } 1258 } 1259 1260 if (!BC->IsLinuxKernel) { 1261 // Read all relocations now that we have binary functions mapped. 1262 processRelocations(); 1263 } 1264 1265 registerFragments(); 1266 FileSymbols.clear(); 1267 FileSymRefs.clear(); 1268 1269 discoverBOLTReserved(); 1270 } 1271 1272 void RewriteInstance::discoverBOLTReserved() { 1273 BinaryData *StartBD = BC->getBinaryDataByName(getBOLTReservedStart()); 1274 BinaryData *EndBD = BC->getBinaryDataByName(getBOLTReservedEnd()); 1275 if (!StartBD != !EndBD) { 1276 BC->errs() << "BOLT-ERROR: one of the symbols is missing from the binary: " 1277 << getBOLTReservedStart() << ", " << getBOLTReservedEnd() 1278 << '\n'; 1279 exit(1); 1280 } 1281 1282 if (!StartBD) 1283 return; 1284 1285 if (StartBD->getAddress() >= EndBD->getAddress()) { 1286 BC->errs() << "BOLT-ERROR: invalid reserved space boundaries\n"; 1287 exit(1); 1288 } 1289 BC->BOLTReserved = AddressRange(StartBD->getAddress(), EndBD->getAddress()); 1290 BC->outs() << "BOLT-INFO: using reserved space for allocating new sections\n"; 1291 1292 PHDRTableOffset = 0; 1293 PHDRTableAddress = 0; 1294 NewTextSegmentAddress = 0; 1295 NewTextSegmentOffset = 0; 1296 NextAvailableAddress = BC->BOLTReserved.start(); 1297 } 1298 1299 Error RewriteInstance::discoverRtFiniAddress() { 1300 // Use DT_FINI if it's available. 1301 if (BC->FiniAddress) { 1302 BC->FiniFunctionAddress = BC->FiniAddress; 1303 return Error::success(); 1304 } 1305 1306 if (!BC->FiniArrayAddress || !BC->FiniArraySize) { 1307 return createStringError( 1308 std::errc::not_supported, 1309 "Instrumentation needs either DT_FINI or DT_FINI_ARRAY"); 1310 } 1311 1312 if (*BC->FiniArraySize < BC->AsmInfo->getCodePointerSize()) { 1313 return createStringError(std::errc::not_supported, 1314 "Need at least 1 DT_FINI_ARRAY slot"); 1315 } 1316 1317 ErrorOr<BinarySection &> FiniArraySection = 1318 BC->getSectionForAddress(*BC->FiniArrayAddress); 1319 if (auto EC = FiniArraySection.getError()) 1320 return errorCodeToError(EC); 1321 1322 if (const Relocation *Reloc = FiniArraySection->getDynamicRelocationAt(0)) { 1323 BC->FiniFunctionAddress = Reloc->Addend; 1324 return Error::success(); 1325 } 1326 1327 if (const Relocation *Reloc = FiniArraySection->getRelocationAt(0)) { 1328 BC->FiniFunctionAddress = Reloc->Value; 1329 return Error::success(); 1330 } 1331 1332 return createStringError(std::errc::not_supported, 1333 "No relocation for first DT_FINI_ARRAY slot"); 1334 } 1335 1336 void RewriteInstance::updateRtFiniReloc() { 1337 // Updating DT_FINI is handled by patchELFDynamic. 1338 if (BC->FiniAddress) 1339 return; 1340 1341 const RuntimeLibrary *RT = BC->getRuntimeLibrary(); 1342 if (!RT || !RT->getRuntimeFiniAddress()) 1343 return; 1344 1345 assert(BC->FiniArrayAddress && BC->FiniArraySize && 1346 "inconsistent .fini_array state"); 1347 1348 ErrorOr<BinarySection &> FiniArraySection = 1349 BC->getSectionForAddress(*BC->FiniArrayAddress); 1350 assert(FiniArraySection && ".fini_array removed"); 1351 1352 if (std::optional<Relocation> Reloc = 1353 FiniArraySection->takeDynamicRelocationAt(0)) { 1354 assert(Reloc->Addend == BC->FiniFunctionAddress && 1355 "inconsistent .fini_array dynamic relocation"); 1356 Reloc->Addend = RT->getRuntimeFiniAddress(); 1357 FiniArraySection->addDynamicRelocation(*Reloc); 1358 } 1359 1360 // Update the static relocation by adding a pending relocation which will get 1361 // patched when flushPendingRelocations is called in rewriteFile. Note that 1362 // flushPendingRelocations will calculate the value to patch as 1363 // "Symbol + Addend". Since we don't have a symbol, just set the addend to the 1364 // desired value. 1365 FiniArraySection->addPendingRelocation(Relocation{ 1366 /*Offset*/ 0, /*Symbol*/ nullptr, /*Type*/ Relocation::getAbs64(), 1367 /*Addend*/ RT->getRuntimeFiniAddress(), /*Value*/ 0}); 1368 } 1369 1370 void RewriteInstance::registerFragments() { 1371 if (!BC->HasSplitFunctions) 1372 return; 1373 1374 // Process fragments with ambiguous parents separately as they are typically a 1375 // vanishing minority of cases and require expensive symbol table lookups. 1376 std::vector<std::pair<StringRef, BinaryFunction *>> AmbiguousFragments; 1377 for (auto &BFI : BC->getBinaryFunctions()) { 1378 BinaryFunction &Function = BFI.second; 1379 if (!Function.isFragment()) 1380 continue; 1381 for (StringRef Name : Function.getNames()) { 1382 StringRef BaseName = NR.restore(Name); 1383 const bool IsGlobal = BaseName == Name; 1384 SmallVector<StringRef> Matches; 1385 if (!FunctionFragmentTemplate.match(BaseName, &Matches)) 1386 continue; 1387 StringRef ParentName = Matches[1]; 1388 const BinaryData *BD = BC->getBinaryDataByName(ParentName); 1389 const uint64_t NumPossibleLocalParents = 1390 NR.getUniquifiedNameCount(ParentName); 1391 // The most common case: single local parent fragment. 1392 if (!BD && NumPossibleLocalParents == 1) { 1393 BD = BC->getBinaryDataByName(NR.getUniqueName(ParentName, 1)); 1394 } else if (BD && (!NumPossibleLocalParents || IsGlobal)) { 1395 // Global parent and either no local candidates (second most common), or 1396 // the fragment is global as well (uncommon). 1397 } else { 1398 // Any other case: need to disambiguate using FILE symbols. 1399 AmbiguousFragments.emplace_back(ParentName, &Function); 1400 continue; 1401 } 1402 if (BD) { 1403 BinaryFunction *BF = BC->getFunctionForSymbol(BD->getSymbol()); 1404 if (BF) { 1405 BC->registerFragment(Function, *BF); 1406 continue; 1407 } 1408 } 1409 BC->errs() << "BOLT-ERROR: parent function not found for " << Function 1410 << '\n'; 1411 exit(1); 1412 } 1413 } 1414 1415 if (AmbiguousFragments.empty()) 1416 return; 1417 1418 if (!BC->hasSymbolsWithFileName()) { 1419 BC->errs() << "BOLT-ERROR: input file has split functions but does not " 1420 "have FILE symbols. If the binary was stripped, preserve " 1421 "FILE symbols with --keep-file-symbols strip option\n"; 1422 exit(1); 1423 } 1424 1425 // The first global symbol is identified by the symbol table sh_info value. 1426 // Used as local symbol search stopping point. 1427 auto *ELF64LEFile = cast<ELF64LEObjectFile>(InputFile); 1428 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 1429 auto *SymTab = llvm::find_if(cantFail(Obj.sections()), [](const auto &Sec) { 1430 return Sec.sh_type == ELF::SHT_SYMTAB; 1431 }); 1432 assert(SymTab); 1433 // Symtab sh_info contains the value one greater than the symbol table index 1434 // of the last local symbol. 1435 ELFSymbolRef LocalSymEnd = ELF64LEFile->toSymbolRef(SymTab, SymTab->sh_info); 1436 1437 for (auto &Fragment : AmbiguousFragments) { 1438 const StringRef &ParentName = Fragment.first; 1439 BinaryFunction *BF = Fragment.second; 1440 const uint64_t Address = BF->getAddress(); 1441 1442 // Get fragment's own symbol 1443 const auto SymIt = llvm::find_if( 1444 llvm::make_range(FileSymRefs.equal_range(Address)), [&](auto SI) { 1445 StringRef Name = cantFail(SI.second.getName()); 1446 return Name.contains(ParentName); 1447 }); 1448 if (SymIt == FileSymRefs.end()) { 1449 BC->errs() 1450 << "BOLT-ERROR: symbol lookup failed for function at address 0x" 1451 << Twine::utohexstr(Address) << '\n'; 1452 exit(1); 1453 } 1454 1455 // Find containing FILE symbol 1456 ELFSymbolRef Symbol = SymIt->second; 1457 auto FSI = llvm::upper_bound(FileSymbols, Symbol); 1458 if (FSI == FileSymbols.begin()) { 1459 BC->errs() << "BOLT-ERROR: owning FILE symbol not found for symbol " 1460 << cantFail(Symbol.getName()) << '\n'; 1461 exit(1); 1462 } 1463 1464 ELFSymbolRef StopSymbol = LocalSymEnd; 1465 if (FSI != FileSymbols.end()) 1466 StopSymbol = *FSI; 1467 1468 uint64_t ParentAddress{0}; 1469 1470 // BOLT split fragment symbols are emitted just before the main function 1471 // symbol. 1472 for (ELFSymbolRef NextSymbol = Symbol; NextSymbol < StopSymbol; 1473 NextSymbol.moveNext()) { 1474 StringRef Name = cantFail(NextSymbol.getName()); 1475 if (Name == ParentName) { 1476 ParentAddress = cantFail(NextSymbol.getValue()); 1477 goto registerParent; 1478 } 1479 if (Name.starts_with(ParentName)) 1480 // With multi-way splitting, there are multiple fragments with different 1481 // suffixes. Parent follows the last fragment. 1482 continue; 1483 break; 1484 } 1485 1486 // Iterate over local file symbols and check symbol names to match parent. 1487 for (ELFSymbolRef Symbol(FSI[-1]); Symbol < StopSymbol; Symbol.moveNext()) { 1488 if (cantFail(Symbol.getName()) == ParentName) { 1489 ParentAddress = cantFail(Symbol.getAddress()); 1490 break; 1491 } 1492 } 1493 1494 registerParent: 1495 // No local parent is found, use global parent function. 1496 if (!ParentAddress) 1497 if (BinaryData *ParentBD = BC->getBinaryDataByName(ParentName)) 1498 ParentAddress = ParentBD->getAddress(); 1499 1500 if (BinaryFunction *ParentBF = 1501 BC->getBinaryFunctionAtAddress(ParentAddress)) { 1502 BC->registerFragment(*BF, *ParentBF); 1503 continue; 1504 } 1505 BC->errs() << "BOLT-ERROR: parent function not found for " << *BF << '\n'; 1506 exit(1); 1507 } 1508 } 1509 1510 void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress, 1511 uint64_t EntryAddress, 1512 uint64_t EntrySize) { 1513 if (!TargetAddress) 1514 return; 1515 1516 auto setPLTSymbol = [&](BinaryFunction *BF, StringRef Name) { 1517 const unsigned PtrSize = BC->AsmInfo->getCodePointerSize(); 1518 MCSymbol *TargetSymbol = BC->registerNameAtAddress( 1519 Name.str() + "@GOT", TargetAddress, PtrSize, PtrSize); 1520 BF->setPLTSymbol(TargetSymbol); 1521 }; 1522 1523 BinaryFunction *BF = BC->getBinaryFunctionAtAddress(EntryAddress); 1524 if (BF && BC->isAArch64()) { 1525 // Handle IFUNC trampoline with symbol 1526 setPLTSymbol(BF, BF->getOneName()); 1527 return; 1528 } 1529 1530 const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress); 1531 if (!Rel) 1532 return; 1533 1534 MCSymbol *Symbol = Rel->Symbol; 1535 if (!Symbol) { 1536 if (!BC->isAArch64() || !Rel->Addend || !Rel->isIRelative()) 1537 return; 1538 1539 // IFUNC trampoline without symbol 1540 BinaryFunction *TargetBF = BC->getBinaryFunctionAtAddress(Rel->Addend); 1541 if (!TargetBF) { 1542 BC->errs() 1543 << "BOLT-WARNING: Expected BF to be presented as IFUNC resolver at " 1544 << Twine::utohexstr(Rel->Addend) << ", skipping\n"; 1545 return; 1546 } 1547 1548 Symbol = TargetBF->getSymbol(); 1549 } 1550 1551 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(EntryAddress); 1552 assert(Section && "cannot get section for address"); 1553 if (!BF) 1554 BF = BC->createBinaryFunction(Symbol->getName().str() + "@PLT", *Section, 1555 EntryAddress, 0, EntrySize, 1556 Section->getAlignment()); 1557 else 1558 BF->addAlternativeName(Symbol->getName().str() + "@PLT"); 1559 setPLTSymbol(BF, Symbol->getName()); 1560 } 1561 1562 void RewriteInstance::disassemblePLTInstruction(const BinarySection &Section, 1563 uint64_t InstrOffset, 1564 MCInst &Instruction, 1565 uint64_t &InstrSize) { 1566 const uint64_t SectionAddress = Section.getAddress(); 1567 const uint64_t SectionSize = Section.getSize(); 1568 StringRef PLTContents = Section.getContents(); 1569 ArrayRef<uint8_t> PLTData( 1570 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); 1571 1572 const uint64_t InstrAddr = SectionAddress + InstrOffset; 1573 if (!BC->DisAsm->getInstruction(Instruction, InstrSize, 1574 PLTData.slice(InstrOffset), InstrAddr, 1575 nulls())) { 1576 BC->errs() 1577 << "BOLT-ERROR: unable to disassemble instruction in PLT section " 1578 << Section.getName() << formatv(" at offset {0:x}\n", InstrOffset); 1579 exit(1); 1580 } 1581 } 1582 1583 void RewriteInstance::disassemblePLTSectionAArch64(BinarySection &Section) { 1584 const uint64_t SectionAddress = Section.getAddress(); 1585 const uint64_t SectionSize = Section.getSize(); 1586 1587 uint64_t InstrOffset = 0; 1588 // Locate new plt entry 1589 while (InstrOffset < SectionSize) { 1590 InstructionListType Instructions; 1591 MCInst Instruction; 1592 uint64_t EntryOffset = InstrOffset; 1593 uint64_t EntrySize = 0; 1594 uint64_t InstrSize; 1595 // Loop through entry instructions 1596 while (InstrOffset < SectionSize) { 1597 disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize); 1598 EntrySize += InstrSize; 1599 if (!BC->MIB->isIndirectBranch(Instruction)) { 1600 Instructions.emplace_back(Instruction); 1601 InstrOffset += InstrSize; 1602 continue; 1603 } 1604 1605 const uint64_t EntryAddress = SectionAddress + EntryOffset; 1606 const uint64_t TargetAddress = BC->MIB->analyzePLTEntry( 1607 Instruction, Instructions.begin(), Instructions.end(), EntryAddress); 1608 1609 createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize); 1610 break; 1611 } 1612 1613 // Branch instruction 1614 InstrOffset += InstrSize; 1615 1616 // Skip nops if any 1617 while (InstrOffset < SectionSize) { 1618 disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize); 1619 if (!BC->MIB->isNoop(Instruction)) 1620 break; 1621 1622 InstrOffset += InstrSize; 1623 } 1624 } 1625 } 1626 1627 void RewriteInstance::disassemblePLTSectionRISCV(BinarySection &Section) { 1628 const uint64_t SectionAddress = Section.getAddress(); 1629 const uint64_t SectionSize = Section.getSize(); 1630 StringRef PLTContents = Section.getContents(); 1631 ArrayRef<uint8_t> PLTData( 1632 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); 1633 1634 auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, 1635 uint64_t &InstrSize) { 1636 const uint64_t InstrAddr = SectionAddress + InstrOffset; 1637 if (!BC->DisAsm->getInstruction(Instruction, InstrSize, 1638 PLTData.slice(InstrOffset), InstrAddr, 1639 nulls())) { 1640 BC->errs() 1641 << "BOLT-ERROR: unable to disassemble instruction in PLT section " 1642 << Section.getName() << " at offset 0x" 1643 << Twine::utohexstr(InstrOffset) << '\n'; 1644 exit(1); 1645 } 1646 }; 1647 1648 // Skip the first special entry since no relocation points to it. 1649 uint64_t InstrOffset = 32; 1650 1651 while (InstrOffset < SectionSize) { 1652 InstructionListType Instructions; 1653 MCInst Instruction; 1654 const uint64_t EntryOffset = InstrOffset; 1655 const uint64_t EntrySize = 16; 1656 uint64_t InstrSize; 1657 1658 while (InstrOffset < EntryOffset + EntrySize) { 1659 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1660 Instructions.emplace_back(Instruction); 1661 InstrOffset += InstrSize; 1662 } 1663 1664 const uint64_t EntryAddress = SectionAddress + EntryOffset; 1665 const uint64_t TargetAddress = BC->MIB->analyzePLTEntry( 1666 Instruction, Instructions.begin(), Instructions.end(), EntryAddress); 1667 1668 createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize); 1669 } 1670 } 1671 1672 void RewriteInstance::disassemblePLTSectionX86(BinarySection &Section, 1673 uint64_t EntrySize) { 1674 const uint64_t SectionAddress = Section.getAddress(); 1675 const uint64_t SectionSize = Section.getSize(); 1676 1677 for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= SectionSize; 1678 EntryOffset += EntrySize) { 1679 MCInst Instruction; 1680 uint64_t InstrSize, InstrOffset = EntryOffset; 1681 while (InstrOffset < EntryOffset + EntrySize) { 1682 disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize); 1683 // Check if the entry size needs adjustment. 1684 if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) && 1685 EntrySize == 8) 1686 EntrySize = 16; 1687 1688 if (BC->MIB->isIndirectBranch(Instruction)) 1689 break; 1690 1691 InstrOffset += InstrSize; 1692 } 1693 1694 if (InstrOffset + InstrSize > EntryOffset + EntrySize) 1695 continue; 1696 1697 uint64_t TargetAddress; 1698 if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1699 SectionAddress + InstrOffset, 1700 InstrSize)) { 1701 BC->errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x" 1702 << Twine::utohexstr(SectionAddress + InstrOffset) << '\n'; 1703 exit(1); 1704 } 1705 1706 createPLTBinaryFunction(TargetAddress, SectionAddress + EntryOffset, 1707 EntrySize); 1708 } 1709 } 1710 1711 void RewriteInstance::disassemblePLT() { 1712 auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) { 1713 if (BC->isAArch64()) 1714 return disassemblePLTSectionAArch64(Section); 1715 if (BC->isRISCV()) 1716 return disassemblePLTSectionRISCV(Section); 1717 if (BC->isX86()) 1718 return disassemblePLTSectionX86(Section, EntrySize); 1719 llvm_unreachable("Unmplemented PLT"); 1720 }; 1721 1722 for (BinarySection &Section : BC->allocatableSections()) { 1723 const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName()); 1724 if (!PLTSI) 1725 continue; 1726 1727 analyzeOnePLTSection(Section, PLTSI->EntrySize); 1728 1729 BinaryFunction *PltBF; 1730 auto BFIter = BC->getBinaryFunctions().find(Section.getAddress()); 1731 if (BFIter != BC->getBinaryFunctions().end()) { 1732 PltBF = &BFIter->second; 1733 } else { 1734 // If we did not register any function at the start of the section, 1735 // then it must be a general PLT entry. Add a function at the location. 1736 PltBF = BC->createBinaryFunction( 1737 "__BOLT_PSEUDO_" + Section.getName().str(), Section, 1738 Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment()); 1739 } 1740 PltBF->setPseudo(true); 1741 } 1742 } 1743 1744 void RewriteInstance::adjustFunctionBoundaries() { 1745 for (auto BFI = BC->getBinaryFunctions().begin(), 1746 BFE = BC->getBinaryFunctions().end(); 1747 BFI != BFE; ++BFI) { 1748 BinaryFunction &Function = BFI->second; 1749 const BinaryFunction *NextFunction = nullptr; 1750 if (std::next(BFI) != BFE) 1751 NextFunction = &std::next(BFI)->second; 1752 1753 // Check if there's a symbol or a function with a larger address in the 1754 // same section. If there is - it determines the maximum size for the 1755 // current function. Otherwise, it is the size of a containing section 1756 // the defines it. 1757 // 1758 // NOTE: ignore some symbols that could be tolerated inside the body 1759 // of a function. 1760 auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress()); 1761 while (NextSymRefI != FileSymRefs.end()) { 1762 SymbolRef &Symbol = NextSymRefI->second; 1763 const uint64_t SymbolAddress = NextSymRefI->first; 1764 const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 1765 1766 if (NextFunction && SymbolAddress >= NextFunction->getAddress()) 1767 break; 1768 1769 if (!Function.isSymbolValidInScope(Symbol, SymbolSize)) 1770 break; 1771 1772 // Skip basic block labels. This happens on RISC-V with linker relaxation 1773 // enabled because every branch needs a relocation and corresponding 1774 // symbol. We don't want to add such symbols as entry points. 1775 const auto PrivateLabelPrefix = BC->AsmInfo->getPrivateLabelPrefix(); 1776 if (!PrivateLabelPrefix.empty() && 1777 cantFail(Symbol.getName()).starts_with(PrivateLabelPrefix)) { 1778 ++NextSymRefI; 1779 continue; 1780 } 1781 1782 // This is potentially another entry point into the function. 1783 uint64_t EntryOffset = NextSymRefI->first - Function.getAddress(); 1784 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function " 1785 << Function << " at offset 0x" 1786 << Twine::utohexstr(EntryOffset) << '\n'); 1787 Function.addEntryPointAtOffset(EntryOffset); 1788 1789 ++NextSymRefI; 1790 } 1791 1792 // Function runs at most till the end of the containing section. 1793 uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress(); 1794 // Or till the next object marked by a symbol. 1795 if (NextSymRefI != FileSymRefs.end()) 1796 NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress); 1797 1798 // Or till the next function not marked by a symbol. 1799 if (NextFunction) 1800 NextObjectAddress = 1801 std::min(NextFunction->getAddress(), NextObjectAddress); 1802 1803 const uint64_t MaxSize = NextObjectAddress - Function.getAddress(); 1804 if (MaxSize < Function.getSize()) { 1805 BC->errs() << "BOLT-ERROR: symbol seen in the middle of the function " 1806 << Function << ". Skipping.\n"; 1807 Function.setSimple(false); 1808 Function.setMaxSize(Function.getSize()); 1809 continue; 1810 } 1811 Function.setMaxSize(MaxSize); 1812 if (!Function.getSize() && Function.isSimple()) { 1813 // Some assembly functions have their size set to 0, use the max 1814 // size as their real size. 1815 if (opts::Verbosity >= 1) 1816 BC->outs() << "BOLT-INFO: setting size of function " << Function 1817 << " to " << Function.getMaxSize() << " (was 0)\n"; 1818 Function.setSize(Function.getMaxSize()); 1819 } 1820 } 1821 } 1822 1823 void RewriteInstance::relocateEHFrameSection() { 1824 assert(EHFrameSection && "Non-empty .eh_frame section expected."); 1825 1826 BinarySection *RelocatedEHFrameSection = 1827 getSection(".relocated" + getEHFrameSectionName()); 1828 assert(RelocatedEHFrameSection && 1829 "Relocated eh_frame section should be preregistered."); 1830 DWARFDataExtractor DE(EHFrameSection->getContents(), 1831 BC->AsmInfo->isLittleEndian(), 1832 BC->AsmInfo->getCodePointerSize()); 1833 auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) { 1834 if (DwarfType == dwarf::DW_EH_PE_omit) 1835 return; 1836 1837 // Only fix references that are relative to other locations. 1838 if (!(DwarfType & dwarf::DW_EH_PE_pcrel) && 1839 !(DwarfType & dwarf::DW_EH_PE_textrel) && 1840 !(DwarfType & dwarf::DW_EH_PE_funcrel) && 1841 !(DwarfType & dwarf::DW_EH_PE_datarel)) 1842 return; 1843 1844 if (!(DwarfType & dwarf::DW_EH_PE_sdata4)) 1845 return; 1846 1847 uint64_t RelType; 1848 switch (DwarfType & 0x0f) { 1849 default: 1850 llvm_unreachable("unsupported DWARF encoding type"); 1851 case dwarf::DW_EH_PE_sdata4: 1852 case dwarf::DW_EH_PE_udata4: 1853 RelType = Relocation::getPC32(); 1854 Offset -= 4; 1855 break; 1856 case dwarf::DW_EH_PE_sdata8: 1857 case dwarf::DW_EH_PE_udata8: 1858 RelType = Relocation::getPC64(); 1859 Offset -= 8; 1860 break; 1861 } 1862 1863 // Create a relocation against an absolute value since the goal is to 1864 // preserve the contents of the section independent of the new values 1865 // of referenced symbols. 1866 RelocatedEHFrameSection->addRelocation(Offset, nullptr, RelType, Value); 1867 }; 1868 1869 Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc); 1870 check_error(std::move(E), "failed to patch EH frame"); 1871 } 1872 1873 Error RewriteInstance::readSpecialSections() { 1874 NamedRegionTimer T("readSpecialSections", "read special sections", 1875 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 1876 1877 bool HasTextRelocations = false; 1878 bool HasSymbolTable = false; 1879 bool HasDebugInfo = false; 1880 1881 // Process special sections. 1882 for (const SectionRef &Section : InputFile->sections()) { 1883 Expected<StringRef> SectionNameOrErr = Section.getName(); 1884 check_error(SectionNameOrErr.takeError(), "cannot get section name"); 1885 StringRef SectionName = *SectionNameOrErr; 1886 1887 if (Error E = Section.getContents().takeError()) 1888 return E; 1889 BC->registerSection(Section); 1890 LLVM_DEBUG( 1891 dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x" 1892 << Twine::utohexstr(Section.getAddress()) << ":0x" 1893 << Twine::utohexstr(Section.getAddress() + Section.getSize()) 1894 << "\n"); 1895 if (isDebugSection(SectionName)) 1896 HasDebugInfo = true; 1897 } 1898 1899 // Set IsRelro section attribute based on PT_GNU_RELRO segment. 1900 markGnuRelroSections(); 1901 1902 if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) { 1903 BC->errs() << "BOLT-WARNING: debug info will be stripped from the binary. " 1904 "Use -update-debug-sections to keep it.\n"; 1905 } 1906 1907 HasTextRelocations = (bool)BC->getUniqueSectionByName( 1908 ".rela" + std::string(BC->getMainCodeSectionName())); 1909 HasSymbolTable = (bool)BC->getUniqueSectionByName(".symtab"); 1910 EHFrameSection = BC->getUniqueSectionByName(".eh_frame"); 1911 1912 if (ErrorOr<BinarySection &> BATSec = 1913 BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) { 1914 BC->HasBATSection = true; 1915 // Do not read BAT when plotting a heatmap 1916 if (!opts::HeatmapMode) { 1917 if (std::error_code EC = BAT->parse(BC->outs(), BATSec->getContents())) { 1918 BC->errs() << "BOLT-ERROR: failed to parse BOLT address translation " 1919 "table.\n"; 1920 exit(1); 1921 } 1922 } 1923 } 1924 1925 if (opts::PrintSections) { 1926 BC->outs() << "BOLT-INFO: Sections from original binary:\n"; 1927 BC->printSections(BC->outs()); 1928 } 1929 1930 if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) { 1931 BC->errs() 1932 << "BOLT-ERROR: relocations against code are missing from the input " 1933 "file. Cannot proceed in relocations mode (-relocs).\n"; 1934 exit(1); 1935 } 1936 1937 BC->HasRelocations = 1938 HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE); 1939 1940 if (BC->IsLinuxKernel && BC->HasRelocations) { 1941 BC->outs() << "BOLT-INFO: disabling relocation mode for Linux kernel\n"; 1942 BC->HasRelocations = false; 1943 } 1944 1945 BC->IsStripped = !HasSymbolTable; 1946 1947 if (BC->IsStripped && !opts::AllowStripped) { 1948 BC->errs() 1949 << "BOLT-ERROR: stripped binaries are not supported. If you know " 1950 "what you're doing, use --allow-stripped to proceed"; 1951 exit(1); 1952 } 1953 1954 // Force non-relocation mode for heatmap generation 1955 if (opts::HeatmapMode) 1956 BC->HasRelocations = false; 1957 1958 if (BC->HasRelocations) 1959 BC->outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "") 1960 << "relocation mode\n"; 1961 1962 // Read EH frame for function boundaries info. 1963 Expected<const DWARFDebugFrame *> EHFrameOrError = BC->DwCtx->getEHFrame(); 1964 if (!EHFrameOrError) 1965 report_error("expected valid eh_frame section", EHFrameOrError.takeError()); 1966 CFIRdWrt.reset(new CFIReaderWriter(*BC, *EHFrameOrError.get())); 1967 1968 processSectionMetadata(); 1969 1970 // Read .dynamic/PT_DYNAMIC. 1971 return readELFDynamic(); 1972 } 1973 1974 void RewriteInstance::adjustCommandLineOptions() { 1975 if (BC->isAArch64() && !BC->HasRelocations) 1976 BC->errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully " 1977 "supported\n"; 1978 1979 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 1980 RtLibrary->adjustCommandLineOptions(*BC); 1981 1982 if (BC->isX86() && BC->MAB->allowAutoPadding()) { 1983 if (!BC->HasRelocations) { 1984 BC->errs() 1985 << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in " 1986 "non-relocation mode\n"; 1987 exit(1); 1988 } 1989 BC->outs() 1990 << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout " 1991 "may take several minutes\n"; 1992 } 1993 1994 if (opts::SplitEH && !BC->HasRelocations) { 1995 BC->errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n"; 1996 opts::SplitEH = false; 1997 } 1998 1999 if (opts::StrictMode && !BC->HasRelocations) { 2000 BC->errs() 2001 << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation " 2002 "mode\n"; 2003 opts::StrictMode = false; 2004 } 2005 2006 if (BC->HasRelocations && opts::AggregateOnly && 2007 !opts::StrictMode.getNumOccurrences()) { 2008 BC->outs() << "BOLT-INFO: enabling strict relocation mode for aggregation " 2009 "purposes\n"; 2010 opts::StrictMode = true; 2011 } 2012 2013 if (!BC->HasRelocations && 2014 opts::ReorderFunctions != ReorderFunctions::RT_NONE) { 2015 BC->errs() << "BOLT-ERROR: function reordering only works when " 2016 << "relocations are enabled\n"; 2017 exit(1); 2018 } 2019 2020 if (opts::Instrument || 2021 (opts::ReorderFunctions != ReorderFunctions::RT_NONE && 2022 !opts::HotText.getNumOccurrences())) { 2023 opts::HotText = true; 2024 } else if (opts::HotText && !BC->HasRelocations) { 2025 BC->errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n"; 2026 opts::HotText = false; 2027 } 2028 2029 if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) { 2030 opts::HotTextMoveSections.addValue(".stub"); 2031 opts::HotTextMoveSections.addValue(".mover"); 2032 opts::HotTextMoveSections.addValue(".never_hugify"); 2033 } 2034 2035 if (opts::UseOldText && !BC->OldTextSectionAddress) { 2036 BC->errs() 2037 << "BOLT-WARNING: cannot use old .text as the section was not found" 2038 "\n"; 2039 opts::UseOldText = false; 2040 } 2041 if (opts::UseOldText && !BC->HasRelocations) { 2042 BC->errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n"; 2043 opts::UseOldText = false; 2044 } 2045 2046 if (!opts::AlignText.getNumOccurrences()) 2047 opts::AlignText = BC->PageAlign; 2048 2049 if (opts::AlignText < opts::AlignFunctions) 2050 opts::AlignText = (unsigned)opts::AlignFunctions; 2051 2052 if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode && 2053 !opts::UseOldText) 2054 opts::Lite = true; 2055 2056 if (opts::Lite && opts::UseOldText) { 2057 BC->errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. " 2058 "Disabling -use-old-text.\n"; 2059 opts::UseOldText = false; 2060 } 2061 2062 if (opts::Lite && opts::StrictMode) { 2063 BC->errs() 2064 << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n"; 2065 exit(1); 2066 } 2067 2068 if (opts::Lite) 2069 BC->outs() << "BOLT-INFO: enabling lite mode\n"; 2070 2071 if (BC->IsLinuxKernel) { 2072 if (!opts::KeepNops.getNumOccurrences()) 2073 opts::KeepNops = true; 2074 2075 // Linux kernel may resume execution after a trap instruction in some cases. 2076 if (!opts::TerminalTrap.getNumOccurrences()) 2077 opts::TerminalTrap = false; 2078 } 2079 } 2080 2081 namespace { 2082 template <typename ELFT> 2083 int64_t getRelocationAddend(const ELFObjectFile<ELFT> *Obj, 2084 const RelocationRef &RelRef) { 2085 using ELFShdrTy = typename ELFT::Shdr; 2086 using Elf_Rela = typename ELFT::Rela; 2087 int64_t Addend = 0; 2088 const ELFFile<ELFT> &EF = Obj->getELFFile(); 2089 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 2090 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); 2091 switch (RelocationSection->sh_type) { 2092 default: 2093 llvm_unreachable("unexpected relocation section type"); 2094 case ELF::SHT_REL: 2095 break; 2096 case ELF::SHT_RELA: { 2097 const Elf_Rela *RelA = Obj->getRela(Rel); 2098 Addend = RelA->r_addend; 2099 break; 2100 } 2101 } 2102 2103 return Addend; 2104 } 2105 2106 int64_t getRelocationAddend(const ELFObjectFileBase *Obj, 2107 const RelocationRef &Rel) { 2108 return getRelocationAddend(cast<ELF64LEObjectFile>(Obj), Rel); 2109 } 2110 2111 template <typename ELFT> 2112 uint32_t getRelocationSymbol(const ELFObjectFile<ELFT> *Obj, 2113 const RelocationRef &RelRef) { 2114 using ELFShdrTy = typename ELFT::Shdr; 2115 uint32_t Symbol = 0; 2116 const ELFFile<ELFT> &EF = Obj->getELFFile(); 2117 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 2118 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); 2119 switch (RelocationSection->sh_type) { 2120 default: 2121 llvm_unreachable("unexpected relocation section type"); 2122 case ELF::SHT_REL: 2123 Symbol = Obj->getRel(Rel)->getSymbol(EF.isMips64EL()); 2124 break; 2125 case ELF::SHT_RELA: 2126 Symbol = Obj->getRela(Rel)->getSymbol(EF.isMips64EL()); 2127 break; 2128 } 2129 2130 return Symbol; 2131 } 2132 2133 uint32_t getRelocationSymbol(const ELFObjectFileBase *Obj, 2134 const RelocationRef &Rel) { 2135 return getRelocationSymbol(cast<ELF64LEObjectFile>(Obj), Rel); 2136 } 2137 } // anonymous namespace 2138 2139 bool RewriteInstance::analyzeRelocation( 2140 const RelocationRef &Rel, uint64_t &RType, std::string &SymbolName, 2141 bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend, 2142 uint64_t &ExtractedValue, bool &Skip) const { 2143 Skip = false; 2144 if (!Relocation::isSupported(RType)) 2145 return false; 2146 2147 auto IsWeakReference = [](const SymbolRef &Symbol) { 2148 Expected<uint32_t> SymFlagsOrErr = Symbol.getFlags(); 2149 if (!SymFlagsOrErr) 2150 return false; 2151 return (*SymFlagsOrErr & SymbolRef::SF_Undefined) && 2152 (*SymFlagsOrErr & SymbolRef::SF_Weak); 2153 }; 2154 2155 const bool IsAArch64 = BC->isAArch64(); 2156 2157 const size_t RelSize = Relocation::getSizeForType(RType); 2158 2159 ErrorOr<uint64_t> Value = 2160 BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize); 2161 assert(Value && "failed to extract relocated value"); 2162 if ((Skip = Relocation::skipRelocationProcess(RType, *Value))) 2163 return true; 2164 2165 ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset()); 2166 Addend = getRelocationAddend(InputFile, Rel); 2167 2168 const bool IsPCRelative = Relocation::isPCRelative(RType); 2169 const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0; 2170 bool SkipVerification = false; 2171 auto SymbolIter = Rel.getSymbol(); 2172 if (SymbolIter == InputFile->symbol_end()) { 2173 SymbolAddress = ExtractedValue - Addend + PCRelOffset; 2174 MCSymbol *RelSymbol = 2175 BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat"); 2176 SymbolName = std::string(RelSymbol->getName()); 2177 IsSectionRelocation = false; 2178 } else { 2179 const SymbolRef &Symbol = *SymbolIter; 2180 SymbolName = std::string(cantFail(Symbol.getName())); 2181 SymbolAddress = cantFail(Symbol.getAddress()); 2182 SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other); 2183 // Section symbols are marked as ST_Debug. 2184 IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug); 2185 // Check for PLT entry registered with symbol name 2186 if (!SymbolAddress && !IsWeakReference(Symbol) && 2187 (IsAArch64 || BC->isRISCV())) { 2188 const BinaryData *BD = BC->getPLTBinaryDataByName(SymbolName); 2189 SymbolAddress = BD ? BD->getAddress() : 0; 2190 } 2191 } 2192 // For PIE or dynamic libs, the linker may choose not to put the relocation 2193 // result at the address if it is a X86_64_64 one because it will emit a 2194 // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to 2195 // resolve it at run time. The static relocation result goes as the addend 2196 // of the dynamic relocation in this case. We can't verify these cases. 2197 // FIXME: perhaps we can try to find if it really emitted a corresponding 2198 // RELATIVE relocation at this offset with the correct value as the addend. 2199 if (!BC->HasFixedLoadAddress && RelSize == 8) 2200 SkipVerification = true; 2201 2202 if (IsSectionRelocation && !IsAArch64) { 2203 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); 2204 assert(Section && "section expected for section relocation"); 2205 SymbolName = "section " + std::string(Section->getName()); 2206 // Convert section symbol relocations to regular relocations inside 2207 // non-section symbols. 2208 if (Section->containsAddress(ExtractedValue) && !IsPCRelative) { 2209 SymbolAddress = ExtractedValue; 2210 Addend = 0; 2211 } else { 2212 Addend = ExtractedValue - (SymbolAddress - PCRelOffset); 2213 } 2214 } 2215 2216 // If no symbol has been found or if it is a relocation requiring the 2217 // creation of a GOT entry, do not link against the symbol but against 2218 // whatever address was extracted from the instruction itself. We are 2219 // not creating a GOT entry as this was already processed by the linker. 2220 // For GOT relocs, do not subtract addend as the addend does not refer 2221 // to this instruction's target, but it refers to the target in the GOT 2222 // entry. 2223 if (Relocation::isGOT(RType)) { 2224 Addend = 0; 2225 SymbolAddress = ExtractedValue + PCRelOffset; 2226 } else if (Relocation::isTLS(RType)) { 2227 SkipVerification = true; 2228 } else if (!SymbolAddress) { 2229 assert(!IsSectionRelocation); 2230 if (ExtractedValue || Addend == 0 || IsPCRelative) { 2231 SymbolAddress = 2232 truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize); 2233 } else { 2234 // This is weird case. The extracted value is zero but the addend is 2235 // non-zero and the relocation is not pc-rel. Using the previous logic, 2236 // the SymbolAddress would end up as a huge number. Seen in 2237 // exceptions_pic.test. 2238 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x" 2239 << Twine::utohexstr(Rel.getOffset()) 2240 << " value does not match addend for " 2241 << "relocation to undefined symbol.\n"); 2242 return true; 2243 } 2244 } 2245 2246 auto verifyExtractedValue = [&]() { 2247 if (SkipVerification) 2248 return true; 2249 2250 if (IsAArch64 || BC->isRISCV()) 2251 return true; 2252 2253 if (SymbolName == "__hot_start" || SymbolName == "__hot_end") 2254 return true; 2255 2256 if (RType == ELF::R_X86_64_PLT32) 2257 return true; 2258 2259 return truncateToSize(ExtractedValue, RelSize) == 2260 truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize); 2261 }; 2262 2263 (void)verifyExtractedValue; 2264 assert(verifyExtractedValue() && "mismatched extracted relocation value"); 2265 2266 return true; 2267 } 2268 2269 void RewriteInstance::processDynamicRelocations() { 2270 // Read .relr.dyn section containing compressed R_*_RELATIVE relocations. 2271 if (DynamicRelrSize > 0) { 2272 ErrorOr<BinarySection &> DynamicRelrSectionOrErr = 2273 BC->getSectionForAddress(*DynamicRelrAddress); 2274 if (!DynamicRelrSectionOrErr) 2275 report_error("unable to find section corresponding to DT_RELR", 2276 DynamicRelrSectionOrErr.getError()); 2277 if (DynamicRelrSectionOrErr->getSize() != DynamicRelrSize) 2278 report_error("section size mismatch for DT_RELRSZ", 2279 errc::executable_format_error); 2280 readDynamicRelrRelocations(*DynamicRelrSectionOrErr); 2281 } 2282 2283 // Read relocations for PLT - DT_JMPREL. 2284 if (PLTRelocationsSize > 0) { 2285 ErrorOr<BinarySection &> PLTRelSectionOrErr = 2286 BC->getSectionForAddress(*PLTRelocationsAddress); 2287 if (!PLTRelSectionOrErr) 2288 report_error("unable to find section corresponding to DT_JMPREL", 2289 PLTRelSectionOrErr.getError()); 2290 if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize) 2291 report_error("section size mismatch for DT_PLTRELSZ", 2292 errc::executable_format_error); 2293 readDynamicRelocations(PLTRelSectionOrErr->getSectionRef(), 2294 /*IsJmpRel*/ true); 2295 } 2296 2297 // The rest of dynamic relocations - DT_RELA. 2298 // The static executable might have .rela.dyn secion and not have PT_DYNAMIC 2299 if (!DynamicRelocationsSize && BC->IsStaticExecutable) { 2300 ErrorOr<BinarySection &> DynamicRelSectionOrErr = 2301 BC->getUniqueSectionByName(getRelaDynSectionName()); 2302 if (DynamicRelSectionOrErr) { 2303 DynamicRelocationsAddress = DynamicRelSectionOrErr->getAddress(); 2304 DynamicRelocationsSize = DynamicRelSectionOrErr->getSize(); 2305 const SectionRef &SectionRef = DynamicRelSectionOrErr->getSectionRef(); 2306 DynamicRelativeRelocationsCount = std::distance( 2307 SectionRef.relocation_begin(), SectionRef.relocation_end()); 2308 } 2309 } 2310 2311 if (DynamicRelocationsSize > 0) { 2312 ErrorOr<BinarySection &> DynamicRelSectionOrErr = 2313 BC->getSectionForAddress(*DynamicRelocationsAddress); 2314 if (!DynamicRelSectionOrErr) 2315 report_error("unable to find section corresponding to DT_RELA", 2316 DynamicRelSectionOrErr.getError()); 2317 auto DynamicRelSectionSize = DynamicRelSectionOrErr->getSize(); 2318 // On RISC-V DT_RELASZ seems to include both .rela.dyn and .rela.plt 2319 if (DynamicRelocationsSize == DynamicRelSectionSize + PLTRelocationsSize) 2320 DynamicRelocationsSize = DynamicRelSectionSize; 2321 if (DynamicRelSectionSize != DynamicRelocationsSize) 2322 report_error("section size mismatch for DT_RELASZ", 2323 errc::executable_format_error); 2324 readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef(), 2325 /*IsJmpRel*/ false); 2326 } 2327 } 2328 2329 void RewriteInstance::processRelocations() { 2330 if (!BC->HasRelocations) 2331 return; 2332 2333 for (const SectionRef &Section : InputFile->sections()) { 2334 section_iterator SecIter = cantFail(Section.getRelocatedSection()); 2335 if (SecIter == InputFile->section_end()) 2336 continue; 2337 if (BinarySection(*BC, Section).isAllocatable()) 2338 continue; 2339 2340 readRelocations(Section); 2341 } 2342 2343 if (NumFailedRelocations) 2344 BC->errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations 2345 << " relocations\n"; 2346 } 2347 2348 void RewriteInstance::readDynamicRelocations(const SectionRef &Section, 2349 bool IsJmpRel) { 2350 assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected"); 2351 2352 LLVM_DEBUG({ 2353 StringRef SectionName = cantFail(Section.getName()); 2354 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName 2355 << ":\n"; 2356 }); 2357 2358 for (const RelocationRef &Rel : Section.relocations()) { 2359 const uint64_t RType = Rel.getType(); 2360 if (Relocation::isNone(RType)) 2361 continue; 2362 2363 StringRef SymbolName = "<none>"; 2364 MCSymbol *Symbol = nullptr; 2365 uint64_t SymbolAddress = 0; 2366 const uint64_t Addend = getRelocationAddend(InputFile, Rel); 2367 2368 symbol_iterator SymbolIter = Rel.getSymbol(); 2369 if (SymbolIter != InputFile->symbol_end()) { 2370 SymbolName = cantFail(SymbolIter->getName()); 2371 BinaryData *BD = BC->getBinaryDataByName(SymbolName); 2372 Symbol = BD ? BD->getSymbol() 2373 : BC->getOrCreateUndefinedGlobalSymbol(SymbolName); 2374 SymbolAddress = cantFail(SymbolIter->getAddress()); 2375 (void)SymbolAddress; 2376 } 2377 2378 LLVM_DEBUG( 2379 SmallString<16> TypeName; 2380 Rel.getTypeName(TypeName); 2381 dbgs() << "BOLT-DEBUG: dynamic relocation at 0x" 2382 << Twine::utohexstr(Rel.getOffset()) << " : " << TypeName 2383 << " : " << SymbolName << " : " << Twine::utohexstr(SymbolAddress) 2384 << " : + 0x" << Twine::utohexstr(Addend) << '\n' 2385 ); 2386 2387 if (IsJmpRel) 2388 IsJmpRelocation[RType] = true; 2389 2390 if (Symbol) 2391 SymbolIndex[Symbol] = getRelocationSymbol(InputFile, Rel); 2392 2393 BC->addDynamicRelocation(Rel.getOffset(), Symbol, RType, Addend); 2394 } 2395 } 2396 2397 void RewriteInstance::readDynamicRelrRelocations(BinarySection &Section) { 2398 assert(Section.isAllocatable() && "allocatable expected"); 2399 2400 LLVM_DEBUG({ 2401 StringRef SectionName = Section.getName(); 2402 dbgs() << "BOLT-DEBUG: reading relocations in section " << SectionName 2403 << ":\n"; 2404 }); 2405 2406 const uint64_t RType = Relocation::getRelative(); 2407 const uint8_t PSize = BC->AsmInfo->getCodePointerSize(); 2408 const uint64_t MaxDelta = ((CHAR_BIT * DynamicRelrEntrySize) - 1) * PSize; 2409 2410 auto ExtractAddendValue = [&](uint64_t Address) -> uint64_t { 2411 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 2412 assert(Section && "cannot get section for data address from RELR"); 2413 DataExtractor DE = DataExtractor(Section->getContents(), 2414 BC->AsmInfo->isLittleEndian(), PSize); 2415 uint64_t Offset = Address - Section->getAddress(); 2416 return DE.getUnsigned(&Offset, PSize); 2417 }; 2418 2419 auto AddRelocation = [&](uint64_t Address) { 2420 uint64_t Addend = ExtractAddendValue(Address); 2421 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: R_*_RELATIVE relocation at 0x" 2422 << Twine::utohexstr(Address) << " to 0x" 2423 << Twine::utohexstr(Addend) << '\n';); 2424 BC->addDynamicRelocation(Address, nullptr, RType, Addend); 2425 }; 2426 2427 DataExtractor DE = DataExtractor(Section.getContents(), 2428 BC->AsmInfo->isLittleEndian(), PSize); 2429 uint64_t Offset = 0, Address = 0; 2430 uint64_t RelrCount = DynamicRelrSize / DynamicRelrEntrySize; 2431 while (RelrCount--) { 2432 assert(DE.isValidOffset(Offset)); 2433 uint64_t Entry = DE.getUnsigned(&Offset, DynamicRelrEntrySize); 2434 if ((Entry & 1) == 0) { 2435 AddRelocation(Entry); 2436 Address = Entry + PSize; 2437 } else { 2438 const uint64_t StartAddress = Address; 2439 while (Entry >>= 1) { 2440 if (Entry & 1) 2441 AddRelocation(Address); 2442 2443 Address += PSize; 2444 } 2445 2446 Address = StartAddress + MaxDelta; 2447 } 2448 } 2449 } 2450 2451 void RewriteInstance::printRelocationInfo(const RelocationRef &Rel, 2452 StringRef SymbolName, 2453 uint64_t SymbolAddress, 2454 uint64_t Addend, 2455 uint64_t ExtractedValue) const { 2456 SmallString<16> TypeName; 2457 Rel.getTypeName(TypeName); 2458 const uint64_t Address = SymbolAddress + Addend; 2459 const uint64_t Offset = Rel.getOffset(); 2460 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); 2461 BinaryFunction *Func = 2462 BC->getBinaryFunctionContainingAddress(Offset, false, BC->isAArch64()); 2463 dbgs() << formatv("Relocation: offset = {0:x}; type = {1}; value = {2:x}; ", 2464 Offset, TypeName, ExtractedValue) 2465 << formatv("symbol = {0} ({1}); symbol address = {2:x}; ", SymbolName, 2466 Section ? Section->getName() : "", SymbolAddress) 2467 << formatv("addend = {0:x}; address = {1:x}; in = ", Addend, Address); 2468 if (Func) 2469 dbgs() << Func->getPrintName(); 2470 else 2471 dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName(); 2472 dbgs() << '\n'; 2473 } 2474 2475 void RewriteInstance::readRelocations(const SectionRef &Section) { 2476 LLVM_DEBUG({ 2477 StringRef SectionName = cantFail(Section.getName()); 2478 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName 2479 << ":\n"; 2480 }); 2481 if (BinarySection(*BC, Section).isAllocatable()) { 2482 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n"); 2483 return; 2484 } 2485 section_iterator SecIter = cantFail(Section.getRelocatedSection()); 2486 assert(SecIter != InputFile->section_end() && "relocated section expected"); 2487 SectionRef RelocatedSection = *SecIter; 2488 2489 StringRef RelocatedSectionName = cantFail(RelocatedSection.getName()); 2490 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is " 2491 << RelocatedSectionName << '\n'); 2492 2493 if (!BinarySection(*BC, RelocatedSection).isAllocatable()) { 2494 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against " 2495 << "non-allocatable section\n"); 2496 return; 2497 } 2498 const bool SkipRelocs = StringSwitch<bool>(RelocatedSectionName) 2499 .Cases(".plt", ".rela.plt", ".got.plt", 2500 ".eh_frame", ".gcc_except_table", true) 2501 .Default(false); 2502 if (SkipRelocs) { 2503 LLVM_DEBUG( 2504 dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n"); 2505 return; 2506 } 2507 2508 for (const RelocationRef &Rel : Section.relocations()) 2509 handleRelocation(RelocatedSection, Rel); 2510 } 2511 2512 void RewriteInstance::handleRelocation(const SectionRef &RelocatedSection, 2513 const RelocationRef &Rel) { 2514 const bool IsAArch64 = BC->isAArch64(); 2515 const bool IsFromCode = RelocatedSection.isText(); 2516 2517 SmallString<16> TypeName; 2518 Rel.getTypeName(TypeName); 2519 uint64_t RType = Rel.getType(); 2520 if (Relocation::skipRelocationType(RType)) 2521 return; 2522 2523 // Adjust the relocation type as the linker might have skewed it. 2524 if (BC->isX86() && (RType & ELF::R_X86_64_converted_reloc_bit)) { 2525 if (opts::Verbosity >= 1) 2526 dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n"; 2527 RType &= ~ELF::R_X86_64_converted_reloc_bit; 2528 } 2529 2530 if (Relocation::isTLS(RType)) { 2531 // No special handling required for TLS relocations on X86. 2532 if (BC->isX86()) 2533 return; 2534 2535 // The non-got related TLS relocations on AArch64 and RISC-V also could be 2536 // skipped. 2537 if (!Relocation::isGOT(RType)) 2538 return; 2539 } 2540 2541 if (!IsAArch64 && BC->getDynamicRelocationAt(Rel.getOffset())) { 2542 LLVM_DEBUG({ 2543 dbgs() << formatv("BOLT-DEBUG: address {0:x} has a ", Rel.getOffset()) 2544 << "dynamic relocation against it. Ignoring static relocation.\n"; 2545 }); 2546 return; 2547 } 2548 2549 std::string SymbolName; 2550 uint64_t SymbolAddress; 2551 int64_t Addend; 2552 uint64_t ExtractedValue; 2553 bool IsSectionRelocation; 2554 bool Skip; 2555 if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation, 2556 SymbolAddress, Addend, ExtractedValue, Skip)) { 2557 LLVM_DEBUG({ 2558 dbgs() << "BOLT-WARNING: failed to analyze relocation @ offset = " 2559 << formatv("{0:x}; type name = {1}\n", Rel.getOffset(), TypeName); 2560 }); 2561 ++NumFailedRelocations; 2562 return; 2563 } 2564 2565 if (Skip) { 2566 LLVM_DEBUG({ 2567 dbgs() << "BOLT-DEBUG: skipping relocation @ offset = " 2568 << formatv("{0:x}; type name = {1}\n", Rel.getOffset(), TypeName); 2569 }); 2570 return; 2571 } 2572 2573 const uint64_t Address = SymbolAddress + Addend; 2574 2575 LLVM_DEBUG({ 2576 dbgs() << "BOLT-DEBUG: "; 2577 printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, ExtractedValue); 2578 }); 2579 2580 BinaryFunction *ContainingBF = nullptr; 2581 if (IsFromCode) { 2582 ContainingBF = 2583 BC->getBinaryFunctionContainingAddress(Rel.getOffset(), 2584 /*CheckPastEnd*/ false, 2585 /*UseMaxSize*/ true); 2586 assert(ContainingBF && "cannot find function for address in code"); 2587 if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) { 2588 if (opts::Verbosity >= 1) 2589 BC->outs() << formatv( 2590 "BOLT-INFO: {0} has relocations in padding area\n", *ContainingBF); 2591 ContainingBF->setSize(ContainingBF->getMaxSize()); 2592 ContainingBF->setSimple(false); 2593 return; 2594 } 2595 } 2596 2597 MCSymbol *ReferencedSymbol = nullptr; 2598 if (!IsSectionRelocation) { 2599 if (BinaryData *BD = BC->getBinaryDataByName(SymbolName)) 2600 ReferencedSymbol = BD->getSymbol(); 2601 else if (BC->isGOTSymbol(SymbolName)) 2602 if (BinaryData *BD = BC->getGOTSymbol()) 2603 ReferencedSymbol = BD->getSymbol(); 2604 } 2605 2606 ErrorOr<BinarySection &> ReferencedSection{std::errc::bad_address}; 2607 symbol_iterator SymbolIter = Rel.getSymbol(); 2608 if (SymbolIter != InputFile->symbol_end()) { 2609 SymbolRef Symbol = *SymbolIter; 2610 section_iterator Section = 2611 cantFail(Symbol.getSection(), "cannot get symbol section"); 2612 if (Section != InputFile->section_end()) { 2613 Expected<StringRef> SectionName = Section->getName(); 2614 if (SectionName && !SectionName->empty()) 2615 ReferencedSection = BC->getUniqueSectionByName(*SectionName); 2616 } else if (BC->isRISCV() && ReferencedSymbol && ContainingBF && 2617 (cantFail(Symbol.getFlags()) & SymbolRef::SF_Absolute)) { 2618 // This might be a relocation for an ABS symbols like __global_pointer$ on 2619 // RISC-V 2620 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, 2621 Rel.getType(), 0, 2622 cantFail(Symbol.getValue())); 2623 return; 2624 } 2625 } 2626 2627 if (!ReferencedSection) 2628 ReferencedSection = BC->getSectionForAddress(SymbolAddress); 2629 2630 const bool IsToCode = ReferencedSection && ReferencedSection->isText(); 2631 2632 // Special handling of PC-relative relocations. 2633 if (BC->isX86() && Relocation::isPCRelative(RType)) { 2634 if (!IsFromCode && IsToCode) { 2635 // PC-relative relocations from data to code are tricky since the 2636 // original information is typically lost after linking, even with 2637 // '--emit-relocs'. Such relocations are normally used by PIC-style 2638 // jump tables and they reference both the jump table and jump 2639 // targets by computing the difference between the two. If we blindly 2640 // apply the relocation, it will appear that it references an arbitrary 2641 // location in the code, possibly in a different function from the one 2642 // containing the jump table. 2643 // 2644 // For that reason, we only register the fact that there is a 2645 // PC-relative relocation at a given address against the code. 2646 // The actual referenced label/address will be determined during jump 2647 // table analysis. 2648 BC->addPCRelativeDataRelocation(Rel.getOffset()); 2649 } else if (ContainingBF && !IsSectionRelocation && ReferencedSymbol) { 2650 // If we know the referenced symbol, register the relocation from 2651 // the code. It's required to properly handle cases where 2652 // "symbol + addend" references an object different from "symbol". 2653 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, 2654 Addend, ExtractedValue); 2655 } else { 2656 LLVM_DEBUG({ 2657 dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at" 2658 << formatv("{0:x} for {1}\n", Rel.getOffset(), SymbolName); 2659 }); 2660 } 2661 2662 return; 2663 } 2664 2665 bool ForceRelocation = BC->forceSymbolRelocations(SymbolName); 2666 if ((BC->isAArch64() || BC->isRISCV()) && Relocation::isGOT(RType)) 2667 ForceRelocation = true; 2668 2669 if (!ReferencedSection && !ForceRelocation) { 2670 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n"); 2671 return; 2672 } 2673 2674 // Occasionally we may see a reference past the last byte of the function 2675 // typically as a result of __builtin_unreachable(). Check it here. 2676 BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress( 2677 Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64); 2678 2679 if (!IsSectionRelocation) { 2680 if (BinaryFunction *BF = 2681 BC->getBinaryFunctionContainingAddress(SymbolAddress)) { 2682 if (BF != ReferencedBF) { 2683 // It's possible we are referencing a function without referencing any 2684 // code, e.g. when taking a bitmask action on a function address. 2685 BC->errs() 2686 << "BOLT-WARNING: non-standard function reference (e.g. bitmask)" 2687 << formatv(" detected against function {0} from ", *BF); 2688 if (IsFromCode) 2689 BC->errs() << formatv("function {0}\n", *ContainingBF); 2690 else 2691 BC->errs() << formatv("data section at {0:x}\n", Rel.getOffset()); 2692 LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, 2693 ExtractedValue)); 2694 ReferencedBF = BF; 2695 } 2696 } 2697 } else if (ReferencedBF) { 2698 assert(ReferencedSection && "section expected for section relocation"); 2699 if (*ReferencedBF->getOriginSection() != *ReferencedSection) { 2700 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n"); 2701 ReferencedBF = nullptr; 2702 } 2703 } 2704 2705 // Workaround for a member function pointer de-virtualization bug. We check 2706 // if a non-pc-relative relocation in the code is pointing to (fptr - 1). 2707 if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) && 2708 (!ReferencedBF || (ReferencedBF->getAddress() != Address))) { 2709 if (const BinaryFunction *RogueBF = 2710 BC->getBinaryFunctionAtAddress(Address + 1)) { 2711 // Do an extra check that the function was referenced previously. 2712 // It's a linear search, but it should rarely happen. 2713 auto CheckReloc = [&](const Relocation &Rel) { 2714 return Rel.Symbol == RogueBF->getSymbol() && 2715 !Relocation::isPCRelative(Rel.Type); 2716 }; 2717 bool Found = llvm::any_of( 2718 llvm::make_second_range(ContainingBF->Relocations), CheckReloc); 2719 2720 if (Found) { 2721 BC->errs() 2722 << "BOLT-WARNING: detected possible compiler de-virtualization " 2723 "bug: -1 addend used with non-pc-relative relocation against " 2724 << formatv("function {0} in function {1}\n", *RogueBF, 2725 *ContainingBF); 2726 return; 2727 } 2728 } 2729 } 2730 2731 if (ForceRelocation) { 2732 std::string Name = 2733 Relocation::isGOT(RType) ? "__BOLT_got_zero" : SymbolName; 2734 ReferencedSymbol = BC->registerNameAtAddress(Name, 0, 0, 0); 2735 SymbolAddress = 0; 2736 if (Relocation::isGOT(RType)) 2737 Addend = Address; 2738 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol " 2739 << SymbolName << " with addend " << Addend << '\n'); 2740 } else if (ReferencedBF) { 2741 ReferencedSymbol = ReferencedBF->getSymbol(); 2742 uint64_t RefFunctionOffset = 0; 2743 2744 // Adjust the point of reference to a code location inside a function. 2745 if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */ true)) { 2746 RefFunctionOffset = Address - ReferencedBF->getAddress(); 2747 if (Relocation::isInstructionReference(RType)) { 2748 // Instruction labels are created while disassembling so we just leave 2749 // the symbol empty for now. Since the extracted value is typically 2750 // unrelated to the referenced symbol (e.g., %pcrel_lo in RISC-V 2751 // references an instruction but the patched value references the low 2752 // bits of a data address), we set the extracted value to the symbol 2753 // address in order to be able to correctly reconstruct the reference 2754 // later. 2755 ReferencedSymbol = nullptr; 2756 ExtractedValue = Address; 2757 } else if (RefFunctionOffset) { 2758 if (ContainingBF && ContainingBF != ReferencedBF) { 2759 ReferencedSymbol = 2760 ReferencedBF->addEntryPointAtOffset(RefFunctionOffset); 2761 } else { 2762 ReferencedSymbol = 2763 ReferencedBF->getOrCreateLocalLabel(Address, 2764 /*CreatePastEnd =*/true); 2765 2766 // If ContainingBF != nullptr, it equals ReferencedBF (see 2767 // if-condition above) so we're handling a relocation from a function 2768 // to itself. RISC-V uses such relocations for branches, for example. 2769 // These should not be registered as externally references offsets. 2770 if (!ContainingBF) 2771 ReferencedBF->registerReferencedOffset(RefFunctionOffset); 2772 } 2773 if (opts::Verbosity > 1 && 2774 BinarySection(*BC, RelocatedSection).isWritable()) 2775 BC->errs() 2776 << "BOLT-WARNING: writable reference into the middle of the " 2777 << formatv("function {0} detected at address {1:x}\n", 2778 *ReferencedBF, Rel.getOffset()); 2779 } 2780 SymbolAddress = Address; 2781 Addend = 0; 2782 } 2783 LLVM_DEBUG({ 2784 dbgs() << " referenced function " << *ReferencedBF; 2785 if (Address != ReferencedBF->getAddress()) 2786 dbgs() << formatv(" at offset {0:x}", RefFunctionOffset); 2787 dbgs() << '\n'; 2788 }); 2789 } else { 2790 if (IsToCode && SymbolAddress) { 2791 // This can happen e.g. with PIC-style jump tables. 2792 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for " 2793 "relocation against code\n"); 2794 } 2795 2796 // In AArch64 there are zero reasons to keep a reference to the 2797 // "original" symbol plus addend. The original symbol is probably just a 2798 // section symbol. If we are here, this means we are probably accessing 2799 // data, so it is imperative to keep the original address. 2800 if (IsAArch64) { 2801 SymbolName = formatv("SYMBOLat{0:x}", Address); 2802 SymbolAddress = Address; 2803 Addend = 0; 2804 } 2805 2806 if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) { 2807 // Note: this assertion is trying to check sanity of BinaryData objects 2808 // but AArch64 has inferred and incomplete object locations coming from 2809 // GOT/TLS or any other non-trivial relocation (that requires creation 2810 // of sections and whose symbol address is not really what should be 2811 // encoded in the instruction). So we essentially disabled this check 2812 // for AArch64 and live with bogus names for objects. 2813 assert((IsAArch64 || IsSectionRelocation || 2814 BD->nameStartsWith(SymbolName) || 2815 BD->nameStartsWith("PG" + SymbolName) || 2816 (BD->nameStartsWith("ANONYMOUS") && 2817 (BD->getSectionName().starts_with(".plt") || 2818 BD->getSectionName().ends_with(".plt")))) && 2819 "BOLT symbol names of all non-section relocations must match up " 2820 "with symbol names referenced in the relocation"); 2821 2822 if (IsSectionRelocation) 2823 BC->markAmbiguousRelocations(*BD, Address); 2824 2825 ReferencedSymbol = BD->getSymbol(); 2826 Addend += (SymbolAddress - BD->getAddress()); 2827 SymbolAddress = BD->getAddress(); 2828 assert(Address == SymbolAddress + Addend); 2829 } else { 2830 // These are mostly local data symbols but undefined symbols 2831 // in relocation sections can get through here too, from .plt. 2832 assert( 2833 (IsAArch64 || BC->isRISCV() || IsSectionRelocation || 2834 BC->getSectionNameForAddress(SymbolAddress)->starts_with(".plt")) && 2835 "known symbols should not resolve to anonymous locals"); 2836 2837 if (IsSectionRelocation) { 2838 ReferencedSymbol = 2839 BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat"); 2840 } else { 2841 SymbolRef Symbol = *Rel.getSymbol(); 2842 const uint64_t SymbolSize = 2843 IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize(); 2844 const uint64_t SymbolAlignment = IsAArch64 ? 1 : Symbol.getAlignment(); 2845 const uint32_t SymbolFlags = cantFail(Symbol.getFlags()); 2846 std::string Name; 2847 if (SymbolFlags & SymbolRef::SF_Global) { 2848 Name = SymbolName; 2849 } else { 2850 if (StringRef(SymbolName) 2851 .starts_with(BC->AsmInfo->getPrivateGlobalPrefix())) 2852 Name = NR.uniquify("PG" + SymbolName); 2853 else 2854 Name = NR.uniquify(SymbolName); 2855 } 2856 ReferencedSymbol = BC->registerNameAtAddress( 2857 Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags); 2858 } 2859 2860 if (IsSectionRelocation) { 2861 BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName()); 2862 BC->markAmbiguousRelocations(*BD, Address); 2863 } 2864 } 2865 } 2866 2867 auto checkMaxDataRelocations = [&]() { 2868 ++NumDataRelocations; 2869 LLVM_DEBUG(if (opts::MaxDataRelocations && 2870 NumDataRelocations + 1 == opts::MaxDataRelocations) { 2871 dbgs() << "BOLT-DEBUG: processing ending on data relocation " 2872 << NumDataRelocations << ": "; 2873 printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress, 2874 Addend, ExtractedValue); 2875 }); 2876 2877 return (!opts::MaxDataRelocations || 2878 NumDataRelocations < opts::MaxDataRelocations); 2879 }; 2880 2881 if ((ReferencedSection && refersToReorderedSection(ReferencedSection)) || 2882 (opts::ForceToDataRelocations && checkMaxDataRelocations()) || 2883 // RISC-V has ADD/SUB data-to-data relocations 2884 BC->isRISCV()) 2885 ForceRelocation = true; 2886 2887 if (IsFromCode) 2888 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, 2889 Addend, ExtractedValue); 2890 else if (IsToCode || ForceRelocation) 2891 BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend, 2892 ExtractedValue); 2893 else 2894 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n"); 2895 } 2896 2897 void RewriteInstance::selectFunctionsToProcess() { 2898 // Extend the list of functions to process or skip from a file. 2899 auto populateFunctionNames = [](cl::opt<std::string> &FunctionNamesFile, 2900 cl::list<std::string> &FunctionNames) { 2901 if (FunctionNamesFile.empty()) 2902 return; 2903 std::ifstream FuncsFile(FunctionNamesFile, std::ios::in); 2904 std::string FuncName; 2905 while (std::getline(FuncsFile, FuncName)) 2906 FunctionNames.push_back(FuncName); 2907 }; 2908 populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames); 2909 populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames); 2910 populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR); 2911 2912 // Make a set of functions to process to speed up lookups. 2913 std::unordered_set<std::string> ForceFunctionsNR( 2914 opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end()); 2915 2916 if ((!opts::ForceFunctionNames.empty() || 2917 !opts::ForceFunctionNamesNR.empty()) && 2918 !opts::SkipFunctionNames.empty()) { 2919 BC->errs() 2920 << "BOLT-ERROR: cannot select functions to process and skip at the " 2921 "same time. Please use only one type of selection.\n"; 2922 exit(1); 2923 } 2924 2925 uint64_t LiteThresholdExecCount = 0; 2926 if (opts::LiteThresholdPct) { 2927 if (opts::LiteThresholdPct > 100) 2928 opts::LiteThresholdPct = 100; 2929 2930 std::vector<const BinaryFunction *> TopFunctions; 2931 for (auto &BFI : BC->getBinaryFunctions()) { 2932 const BinaryFunction &Function = BFI.second; 2933 if (ProfileReader->mayHaveProfileData(Function)) 2934 TopFunctions.push_back(&Function); 2935 } 2936 llvm::sort( 2937 TopFunctions, [](const BinaryFunction *A, const BinaryFunction *B) { 2938 return A->getKnownExecutionCount() < B->getKnownExecutionCount(); 2939 }); 2940 2941 size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100; 2942 if (Index) 2943 --Index; 2944 LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount(); 2945 BC->outs() << "BOLT-INFO: limiting processing to functions with at least " 2946 << LiteThresholdExecCount << " invocations\n"; 2947 } 2948 LiteThresholdExecCount = std::max( 2949 LiteThresholdExecCount, static_cast<uint64_t>(opts::LiteThresholdCount)); 2950 2951 StringSet<> ReorderFunctionsUserSet; 2952 StringSet<> ReorderFunctionsLTOCommonSet; 2953 if (opts::ReorderFunctions == ReorderFunctions::RT_USER) { 2954 std::vector<std::string> FunctionNames; 2955 BC->logBOLTErrorsAndQuitOnFatal( 2956 ReorderFunctions::readFunctionOrderFile(FunctionNames)); 2957 for (const std::string &Function : FunctionNames) { 2958 ReorderFunctionsUserSet.insert(Function); 2959 if (std::optional<StringRef> LTOCommonName = getLTOCommonName(Function)) 2960 ReorderFunctionsLTOCommonSet.insert(*LTOCommonName); 2961 } 2962 } 2963 2964 uint64_t NumFunctionsToProcess = 0; 2965 auto mustSkip = [&](const BinaryFunction &Function) { 2966 if (opts::MaxFunctions.getNumOccurrences() && 2967 NumFunctionsToProcess >= opts::MaxFunctions) 2968 return true; 2969 for (std::string &Name : opts::SkipFunctionNames) 2970 if (Function.hasNameRegex(Name)) 2971 return true; 2972 2973 return false; 2974 }; 2975 2976 auto shouldProcess = [&](const BinaryFunction &Function) { 2977 if (mustSkip(Function)) 2978 return false; 2979 2980 // If the list is not empty, only process functions from the list. 2981 if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) { 2982 // Regex check (-funcs and -funcs-file options). 2983 for (std::string &Name : opts::ForceFunctionNames) 2984 if (Function.hasNameRegex(Name)) 2985 return true; 2986 2987 // Non-regex check (-funcs-no-regex and -funcs-file-no-regex). 2988 for (const StringRef Name : Function.getNames()) 2989 if (ForceFunctionsNR.count(Name.str())) 2990 return true; 2991 2992 return false; 2993 } 2994 2995 if (opts::Lite) { 2996 // Forcibly include functions specified in the -function-order file. 2997 if (opts::ReorderFunctions == ReorderFunctions::RT_USER) { 2998 for (const StringRef Name : Function.getNames()) 2999 if (ReorderFunctionsUserSet.contains(Name)) 3000 return true; 3001 for (const StringRef Name : Function.getNames()) 3002 if (std::optional<StringRef> LTOCommonName = getLTOCommonName(Name)) 3003 if (ReorderFunctionsLTOCommonSet.contains(*LTOCommonName)) 3004 return true; 3005 } 3006 3007 if (ProfileReader && !ProfileReader->mayHaveProfileData(Function)) 3008 return false; 3009 3010 if (Function.getKnownExecutionCount() < LiteThresholdExecCount) 3011 return false; 3012 } 3013 3014 return true; 3015 }; 3016 3017 for (auto &BFI : BC->getBinaryFunctions()) { 3018 BinaryFunction &Function = BFI.second; 3019 3020 // Pseudo functions are explicitly marked by us not to be processed. 3021 if (Function.isPseudo()) { 3022 Function.IsIgnored = true; 3023 Function.HasExternalRefRelocations = true; 3024 continue; 3025 } 3026 3027 // Decide what to do with fragments after parent functions are processed. 3028 if (Function.isFragment()) 3029 continue; 3030 3031 if (!shouldProcess(Function)) { 3032 if (opts::Verbosity >= 1) { 3033 BC->outs() << "BOLT-INFO: skipping processing " << Function 3034 << " per user request\n"; 3035 } 3036 Function.setIgnored(); 3037 } else { 3038 ++NumFunctionsToProcess; 3039 if (opts::MaxFunctions.getNumOccurrences() && 3040 NumFunctionsToProcess == opts::MaxFunctions) 3041 BC->outs() << "BOLT-INFO: processing ending on " << Function << '\n'; 3042 } 3043 } 3044 3045 if (!BC->HasSplitFunctions) 3046 return; 3047 3048 // Fragment overrides: 3049 // - If the fragment must be skipped, then the parent must be skipped as well. 3050 // Otherwise, fragment should follow the parent function: 3051 // - if the parent is skipped, skip fragment, 3052 // - if the parent is processed, process the fragment(s) as well. 3053 for (auto &BFI : BC->getBinaryFunctions()) { 3054 BinaryFunction &Function = BFI.second; 3055 if (!Function.isFragment()) 3056 continue; 3057 if (mustSkip(Function)) { 3058 for (BinaryFunction *Parent : Function.ParentFragments) { 3059 if (opts::Verbosity >= 1) { 3060 BC->outs() << "BOLT-INFO: skipping processing " << *Parent 3061 << " together with fragment function\n"; 3062 } 3063 Parent->setIgnored(); 3064 --NumFunctionsToProcess; 3065 } 3066 Function.setIgnored(); 3067 continue; 3068 } 3069 3070 bool IgnoredParent = 3071 llvm::any_of(Function.ParentFragments, [&](BinaryFunction *Parent) { 3072 return Parent->isIgnored(); 3073 }); 3074 if (IgnoredParent) { 3075 if (opts::Verbosity >= 1) { 3076 BC->outs() << "BOLT-INFO: skipping processing " << Function 3077 << " together with parent function\n"; 3078 } 3079 Function.setIgnored(); 3080 } else { 3081 ++NumFunctionsToProcess; 3082 if (opts::Verbosity >= 1) { 3083 BC->outs() << "BOLT-INFO: processing " << Function 3084 << " as a sibling of non-ignored function\n"; 3085 } 3086 if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions) 3087 BC->outs() << "BOLT-INFO: processing ending on " << Function << '\n'; 3088 } 3089 } 3090 } 3091 3092 void RewriteInstance::readDebugInfo() { 3093 NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName, 3094 TimerGroupDesc, opts::TimeRewrite); 3095 if (!opts::UpdateDebugSections) 3096 return; 3097 3098 BC->preprocessDebugInfo(); 3099 } 3100 3101 void RewriteInstance::preprocessProfileData() { 3102 if (!ProfileReader) 3103 return; 3104 3105 NamedRegionTimer T("preprocessprofile", "pre-process profile data", 3106 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3107 3108 BC->outs() << "BOLT-INFO: pre-processing profile using " 3109 << ProfileReader->getReaderName() << '\n'; 3110 3111 if (BAT->enabledFor(InputFile)) { 3112 BC->outs() << "BOLT-INFO: profile collection done on a binary already " 3113 "processed by BOLT\n"; 3114 ProfileReader->setBAT(&*BAT); 3115 } 3116 3117 if (Error E = ProfileReader->preprocessProfile(*BC.get())) 3118 report_error("cannot pre-process profile", std::move(E)); 3119 3120 if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName() && 3121 !opts::AllowStripped) { 3122 BC->errs() 3123 << "BOLT-ERROR: input binary does not have local file symbols " 3124 "but profile data includes function names with embedded file " 3125 "names. It appears that the input binary was stripped while a " 3126 "profiled binary was not. If you know what you are doing and " 3127 "wish to proceed, use -allow-stripped option.\n"; 3128 exit(1); 3129 } 3130 } 3131 3132 void RewriteInstance::initializeMetadataManager() { 3133 if (BC->IsLinuxKernel) 3134 MetadataManager.registerRewriter(createLinuxKernelRewriter(*BC)); 3135 3136 MetadataManager.registerRewriter(createBuildIDRewriter(*BC)); 3137 3138 MetadataManager.registerRewriter(createPseudoProbeRewriter(*BC)); 3139 3140 MetadataManager.registerRewriter(createSDTRewriter(*BC)); 3141 } 3142 3143 void RewriteInstance::processSectionMetadata() { 3144 NamedRegionTimer T("processmetadata-section", "process section metadata", 3145 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3146 initializeMetadataManager(); 3147 3148 MetadataManager.runSectionInitializers(); 3149 } 3150 3151 void RewriteInstance::processMetadataPreCFG() { 3152 NamedRegionTimer T("processmetadata-precfg", "process metadata pre-CFG", 3153 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3154 MetadataManager.runInitializersPreCFG(); 3155 3156 processProfileDataPreCFG(); 3157 } 3158 3159 void RewriteInstance::processMetadataPostCFG() { 3160 NamedRegionTimer T("processmetadata-postcfg", "process metadata post-CFG", 3161 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3162 MetadataManager.runInitializersPostCFG(); 3163 } 3164 3165 void RewriteInstance::processProfileDataPreCFG() { 3166 if (!ProfileReader) 3167 return; 3168 3169 NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG", 3170 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3171 3172 if (Error E = ProfileReader->readProfilePreCFG(*BC.get())) 3173 report_error("cannot read profile pre-CFG", std::move(E)); 3174 } 3175 3176 void RewriteInstance::processProfileData() { 3177 if (!ProfileReader) 3178 return; 3179 3180 NamedRegionTimer T("processprofile", "process profile data", TimerGroupName, 3181 TimerGroupDesc, opts::TimeRewrite); 3182 3183 if (Error E = ProfileReader->readProfile(*BC.get())) 3184 report_error("cannot read profile", std::move(E)); 3185 3186 if (opts::PrintProfile || opts::PrintAll) { 3187 for (auto &BFI : BC->getBinaryFunctions()) { 3188 BinaryFunction &Function = BFI.second; 3189 if (Function.empty()) 3190 continue; 3191 3192 Function.print(BC->outs(), "after attaching profile"); 3193 } 3194 } 3195 3196 if (!opts::SaveProfile.empty() && !BAT->enabledFor(InputFile)) { 3197 YAMLProfileWriter PW(opts::SaveProfile); 3198 PW.writeProfile(*this); 3199 } 3200 if (opts::AggregateOnly && 3201 opts::ProfileFormat == opts::ProfileFormatKind::PF_YAML && 3202 !BAT->enabledFor(InputFile)) { 3203 YAMLProfileWriter PW(opts::OutputFilename); 3204 PW.writeProfile(*this); 3205 } 3206 3207 // Release memory used by profile reader. 3208 ProfileReader.reset(); 3209 3210 if (opts::AggregateOnly) { 3211 PrintProgramStats PPS(&*BAT); 3212 BC->logBOLTErrorsAndQuitOnFatal(PPS.runOnFunctions(*BC)); 3213 TimerGroup::printAll(outs()); 3214 exit(0); 3215 } 3216 } 3217 3218 void RewriteInstance::disassembleFunctions() { 3219 NamedRegionTimer T("disassembleFunctions", "disassemble functions", 3220 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3221 for (auto &BFI : BC->getBinaryFunctions()) { 3222 BinaryFunction &Function = BFI.second; 3223 3224 ErrorOr<ArrayRef<uint8_t>> FunctionData = Function.getData(); 3225 if (!FunctionData) { 3226 BC->errs() << "BOLT-ERROR: corresponding section is non-executable or " 3227 << "empty for function " << Function << '\n'; 3228 exit(1); 3229 } 3230 3231 // Treat zero-sized functions as non-simple ones. 3232 if (Function.getSize() == 0) { 3233 Function.setSimple(false); 3234 continue; 3235 } 3236 3237 // Offset of the function in the file. 3238 const auto *FileBegin = 3239 reinterpret_cast<const uint8_t *>(InputFile->getData().data()); 3240 Function.setFileOffset(FunctionData->begin() - FileBegin); 3241 3242 if (!shouldDisassemble(Function)) { 3243 NamedRegionTimer T("scan", "scan functions", "buildfuncs", 3244 "Scan Binary Functions", opts::TimeBuild); 3245 Function.scanExternalRefs(); 3246 Function.setSimple(false); 3247 continue; 3248 } 3249 3250 bool DisasmFailed{false}; 3251 handleAllErrors(Function.disassemble(), [&](const BOLTError &E) { 3252 DisasmFailed = true; 3253 if (E.isFatal()) { 3254 E.log(BC->errs()); 3255 exit(1); 3256 } 3257 if (opts::processAllFunctions()) { 3258 BC->errs() << BC->generateBugReportMessage( 3259 "function cannot be properly disassembled. " 3260 "Unable to continue in relocation mode.", 3261 Function); 3262 exit(1); 3263 } 3264 if (opts::Verbosity >= 1) 3265 BC->outs() << "BOLT-INFO: could not disassemble function " << Function 3266 << ". Will ignore.\n"; 3267 // Forcefully ignore the function. 3268 Function.setIgnored(); 3269 }); 3270 3271 if (DisasmFailed) 3272 continue; 3273 3274 if (opts::PrintAll || opts::PrintDisasm) 3275 Function.print(BC->outs(), "after disassembly"); 3276 } 3277 3278 BC->processInterproceduralReferences(); 3279 BC->populateJumpTables(); 3280 3281 for (auto &BFI : BC->getBinaryFunctions()) { 3282 BinaryFunction &Function = BFI.second; 3283 3284 if (!shouldDisassemble(Function)) 3285 continue; 3286 3287 Function.postProcessEntryPoints(); 3288 Function.postProcessJumpTables(); 3289 } 3290 3291 BC->clearJumpTableTempData(); 3292 BC->adjustCodePadding(); 3293 3294 for (auto &BFI : BC->getBinaryFunctions()) { 3295 BinaryFunction &Function = BFI.second; 3296 3297 if (!shouldDisassemble(Function)) 3298 continue; 3299 3300 if (!Function.isSimple()) { 3301 assert((!BC->HasRelocations || Function.getSize() == 0 || 3302 Function.hasIndirectTargetToSplitFragment()) && 3303 "unexpected non-simple function in relocation mode"); 3304 continue; 3305 } 3306 3307 // Fill in CFI information for this function 3308 if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) { 3309 if (BC->HasRelocations) { 3310 BC->errs() << BC->generateBugReportMessage("unable to fill CFI.", 3311 Function); 3312 exit(1); 3313 } else { 3314 BC->errs() << "BOLT-WARNING: unable to fill CFI for function " 3315 << Function << ". Skipping.\n"; 3316 Function.setSimple(false); 3317 continue; 3318 } 3319 } 3320 3321 // Parse LSDA. 3322 if (Function.getLSDAAddress() != 0 && 3323 !BC->getFragmentsToSkip().count(&Function)) { 3324 ErrorOr<BinarySection &> LSDASection = 3325 BC->getSectionForAddress(Function.getLSDAAddress()); 3326 check_error(LSDASection.getError(), "failed to get LSDA section"); 3327 ArrayRef<uint8_t> LSDAData = ArrayRef<uint8_t>( 3328 LSDASection->getData(), LSDASection->getContents().size()); 3329 BC->logBOLTErrorsAndQuitOnFatal( 3330 Function.parseLSDA(LSDAData, LSDASection->getAddress())); 3331 } 3332 } 3333 } 3334 3335 void RewriteInstance::buildFunctionsCFG() { 3336 NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs", 3337 "Build Binary Functions", opts::TimeBuild); 3338 3339 // Create annotation indices to allow lock-free execution 3340 BC->MIB->getOrCreateAnnotationIndex("JTIndexReg"); 3341 BC->MIB->getOrCreateAnnotationIndex("NOP"); 3342 3343 ParallelUtilities::WorkFuncWithAllocTy WorkFun = 3344 [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) { 3345 bool HadErrors{false}; 3346 handleAllErrors(BF.buildCFG(AllocId), [&](const BOLTError &E) { 3347 if (!E.getMessage().empty()) 3348 E.log(BC->errs()); 3349 if (E.isFatal()) 3350 exit(1); 3351 HadErrors = true; 3352 }); 3353 3354 if (HadErrors) 3355 return; 3356 3357 if (opts::PrintAll) { 3358 auto L = BC->scopeLock(); 3359 BF.print(BC->outs(), "while building cfg"); 3360 } 3361 }; 3362 3363 ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) { 3364 return !shouldDisassemble(BF) || !BF.isSimple(); 3365 }; 3366 3367 ParallelUtilities::runOnEachFunctionWithUniqueAllocId( 3368 *BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun, 3369 SkipPredicate, "disassembleFunctions-buildCFG", 3370 /*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll); 3371 3372 BC->postProcessSymbolTable(); 3373 } 3374 3375 void RewriteInstance::postProcessFunctions() { 3376 // We mark fragments as non-simple here, not during disassembly, 3377 // So we can build their CFGs. 3378 BC->skipMarkedFragments(); 3379 BC->clearFragmentsToSkip(); 3380 3381 BC->TotalScore = 0; 3382 BC->SumExecutionCount = 0; 3383 for (auto &BFI : BC->getBinaryFunctions()) { 3384 BinaryFunction &Function = BFI.second; 3385 3386 // Set function as non-simple if it has dynamic relocations 3387 // in constant island, we don't want this function to be optimized 3388 // e.g. function splitting is unsupported. 3389 if (Function.hasDynamicRelocationAtIsland()) 3390 Function.setSimple(false); 3391 3392 if (Function.empty()) 3393 continue; 3394 3395 Function.postProcessCFG(); 3396 3397 if (opts::PrintAll || opts::PrintCFG) 3398 Function.print(BC->outs(), "after building cfg"); 3399 3400 if (opts::DumpDotAll) 3401 Function.dumpGraphForPass("00_build-cfg"); 3402 3403 if (opts::PrintLoopInfo) { 3404 Function.calculateLoopInfo(); 3405 Function.printLoopInfo(BC->outs()); 3406 } 3407 3408 BC->TotalScore += Function.getFunctionScore(); 3409 BC->SumExecutionCount += Function.getKnownExecutionCount(); 3410 } 3411 3412 if (opts::PrintGlobals) { 3413 BC->outs() << "BOLT-INFO: Global symbols:\n"; 3414 BC->printGlobalSymbols(BC->outs()); 3415 } 3416 } 3417 3418 void RewriteInstance::runOptimizationPasses() { 3419 NamedRegionTimer T("runOptimizationPasses", "run optimization passes", 3420 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3421 BC->logBOLTErrorsAndQuitOnFatal(BinaryFunctionPassManager::runAllPasses(*BC)); 3422 } 3423 3424 void RewriteInstance::preregisterSections() { 3425 // Preregister sections before emission to set their order in the output. 3426 const unsigned ROFlags = BinarySection::getFlags(/*IsReadOnly*/ true, 3427 /*IsText*/ false, 3428 /*IsAllocatable*/ true); 3429 if (BinarySection *EHFrameSection = getSection(getEHFrameSectionName())) { 3430 // New .eh_frame. 3431 BC->registerOrUpdateSection(getNewSecPrefix() + getEHFrameSectionName(), 3432 ELF::SHT_PROGBITS, ROFlags); 3433 // Fully register a relocatable copy of the original .eh_frame. 3434 BC->registerSection(".relocated.eh_frame", *EHFrameSection); 3435 } 3436 BC->registerOrUpdateSection(getNewSecPrefix() + ".gcc_except_table", 3437 ELF::SHT_PROGBITS, ROFlags); 3438 BC->registerOrUpdateSection(getNewSecPrefix() + ".rodata", ELF::SHT_PROGBITS, 3439 ROFlags); 3440 BC->registerOrUpdateSection(getNewSecPrefix() + ".rodata.cold", 3441 ELF::SHT_PROGBITS, ROFlags); 3442 } 3443 3444 void RewriteInstance::emitAndLink() { 3445 NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName, 3446 TimerGroupDesc, opts::TimeRewrite); 3447 3448 SmallString<0> ObjectBuffer; 3449 raw_svector_ostream OS(ObjectBuffer); 3450 3451 // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB) 3452 // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these 3453 // two instances. 3454 std::unique_ptr<MCStreamer> Streamer = BC->createStreamer(OS); 3455 3456 if (EHFrameSection) { 3457 if (opts::UseOldText || opts::StrictMode) { 3458 // The section is going to be regenerated from scratch. 3459 // Empty the contents, but keep the section reference. 3460 EHFrameSection->clearContents(); 3461 } else { 3462 // Make .eh_frame relocatable. 3463 relocateEHFrameSection(); 3464 } 3465 } 3466 3467 emitBinaryContext(*Streamer, *BC, getOrgSecPrefix()); 3468 3469 Streamer->finish(); 3470 if (Streamer->getContext().hadError()) { 3471 BC->errs() << "BOLT-ERROR: Emission failed.\n"; 3472 exit(1); 3473 } 3474 3475 if (opts::KeepTmp) { 3476 SmallString<128> OutObjectPath; 3477 sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath); 3478 std::error_code EC; 3479 raw_fd_ostream FOS(OutObjectPath, EC); 3480 check_error(EC, "cannot create output object file"); 3481 FOS << ObjectBuffer; 3482 BC->outs() 3483 << "BOLT-INFO: intermediary output object file saved for debugging " 3484 "purposes: " 3485 << OutObjectPath << "\n"; 3486 } 3487 3488 ErrorOr<BinarySection &> TextSection = 3489 BC->getUniqueSectionByName(BC->getMainCodeSectionName()); 3490 if (BC->HasRelocations && TextSection) 3491 BC->renameSection(*TextSection, 3492 getOrgSecPrefix() + BC->getMainCodeSectionName()); 3493 3494 ////////////////////////////////////////////////////////////////////////////// 3495 // Assign addresses to new sections. 3496 ////////////////////////////////////////////////////////////////////////////// 3497 3498 // Get output object as ObjectFile. 3499 std::unique_ptr<MemoryBuffer> ObjectMemBuffer = 3500 MemoryBuffer::getMemBuffer(ObjectBuffer, "in-memory object file", false); 3501 3502 auto EFMM = std::make_unique<ExecutableFileMemoryManager>(*BC); 3503 EFMM->setNewSecPrefix(getNewSecPrefix()); 3504 EFMM->setOrgSecPrefix(getOrgSecPrefix()); 3505 3506 Linker = std::make_unique<JITLinkLinker>(*BC, std::move(EFMM)); 3507 Linker->loadObject(ObjectMemBuffer->getMemBufferRef(), 3508 [this](auto MapSection) { mapFileSections(MapSection); }); 3509 3510 // Update output addresses based on the new section map and 3511 // layout. Only do this for the object created by ourselves. 3512 updateOutputValues(*Linker); 3513 3514 if (opts::UpdateDebugSections) { 3515 DebugInfoRewriter->updateLineTableOffsets( 3516 static_cast<MCObjectStreamer &>(*Streamer).getAssembler()); 3517 } 3518 3519 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 3520 RtLibrary->link(*BC, ToolPath, *Linker, [this](auto MapSection) { 3521 // Map newly registered sections. 3522 this->mapAllocatableSections(MapSection); 3523 }); 3524 3525 // Once the code is emitted, we can rename function sections to actual 3526 // output sections and de-register sections used for emission. 3527 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { 3528 ErrorOr<BinarySection &> Section = Function->getCodeSection(); 3529 if (Section && 3530 (Function->getImageAddress() == 0 || Function->getImageSize() == 0)) 3531 continue; 3532 3533 // Restore origin section for functions that were emitted or supposed to 3534 // be emitted to patch sections. 3535 if (Section) 3536 BC->deregisterSection(*Section); 3537 assert(Function->getOriginSectionName() && "expected origin section"); 3538 Function->CodeSectionName = Function->getOriginSectionName()->str(); 3539 for (const FunctionFragment &FF : 3540 Function->getLayout().getSplitFragments()) { 3541 if (ErrorOr<BinarySection &> ColdSection = 3542 Function->getCodeSection(FF.getFragmentNum())) 3543 BC->deregisterSection(*ColdSection); 3544 } 3545 if (Function->getLayout().isSplit()) 3546 Function->setColdCodeSectionName(getBOLTTextSectionName()); 3547 } 3548 3549 if (opts::PrintCacheMetrics) { 3550 BC->outs() << "BOLT-INFO: cache metrics after emitting functions:\n"; 3551 CacheMetrics::printAll(BC->outs(), BC->getSortedFunctions()); 3552 } 3553 } 3554 3555 void RewriteInstance::finalizeMetadataPreEmit() { 3556 NamedRegionTimer T("finalizemetadata-preemit", "finalize metadata pre-emit", 3557 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3558 MetadataManager.runFinalizersPreEmit(); 3559 } 3560 3561 void RewriteInstance::updateMetadata() { 3562 NamedRegionTimer T("updatemetadata-postemit", "update metadata post-emit", 3563 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3564 MetadataManager.runFinalizersAfterEmit(); 3565 3566 if (opts::UpdateDebugSections) { 3567 NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName, 3568 TimerGroupDesc, opts::TimeRewrite); 3569 DebugInfoRewriter->updateDebugInfo(); 3570 } 3571 3572 if (opts::WriteBoltInfoSection) 3573 addBoltInfoSection(); 3574 } 3575 3576 void RewriteInstance::mapFileSections(BOLTLinker::SectionMapper MapSection) { 3577 BC->deregisterUnusedSections(); 3578 3579 // If no new .eh_frame was written, remove relocated original .eh_frame. 3580 BinarySection *RelocatedEHFrameSection = 3581 getSection(".relocated" + getEHFrameSectionName()); 3582 if (RelocatedEHFrameSection && RelocatedEHFrameSection->hasValidSectionID()) { 3583 BinarySection *NewEHFrameSection = 3584 getSection(getNewSecPrefix() + getEHFrameSectionName()); 3585 if (!NewEHFrameSection || !NewEHFrameSection->isFinalized()) { 3586 // JITLink will still have to process relocations for the section, hence 3587 // we need to assign it the address that wouldn't result in relocation 3588 // processing failure. 3589 MapSection(*RelocatedEHFrameSection, NextAvailableAddress); 3590 BC->deregisterSection(*RelocatedEHFrameSection); 3591 } 3592 } 3593 3594 mapCodeSections(MapSection); 3595 3596 // Map the rest of the sections. 3597 mapAllocatableSections(MapSection); 3598 3599 if (!BC->BOLTReserved.empty()) { 3600 const uint64_t AllocatedSize = 3601 NextAvailableAddress - BC->BOLTReserved.start(); 3602 if (BC->BOLTReserved.size() < AllocatedSize) { 3603 BC->errs() << "BOLT-ERROR: reserved space (" << BC->BOLTReserved.size() 3604 << " byte" << (BC->BOLTReserved.size() == 1 ? "" : "s") 3605 << ") is smaller than required for new allocations (" 3606 << AllocatedSize << " bytes)\n"; 3607 exit(1); 3608 } 3609 } 3610 } 3611 3612 std::vector<BinarySection *> RewriteInstance::getCodeSections() { 3613 std::vector<BinarySection *> CodeSections; 3614 for (BinarySection &Section : BC->textSections()) 3615 if (Section.hasValidSectionID()) 3616 CodeSections.emplace_back(&Section); 3617 3618 auto compareSections = [&](const BinarySection *A, const BinarySection *B) { 3619 // If both A and B have names starting with ".text.cold", then 3620 // - if opts::HotFunctionsAtEnd is true, we want order 3621 // ".text.cold.T", ".text.cold.T-1", ... ".text.cold.1", ".text.cold" 3622 // - if opts::HotFunctionsAtEnd is false, we want order 3623 // ".text.cold", ".text.cold.1", ... ".text.cold.T-1", ".text.cold.T" 3624 if (A->getName().starts_with(BC->getColdCodeSectionName()) && 3625 B->getName().starts_with(BC->getColdCodeSectionName())) { 3626 if (A->getName().size() != B->getName().size()) 3627 return (opts::HotFunctionsAtEnd) 3628 ? (A->getName().size() > B->getName().size()) 3629 : (A->getName().size() < B->getName().size()); 3630 return (opts::HotFunctionsAtEnd) ? (A->getName() > B->getName()) 3631 : (A->getName() < B->getName()); 3632 } 3633 3634 // Place movers before anything else. 3635 if (A->getName() == BC->getHotTextMoverSectionName()) 3636 return true; 3637 if (B->getName() == BC->getHotTextMoverSectionName()) 3638 return false; 3639 3640 // Depending on opts::HotFunctionsAtEnd, place main and warm sections in 3641 // order. 3642 if (opts::HotFunctionsAtEnd) { 3643 if (B->getName() == BC->getMainCodeSectionName()) 3644 return true; 3645 if (A->getName() == BC->getMainCodeSectionName()) 3646 return false; 3647 return (B->getName() == BC->getWarmCodeSectionName()); 3648 } else { 3649 if (A->getName() == BC->getMainCodeSectionName()) 3650 return true; 3651 if (B->getName() == BC->getMainCodeSectionName()) 3652 return false; 3653 return (A->getName() == BC->getWarmCodeSectionName()); 3654 } 3655 }; 3656 3657 // Determine the order of sections. 3658 llvm::stable_sort(CodeSections, compareSections); 3659 3660 return CodeSections; 3661 } 3662 3663 void RewriteInstance::mapCodeSections(BOLTLinker::SectionMapper MapSection) { 3664 if (BC->HasRelocations) { 3665 // Map sections for functions with pre-assigned addresses. 3666 for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) { 3667 const uint64_t OutputAddress = InjectedFunction->getOutputAddress(); 3668 if (!OutputAddress) 3669 continue; 3670 3671 ErrorOr<BinarySection &> FunctionSection = 3672 InjectedFunction->getCodeSection(); 3673 assert(FunctionSection && "function should have section"); 3674 FunctionSection->setOutputAddress(OutputAddress); 3675 MapSection(*FunctionSection, OutputAddress); 3676 InjectedFunction->setImageAddress(FunctionSection->getAllocAddress()); 3677 InjectedFunction->setImageSize(FunctionSection->getOutputSize()); 3678 } 3679 3680 // Populate the list of sections to be allocated. 3681 std::vector<BinarySection *> CodeSections = getCodeSections(); 3682 3683 // Remove sections that were pre-allocated (patch sections). 3684 llvm::erase_if(CodeSections, [](BinarySection *Section) { 3685 return Section->getOutputAddress(); 3686 }); 3687 LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n"; 3688 for (const BinarySection *Section : CodeSections) 3689 dbgs() << Section->getName() << '\n'; 3690 ); 3691 3692 uint64_t PaddingSize = 0; // size of padding required at the end 3693 3694 // Allocate sections starting at a given Address. 3695 auto allocateAt = [&](uint64_t Address) { 3696 const char *LastNonColdSectionName = BC->HasWarmSection 3697 ? BC->getWarmCodeSectionName() 3698 : BC->getMainCodeSectionName(); 3699 for (BinarySection *Section : CodeSections) { 3700 Address = alignTo(Address, Section->getAlignment()); 3701 Section->setOutputAddress(Address); 3702 Address += Section->getOutputSize(); 3703 3704 // Hugify: Additional huge page from right side due to 3705 // weird ASLR mapping addresses (4KB aligned) 3706 if (opts::Hugify && !BC->HasFixedLoadAddress && 3707 Section->getName() == LastNonColdSectionName) 3708 Address = alignTo(Address, Section->getAlignment()); 3709 } 3710 3711 // Make sure we allocate enough space for huge pages. 3712 ErrorOr<BinarySection &> TextSection = 3713 BC->getUniqueSectionByName(LastNonColdSectionName); 3714 if (opts::HotText && TextSection && TextSection->hasValidSectionID()) { 3715 uint64_t HotTextEnd = 3716 TextSection->getOutputAddress() + TextSection->getOutputSize(); 3717 HotTextEnd = alignTo(HotTextEnd, BC->PageAlign); 3718 if (HotTextEnd > Address) { 3719 PaddingSize = HotTextEnd - Address; 3720 Address = HotTextEnd; 3721 } 3722 } 3723 return Address; 3724 }; 3725 3726 // Check if we can fit code in the original .text 3727 bool AllocationDone = false; 3728 if (opts::UseOldText) { 3729 const uint64_t CodeSize = 3730 allocateAt(BC->OldTextSectionAddress) - BC->OldTextSectionAddress; 3731 3732 if (CodeSize <= BC->OldTextSectionSize) { 3733 BC->outs() << "BOLT-INFO: using original .text for new code with 0x" 3734 << Twine::utohexstr(opts::AlignText) << " alignment\n"; 3735 AllocationDone = true; 3736 } else { 3737 BC->errs() 3738 << "BOLT-WARNING: original .text too small to fit the new code" 3739 << " using 0x" << Twine::utohexstr(opts::AlignText) 3740 << " alignment. " << CodeSize << " bytes needed, have " 3741 << BC->OldTextSectionSize << " bytes available.\n"; 3742 opts::UseOldText = false; 3743 } 3744 } 3745 3746 if (!AllocationDone) 3747 NextAvailableAddress = allocateAt(NextAvailableAddress); 3748 3749 // Do the mapping for ORC layer based on the allocation. 3750 for (BinarySection *Section : CodeSections) { 3751 LLVM_DEBUG( 3752 dbgs() << "BOLT: mapping " << Section->getName() << " at 0x" 3753 << Twine::utohexstr(Section->getAllocAddress()) << " to 0x" 3754 << Twine::utohexstr(Section->getOutputAddress()) << '\n'); 3755 MapSection(*Section, Section->getOutputAddress()); 3756 Section->setOutputFileOffset( 3757 getFileOffsetForAddress(Section->getOutputAddress())); 3758 } 3759 3760 // Check if we need to insert a padding section for hot text. 3761 if (PaddingSize && !opts::UseOldText) 3762 BC->outs() << "BOLT-INFO: padding code to 0x" 3763 << Twine::utohexstr(NextAvailableAddress) 3764 << " to accommodate hot text\n"; 3765 3766 return; 3767 } 3768 3769 // Processing in non-relocation mode. 3770 uint64_t NewTextSectionStartAddress = NextAvailableAddress; 3771 3772 for (auto &BFI : BC->getBinaryFunctions()) { 3773 BinaryFunction &Function = BFI.second; 3774 if (!Function.isEmitted()) 3775 continue; 3776 3777 bool TooLarge = false; 3778 ErrorOr<BinarySection &> FuncSection = Function.getCodeSection(); 3779 assert(FuncSection && "cannot find section for function"); 3780 FuncSection->setOutputAddress(Function.getAddress()); 3781 LLVM_DEBUG(dbgs() << "BOLT: mapping 0x" 3782 << Twine::utohexstr(FuncSection->getAllocAddress()) 3783 << " to 0x" << Twine::utohexstr(Function.getAddress()) 3784 << '\n'); 3785 MapSection(*FuncSection, Function.getAddress()); 3786 Function.setImageAddress(FuncSection->getAllocAddress()); 3787 Function.setImageSize(FuncSection->getOutputSize()); 3788 if (Function.getImageSize() > Function.getMaxSize()) { 3789 assert(!BC->isX86() && "Unexpected large function."); 3790 TooLarge = true; 3791 FailedAddresses.emplace_back(Function.getAddress()); 3792 } 3793 3794 // Map jump tables if updating in-place. 3795 if (opts::JumpTables == JTS_BASIC) { 3796 for (auto &JTI : Function.JumpTables) { 3797 JumpTable *JT = JTI.second; 3798 BinarySection &Section = JT->getOutputSection(); 3799 Section.setOutputAddress(JT->getAddress()); 3800 Section.setOutputFileOffset(getFileOffsetForAddress(JT->getAddress())); 3801 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping JT " << Section.getName() 3802 << " to 0x" << Twine::utohexstr(JT->getAddress()) 3803 << '\n'); 3804 MapSection(Section, JT->getAddress()); 3805 } 3806 } 3807 3808 if (!Function.isSplit()) 3809 continue; 3810 3811 assert(Function.getLayout().isHotColdSplit() && 3812 "Cannot allocate more than two fragments per function in " 3813 "non-relocation mode."); 3814 3815 FunctionFragment &FF = 3816 Function.getLayout().getFragment(FragmentNum::cold()); 3817 ErrorOr<BinarySection &> ColdSection = 3818 Function.getCodeSection(FF.getFragmentNum()); 3819 assert(ColdSection && "cannot find section for cold part"); 3820 // Cold fragments are aligned at 16 bytes. 3821 NextAvailableAddress = alignTo(NextAvailableAddress, 16); 3822 if (TooLarge) { 3823 // The corresponding FDE will refer to address 0. 3824 FF.setAddress(0); 3825 FF.setImageAddress(0); 3826 FF.setImageSize(0); 3827 FF.setFileOffset(0); 3828 } else { 3829 FF.setAddress(NextAvailableAddress); 3830 FF.setImageAddress(ColdSection->getAllocAddress()); 3831 FF.setImageSize(ColdSection->getOutputSize()); 3832 FF.setFileOffset(getFileOffsetForAddress(NextAvailableAddress)); 3833 ColdSection->setOutputAddress(FF.getAddress()); 3834 } 3835 3836 LLVM_DEBUG( 3837 dbgs() << formatv( 3838 "BOLT: mapping cold fragment {0:x+} to {1:x+} with size {2:x+}\n", 3839 FF.getImageAddress(), FF.getAddress(), FF.getImageSize())); 3840 MapSection(*ColdSection, FF.getAddress()); 3841 3842 if (TooLarge) 3843 BC->deregisterSection(*ColdSection); 3844 3845 NextAvailableAddress += FF.getImageSize(); 3846 } 3847 3848 // Add the new text section aggregating all existing code sections. 3849 // This is pseudo-section that serves a purpose of creating a corresponding 3850 // entry in section header table. 3851 const uint64_t NewTextSectionSize = 3852 NextAvailableAddress - NewTextSectionStartAddress; 3853 if (NewTextSectionSize) { 3854 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, 3855 /*IsText=*/true, 3856 /*IsAllocatable=*/true); 3857 BinarySection &Section = 3858 BC->registerOrUpdateSection(getBOLTTextSectionName(), 3859 ELF::SHT_PROGBITS, 3860 Flags, 3861 /*Data=*/nullptr, 3862 NewTextSectionSize, 3863 16); 3864 Section.setOutputAddress(NewTextSectionStartAddress); 3865 Section.setOutputFileOffset( 3866 getFileOffsetForAddress(NewTextSectionStartAddress)); 3867 } 3868 } 3869 3870 void RewriteInstance::mapAllocatableSections( 3871 BOLTLinker::SectionMapper MapSection) { 3872 // Allocate read-only sections first, then writable sections. 3873 enum : uint8_t { ST_READONLY, ST_READWRITE }; 3874 for (uint8_t SType = ST_READONLY; SType <= ST_READWRITE; ++SType) { 3875 const uint64_t LastNextAvailableAddress = NextAvailableAddress; 3876 if (SType == ST_READWRITE) { 3877 // Align R+W segment to regular page size 3878 NextAvailableAddress = alignTo(NextAvailableAddress, BC->RegularPageSize); 3879 NewWritableSegmentAddress = NextAvailableAddress; 3880 } 3881 3882 for (BinarySection &Section : BC->allocatableSections()) { 3883 if (Section.isLinkOnly()) 3884 continue; 3885 3886 if (!Section.hasValidSectionID()) 3887 continue; 3888 3889 if (Section.isWritable() == (SType == ST_READONLY)) 3890 continue; 3891 3892 if (Section.getOutputAddress()) { 3893 LLVM_DEBUG({ 3894 dbgs() << "BOLT-DEBUG: section " << Section.getName() 3895 << " is already mapped at 0x" 3896 << Twine::utohexstr(Section.getOutputAddress()) << '\n'; 3897 }); 3898 continue; 3899 } 3900 3901 if (Section.hasSectionRef()) { 3902 LLVM_DEBUG({ 3903 dbgs() << "BOLT-DEBUG: mapping original section " << Section.getName() 3904 << " to 0x" << Twine::utohexstr(Section.getAddress()) << '\n'; 3905 }); 3906 Section.setOutputAddress(Section.getAddress()); 3907 Section.setOutputFileOffset(Section.getInputFileOffset()); 3908 MapSection(Section, Section.getAddress()); 3909 } else { 3910 NextAvailableAddress = 3911 alignTo(NextAvailableAddress, Section.getAlignment()); 3912 LLVM_DEBUG({ 3913 dbgs() << "BOLT: mapping section " << Section.getName() << " (0x" 3914 << Twine::utohexstr(Section.getAllocAddress()) << ") to 0x" 3915 << Twine::utohexstr(NextAvailableAddress) << ":0x" 3916 << Twine::utohexstr(NextAvailableAddress + 3917 Section.getOutputSize()) 3918 << '\n'; 3919 }); 3920 3921 MapSection(Section, NextAvailableAddress); 3922 Section.setOutputAddress(NextAvailableAddress); 3923 Section.setOutputFileOffset( 3924 getFileOffsetForAddress(NextAvailableAddress)); 3925 3926 NextAvailableAddress += Section.getOutputSize(); 3927 } 3928 } 3929 3930 if (SType == ST_READONLY) { 3931 if (PHDRTableAddress) { 3932 // Segment size includes the size of the PHDR area. 3933 NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress; 3934 } else if (NewTextSegmentAddress) { 3935 // Existing PHDR table would be updated. 3936 NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress; 3937 } 3938 } else if (SType == ST_READWRITE) { 3939 NewWritableSegmentSize = NextAvailableAddress - NewWritableSegmentAddress; 3940 // Restore NextAvailableAddress if no new writable sections 3941 if (!NewWritableSegmentSize) 3942 NextAvailableAddress = LastNextAvailableAddress; 3943 } 3944 } 3945 } 3946 3947 void RewriteInstance::updateOutputValues(const BOLTLinker &Linker) { 3948 if (std::optional<AddressMap> Map = AddressMap::parse(*BC)) 3949 BC->setIOAddressMap(std::move(*Map)); 3950 3951 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) 3952 Function->updateOutputValues(Linker); 3953 } 3954 3955 void RewriteInstance::patchELFPHDRTable() { 3956 auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile); 3957 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 3958 raw_fd_ostream &OS = Out->os(); 3959 3960 // Write/re-write program headers. 3961 Phnum = Obj.getHeader().e_phnum; 3962 if (PHDRTableOffset) { 3963 // Writing new pheader table and adding one new entry for R+X segment. 3964 Phnum += 1; 3965 if (NewWritableSegmentSize) { 3966 // Adding one more entry for R+W segment. 3967 Phnum += 1; 3968 } 3969 } else { 3970 assert(!PHDRTableAddress && "unexpected address for program header table"); 3971 PHDRTableOffset = Obj.getHeader().e_phoff; 3972 if (NewWritableSegmentSize) { 3973 BC->errs() << "BOLT-ERROR: unable to add writable segment\n"; 3974 exit(1); 3975 } 3976 } 3977 3978 // NOTE Currently .eh_frame_hdr appends to the last segment, recalculate 3979 // last segments size based on the NextAvailableAddress variable. 3980 if (!NewWritableSegmentSize) { 3981 if (PHDRTableAddress) 3982 NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress; 3983 else if (NewTextSegmentAddress) 3984 NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress; 3985 } else { 3986 NewWritableSegmentSize = NextAvailableAddress - NewWritableSegmentAddress; 3987 } 3988 3989 const uint64_t SavedPos = OS.tell(); 3990 OS.seek(PHDRTableOffset); 3991 3992 auto createNewTextPhdr = [&]() { 3993 ELF64LEPhdrTy NewPhdr; 3994 NewPhdr.p_type = ELF::PT_LOAD; 3995 if (PHDRTableAddress) { 3996 NewPhdr.p_offset = PHDRTableOffset; 3997 NewPhdr.p_vaddr = PHDRTableAddress; 3998 NewPhdr.p_paddr = PHDRTableAddress; 3999 } else { 4000 NewPhdr.p_offset = NewTextSegmentOffset; 4001 NewPhdr.p_vaddr = NewTextSegmentAddress; 4002 NewPhdr.p_paddr = NewTextSegmentAddress; 4003 } 4004 NewPhdr.p_filesz = NewTextSegmentSize; 4005 NewPhdr.p_memsz = NewTextSegmentSize; 4006 NewPhdr.p_flags = ELF::PF_X | ELF::PF_R; 4007 if (opts::Instrument) { 4008 // FIXME: Currently instrumentation is experimental and the runtime data 4009 // is emitted with code, thus everything needs to be writable. 4010 NewPhdr.p_flags |= ELF::PF_W; 4011 } 4012 NewPhdr.p_align = BC->PageAlign; 4013 4014 return NewPhdr; 4015 }; 4016 4017 auto writeNewSegmentPhdrs = [&]() { 4018 if (PHDRTableAddress || NewTextSegmentSize) { 4019 ELF64LE::Phdr NewPhdr = createNewTextPhdr(); 4020 OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr)); 4021 } 4022 4023 if (NewWritableSegmentSize) { 4024 ELF64LEPhdrTy NewPhdr; 4025 NewPhdr.p_type = ELF::PT_LOAD; 4026 NewPhdr.p_offset = getFileOffsetForAddress(NewWritableSegmentAddress); 4027 NewPhdr.p_vaddr = NewWritableSegmentAddress; 4028 NewPhdr.p_paddr = NewWritableSegmentAddress; 4029 NewPhdr.p_filesz = NewWritableSegmentSize; 4030 NewPhdr.p_memsz = NewWritableSegmentSize; 4031 NewPhdr.p_align = BC->RegularPageSize; 4032 NewPhdr.p_flags = ELF::PF_R | ELF::PF_W; 4033 OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr)); 4034 } 4035 }; 4036 4037 bool ModdedGnuStack = false; 4038 bool AddedSegment = false; 4039 4040 // Copy existing program headers with modifications. 4041 for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) { 4042 ELF64LE::Phdr NewPhdr = Phdr; 4043 switch (Phdr.p_type) { 4044 case ELF::PT_PHDR: 4045 if (PHDRTableAddress) { 4046 NewPhdr.p_offset = PHDRTableOffset; 4047 NewPhdr.p_vaddr = PHDRTableAddress; 4048 NewPhdr.p_paddr = PHDRTableAddress; 4049 NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum; 4050 NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum; 4051 } 4052 break; 4053 case ELF::PT_GNU_EH_FRAME: { 4054 ErrorOr<BinarySection &> EHFrameHdrSec = BC->getUniqueSectionByName( 4055 getNewSecPrefix() + getEHFrameHdrSectionName()); 4056 if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() && 4057 EHFrameHdrSec->isFinalized()) { 4058 NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset(); 4059 NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress(); 4060 NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress(); 4061 NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize(); 4062 NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize(); 4063 } 4064 break; 4065 } 4066 case ELF::PT_GNU_STACK: 4067 if (opts::UseGnuStack) { 4068 // Overwrite the header with the new text segment header. 4069 NewPhdr = createNewTextPhdr(); 4070 ModdedGnuStack = true; 4071 } 4072 break; 4073 case ELF::PT_DYNAMIC: 4074 if (!opts::UseGnuStack) { 4075 // Insert new headers before DYNAMIC. 4076 writeNewSegmentPhdrs(); 4077 AddedSegment = true; 4078 } 4079 break; 4080 } 4081 OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr)); 4082 } 4083 4084 if (!opts::UseGnuStack && !AddedSegment) { 4085 // Append new headers to the end of the table. 4086 writeNewSegmentPhdrs(); 4087 } 4088 4089 if (opts::UseGnuStack && !ModdedGnuStack) { 4090 BC->errs() 4091 << "BOLT-ERROR: could not find PT_GNU_STACK program header to modify\n"; 4092 exit(1); 4093 } 4094 4095 OS.seek(SavedPos); 4096 } 4097 4098 namespace { 4099 4100 /// Write padding to \p OS such that its current \p Offset becomes aligned 4101 /// at \p Alignment. Return new (aligned) offset. 4102 uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset, 4103 uint64_t Alignment) { 4104 if (!Alignment) 4105 return Offset; 4106 4107 const uint64_t PaddingSize = 4108 offsetToAlignment(Offset, llvm::Align(Alignment)); 4109 for (unsigned I = 0; I < PaddingSize; ++I) 4110 OS.write((unsigned char)0); 4111 return Offset + PaddingSize; 4112 } 4113 4114 } 4115 4116 void RewriteInstance::rewriteNoteSections() { 4117 auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile); 4118 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 4119 raw_fd_ostream &OS = Out->os(); 4120 4121 uint64_t NextAvailableOffset = std::max( 4122 getFileOffsetForAddress(NextAvailableAddress), FirstNonAllocatableOffset); 4123 OS.seek(NextAvailableOffset); 4124 4125 // Copy over non-allocatable section contents and update file offsets. 4126 for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) { 4127 if (Section.sh_type == ELF::SHT_NULL) 4128 continue; 4129 if (Section.sh_flags & ELF::SHF_ALLOC) 4130 continue; 4131 4132 SectionRef SecRef = ELF64LEFile->toSectionRef(&Section); 4133 BinarySection *BSec = BC->getSectionForSectionRef(SecRef); 4134 assert(BSec && !BSec->isAllocatable() && 4135 "Matching non-allocatable BinarySection should exist."); 4136 4137 StringRef SectionName = 4138 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4139 if (shouldStrip(Section, SectionName)) 4140 continue; 4141 4142 // Insert padding as needed. 4143 NextAvailableOffset = 4144 appendPadding(OS, NextAvailableOffset, Section.sh_addralign); 4145 4146 // New section size. 4147 uint64_t Size = 0; 4148 bool DataWritten = false; 4149 uint8_t *SectionData = nullptr; 4150 // Copy over section contents unless it's one of the sections we overwrite. 4151 if (!willOverwriteSection(SectionName)) { 4152 Size = Section.sh_size; 4153 StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size); 4154 std::string Data; 4155 if (BSec->getPatcher()) { 4156 Data = BSec->getPatcher()->patchBinary(Dataref); 4157 Dataref = StringRef(Data); 4158 } 4159 4160 // Section was expanded, so need to treat it as overwrite. 4161 if (Size != Dataref.size()) { 4162 BSec = &BC->registerOrUpdateNoteSection( 4163 SectionName, copyByteArray(Dataref), Dataref.size()); 4164 Size = 0; 4165 } else { 4166 OS << Dataref; 4167 DataWritten = true; 4168 4169 // Add padding as the section extension might rely on the alignment. 4170 Size = appendPadding(OS, Size, Section.sh_addralign); 4171 } 4172 } 4173 4174 // Perform section post-processing. 4175 assert(BSec->getAlignment() <= Section.sh_addralign && 4176 "alignment exceeds value in file"); 4177 4178 if (BSec->getAllocAddress()) { 4179 assert(!DataWritten && "Writing section twice."); 4180 (void)DataWritten; 4181 SectionData = BSec->getOutputData(); 4182 4183 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing") 4184 << " contents to section " << SectionName << '\n'); 4185 OS.write(reinterpret_cast<char *>(SectionData), BSec->getOutputSize()); 4186 Size += BSec->getOutputSize(); 4187 } 4188 4189 BSec->setOutputFileOffset(NextAvailableOffset); 4190 BSec->flushPendingRelocations(OS, [this](const MCSymbol *S) { 4191 return getNewValueForSymbol(S->getName()); 4192 }); 4193 4194 // Section contents are no longer needed, but we need to update the size so 4195 // that it will be reflected in the section header table. 4196 BSec->updateContents(nullptr, Size); 4197 4198 NextAvailableOffset += Size; 4199 } 4200 4201 // Write new note sections. 4202 for (BinarySection &Section : BC->nonAllocatableSections()) { 4203 if (Section.getOutputFileOffset() || !Section.getAllocAddress()) 4204 continue; 4205 4206 assert(!Section.hasPendingRelocations() && "cannot have pending relocs"); 4207 4208 NextAvailableOffset = 4209 appendPadding(OS, NextAvailableOffset, Section.getAlignment()); 4210 Section.setOutputFileOffset(NextAvailableOffset); 4211 4212 LLVM_DEBUG( 4213 dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName() 4214 << " of size " << Section.getOutputSize() << " at offset 0x" 4215 << Twine::utohexstr(Section.getOutputFileOffset()) << '\n'); 4216 4217 OS.write(Section.getOutputContents().data(), Section.getOutputSize()); 4218 NextAvailableOffset += Section.getOutputSize(); 4219 } 4220 } 4221 4222 template <typename ELFT> 4223 void RewriteInstance::finalizeSectionStringTable(ELFObjectFile<ELFT> *File) { 4224 // Pre-populate section header string table. 4225 for (const BinarySection &Section : BC->sections()) 4226 if (!Section.isAnonymous()) 4227 SHStrTab.add(Section.getOutputName()); 4228 SHStrTab.finalize(); 4229 4230 const size_t SHStrTabSize = SHStrTab.getSize(); 4231 uint8_t *DataCopy = new uint8_t[SHStrTabSize]; 4232 memset(DataCopy, 0, SHStrTabSize); 4233 SHStrTab.write(DataCopy); 4234 BC->registerOrUpdateNoteSection(".shstrtab", 4235 DataCopy, 4236 SHStrTabSize, 4237 /*Alignment=*/1, 4238 /*IsReadOnly=*/true, 4239 ELF::SHT_STRTAB); 4240 } 4241 4242 void RewriteInstance::addBoltInfoSection() { 4243 std::string DescStr; 4244 raw_string_ostream DescOS(DescStr); 4245 4246 DescOS << "BOLT revision: " << BoltRevision << ", " 4247 << "command line:"; 4248 for (int I = 0; I < Argc; ++I) 4249 DescOS << " " << Argv[I]; 4250 DescOS.flush(); 4251 4252 // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n' 4253 const std::string BoltInfo = 4254 BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/); 4255 BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo), 4256 BoltInfo.size(), 4257 /*Alignment=*/1, 4258 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4259 } 4260 4261 void RewriteInstance::addBATSection() { 4262 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr, 4263 0, 4264 /*Alignment=*/1, 4265 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4266 } 4267 4268 void RewriteInstance::encodeBATSection() { 4269 std::string DescStr; 4270 raw_string_ostream DescOS(DescStr); 4271 4272 BAT->write(*BC, DescOS); 4273 DescOS.flush(); 4274 4275 const std::string BoltInfo = 4276 BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT); 4277 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, 4278 copyByteArray(BoltInfo), BoltInfo.size(), 4279 /*Alignment=*/1, 4280 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4281 BC->outs() << "BOLT-INFO: BAT section size (bytes): " << BoltInfo.size() 4282 << '\n'; 4283 } 4284 4285 template <typename ELFShdrTy> 4286 bool RewriteInstance::shouldStrip(const ELFShdrTy &Section, 4287 StringRef SectionName) { 4288 // Strip non-allocatable relocation sections. 4289 if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA) 4290 return true; 4291 4292 // Strip debug sections if not updating them. 4293 if (isDebugSection(SectionName) && !opts::UpdateDebugSections) 4294 return true; 4295 4296 // Strip symtab section if needed 4297 if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB) 4298 return true; 4299 4300 return false; 4301 } 4302 4303 template <typename ELFT> 4304 std::vector<typename object::ELFObjectFile<ELFT>::Elf_Shdr> 4305 RewriteInstance::getOutputSections(ELFObjectFile<ELFT> *File, 4306 std::vector<uint32_t> &NewSectionIndex) { 4307 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4308 const ELFFile<ELFT> &Obj = File->getELFFile(); 4309 typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); 4310 4311 // Keep track of section header entries attached to the corresponding section. 4312 std::vector<std::pair<BinarySection *, ELFShdrTy>> OutputSections; 4313 auto addSection = [&](const ELFShdrTy &Section, BinarySection &BinSec) { 4314 ELFShdrTy NewSection = Section; 4315 NewSection.sh_name = SHStrTab.getOffset(BinSec.getOutputName()); 4316 OutputSections.emplace_back(&BinSec, std::move(NewSection)); 4317 }; 4318 4319 // Copy over entries for original allocatable sections using modified name. 4320 for (const ELFShdrTy &Section : Sections) { 4321 // Always ignore this section. 4322 if (Section.sh_type == ELF::SHT_NULL) { 4323 OutputSections.emplace_back(nullptr, Section); 4324 continue; 4325 } 4326 4327 if (!(Section.sh_flags & ELF::SHF_ALLOC)) 4328 continue; 4329 4330 SectionRef SecRef = File->toSectionRef(&Section); 4331 BinarySection *BinSec = BC->getSectionForSectionRef(SecRef); 4332 assert(BinSec && "Matching BinarySection should exist."); 4333 4334 addSection(Section, *BinSec); 4335 } 4336 4337 for (BinarySection &Section : BC->allocatableSections()) { 4338 if (!Section.isFinalized()) 4339 continue; 4340 4341 if (Section.hasSectionRef() || Section.isAnonymous()) { 4342 if (opts::Verbosity) 4343 BC->outs() << "BOLT-INFO: not writing section header for section " 4344 << Section.getOutputName() << '\n'; 4345 continue; 4346 } 4347 4348 if (opts::Verbosity >= 1) 4349 BC->outs() << "BOLT-INFO: writing section header for " 4350 << Section.getOutputName() << '\n'; 4351 ELFShdrTy NewSection; 4352 NewSection.sh_type = ELF::SHT_PROGBITS; 4353 NewSection.sh_addr = Section.getOutputAddress(); 4354 NewSection.sh_offset = Section.getOutputFileOffset(); 4355 NewSection.sh_size = Section.getOutputSize(); 4356 NewSection.sh_entsize = 0; 4357 NewSection.sh_flags = Section.getELFFlags(); 4358 NewSection.sh_link = 0; 4359 NewSection.sh_info = 0; 4360 NewSection.sh_addralign = Section.getAlignment(); 4361 addSection(NewSection, Section); 4362 } 4363 4364 // Sort all allocatable sections by their offset. 4365 llvm::stable_sort(OutputSections, [](const auto &A, const auto &B) { 4366 return A.second.sh_offset < B.second.sh_offset; 4367 }); 4368 4369 // Fix section sizes to prevent overlapping. 4370 ELFShdrTy *PrevSection = nullptr; 4371 BinarySection *PrevBinSec = nullptr; 4372 for (auto &SectionKV : OutputSections) { 4373 ELFShdrTy &Section = SectionKV.second; 4374 4375 // Ignore NOBITS sections as they don't take any space in the file. 4376 if (Section.sh_type == ELF::SHT_NOBITS) 4377 continue; 4378 4379 // Note that address continuity is not guaranteed as sections could be 4380 // placed in different loadable segments. 4381 if (PrevSection && 4382 PrevSection->sh_offset + PrevSection->sh_size > Section.sh_offset) { 4383 if (opts::Verbosity > 1) 4384 BC->outs() << "BOLT-INFO: adjusting size for section " 4385 << PrevBinSec->getOutputName() << '\n'; 4386 PrevSection->sh_size = Section.sh_offset - PrevSection->sh_offset; 4387 } 4388 4389 PrevSection = &Section; 4390 PrevBinSec = SectionKV.first; 4391 } 4392 4393 uint64_t LastFileOffset = 0; 4394 4395 // Copy over entries for non-allocatable sections performing necessary 4396 // adjustments. 4397 for (const ELFShdrTy &Section : Sections) { 4398 if (Section.sh_type == ELF::SHT_NULL) 4399 continue; 4400 if (Section.sh_flags & ELF::SHF_ALLOC) 4401 continue; 4402 4403 StringRef SectionName = 4404 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4405 4406 if (shouldStrip(Section, SectionName)) 4407 continue; 4408 4409 SectionRef SecRef = File->toSectionRef(&Section); 4410 BinarySection *BinSec = BC->getSectionForSectionRef(SecRef); 4411 assert(BinSec && "Matching BinarySection should exist."); 4412 4413 ELFShdrTy NewSection = Section; 4414 NewSection.sh_offset = BinSec->getOutputFileOffset(); 4415 NewSection.sh_size = BinSec->getOutputSize(); 4416 4417 if (NewSection.sh_type == ELF::SHT_SYMTAB) 4418 NewSection.sh_info = NumLocalSymbols; 4419 4420 addSection(NewSection, *BinSec); 4421 4422 LastFileOffset = BinSec->getOutputFileOffset(); 4423 } 4424 4425 // Create entries for new non-allocatable sections. 4426 for (BinarySection &Section : BC->nonAllocatableSections()) { 4427 if (Section.getOutputFileOffset() <= LastFileOffset) 4428 continue; 4429 4430 if (opts::Verbosity >= 1) 4431 BC->outs() << "BOLT-INFO: writing section header for " 4432 << Section.getOutputName() << '\n'; 4433 4434 ELFShdrTy NewSection; 4435 NewSection.sh_type = Section.getELFType(); 4436 NewSection.sh_addr = 0; 4437 NewSection.sh_offset = Section.getOutputFileOffset(); 4438 NewSection.sh_size = Section.getOutputSize(); 4439 NewSection.sh_entsize = 0; 4440 NewSection.sh_flags = Section.getELFFlags(); 4441 NewSection.sh_link = 0; 4442 NewSection.sh_info = 0; 4443 NewSection.sh_addralign = Section.getAlignment(); 4444 4445 addSection(NewSection, Section); 4446 } 4447 4448 // Assign indices to sections. 4449 std::unordered_map<std::string, uint64_t> NameToIndex; 4450 for (uint32_t Index = 1; Index < OutputSections.size(); ++Index) 4451 OutputSections[Index].first->setIndex(Index); 4452 4453 // Update section index mapping 4454 NewSectionIndex.clear(); 4455 NewSectionIndex.resize(Sections.size(), 0); 4456 for (const ELFShdrTy &Section : Sections) { 4457 if (Section.sh_type == ELF::SHT_NULL) 4458 continue; 4459 4460 size_t OrgIndex = std::distance(Sections.begin(), &Section); 4461 4462 SectionRef SecRef = File->toSectionRef(&Section); 4463 BinarySection *BinSec = BC->getSectionForSectionRef(SecRef); 4464 assert(BinSec && "BinarySection should exist for an input section."); 4465 4466 // Some sections are stripped 4467 if (!BinSec->hasValidIndex()) 4468 continue; 4469 4470 NewSectionIndex[OrgIndex] = BinSec->getIndex(); 4471 } 4472 4473 std::vector<ELFShdrTy> SectionsOnly(OutputSections.size()); 4474 llvm::copy(llvm::make_second_range(OutputSections), SectionsOnly.begin()); 4475 4476 return SectionsOnly; 4477 } 4478 4479 // Rewrite section header table inserting new entries as needed. The sections 4480 // header table size itself may affect the offsets of other sections, 4481 // so we are placing it at the end of the binary. 4482 // 4483 // As we rewrite entries we need to track how many sections were inserted 4484 // as it changes the sh_link value. We map old indices to new ones for 4485 // existing sections. 4486 template <typename ELFT> 4487 void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile<ELFT> *File) { 4488 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4489 using ELFEhdrTy = typename ELFObjectFile<ELFT>::Elf_Ehdr; 4490 raw_fd_ostream &OS = Out->os(); 4491 const ELFFile<ELFT> &Obj = File->getELFFile(); 4492 4493 // Mapping from old section indices to new ones 4494 std::vector<uint32_t> NewSectionIndex; 4495 std::vector<ELFShdrTy> OutputSections = 4496 getOutputSections(File, NewSectionIndex); 4497 LLVM_DEBUG( 4498 dbgs() << "BOLT-DEBUG: old to new section index mapping:\n"; 4499 for (uint64_t I = 0; I < NewSectionIndex.size(); ++I) 4500 dbgs() << " " << I << " -> " << NewSectionIndex[I] << '\n'; 4501 ); 4502 4503 // Align starting address for section header table. There's no architecutal 4504 // need to align this, it is just for pleasant human readability. 4505 uint64_t SHTOffset = OS.tell(); 4506 SHTOffset = appendPadding(OS, SHTOffset, 16); 4507 4508 // Write all section header entries while patching section references. 4509 for (ELFShdrTy &Section : OutputSections) { 4510 Section.sh_link = NewSectionIndex[Section.sh_link]; 4511 if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA) 4512 Section.sh_info = NewSectionIndex[Section.sh_info]; 4513 OS.write(reinterpret_cast<const char *>(&Section), sizeof(Section)); 4514 } 4515 4516 // Fix ELF header. 4517 ELFEhdrTy NewEhdr = Obj.getHeader(); 4518 4519 if (BC->HasRelocations) { 4520 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 4521 NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress(); 4522 else 4523 NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry); 4524 assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) && 4525 "cannot find new address for entry point"); 4526 } 4527 if (PHDRTableOffset) { 4528 NewEhdr.e_phoff = PHDRTableOffset; 4529 NewEhdr.e_phnum = Phnum; 4530 } 4531 NewEhdr.e_shoff = SHTOffset; 4532 NewEhdr.e_shnum = OutputSections.size(); 4533 NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx]; 4534 OS.pwrite(reinterpret_cast<const char *>(&NewEhdr), sizeof(NewEhdr), 0); 4535 } 4536 4537 template <typename ELFT, typename WriteFuncTy, typename StrTabFuncTy> 4538 void RewriteInstance::updateELFSymbolTable( 4539 ELFObjectFile<ELFT> *File, bool IsDynSym, 4540 const typename object::ELFObjectFile<ELFT>::Elf_Shdr &SymTabSection, 4541 const std::vector<uint32_t> &NewSectionIndex, WriteFuncTy Write, 4542 StrTabFuncTy AddToStrTab) { 4543 const ELFFile<ELFT> &Obj = File->getELFFile(); 4544 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; 4545 4546 StringRef StringSection = 4547 cantFail(Obj.getStringTableForSymtab(SymTabSection)); 4548 4549 unsigned NumHotTextSymsUpdated = 0; 4550 unsigned NumHotDataSymsUpdated = 0; 4551 4552 std::map<const BinaryFunction *, uint64_t> IslandSizes; 4553 auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) { 4554 auto Itr = IslandSizes.find(&BF); 4555 if (Itr != IslandSizes.end()) 4556 return Itr->second; 4557 return IslandSizes[&BF] = BF.estimateConstantIslandSize(); 4558 }; 4559 4560 // Symbols for the new symbol table. 4561 std::vector<ELFSymTy> Symbols; 4562 4563 bool EmittedColdFileSymbol = false; 4564 4565 auto getNewSectionIndex = [&](uint32_t OldIndex) { 4566 // For dynamic symbol table, the section index could be wrong on the input, 4567 // and its value is ignored by the runtime if it's different from 4568 // SHN_UNDEF and SHN_ABS. 4569 // However, we still need to update dynamic symbol table, so return a 4570 // section index, even though the index is broken. 4571 if (IsDynSym && OldIndex >= NewSectionIndex.size()) 4572 return OldIndex; 4573 4574 assert(OldIndex < NewSectionIndex.size() && "section index out of bounds"); 4575 const uint32_t NewIndex = NewSectionIndex[OldIndex]; 4576 4577 // We may have stripped the section that dynsym was referencing due to 4578 // the linker bug. In that case return the old index avoiding marking 4579 // the symbol as undefined. 4580 if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF) 4581 return OldIndex; 4582 return NewIndex; 4583 }; 4584 4585 // Get the extra symbol name of a split fragment; used in addExtraSymbols. 4586 auto getSplitSymbolName = [&](const FunctionFragment &FF, 4587 const ELFSymTy &FunctionSymbol) { 4588 SmallString<256> SymbolName; 4589 if (BC->HasWarmSection) 4590 SymbolName = 4591 formatv("{0}.{1}", cantFail(FunctionSymbol.getName(StringSection)), 4592 FF.getFragmentNum() == FragmentNum::warm() ? "warm" : "cold"); 4593 else 4594 SymbolName = formatv("{0}.cold.{1}", 4595 cantFail(FunctionSymbol.getName(StringSection)), 4596 FF.getFragmentNum().get() - 1); 4597 return SymbolName; 4598 }; 4599 4600 // Add extra symbols for the function. 4601 // 4602 // Note that addExtraSymbols() could be called multiple times for the same 4603 // function with different FunctionSymbol matching the main function entry 4604 // point. 4605 auto addExtraSymbols = [&](const BinaryFunction &Function, 4606 const ELFSymTy &FunctionSymbol) { 4607 if (Function.isFolded()) { 4608 BinaryFunction *ICFParent = Function.getFoldedIntoFunction(); 4609 while (ICFParent->isFolded()) 4610 ICFParent = ICFParent->getFoldedIntoFunction(); 4611 ELFSymTy ICFSymbol = FunctionSymbol; 4612 SmallVector<char, 256> Buf; 4613 ICFSymbol.st_name = 4614 AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) 4615 .concat(".icf.0") 4616 .toStringRef(Buf)); 4617 ICFSymbol.st_value = ICFParent->getOutputAddress(); 4618 ICFSymbol.st_size = ICFParent->getOutputSize(); 4619 ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex(); 4620 Symbols.emplace_back(ICFSymbol); 4621 } 4622 if (Function.isSplit()) { 4623 // Prepend synthetic FILE symbol to prevent local cold fragments from 4624 // colliding with existing symbols with the same name. 4625 if (!EmittedColdFileSymbol && 4626 FunctionSymbol.getBinding() == ELF::STB_GLOBAL) { 4627 ELFSymTy FileSymbol; 4628 FileSymbol.st_shndx = ELF::SHN_ABS; 4629 FileSymbol.st_name = AddToStrTab(getBOLTFileSymbolName()); 4630 FileSymbol.st_value = 0; 4631 FileSymbol.st_size = 0; 4632 FileSymbol.st_other = 0; 4633 FileSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FILE); 4634 Symbols.emplace_back(FileSymbol); 4635 EmittedColdFileSymbol = true; 4636 } 4637 for (const FunctionFragment &FF : 4638 Function.getLayout().getSplitFragments()) { 4639 if (FF.getAddress()) { 4640 ELFSymTy NewColdSym = FunctionSymbol; 4641 const SmallString<256> SymbolName = 4642 getSplitSymbolName(FF, FunctionSymbol); 4643 NewColdSym.st_name = AddToStrTab(SymbolName); 4644 NewColdSym.st_shndx = 4645 Function.getCodeSection(FF.getFragmentNum())->getIndex(); 4646 NewColdSym.st_value = FF.getAddress(); 4647 NewColdSym.st_size = FF.getImageSize(); 4648 NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); 4649 Symbols.emplace_back(NewColdSym); 4650 } 4651 } 4652 } 4653 if (Function.hasConstantIsland()) { 4654 uint64_t DataMark = Function.getOutputDataAddress(); 4655 uint64_t CISize = getConstantIslandSize(Function); 4656 uint64_t CodeMark = DataMark + CISize; 4657 ELFSymTy DataMarkSym = FunctionSymbol; 4658 DataMarkSym.st_name = AddToStrTab("$d"); 4659 DataMarkSym.st_value = DataMark; 4660 DataMarkSym.st_size = 0; 4661 DataMarkSym.setType(ELF::STT_NOTYPE); 4662 DataMarkSym.setBinding(ELF::STB_LOCAL); 4663 ELFSymTy CodeMarkSym = DataMarkSym; 4664 CodeMarkSym.st_name = AddToStrTab("$x"); 4665 CodeMarkSym.st_value = CodeMark; 4666 Symbols.emplace_back(DataMarkSym); 4667 Symbols.emplace_back(CodeMarkSym); 4668 } 4669 if (Function.hasConstantIsland() && Function.isSplit()) { 4670 uint64_t DataMark = Function.getOutputColdDataAddress(); 4671 uint64_t CISize = getConstantIslandSize(Function); 4672 uint64_t CodeMark = DataMark + CISize; 4673 ELFSymTy DataMarkSym = FunctionSymbol; 4674 DataMarkSym.st_name = AddToStrTab("$d"); 4675 DataMarkSym.st_value = DataMark; 4676 DataMarkSym.st_size = 0; 4677 DataMarkSym.setType(ELF::STT_NOTYPE); 4678 DataMarkSym.setBinding(ELF::STB_LOCAL); 4679 ELFSymTy CodeMarkSym = DataMarkSym; 4680 CodeMarkSym.st_name = AddToStrTab("$x"); 4681 CodeMarkSym.st_value = CodeMark; 4682 Symbols.emplace_back(DataMarkSym); 4683 Symbols.emplace_back(CodeMarkSym); 4684 } 4685 }; 4686 4687 // For regular (non-dynamic) symbol table, exclude symbols referring 4688 // to non-allocatable sections. 4689 auto shouldStrip = [&](const ELFSymTy &Symbol) { 4690 if (Symbol.isAbsolute() || !Symbol.isDefined()) 4691 return false; 4692 4693 // If we cannot link the symbol to a section, leave it as is. 4694 Expected<const typename ELFT::Shdr *> Section = 4695 Obj.getSection(Symbol.st_shndx); 4696 if (!Section) 4697 return false; 4698 4699 // Remove the section symbol iif the corresponding section was stripped. 4700 if (Symbol.getType() == ELF::STT_SECTION) { 4701 if (!getNewSectionIndex(Symbol.st_shndx)) 4702 return true; 4703 return false; 4704 } 4705 4706 // Symbols in non-allocatable sections are typically remnants of relocations 4707 // emitted under "-emit-relocs" linker option. Delete those as we delete 4708 // relocations against non-allocatable sections. 4709 if (!((*Section)->sh_flags & ELF::SHF_ALLOC)) 4710 return true; 4711 4712 return false; 4713 }; 4714 4715 for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) { 4716 // For regular (non-dynamic) symbol table strip unneeded symbols. 4717 if (!IsDynSym && shouldStrip(Symbol)) 4718 continue; 4719 4720 const BinaryFunction *Function = 4721 BC->getBinaryFunctionAtAddress(Symbol.st_value); 4722 // Ignore false function references, e.g. when the section address matches 4723 // the address of the function. 4724 if (Function && Symbol.getType() == ELF::STT_SECTION) 4725 Function = nullptr; 4726 4727 // For non-dynamic symtab, make sure the symbol section matches that of 4728 // the function. It can mismatch e.g. if the symbol is a section marker 4729 // in which case we treat the symbol separately from the function. 4730 // For dynamic symbol table, the section index could be wrong on the input, 4731 // and its value is ignored by the runtime if it's different from 4732 // SHN_UNDEF and SHN_ABS. 4733 if (!IsDynSym && Function && 4734 Symbol.st_shndx != 4735 Function->getOriginSection()->getSectionRef().getIndex()) 4736 Function = nullptr; 4737 4738 // Create a new symbol based on the existing symbol. 4739 ELFSymTy NewSymbol = Symbol; 4740 4741 // Handle special symbols based on their name. 4742 Expected<StringRef> SymbolName = Symbol.getName(StringSection); 4743 assert(SymbolName && "cannot get symbol name"); 4744 4745 auto updateSymbolValue = [&](const StringRef Name, 4746 std::optional<uint64_t> Value = std::nullopt) { 4747 NewSymbol.st_value = Value ? *Value : getNewValueForSymbol(Name); 4748 NewSymbol.st_shndx = ELF::SHN_ABS; 4749 BC->outs() << "BOLT-INFO: setting " << Name << " to 0x" 4750 << Twine::utohexstr(NewSymbol.st_value) << '\n'; 4751 }; 4752 4753 if (*SymbolName == "__hot_start" || *SymbolName == "__hot_end") { 4754 if (opts::HotText) { 4755 updateSymbolValue(*SymbolName); 4756 ++NumHotTextSymsUpdated; 4757 } 4758 goto registerSymbol; 4759 } 4760 4761 if (*SymbolName == "__hot_data_start" || *SymbolName == "__hot_data_end") { 4762 if (opts::HotData) { 4763 updateSymbolValue(*SymbolName); 4764 ++NumHotDataSymsUpdated; 4765 } 4766 goto registerSymbol; 4767 } 4768 4769 if (*SymbolName == "_end") { 4770 if (NextAvailableAddress > Symbol.st_value) 4771 updateSymbolValue(*SymbolName, NextAvailableAddress); 4772 goto registerSymbol; 4773 } 4774 4775 if (Function) { 4776 // If the symbol matched a function that was not emitted, update the 4777 // corresponding section index but otherwise leave it unchanged. 4778 if (Function->isEmitted()) { 4779 NewSymbol.st_value = Function->getOutputAddress(); 4780 NewSymbol.st_size = Function->getOutputSize(); 4781 NewSymbol.st_shndx = Function->getCodeSection()->getIndex(); 4782 } else if (Symbol.st_shndx < ELF::SHN_LORESERVE) { 4783 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); 4784 } 4785 4786 // Add new symbols to the symbol table if necessary. 4787 if (!IsDynSym) 4788 addExtraSymbols(*Function, NewSymbol); 4789 } else { 4790 // Check if the function symbol matches address inside a function, i.e. 4791 // it marks a secondary entry point. 4792 Function = 4793 (Symbol.getType() == ELF::STT_FUNC) 4794 ? BC->getBinaryFunctionContainingAddress(Symbol.st_value, 4795 /*CheckPastEnd=*/false, 4796 /*UseMaxSize=*/true) 4797 : nullptr; 4798 4799 if (Function && Function->isEmitted()) { 4800 assert(Function->getLayout().isHotColdSplit() && 4801 "Adding symbols based on cold fragment when there are more than " 4802 "2 fragments"); 4803 const uint64_t OutputAddress = 4804 Function->translateInputToOutputAddress(Symbol.st_value); 4805 4806 NewSymbol.st_value = OutputAddress; 4807 // Force secondary entry points to have zero size. 4808 NewSymbol.st_size = 0; 4809 4810 // Find fragment containing entrypoint 4811 FunctionLayout::fragment_const_iterator FF = llvm::find_if( 4812 Function->getLayout().fragments(), [&](const FunctionFragment &FF) { 4813 uint64_t Lo = FF.getAddress(); 4814 uint64_t Hi = Lo + FF.getImageSize(); 4815 return Lo <= OutputAddress && OutputAddress < Hi; 4816 }); 4817 4818 if (FF == Function->getLayout().fragment_end()) { 4819 assert( 4820 OutputAddress >= Function->getCodeSection()->getOutputAddress() && 4821 OutputAddress < (Function->getCodeSection()->getOutputAddress() + 4822 Function->getCodeSection()->getOutputSize()) && 4823 "Cannot locate fragment containing secondary entrypoint"); 4824 FF = Function->getLayout().fragment_begin(); 4825 } 4826 4827 NewSymbol.st_shndx = 4828 Function->getCodeSection(FF->getFragmentNum())->getIndex(); 4829 } else { 4830 // Check if the symbol belongs to moved data object and update it. 4831 BinaryData *BD = opts::ReorderData.empty() 4832 ? nullptr 4833 : BC->getBinaryDataAtAddress(Symbol.st_value); 4834 if (BD && BD->isMoved() && !BD->isJumpTable()) { 4835 assert((!BD->getSize() || !Symbol.st_size || 4836 Symbol.st_size == BD->getSize()) && 4837 "sizes must match"); 4838 4839 BinarySection &OutputSection = BD->getOutputSection(); 4840 assert(OutputSection.getIndex()); 4841 LLVM_DEBUG(dbgs() 4842 << "BOLT-DEBUG: moving " << BD->getName() << " from " 4843 << *BC->getSectionNameForAddress(Symbol.st_value) << " (" 4844 << Symbol.st_shndx << ") to " << OutputSection.getName() 4845 << " (" << OutputSection.getIndex() << ")\n"); 4846 NewSymbol.st_shndx = OutputSection.getIndex(); 4847 NewSymbol.st_value = BD->getOutputAddress(); 4848 } else { 4849 // Otherwise just update the section for the symbol. 4850 if (Symbol.st_shndx < ELF::SHN_LORESERVE) 4851 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); 4852 } 4853 4854 // Detect local syms in the text section that we didn't update 4855 // and that were preserved by the linker to support relocations against 4856 // .text. Remove them from the symtab. 4857 if (Symbol.getType() == ELF::STT_NOTYPE && 4858 Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) { 4859 if (BC->getBinaryFunctionContainingAddress(Symbol.st_value, 4860 /*CheckPastEnd=*/false, 4861 /*UseMaxSize=*/true)) { 4862 // Can only delete the symbol if not patching. Such symbols should 4863 // not exist in the dynamic symbol table. 4864 assert(!IsDynSym && "cannot delete symbol"); 4865 continue; 4866 } 4867 } 4868 } 4869 } 4870 4871 registerSymbol: 4872 if (IsDynSym) 4873 Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) * 4874 sizeof(ELFSymTy), 4875 NewSymbol); 4876 else 4877 Symbols.emplace_back(NewSymbol); 4878 } 4879 4880 if (IsDynSym) { 4881 assert(Symbols.empty()); 4882 return; 4883 } 4884 4885 // Add symbols of injected functions 4886 for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) { 4887 ELFSymTy NewSymbol; 4888 BinarySection *OriginSection = Function->getOriginSection(); 4889 NewSymbol.st_shndx = 4890 OriginSection 4891 ? getNewSectionIndex(OriginSection->getSectionRef().getIndex()) 4892 : Function->getCodeSection()->getIndex(); 4893 NewSymbol.st_value = Function->getOutputAddress(); 4894 NewSymbol.st_name = AddToStrTab(Function->getOneName()); 4895 NewSymbol.st_size = Function->getOutputSize(); 4896 NewSymbol.st_other = 0; 4897 NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); 4898 Symbols.emplace_back(NewSymbol); 4899 4900 if (Function->isSplit()) { 4901 assert(Function->getLayout().isHotColdSplit() && 4902 "Adding symbols based on cold fragment when there are more than " 4903 "2 fragments"); 4904 ELFSymTy NewColdSym = NewSymbol; 4905 NewColdSym.setType(ELF::STT_NOTYPE); 4906 SmallVector<char, 256> Buf; 4907 NewColdSym.st_name = AddToStrTab( 4908 Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf)); 4909 const FunctionFragment &ColdFF = 4910 Function->getLayout().getFragment(FragmentNum::cold()); 4911 NewColdSym.st_value = ColdFF.getAddress(); 4912 NewColdSym.st_size = ColdFF.getImageSize(); 4913 Symbols.emplace_back(NewColdSym); 4914 } 4915 } 4916 4917 auto AddSymbol = [&](const StringRef &Name, uint64_t Address) { 4918 if (!Address) 4919 return; 4920 4921 ELFSymTy Symbol; 4922 Symbol.st_value = Address; 4923 Symbol.st_shndx = ELF::SHN_ABS; 4924 Symbol.st_name = AddToStrTab(Name); 4925 Symbol.st_size = 0; 4926 Symbol.st_other = 0; 4927 Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE); 4928 4929 BC->outs() << "BOLT-INFO: setting " << Name << " to 0x" 4930 << Twine::utohexstr(Symbol.st_value) << '\n'; 4931 4932 Symbols.emplace_back(Symbol); 4933 }; 4934 4935 // Add runtime library start and fini address symbols 4936 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) { 4937 AddSymbol("__bolt_runtime_start", RtLibrary->getRuntimeStartAddress()); 4938 AddSymbol("__bolt_runtime_fini", RtLibrary->getRuntimeFiniAddress()); 4939 } 4940 4941 assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) && 4942 "either none or both __hot_start/__hot_end symbols were expected"); 4943 assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) && 4944 "either none or both __hot_data_start/__hot_data_end symbols were " 4945 "expected"); 4946 4947 auto AddEmittedSymbol = [&](const StringRef &Name) { 4948 AddSymbol(Name, getNewValueForSymbol(Name)); 4949 }; 4950 4951 if (opts::HotText && !NumHotTextSymsUpdated) { 4952 AddEmittedSymbol("__hot_start"); 4953 AddEmittedSymbol("__hot_end"); 4954 } 4955 4956 if (opts::HotData && !NumHotDataSymsUpdated) { 4957 AddEmittedSymbol("__hot_data_start"); 4958 AddEmittedSymbol("__hot_data_end"); 4959 } 4960 4961 // Put local symbols at the beginning. 4962 llvm::stable_sort(Symbols, [](const ELFSymTy &A, const ELFSymTy &B) { 4963 if (A.getBinding() == ELF::STB_LOCAL && B.getBinding() != ELF::STB_LOCAL) 4964 return true; 4965 return false; 4966 }); 4967 4968 for (const ELFSymTy &Symbol : Symbols) 4969 Write(0, Symbol); 4970 } 4971 4972 template <typename ELFT> 4973 void RewriteInstance::patchELFSymTabs(ELFObjectFile<ELFT> *File) { 4974 const ELFFile<ELFT> &Obj = File->getELFFile(); 4975 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4976 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; 4977 4978 // Compute a preview of how section indices will change after rewriting, so 4979 // we can properly update the symbol table based on new section indices. 4980 std::vector<uint32_t> NewSectionIndex; 4981 getOutputSections(File, NewSectionIndex); 4982 4983 // Update dynamic symbol table. 4984 const ELFShdrTy *DynSymSection = nullptr; 4985 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4986 if (Section.sh_type == ELF::SHT_DYNSYM) { 4987 DynSymSection = &Section; 4988 break; 4989 } 4990 } 4991 assert((DynSymSection || BC->IsStaticExecutable) && 4992 "dynamic symbol table expected"); 4993 if (DynSymSection) { 4994 updateELFSymbolTable( 4995 File, 4996 /*IsDynSym=*/true, 4997 *DynSymSection, 4998 NewSectionIndex, 4999 [&](size_t Offset, const ELFSymTy &Sym) { 5000 Out->os().pwrite(reinterpret_cast<const char *>(&Sym), 5001 sizeof(ELFSymTy), 5002 DynSymSection->sh_offset + Offset); 5003 }, 5004 [](StringRef) -> size_t { return 0; }); 5005 } 5006 5007 if (opts::RemoveSymtab) 5008 return; 5009 5010 // (re)create regular symbol table. 5011 const ELFShdrTy *SymTabSection = nullptr; 5012 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 5013 if (Section.sh_type == ELF::SHT_SYMTAB) { 5014 SymTabSection = &Section; 5015 break; 5016 } 5017 } 5018 if (!SymTabSection) { 5019 BC->errs() << "BOLT-WARNING: no symbol table found\n"; 5020 return; 5021 } 5022 5023 const ELFShdrTy *StrTabSection = 5024 cantFail(Obj.getSection(SymTabSection->sh_link)); 5025 std::string NewContents; 5026 std::string NewStrTab = std::string( 5027 File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size)); 5028 StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection)); 5029 StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection)); 5030 5031 NumLocalSymbols = 0; 5032 updateELFSymbolTable( 5033 File, 5034 /*IsDynSym=*/false, 5035 *SymTabSection, 5036 NewSectionIndex, 5037 [&](size_t Offset, const ELFSymTy &Sym) { 5038 if (Sym.getBinding() == ELF::STB_LOCAL) 5039 ++NumLocalSymbols; 5040 NewContents.append(reinterpret_cast<const char *>(&Sym), 5041 sizeof(ELFSymTy)); 5042 }, 5043 [&](StringRef Str) { 5044 size_t Idx = NewStrTab.size(); 5045 NewStrTab.append(NameResolver::restore(Str).str()); 5046 NewStrTab.append(1, '\0'); 5047 return Idx; 5048 }); 5049 5050 BC->registerOrUpdateNoteSection(SecName, 5051 copyByteArray(NewContents), 5052 NewContents.size(), 5053 /*Alignment=*/1, 5054 /*IsReadOnly=*/true, 5055 ELF::SHT_SYMTAB); 5056 5057 BC->registerOrUpdateNoteSection(StrSecName, 5058 copyByteArray(NewStrTab), 5059 NewStrTab.size(), 5060 /*Alignment=*/1, 5061 /*IsReadOnly=*/true, 5062 ELF::SHT_STRTAB); 5063 } 5064 5065 template <typename ELFT> 5066 void RewriteInstance::patchELFAllocatableRelrSection( 5067 ELFObjectFile<ELFT> *File) { 5068 if (!DynamicRelrAddress) 5069 return; 5070 5071 raw_fd_ostream &OS = Out->os(); 5072 const uint8_t PSize = BC->AsmInfo->getCodePointerSize(); 5073 const uint64_t MaxDelta = ((CHAR_BIT * DynamicRelrEntrySize) - 1) * PSize; 5074 5075 auto FixAddend = [&](const BinarySection &Section, const Relocation &Rel, 5076 uint64_t FileOffset) { 5077 // Fix relocation symbol value in place if no static relocation found 5078 // on the same address. We won't check the BF relocations here since it 5079 // is rare case and no optimization is required. 5080 if (Section.getRelocationAt(Rel.Offset)) 5081 return; 5082 5083 // No fixup needed if symbol address was not changed 5084 const uint64_t Addend = getNewFunctionOrDataAddress(Rel.Addend); 5085 if (!Addend) 5086 return; 5087 5088 OS.pwrite(reinterpret_cast<const char *>(&Addend), PSize, FileOffset); 5089 }; 5090 5091 // Fill new relative relocation offsets set 5092 std::set<uint64_t> RelOffsets; 5093 for (const BinarySection &Section : BC->allocatableSections()) { 5094 const uint64_t SectionInputAddress = Section.getAddress(); 5095 uint64_t SectionAddress = Section.getOutputAddress(); 5096 if (!SectionAddress) 5097 SectionAddress = SectionInputAddress; 5098 5099 for (const Relocation &Rel : Section.dynamicRelocations()) { 5100 if (!Rel.isRelative()) 5101 continue; 5102 5103 uint64_t RelOffset = 5104 getNewFunctionOrDataAddress(SectionInputAddress + Rel.Offset); 5105 5106 RelOffset = RelOffset == 0 ? SectionAddress + Rel.Offset : RelOffset; 5107 assert((RelOffset & 1) == 0 && "Wrong relocation offset"); 5108 RelOffsets.emplace(RelOffset); 5109 FixAddend(Section, Rel, RelOffset); 5110 } 5111 } 5112 5113 ErrorOr<BinarySection &> Section = 5114 BC->getSectionForAddress(*DynamicRelrAddress); 5115 assert(Section && "cannot get .relr.dyn section"); 5116 assert(Section->isRelr() && "Expected section to be SHT_RELR type"); 5117 uint64_t RelrDynOffset = Section->getInputFileOffset(); 5118 const uint64_t RelrDynEndOffset = RelrDynOffset + Section->getSize(); 5119 5120 auto WriteRelr = [&](uint64_t Value) { 5121 if (RelrDynOffset + DynamicRelrEntrySize > RelrDynEndOffset) { 5122 BC->errs() << "BOLT-ERROR: Offset overflow for relr.dyn section\n"; 5123 exit(1); 5124 } 5125 5126 OS.pwrite(reinterpret_cast<const char *>(&Value), DynamicRelrEntrySize, 5127 RelrDynOffset); 5128 RelrDynOffset += DynamicRelrEntrySize; 5129 }; 5130 5131 for (auto RelIt = RelOffsets.begin(); RelIt != RelOffsets.end();) { 5132 WriteRelr(*RelIt); 5133 uint64_t Base = *RelIt++ + PSize; 5134 while (1) { 5135 uint64_t Bitmap = 0; 5136 for (; RelIt != RelOffsets.end(); ++RelIt) { 5137 const uint64_t Delta = *RelIt - Base; 5138 if (Delta >= MaxDelta || Delta % PSize) 5139 break; 5140 5141 Bitmap |= (1ULL << (Delta / PSize)); 5142 } 5143 5144 if (!Bitmap) 5145 break; 5146 5147 WriteRelr((Bitmap << 1) | 1); 5148 Base += MaxDelta; 5149 } 5150 } 5151 5152 // Fill the rest of the section with empty bitmap value 5153 while (RelrDynOffset != RelrDynEndOffset) 5154 WriteRelr(1); 5155 } 5156 5157 template <typename ELFT> 5158 void 5159 RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile<ELFT> *File) { 5160 using Elf_Rela = typename ELFT::Rela; 5161 raw_fd_ostream &OS = Out->os(); 5162 const ELFFile<ELFT> &EF = File->getELFFile(); 5163 5164 uint64_t RelDynOffset = 0, RelDynEndOffset = 0; 5165 uint64_t RelPltOffset = 0, RelPltEndOffset = 0; 5166 5167 auto setSectionFileOffsets = [&](uint64_t Address, uint64_t &Start, 5168 uint64_t &End) { 5169 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 5170 assert(Section && "cannot get relocation section"); 5171 Start = Section->getInputFileOffset(); 5172 End = Start + Section->getSize(); 5173 }; 5174 5175 if (!DynamicRelocationsAddress && !PLTRelocationsAddress) 5176 return; 5177 5178 if (DynamicRelocationsAddress) 5179 setSectionFileOffsets(*DynamicRelocationsAddress, RelDynOffset, 5180 RelDynEndOffset); 5181 5182 if (PLTRelocationsAddress) 5183 setSectionFileOffsets(*PLTRelocationsAddress, RelPltOffset, 5184 RelPltEndOffset); 5185 5186 DynamicRelativeRelocationsCount = 0; 5187 5188 auto writeRela = [&OS](const Elf_Rela *RelA, uint64_t &Offset) { 5189 OS.pwrite(reinterpret_cast<const char *>(RelA), sizeof(*RelA), Offset); 5190 Offset += sizeof(*RelA); 5191 }; 5192 5193 auto writeRelocations = [&](bool PatchRelative) { 5194 for (BinarySection &Section : BC->allocatableSections()) { 5195 const uint64_t SectionInputAddress = Section.getAddress(); 5196 uint64_t SectionAddress = Section.getOutputAddress(); 5197 if (!SectionAddress) 5198 SectionAddress = SectionInputAddress; 5199 5200 for (const Relocation &Rel : Section.dynamicRelocations()) { 5201 const bool IsRelative = Rel.isRelative(); 5202 if (PatchRelative != IsRelative) 5203 continue; 5204 5205 if (IsRelative) 5206 ++DynamicRelativeRelocationsCount; 5207 5208 Elf_Rela NewRelA; 5209 MCSymbol *Symbol = Rel.Symbol; 5210 uint32_t SymbolIdx = 0; 5211 uint64_t Addend = Rel.Addend; 5212 uint64_t RelOffset = 5213 getNewFunctionOrDataAddress(SectionInputAddress + Rel.Offset); 5214 5215 RelOffset = RelOffset == 0 ? SectionAddress + Rel.Offset : RelOffset; 5216 if (Rel.Symbol) { 5217 SymbolIdx = getOutputDynamicSymbolIndex(Symbol); 5218 } else { 5219 // Usually this case is used for R_*_(I)RELATIVE relocations 5220 const uint64_t Address = getNewFunctionOrDataAddress(Addend); 5221 if (Address) 5222 Addend = Address; 5223 } 5224 5225 NewRelA.setSymbolAndType(SymbolIdx, Rel.Type, EF.isMips64EL()); 5226 NewRelA.r_offset = RelOffset; 5227 NewRelA.r_addend = Addend; 5228 5229 const bool IsJmpRel = IsJmpRelocation.contains(Rel.Type); 5230 uint64_t &Offset = IsJmpRel ? RelPltOffset : RelDynOffset; 5231 const uint64_t &EndOffset = 5232 IsJmpRel ? RelPltEndOffset : RelDynEndOffset; 5233 if (!Offset || !EndOffset) { 5234 BC->errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n"; 5235 exit(1); 5236 } 5237 5238 if (Offset + sizeof(NewRelA) > EndOffset) { 5239 BC->errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n"; 5240 exit(1); 5241 } 5242 5243 writeRela(&NewRelA, Offset); 5244 } 5245 } 5246 }; 5247 5248 // Place R_*_RELATIVE relocations in RELA section if RELR is not presented. 5249 // The dynamic linker expects all R_*_RELATIVE relocations in RELA 5250 // to be emitted first. 5251 if (!DynamicRelrAddress) 5252 writeRelocations(/* PatchRelative */ true); 5253 writeRelocations(/* PatchRelative */ false); 5254 5255 auto fillNone = [&](uint64_t &Offset, uint64_t EndOffset) { 5256 if (!Offset) 5257 return; 5258 5259 typename ELFObjectFile<ELFT>::Elf_Rela RelA; 5260 RelA.setSymbolAndType(0, Relocation::getNone(), EF.isMips64EL()); 5261 RelA.r_offset = 0; 5262 RelA.r_addend = 0; 5263 while (Offset < EndOffset) 5264 writeRela(&RelA, Offset); 5265 5266 assert(Offset == EndOffset && "Unexpected section overflow"); 5267 }; 5268 5269 // Fill the rest of the sections with R_*_NONE relocations 5270 fillNone(RelDynOffset, RelDynEndOffset); 5271 fillNone(RelPltOffset, RelPltEndOffset); 5272 } 5273 5274 template <typename ELFT> 5275 void RewriteInstance::patchELFGOT(ELFObjectFile<ELFT> *File) { 5276 raw_fd_ostream &OS = Out->os(); 5277 5278 SectionRef GOTSection; 5279 for (const SectionRef &Section : File->sections()) { 5280 StringRef SectionName = cantFail(Section.getName()); 5281 if (SectionName == ".got") { 5282 GOTSection = Section; 5283 break; 5284 } 5285 } 5286 if (!GOTSection.getObject()) { 5287 if (!BC->IsStaticExecutable) 5288 BC->errs() << "BOLT-INFO: no .got section found\n"; 5289 return; 5290 } 5291 5292 StringRef GOTContents = cantFail(GOTSection.getContents()); 5293 for (const uint64_t *GOTEntry = 5294 reinterpret_cast<const uint64_t *>(GOTContents.data()); 5295 GOTEntry < reinterpret_cast<const uint64_t *>(GOTContents.data() + 5296 GOTContents.size()); 5297 ++GOTEntry) { 5298 if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) { 5299 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x" 5300 << Twine::utohexstr(*GOTEntry) << " with 0x" 5301 << Twine::utohexstr(NewAddress) << '\n'); 5302 OS.pwrite(reinterpret_cast<const char *>(&NewAddress), sizeof(NewAddress), 5303 reinterpret_cast<const char *>(GOTEntry) - 5304 File->getData().data()); 5305 } 5306 } 5307 } 5308 5309 template <typename ELFT> 5310 void RewriteInstance::patchELFDynamic(ELFObjectFile<ELFT> *File) { 5311 if (BC->IsStaticExecutable) 5312 return; 5313 5314 const ELFFile<ELFT> &Obj = File->getELFFile(); 5315 raw_fd_ostream &OS = Out->os(); 5316 5317 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; 5318 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; 5319 5320 // Locate DYNAMIC by looking through program headers. 5321 uint64_t DynamicOffset = 0; 5322 const Elf_Phdr *DynamicPhdr = nullptr; 5323 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { 5324 if (Phdr.p_type == ELF::PT_DYNAMIC) { 5325 DynamicOffset = Phdr.p_offset; 5326 DynamicPhdr = &Phdr; 5327 assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match"); 5328 break; 5329 } 5330 } 5331 assert(DynamicPhdr && "missing dynamic in ELF binary"); 5332 5333 bool ZNowSet = false; 5334 5335 // Go through all dynamic entries and patch functions addresses with 5336 // new ones. 5337 typename ELFT::DynRange DynamicEntries = 5338 cantFail(Obj.dynamicEntries(), "error accessing dynamic table"); 5339 auto DTB = DynamicEntries.begin(); 5340 for (const Elf_Dyn &Dyn : DynamicEntries) { 5341 Elf_Dyn NewDE = Dyn; 5342 bool ShouldPatch = true; 5343 switch (Dyn.d_tag) { 5344 default: 5345 ShouldPatch = false; 5346 break; 5347 case ELF::DT_RELACOUNT: 5348 NewDE.d_un.d_val = DynamicRelativeRelocationsCount; 5349 break; 5350 case ELF::DT_INIT: 5351 case ELF::DT_FINI: { 5352 if (BC->HasRelocations) { 5353 if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) { 5354 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type " 5355 << Dyn.getTag() << '\n'); 5356 NewDE.d_un.d_ptr = NewAddress; 5357 } 5358 } 5359 RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary(); 5360 if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) { 5361 if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress()) 5362 NewDE.d_un.d_ptr = Addr; 5363 } 5364 if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) { 5365 if (auto Addr = RtLibrary->getRuntimeStartAddress()) { 5366 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x" 5367 << Twine::utohexstr(Addr) << '\n'); 5368 NewDE.d_un.d_ptr = Addr; 5369 } 5370 } 5371 break; 5372 } 5373 case ELF::DT_FLAGS: 5374 if (BC->RequiresZNow) { 5375 NewDE.d_un.d_val |= ELF::DF_BIND_NOW; 5376 ZNowSet = true; 5377 } 5378 break; 5379 case ELF::DT_FLAGS_1: 5380 if (BC->RequiresZNow) { 5381 NewDE.d_un.d_val |= ELF::DF_1_NOW; 5382 ZNowSet = true; 5383 } 5384 break; 5385 } 5386 if (ShouldPatch) 5387 OS.pwrite(reinterpret_cast<const char *>(&NewDE), sizeof(NewDE), 5388 DynamicOffset + (&Dyn - DTB) * sizeof(Dyn)); 5389 } 5390 5391 if (BC->RequiresZNow && !ZNowSet) { 5392 BC->errs() 5393 << "BOLT-ERROR: output binary requires immediate relocation " 5394 "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in " 5395 ".dynamic. Please re-link the binary with -znow.\n"; 5396 exit(1); 5397 } 5398 } 5399 5400 template <typename ELFT> 5401 Error RewriteInstance::readELFDynamic(ELFObjectFile<ELFT> *File) { 5402 const ELFFile<ELFT> &Obj = File->getELFFile(); 5403 5404 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; 5405 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; 5406 5407 // Locate DYNAMIC by looking through program headers. 5408 const Elf_Phdr *DynamicPhdr = nullptr; 5409 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { 5410 if (Phdr.p_type == ELF::PT_DYNAMIC) { 5411 DynamicPhdr = &Phdr; 5412 break; 5413 } 5414 } 5415 5416 if (!DynamicPhdr) { 5417 BC->outs() << "BOLT-INFO: static input executable detected\n"; 5418 // TODO: static PIE executable might have dynamic header 5419 BC->IsStaticExecutable = true; 5420 return Error::success(); 5421 } 5422 5423 if (DynamicPhdr->p_memsz != DynamicPhdr->p_filesz) 5424 return createStringError(errc::executable_format_error, 5425 "dynamic section sizes should match"); 5426 5427 // Go through all dynamic entries to locate entries of interest. 5428 auto DynamicEntriesOrErr = Obj.dynamicEntries(); 5429 if (!DynamicEntriesOrErr) 5430 return DynamicEntriesOrErr.takeError(); 5431 typename ELFT::DynRange DynamicEntries = DynamicEntriesOrErr.get(); 5432 5433 for (const Elf_Dyn &Dyn : DynamicEntries) { 5434 switch (Dyn.d_tag) { 5435 case ELF::DT_INIT: 5436 if (!BC->HasInterpHeader) { 5437 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n"); 5438 BC->StartFunctionAddress = Dyn.getPtr(); 5439 } 5440 break; 5441 case ELF::DT_FINI: 5442 BC->FiniAddress = Dyn.getPtr(); 5443 break; 5444 case ELF::DT_FINI_ARRAY: 5445 BC->FiniArrayAddress = Dyn.getPtr(); 5446 break; 5447 case ELF::DT_FINI_ARRAYSZ: 5448 BC->FiniArraySize = Dyn.getPtr(); 5449 break; 5450 case ELF::DT_RELA: 5451 DynamicRelocationsAddress = Dyn.getPtr(); 5452 break; 5453 case ELF::DT_RELASZ: 5454 DynamicRelocationsSize = Dyn.getVal(); 5455 break; 5456 case ELF::DT_JMPREL: 5457 PLTRelocationsAddress = Dyn.getPtr(); 5458 break; 5459 case ELF::DT_PLTRELSZ: 5460 PLTRelocationsSize = Dyn.getVal(); 5461 break; 5462 case ELF::DT_RELACOUNT: 5463 DynamicRelativeRelocationsCount = Dyn.getVal(); 5464 break; 5465 case ELF::DT_RELR: 5466 DynamicRelrAddress = Dyn.getPtr(); 5467 break; 5468 case ELF::DT_RELRSZ: 5469 DynamicRelrSize = Dyn.getVal(); 5470 break; 5471 case ELF::DT_RELRENT: 5472 DynamicRelrEntrySize = Dyn.getVal(); 5473 break; 5474 } 5475 } 5476 5477 if (!DynamicRelocationsAddress || !DynamicRelocationsSize) { 5478 DynamicRelocationsAddress.reset(); 5479 DynamicRelocationsSize = 0; 5480 } 5481 5482 if (!PLTRelocationsAddress || !PLTRelocationsSize) { 5483 PLTRelocationsAddress.reset(); 5484 PLTRelocationsSize = 0; 5485 } 5486 5487 if (!DynamicRelrAddress || !DynamicRelrSize) { 5488 DynamicRelrAddress.reset(); 5489 DynamicRelrSize = 0; 5490 } else if (!DynamicRelrEntrySize) { 5491 BC->errs() << "BOLT-ERROR: expected DT_RELRENT to be presented " 5492 << "in DYNAMIC section\n"; 5493 exit(1); 5494 } else if (DynamicRelrSize % DynamicRelrEntrySize) { 5495 BC->errs() << "BOLT-ERROR: expected RELR table size to be divisible " 5496 << "by RELR entry size\n"; 5497 exit(1); 5498 } 5499 5500 return Error::success(); 5501 } 5502 5503 uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) { 5504 const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress); 5505 if (!Function) 5506 return 0; 5507 5508 return Function->getOutputAddress(); 5509 } 5510 5511 uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress) { 5512 if (uint64_t Function = getNewFunctionAddress(OldAddress)) 5513 return Function; 5514 5515 const BinaryData *BD = BC->getBinaryDataAtAddress(OldAddress); 5516 if (BD && BD->isMoved()) 5517 return BD->getOutputAddress(); 5518 5519 if (const BinaryFunction *BF = 5520 BC->getBinaryFunctionContainingAddress(OldAddress)) { 5521 if (BF->isEmitted()) { 5522 // If OldAddress is the another entry point of 5523 // the function, then BOLT could get the new address. 5524 if (BF->isMultiEntry()) { 5525 for (const BinaryBasicBlock &BB : *BF) 5526 if (BB.isEntryPoint() && 5527 (BF->getAddress() + BB.getOffset()) == OldAddress) 5528 return BF->getOutputAddress() + BB.getOffset(); 5529 } 5530 BC->errs() << "BOLT-ERROR: unable to get new address corresponding to " 5531 "input address 0x" 5532 << Twine::utohexstr(OldAddress) << " in function " << *BF 5533 << ". Consider adding this function to --skip-funcs=...\n"; 5534 exit(1); 5535 } 5536 } 5537 5538 return 0; 5539 } 5540 5541 void RewriteInstance::rewriteFile() { 5542 std::error_code EC; 5543 Out = std::make_unique<ToolOutputFile>(opts::OutputFilename, EC, 5544 sys::fs::OF_None); 5545 check_error(EC, "cannot create output executable file"); 5546 5547 raw_fd_ostream &OS = Out->os(); 5548 5549 // Copy allocatable part of the input. 5550 OS << InputFile->getData().substr(0, FirstNonAllocatableOffset); 5551 5552 auto Streamer = BC->createStreamer(OS); 5553 // Make sure output stream has enough reserved space, otherwise 5554 // pwrite() will fail. 5555 uint64_t Offset = std::max(getFileOffsetForAddress(NextAvailableAddress), 5556 FirstNonAllocatableOffset); 5557 Offset = OS.seek(Offset); 5558 assert((Offset != (uint64_t)-1) && "Error resizing output file"); 5559 5560 // Overwrite functions with fixed output address. This is mostly used by 5561 // non-relocation mode, with one exception: injected functions are covered 5562 // here in both modes. 5563 uint64_t CountOverwrittenFunctions = 0; 5564 uint64_t OverwrittenScore = 0; 5565 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { 5566 if (Function->getImageAddress() == 0 || Function->getImageSize() == 0) 5567 continue; 5568 5569 if (Function->getImageSize() > Function->getMaxSize()) { 5570 assert(!BC->isX86() && "Unexpected large function."); 5571 if (opts::Verbosity >= 1) 5572 BC->errs() << "BOLT-WARNING: new function size (0x" 5573 << Twine::utohexstr(Function->getImageSize()) 5574 << ") is larger than maximum allowed size (0x" 5575 << Twine::utohexstr(Function->getMaxSize()) 5576 << ") for function " << *Function << '\n'; 5577 5578 // Remove jump table sections that this function owns in non-reloc mode 5579 // because we don't want to write them anymore. 5580 if (!BC->HasRelocations && opts::JumpTables == JTS_BASIC) { 5581 for (auto &JTI : Function->JumpTables) { 5582 JumpTable *JT = JTI.second; 5583 BinarySection &Section = JT->getOutputSection(); 5584 BC->deregisterSection(Section); 5585 } 5586 } 5587 continue; 5588 } 5589 5590 const auto HasAddress = [](const FunctionFragment &FF) { 5591 return FF.empty() || 5592 (FF.getImageAddress() != 0 && FF.getImageSize() != 0); 5593 }; 5594 const bool SplitFragmentsHaveAddress = 5595 llvm::all_of(Function->getLayout().getSplitFragments(), HasAddress); 5596 if (Function->isSplit() && !SplitFragmentsHaveAddress) { 5597 const auto HasNoAddress = [](const FunctionFragment &FF) { 5598 return FF.getImageAddress() == 0 && FF.getImageSize() == 0; 5599 }; 5600 assert(llvm::all_of(Function->getLayout().getSplitFragments(), 5601 HasNoAddress) && 5602 "Some split fragments have an address while others do not"); 5603 (void)HasNoAddress; 5604 continue; 5605 } 5606 5607 OverwrittenScore += Function->getFunctionScore(); 5608 ++CountOverwrittenFunctions; 5609 5610 // Overwrite function in the output file. 5611 if (opts::Verbosity >= 2) 5612 BC->outs() << "BOLT: rewriting function \"" << *Function << "\"\n"; 5613 5614 OS.pwrite(reinterpret_cast<char *>(Function->getImageAddress()), 5615 Function->getImageSize(), Function->getFileOffset()); 5616 5617 // Write nops at the end of the function. 5618 if (Function->getMaxSize() != std::numeric_limits<uint64_t>::max()) { 5619 uint64_t Pos = OS.tell(); 5620 OS.seek(Function->getFileOffset() + Function->getImageSize()); 5621 BC->MAB->writeNopData( 5622 OS, Function->getMaxSize() - Function->getImageSize(), &*BC->STI); 5623 5624 OS.seek(Pos); 5625 } 5626 5627 if (!Function->isSplit()) 5628 continue; 5629 5630 // Write cold part 5631 if (opts::Verbosity >= 2) { 5632 BC->outs() << formatv("BOLT: rewriting function \"{0}\" (split parts)\n", 5633 *Function); 5634 } 5635 5636 for (const FunctionFragment &FF : 5637 Function->getLayout().getSplitFragments()) { 5638 OS.pwrite(reinterpret_cast<char *>(FF.getImageAddress()), 5639 FF.getImageSize(), FF.getFileOffset()); 5640 } 5641 } 5642 5643 // Print function statistics for non-relocation mode. 5644 if (!BC->HasRelocations) { 5645 BC->outs() << "BOLT: " << CountOverwrittenFunctions << " out of " 5646 << BC->getBinaryFunctions().size() 5647 << " functions were overwritten.\n"; 5648 if (BC->TotalScore != 0) { 5649 double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0; 5650 BC->outs() << format("BOLT-INFO: rewritten functions cover %.2lf", 5651 Coverage) 5652 << "% of the execution count of simple functions of " 5653 "this binary\n"; 5654 } 5655 } 5656 5657 if (BC->HasRelocations && opts::TrapOldCode) { 5658 uint64_t SavedPos = OS.tell(); 5659 // Overwrite function body to make sure we never execute these instructions. 5660 for (auto &BFI : BC->getBinaryFunctions()) { 5661 BinaryFunction &BF = BFI.second; 5662 if (!BF.getFileOffset() || !BF.isEmitted()) 5663 continue; 5664 OS.seek(BF.getFileOffset()); 5665 StringRef TrapInstr = BC->MIB->getTrapFillValue(); 5666 unsigned NInstr = BF.getMaxSize() / TrapInstr.size(); 5667 for (unsigned I = 0; I < NInstr; ++I) 5668 OS.write(TrapInstr.data(), TrapInstr.size()); 5669 } 5670 OS.seek(SavedPos); 5671 } 5672 5673 // Write all allocatable sections - reloc-mode text is written here as well 5674 for (BinarySection &Section : BC->allocatableSections()) { 5675 if (!Section.isFinalized() || !Section.getOutputData()) 5676 continue; 5677 if (Section.isLinkOnly()) 5678 continue; 5679 5680 if (opts::Verbosity >= 1) 5681 BC->outs() << "BOLT: writing new section " << Section.getName() 5682 << "\n data at 0x" 5683 << Twine::utohexstr(Section.getAllocAddress()) << "\n of size " 5684 << Section.getOutputSize() << "\n at offset " 5685 << Section.getOutputFileOffset() << '\n'; 5686 OS.pwrite(reinterpret_cast<const char *>(Section.getOutputData()), 5687 Section.getOutputSize(), Section.getOutputFileOffset()); 5688 } 5689 5690 for (BinarySection &Section : BC->allocatableSections()) 5691 Section.flushPendingRelocations(OS, [this](const MCSymbol *S) { 5692 return getNewValueForSymbol(S->getName()); 5693 }); 5694 5695 // If .eh_frame is present create .eh_frame_hdr. 5696 if (EHFrameSection) 5697 writeEHFrameHeader(); 5698 5699 // Add BOLT Addresses Translation maps to allow profile collection to 5700 // happen in the output binary 5701 if (opts::EnableBAT) 5702 addBATSection(); 5703 5704 // Patch program header table. 5705 if (!BC->IsLinuxKernel) 5706 patchELFPHDRTable(); 5707 5708 // Finalize memory image of section string table. 5709 finalizeSectionStringTable(); 5710 5711 // Update symbol tables. 5712 patchELFSymTabs(); 5713 5714 if (opts::EnableBAT) 5715 encodeBATSection(); 5716 5717 // Copy non-allocatable sections once allocatable part is finished. 5718 rewriteNoteSections(); 5719 5720 if (BC->HasRelocations) { 5721 patchELFAllocatableRelaSections(); 5722 patchELFAllocatableRelrSection(); 5723 patchELFGOT(); 5724 } 5725 5726 // Patch dynamic section/segment. 5727 patchELFDynamic(); 5728 5729 // Update ELF book-keeping info. 5730 patchELFSectionHeaderTable(); 5731 5732 if (opts::PrintSections) { 5733 BC->outs() << "BOLT-INFO: Sections after processing:\n"; 5734 BC->printSections(BC->outs()); 5735 } 5736 5737 Out->keep(); 5738 EC = sys::fs::setPermissions( 5739 opts::OutputFilename, 5740 static_cast<sys::fs::perms>(sys::fs::perms::all_all & 5741 ~sys::fs::getUmask())); 5742 check_error(EC, "cannot set permissions of output file"); 5743 } 5744 5745 void RewriteInstance::writeEHFrameHeader() { 5746 BinarySection *NewEHFrameSection = 5747 getSection(getNewSecPrefix() + getEHFrameSectionName()); 5748 5749 // No need to update the header if no new .eh_frame was created. 5750 if (!NewEHFrameSection) 5751 return; 5752 5753 DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true, 5754 NewEHFrameSection->getOutputAddress()); 5755 Error E = NewEHFrame.parse(DWARFDataExtractor( 5756 NewEHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(), 5757 BC->AsmInfo->getCodePointerSize())); 5758 check_error(std::move(E), "failed to parse EH frame"); 5759 5760 uint64_t RelocatedEHFrameAddress = 0; 5761 StringRef RelocatedEHFrameContents; 5762 BinarySection *RelocatedEHFrameSection = 5763 getSection(".relocated" + getEHFrameSectionName()); 5764 if (RelocatedEHFrameSection) { 5765 RelocatedEHFrameAddress = RelocatedEHFrameSection->getOutputAddress(); 5766 RelocatedEHFrameContents = RelocatedEHFrameSection->getOutputContents(); 5767 } 5768 DWARFDebugFrame RelocatedEHFrame(BC->TheTriple->getArch(), true, 5769 RelocatedEHFrameAddress); 5770 Error Er = RelocatedEHFrame.parse(DWARFDataExtractor( 5771 RelocatedEHFrameContents, BC->AsmInfo->isLittleEndian(), 5772 BC->AsmInfo->getCodePointerSize())); 5773 check_error(std::move(Er), "failed to parse EH frame"); 5774 5775 LLVM_DEBUG(dbgs() << "BOLT: writing a new " << getEHFrameHdrSectionName() 5776 << '\n'); 5777 5778 NextAvailableAddress = 5779 appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign); 5780 5781 const uint64_t EHFrameHdrOutputAddress = NextAvailableAddress; 5782 const uint64_t EHFrameHdrFileOffset = 5783 getFileOffsetForAddress(NextAvailableAddress); 5784 5785 std::vector<char> NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader( 5786 RelocatedEHFrame, NewEHFrame, EHFrameHdrOutputAddress, FailedAddresses); 5787 5788 Out->os().seek(EHFrameHdrFileOffset); 5789 Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size()); 5790 5791 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, 5792 /*IsText=*/false, 5793 /*IsAllocatable=*/true); 5794 BinarySection *OldEHFrameHdrSection = getSection(getEHFrameHdrSectionName()); 5795 if (OldEHFrameHdrSection) 5796 OldEHFrameHdrSection->setOutputName(getOrgSecPrefix() + 5797 getEHFrameHdrSectionName()); 5798 5799 BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection( 5800 getNewSecPrefix() + getEHFrameHdrSectionName(), ELF::SHT_PROGBITS, Flags, 5801 nullptr, NewEHFrameHdr.size(), /*Alignment=*/1); 5802 EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset); 5803 EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress); 5804 EHFrameHdrSec.setOutputName(getEHFrameHdrSectionName()); 5805 5806 NextAvailableAddress += EHFrameHdrSec.getOutputSize(); 5807 5808 if (!BC->BOLTReserved.empty() && 5809 (NextAvailableAddress > BC->BOLTReserved.end())) { 5810 BC->errs() << "BOLT-ERROR: unable to fit " << getEHFrameHdrSectionName() 5811 << " into reserved space\n"; 5812 exit(1); 5813 } 5814 5815 // Merge new .eh_frame with the relocated original so that gdb can locate all 5816 // FDEs. 5817 if (RelocatedEHFrameSection) { 5818 const uint64_t NewEHFrameSectionSize = 5819 RelocatedEHFrameSection->getOutputAddress() + 5820 RelocatedEHFrameSection->getOutputSize() - 5821 NewEHFrameSection->getOutputAddress(); 5822 NewEHFrameSection->updateContents(NewEHFrameSection->getOutputData(), 5823 NewEHFrameSectionSize); 5824 BC->deregisterSection(*RelocatedEHFrameSection); 5825 } 5826 5827 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is " 5828 << NewEHFrameSection->getOutputSize() << '\n'); 5829 } 5830 5831 uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) { 5832 auto Value = Linker->lookupSymbol(Name); 5833 if (Value) 5834 return *Value; 5835 5836 // Return the original value if we haven't emitted the symbol. 5837 BinaryData *BD = BC->getBinaryDataByName(Name); 5838 if (!BD) 5839 return 0; 5840 5841 return BD->getAddress(); 5842 } 5843 5844 uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const { 5845 // Check if it's possibly part of the new segment. 5846 if (NewTextSegmentAddress && Address >= NewTextSegmentAddress) 5847 return Address - NewTextSegmentAddress + NewTextSegmentOffset; 5848 5849 // Find an existing segment that matches the address. 5850 const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address); 5851 if (SegmentInfoI == BC->SegmentMapInfo.begin()) 5852 return 0; 5853 5854 const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second; 5855 if (Address < SegmentInfo.Address || 5856 Address >= SegmentInfo.Address + SegmentInfo.FileSize) 5857 return 0; 5858 5859 return SegmentInfo.FileOffset + Address - SegmentInfo.Address; 5860 } 5861 5862 bool RewriteInstance::willOverwriteSection(StringRef SectionName) { 5863 if (llvm::is_contained(SectionsToOverwrite, SectionName)) 5864 return true; 5865 if (llvm::is_contained(DebugSectionsToOverwrite, SectionName)) 5866 return true; 5867 5868 ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName); 5869 return Section && Section->isAllocatable() && Section->isFinalized(); 5870 } 5871 5872 bool RewriteInstance::isDebugSection(StringRef SectionName) { 5873 if (SectionName.starts_with(".debug_") || 5874 SectionName.starts_with(".zdebug_") || SectionName == ".gdb_index" || 5875 SectionName == ".stab" || SectionName == ".stabstr") 5876 return true; 5877 5878 return false; 5879 } 5880