xref: /llvm-project/bolt/lib/Rewrite/RewriteInstance.cpp (revision 6c8933e1a095028d648a5a26aecee0f569304dd0)
1 //===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "bolt/Rewrite/RewriteInstance.h"
10 #include "bolt/Core/AddressMap.h"
11 #include "bolt/Core/BinaryContext.h"
12 #include "bolt/Core/BinaryEmitter.h"
13 #include "bolt/Core/BinaryFunction.h"
14 #include "bolt/Core/DebugData.h"
15 #include "bolt/Core/Exceptions.h"
16 #include "bolt/Core/FunctionLayout.h"
17 #include "bolt/Core/MCPlusBuilder.h"
18 #include "bolt/Core/ParallelUtilities.h"
19 #include "bolt/Core/Relocation.h"
20 #include "bolt/Passes/BinaryPasses.h"
21 #include "bolt/Passes/CacheMetrics.h"
22 #include "bolt/Passes/ReorderFunctions.h"
23 #include "bolt/Profile/BoltAddressTranslation.h"
24 #include "bolt/Profile/DataAggregator.h"
25 #include "bolt/Profile/DataReader.h"
26 #include "bolt/Profile/YAMLProfileReader.h"
27 #include "bolt/Profile/YAMLProfileWriter.h"
28 #include "bolt/Rewrite/BinaryPassManager.h"
29 #include "bolt/Rewrite/DWARFRewriter.h"
30 #include "bolt/Rewrite/ExecutableFileMemoryManager.h"
31 #include "bolt/Rewrite/JITLinkLinker.h"
32 #include "bolt/Rewrite/MetadataRewriters.h"
33 #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h"
34 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h"
35 #include "bolt/Utils/CommandLineOpts.h"
36 #include "bolt/Utils/Utils.h"
37 #include "llvm/ADT/AddressRanges.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
40 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
41 #include "llvm/MC/MCAsmBackend.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
44 #include "llvm/MC/MCObjectStreamer.h"
45 #include "llvm/MC/MCStreamer.h"
46 #include "llvm/MC/MCSymbol.h"
47 #include "llvm/MC/TargetRegistry.h"
48 #include "llvm/Object/ObjectFile.h"
49 #include "llvm/Support/Alignment.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/DataExtractor.h"
53 #include "llvm/Support/Errc.h"
54 #include "llvm/Support/Error.h"
55 #include "llvm/Support/FileSystem.h"
56 #include "llvm/Support/ManagedStatic.h"
57 #include "llvm/Support/Timer.h"
58 #include "llvm/Support/ToolOutputFile.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <fstream>
62 #include <memory>
63 #include <optional>
64 #include <system_error>
65 
66 #undef  DEBUG_TYPE
67 #define DEBUG_TYPE "bolt"
68 
69 using namespace llvm;
70 using namespace object;
71 using namespace bolt;
72 
73 extern cl::opt<uint32_t> X86AlignBranchBoundary;
74 extern cl::opt<bool> X86AlignBranchWithin32BBoundaries;
75 
76 namespace opts {
77 
78 extern cl::list<std::string> HotTextMoveSections;
79 extern cl::opt<bool> Hugify;
80 extern cl::opt<bool> Instrument;
81 extern cl::opt<JumpTableSupportLevel> JumpTables;
82 extern cl::opt<bool> KeepNops;
83 extern cl::opt<bool> Lite;
84 extern cl::list<std::string> ReorderData;
85 extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions;
86 extern cl::opt<bool> TerminalTrap;
87 extern cl::opt<bool> TimeBuild;
88 extern cl::opt<bool> TimeRewrite;
89 
90 cl::opt<bool> AllowStripped("allow-stripped",
91                             cl::desc("allow processing of stripped binaries"),
92                             cl::Hidden, cl::cat(BoltCategory));
93 
94 static cl::opt<bool> ForceToDataRelocations(
95     "force-data-relocations",
96     cl::desc("force relocations to data sections to always be processed"),
97 
98     cl::Hidden, cl::cat(BoltCategory));
99 
100 cl::opt<std::string>
101     BoltID("bolt-id",
102            cl::desc("add any string to tag this execution in the "
103                     "output binary via bolt info section"),
104            cl::cat(BoltCategory));
105 
106 cl::opt<bool> DumpDotAll(
107     "dump-dot-all",
108     cl::desc("dump function CFGs to graphviz format after each stage;"
109              "enable '-print-loops' for color-coded blocks"),
110     cl::Hidden, cl::cat(BoltCategory));
111 
112 static cl::list<std::string>
113 ForceFunctionNames("funcs",
114   cl::CommaSeparated,
115   cl::desc("limit optimizations to functions from the list"),
116   cl::value_desc("func1,func2,func3,..."),
117   cl::Hidden,
118   cl::cat(BoltCategory));
119 
120 static cl::opt<std::string>
121 FunctionNamesFile("funcs-file",
122   cl::desc("file with list of functions to optimize"),
123   cl::Hidden,
124   cl::cat(BoltCategory));
125 
126 static cl::list<std::string> ForceFunctionNamesNR(
127     "funcs-no-regex", cl::CommaSeparated,
128     cl::desc("limit optimizations to functions from the list (non-regex)"),
129     cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory));
130 
131 static cl::opt<std::string> FunctionNamesFileNR(
132     "funcs-file-no-regex",
133     cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden,
134     cl::cat(BoltCategory));
135 
136 cl::opt<bool>
137 KeepTmp("keep-tmp",
138   cl::desc("preserve intermediate .o file"),
139   cl::Hidden,
140   cl::cat(BoltCategory));
141 
142 static cl::opt<unsigned>
143 LiteThresholdPct("lite-threshold-pct",
144   cl::desc("threshold (in percent) for selecting functions to process in lite "
145             "mode. Higher threshold means fewer functions to process. E.g "
146             "threshold of 90 means only top 10 percent of functions with "
147             "profile will be processed."),
148   cl::init(0),
149   cl::ZeroOrMore,
150   cl::Hidden,
151   cl::cat(BoltOptCategory));
152 
153 static cl::opt<unsigned> LiteThresholdCount(
154     "lite-threshold-count",
155     cl::desc("similar to '-lite-threshold-pct' but specify threshold using "
156              "absolute function call count. I.e. limit processing to functions "
157              "executed at least the specified number of times."),
158     cl::init(0), cl::Hidden, cl::cat(BoltOptCategory));
159 
160 static cl::opt<unsigned>
161     MaxFunctions("max-funcs",
162                  cl::desc("maximum number of functions to process"), cl::Hidden,
163                  cl::cat(BoltCategory));
164 
165 static cl::opt<unsigned> MaxDataRelocations(
166     "max-data-relocations",
167     cl::desc("maximum number of data relocations to process"), cl::Hidden,
168     cl::cat(BoltCategory));
169 
170 cl::opt<bool> PrintAll("print-all",
171                        cl::desc("print functions after each stage"), cl::Hidden,
172                        cl::cat(BoltCategory));
173 
174 cl::opt<bool> PrintProfile("print-profile",
175                            cl::desc("print functions after attaching profile"),
176                            cl::Hidden, cl::cat(BoltCategory));
177 
178 cl::opt<bool> PrintCFG("print-cfg",
179                        cl::desc("print functions after CFG construction"),
180                        cl::Hidden, cl::cat(BoltCategory));
181 
182 cl::opt<bool> PrintDisasm("print-disasm",
183                           cl::desc("print function after disassembly"),
184                           cl::Hidden, cl::cat(BoltCategory));
185 
186 static cl::opt<bool>
187     PrintGlobals("print-globals",
188                  cl::desc("print global symbols after disassembly"), cl::Hidden,
189                  cl::cat(BoltCategory));
190 
191 extern cl::opt<bool> PrintSections;
192 
193 static cl::opt<bool> PrintLoopInfo("print-loops",
194                                    cl::desc("print loop related information"),
195                                    cl::Hidden, cl::cat(BoltCategory));
196 
197 static cl::opt<cl::boolOrDefault> RelocationMode(
198     "relocs", cl::desc("use relocations in the binary (default=autodetect)"),
199     cl::cat(BoltCategory));
200 
201 extern cl::opt<std::string> SaveProfile;
202 
203 static cl::list<std::string>
204 SkipFunctionNames("skip-funcs",
205   cl::CommaSeparated,
206   cl::desc("list of functions to skip"),
207   cl::value_desc("func1,func2,func3,..."),
208   cl::Hidden,
209   cl::cat(BoltCategory));
210 
211 static cl::opt<std::string>
212 SkipFunctionNamesFile("skip-funcs-file",
213   cl::desc("file with list of functions to skip"),
214   cl::Hidden,
215   cl::cat(BoltCategory));
216 
217 cl::opt<bool>
218 TrapOldCode("trap-old-code",
219   cl::desc("insert traps in old function bodies (relocation mode)"),
220   cl::Hidden,
221   cl::cat(BoltCategory));
222 
223 static cl::opt<std::string> DWPPathName("dwp",
224                                         cl::desc("Path and name to DWP file."),
225                                         cl::Hidden, cl::init(""),
226                                         cl::cat(BoltCategory));
227 
228 static cl::opt<bool>
229 UseGnuStack("use-gnu-stack",
230   cl::desc("use GNU_STACK program header for new segment (workaround for "
231            "issues with strip/objcopy)"),
232   cl::ZeroOrMore,
233   cl::cat(BoltCategory));
234 
235 static cl::opt<bool>
236 SequentialDisassembly("sequential-disassembly",
237   cl::desc("performs disassembly sequentially"),
238   cl::init(false),
239   cl::cat(BoltOptCategory));
240 
241 static cl::opt<bool> WriteBoltInfoSection(
242     "bolt-info", cl::desc("write bolt info section in the output binary"),
243     cl::init(true), cl::Hidden, cl::cat(BoltOutputCategory));
244 
245 } // namespace opts
246 
247 // FIXME: implement a better way to mark sections for replacement.
248 constexpr const char *RewriteInstance::SectionsToOverwrite[];
249 std::vector<std::string> RewriteInstance::DebugSectionsToOverwrite = {
250     ".debug_abbrev", ".debug_aranges",  ".debug_line",   ".debug_line_str",
251     ".debug_loc",    ".debug_loclists", ".debug_ranges", ".debug_rnglists",
252     ".gdb_index",    ".debug_addr",     ".debug_abbrev", ".debug_info",
253     ".debug_types",  ".pseudo_probe"};
254 
255 const char RewriteInstance::TimerGroupName[] = "rewrite";
256 const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes";
257 
258 namespace llvm {
259 namespace bolt {
260 
261 extern const char *BoltRevision;
262 
263 // Weird location for createMCPlusBuilder, but this is here to avoid a
264 // cyclic dependency of libCore (its natural place) and libTarget. libRewrite
265 // can depend on libTarget, but not libCore. Since libRewrite is the only
266 // user of this function, we define it here.
267 MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch,
268                                    const MCInstrAnalysis *Analysis,
269                                    const MCInstrInfo *Info,
270                                    const MCRegisterInfo *RegInfo,
271                                    const MCSubtargetInfo *STI) {
272 #ifdef X86_AVAILABLE
273   if (Arch == Triple::x86_64)
274     return createX86MCPlusBuilder(Analysis, Info, RegInfo, STI);
275 #endif
276 
277 #ifdef AARCH64_AVAILABLE
278   if (Arch == Triple::aarch64)
279     return createAArch64MCPlusBuilder(Analysis, Info, RegInfo, STI);
280 #endif
281 
282 #ifdef RISCV_AVAILABLE
283   if (Arch == Triple::riscv64)
284     return createRISCVMCPlusBuilder(Analysis, Info, RegInfo, STI);
285 #endif
286 
287   llvm_unreachable("architecture unsupported by MCPlusBuilder");
288 }
289 
290 } // namespace bolt
291 } // namespace llvm
292 
293 using ELF64LEPhdrTy = ELF64LEFile::Elf_Phdr;
294 
295 namespace {
296 
297 bool refersToReorderedSection(ErrorOr<BinarySection &> Section) {
298   return llvm::any_of(opts::ReorderData, [&](const std::string &SectionName) {
299     return Section && Section->getName() == SectionName;
300   });
301 }
302 
303 } // anonymous namespace
304 
305 Expected<std::unique_ptr<RewriteInstance>>
306 RewriteInstance::create(ELFObjectFileBase *File, const int Argc,
307                         const char *const *Argv, StringRef ToolPath,
308                         raw_ostream &Stdout, raw_ostream &Stderr) {
309   Error Err = Error::success();
310   auto RI = std::make_unique<RewriteInstance>(File, Argc, Argv, ToolPath,
311                                               Stdout, Stderr, Err);
312   if (Err)
313     return std::move(Err);
314   return std::move(RI);
315 }
316 
317 RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc,
318                                  const char *const *Argv, StringRef ToolPath,
319                                  raw_ostream &Stdout, raw_ostream &Stderr,
320                                  Error &Err)
321     : InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath),
322       SHStrTab(StringTableBuilder::ELF) {
323   ErrorAsOutParameter EAO(&Err);
324   auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
325   if (!ELF64LEFile) {
326     Err = createStringError(errc::not_supported,
327                             "Only 64-bit LE ELF binaries are supported");
328     return;
329   }
330 
331   bool IsPIC = false;
332   const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
333   if (Obj.getHeader().e_type != ELF::ET_EXEC) {
334     Stdout << "BOLT-INFO: shared object or position-independent executable "
335               "detected\n";
336     IsPIC = true;
337   }
338 
339   // Make sure we don't miss any output on core dumps.
340   Stdout.SetUnbuffered();
341   Stderr.SetUnbuffered();
342   LLVM_DEBUG(dbgs().SetUnbuffered());
343 
344   // Read RISCV subtarget features from input file
345   std::unique_ptr<SubtargetFeatures> Features;
346   Triple TheTriple = File->makeTriple();
347   if (TheTriple.getArch() == llvm::Triple::riscv64) {
348     Expected<SubtargetFeatures> FeaturesOrErr = File->getFeatures();
349     if (auto E = FeaturesOrErr.takeError()) {
350       Err = std::move(E);
351       return;
352     } else {
353       Features.reset(new SubtargetFeatures(*FeaturesOrErr));
354     }
355   }
356 
357   auto BCOrErr = BinaryContext::createBinaryContext(
358       TheTriple, File->getFileName(), Features.get(), IsPIC,
359       DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore,
360                            nullptr, opts::DWPPathName,
361                            WithColor::defaultErrorHandler,
362                            WithColor::defaultWarningHandler),
363       JournalingStreams{Stdout, Stderr});
364   if (Error E = BCOrErr.takeError()) {
365     Err = std::move(E);
366     return;
367   }
368   BC = std::move(BCOrErr.get());
369   BC->initializeTarget(std::unique_ptr<MCPlusBuilder>(
370       createMCPlusBuilder(BC->TheTriple->getArch(), BC->MIA.get(),
371                           BC->MII.get(), BC->MRI.get(), BC->STI.get())));
372 
373   BAT = std::make_unique<BoltAddressTranslation>();
374 
375   if (opts::UpdateDebugSections)
376     DebugInfoRewriter = std::make_unique<DWARFRewriter>(*BC);
377 
378   if (opts::Instrument)
379     BC->setRuntimeLibrary(std::make_unique<InstrumentationRuntimeLibrary>());
380   else if (opts::Hugify)
381     BC->setRuntimeLibrary(std::make_unique<HugifyRuntimeLibrary>());
382 }
383 
384 RewriteInstance::~RewriteInstance() {}
385 
386 Error RewriteInstance::setProfile(StringRef Filename) {
387   if (!sys::fs::exists(Filename))
388     return errorCodeToError(make_error_code(errc::no_such_file_or_directory));
389 
390   if (ProfileReader) {
391     // Already exists
392     return make_error<StringError>(Twine("multiple profiles specified: ") +
393                                        ProfileReader->getFilename() + " and " +
394                                        Filename,
395                                    inconvertibleErrorCode());
396   }
397 
398   // Spawn a profile reader based on file contents.
399   if (DataAggregator::checkPerfDataMagic(Filename))
400     ProfileReader = std::make_unique<DataAggregator>(Filename);
401   else if (YAMLProfileReader::isYAML(Filename))
402     ProfileReader = std::make_unique<YAMLProfileReader>(Filename);
403   else
404     ProfileReader = std::make_unique<DataReader>(Filename);
405 
406   return Error::success();
407 }
408 
409 /// Return true if the function \p BF should be disassembled.
410 static bool shouldDisassemble(const BinaryFunction &BF) {
411   if (BF.isPseudo())
412     return false;
413 
414   if (opts::processAllFunctions())
415     return true;
416 
417   return !BF.isIgnored();
418 }
419 
420 // Return if a section stored in the image falls into a segment address space.
421 // If not, Set \p Overlap to true if there's a partial overlap.
422 template <class ELFT>
423 static bool checkOffsets(const typename ELFT::Phdr &Phdr,
424                          const typename ELFT::Shdr &Sec, bool &Overlap) {
425   // SHT_NOBITS sections don't need to have an offset inside the segment.
426   if (Sec.sh_type == ELF::SHT_NOBITS)
427     return true;
428 
429   // Only non-empty sections can be at the end of a segment.
430   uint64_t SectionSize = Sec.sh_size ? Sec.sh_size : 1ull;
431   AddressRange SectionAddressRange((uint64_t)Sec.sh_offset,
432                                    Sec.sh_offset + SectionSize);
433   AddressRange SegmentAddressRange(Phdr.p_offset,
434                                    Phdr.p_offset + Phdr.p_filesz);
435   if (SegmentAddressRange.contains(SectionAddressRange))
436     return true;
437 
438   Overlap = SegmentAddressRange.intersects(SectionAddressRange);
439   return false;
440 }
441 
442 // Check that an allocatable section belongs to a virtual address
443 // space of a segment.
444 template <class ELFT>
445 static bool checkVMA(const typename ELFT::Phdr &Phdr,
446                      const typename ELFT::Shdr &Sec, bool &Overlap) {
447   // Only non-empty sections can be at the end of a segment.
448   uint64_t SectionSize = Sec.sh_size ? Sec.sh_size : 1ull;
449   AddressRange SectionAddressRange((uint64_t)Sec.sh_addr,
450                                    Sec.sh_addr + SectionSize);
451   AddressRange SegmentAddressRange(Phdr.p_vaddr, Phdr.p_vaddr + Phdr.p_memsz);
452 
453   if (SegmentAddressRange.contains(SectionAddressRange))
454     return true;
455   Overlap = SegmentAddressRange.intersects(SectionAddressRange);
456   return false;
457 }
458 
459 void RewriteInstance::markGnuRelroSections() {
460   using ELFT = ELF64LE;
461   using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
462   auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile);
463   const ELFFile<ELFT> &Obj = ELF64LEFile->getELFFile();
464 
465   auto handleSection = [&](const ELFT::Phdr &Phdr, SectionRef SecRef) {
466     BinarySection *BinarySection = BC->getSectionForSectionRef(SecRef);
467     // If the section is non-allocatable, ignore it for GNU_RELRO purposes:
468     // it can't be made read-only after runtime relocations processing.
469     if (!BinarySection || !BinarySection->isAllocatable())
470       return;
471     const ELFShdrTy *Sec = cantFail(Obj.getSection(SecRef.getIndex()));
472     bool ImageOverlap{false}, VMAOverlap{false};
473     bool ImageContains = checkOffsets<ELFT>(Phdr, *Sec, ImageOverlap);
474     bool VMAContains = checkVMA<ELFT>(Phdr, *Sec, VMAOverlap);
475     if (ImageOverlap) {
476       if (opts::Verbosity >= 1)
477         BC->errs() << "BOLT-WARNING: GNU_RELRO segment has partial file offset "
478                    << "overlap with section " << BinarySection->getName()
479                    << '\n';
480       return;
481     }
482     if (VMAOverlap) {
483       if (opts::Verbosity >= 1)
484         BC->errs() << "BOLT-WARNING: GNU_RELRO segment has partial VMA overlap "
485                    << "with section " << BinarySection->getName() << '\n';
486       return;
487     }
488     if (!ImageContains || !VMAContains)
489       return;
490     BinarySection->setRelro();
491     if (opts::Verbosity >= 1)
492       BC->outs() << "BOLT-INFO: marking " << BinarySection->getName()
493                  << " as GNU_RELRO\n";
494   };
495 
496   for (const ELFT::Phdr &Phdr : cantFail(Obj.program_headers()))
497     if (Phdr.p_type == ELF::PT_GNU_RELRO)
498       for (SectionRef SecRef : InputFile->sections())
499         handleSection(Phdr, SecRef);
500 }
501 
502 Error RewriteInstance::discoverStorage() {
503   NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName,
504                      TimerGroupDesc, opts::TimeRewrite);
505 
506   auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile);
507   const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
508 
509   BC->StartFunctionAddress = Obj.getHeader().e_entry;
510 
511   NextAvailableAddress = 0;
512   uint64_t NextAvailableOffset = 0;
513   Expected<ELF64LE::PhdrRange> PHsOrErr = Obj.program_headers();
514   if (Error E = PHsOrErr.takeError())
515     return E;
516 
517   ELF64LE::PhdrRange PHs = PHsOrErr.get();
518   for (const ELF64LE::Phdr &Phdr : PHs) {
519     switch (Phdr.p_type) {
520     case ELF::PT_LOAD:
521       BC->FirstAllocAddress = std::min(BC->FirstAllocAddress,
522                                        static_cast<uint64_t>(Phdr.p_vaddr));
523       NextAvailableAddress = std::max(NextAvailableAddress,
524                                       Phdr.p_vaddr + Phdr.p_memsz);
525       NextAvailableOffset = std::max(NextAvailableOffset,
526                                      Phdr.p_offset + Phdr.p_filesz);
527 
528       BC->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{Phdr.p_vaddr,
529                                                      Phdr.p_memsz,
530                                                      Phdr.p_offset,
531                                                      Phdr.p_filesz,
532                                                      Phdr.p_align};
533       if (BC->TheTriple->getArch() == llvm::Triple::x86_64 &&
534           Phdr.p_vaddr >= BinaryContext::KernelStartX86_64)
535         BC->IsLinuxKernel = true;
536       break;
537     case ELF::PT_INTERP:
538       BC->HasInterpHeader = true;
539       break;
540     }
541   }
542 
543   if (BC->IsLinuxKernel)
544     BC->outs() << "BOLT-INFO: Linux kernel binary detected\n";
545 
546   for (const SectionRef &Section : InputFile->sections()) {
547     Expected<StringRef> SectionNameOrErr = Section.getName();
548     if (Error E = SectionNameOrErr.takeError())
549       return E;
550     StringRef SectionName = SectionNameOrErr.get();
551     if (SectionName == BC->getMainCodeSectionName()) {
552       BC->OldTextSectionAddress = Section.getAddress();
553       BC->OldTextSectionSize = Section.getSize();
554 
555       Expected<StringRef> SectionContentsOrErr = Section.getContents();
556       if (Error E = SectionContentsOrErr.takeError())
557         return E;
558       StringRef SectionContents = SectionContentsOrErr.get();
559       BC->OldTextSectionOffset =
560           SectionContents.data() - InputFile->getData().data();
561     }
562 
563     if (!opts::HeatmapMode &&
564         !(opts::AggregateOnly && BAT->enabledFor(InputFile)) &&
565         (SectionName.starts_with(getOrgSecPrefix()) ||
566          SectionName == getBOLTTextSectionName()))
567       return createStringError(
568           errc::function_not_supported,
569           "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize");
570   }
571 
572   if (!NextAvailableAddress || !NextAvailableOffset)
573     return createStringError(errc::executable_format_error,
574                              "no PT_LOAD pheader seen");
575 
576   BC->outs() << "BOLT-INFO: first alloc address is 0x"
577              << Twine::utohexstr(BC->FirstAllocAddress) << '\n';
578 
579   FirstNonAllocatableOffset = NextAvailableOffset;
580 
581   NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign);
582   NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign);
583 
584   // Hugify: Additional huge page from left side due to
585   // weird ASLR mapping addresses (4KB aligned)
586   if (opts::Hugify && !BC->HasFixedLoadAddress)
587     NextAvailableAddress += BC->PageAlign;
588 
589   if (!opts::UseGnuStack && !BC->IsLinuxKernel) {
590     // This is where the black magic happens. Creating PHDR table in a segment
591     // other than that containing ELF header is tricky. Some loaders and/or
592     // parts of loaders will apply e_phoff from ELF header assuming both are in
593     // the same segment, while others will do the proper calculation.
594     // We create the new PHDR table in such a way that both of the methods
595     // of loading and locating the table work. There's a slight file size
596     // overhead because of that.
597     //
598     // NB: bfd's strip command cannot do the above and will corrupt the
599     //     binary during the process of stripping non-allocatable sections.
600     if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress)
601       NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress;
602     else
603       NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress;
604 
605     assert(NextAvailableOffset ==
606                NextAvailableAddress - BC->FirstAllocAddress &&
607            "PHDR table address calculation error");
608 
609     BC->outs() << "BOLT-INFO: creating new program header table at address 0x"
610                << Twine::utohexstr(NextAvailableAddress) << ", offset 0x"
611                << Twine::utohexstr(NextAvailableOffset) << '\n';
612 
613     PHDRTableAddress = NextAvailableAddress;
614     PHDRTableOffset = NextAvailableOffset;
615 
616     // Reserve space for 3 extra pheaders.
617     unsigned Phnum = Obj.getHeader().e_phnum;
618     Phnum += 3;
619 
620     NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy);
621     NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy);
622   }
623 
624   // Align at cache line.
625   NextAvailableAddress = alignTo(NextAvailableAddress, 64);
626   NextAvailableOffset = alignTo(NextAvailableOffset, 64);
627 
628   NewTextSegmentAddress = NextAvailableAddress;
629   NewTextSegmentOffset = NextAvailableOffset;
630   BC->LayoutStartAddress = NextAvailableAddress;
631 
632   // Tools such as objcopy can strip section contents but leave header
633   // entries. Check that at least .text is mapped in the file.
634   if (!getFileOffsetForAddress(BC->OldTextSectionAddress))
635     return createStringError(errc::executable_format_error,
636                              "BOLT-ERROR: input binary is not a valid ELF "
637                              "executable as its text section is not "
638                              "mapped to a valid segment");
639   return Error::success();
640 }
641 
642 Error RewriteInstance::run() {
643   assert(BC && "failed to create a binary context");
644 
645   BC->outs() << "BOLT-INFO: Target architecture: "
646              << Triple::getArchTypeName(
647                     (llvm::Triple::ArchType)InputFile->getArch())
648              << "\n";
649   BC->outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n";
650 
651   if (Error E = discoverStorage())
652     return E;
653   if (Error E = readSpecialSections())
654     return E;
655   adjustCommandLineOptions();
656   discoverFileObjects();
657 
658   if (opts::Instrument && !BC->IsStaticExecutable)
659     if (Error E = discoverRtFiniAddress())
660       return E;
661 
662   preprocessProfileData();
663 
664   // Skip disassembling if we have a translation table and we are running an
665   // aggregation job.
666   if (opts::AggregateOnly && BAT->enabledFor(InputFile)) {
667     // YAML profile in BAT mode requires CFG for .bolt.org.text functions
668     if (!opts::SaveProfile.empty() ||
669         opts::ProfileFormat == opts::ProfileFormatKind::PF_YAML) {
670       selectFunctionsToProcess();
671       disassembleFunctions();
672       processMetadataPreCFG();
673       buildFunctionsCFG();
674     }
675     processProfileData();
676     return Error::success();
677   }
678 
679   selectFunctionsToProcess();
680 
681   readDebugInfo();
682 
683   disassembleFunctions();
684 
685   processMetadataPreCFG();
686 
687   buildFunctionsCFG();
688 
689   processProfileData();
690 
691   // Save input binary metadata if BAT section needs to be emitted
692   if (opts::EnableBAT)
693     BAT->saveMetadata(*BC);
694 
695   postProcessFunctions();
696 
697   processMetadataPostCFG();
698 
699   if (opts::DiffOnly)
700     return Error::success();
701 
702   preregisterSections();
703 
704   runOptimizationPasses();
705 
706   finalizeMetadataPreEmit();
707 
708   emitAndLink();
709 
710   updateMetadata();
711 
712   if (opts::Instrument && !BC->IsStaticExecutable)
713     updateRtFiniReloc();
714 
715   if (opts::OutputFilename == "/dev/null") {
716     BC->outs() << "BOLT-INFO: skipping writing final binary to disk\n";
717     return Error::success();
718   } else if (BC->IsLinuxKernel) {
719     BC->errs() << "BOLT-WARNING: Linux kernel support is experimental\n";
720   }
721 
722   // Rewrite allocatable contents and copy non-allocatable parts with mods.
723   rewriteFile();
724   return Error::success();
725 }
726 
727 void RewriteInstance::discoverFileObjects() {
728   NamedRegionTimer T("discoverFileObjects", "discover file objects",
729                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
730 
731   // For local symbols we want to keep track of associated FILE symbol name for
732   // disambiguation by combined name.
733   StringRef FileSymbolName;
734   bool SeenFileName = false;
735   struct SymbolRefHash {
736     size_t operator()(SymbolRef const &S) const {
737       return std::hash<decltype(DataRefImpl::p)>{}(S.getRawDataRefImpl().p);
738     }
739   };
740   std::unordered_map<SymbolRef, StringRef, SymbolRefHash> SymbolToFileName;
741   for (const ELFSymbolRef &Symbol : InputFile->symbols()) {
742     Expected<StringRef> NameOrError = Symbol.getName();
743     if (NameOrError && NameOrError->starts_with("__asan_init")) {
744       BC->errs()
745           << "BOLT-ERROR: input file was compiled or linked with sanitizer "
746              "support. Cannot optimize.\n";
747       exit(1);
748     }
749     if (NameOrError && NameOrError->starts_with("__llvm_coverage_mapping")) {
750       BC->errs()
751           << "BOLT-ERROR: input file was compiled or linked with coverage "
752              "support. Cannot optimize.\n";
753       exit(1);
754     }
755 
756     if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined)
757       continue;
758 
759     if (cantFail(Symbol.getType()) == SymbolRef::ST_File) {
760       FileSymbols.emplace_back(Symbol);
761       StringRef Name =
762           cantFail(std::move(NameOrError), "cannot get symbol name for file");
763       // Ignore Clang LTO artificial FILE symbol as it is not always generated,
764       // and this uncertainty is causing havoc in function name matching.
765       if (Name == "ld-temp.o")
766         continue;
767       FileSymbolName = Name;
768       SeenFileName = true;
769       continue;
770     }
771     if (!FileSymbolName.empty() &&
772         !(cantFail(Symbol.getFlags()) & SymbolRef::SF_Global))
773       SymbolToFileName[Symbol] = FileSymbolName;
774   }
775 
776   // Sort symbols in the file by value. Ignore symbols from non-allocatable
777   // sections. We memoize getAddress(), as it has rather high overhead.
778   struct SymbolInfo {
779     uint64_t Address;
780     SymbolRef Symbol;
781   };
782   std::vector<SymbolInfo> SortedSymbols;
783   auto isSymbolInMemory = [this](const SymbolRef &Sym) {
784     if (cantFail(Sym.getType()) == SymbolRef::ST_File)
785       return false;
786     if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute)
787       return true;
788     if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined)
789       return false;
790     BinarySection Section(*BC, *cantFail(Sym.getSection()));
791     return Section.isAllocatable();
792   };
793   for (const SymbolRef &Symbol : InputFile->symbols())
794     if (isSymbolInMemory(Symbol))
795       SortedSymbols.push_back({cantFail(Symbol.getAddress()), Symbol});
796 
797   auto CompareSymbols = [this](const SymbolInfo &A, const SymbolInfo &B) {
798     if (A.Address != B.Address)
799       return A.Address < B.Address;
800 
801     const bool AMarker = BC->isMarker(A.Symbol);
802     const bool BMarker = BC->isMarker(B.Symbol);
803     if (AMarker || BMarker) {
804       return AMarker && !BMarker;
805     }
806 
807     const auto AType = cantFail(A.Symbol.getType());
808     const auto BType = cantFail(B.Symbol.getType());
809     if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function)
810       return true;
811     if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug)
812       return true;
813 
814     return false;
815   };
816   llvm::stable_sort(SortedSymbols, CompareSymbols);
817 
818   auto LastSymbol = SortedSymbols.end();
819   if (!SortedSymbols.empty())
820     --LastSymbol;
821 
822   // For aarch64, the ABI defines mapping symbols so we identify data in the
823   // code section (see IHI0056B). $d identifies data contents.
824   // Compilers usually merge multiple data objects in a single $d-$x interval,
825   // but we need every data object to be marked with $d. Because of that we
826   // create a vector of MarkerSyms with all locations of data objects.
827 
828   struct MarkerSym {
829     uint64_t Address;
830     MarkerSymType Type;
831   };
832 
833   std::vector<MarkerSym> SortedMarkerSymbols;
834   auto addExtraDataMarkerPerSymbol = [&]() {
835     bool IsData = false;
836     uint64_t LastAddr = 0;
837     for (const auto &SymInfo : SortedSymbols) {
838       if (LastAddr == SymInfo.Address) // don't repeat markers
839         continue;
840 
841       MarkerSymType MarkerType = BC->getMarkerType(SymInfo.Symbol);
842       if (MarkerType != MarkerSymType::NONE) {
843         SortedMarkerSymbols.push_back(MarkerSym{SymInfo.Address, MarkerType});
844         LastAddr = SymInfo.Address;
845         IsData = MarkerType == MarkerSymType::DATA;
846         continue;
847       }
848 
849       if (IsData) {
850         SortedMarkerSymbols.push_back({SymInfo.Address, MarkerSymType::DATA});
851         LastAddr = SymInfo.Address;
852       }
853     }
854   };
855 
856   if (BC->isAArch64() || BC->isRISCV()) {
857     addExtraDataMarkerPerSymbol();
858     LastSymbol = std::stable_partition(
859         SortedSymbols.begin(), SortedSymbols.end(),
860         [this](const SymbolInfo &S) { return !BC->isMarker(S.Symbol); });
861     if (!SortedSymbols.empty())
862       --LastSymbol;
863   }
864 
865   BinaryFunction *PreviousFunction = nullptr;
866   unsigned AnonymousId = 0;
867 
868   const auto SortedSymbolsEnd =
869       LastSymbol == SortedSymbols.end() ? LastSymbol : std::next(LastSymbol);
870   for (auto Iter = SortedSymbols.begin(); Iter != SortedSymbolsEnd; ++Iter) {
871     const SymbolRef &Symbol = Iter->Symbol;
872     const uint64_t SymbolAddress = Iter->Address;
873     const auto SymbolFlags = cantFail(Symbol.getFlags());
874     const SymbolRef::Type SymbolType = cantFail(Symbol.getType());
875 
876     if (SymbolType == SymbolRef::ST_File)
877       continue;
878 
879     StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name");
880     if (SymbolAddress == 0) {
881       if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function)
882         BC->errs() << "BOLT-WARNING: function with 0 address seen\n";
883       continue;
884     }
885 
886     // Ignore input hot markers
887     if (SymName == "__hot_start" || SymName == "__hot_end")
888       continue;
889 
890     FileSymRefs.emplace(SymbolAddress, Symbol);
891 
892     // Skip section symbols that will be registered by disassemblePLT().
893     if (SymbolType == SymbolRef::ST_Debug) {
894       ErrorOr<BinarySection &> BSection =
895           BC->getSectionForAddress(SymbolAddress);
896       if (BSection && getPLTSectionInfo(BSection->getName()))
897         continue;
898     }
899 
900     /// It is possible we are seeing a globalized local. LLVM might treat it as
901     /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to
902     /// change the prefix to enforce global scope of the symbol.
903     std::string Name =
904         SymName.starts_with(BC->AsmInfo->getPrivateGlobalPrefix())
905             ? "PG" + std::string(SymName)
906             : std::string(SymName);
907 
908     // Disambiguate all local symbols before adding to symbol table.
909     // Since we don't know if we will see a global with the same name,
910     // always modify the local name.
911     //
912     // NOTE: the naming convention for local symbols should match
913     //       the one we use for profile data.
914     std::string UniqueName;
915     std::string AlternativeName;
916     if (Name.empty()) {
917       UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++);
918     } else if (SymbolFlags & SymbolRef::SF_Global) {
919       if (const BinaryData *BD = BC->getBinaryDataByName(Name)) {
920         if (BD->getSize() == ELFSymbolRef(Symbol).getSize() &&
921             BD->getAddress() == SymbolAddress) {
922           if (opts::Verbosity > 1)
923             BC->errs() << "BOLT-WARNING: ignoring duplicate global symbol "
924                        << Name << "\n";
925           // Ignore duplicate entry - possibly a bug in the linker
926           continue;
927         }
928         BC->errs() << "BOLT-ERROR: bad input binary, global symbol \"" << Name
929                    << "\" is not unique\n";
930         exit(1);
931       }
932       UniqueName = Name;
933     } else {
934       // If we have a local file name, we should create 2 variants for the
935       // function name. The reason is that perf profile might have been
936       // collected on a binary that did not have the local file name (e.g. as
937       // a side effect of stripping debug info from the binary):
938       //
939       //   primary:     <function>/<id>
940       //   alternative: <function>/<file>/<id2>
941       //
942       // The <id> field is used for disambiguation of local symbols since there
943       // could be identical function names coming from identical file names
944       // (e.g. from different directories).
945       std::string AltPrefix;
946       auto SFI = SymbolToFileName.find(Symbol);
947       if (SymbolType == SymbolRef::ST_Function && SFI != SymbolToFileName.end())
948         AltPrefix = Name + "/" + std::string(SFI->second);
949 
950       UniqueName = NR.uniquify(Name);
951       if (!AltPrefix.empty())
952         AlternativeName = NR.uniquify(AltPrefix);
953     }
954 
955     uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize();
956     uint64_t SymbolAlignment = Symbol.getAlignment();
957 
958     auto registerName = [&](uint64_t FinalSize) {
959       // Register names even if it's not a function, e.g. for an entry point.
960       BC->registerNameAtAddress(UniqueName, SymbolAddress, FinalSize,
961                                 SymbolAlignment, SymbolFlags);
962       if (!AlternativeName.empty())
963         BC->registerNameAtAddress(AlternativeName, SymbolAddress, FinalSize,
964                                   SymbolAlignment, SymbolFlags);
965     };
966 
967     section_iterator Section =
968         cantFail(Symbol.getSection(), "cannot get symbol section");
969     if (Section == InputFile->section_end()) {
970       // Could be an absolute symbol. Used on RISC-V for __global_pointer$ so we
971       // need to record it to handle relocations against it. For other instances
972       // of absolute symbols, we record for pretty printing.
973       LLVM_DEBUG(if (opts::Verbosity > 1) {
974         dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n";
975       });
976       registerName(SymbolSize);
977       continue;
978     }
979 
980     if (SymName == getBOLTReservedStart() || SymName == getBOLTReservedEnd()) {
981       registerName(SymbolSize);
982       continue;
983     }
984 
985     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName
986                       << " for function\n");
987 
988     if (SymbolAddress == Section->getAddress() + Section->getSize()) {
989       assert(SymbolSize == 0 &&
990              "unexpect non-zero sized symbol at end of section");
991       LLVM_DEBUG(
992           dbgs()
993           << "BOLT-DEBUG: rejecting as symbol points to end of its section\n");
994       registerName(SymbolSize);
995       continue;
996     }
997 
998     if (!Section->isText()) {
999       assert(SymbolType != SymbolRef::ST_Function &&
1000              "unexpected function inside non-code section");
1001       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n");
1002       registerName(SymbolSize);
1003       continue;
1004     }
1005 
1006     // Assembly functions could be ST_NONE with 0 size. Check that the
1007     // corresponding section is a code section and they are not inside any
1008     // other known function to consider them.
1009     //
1010     // Sometimes assembly functions are not marked as functions and neither are
1011     // their local labels. The only way to tell them apart is to look at
1012     // symbol scope - global vs local.
1013     if (PreviousFunction && SymbolType != SymbolRef::ST_Function) {
1014       if (PreviousFunction->containsAddress(SymbolAddress)) {
1015         if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
1016           LLVM_DEBUG(dbgs()
1017                      << "BOLT-DEBUG: symbol is a function local symbol\n");
1018         } else if (SymbolAddress == PreviousFunction->getAddress() &&
1019                    !SymbolSize) {
1020           LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n");
1021         } else if (opts::Verbosity > 1) {
1022           BC->errs() << "BOLT-WARNING: symbol " << UniqueName
1023                      << " seen in the middle of function " << *PreviousFunction
1024                      << ". Could be a new entry.\n";
1025         }
1026         registerName(SymbolSize);
1027         continue;
1028       } else if (PreviousFunction->getSize() == 0 &&
1029                  PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
1030         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n");
1031         registerName(SymbolSize);
1032         continue;
1033       }
1034     }
1035 
1036     if (PreviousFunction && PreviousFunction->containsAddress(SymbolAddress) &&
1037         PreviousFunction->getAddress() != SymbolAddress) {
1038       if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
1039         if (opts::Verbosity >= 1)
1040           BC->outs()
1041               << "BOLT-INFO: skipping possibly another entry for function "
1042               << *PreviousFunction << " : " << UniqueName << '\n';
1043         registerName(SymbolSize);
1044       } else {
1045         BC->outs() << "BOLT-INFO: using " << UniqueName
1046                    << " as another entry to "
1047                    << "function " << *PreviousFunction << '\n';
1048 
1049         registerName(0);
1050 
1051         PreviousFunction->addEntryPointAtOffset(SymbolAddress -
1052                                                 PreviousFunction->getAddress());
1053 
1054         // Remove the symbol from FileSymRefs so that we can skip it from
1055         // in the future.
1056         auto SI = llvm::find_if(
1057             llvm::make_range(FileSymRefs.equal_range(SymbolAddress)),
1058             [&](auto SymIt) { return SymIt.second == Symbol; });
1059         assert(SI != FileSymRefs.end() && "symbol expected to be present");
1060         assert(SI->second == Symbol && "wrong symbol found");
1061         FileSymRefs.erase(SI);
1062       }
1063       continue;
1064     }
1065 
1066     // Checkout for conflicts with function data from FDEs.
1067     bool IsSimple = true;
1068     auto FDEI = CFIRdWrt->getFDEs().lower_bound(SymbolAddress);
1069     if (FDEI != CFIRdWrt->getFDEs().end()) {
1070       const dwarf::FDE &FDE = *FDEI->second;
1071       if (FDEI->first != SymbolAddress) {
1072         // There's no matching starting address in FDE. Make sure the previous
1073         // FDE does not contain this address.
1074         if (FDEI != CFIRdWrt->getFDEs().begin()) {
1075           --FDEI;
1076           const dwarf::FDE &PrevFDE = *FDEI->second;
1077           uint64_t PrevStart = PrevFDE.getInitialLocation();
1078           uint64_t PrevLength = PrevFDE.getAddressRange();
1079           if (SymbolAddress > PrevStart &&
1080               SymbolAddress < PrevStart + PrevLength) {
1081             BC->errs() << "BOLT-ERROR: function " << UniqueName
1082                        << " is in conflict with FDE ["
1083                        << Twine::utohexstr(PrevStart) << ", "
1084                        << Twine::utohexstr(PrevStart + PrevLength)
1085                        << "). Skipping.\n";
1086             IsSimple = false;
1087           }
1088         }
1089       } else if (FDE.getAddressRange() != SymbolSize) {
1090         if (SymbolSize) {
1091           // Function addresses match but sizes differ.
1092           BC->errs() << "BOLT-WARNING: sizes differ for function " << UniqueName
1093                      << ". FDE : " << FDE.getAddressRange()
1094                      << "; symbol table : " << SymbolSize
1095                      << ". Using max size.\n";
1096         }
1097         SymbolSize = std::max(SymbolSize, FDE.getAddressRange());
1098         if (BC->getBinaryDataAtAddress(SymbolAddress)) {
1099           BC->setBinaryDataSize(SymbolAddress, SymbolSize);
1100         } else {
1101           LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x"
1102                             << Twine::utohexstr(SymbolAddress) << "\n");
1103         }
1104       }
1105     }
1106 
1107     BinaryFunction *BF = nullptr;
1108     // Since function may not have yet obtained its real size, do a search
1109     // using the list of registered functions instead of calling
1110     // getBinaryFunctionAtAddress().
1111     auto BFI = BC->getBinaryFunctions().find(SymbolAddress);
1112     if (BFI != BC->getBinaryFunctions().end()) {
1113       BF = &BFI->second;
1114       // Duplicate the function name. Make sure everything matches before we add
1115       // an alternative name.
1116       if (SymbolSize != BF->getSize()) {
1117         if (opts::Verbosity >= 1) {
1118           if (SymbolSize && BF->getSize())
1119             BC->errs() << "BOLT-WARNING: size mismatch for duplicate entries "
1120                        << *BF << " and " << UniqueName << '\n';
1121           BC->outs() << "BOLT-INFO: adjusting size of function " << *BF
1122                      << " old " << BF->getSize() << " new " << SymbolSize
1123                      << "\n";
1124         }
1125         BF->setSize(std::max(SymbolSize, BF->getSize()));
1126         BC->setBinaryDataSize(SymbolAddress, BF->getSize());
1127       }
1128       BF->addAlternativeName(UniqueName);
1129     } else {
1130       ErrorOr<BinarySection &> Section =
1131           BC->getSectionForAddress(SymbolAddress);
1132       // Skip symbols from invalid sections
1133       if (!Section) {
1134         BC->errs() << "BOLT-WARNING: " << UniqueName << " (0x"
1135                    << Twine::utohexstr(SymbolAddress)
1136                    << ") does not have any section\n";
1137         continue;
1138       }
1139 
1140       // Skip symbols from zero-sized sections.
1141       if (!Section->getSize())
1142         continue;
1143 
1144       BF = BC->createBinaryFunction(UniqueName, *Section, SymbolAddress,
1145                                     SymbolSize);
1146       if (!IsSimple)
1147         BF->setSimple(false);
1148     }
1149 
1150     // Check if it's a cold function fragment.
1151     if (FunctionFragmentTemplate.match(SymName)) {
1152       static bool PrintedWarning = false;
1153       if (!PrintedWarning) {
1154         PrintedWarning = true;
1155         BC->errs() << "BOLT-WARNING: split function detected on input : "
1156                    << SymName;
1157         if (BC->HasRelocations)
1158           BC->errs() << ". The support is limited in relocation mode\n";
1159         else
1160           BC->errs() << '\n';
1161       }
1162       BC->HasSplitFunctions = true;
1163       BF->IsFragment = true;
1164     }
1165 
1166     if (!AlternativeName.empty())
1167       BF->addAlternativeName(AlternativeName);
1168 
1169     registerName(SymbolSize);
1170     PreviousFunction = BF;
1171   }
1172 
1173   // Read dynamic relocation first as their presence affects the way we process
1174   // static relocations. E.g. we will ignore a static relocation at an address
1175   // that is a subject to dynamic relocation processing.
1176   processDynamicRelocations();
1177 
1178   // Process PLT section.
1179   disassemblePLT();
1180 
1181   // See if we missed any functions marked by FDE.
1182   for (const auto &FDEI : CFIRdWrt->getFDEs()) {
1183     const uint64_t Address = FDEI.first;
1184     const dwarf::FDE *FDE = FDEI.second;
1185     const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address);
1186     if (BF)
1187       continue;
1188 
1189     BF = BC->getBinaryFunctionContainingAddress(Address);
1190     if (BF) {
1191       BC->errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address)
1192                  << ", 0x" << Twine::utohexstr(Address + FDE->getAddressRange())
1193                  << ") conflicts with function " << *BF << '\n';
1194       continue;
1195     }
1196 
1197     if (opts::Verbosity >= 1)
1198       BC->errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address)
1199                  << ", 0x" << Twine::utohexstr(Address + FDE->getAddressRange())
1200                  << ") has no corresponding symbol table entry\n";
1201 
1202     ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
1203     assert(Section && "cannot get section for address from FDE");
1204     std::string FunctionName =
1205         "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str();
1206     BC->createBinaryFunction(FunctionName, *Section, Address,
1207                              FDE->getAddressRange());
1208   }
1209 
1210   BC->setHasSymbolsWithFileName(SeenFileName);
1211 
1212   // Now that all the functions were created - adjust their boundaries.
1213   adjustFunctionBoundaries();
1214 
1215   // Annotate functions with code/data markers in AArch64
1216   for (auto ISym = SortedMarkerSymbols.begin();
1217        ISym != SortedMarkerSymbols.end(); ++ISym) {
1218 
1219     auto *BF =
1220         BC->getBinaryFunctionContainingAddress(ISym->Address, true, true);
1221 
1222     if (!BF) {
1223       // Stray marker
1224       continue;
1225     }
1226     const auto EntryOffset = ISym->Address - BF->getAddress();
1227     if (ISym->Type == MarkerSymType::CODE) {
1228       BF->markCodeAtOffset(EntryOffset);
1229       continue;
1230     }
1231     if (ISym->Type == MarkerSymType::DATA) {
1232       BF->markDataAtOffset(EntryOffset);
1233       BC->AddressToConstantIslandMap[ISym->Address] = BF;
1234       continue;
1235     }
1236     llvm_unreachable("Unknown marker");
1237   }
1238 
1239   if (BC->isAArch64()) {
1240     // Check for dynamic relocations that might be contained in
1241     // constant islands.
1242     for (const BinarySection &Section : BC->allocatableSections()) {
1243       const uint64_t SectionAddress = Section.getAddress();
1244       for (const Relocation &Rel : Section.dynamicRelocations()) {
1245         const uint64_t RelAddress = SectionAddress + Rel.Offset;
1246         BinaryFunction *BF =
1247             BC->getBinaryFunctionContainingAddress(RelAddress,
1248                                                    /*CheckPastEnd*/ false,
1249                                                    /*UseMaxSize*/ true);
1250         if (BF) {
1251           assert(Rel.isRelative() && "Expected relative relocation for island");
1252           BC->logBOLTErrorsAndQuitOnFatal(
1253               BF->markIslandDynamicRelocationAtAddress(RelAddress));
1254         }
1255       }
1256     }
1257   }
1258 
1259   if (!BC->IsLinuxKernel) {
1260     // Read all relocations now that we have binary functions mapped.
1261     processRelocations();
1262   }
1263 
1264   registerFragments();
1265   FileSymbols.clear();
1266   FileSymRefs.clear();
1267 
1268   discoverBOLTReserved();
1269 }
1270 
1271 void RewriteInstance::discoverBOLTReserved() {
1272   BinaryData *StartBD = BC->getBinaryDataByName(getBOLTReservedStart());
1273   BinaryData *EndBD = BC->getBinaryDataByName(getBOLTReservedEnd());
1274   if (!StartBD != !EndBD) {
1275     BC->errs() << "BOLT-ERROR: one of the symbols is missing from the binary: "
1276                << getBOLTReservedStart() << ", " << getBOLTReservedEnd()
1277                << '\n';
1278     exit(1);
1279   }
1280 
1281   if (!StartBD)
1282     return;
1283 
1284   if (StartBD->getAddress() >= EndBD->getAddress()) {
1285     BC->errs() << "BOLT-ERROR: invalid reserved space boundaries\n";
1286     exit(1);
1287   }
1288   BC->BOLTReserved = AddressRange(StartBD->getAddress(), EndBD->getAddress());
1289   BC->outs() << "BOLT-INFO: using reserved space for allocating new sections\n";
1290 
1291   PHDRTableOffset = 0;
1292   PHDRTableAddress = 0;
1293   NewTextSegmentAddress = 0;
1294   NewTextSegmentOffset = 0;
1295   NextAvailableAddress = BC->BOLTReserved.start();
1296 }
1297 
1298 Error RewriteInstance::discoverRtFiniAddress() {
1299   // Use DT_FINI if it's available.
1300   if (BC->FiniAddress) {
1301     BC->FiniFunctionAddress = BC->FiniAddress;
1302     return Error::success();
1303   }
1304 
1305   if (!BC->FiniArrayAddress || !BC->FiniArraySize) {
1306     return createStringError(
1307         std::errc::not_supported,
1308         "Instrumentation needs either DT_FINI or DT_FINI_ARRAY");
1309   }
1310 
1311   if (*BC->FiniArraySize < BC->AsmInfo->getCodePointerSize()) {
1312     return createStringError(std::errc::not_supported,
1313                              "Need at least 1 DT_FINI_ARRAY slot");
1314   }
1315 
1316   ErrorOr<BinarySection &> FiniArraySection =
1317       BC->getSectionForAddress(*BC->FiniArrayAddress);
1318   if (auto EC = FiniArraySection.getError())
1319     return errorCodeToError(EC);
1320 
1321   if (const Relocation *Reloc = FiniArraySection->getDynamicRelocationAt(0)) {
1322     BC->FiniFunctionAddress = Reloc->Addend;
1323     return Error::success();
1324   }
1325 
1326   if (const Relocation *Reloc = FiniArraySection->getRelocationAt(0)) {
1327     BC->FiniFunctionAddress = Reloc->Value;
1328     return Error::success();
1329   }
1330 
1331   return createStringError(std::errc::not_supported,
1332                            "No relocation for first DT_FINI_ARRAY slot");
1333 }
1334 
1335 void RewriteInstance::updateRtFiniReloc() {
1336   // Updating DT_FINI is handled by patchELFDynamic.
1337   if (BC->FiniAddress)
1338     return;
1339 
1340   const RuntimeLibrary *RT = BC->getRuntimeLibrary();
1341   if (!RT || !RT->getRuntimeFiniAddress())
1342     return;
1343 
1344   assert(BC->FiniArrayAddress && BC->FiniArraySize &&
1345          "inconsistent .fini_array state");
1346 
1347   ErrorOr<BinarySection &> FiniArraySection =
1348       BC->getSectionForAddress(*BC->FiniArrayAddress);
1349   assert(FiniArraySection && ".fini_array removed");
1350 
1351   if (std::optional<Relocation> Reloc =
1352           FiniArraySection->takeDynamicRelocationAt(0)) {
1353     assert(Reloc->Addend == BC->FiniFunctionAddress &&
1354            "inconsistent .fini_array dynamic relocation");
1355     Reloc->Addend = RT->getRuntimeFiniAddress();
1356     FiniArraySection->addDynamicRelocation(*Reloc);
1357   }
1358 
1359   // Update the static relocation by adding a pending relocation which will get
1360   // patched when flushPendingRelocations is called in rewriteFile. Note that
1361   // flushPendingRelocations will calculate the value to patch as
1362   // "Symbol + Addend". Since we don't have a symbol, just set the addend to the
1363   // desired value.
1364   FiniArraySection->addPendingRelocation(Relocation{
1365       /*Offset*/ 0, /*Symbol*/ nullptr, /*Type*/ Relocation::getAbs64(),
1366       /*Addend*/ RT->getRuntimeFiniAddress(), /*Value*/ 0});
1367 }
1368 
1369 void RewriteInstance::registerFragments() {
1370   if (!BC->HasSplitFunctions)
1371     return;
1372 
1373   // Process fragments with ambiguous parents separately as they are typically a
1374   // vanishing minority of cases and require expensive symbol table lookups.
1375   std::vector<std::pair<StringRef, BinaryFunction *>> AmbiguousFragments;
1376   for (auto &BFI : BC->getBinaryFunctions()) {
1377     BinaryFunction &Function = BFI.second;
1378     if (!Function.isFragment())
1379       continue;
1380     for (StringRef Name : Function.getNames()) {
1381       StringRef BaseName = NR.restore(Name);
1382       const bool IsGlobal = BaseName == Name;
1383       SmallVector<StringRef> Matches;
1384       if (!FunctionFragmentTemplate.match(BaseName, &Matches))
1385         continue;
1386       StringRef ParentName = Matches[1];
1387       const BinaryData *BD = BC->getBinaryDataByName(ParentName);
1388       const uint64_t NumPossibleLocalParents =
1389           NR.getUniquifiedNameCount(ParentName);
1390       // The most common case: single local parent fragment.
1391       if (!BD && NumPossibleLocalParents == 1) {
1392         BD = BC->getBinaryDataByName(NR.getUniqueName(ParentName, 1));
1393       } else if (BD && (!NumPossibleLocalParents || IsGlobal)) {
1394         // Global parent and either no local candidates (second most common), or
1395         // the fragment is global as well (uncommon).
1396       } else {
1397         // Any other case: need to disambiguate using FILE symbols.
1398         AmbiguousFragments.emplace_back(ParentName, &Function);
1399         continue;
1400       }
1401       if (BD) {
1402         BinaryFunction *BF = BC->getFunctionForSymbol(BD->getSymbol());
1403         if (BF) {
1404           BC->registerFragment(Function, *BF);
1405           continue;
1406         }
1407       }
1408       BC->errs() << "BOLT-ERROR: parent function not found for " << Function
1409                  << '\n';
1410       exit(1);
1411     }
1412   }
1413 
1414   if (AmbiguousFragments.empty())
1415     return;
1416 
1417   if (!BC->hasSymbolsWithFileName()) {
1418     BC->errs() << "BOLT-ERROR: input file has split functions but does not "
1419                   "have FILE symbols. If the binary was stripped, preserve "
1420                   "FILE symbols with --keep-file-symbols strip option\n";
1421     exit(1);
1422   }
1423 
1424   // The first global symbol is identified by the symbol table sh_info value.
1425   // Used as local symbol search stopping point.
1426   auto *ELF64LEFile = cast<ELF64LEObjectFile>(InputFile);
1427   const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
1428   auto *SymTab = llvm::find_if(cantFail(Obj.sections()), [](const auto &Sec) {
1429     return Sec.sh_type == ELF::SHT_SYMTAB;
1430   });
1431   assert(SymTab);
1432   // Symtab sh_info contains the value one greater than the symbol table index
1433   // of the last local symbol.
1434   ELFSymbolRef LocalSymEnd = ELF64LEFile->toSymbolRef(SymTab, SymTab->sh_info);
1435 
1436   for (auto &Fragment : AmbiguousFragments) {
1437     const StringRef &ParentName = Fragment.first;
1438     BinaryFunction *BF = Fragment.second;
1439     const uint64_t Address = BF->getAddress();
1440 
1441     // Get fragment's own symbol
1442     const auto SymIt = llvm::find_if(
1443         llvm::make_range(FileSymRefs.equal_range(Address)), [&](auto SI) {
1444           StringRef Name = cantFail(SI.second.getName());
1445           return Name.contains(ParentName);
1446         });
1447     if (SymIt == FileSymRefs.end()) {
1448       BC->errs()
1449           << "BOLT-ERROR: symbol lookup failed for function at address 0x"
1450           << Twine::utohexstr(Address) << '\n';
1451       exit(1);
1452     }
1453 
1454     // Find containing FILE symbol
1455     ELFSymbolRef Symbol = SymIt->second;
1456     auto FSI = llvm::upper_bound(FileSymbols, Symbol);
1457     if (FSI == FileSymbols.begin()) {
1458       BC->errs() << "BOLT-ERROR: owning FILE symbol not found for symbol "
1459                  << cantFail(Symbol.getName()) << '\n';
1460       exit(1);
1461     }
1462 
1463     ELFSymbolRef StopSymbol = LocalSymEnd;
1464     if (FSI != FileSymbols.end())
1465       StopSymbol = *FSI;
1466 
1467     uint64_t ParentAddress{0};
1468 
1469     // BOLT split fragment symbols are emitted just before the main function
1470     // symbol.
1471     for (ELFSymbolRef NextSymbol = Symbol; NextSymbol < StopSymbol;
1472          NextSymbol.moveNext()) {
1473       StringRef Name = cantFail(NextSymbol.getName());
1474       if (Name == ParentName) {
1475         ParentAddress = cantFail(NextSymbol.getValue());
1476         goto registerParent;
1477       }
1478       if (Name.starts_with(ParentName))
1479         // With multi-way splitting, there are multiple fragments with different
1480         // suffixes. Parent follows the last fragment.
1481         continue;
1482       break;
1483     }
1484 
1485     // Iterate over local file symbols and check symbol names to match parent.
1486     for (ELFSymbolRef Symbol(FSI[-1]); Symbol < StopSymbol; Symbol.moveNext()) {
1487       if (cantFail(Symbol.getName()) == ParentName) {
1488         ParentAddress = cantFail(Symbol.getAddress());
1489         break;
1490       }
1491     }
1492 
1493 registerParent:
1494     // No local parent is found, use global parent function.
1495     if (!ParentAddress)
1496       if (BinaryData *ParentBD = BC->getBinaryDataByName(ParentName))
1497         ParentAddress = ParentBD->getAddress();
1498 
1499     if (BinaryFunction *ParentBF =
1500             BC->getBinaryFunctionAtAddress(ParentAddress)) {
1501       BC->registerFragment(*BF, *ParentBF);
1502       continue;
1503     }
1504     BC->errs() << "BOLT-ERROR: parent function not found for " << *BF << '\n';
1505     exit(1);
1506   }
1507 }
1508 
1509 void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress,
1510                                               uint64_t EntryAddress,
1511                                               uint64_t EntrySize) {
1512   if (!TargetAddress)
1513     return;
1514 
1515   auto setPLTSymbol = [&](BinaryFunction *BF, StringRef Name) {
1516     const unsigned PtrSize = BC->AsmInfo->getCodePointerSize();
1517     MCSymbol *TargetSymbol = BC->registerNameAtAddress(
1518         Name.str() + "@GOT", TargetAddress, PtrSize, PtrSize);
1519     BF->setPLTSymbol(TargetSymbol);
1520   };
1521 
1522   BinaryFunction *BF = BC->getBinaryFunctionAtAddress(EntryAddress);
1523   if (BF && BC->isAArch64()) {
1524     // Handle IFUNC trampoline with symbol
1525     setPLTSymbol(BF, BF->getOneName());
1526     return;
1527   }
1528 
1529   const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress);
1530   if (!Rel)
1531     return;
1532 
1533   MCSymbol *Symbol = Rel->Symbol;
1534   if (!Symbol) {
1535     if (!BC->isAArch64() || !Rel->Addend || !Rel->isIRelative())
1536       return;
1537 
1538     // IFUNC trampoline without symbol
1539     BinaryFunction *TargetBF = BC->getBinaryFunctionAtAddress(Rel->Addend);
1540     if (!TargetBF) {
1541       BC->errs()
1542           << "BOLT-WARNING: Expected BF to be presented as IFUNC resolver at "
1543           << Twine::utohexstr(Rel->Addend) << ", skipping\n";
1544       return;
1545     }
1546 
1547     Symbol = TargetBF->getSymbol();
1548   }
1549 
1550   ErrorOr<BinarySection &> Section = BC->getSectionForAddress(EntryAddress);
1551   assert(Section && "cannot get section for address");
1552   if (!BF)
1553     BF = BC->createBinaryFunction(Symbol->getName().str() + "@PLT", *Section,
1554                                   EntryAddress, 0, EntrySize,
1555                                   Section->getAlignment());
1556   else
1557     BF->addAlternativeName(Symbol->getName().str() + "@PLT");
1558   setPLTSymbol(BF, Symbol->getName());
1559 }
1560 
1561 void RewriteInstance::disassemblePLTInstruction(const BinarySection &Section,
1562                                                 uint64_t InstrOffset,
1563                                                 MCInst &Instruction,
1564                                                 uint64_t &InstrSize) {
1565   const uint64_t SectionAddress = Section.getAddress();
1566   const uint64_t SectionSize = Section.getSize();
1567   StringRef PLTContents = Section.getContents();
1568   ArrayRef<uint8_t> PLTData(
1569       reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize);
1570 
1571   const uint64_t InstrAddr = SectionAddress + InstrOffset;
1572   if (!BC->DisAsm->getInstruction(Instruction, InstrSize,
1573                                   PLTData.slice(InstrOffset), InstrAddr,
1574                                   nulls())) {
1575     BC->errs()
1576         << "BOLT-ERROR: unable to disassemble instruction in PLT section "
1577         << Section.getName() << formatv(" at offset {0:x}\n", InstrOffset);
1578     exit(1);
1579   }
1580 }
1581 
1582 void RewriteInstance::disassemblePLTSectionAArch64(BinarySection &Section) {
1583   const uint64_t SectionAddress = Section.getAddress();
1584   const uint64_t SectionSize = Section.getSize();
1585 
1586   uint64_t InstrOffset = 0;
1587   // Locate new plt entry
1588   while (InstrOffset < SectionSize) {
1589     InstructionListType Instructions;
1590     MCInst Instruction;
1591     uint64_t EntryOffset = InstrOffset;
1592     uint64_t EntrySize = 0;
1593     uint64_t InstrSize;
1594     // Loop through entry instructions
1595     while (InstrOffset < SectionSize) {
1596       disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize);
1597       EntrySize += InstrSize;
1598       if (!BC->MIB->isIndirectBranch(Instruction)) {
1599         Instructions.emplace_back(Instruction);
1600         InstrOffset += InstrSize;
1601         continue;
1602       }
1603 
1604       const uint64_t EntryAddress = SectionAddress + EntryOffset;
1605       const uint64_t TargetAddress = BC->MIB->analyzePLTEntry(
1606           Instruction, Instructions.begin(), Instructions.end(), EntryAddress);
1607 
1608       createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize);
1609       break;
1610     }
1611 
1612     // Branch instruction
1613     InstrOffset += InstrSize;
1614 
1615     // Skip nops if any
1616     while (InstrOffset < SectionSize) {
1617       disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize);
1618       if (!BC->MIB->isNoop(Instruction))
1619         break;
1620 
1621       InstrOffset += InstrSize;
1622     }
1623   }
1624 }
1625 
1626 void RewriteInstance::disassemblePLTSectionRISCV(BinarySection &Section) {
1627   const uint64_t SectionAddress = Section.getAddress();
1628   const uint64_t SectionSize = Section.getSize();
1629   StringRef PLTContents = Section.getContents();
1630   ArrayRef<uint8_t> PLTData(
1631       reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize);
1632 
1633   auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction,
1634                                     uint64_t &InstrSize) {
1635     const uint64_t InstrAddr = SectionAddress + InstrOffset;
1636     if (!BC->DisAsm->getInstruction(Instruction, InstrSize,
1637                                     PLTData.slice(InstrOffset), InstrAddr,
1638                                     nulls())) {
1639       BC->errs()
1640           << "BOLT-ERROR: unable to disassemble instruction in PLT section "
1641           << Section.getName() << " at offset 0x"
1642           << Twine::utohexstr(InstrOffset) << '\n';
1643       exit(1);
1644     }
1645   };
1646 
1647   // Skip the first special entry since no relocation points to it.
1648   uint64_t InstrOffset = 32;
1649 
1650   while (InstrOffset < SectionSize) {
1651     InstructionListType Instructions;
1652     MCInst Instruction;
1653     const uint64_t EntryOffset = InstrOffset;
1654     const uint64_t EntrySize = 16;
1655     uint64_t InstrSize;
1656 
1657     while (InstrOffset < EntryOffset + EntrySize) {
1658       disassembleInstruction(InstrOffset, Instruction, InstrSize);
1659       Instructions.emplace_back(Instruction);
1660       InstrOffset += InstrSize;
1661     }
1662 
1663     const uint64_t EntryAddress = SectionAddress + EntryOffset;
1664     const uint64_t TargetAddress = BC->MIB->analyzePLTEntry(
1665         Instruction, Instructions.begin(), Instructions.end(), EntryAddress);
1666 
1667     createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize);
1668   }
1669 }
1670 
1671 void RewriteInstance::disassemblePLTSectionX86(BinarySection &Section,
1672                                                uint64_t EntrySize) {
1673   const uint64_t SectionAddress = Section.getAddress();
1674   const uint64_t SectionSize = Section.getSize();
1675 
1676   for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= SectionSize;
1677        EntryOffset += EntrySize) {
1678     MCInst Instruction;
1679     uint64_t InstrSize, InstrOffset = EntryOffset;
1680     while (InstrOffset < EntryOffset + EntrySize) {
1681       disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize);
1682       // Check if the entry size needs adjustment.
1683       if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) &&
1684           EntrySize == 8)
1685         EntrySize = 16;
1686 
1687       if (BC->MIB->isIndirectBranch(Instruction))
1688         break;
1689 
1690       InstrOffset += InstrSize;
1691     }
1692 
1693     if (InstrOffset + InstrSize > EntryOffset + EntrySize)
1694       continue;
1695 
1696     uint64_t TargetAddress;
1697     if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress,
1698                                            SectionAddress + InstrOffset,
1699                                            InstrSize)) {
1700       BC->errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x"
1701                  << Twine::utohexstr(SectionAddress + InstrOffset) << '\n';
1702       exit(1);
1703     }
1704 
1705     createPLTBinaryFunction(TargetAddress, SectionAddress + EntryOffset,
1706                             EntrySize);
1707   }
1708 }
1709 
1710 void RewriteInstance::disassemblePLT() {
1711   auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) {
1712     if (BC->isAArch64())
1713       return disassemblePLTSectionAArch64(Section);
1714     if (BC->isRISCV())
1715       return disassemblePLTSectionRISCV(Section);
1716     if (BC->isX86())
1717       return disassemblePLTSectionX86(Section, EntrySize);
1718     llvm_unreachable("Unmplemented PLT");
1719   };
1720 
1721   for (BinarySection &Section : BC->allocatableSections()) {
1722     const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName());
1723     if (!PLTSI)
1724       continue;
1725 
1726     analyzeOnePLTSection(Section, PLTSI->EntrySize);
1727 
1728     BinaryFunction *PltBF;
1729     auto BFIter = BC->getBinaryFunctions().find(Section.getAddress());
1730     if (BFIter != BC->getBinaryFunctions().end()) {
1731       PltBF = &BFIter->second;
1732     } else {
1733       // If we did not register any function at the start of the section,
1734       // then it must be a general PLT entry. Add a function at the location.
1735       PltBF = BC->createBinaryFunction(
1736           "__BOLT_PSEUDO_" + Section.getName().str(), Section,
1737           Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment());
1738     }
1739     PltBF->setPseudo(true);
1740   }
1741 }
1742 
1743 void RewriteInstance::adjustFunctionBoundaries() {
1744   for (auto BFI = BC->getBinaryFunctions().begin(),
1745             BFE = BC->getBinaryFunctions().end();
1746        BFI != BFE; ++BFI) {
1747     BinaryFunction &Function = BFI->second;
1748     const BinaryFunction *NextFunction = nullptr;
1749     if (std::next(BFI) != BFE)
1750       NextFunction = &std::next(BFI)->second;
1751 
1752     // Check if there's a symbol or a function with a larger address in the
1753     // same section. If there is - it determines the maximum size for the
1754     // current function. Otherwise, it is the size of a containing section
1755     // the defines it.
1756     //
1757     // NOTE: ignore some symbols that could be tolerated inside the body
1758     //       of a function.
1759     auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress());
1760     while (NextSymRefI != FileSymRefs.end()) {
1761       SymbolRef &Symbol = NextSymRefI->second;
1762       const uint64_t SymbolAddress = NextSymRefI->first;
1763       const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize();
1764 
1765       if (NextFunction && SymbolAddress >= NextFunction->getAddress())
1766         break;
1767 
1768       if (!Function.isSymbolValidInScope(Symbol, SymbolSize))
1769         break;
1770 
1771       // Skip basic block labels. This happens on RISC-V with linker relaxation
1772       // enabled because every branch needs a relocation and corresponding
1773       // symbol. We don't want to add such symbols as entry points.
1774       const auto PrivateLabelPrefix = BC->AsmInfo->getPrivateLabelPrefix();
1775       if (!PrivateLabelPrefix.empty() &&
1776           cantFail(Symbol.getName()).starts_with(PrivateLabelPrefix)) {
1777         ++NextSymRefI;
1778         continue;
1779       }
1780 
1781       // This is potentially another entry point into the function.
1782       uint64_t EntryOffset = NextSymRefI->first - Function.getAddress();
1783       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function "
1784                         << Function << " at offset 0x"
1785                         << Twine::utohexstr(EntryOffset) << '\n');
1786       Function.addEntryPointAtOffset(EntryOffset);
1787 
1788       ++NextSymRefI;
1789     }
1790 
1791     // Function runs at most till the end of the containing section.
1792     uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress();
1793     // Or till the next object marked by a symbol.
1794     if (NextSymRefI != FileSymRefs.end())
1795       NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress);
1796 
1797     // Or till the next function not marked by a symbol.
1798     if (NextFunction)
1799       NextObjectAddress =
1800           std::min(NextFunction->getAddress(), NextObjectAddress);
1801 
1802     const uint64_t MaxSize = NextObjectAddress - Function.getAddress();
1803     if (MaxSize < Function.getSize()) {
1804       BC->errs() << "BOLT-ERROR: symbol seen in the middle of the function "
1805                  << Function << ". Skipping.\n";
1806       Function.setSimple(false);
1807       Function.setMaxSize(Function.getSize());
1808       continue;
1809     }
1810     Function.setMaxSize(MaxSize);
1811     if (!Function.getSize() && Function.isSimple()) {
1812       // Some assembly functions have their size set to 0, use the max
1813       // size as their real size.
1814       if (opts::Verbosity >= 1)
1815         BC->outs() << "BOLT-INFO: setting size of function " << Function
1816                    << " to " << Function.getMaxSize() << " (was 0)\n";
1817       Function.setSize(Function.getMaxSize());
1818     }
1819   }
1820 }
1821 
1822 void RewriteInstance::relocateEHFrameSection() {
1823   assert(EHFrameSection && "Non-empty .eh_frame section expected.");
1824 
1825   BinarySection *RelocatedEHFrameSection =
1826       getSection(".relocated" + getEHFrameSectionName());
1827   assert(RelocatedEHFrameSection &&
1828          "Relocated eh_frame section should be preregistered.");
1829   DWARFDataExtractor DE(EHFrameSection->getContents(),
1830                         BC->AsmInfo->isLittleEndian(),
1831                         BC->AsmInfo->getCodePointerSize());
1832   auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) {
1833     if (DwarfType == dwarf::DW_EH_PE_omit)
1834       return;
1835 
1836     // Only fix references that are relative to other locations.
1837     if (!(DwarfType & dwarf::DW_EH_PE_pcrel) &&
1838         !(DwarfType & dwarf::DW_EH_PE_textrel) &&
1839         !(DwarfType & dwarf::DW_EH_PE_funcrel) &&
1840         !(DwarfType & dwarf::DW_EH_PE_datarel))
1841       return;
1842 
1843     if (!(DwarfType & dwarf::DW_EH_PE_sdata4))
1844       return;
1845 
1846     uint64_t RelType;
1847     switch (DwarfType & 0x0f) {
1848     default:
1849       llvm_unreachable("unsupported DWARF encoding type");
1850     case dwarf::DW_EH_PE_sdata4:
1851     case dwarf::DW_EH_PE_udata4:
1852       RelType = Relocation::getPC32();
1853       Offset -= 4;
1854       break;
1855     case dwarf::DW_EH_PE_sdata8:
1856     case dwarf::DW_EH_PE_udata8:
1857       RelType = Relocation::getPC64();
1858       Offset -= 8;
1859       break;
1860     }
1861 
1862     // Create a relocation against an absolute value since the goal is to
1863     // preserve the contents of the section independent of the new values
1864     // of referenced symbols.
1865     RelocatedEHFrameSection->addRelocation(Offset, nullptr, RelType, Value);
1866   };
1867 
1868   Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc);
1869   check_error(std::move(E), "failed to patch EH frame");
1870 }
1871 
1872 Error RewriteInstance::readSpecialSections() {
1873   NamedRegionTimer T("readSpecialSections", "read special sections",
1874                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
1875 
1876   bool HasTextRelocations = false;
1877   bool HasSymbolTable = false;
1878   bool HasDebugInfo = false;
1879 
1880   // Process special sections.
1881   for (const SectionRef &Section : InputFile->sections()) {
1882     Expected<StringRef> SectionNameOrErr = Section.getName();
1883     check_error(SectionNameOrErr.takeError(), "cannot get section name");
1884     StringRef SectionName = *SectionNameOrErr;
1885 
1886     if (Error E = Section.getContents().takeError())
1887       return E;
1888     BC->registerSection(Section);
1889     LLVM_DEBUG(
1890         dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x"
1891                << Twine::utohexstr(Section.getAddress()) << ":0x"
1892                << Twine::utohexstr(Section.getAddress() + Section.getSize())
1893                << "\n");
1894     if (isDebugSection(SectionName))
1895       HasDebugInfo = true;
1896   }
1897 
1898   // Set IsRelro section attribute based on PT_GNU_RELRO segment.
1899   markGnuRelroSections();
1900 
1901   if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) {
1902     BC->errs() << "BOLT-WARNING: debug info will be stripped from the binary. "
1903                   "Use -update-debug-sections to keep it.\n";
1904   }
1905 
1906   HasTextRelocations = (bool)BC->getUniqueSectionByName(
1907       ".rela" + std::string(BC->getMainCodeSectionName()));
1908   HasSymbolTable = (bool)BC->getUniqueSectionByName(".symtab");
1909   EHFrameSection = BC->getUniqueSectionByName(".eh_frame");
1910 
1911   if (ErrorOr<BinarySection &> BATSec =
1912           BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) {
1913     BC->HasBATSection = true;
1914     // Do not read BAT when plotting a heatmap
1915     if (!opts::HeatmapMode) {
1916       if (std::error_code EC = BAT->parse(BC->outs(), BATSec->getContents())) {
1917         BC->errs() << "BOLT-ERROR: failed to parse BOLT address translation "
1918                       "table.\n";
1919         exit(1);
1920       }
1921     }
1922   }
1923 
1924   if (opts::PrintSections) {
1925     BC->outs() << "BOLT-INFO: Sections from original binary:\n";
1926     BC->printSections(BC->outs());
1927   }
1928 
1929   if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) {
1930     BC->errs()
1931         << "BOLT-ERROR: relocations against code are missing from the input "
1932            "file. Cannot proceed in relocations mode (-relocs).\n";
1933     exit(1);
1934   }
1935 
1936   BC->HasRelocations =
1937       HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE);
1938 
1939   if (BC->IsLinuxKernel && BC->HasRelocations) {
1940     BC->outs() << "BOLT-INFO: disabling relocation mode for Linux kernel\n";
1941     BC->HasRelocations = false;
1942   }
1943 
1944   BC->IsStripped = !HasSymbolTable;
1945 
1946   if (BC->IsStripped && !opts::AllowStripped) {
1947     BC->errs()
1948         << "BOLT-ERROR: stripped binaries are not supported. If you know "
1949            "what you're doing, use --allow-stripped to proceed";
1950     exit(1);
1951   }
1952 
1953   // Force non-relocation mode for heatmap generation
1954   if (opts::HeatmapMode)
1955     BC->HasRelocations = false;
1956 
1957   if (BC->HasRelocations)
1958     BC->outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "")
1959                << "relocation mode\n";
1960 
1961   // Read EH frame for function boundaries info.
1962   Expected<const DWARFDebugFrame *> EHFrameOrError = BC->DwCtx->getEHFrame();
1963   if (!EHFrameOrError)
1964     report_error("expected valid eh_frame section", EHFrameOrError.takeError());
1965   CFIRdWrt.reset(new CFIReaderWriter(*BC, *EHFrameOrError.get()));
1966 
1967   processSectionMetadata();
1968 
1969   // Read .dynamic/PT_DYNAMIC.
1970   return readELFDynamic();
1971 }
1972 
1973 void RewriteInstance::adjustCommandLineOptions() {
1974   if (BC->isAArch64() && !BC->HasRelocations)
1975     BC->errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully "
1976                   "supported\n";
1977 
1978   if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
1979     RtLibrary->adjustCommandLineOptions(*BC);
1980 
1981   if (BC->isX86() && BC->MAB->allowAutoPadding()) {
1982     if (!BC->HasRelocations) {
1983       BC->errs()
1984           << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in "
1985              "non-relocation mode\n";
1986       exit(1);
1987     }
1988     BC->outs()
1989         << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout "
1990            "may take several minutes\n";
1991   }
1992 
1993   if (opts::SplitEH && !BC->HasRelocations) {
1994     BC->errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n";
1995     opts::SplitEH = false;
1996   }
1997 
1998   if (opts::StrictMode && !BC->HasRelocations) {
1999     BC->errs()
2000         << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation "
2001            "mode\n";
2002     opts::StrictMode = false;
2003   }
2004 
2005   if (BC->HasRelocations && opts::AggregateOnly &&
2006       !opts::StrictMode.getNumOccurrences()) {
2007     BC->outs() << "BOLT-INFO: enabling strict relocation mode for aggregation "
2008                   "purposes\n";
2009     opts::StrictMode = true;
2010   }
2011 
2012   if (!BC->HasRelocations &&
2013       opts::ReorderFunctions != ReorderFunctions::RT_NONE) {
2014     BC->errs() << "BOLT-ERROR: function reordering only works when "
2015                << "relocations are enabled\n";
2016     exit(1);
2017   }
2018 
2019   if (opts::Instrument ||
2020       (opts::ReorderFunctions != ReorderFunctions::RT_NONE &&
2021        !opts::HotText.getNumOccurrences())) {
2022     opts::HotText = true;
2023   } else if (opts::HotText && !BC->HasRelocations) {
2024     BC->errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n";
2025     opts::HotText = false;
2026   }
2027 
2028   if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) {
2029     opts::HotTextMoveSections.addValue(".stub");
2030     opts::HotTextMoveSections.addValue(".mover");
2031     opts::HotTextMoveSections.addValue(".never_hugify");
2032   }
2033 
2034   if (opts::UseOldText && !BC->OldTextSectionAddress) {
2035     BC->errs()
2036         << "BOLT-WARNING: cannot use old .text as the section was not found"
2037            "\n";
2038     opts::UseOldText = false;
2039   }
2040   if (opts::UseOldText && !BC->HasRelocations) {
2041     BC->errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n";
2042     opts::UseOldText = false;
2043   }
2044 
2045   if (!opts::AlignText.getNumOccurrences())
2046     opts::AlignText = BC->PageAlign;
2047 
2048   if (opts::AlignText < opts::AlignFunctions)
2049     opts::AlignText = (unsigned)opts::AlignFunctions;
2050 
2051   if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode &&
2052       !opts::UseOldText)
2053     opts::Lite = true;
2054 
2055   if (opts::Lite && opts::UseOldText) {
2056     BC->errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. "
2057                   "Disabling -use-old-text.\n";
2058     opts::UseOldText = false;
2059   }
2060 
2061   if (opts::Lite && opts::StrictMode) {
2062     BC->errs()
2063         << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n";
2064     exit(1);
2065   }
2066 
2067   if (opts::Lite)
2068     BC->outs() << "BOLT-INFO: enabling lite mode\n";
2069 
2070   if (BC->IsLinuxKernel) {
2071     if (!opts::KeepNops.getNumOccurrences())
2072       opts::KeepNops = true;
2073 
2074     // Linux kernel may resume execution after a trap instruction in some cases.
2075     if (!opts::TerminalTrap.getNumOccurrences())
2076       opts::TerminalTrap = false;
2077   }
2078 }
2079 
2080 namespace {
2081 template <typename ELFT>
2082 int64_t getRelocationAddend(const ELFObjectFile<ELFT> *Obj,
2083                             const RelocationRef &RelRef) {
2084   using ELFShdrTy = typename ELFT::Shdr;
2085   using Elf_Rela = typename ELFT::Rela;
2086   int64_t Addend = 0;
2087   const ELFFile<ELFT> &EF = Obj->getELFFile();
2088   DataRefImpl Rel = RelRef.getRawDataRefImpl();
2089   const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a));
2090   switch (RelocationSection->sh_type) {
2091   default:
2092     llvm_unreachable("unexpected relocation section type");
2093   case ELF::SHT_REL:
2094     break;
2095   case ELF::SHT_RELA: {
2096     const Elf_Rela *RelA = Obj->getRela(Rel);
2097     Addend = RelA->r_addend;
2098     break;
2099   }
2100   }
2101 
2102   return Addend;
2103 }
2104 
2105 int64_t getRelocationAddend(const ELFObjectFileBase *Obj,
2106                             const RelocationRef &Rel) {
2107   return getRelocationAddend(cast<ELF64LEObjectFile>(Obj), Rel);
2108 }
2109 
2110 template <typename ELFT>
2111 uint32_t getRelocationSymbol(const ELFObjectFile<ELFT> *Obj,
2112                              const RelocationRef &RelRef) {
2113   using ELFShdrTy = typename ELFT::Shdr;
2114   uint32_t Symbol = 0;
2115   const ELFFile<ELFT> &EF = Obj->getELFFile();
2116   DataRefImpl Rel = RelRef.getRawDataRefImpl();
2117   const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a));
2118   switch (RelocationSection->sh_type) {
2119   default:
2120     llvm_unreachable("unexpected relocation section type");
2121   case ELF::SHT_REL:
2122     Symbol = Obj->getRel(Rel)->getSymbol(EF.isMips64EL());
2123     break;
2124   case ELF::SHT_RELA:
2125     Symbol = Obj->getRela(Rel)->getSymbol(EF.isMips64EL());
2126     break;
2127   }
2128 
2129   return Symbol;
2130 }
2131 
2132 uint32_t getRelocationSymbol(const ELFObjectFileBase *Obj,
2133                              const RelocationRef &Rel) {
2134   return getRelocationSymbol(cast<ELF64LEObjectFile>(Obj), Rel);
2135 }
2136 } // anonymous namespace
2137 
2138 bool RewriteInstance::analyzeRelocation(
2139     const RelocationRef &Rel, uint64_t &RType, std::string &SymbolName,
2140     bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend,
2141     uint64_t &ExtractedValue, bool &Skip) const {
2142   Skip = false;
2143   if (!Relocation::isSupported(RType))
2144     return false;
2145 
2146   auto IsWeakReference = [](const SymbolRef &Symbol) {
2147     Expected<uint32_t> SymFlagsOrErr = Symbol.getFlags();
2148     if (!SymFlagsOrErr)
2149       return false;
2150     return (*SymFlagsOrErr & SymbolRef::SF_Undefined) &&
2151            (*SymFlagsOrErr & SymbolRef::SF_Weak);
2152   };
2153 
2154   const bool IsAArch64 = BC->isAArch64();
2155 
2156   const size_t RelSize = Relocation::getSizeForType(RType);
2157 
2158   ErrorOr<uint64_t> Value =
2159       BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize);
2160   assert(Value && "failed to extract relocated value");
2161   if ((Skip = Relocation::skipRelocationProcess(RType, *Value)))
2162     return true;
2163 
2164   ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset());
2165   Addend = getRelocationAddend(InputFile, Rel);
2166 
2167   const bool IsPCRelative = Relocation::isPCRelative(RType);
2168   const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0;
2169   bool SkipVerification = false;
2170   auto SymbolIter = Rel.getSymbol();
2171   if (SymbolIter == InputFile->symbol_end()) {
2172     SymbolAddress = ExtractedValue - Addend + PCRelOffset;
2173     MCSymbol *RelSymbol =
2174         BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat");
2175     SymbolName = std::string(RelSymbol->getName());
2176     IsSectionRelocation = false;
2177   } else {
2178     const SymbolRef &Symbol = *SymbolIter;
2179     SymbolName = std::string(cantFail(Symbol.getName()));
2180     SymbolAddress = cantFail(Symbol.getAddress());
2181     SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other);
2182     // Section symbols are marked as ST_Debug.
2183     IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug);
2184     // Check for PLT entry registered with symbol name
2185     if (!SymbolAddress && !IsWeakReference(Symbol) &&
2186         (IsAArch64 || BC->isRISCV())) {
2187       const BinaryData *BD = BC->getPLTBinaryDataByName(SymbolName);
2188       SymbolAddress = BD ? BD->getAddress() : 0;
2189     }
2190   }
2191   // For PIE or dynamic libs, the linker may choose not to put the relocation
2192   // result at the address if it is a X86_64_64 one because it will emit a
2193   // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to
2194   // resolve it at run time. The static relocation result goes as the addend
2195   // of the dynamic relocation in this case. We can't verify these cases.
2196   // FIXME: perhaps we can try to find if it really emitted a corresponding
2197   // RELATIVE relocation at this offset with the correct value as the addend.
2198   if (!BC->HasFixedLoadAddress && RelSize == 8)
2199     SkipVerification = true;
2200 
2201   if (IsSectionRelocation && !IsAArch64) {
2202     ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress);
2203     assert(Section && "section expected for section relocation");
2204     SymbolName = "section " + std::string(Section->getName());
2205     // Convert section symbol relocations to regular relocations inside
2206     // non-section symbols.
2207     if (Section->containsAddress(ExtractedValue) && !IsPCRelative) {
2208       SymbolAddress = ExtractedValue;
2209       Addend = 0;
2210     } else {
2211       Addend = ExtractedValue - (SymbolAddress - PCRelOffset);
2212     }
2213   }
2214 
2215   // If no symbol has been found or if it is a relocation requiring the
2216   // creation of a GOT entry, do not link against the symbol but against
2217   // whatever address was extracted from the instruction itself. We are
2218   // not creating a GOT entry as this was already processed by the linker.
2219   // For GOT relocs, do not subtract addend as the addend does not refer
2220   // to this instruction's target, but it refers to the target in the GOT
2221   // entry.
2222   if (Relocation::isGOT(RType)) {
2223     Addend = 0;
2224     SymbolAddress = ExtractedValue + PCRelOffset;
2225   } else if (Relocation::isTLS(RType)) {
2226     SkipVerification = true;
2227   } else if (!SymbolAddress) {
2228     assert(!IsSectionRelocation);
2229     if (ExtractedValue || Addend == 0 || IsPCRelative) {
2230       SymbolAddress =
2231           truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize);
2232     } else {
2233       // This is weird case.  The extracted value is zero but the addend is
2234       // non-zero and the relocation is not pc-rel.  Using the previous logic,
2235       // the SymbolAddress would end up as a huge number.  Seen in
2236       // exceptions_pic.test.
2237       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x"
2238                         << Twine::utohexstr(Rel.getOffset())
2239                         << " value does not match addend for "
2240                         << "relocation to undefined symbol.\n");
2241       return true;
2242     }
2243   }
2244 
2245   auto verifyExtractedValue = [&]() {
2246     if (SkipVerification)
2247       return true;
2248 
2249     if (IsAArch64 || BC->isRISCV())
2250       return true;
2251 
2252     if (SymbolName == "__hot_start" || SymbolName == "__hot_end")
2253       return true;
2254 
2255     if (RType == ELF::R_X86_64_PLT32)
2256       return true;
2257 
2258     return truncateToSize(ExtractedValue, RelSize) ==
2259            truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize);
2260   };
2261 
2262   (void)verifyExtractedValue;
2263   assert(verifyExtractedValue() && "mismatched extracted relocation value");
2264 
2265   return true;
2266 }
2267 
2268 void RewriteInstance::processDynamicRelocations() {
2269   // Read .relr.dyn section containing compressed R_*_RELATIVE relocations.
2270   if (DynamicRelrSize > 0) {
2271     ErrorOr<BinarySection &> DynamicRelrSectionOrErr =
2272         BC->getSectionForAddress(*DynamicRelrAddress);
2273     if (!DynamicRelrSectionOrErr)
2274       report_error("unable to find section corresponding to DT_RELR",
2275                    DynamicRelrSectionOrErr.getError());
2276     if (DynamicRelrSectionOrErr->getSize() != DynamicRelrSize)
2277       report_error("section size mismatch for DT_RELRSZ",
2278                    errc::executable_format_error);
2279     readDynamicRelrRelocations(*DynamicRelrSectionOrErr);
2280   }
2281 
2282   // Read relocations for PLT - DT_JMPREL.
2283   if (PLTRelocationsSize > 0) {
2284     ErrorOr<BinarySection &> PLTRelSectionOrErr =
2285         BC->getSectionForAddress(*PLTRelocationsAddress);
2286     if (!PLTRelSectionOrErr)
2287       report_error("unable to find section corresponding to DT_JMPREL",
2288                    PLTRelSectionOrErr.getError());
2289     if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize)
2290       report_error("section size mismatch for DT_PLTRELSZ",
2291                    errc::executable_format_error);
2292     readDynamicRelocations(PLTRelSectionOrErr->getSectionRef(),
2293                            /*IsJmpRel*/ true);
2294   }
2295 
2296   // The rest of dynamic relocations - DT_RELA.
2297   // The static executable might have .rela.dyn secion and not have PT_DYNAMIC
2298   if (!DynamicRelocationsSize && BC->IsStaticExecutable) {
2299     ErrorOr<BinarySection &> DynamicRelSectionOrErr =
2300         BC->getUniqueSectionByName(getRelaDynSectionName());
2301     if (DynamicRelSectionOrErr) {
2302       DynamicRelocationsAddress = DynamicRelSectionOrErr->getAddress();
2303       DynamicRelocationsSize = DynamicRelSectionOrErr->getSize();
2304       const SectionRef &SectionRef = DynamicRelSectionOrErr->getSectionRef();
2305       DynamicRelativeRelocationsCount = std::distance(
2306           SectionRef.relocation_begin(), SectionRef.relocation_end());
2307     }
2308   }
2309 
2310   if (DynamicRelocationsSize > 0) {
2311     ErrorOr<BinarySection &> DynamicRelSectionOrErr =
2312         BC->getSectionForAddress(*DynamicRelocationsAddress);
2313     if (!DynamicRelSectionOrErr)
2314       report_error("unable to find section corresponding to DT_RELA",
2315                    DynamicRelSectionOrErr.getError());
2316     auto DynamicRelSectionSize = DynamicRelSectionOrErr->getSize();
2317     // On RISC-V DT_RELASZ seems to include both .rela.dyn and .rela.plt
2318     if (DynamicRelocationsSize == DynamicRelSectionSize + PLTRelocationsSize)
2319       DynamicRelocationsSize = DynamicRelSectionSize;
2320     if (DynamicRelSectionSize != DynamicRelocationsSize)
2321       report_error("section size mismatch for DT_RELASZ",
2322                    errc::executable_format_error);
2323     readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef(),
2324                            /*IsJmpRel*/ false);
2325   }
2326 }
2327 
2328 void RewriteInstance::processRelocations() {
2329   if (!BC->HasRelocations)
2330     return;
2331 
2332   for (const SectionRef &Section : InputFile->sections()) {
2333     section_iterator SecIter = cantFail(Section.getRelocatedSection());
2334     if (SecIter == InputFile->section_end())
2335       continue;
2336     if (BinarySection(*BC, Section).isAllocatable())
2337       continue;
2338 
2339     readRelocations(Section);
2340   }
2341 
2342   if (NumFailedRelocations)
2343     BC->errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations
2344                << " relocations\n";
2345 }
2346 
2347 void RewriteInstance::readDynamicRelocations(const SectionRef &Section,
2348                                              bool IsJmpRel) {
2349   assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected");
2350 
2351   LLVM_DEBUG({
2352     StringRef SectionName = cantFail(Section.getName());
2353     dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
2354            << ":\n";
2355   });
2356 
2357   for (const RelocationRef &Rel : Section.relocations()) {
2358     const uint64_t RType = Rel.getType();
2359     if (Relocation::isNone(RType))
2360       continue;
2361 
2362     StringRef SymbolName = "<none>";
2363     MCSymbol *Symbol = nullptr;
2364     uint64_t SymbolAddress = 0;
2365     const uint64_t Addend = getRelocationAddend(InputFile, Rel);
2366 
2367     symbol_iterator SymbolIter = Rel.getSymbol();
2368     if (SymbolIter != InputFile->symbol_end()) {
2369       SymbolName = cantFail(SymbolIter->getName());
2370       BinaryData *BD = BC->getBinaryDataByName(SymbolName);
2371       Symbol = BD ? BD->getSymbol()
2372                   : BC->getOrCreateUndefinedGlobalSymbol(SymbolName);
2373       SymbolAddress = cantFail(SymbolIter->getAddress());
2374       (void)SymbolAddress;
2375     }
2376 
2377     LLVM_DEBUG(
2378       SmallString<16> TypeName;
2379       Rel.getTypeName(TypeName);
2380       dbgs() << "BOLT-DEBUG: dynamic relocation at 0x"
2381              << Twine::utohexstr(Rel.getOffset()) << " : " << TypeName
2382              << " : " << SymbolName << " : " <<  Twine::utohexstr(SymbolAddress)
2383              << " : + 0x" << Twine::utohexstr(Addend) << '\n'
2384     );
2385 
2386     if (IsJmpRel)
2387       IsJmpRelocation[RType] = true;
2388 
2389     if (Symbol)
2390       SymbolIndex[Symbol] = getRelocationSymbol(InputFile, Rel);
2391 
2392     BC->addDynamicRelocation(Rel.getOffset(), Symbol, RType, Addend);
2393   }
2394 }
2395 
2396 void RewriteInstance::readDynamicRelrRelocations(BinarySection &Section) {
2397   assert(Section.isAllocatable() && "allocatable expected");
2398 
2399   LLVM_DEBUG({
2400     StringRef SectionName = Section.getName();
2401     dbgs() << "BOLT-DEBUG: reading relocations in section " << SectionName
2402            << ":\n";
2403   });
2404 
2405   const uint64_t RType = Relocation::getRelative();
2406   const uint8_t PSize = BC->AsmInfo->getCodePointerSize();
2407   const uint64_t MaxDelta = ((CHAR_BIT * DynamicRelrEntrySize) - 1) * PSize;
2408 
2409   auto ExtractAddendValue = [&](uint64_t Address) -> uint64_t {
2410     ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
2411     assert(Section && "cannot get section for data address from RELR");
2412     DataExtractor DE = DataExtractor(Section->getContents(),
2413                                      BC->AsmInfo->isLittleEndian(), PSize);
2414     uint64_t Offset = Address - Section->getAddress();
2415     return DE.getUnsigned(&Offset, PSize);
2416   };
2417 
2418   auto AddRelocation = [&](uint64_t Address) {
2419     uint64_t Addend = ExtractAddendValue(Address);
2420     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: R_*_RELATIVE relocation at 0x"
2421                       << Twine::utohexstr(Address) << " to 0x"
2422                       << Twine::utohexstr(Addend) << '\n';);
2423     BC->addDynamicRelocation(Address, nullptr, RType, Addend);
2424   };
2425 
2426   DataExtractor DE = DataExtractor(Section.getContents(),
2427                                    BC->AsmInfo->isLittleEndian(), PSize);
2428   uint64_t Offset = 0, Address = 0;
2429   uint64_t RelrCount = DynamicRelrSize / DynamicRelrEntrySize;
2430   while (RelrCount--) {
2431     assert(DE.isValidOffset(Offset));
2432     uint64_t Entry = DE.getUnsigned(&Offset, DynamicRelrEntrySize);
2433     if ((Entry & 1) == 0) {
2434       AddRelocation(Entry);
2435       Address = Entry + PSize;
2436     } else {
2437       const uint64_t StartAddress = Address;
2438       while (Entry >>= 1) {
2439         if (Entry & 1)
2440           AddRelocation(Address);
2441 
2442         Address += PSize;
2443       }
2444 
2445       Address = StartAddress + MaxDelta;
2446     }
2447   }
2448 }
2449 
2450 void RewriteInstance::printRelocationInfo(const RelocationRef &Rel,
2451                                           StringRef SymbolName,
2452                                           uint64_t SymbolAddress,
2453                                           uint64_t Addend,
2454                                           uint64_t ExtractedValue) const {
2455   SmallString<16> TypeName;
2456   Rel.getTypeName(TypeName);
2457   const uint64_t Address = SymbolAddress + Addend;
2458   const uint64_t Offset = Rel.getOffset();
2459   ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress);
2460   BinaryFunction *Func =
2461       BC->getBinaryFunctionContainingAddress(Offset, false, BC->isAArch64());
2462   dbgs() << formatv("Relocation: offset = {0:x}; type = {1}; value = {2:x}; ",
2463                     Offset, TypeName, ExtractedValue)
2464          << formatv("symbol = {0} ({1}); symbol address = {2:x}; ", SymbolName,
2465                     Section ? Section->getName() : "", SymbolAddress)
2466          << formatv("addend = {0:x}; address = {1:x}; in = ", Addend, Address);
2467   if (Func)
2468     dbgs() << Func->getPrintName();
2469   else
2470     dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName();
2471   dbgs() << '\n';
2472 }
2473 
2474 void RewriteInstance::readRelocations(const SectionRef &Section) {
2475   LLVM_DEBUG({
2476     StringRef SectionName = cantFail(Section.getName());
2477     dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
2478            << ":\n";
2479   });
2480   if (BinarySection(*BC, Section).isAllocatable()) {
2481     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n");
2482     return;
2483   }
2484   section_iterator SecIter = cantFail(Section.getRelocatedSection());
2485   assert(SecIter != InputFile->section_end() && "relocated section expected");
2486   SectionRef RelocatedSection = *SecIter;
2487 
2488   StringRef RelocatedSectionName = cantFail(RelocatedSection.getName());
2489   LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is "
2490                     << RelocatedSectionName << '\n');
2491 
2492   if (!BinarySection(*BC, RelocatedSection).isAllocatable()) {
2493     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against "
2494                       << "non-allocatable section\n");
2495     return;
2496   }
2497   const bool SkipRelocs = StringSwitch<bool>(RelocatedSectionName)
2498                               .Cases(".plt", ".rela.plt", ".got.plt",
2499                                      ".eh_frame", ".gcc_except_table", true)
2500                               .Default(false);
2501   if (SkipRelocs) {
2502     LLVM_DEBUG(
2503         dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n");
2504     return;
2505   }
2506 
2507   for (const RelocationRef &Rel : Section.relocations())
2508     handleRelocation(RelocatedSection, Rel);
2509 }
2510 
2511 void RewriteInstance::handleRelocation(const SectionRef &RelocatedSection,
2512                                        const RelocationRef &Rel) {
2513   const bool IsAArch64 = BC->isAArch64();
2514   const bool IsFromCode = RelocatedSection.isText();
2515 
2516   SmallString<16> TypeName;
2517   Rel.getTypeName(TypeName);
2518   uint64_t RType = Rel.getType();
2519   if (Relocation::skipRelocationType(RType))
2520     return;
2521 
2522   // Adjust the relocation type as the linker might have skewed it.
2523   if (BC->isX86() && (RType & ELF::R_X86_64_converted_reloc_bit)) {
2524     if (opts::Verbosity >= 1)
2525       dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n";
2526     RType &= ~ELF::R_X86_64_converted_reloc_bit;
2527   }
2528 
2529   if (Relocation::isTLS(RType)) {
2530     // No special handling required for TLS relocations on X86.
2531     if (BC->isX86())
2532       return;
2533 
2534     // The non-got related TLS relocations on AArch64 and RISC-V also could be
2535     // skipped.
2536     if (!Relocation::isGOT(RType))
2537       return;
2538   }
2539 
2540   if (!IsAArch64 && BC->getDynamicRelocationAt(Rel.getOffset())) {
2541     LLVM_DEBUG({
2542       dbgs() << formatv("BOLT-DEBUG: address {0:x} has a ", Rel.getOffset())
2543              << "dynamic relocation against it. Ignoring static relocation.\n";
2544     });
2545     return;
2546   }
2547 
2548   std::string SymbolName;
2549   uint64_t SymbolAddress;
2550   int64_t Addend;
2551   uint64_t ExtractedValue;
2552   bool IsSectionRelocation;
2553   bool Skip;
2554   if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation,
2555                          SymbolAddress, Addend, ExtractedValue, Skip)) {
2556     LLVM_DEBUG({
2557       dbgs() << "BOLT-WARNING: failed to analyze relocation @ offset = "
2558              << formatv("{0:x}; type name = {1}\n", Rel.getOffset(), TypeName);
2559     });
2560     ++NumFailedRelocations;
2561     return;
2562   }
2563 
2564   if (Skip) {
2565     LLVM_DEBUG({
2566       dbgs() << "BOLT-DEBUG: skipping relocation @ offset = "
2567              << formatv("{0:x}; type name = {1}\n", Rel.getOffset(), TypeName);
2568     });
2569     return;
2570   }
2571 
2572   const uint64_t Address = SymbolAddress + Addend;
2573 
2574   LLVM_DEBUG({
2575     dbgs() << "BOLT-DEBUG: ";
2576     printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, ExtractedValue);
2577   });
2578 
2579   BinaryFunction *ContainingBF = nullptr;
2580   if (IsFromCode) {
2581     ContainingBF =
2582         BC->getBinaryFunctionContainingAddress(Rel.getOffset(),
2583                                                /*CheckPastEnd*/ false,
2584                                                /*UseMaxSize*/ true);
2585     assert(ContainingBF && "cannot find function for address in code");
2586     if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) {
2587       if (opts::Verbosity >= 1)
2588         BC->outs() << formatv(
2589             "BOLT-INFO: {0} has relocations in padding area\n", *ContainingBF);
2590       ContainingBF->setSize(ContainingBF->getMaxSize());
2591       ContainingBF->setSimple(false);
2592       return;
2593     }
2594   }
2595 
2596   MCSymbol *ReferencedSymbol = nullptr;
2597   if (!IsSectionRelocation) {
2598     if (BinaryData *BD = BC->getBinaryDataByName(SymbolName))
2599       ReferencedSymbol = BD->getSymbol();
2600     else if (BC->isGOTSymbol(SymbolName))
2601       if (BinaryData *BD = BC->getGOTSymbol())
2602         ReferencedSymbol = BD->getSymbol();
2603   }
2604 
2605   ErrorOr<BinarySection &> ReferencedSection{std::errc::bad_address};
2606   symbol_iterator SymbolIter = Rel.getSymbol();
2607   if (SymbolIter != InputFile->symbol_end()) {
2608     SymbolRef Symbol = *SymbolIter;
2609     section_iterator Section =
2610         cantFail(Symbol.getSection(), "cannot get symbol section");
2611     if (Section != InputFile->section_end()) {
2612       Expected<StringRef> SectionName = Section->getName();
2613       if (SectionName && !SectionName->empty())
2614         ReferencedSection = BC->getUniqueSectionByName(*SectionName);
2615     } else if (ReferencedSymbol && ContainingBF &&
2616                (cantFail(Symbol.getFlags()) & SymbolRef::SF_Absolute)) {
2617       // This might be a relocation for an ABS symbols like __global_pointer$ on
2618       // RISC-V
2619       ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol,
2620                                   Rel.getType(), 0,
2621                                   cantFail(Symbol.getValue()));
2622       return;
2623     }
2624   }
2625 
2626   if (!ReferencedSection)
2627     ReferencedSection = BC->getSectionForAddress(SymbolAddress);
2628 
2629   const bool IsToCode = ReferencedSection && ReferencedSection->isText();
2630 
2631   // Special handling of PC-relative relocations.
2632   if (BC->isX86() && Relocation::isPCRelative(RType)) {
2633     if (!IsFromCode && IsToCode) {
2634       // PC-relative relocations from data to code are tricky since the
2635       // original information is typically lost after linking, even with
2636       // '--emit-relocs'. Such relocations are normally used by PIC-style
2637       // jump tables and they reference both the jump table and jump
2638       // targets by computing the difference between the two. If we blindly
2639       // apply the relocation, it will appear that it references an arbitrary
2640       // location in the code, possibly in a different function from the one
2641       // containing the jump table.
2642       //
2643       // For that reason, we only register the fact that there is a
2644       // PC-relative relocation at a given address against the code.
2645       // The actual referenced label/address will be determined during jump
2646       // table analysis.
2647       BC->addPCRelativeDataRelocation(Rel.getOffset());
2648     } else if (ContainingBF && !IsSectionRelocation && ReferencedSymbol) {
2649       // If we know the referenced symbol, register the relocation from
2650       // the code. It's required  to properly handle cases where
2651       // "symbol + addend" references an object different from "symbol".
2652       ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType,
2653                                   Addend, ExtractedValue);
2654     } else {
2655       LLVM_DEBUG({
2656         dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at"
2657                << formatv("{0:x} for {1}\n", Rel.getOffset(), SymbolName);
2658       });
2659     }
2660 
2661     return;
2662   }
2663 
2664   bool ForceRelocation = BC->forceSymbolRelocations(SymbolName);
2665   if ((BC->isAArch64() || BC->isRISCV()) && Relocation::isGOT(RType))
2666     ForceRelocation = true;
2667 
2668   if (!ReferencedSection && !ForceRelocation) {
2669     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n");
2670     return;
2671   }
2672 
2673   // Occasionally we may see a reference past the last byte of the function
2674   // typically as a result of __builtin_unreachable(). Check it here.
2675   BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress(
2676       Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64);
2677 
2678   if (!IsSectionRelocation) {
2679     if (BinaryFunction *BF =
2680             BC->getBinaryFunctionContainingAddress(SymbolAddress)) {
2681       if (BF != ReferencedBF) {
2682         // It's possible we are referencing a function without referencing any
2683         // code, e.g. when taking a bitmask action on a function address.
2684         BC->errs()
2685             << "BOLT-WARNING: non-standard function reference (e.g. bitmask)"
2686             << formatv(" detected against function {0} from ", *BF);
2687         if (IsFromCode)
2688           BC->errs() << formatv("function {0}\n", *ContainingBF);
2689         else
2690           BC->errs() << formatv("data section at {0:x}\n", Rel.getOffset());
2691         LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend,
2692                                        ExtractedValue));
2693         ReferencedBF = BF;
2694       }
2695     }
2696   } else if (ReferencedBF) {
2697     assert(ReferencedSection && "section expected for section relocation");
2698     if (*ReferencedBF->getOriginSection() != *ReferencedSection) {
2699       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n");
2700       ReferencedBF = nullptr;
2701     }
2702   }
2703 
2704   // Workaround for a member function pointer de-virtualization bug. We check
2705   // if a non-pc-relative relocation in the code is pointing to (fptr - 1).
2706   if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) &&
2707       (!ReferencedBF || (ReferencedBF->getAddress() != Address))) {
2708     if (const BinaryFunction *RogueBF =
2709             BC->getBinaryFunctionAtAddress(Address + 1)) {
2710       // Do an extra check that the function was referenced previously.
2711       // It's a linear search, but it should rarely happen.
2712       auto CheckReloc = [&](const Relocation &Rel) {
2713         return Rel.Symbol == RogueBF->getSymbol() &&
2714                !Relocation::isPCRelative(Rel.Type);
2715       };
2716       bool Found = llvm::any_of(
2717           llvm::make_second_range(ContainingBF->Relocations), CheckReloc);
2718 
2719       if (Found) {
2720         BC->errs()
2721             << "BOLT-WARNING: detected possible compiler de-virtualization "
2722                "bug: -1 addend used with non-pc-relative relocation against "
2723             << formatv("function {0} in function {1}\n", *RogueBF,
2724                        *ContainingBF);
2725         return;
2726       }
2727     }
2728   }
2729 
2730   if (ForceRelocation) {
2731     std::string Name =
2732         Relocation::isGOT(RType) ? "__BOLT_got_zero" : SymbolName;
2733     ReferencedSymbol = BC->registerNameAtAddress(Name, 0, 0, 0);
2734     SymbolAddress = 0;
2735     if (Relocation::isGOT(RType))
2736       Addend = Address;
2737     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol "
2738                       << SymbolName << " with addend " << Addend << '\n');
2739   } else if (ReferencedBF) {
2740     ReferencedSymbol = ReferencedBF->getSymbol();
2741     uint64_t RefFunctionOffset = 0;
2742 
2743     // Adjust the point of reference to a code location inside a function.
2744     if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */ true)) {
2745       RefFunctionOffset = Address - ReferencedBF->getAddress();
2746       if (Relocation::isInstructionReference(RType)) {
2747         // Instruction labels are created while disassembling so we just leave
2748         // the symbol empty for now. Since the extracted value is typically
2749         // unrelated to the referenced symbol (e.g., %pcrel_lo in RISC-V
2750         // references an instruction but the patched value references the low
2751         // bits of a data address), we set the extracted value to the symbol
2752         // address in order to be able to correctly reconstruct the reference
2753         // later.
2754         ReferencedSymbol = nullptr;
2755         ExtractedValue = Address;
2756       } else if (RefFunctionOffset) {
2757         if (ContainingBF && ContainingBF != ReferencedBF) {
2758           ReferencedSymbol =
2759               ReferencedBF->addEntryPointAtOffset(RefFunctionOffset);
2760         } else {
2761           ReferencedSymbol =
2762               ReferencedBF->getOrCreateLocalLabel(Address,
2763                                                   /*CreatePastEnd =*/true);
2764 
2765           // If ContainingBF != nullptr, it equals ReferencedBF (see
2766           // if-condition above) so we're handling a relocation from a function
2767           // to itself. RISC-V uses such relocations for branches, for example.
2768           // These should not be registered as externally references offsets.
2769           if (!ContainingBF)
2770             ReferencedBF->registerReferencedOffset(RefFunctionOffset);
2771         }
2772         if (opts::Verbosity > 1 &&
2773             BinarySection(*BC, RelocatedSection).isWritable())
2774           BC->errs()
2775               << "BOLT-WARNING: writable reference into the middle of the "
2776               << formatv("function {0} detected at address {1:x}\n",
2777                          *ReferencedBF, Rel.getOffset());
2778       }
2779       SymbolAddress = Address;
2780       Addend = 0;
2781     }
2782     LLVM_DEBUG({
2783       dbgs() << "  referenced function " << *ReferencedBF;
2784       if (Address != ReferencedBF->getAddress())
2785         dbgs() << formatv(" at offset {0:x}", RefFunctionOffset);
2786       dbgs() << '\n';
2787     });
2788   } else {
2789     if (IsToCode && SymbolAddress) {
2790       // This can happen e.g. with PIC-style jump tables.
2791       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for "
2792                            "relocation against code\n");
2793     }
2794 
2795     // In AArch64 there are zero reasons to keep a reference to the
2796     // "original" symbol plus addend. The original symbol is probably just a
2797     // section symbol. If we are here, this means we are probably accessing
2798     // data, so it is imperative to keep the original address.
2799     if (IsAArch64) {
2800       SymbolName = formatv("SYMBOLat{0:x}", Address);
2801       SymbolAddress = Address;
2802       Addend = 0;
2803     }
2804 
2805     if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) {
2806       // Note: this assertion is trying to check sanity of BinaryData objects
2807       // but AArch64 has inferred and incomplete object locations coming from
2808       // GOT/TLS or any other non-trivial relocation (that requires creation
2809       // of sections and whose symbol address is not really what should be
2810       // encoded in the instruction). So we essentially disabled this check
2811       // for AArch64 and live with bogus names for objects.
2812       assert((IsAArch64 || IsSectionRelocation ||
2813               BD->nameStartsWith(SymbolName) ||
2814               BD->nameStartsWith("PG" + SymbolName) ||
2815               (BD->nameStartsWith("ANONYMOUS") &&
2816                (BD->getSectionName().starts_with(".plt") ||
2817                 BD->getSectionName().ends_with(".plt")))) &&
2818              "BOLT symbol names of all non-section relocations must match up "
2819              "with symbol names referenced in the relocation");
2820 
2821       if (IsSectionRelocation)
2822         BC->markAmbiguousRelocations(*BD, Address);
2823 
2824       ReferencedSymbol = BD->getSymbol();
2825       Addend += (SymbolAddress - BD->getAddress());
2826       SymbolAddress = BD->getAddress();
2827       assert(Address == SymbolAddress + Addend);
2828     } else {
2829       // These are mostly local data symbols but undefined symbols
2830       // in relocation sections can get through here too, from .plt.
2831       assert(
2832           (IsAArch64 || BC->isRISCV() || IsSectionRelocation ||
2833            BC->getSectionNameForAddress(SymbolAddress)->starts_with(".plt")) &&
2834           "known symbols should not resolve to anonymous locals");
2835 
2836       if (IsSectionRelocation) {
2837         ReferencedSymbol =
2838             BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat");
2839       } else {
2840         SymbolRef Symbol = *Rel.getSymbol();
2841         const uint64_t SymbolSize =
2842             IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize();
2843         const uint64_t SymbolAlignment = IsAArch64 ? 1 : Symbol.getAlignment();
2844         const uint32_t SymbolFlags = cantFail(Symbol.getFlags());
2845         std::string Name;
2846         if (SymbolFlags & SymbolRef::SF_Global) {
2847           Name = SymbolName;
2848         } else {
2849           if (StringRef(SymbolName)
2850                   .starts_with(BC->AsmInfo->getPrivateGlobalPrefix()))
2851             Name = NR.uniquify("PG" + SymbolName);
2852           else
2853             Name = NR.uniquify(SymbolName);
2854         }
2855         ReferencedSymbol = BC->registerNameAtAddress(
2856             Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags);
2857       }
2858 
2859       if (IsSectionRelocation) {
2860         BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName());
2861         BC->markAmbiguousRelocations(*BD, Address);
2862       }
2863     }
2864   }
2865 
2866   auto checkMaxDataRelocations = [&]() {
2867     ++NumDataRelocations;
2868     LLVM_DEBUG(if (opts::MaxDataRelocations &&
2869                    NumDataRelocations + 1 == opts::MaxDataRelocations) {
2870       dbgs() << "BOLT-DEBUG: processing ending on data relocation "
2871              << NumDataRelocations << ": ";
2872       printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress,
2873                           Addend, ExtractedValue);
2874     });
2875 
2876     return (!opts::MaxDataRelocations ||
2877             NumDataRelocations < opts::MaxDataRelocations);
2878   };
2879 
2880   if ((ReferencedSection && refersToReorderedSection(ReferencedSection)) ||
2881       (opts::ForceToDataRelocations && checkMaxDataRelocations()) ||
2882       // RISC-V has ADD/SUB data-to-data relocations
2883       BC->isRISCV())
2884     ForceRelocation = true;
2885 
2886   if (IsFromCode)
2887     ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType,
2888                                 Addend, ExtractedValue);
2889   else if (IsToCode || ForceRelocation)
2890     BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend,
2891                       ExtractedValue);
2892   else
2893     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n");
2894 }
2895 
2896 void RewriteInstance::selectFunctionsToProcess() {
2897   // Extend the list of functions to process or skip from a file.
2898   auto populateFunctionNames = [](cl::opt<std::string> &FunctionNamesFile,
2899                                   cl::list<std::string> &FunctionNames) {
2900     if (FunctionNamesFile.empty())
2901       return;
2902     std::ifstream FuncsFile(FunctionNamesFile, std::ios::in);
2903     std::string FuncName;
2904     while (std::getline(FuncsFile, FuncName))
2905       FunctionNames.push_back(FuncName);
2906   };
2907   populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames);
2908   populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames);
2909   populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR);
2910 
2911   // Make a set of functions to process to speed up lookups.
2912   std::unordered_set<std::string> ForceFunctionsNR(
2913       opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end());
2914 
2915   if ((!opts::ForceFunctionNames.empty() ||
2916        !opts::ForceFunctionNamesNR.empty()) &&
2917       !opts::SkipFunctionNames.empty()) {
2918     BC->errs()
2919         << "BOLT-ERROR: cannot select functions to process and skip at the "
2920            "same time. Please use only one type of selection.\n";
2921     exit(1);
2922   }
2923 
2924   uint64_t LiteThresholdExecCount = 0;
2925   if (opts::LiteThresholdPct) {
2926     if (opts::LiteThresholdPct > 100)
2927       opts::LiteThresholdPct = 100;
2928 
2929     std::vector<const BinaryFunction *> TopFunctions;
2930     for (auto &BFI : BC->getBinaryFunctions()) {
2931       const BinaryFunction &Function = BFI.second;
2932       if (ProfileReader->mayHaveProfileData(Function))
2933         TopFunctions.push_back(&Function);
2934     }
2935     llvm::sort(
2936         TopFunctions, [](const BinaryFunction *A, const BinaryFunction *B) {
2937           return A->getKnownExecutionCount() < B->getKnownExecutionCount();
2938         });
2939 
2940     size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100;
2941     if (Index)
2942       --Index;
2943     LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount();
2944     BC->outs() << "BOLT-INFO: limiting processing to functions with at least "
2945                << LiteThresholdExecCount << " invocations\n";
2946   }
2947   LiteThresholdExecCount = std::max(
2948       LiteThresholdExecCount, static_cast<uint64_t>(opts::LiteThresholdCount));
2949 
2950   StringSet<> ReorderFunctionsUserSet;
2951   StringSet<> ReorderFunctionsLTOCommonSet;
2952   if (opts::ReorderFunctions == ReorderFunctions::RT_USER) {
2953     std::vector<std::string> FunctionNames;
2954     BC->logBOLTErrorsAndQuitOnFatal(
2955         ReorderFunctions::readFunctionOrderFile(FunctionNames));
2956     for (const std::string &Function : FunctionNames) {
2957       ReorderFunctionsUserSet.insert(Function);
2958       if (std::optional<StringRef> LTOCommonName = getLTOCommonName(Function))
2959         ReorderFunctionsLTOCommonSet.insert(*LTOCommonName);
2960     }
2961   }
2962 
2963   uint64_t NumFunctionsToProcess = 0;
2964   auto mustSkip = [&](const BinaryFunction &Function) {
2965     if (opts::MaxFunctions.getNumOccurrences() &&
2966         NumFunctionsToProcess >= opts::MaxFunctions)
2967       return true;
2968     for (std::string &Name : opts::SkipFunctionNames)
2969       if (Function.hasNameRegex(Name))
2970         return true;
2971 
2972     return false;
2973   };
2974 
2975   auto shouldProcess = [&](const BinaryFunction &Function) {
2976     if (mustSkip(Function))
2977       return false;
2978 
2979     // If the list is not empty, only process functions from the list.
2980     if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) {
2981       // Regex check (-funcs and -funcs-file options).
2982       for (std::string &Name : opts::ForceFunctionNames)
2983         if (Function.hasNameRegex(Name))
2984           return true;
2985 
2986       // Non-regex check (-funcs-no-regex and -funcs-file-no-regex).
2987       for (const StringRef Name : Function.getNames())
2988         if (ForceFunctionsNR.count(Name.str()))
2989           return true;
2990 
2991       return false;
2992     }
2993 
2994     if (opts::Lite) {
2995       // Forcibly include functions specified in the -function-order file.
2996       if (opts::ReorderFunctions == ReorderFunctions::RT_USER) {
2997         for (const StringRef Name : Function.getNames())
2998           if (ReorderFunctionsUserSet.contains(Name))
2999             return true;
3000         for (const StringRef Name : Function.getNames())
3001           if (std::optional<StringRef> LTOCommonName = getLTOCommonName(Name))
3002             if (ReorderFunctionsLTOCommonSet.contains(*LTOCommonName))
3003               return true;
3004       }
3005 
3006       if (ProfileReader && !ProfileReader->mayHaveProfileData(Function))
3007         return false;
3008 
3009       if (Function.getKnownExecutionCount() < LiteThresholdExecCount)
3010         return false;
3011     }
3012 
3013     return true;
3014   };
3015 
3016   for (auto &BFI : BC->getBinaryFunctions()) {
3017     BinaryFunction &Function = BFI.second;
3018 
3019     // Pseudo functions are explicitly marked by us not to be processed.
3020     if (Function.isPseudo()) {
3021       Function.IsIgnored = true;
3022       Function.HasExternalRefRelocations = true;
3023       continue;
3024     }
3025 
3026     // Decide what to do with fragments after parent functions are processed.
3027     if (Function.isFragment())
3028       continue;
3029 
3030     if (!shouldProcess(Function)) {
3031       if (opts::Verbosity >= 1) {
3032         BC->outs() << "BOLT-INFO: skipping processing " << Function
3033                    << " per user request\n";
3034       }
3035       Function.setIgnored();
3036     } else {
3037       ++NumFunctionsToProcess;
3038       if (opts::MaxFunctions.getNumOccurrences() &&
3039           NumFunctionsToProcess == opts::MaxFunctions)
3040         BC->outs() << "BOLT-INFO: processing ending on " << Function << '\n';
3041     }
3042   }
3043 
3044   if (!BC->HasSplitFunctions)
3045     return;
3046 
3047   // Fragment overrides:
3048   // - If the fragment must be skipped, then the parent must be skipped as well.
3049   // Otherwise, fragment should follow the parent function:
3050   // - if the parent is skipped, skip fragment,
3051   // - if the parent is processed, process the fragment(s) as well.
3052   for (auto &BFI : BC->getBinaryFunctions()) {
3053     BinaryFunction &Function = BFI.second;
3054     if (!Function.isFragment())
3055       continue;
3056     if (mustSkip(Function)) {
3057       for (BinaryFunction *Parent : Function.ParentFragments) {
3058         if (opts::Verbosity >= 1) {
3059           BC->outs() << "BOLT-INFO: skipping processing " << *Parent
3060                      << " together with fragment function\n";
3061         }
3062         Parent->setIgnored();
3063         --NumFunctionsToProcess;
3064       }
3065       Function.setIgnored();
3066       continue;
3067     }
3068 
3069     bool IgnoredParent =
3070         llvm::any_of(Function.ParentFragments, [&](BinaryFunction *Parent) {
3071           return Parent->isIgnored();
3072         });
3073     if (IgnoredParent) {
3074       if (opts::Verbosity >= 1) {
3075         BC->outs() << "BOLT-INFO: skipping processing " << Function
3076                    << " together with parent function\n";
3077       }
3078       Function.setIgnored();
3079     } else {
3080       ++NumFunctionsToProcess;
3081       if (opts::Verbosity >= 1) {
3082         BC->outs() << "BOLT-INFO: processing " << Function
3083                    << " as a sibling of non-ignored function\n";
3084       }
3085       if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions)
3086         BC->outs() << "BOLT-INFO: processing ending on " << Function << '\n';
3087     }
3088   }
3089 }
3090 
3091 void RewriteInstance::readDebugInfo() {
3092   NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName,
3093                      TimerGroupDesc, opts::TimeRewrite);
3094   if (!opts::UpdateDebugSections)
3095     return;
3096 
3097   BC->preprocessDebugInfo();
3098 }
3099 
3100 void RewriteInstance::preprocessProfileData() {
3101   if (!ProfileReader)
3102     return;
3103 
3104   NamedRegionTimer T("preprocessprofile", "pre-process profile data",
3105                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3106 
3107   BC->outs() << "BOLT-INFO: pre-processing profile using "
3108              << ProfileReader->getReaderName() << '\n';
3109 
3110   if (BAT->enabledFor(InputFile)) {
3111     BC->outs() << "BOLT-INFO: profile collection done on a binary already "
3112                   "processed by BOLT\n";
3113     ProfileReader->setBAT(&*BAT);
3114   }
3115 
3116   if (Error E = ProfileReader->preprocessProfile(*BC.get()))
3117     report_error("cannot pre-process profile", std::move(E));
3118 
3119   if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName() &&
3120       !opts::AllowStripped) {
3121     BC->errs()
3122         << "BOLT-ERROR: input binary does not have local file symbols "
3123            "but profile data includes function names with embedded file "
3124            "names. It appears that the input binary was stripped while a "
3125            "profiled binary was not. If you know what you are doing and "
3126            "wish to proceed, use -allow-stripped option.\n";
3127     exit(1);
3128   }
3129 }
3130 
3131 void RewriteInstance::initializeMetadataManager() {
3132   if (BC->IsLinuxKernel)
3133     MetadataManager.registerRewriter(createLinuxKernelRewriter(*BC));
3134 
3135   MetadataManager.registerRewriter(createBuildIDRewriter(*BC));
3136 
3137   MetadataManager.registerRewriter(createPseudoProbeRewriter(*BC));
3138 
3139   MetadataManager.registerRewriter(createSDTRewriter(*BC));
3140 }
3141 
3142 void RewriteInstance::processSectionMetadata() {
3143   NamedRegionTimer T("processmetadata-section", "process section metadata",
3144                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3145   initializeMetadataManager();
3146 
3147   MetadataManager.runSectionInitializers();
3148 }
3149 
3150 void RewriteInstance::processMetadataPreCFG() {
3151   NamedRegionTimer T("processmetadata-precfg", "process metadata pre-CFG",
3152                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3153   MetadataManager.runInitializersPreCFG();
3154 
3155   processProfileDataPreCFG();
3156 }
3157 
3158 void RewriteInstance::processMetadataPostCFG() {
3159   NamedRegionTimer T("processmetadata-postcfg", "process metadata post-CFG",
3160                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3161   MetadataManager.runInitializersPostCFG();
3162 }
3163 
3164 void RewriteInstance::processProfileDataPreCFG() {
3165   if (!ProfileReader)
3166     return;
3167 
3168   NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG",
3169                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3170 
3171   if (Error E = ProfileReader->readProfilePreCFG(*BC.get()))
3172     report_error("cannot read profile pre-CFG", std::move(E));
3173 }
3174 
3175 void RewriteInstance::processProfileData() {
3176   if (!ProfileReader)
3177     return;
3178 
3179   NamedRegionTimer T("processprofile", "process profile data", TimerGroupName,
3180                      TimerGroupDesc, opts::TimeRewrite);
3181 
3182   if (Error E = ProfileReader->readProfile(*BC.get()))
3183     report_error("cannot read profile", std::move(E));
3184 
3185   if (opts::PrintProfile || opts::PrintAll) {
3186     for (auto &BFI : BC->getBinaryFunctions()) {
3187       BinaryFunction &Function = BFI.second;
3188       if (Function.empty())
3189         continue;
3190 
3191       Function.print(BC->outs(), "after attaching profile");
3192     }
3193   }
3194 
3195   if (!opts::SaveProfile.empty() && !BAT->enabledFor(InputFile)) {
3196     YAMLProfileWriter PW(opts::SaveProfile);
3197     PW.writeProfile(*this);
3198   }
3199   if (opts::AggregateOnly &&
3200       opts::ProfileFormat == opts::ProfileFormatKind::PF_YAML &&
3201       !BAT->enabledFor(InputFile)) {
3202     YAMLProfileWriter PW(opts::OutputFilename);
3203     PW.writeProfile(*this);
3204   }
3205 
3206   // Release memory used by profile reader.
3207   ProfileReader.reset();
3208 
3209   if (opts::AggregateOnly) {
3210     PrintProgramStats PPS(&*BAT);
3211     BC->logBOLTErrorsAndQuitOnFatal(PPS.runOnFunctions(*BC));
3212     TimerGroup::printAll(outs());
3213     exit(0);
3214   }
3215 }
3216 
3217 void RewriteInstance::disassembleFunctions() {
3218   NamedRegionTimer T("disassembleFunctions", "disassemble functions",
3219                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3220   for (auto &BFI : BC->getBinaryFunctions()) {
3221     BinaryFunction &Function = BFI.second;
3222 
3223     ErrorOr<ArrayRef<uint8_t>> FunctionData = Function.getData();
3224     if (!FunctionData) {
3225       BC->errs() << "BOLT-ERROR: corresponding section is non-executable or "
3226                  << "empty for function " << Function << '\n';
3227       exit(1);
3228     }
3229 
3230     // Treat zero-sized functions as non-simple ones.
3231     if (Function.getSize() == 0) {
3232       Function.setSimple(false);
3233       continue;
3234     }
3235 
3236     // Offset of the function in the file.
3237     const auto *FileBegin =
3238         reinterpret_cast<const uint8_t *>(InputFile->getData().data());
3239     Function.setFileOffset(FunctionData->begin() - FileBegin);
3240 
3241     if (!shouldDisassemble(Function)) {
3242       NamedRegionTimer T("scan", "scan functions", "buildfuncs",
3243                          "Scan Binary Functions", opts::TimeBuild);
3244       Function.scanExternalRefs();
3245       Function.setSimple(false);
3246       continue;
3247     }
3248 
3249     bool DisasmFailed{false};
3250     handleAllErrors(Function.disassemble(), [&](const BOLTError &E) {
3251       DisasmFailed = true;
3252       if (E.isFatal()) {
3253         E.log(BC->errs());
3254         exit(1);
3255       }
3256       if (opts::processAllFunctions()) {
3257         BC->errs() << BC->generateBugReportMessage(
3258             "function cannot be properly disassembled. "
3259             "Unable to continue in relocation mode.",
3260             Function);
3261         exit(1);
3262       }
3263       if (opts::Verbosity >= 1)
3264         BC->outs() << "BOLT-INFO: could not disassemble function " << Function
3265                    << ". Will ignore.\n";
3266       // Forcefully ignore the function.
3267       Function.setIgnored();
3268     });
3269 
3270     if (DisasmFailed)
3271       continue;
3272 
3273     if (opts::PrintAll || opts::PrintDisasm)
3274       Function.print(BC->outs(), "after disassembly");
3275   }
3276 
3277   BC->processInterproceduralReferences();
3278   BC->populateJumpTables();
3279 
3280   for (auto &BFI : BC->getBinaryFunctions()) {
3281     BinaryFunction &Function = BFI.second;
3282 
3283     if (!shouldDisassemble(Function))
3284       continue;
3285 
3286     Function.postProcessEntryPoints();
3287     Function.postProcessJumpTables();
3288   }
3289 
3290   BC->clearJumpTableTempData();
3291   BC->adjustCodePadding();
3292 
3293   for (auto &BFI : BC->getBinaryFunctions()) {
3294     BinaryFunction &Function = BFI.second;
3295 
3296     if (!shouldDisassemble(Function))
3297       continue;
3298 
3299     if (!Function.isSimple()) {
3300       assert((!BC->HasRelocations || Function.getSize() == 0 ||
3301               Function.hasIndirectTargetToSplitFragment()) &&
3302              "unexpected non-simple function in relocation mode");
3303       continue;
3304     }
3305 
3306     // Fill in CFI information for this function
3307     if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) {
3308       if (BC->HasRelocations) {
3309         BC->errs() << BC->generateBugReportMessage("unable to fill CFI.",
3310                                                    Function);
3311         exit(1);
3312       } else {
3313         BC->errs() << "BOLT-WARNING: unable to fill CFI for function "
3314                    << Function << ". Skipping.\n";
3315         Function.setSimple(false);
3316         continue;
3317       }
3318     }
3319 
3320     // Parse LSDA.
3321     if (Function.getLSDAAddress() != 0 &&
3322         !BC->getFragmentsToSkip().count(&Function)) {
3323       ErrorOr<BinarySection &> LSDASection =
3324           BC->getSectionForAddress(Function.getLSDAAddress());
3325       check_error(LSDASection.getError(), "failed to get LSDA section");
3326       ArrayRef<uint8_t> LSDAData = ArrayRef<uint8_t>(
3327           LSDASection->getData(), LSDASection->getContents().size());
3328       BC->logBOLTErrorsAndQuitOnFatal(
3329           Function.parseLSDA(LSDAData, LSDASection->getAddress()));
3330     }
3331   }
3332 }
3333 
3334 void RewriteInstance::buildFunctionsCFG() {
3335   NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs",
3336                      "Build Binary Functions", opts::TimeBuild);
3337 
3338   // Create annotation indices to allow lock-free execution
3339   BC->MIB->getOrCreateAnnotationIndex("JTIndexReg");
3340   BC->MIB->getOrCreateAnnotationIndex("NOP");
3341 
3342   ParallelUtilities::WorkFuncWithAllocTy WorkFun =
3343       [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) {
3344         bool HadErrors{false};
3345         handleAllErrors(BF.buildCFG(AllocId), [&](const BOLTError &E) {
3346           if (!E.getMessage().empty())
3347             E.log(BC->errs());
3348           if (E.isFatal())
3349             exit(1);
3350           HadErrors = true;
3351         });
3352 
3353         if (HadErrors)
3354           return;
3355 
3356         if (opts::PrintAll) {
3357           auto L = BC->scopeLock();
3358           BF.print(BC->outs(), "while building cfg");
3359         }
3360       };
3361 
3362   ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) {
3363     return !shouldDisassemble(BF) || !BF.isSimple();
3364   };
3365 
3366   ParallelUtilities::runOnEachFunctionWithUniqueAllocId(
3367       *BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun,
3368       SkipPredicate, "disassembleFunctions-buildCFG",
3369       /*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll);
3370 
3371   BC->postProcessSymbolTable();
3372 }
3373 
3374 void RewriteInstance::postProcessFunctions() {
3375   // We mark fragments as non-simple here, not during disassembly,
3376   // So we can build their CFGs.
3377   BC->skipMarkedFragments();
3378   BC->clearFragmentsToSkip();
3379 
3380   BC->TotalScore = 0;
3381   BC->SumExecutionCount = 0;
3382   for (auto &BFI : BC->getBinaryFunctions()) {
3383     BinaryFunction &Function = BFI.second;
3384 
3385     // Set function as non-simple if it has dynamic relocations
3386     // in constant island, we don't want this function to be optimized
3387     // e.g. function splitting is unsupported.
3388     if (Function.hasDynamicRelocationAtIsland())
3389       Function.setSimple(false);
3390 
3391     if (Function.empty())
3392       continue;
3393 
3394     Function.postProcessCFG();
3395 
3396     if (opts::PrintAll || opts::PrintCFG)
3397       Function.print(BC->outs(), "after building cfg");
3398 
3399     if (opts::DumpDotAll)
3400       Function.dumpGraphForPass("00_build-cfg");
3401 
3402     if (opts::PrintLoopInfo) {
3403       Function.calculateLoopInfo();
3404       Function.printLoopInfo(BC->outs());
3405     }
3406 
3407     BC->TotalScore += Function.getFunctionScore();
3408     BC->SumExecutionCount += Function.getKnownExecutionCount();
3409   }
3410 
3411   if (opts::PrintGlobals) {
3412     BC->outs() << "BOLT-INFO: Global symbols:\n";
3413     BC->printGlobalSymbols(BC->outs());
3414   }
3415 }
3416 
3417 void RewriteInstance::runOptimizationPasses() {
3418   NamedRegionTimer T("runOptimizationPasses", "run optimization passes",
3419                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3420   BC->logBOLTErrorsAndQuitOnFatal(BinaryFunctionPassManager::runAllPasses(*BC));
3421 }
3422 
3423 void RewriteInstance::preregisterSections() {
3424   // Preregister sections before emission to set their order in the output.
3425   const unsigned ROFlags = BinarySection::getFlags(/*IsReadOnly*/ true,
3426                                                    /*IsText*/ false,
3427                                                    /*IsAllocatable*/ true);
3428   if (BinarySection *EHFrameSection = getSection(getEHFrameSectionName())) {
3429     // New .eh_frame.
3430     BC->registerOrUpdateSection(getNewSecPrefix() + getEHFrameSectionName(),
3431                                 ELF::SHT_PROGBITS, ROFlags);
3432     // Fully register a relocatable copy of the original .eh_frame.
3433     BC->registerSection(".relocated.eh_frame", *EHFrameSection);
3434   }
3435   BC->registerOrUpdateSection(getNewSecPrefix() + ".gcc_except_table",
3436                               ELF::SHT_PROGBITS, ROFlags);
3437   BC->registerOrUpdateSection(getNewSecPrefix() + ".rodata", ELF::SHT_PROGBITS,
3438                               ROFlags);
3439   BC->registerOrUpdateSection(getNewSecPrefix() + ".rodata.cold",
3440                               ELF::SHT_PROGBITS, ROFlags);
3441 }
3442 
3443 void RewriteInstance::emitAndLink() {
3444   NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName,
3445                      TimerGroupDesc, opts::TimeRewrite);
3446 
3447   SmallString<0> ObjectBuffer;
3448   raw_svector_ostream OS(ObjectBuffer);
3449 
3450   // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB)
3451   // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these
3452   // two instances.
3453   std::unique_ptr<MCStreamer> Streamer = BC->createStreamer(OS);
3454 
3455   if (EHFrameSection) {
3456     if (opts::UseOldText || opts::StrictMode) {
3457       // The section is going to be regenerated from scratch.
3458       // Empty the contents, but keep the section reference.
3459       EHFrameSection->clearContents();
3460     } else {
3461       // Make .eh_frame relocatable.
3462       relocateEHFrameSection();
3463     }
3464   }
3465 
3466   emitBinaryContext(*Streamer, *BC, getOrgSecPrefix());
3467 
3468   Streamer->finish();
3469   if (Streamer->getContext().hadError()) {
3470     BC->errs() << "BOLT-ERROR: Emission failed.\n";
3471     exit(1);
3472   }
3473 
3474   if (opts::KeepTmp) {
3475     SmallString<128> OutObjectPath;
3476     sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath);
3477     std::error_code EC;
3478     raw_fd_ostream FOS(OutObjectPath, EC);
3479     check_error(EC, "cannot create output object file");
3480     FOS << ObjectBuffer;
3481     BC->outs()
3482         << "BOLT-INFO: intermediary output object file saved for debugging "
3483            "purposes: "
3484         << OutObjectPath << "\n";
3485   }
3486 
3487   ErrorOr<BinarySection &> TextSection =
3488       BC->getUniqueSectionByName(BC->getMainCodeSectionName());
3489   if (BC->HasRelocations && TextSection)
3490     BC->renameSection(*TextSection,
3491                       getOrgSecPrefix() + BC->getMainCodeSectionName());
3492 
3493   //////////////////////////////////////////////////////////////////////////////
3494   // Assign addresses to new sections.
3495   //////////////////////////////////////////////////////////////////////////////
3496 
3497   // Get output object as ObjectFile.
3498   std::unique_ptr<MemoryBuffer> ObjectMemBuffer =
3499       MemoryBuffer::getMemBuffer(ObjectBuffer, "in-memory object file", false);
3500 
3501   auto EFMM = std::make_unique<ExecutableFileMemoryManager>(*BC);
3502   EFMM->setNewSecPrefix(getNewSecPrefix());
3503   EFMM->setOrgSecPrefix(getOrgSecPrefix());
3504 
3505   Linker = std::make_unique<JITLinkLinker>(*BC, std::move(EFMM));
3506   Linker->loadObject(ObjectMemBuffer->getMemBufferRef(),
3507                      [this](auto MapSection) { mapFileSections(MapSection); });
3508 
3509   // Update output addresses based on the new section map and
3510   // layout. Only do this for the object created by ourselves.
3511   updateOutputValues(*Linker);
3512 
3513   if (opts::UpdateDebugSections) {
3514     DebugInfoRewriter->updateLineTableOffsets(
3515         static_cast<MCObjectStreamer &>(*Streamer).getAssembler());
3516   }
3517 
3518   if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
3519     RtLibrary->link(*BC, ToolPath, *Linker, [this](auto MapSection) {
3520       // Map newly registered sections.
3521       this->mapAllocatableSections(MapSection);
3522     });
3523 
3524   // Once the code is emitted, we can rename function sections to actual
3525   // output sections and de-register sections used for emission.
3526   for (BinaryFunction *Function : BC->getAllBinaryFunctions()) {
3527     ErrorOr<BinarySection &> Section = Function->getCodeSection();
3528     if (Section &&
3529         (Function->getImageAddress() == 0 || Function->getImageSize() == 0))
3530       continue;
3531 
3532     // Restore origin section for functions that were emitted or supposed to
3533     // be emitted to patch sections.
3534     if (Section)
3535       BC->deregisterSection(*Section);
3536     assert(Function->getOriginSectionName() && "expected origin section");
3537     Function->CodeSectionName = Function->getOriginSectionName()->str();
3538     for (const FunctionFragment &FF :
3539          Function->getLayout().getSplitFragments()) {
3540       if (ErrorOr<BinarySection &> ColdSection =
3541               Function->getCodeSection(FF.getFragmentNum()))
3542         BC->deregisterSection(*ColdSection);
3543     }
3544     if (Function->getLayout().isSplit())
3545       Function->setColdCodeSectionName(getBOLTTextSectionName());
3546   }
3547 
3548   if (opts::PrintCacheMetrics) {
3549     BC->outs() << "BOLT-INFO: cache metrics after emitting functions:\n";
3550     CacheMetrics::printAll(BC->outs(), BC->getSortedFunctions());
3551   }
3552 }
3553 
3554 void RewriteInstance::finalizeMetadataPreEmit() {
3555   NamedRegionTimer T("finalizemetadata-preemit", "finalize metadata pre-emit",
3556                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3557   MetadataManager.runFinalizersPreEmit();
3558 }
3559 
3560 void RewriteInstance::updateMetadata() {
3561   NamedRegionTimer T("updatemetadata-postemit", "update metadata post-emit",
3562                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3563   MetadataManager.runFinalizersAfterEmit();
3564 
3565   if (opts::UpdateDebugSections) {
3566     NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName,
3567                        TimerGroupDesc, opts::TimeRewrite);
3568     DebugInfoRewriter->updateDebugInfo();
3569   }
3570 
3571   if (opts::WriteBoltInfoSection)
3572     addBoltInfoSection();
3573 }
3574 
3575 void RewriteInstance::mapFileSections(BOLTLinker::SectionMapper MapSection) {
3576   BC->deregisterUnusedSections();
3577 
3578   // If no new .eh_frame was written, remove relocated original .eh_frame.
3579   BinarySection *RelocatedEHFrameSection =
3580       getSection(".relocated" + getEHFrameSectionName());
3581   if (RelocatedEHFrameSection && RelocatedEHFrameSection->hasValidSectionID()) {
3582     BinarySection *NewEHFrameSection =
3583         getSection(getNewSecPrefix() + getEHFrameSectionName());
3584     if (!NewEHFrameSection || !NewEHFrameSection->isFinalized()) {
3585       // JITLink will still have to process relocations for the section, hence
3586       // we need to assign it the address that wouldn't result in relocation
3587       // processing failure.
3588       MapSection(*RelocatedEHFrameSection, NextAvailableAddress);
3589       BC->deregisterSection(*RelocatedEHFrameSection);
3590     }
3591   }
3592 
3593   mapCodeSections(MapSection);
3594 
3595   // Map the rest of the sections.
3596   mapAllocatableSections(MapSection);
3597 
3598   if (!BC->BOLTReserved.empty()) {
3599     const uint64_t AllocatedSize =
3600         NextAvailableAddress - BC->BOLTReserved.start();
3601     if (BC->BOLTReserved.size() < AllocatedSize) {
3602       BC->errs() << "BOLT-ERROR: reserved space (" << BC->BOLTReserved.size()
3603                  << " byte" << (BC->BOLTReserved.size() == 1 ? "" : "s")
3604                  << ") is smaller than required for new allocations ("
3605                  << AllocatedSize << " bytes)\n";
3606       exit(1);
3607     }
3608   }
3609 }
3610 
3611 std::vector<BinarySection *> RewriteInstance::getCodeSections() {
3612   std::vector<BinarySection *> CodeSections;
3613   for (BinarySection &Section : BC->textSections())
3614     if (Section.hasValidSectionID())
3615       CodeSections.emplace_back(&Section);
3616 
3617   auto compareSections = [&](const BinarySection *A, const BinarySection *B) {
3618     // If both A and B have names starting with ".text.cold", then
3619     // - if opts::HotFunctionsAtEnd is true, we want order
3620     //   ".text.cold.T", ".text.cold.T-1", ... ".text.cold.1", ".text.cold"
3621     // - if opts::HotFunctionsAtEnd is false, we want order
3622     //   ".text.cold", ".text.cold.1", ... ".text.cold.T-1", ".text.cold.T"
3623     if (A->getName().starts_with(BC->getColdCodeSectionName()) &&
3624         B->getName().starts_with(BC->getColdCodeSectionName())) {
3625       if (A->getName().size() != B->getName().size())
3626         return (opts::HotFunctionsAtEnd)
3627                    ? (A->getName().size() > B->getName().size())
3628                    : (A->getName().size() < B->getName().size());
3629       return (opts::HotFunctionsAtEnd) ? (A->getName() > B->getName())
3630                                        : (A->getName() < B->getName());
3631     }
3632 
3633     // Place movers before anything else.
3634     if (A->getName() == BC->getHotTextMoverSectionName())
3635       return true;
3636     if (B->getName() == BC->getHotTextMoverSectionName())
3637       return false;
3638 
3639     // Depending on opts::HotFunctionsAtEnd, place main and warm sections in
3640     // order.
3641     if (opts::HotFunctionsAtEnd) {
3642       if (B->getName() == BC->getMainCodeSectionName())
3643         return true;
3644       if (A->getName() == BC->getMainCodeSectionName())
3645         return false;
3646       return (B->getName() == BC->getWarmCodeSectionName());
3647     } else {
3648       if (A->getName() == BC->getMainCodeSectionName())
3649         return true;
3650       if (B->getName() == BC->getMainCodeSectionName())
3651         return false;
3652       return (A->getName() == BC->getWarmCodeSectionName());
3653     }
3654   };
3655 
3656   // Determine the order of sections.
3657   llvm::stable_sort(CodeSections, compareSections);
3658 
3659   return CodeSections;
3660 }
3661 
3662 void RewriteInstance::mapCodeSections(BOLTLinker::SectionMapper MapSection) {
3663   if (BC->HasRelocations) {
3664     // Map sections for functions with pre-assigned addresses.
3665     for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) {
3666       const uint64_t OutputAddress = InjectedFunction->getOutputAddress();
3667       if (!OutputAddress)
3668         continue;
3669 
3670       ErrorOr<BinarySection &> FunctionSection =
3671           InjectedFunction->getCodeSection();
3672       assert(FunctionSection && "function should have section");
3673       FunctionSection->setOutputAddress(OutputAddress);
3674       MapSection(*FunctionSection, OutputAddress);
3675       InjectedFunction->setImageAddress(FunctionSection->getAllocAddress());
3676       InjectedFunction->setImageSize(FunctionSection->getOutputSize());
3677     }
3678 
3679     // Populate the list of sections to be allocated.
3680     std::vector<BinarySection *> CodeSections = getCodeSections();
3681 
3682     // Remove sections that were pre-allocated (patch sections).
3683     llvm::erase_if(CodeSections, [](BinarySection *Section) {
3684       return Section->getOutputAddress();
3685     });
3686     LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n";
3687       for (const BinarySection *Section : CodeSections)
3688         dbgs() << Section->getName() << '\n';
3689     );
3690 
3691     uint64_t PaddingSize = 0; // size of padding required at the end
3692 
3693     // Allocate sections starting at a given Address.
3694     auto allocateAt = [&](uint64_t Address) {
3695       const char *LastNonColdSectionName = BC->HasWarmSection
3696                                                ? BC->getWarmCodeSectionName()
3697                                                : BC->getMainCodeSectionName();
3698       for (BinarySection *Section : CodeSections) {
3699         Address = alignTo(Address, Section->getAlignment());
3700         Section->setOutputAddress(Address);
3701         Address += Section->getOutputSize();
3702 
3703         // Hugify: Additional huge page from right side due to
3704         // weird ASLR mapping addresses (4KB aligned)
3705         if (opts::Hugify && !BC->HasFixedLoadAddress &&
3706             Section->getName() == LastNonColdSectionName)
3707           Address = alignTo(Address, Section->getAlignment());
3708       }
3709 
3710       // Make sure we allocate enough space for huge pages.
3711       ErrorOr<BinarySection &> TextSection =
3712           BC->getUniqueSectionByName(LastNonColdSectionName);
3713       if (opts::HotText && TextSection && TextSection->hasValidSectionID()) {
3714         uint64_t HotTextEnd =
3715             TextSection->getOutputAddress() + TextSection->getOutputSize();
3716         HotTextEnd = alignTo(HotTextEnd, BC->PageAlign);
3717         if (HotTextEnd > Address) {
3718           PaddingSize = HotTextEnd - Address;
3719           Address = HotTextEnd;
3720         }
3721       }
3722       return Address;
3723     };
3724 
3725     // Check if we can fit code in the original .text
3726     bool AllocationDone = false;
3727     if (opts::UseOldText) {
3728       const uint64_t CodeSize =
3729           allocateAt(BC->OldTextSectionAddress) - BC->OldTextSectionAddress;
3730 
3731       if (CodeSize <= BC->OldTextSectionSize) {
3732         BC->outs() << "BOLT-INFO: using original .text for new code with 0x"
3733                    << Twine::utohexstr(opts::AlignText) << " alignment\n";
3734         AllocationDone = true;
3735       } else {
3736         BC->errs()
3737             << "BOLT-WARNING: original .text too small to fit the new code"
3738             << " using 0x" << Twine::utohexstr(opts::AlignText)
3739             << " alignment. " << CodeSize << " bytes needed, have "
3740             << BC->OldTextSectionSize << " bytes available.\n";
3741         opts::UseOldText = false;
3742       }
3743     }
3744 
3745     if (!AllocationDone)
3746       NextAvailableAddress = allocateAt(NextAvailableAddress);
3747 
3748     // Do the mapping for ORC layer based on the allocation.
3749     for (BinarySection *Section : CodeSections) {
3750       LLVM_DEBUG(
3751           dbgs() << "BOLT: mapping " << Section->getName() << " at 0x"
3752                  << Twine::utohexstr(Section->getAllocAddress()) << " to 0x"
3753                  << Twine::utohexstr(Section->getOutputAddress()) << '\n');
3754       MapSection(*Section, Section->getOutputAddress());
3755       Section->setOutputFileOffset(
3756           getFileOffsetForAddress(Section->getOutputAddress()));
3757     }
3758 
3759     // Check if we need to insert a padding section for hot text.
3760     if (PaddingSize && !opts::UseOldText)
3761       BC->outs() << "BOLT-INFO: padding code to 0x"
3762                  << Twine::utohexstr(NextAvailableAddress)
3763                  << " to accommodate hot text\n";
3764 
3765     return;
3766   }
3767 
3768   // Processing in non-relocation mode.
3769   uint64_t NewTextSectionStartAddress = NextAvailableAddress;
3770 
3771   for (auto &BFI : BC->getBinaryFunctions()) {
3772     BinaryFunction &Function = BFI.second;
3773     if (!Function.isEmitted())
3774       continue;
3775 
3776     bool TooLarge = false;
3777     ErrorOr<BinarySection &> FuncSection = Function.getCodeSection();
3778     assert(FuncSection && "cannot find section for function");
3779     FuncSection->setOutputAddress(Function.getAddress());
3780     LLVM_DEBUG(dbgs() << "BOLT: mapping 0x"
3781                       << Twine::utohexstr(FuncSection->getAllocAddress())
3782                       << " to 0x" << Twine::utohexstr(Function.getAddress())
3783                       << '\n');
3784     MapSection(*FuncSection, Function.getAddress());
3785     Function.setImageAddress(FuncSection->getAllocAddress());
3786     Function.setImageSize(FuncSection->getOutputSize());
3787     if (Function.getImageSize() > Function.getMaxSize()) {
3788       assert(!BC->isX86() && "Unexpected large function.");
3789       TooLarge = true;
3790       FailedAddresses.emplace_back(Function.getAddress());
3791     }
3792 
3793     // Map jump tables if updating in-place.
3794     if (opts::JumpTables == JTS_BASIC) {
3795       for (auto &JTI : Function.JumpTables) {
3796         JumpTable *JT = JTI.second;
3797         BinarySection &Section = JT->getOutputSection();
3798         Section.setOutputAddress(JT->getAddress());
3799         Section.setOutputFileOffset(getFileOffsetForAddress(JT->getAddress()));
3800         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping JT " << Section.getName()
3801                           << " to 0x" << Twine::utohexstr(JT->getAddress())
3802                           << '\n');
3803         MapSection(Section, JT->getAddress());
3804       }
3805     }
3806 
3807     if (!Function.isSplit())
3808       continue;
3809 
3810     assert(Function.getLayout().isHotColdSplit() &&
3811            "Cannot allocate more than two fragments per function in "
3812            "non-relocation mode.");
3813 
3814     FunctionFragment &FF =
3815         Function.getLayout().getFragment(FragmentNum::cold());
3816     ErrorOr<BinarySection &> ColdSection =
3817         Function.getCodeSection(FF.getFragmentNum());
3818     assert(ColdSection && "cannot find section for cold part");
3819     // Cold fragments are aligned at 16 bytes.
3820     NextAvailableAddress = alignTo(NextAvailableAddress, 16);
3821     if (TooLarge) {
3822       // The corresponding FDE will refer to address 0.
3823       FF.setAddress(0);
3824       FF.setImageAddress(0);
3825       FF.setImageSize(0);
3826       FF.setFileOffset(0);
3827     } else {
3828       FF.setAddress(NextAvailableAddress);
3829       FF.setImageAddress(ColdSection->getAllocAddress());
3830       FF.setImageSize(ColdSection->getOutputSize());
3831       FF.setFileOffset(getFileOffsetForAddress(NextAvailableAddress));
3832       ColdSection->setOutputAddress(FF.getAddress());
3833     }
3834 
3835     LLVM_DEBUG(
3836         dbgs() << formatv(
3837             "BOLT: mapping cold fragment {0:x+} to {1:x+} with size {2:x+}\n",
3838             FF.getImageAddress(), FF.getAddress(), FF.getImageSize()));
3839     MapSection(*ColdSection, FF.getAddress());
3840 
3841     if (TooLarge)
3842       BC->deregisterSection(*ColdSection);
3843 
3844     NextAvailableAddress += FF.getImageSize();
3845   }
3846 
3847   // Add the new text section aggregating all existing code sections.
3848   // This is pseudo-section that serves a purpose of creating a corresponding
3849   // entry in section header table.
3850   const uint64_t NewTextSectionSize =
3851       NextAvailableAddress - NewTextSectionStartAddress;
3852   if (NewTextSectionSize) {
3853     const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true,
3854                                                    /*IsText=*/true,
3855                                                    /*IsAllocatable=*/true);
3856     BinarySection &Section =
3857       BC->registerOrUpdateSection(getBOLTTextSectionName(),
3858                                   ELF::SHT_PROGBITS,
3859                                   Flags,
3860                                   /*Data=*/nullptr,
3861                                   NewTextSectionSize,
3862                                   16);
3863     Section.setOutputAddress(NewTextSectionStartAddress);
3864     Section.setOutputFileOffset(
3865         getFileOffsetForAddress(NewTextSectionStartAddress));
3866   }
3867 }
3868 
3869 void RewriteInstance::mapAllocatableSections(
3870     BOLTLinker::SectionMapper MapSection) {
3871   // Allocate read-only sections first, then writable sections.
3872   enum : uint8_t { ST_READONLY, ST_READWRITE };
3873   for (uint8_t SType = ST_READONLY; SType <= ST_READWRITE; ++SType) {
3874     const uint64_t LastNextAvailableAddress = NextAvailableAddress;
3875     if (SType == ST_READWRITE) {
3876       // Align R+W segment to regular page size
3877       NextAvailableAddress = alignTo(NextAvailableAddress, BC->RegularPageSize);
3878       NewWritableSegmentAddress = NextAvailableAddress;
3879     }
3880 
3881     for (BinarySection &Section : BC->allocatableSections()) {
3882       if (Section.isLinkOnly())
3883         continue;
3884 
3885       if (!Section.hasValidSectionID())
3886         continue;
3887 
3888       if (Section.isWritable() == (SType == ST_READONLY))
3889         continue;
3890 
3891       if (Section.getOutputAddress()) {
3892         LLVM_DEBUG({
3893           dbgs() << "BOLT-DEBUG: section " << Section.getName()
3894                  << " is already mapped at 0x"
3895                  << Twine::utohexstr(Section.getOutputAddress()) << '\n';
3896         });
3897         continue;
3898       }
3899 
3900       if (Section.hasSectionRef()) {
3901         LLVM_DEBUG({
3902           dbgs() << "BOLT-DEBUG: mapping original section " << Section.getName()
3903                  << " to 0x" << Twine::utohexstr(Section.getAddress()) << '\n';
3904         });
3905         Section.setOutputAddress(Section.getAddress());
3906         Section.setOutputFileOffset(Section.getInputFileOffset());
3907         MapSection(Section, Section.getAddress());
3908       } else {
3909         NextAvailableAddress =
3910             alignTo(NextAvailableAddress, Section.getAlignment());
3911         LLVM_DEBUG({
3912           dbgs() << "BOLT: mapping section " << Section.getName() << " (0x"
3913                  << Twine::utohexstr(Section.getAllocAddress()) << ") to 0x"
3914                  << Twine::utohexstr(NextAvailableAddress) << ":0x"
3915                  << Twine::utohexstr(NextAvailableAddress +
3916                                      Section.getOutputSize())
3917                  << '\n';
3918         });
3919 
3920         MapSection(Section, NextAvailableAddress);
3921         Section.setOutputAddress(NextAvailableAddress);
3922         Section.setOutputFileOffset(
3923             getFileOffsetForAddress(NextAvailableAddress));
3924 
3925         NextAvailableAddress += Section.getOutputSize();
3926       }
3927     }
3928 
3929     if (SType == ST_READONLY) {
3930       if (PHDRTableAddress) {
3931         // Segment size includes the size of the PHDR area.
3932         NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress;
3933       } else if (NewTextSegmentAddress) {
3934         // Existing PHDR table would be updated.
3935         NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress;
3936       }
3937     } else if (SType == ST_READWRITE) {
3938       NewWritableSegmentSize = NextAvailableAddress - NewWritableSegmentAddress;
3939       // Restore NextAvailableAddress if no new writable sections
3940       if (!NewWritableSegmentSize)
3941         NextAvailableAddress = LastNextAvailableAddress;
3942     }
3943   }
3944 }
3945 
3946 void RewriteInstance::updateOutputValues(const BOLTLinker &Linker) {
3947   if (std::optional<AddressMap> Map = AddressMap::parse(*BC))
3948     BC->setIOAddressMap(std::move(*Map));
3949 
3950   for (BinaryFunction *Function : BC->getAllBinaryFunctions())
3951     Function->updateOutputValues(Linker);
3952 }
3953 
3954 void RewriteInstance::patchELFPHDRTable() {
3955   auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile);
3956   const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
3957   raw_fd_ostream &OS = Out->os();
3958 
3959   // Write/re-write program headers.
3960   Phnum = Obj.getHeader().e_phnum;
3961   if (PHDRTableOffset) {
3962     // Writing new pheader table and adding one new entry for R+X segment.
3963     Phnum += 1;
3964     if (NewWritableSegmentSize) {
3965       // Adding one more entry for R+W segment.
3966       Phnum += 1;
3967     }
3968   } else {
3969     assert(!PHDRTableAddress && "unexpected address for program header table");
3970     PHDRTableOffset = Obj.getHeader().e_phoff;
3971     if (NewWritableSegmentSize) {
3972       BC->errs() << "BOLT-ERROR: unable to add writable segment\n";
3973       exit(1);
3974     }
3975   }
3976 
3977   // NOTE Currently .eh_frame_hdr appends to the last segment, recalculate
3978   // last segments size based on the NextAvailableAddress variable.
3979   if (!NewWritableSegmentSize) {
3980     if (PHDRTableAddress)
3981       NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress;
3982     else if (NewTextSegmentAddress)
3983       NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress;
3984   } else {
3985     NewWritableSegmentSize = NextAvailableAddress - NewWritableSegmentAddress;
3986   }
3987 
3988   const uint64_t SavedPos = OS.tell();
3989   OS.seek(PHDRTableOffset);
3990 
3991   auto createNewTextPhdr = [&]() {
3992     ELF64LEPhdrTy NewPhdr;
3993     NewPhdr.p_type = ELF::PT_LOAD;
3994     if (PHDRTableAddress) {
3995       NewPhdr.p_offset = PHDRTableOffset;
3996       NewPhdr.p_vaddr = PHDRTableAddress;
3997       NewPhdr.p_paddr = PHDRTableAddress;
3998     } else {
3999       NewPhdr.p_offset = NewTextSegmentOffset;
4000       NewPhdr.p_vaddr = NewTextSegmentAddress;
4001       NewPhdr.p_paddr = NewTextSegmentAddress;
4002     }
4003     NewPhdr.p_filesz = NewTextSegmentSize;
4004     NewPhdr.p_memsz = NewTextSegmentSize;
4005     NewPhdr.p_flags = ELF::PF_X | ELF::PF_R;
4006     if (opts::Instrument) {
4007       // FIXME: Currently instrumentation is experimental and the runtime data
4008       // is emitted with code, thus everything needs to be writable.
4009       NewPhdr.p_flags |= ELF::PF_W;
4010     }
4011     NewPhdr.p_align = BC->PageAlign;
4012 
4013     return NewPhdr;
4014   };
4015 
4016   auto writeNewSegmentPhdrs = [&]() {
4017     if (PHDRTableAddress || NewTextSegmentSize) {
4018       ELF64LE::Phdr NewPhdr = createNewTextPhdr();
4019       OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr));
4020     }
4021 
4022     if (NewWritableSegmentSize) {
4023       ELF64LEPhdrTy NewPhdr;
4024       NewPhdr.p_type = ELF::PT_LOAD;
4025       NewPhdr.p_offset = getFileOffsetForAddress(NewWritableSegmentAddress);
4026       NewPhdr.p_vaddr = NewWritableSegmentAddress;
4027       NewPhdr.p_paddr = NewWritableSegmentAddress;
4028       NewPhdr.p_filesz = NewWritableSegmentSize;
4029       NewPhdr.p_memsz = NewWritableSegmentSize;
4030       NewPhdr.p_align = BC->RegularPageSize;
4031       NewPhdr.p_flags = ELF::PF_R | ELF::PF_W;
4032       OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr));
4033     }
4034   };
4035 
4036   bool ModdedGnuStack = false;
4037   bool AddedSegment = false;
4038 
4039   // Copy existing program headers with modifications.
4040   for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) {
4041     ELF64LE::Phdr NewPhdr = Phdr;
4042     switch (Phdr.p_type) {
4043     case ELF::PT_PHDR:
4044       if (PHDRTableAddress) {
4045         NewPhdr.p_offset = PHDRTableOffset;
4046         NewPhdr.p_vaddr = PHDRTableAddress;
4047         NewPhdr.p_paddr = PHDRTableAddress;
4048         NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum;
4049         NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum;
4050       }
4051       break;
4052     case ELF::PT_GNU_EH_FRAME: {
4053       ErrorOr<BinarySection &> EHFrameHdrSec = BC->getUniqueSectionByName(
4054           getNewSecPrefix() + getEHFrameHdrSectionName());
4055       if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() &&
4056           EHFrameHdrSec->isFinalized()) {
4057         NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset();
4058         NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress();
4059         NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress();
4060         NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize();
4061         NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize();
4062       }
4063       break;
4064     }
4065     case ELF::PT_GNU_STACK:
4066       if (opts::UseGnuStack) {
4067         // Overwrite the header with the new text segment header.
4068         NewPhdr = createNewTextPhdr();
4069         ModdedGnuStack = true;
4070       }
4071       break;
4072     case ELF::PT_DYNAMIC:
4073       if (!opts::UseGnuStack) {
4074         // Insert new headers before DYNAMIC.
4075         writeNewSegmentPhdrs();
4076         AddedSegment = true;
4077       }
4078       break;
4079     }
4080     OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr));
4081   }
4082 
4083   if (!opts::UseGnuStack && !AddedSegment) {
4084     // Append new headers to the end of the table.
4085     writeNewSegmentPhdrs();
4086   }
4087 
4088   if (opts::UseGnuStack && !ModdedGnuStack) {
4089     BC->errs()
4090         << "BOLT-ERROR: could not find PT_GNU_STACK program header to modify\n";
4091     exit(1);
4092   }
4093 
4094   OS.seek(SavedPos);
4095 }
4096 
4097 namespace {
4098 
4099 /// Write padding to \p OS such that its current \p Offset becomes aligned
4100 /// at \p Alignment. Return new (aligned) offset.
4101 uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset,
4102                        uint64_t Alignment) {
4103   if (!Alignment)
4104     return Offset;
4105 
4106   const uint64_t PaddingSize =
4107       offsetToAlignment(Offset, llvm::Align(Alignment));
4108   for (unsigned I = 0; I < PaddingSize; ++I)
4109     OS.write((unsigned char)0);
4110   return Offset + PaddingSize;
4111 }
4112 
4113 }
4114 
4115 void RewriteInstance::rewriteNoteSections() {
4116   auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile);
4117   const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
4118   raw_fd_ostream &OS = Out->os();
4119 
4120   uint64_t NextAvailableOffset = std::max(
4121       getFileOffsetForAddress(NextAvailableAddress), FirstNonAllocatableOffset);
4122   OS.seek(NextAvailableOffset);
4123 
4124   // Copy over non-allocatable section contents and update file offsets.
4125   for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) {
4126     if (Section.sh_type == ELF::SHT_NULL)
4127       continue;
4128     if (Section.sh_flags & ELF::SHF_ALLOC)
4129       continue;
4130 
4131     SectionRef SecRef = ELF64LEFile->toSectionRef(&Section);
4132     BinarySection *BSec = BC->getSectionForSectionRef(SecRef);
4133     assert(BSec && !BSec->isAllocatable() &&
4134            "Matching non-allocatable BinarySection should exist.");
4135 
4136     StringRef SectionName =
4137         cantFail(Obj.getSectionName(Section), "cannot get section name");
4138     if (shouldStrip(Section, SectionName))
4139       continue;
4140 
4141     // Insert padding as needed.
4142     NextAvailableOffset =
4143         appendPadding(OS, NextAvailableOffset, Section.sh_addralign);
4144 
4145     // New section size.
4146     uint64_t Size = 0;
4147     bool DataWritten = false;
4148     uint8_t *SectionData = nullptr;
4149     // Copy over section contents unless it's one of the sections we overwrite.
4150     if (!willOverwriteSection(SectionName)) {
4151       Size = Section.sh_size;
4152       StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size);
4153       std::string Data;
4154       if (BSec->getPatcher()) {
4155         Data = BSec->getPatcher()->patchBinary(Dataref);
4156         Dataref = StringRef(Data);
4157       }
4158 
4159       // Section was expanded, so need to treat it as overwrite.
4160       if (Size != Dataref.size()) {
4161         BSec = &BC->registerOrUpdateNoteSection(
4162             SectionName, copyByteArray(Dataref), Dataref.size());
4163         Size = 0;
4164       } else {
4165         OS << Dataref;
4166         DataWritten = true;
4167 
4168         // Add padding as the section extension might rely on the alignment.
4169         Size = appendPadding(OS, Size, Section.sh_addralign);
4170       }
4171     }
4172 
4173     // Perform section post-processing.
4174     assert(BSec->getAlignment() <= Section.sh_addralign &&
4175            "alignment exceeds value in file");
4176 
4177     if (BSec->getAllocAddress()) {
4178       assert(!DataWritten && "Writing section twice.");
4179       (void)DataWritten;
4180       SectionData = BSec->getOutputData();
4181 
4182       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing")
4183                         << " contents to section " << SectionName << '\n');
4184       OS.write(reinterpret_cast<char *>(SectionData), BSec->getOutputSize());
4185       Size += BSec->getOutputSize();
4186     }
4187 
4188     BSec->setOutputFileOffset(NextAvailableOffset);
4189     BSec->flushPendingRelocations(OS, [this](const MCSymbol *S) {
4190       return getNewValueForSymbol(S->getName());
4191     });
4192 
4193     // Section contents are no longer needed, but we need to update the size so
4194     // that it will be reflected in the section header table.
4195     BSec->updateContents(nullptr, Size);
4196 
4197     NextAvailableOffset += Size;
4198   }
4199 
4200   // Write new note sections.
4201   for (BinarySection &Section : BC->nonAllocatableSections()) {
4202     if (Section.getOutputFileOffset() || !Section.getAllocAddress())
4203       continue;
4204 
4205     assert(!Section.hasPendingRelocations() && "cannot have pending relocs");
4206 
4207     NextAvailableOffset =
4208         appendPadding(OS, NextAvailableOffset, Section.getAlignment());
4209     Section.setOutputFileOffset(NextAvailableOffset);
4210 
4211     LLVM_DEBUG(
4212         dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName()
4213                << " of size " << Section.getOutputSize() << " at offset 0x"
4214                << Twine::utohexstr(Section.getOutputFileOffset()) << '\n');
4215 
4216     OS.write(Section.getOutputContents().data(), Section.getOutputSize());
4217     NextAvailableOffset += Section.getOutputSize();
4218   }
4219 }
4220 
4221 template <typename ELFT>
4222 void RewriteInstance::finalizeSectionStringTable(ELFObjectFile<ELFT> *File) {
4223   // Pre-populate section header string table.
4224   for (const BinarySection &Section : BC->sections())
4225     if (!Section.isAnonymous())
4226       SHStrTab.add(Section.getOutputName());
4227   SHStrTab.finalize();
4228 
4229   const size_t SHStrTabSize = SHStrTab.getSize();
4230   uint8_t *DataCopy = new uint8_t[SHStrTabSize];
4231   memset(DataCopy, 0, SHStrTabSize);
4232   SHStrTab.write(DataCopy);
4233   BC->registerOrUpdateNoteSection(".shstrtab",
4234                                   DataCopy,
4235                                   SHStrTabSize,
4236                                   /*Alignment=*/1,
4237                                   /*IsReadOnly=*/true,
4238                                   ELF::SHT_STRTAB);
4239 }
4240 
4241 void RewriteInstance::addBoltInfoSection() {
4242   std::string DescStr;
4243   raw_string_ostream DescOS(DescStr);
4244 
4245   DescOS << "BOLT revision: " << BoltRevision << ", "
4246          << "command line:";
4247   for (int I = 0; I < Argc; ++I)
4248     DescOS << " " << Argv[I];
4249   DescOS.flush();
4250 
4251   // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n'
4252   const std::string BoltInfo =
4253       BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/);
4254   BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo),
4255                                   BoltInfo.size(),
4256                                   /*Alignment=*/1,
4257                                   /*IsReadOnly=*/true, ELF::SHT_NOTE);
4258 }
4259 
4260 void RewriteInstance::addBATSection() {
4261   BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr,
4262                                   0,
4263                                   /*Alignment=*/1,
4264                                   /*IsReadOnly=*/true, ELF::SHT_NOTE);
4265 }
4266 
4267 void RewriteInstance::encodeBATSection() {
4268   std::string DescStr;
4269   raw_string_ostream DescOS(DescStr);
4270 
4271   BAT->write(*BC, DescOS);
4272   DescOS.flush();
4273 
4274   const std::string BoltInfo =
4275       BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT);
4276   BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME,
4277                                   copyByteArray(BoltInfo), BoltInfo.size(),
4278                                   /*Alignment=*/1,
4279                                   /*IsReadOnly=*/true, ELF::SHT_NOTE);
4280   BC->outs() << "BOLT-INFO: BAT section size (bytes): " << BoltInfo.size()
4281              << '\n';
4282 }
4283 
4284 template <typename ELFShdrTy>
4285 bool RewriteInstance::shouldStrip(const ELFShdrTy &Section,
4286                                   StringRef SectionName) {
4287   // Strip non-allocatable relocation sections.
4288   if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA)
4289     return true;
4290 
4291   // Strip debug sections if not updating them.
4292   if (isDebugSection(SectionName) && !opts::UpdateDebugSections)
4293     return true;
4294 
4295   // Strip symtab section if needed
4296   if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB)
4297     return true;
4298 
4299   return false;
4300 }
4301 
4302 template <typename ELFT>
4303 std::vector<typename object::ELFObjectFile<ELFT>::Elf_Shdr>
4304 RewriteInstance::getOutputSections(ELFObjectFile<ELFT> *File,
4305                                    std::vector<uint32_t> &NewSectionIndex) {
4306   using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
4307   const ELFFile<ELFT> &Obj = File->getELFFile();
4308   typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
4309 
4310   // Keep track of section header entries attached to the corresponding section.
4311   std::vector<std::pair<BinarySection *, ELFShdrTy>> OutputSections;
4312   auto addSection = [&](const ELFShdrTy &Section, BinarySection &BinSec) {
4313     ELFShdrTy NewSection = Section;
4314     NewSection.sh_name = SHStrTab.getOffset(BinSec.getOutputName());
4315     OutputSections.emplace_back(&BinSec, std::move(NewSection));
4316   };
4317 
4318   // Copy over entries for original allocatable sections using modified name.
4319   for (const ELFShdrTy &Section : Sections) {
4320     // Always ignore this section.
4321     if (Section.sh_type == ELF::SHT_NULL) {
4322       OutputSections.emplace_back(nullptr, Section);
4323       continue;
4324     }
4325 
4326     if (!(Section.sh_flags & ELF::SHF_ALLOC))
4327       continue;
4328 
4329     SectionRef SecRef = File->toSectionRef(&Section);
4330     BinarySection *BinSec = BC->getSectionForSectionRef(SecRef);
4331     assert(BinSec && "Matching BinarySection should exist.");
4332 
4333     addSection(Section, *BinSec);
4334   }
4335 
4336   for (BinarySection &Section : BC->allocatableSections()) {
4337     if (!Section.isFinalized())
4338       continue;
4339 
4340     if (Section.hasSectionRef() || Section.isAnonymous()) {
4341       if (opts::Verbosity)
4342         BC->outs() << "BOLT-INFO: not writing section header for section "
4343                    << Section.getOutputName() << '\n';
4344       continue;
4345     }
4346 
4347     if (opts::Verbosity >= 1)
4348       BC->outs() << "BOLT-INFO: writing section header for "
4349                  << Section.getOutputName() << '\n';
4350     ELFShdrTy NewSection;
4351     NewSection.sh_type = ELF::SHT_PROGBITS;
4352     NewSection.sh_addr = Section.getOutputAddress();
4353     NewSection.sh_offset = Section.getOutputFileOffset();
4354     NewSection.sh_size = Section.getOutputSize();
4355     NewSection.sh_entsize = 0;
4356     NewSection.sh_flags = Section.getELFFlags();
4357     NewSection.sh_link = 0;
4358     NewSection.sh_info = 0;
4359     NewSection.sh_addralign = Section.getAlignment();
4360     addSection(NewSection, Section);
4361   }
4362 
4363   // Sort all allocatable sections by their offset.
4364   llvm::stable_sort(OutputSections, [](const auto &A, const auto &B) {
4365     return A.second.sh_offset < B.second.sh_offset;
4366   });
4367 
4368   // Fix section sizes to prevent overlapping.
4369   ELFShdrTy *PrevSection = nullptr;
4370   BinarySection *PrevBinSec = nullptr;
4371   for (auto &SectionKV : OutputSections) {
4372     ELFShdrTy &Section = SectionKV.second;
4373 
4374     // Ignore NOBITS sections as they don't take any space in the file.
4375     if (Section.sh_type == ELF::SHT_NOBITS)
4376       continue;
4377 
4378     // Note that address continuity is not guaranteed as sections could be
4379     // placed in different loadable segments.
4380     if (PrevSection &&
4381         PrevSection->sh_offset + PrevSection->sh_size > Section.sh_offset) {
4382       if (opts::Verbosity > 1)
4383         BC->outs() << "BOLT-INFO: adjusting size for section "
4384                    << PrevBinSec->getOutputName() << '\n';
4385       PrevSection->sh_size = Section.sh_offset - PrevSection->sh_offset;
4386     }
4387 
4388     PrevSection = &Section;
4389     PrevBinSec = SectionKV.first;
4390   }
4391 
4392   uint64_t LastFileOffset = 0;
4393 
4394   // Copy over entries for non-allocatable sections performing necessary
4395   // adjustments.
4396   for (const ELFShdrTy &Section : Sections) {
4397     if (Section.sh_type == ELF::SHT_NULL)
4398       continue;
4399     if (Section.sh_flags & ELF::SHF_ALLOC)
4400       continue;
4401 
4402     StringRef SectionName =
4403         cantFail(Obj.getSectionName(Section), "cannot get section name");
4404 
4405     if (shouldStrip(Section, SectionName))
4406       continue;
4407 
4408     SectionRef SecRef = File->toSectionRef(&Section);
4409     BinarySection *BinSec = BC->getSectionForSectionRef(SecRef);
4410     assert(BinSec && "Matching BinarySection should exist.");
4411 
4412     ELFShdrTy NewSection = Section;
4413     NewSection.sh_offset = BinSec->getOutputFileOffset();
4414     NewSection.sh_size = BinSec->getOutputSize();
4415 
4416     if (NewSection.sh_type == ELF::SHT_SYMTAB)
4417       NewSection.sh_info = NumLocalSymbols;
4418 
4419     addSection(NewSection, *BinSec);
4420 
4421     LastFileOffset = BinSec->getOutputFileOffset();
4422   }
4423 
4424   // Create entries for new non-allocatable sections.
4425   for (BinarySection &Section : BC->nonAllocatableSections()) {
4426     if (Section.getOutputFileOffset() <= LastFileOffset)
4427       continue;
4428 
4429     if (opts::Verbosity >= 1)
4430       BC->outs() << "BOLT-INFO: writing section header for "
4431                  << Section.getOutputName() << '\n';
4432 
4433     ELFShdrTy NewSection;
4434     NewSection.sh_type = Section.getELFType();
4435     NewSection.sh_addr = 0;
4436     NewSection.sh_offset = Section.getOutputFileOffset();
4437     NewSection.sh_size = Section.getOutputSize();
4438     NewSection.sh_entsize = 0;
4439     NewSection.sh_flags = Section.getELFFlags();
4440     NewSection.sh_link = 0;
4441     NewSection.sh_info = 0;
4442     NewSection.sh_addralign = Section.getAlignment();
4443 
4444     addSection(NewSection, Section);
4445   }
4446 
4447   // Assign indices to sections.
4448   std::unordered_map<std::string, uint64_t> NameToIndex;
4449   for (uint32_t Index = 1; Index < OutputSections.size(); ++Index)
4450     OutputSections[Index].first->setIndex(Index);
4451 
4452   // Update section index mapping
4453   NewSectionIndex.clear();
4454   NewSectionIndex.resize(Sections.size(), 0);
4455   for (const ELFShdrTy &Section : Sections) {
4456     if (Section.sh_type == ELF::SHT_NULL)
4457       continue;
4458 
4459     size_t OrgIndex = std::distance(Sections.begin(), &Section);
4460 
4461     SectionRef SecRef = File->toSectionRef(&Section);
4462     BinarySection *BinSec = BC->getSectionForSectionRef(SecRef);
4463     assert(BinSec && "BinarySection should exist for an input section.");
4464 
4465     // Some sections are stripped
4466     if (!BinSec->hasValidIndex())
4467       continue;
4468 
4469     NewSectionIndex[OrgIndex] = BinSec->getIndex();
4470   }
4471 
4472   std::vector<ELFShdrTy> SectionsOnly(OutputSections.size());
4473   llvm::copy(llvm::make_second_range(OutputSections), SectionsOnly.begin());
4474 
4475   return SectionsOnly;
4476 }
4477 
4478 // Rewrite section header table inserting new entries as needed. The sections
4479 // header table size itself may affect the offsets of other sections,
4480 // so we are placing it at the end of the binary.
4481 //
4482 // As we rewrite entries we need to track how many sections were inserted
4483 // as it changes the sh_link value. We map old indices to new ones for
4484 // existing sections.
4485 template <typename ELFT>
4486 void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile<ELFT> *File) {
4487   using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
4488   using ELFEhdrTy = typename ELFObjectFile<ELFT>::Elf_Ehdr;
4489   raw_fd_ostream &OS = Out->os();
4490   const ELFFile<ELFT> &Obj = File->getELFFile();
4491 
4492   // Mapping from old section indices to new ones
4493   std::vector<uint32_t> NewSectionIndex;
4494   std::vector<ELFShdrTy> OutputSections =
4495       getOutputSections(File, NewSectionIndex);
4496   LLVM_DEBUG(
4497     dbgs() << "BOLT-DEBUG: old to new section index mapping:\n";
4498     for (uint64_t I = 0; I < NewSectionIndex.size(); ++I)
4499       dbgs() << "  " << I << " -> " << NewSectionIndex[I] << '\n';
4500   );
4501 
4502   // Align starting address for section header table. There's no architecutal
4503   // need to align this, it is just for pleasant human readability.
4504   uint64_t SHTOffset = OS.tell();
4505   SHTOffset = appendPadding(OS, SHTOffset, 16);
4506 
4507   // Write all section header entries while patching section references.
4508   for (ELFShdrTy &Section : OutputSections) {
4509     Section.sh_link = NewSectionIndex[Section.sh_link];
4510     if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA)
4511       Section.sh_info = NewSectionIndex[Section.sh_info];
4512     OS.write(reinterpret_cast<const char *>(&Section), sizeof(Section));
4513   }
4514 
4515   // Fix ELF header.
4516   ELFEhdrTy NewEhdr = Obj.getHeader();
4517 
4518   if (BC->HasRelocations) {
4519     if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
4520       NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress();
4521     else
4522       NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry);
4523     assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) &&
4524            "cannot find new address for entry point");
4525   }
4526   if (PHDRTableOffset) {
4527     NewEhdr.e_phoff = PHDRTableOffset;
4528     NewEhdr.e_phnum = Phnum;
4529   }
4530   NewEhdr.e_shoff = SHTOffset;
4531   NewEhdr.e_shnum = OutputSections.size();
4532   NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx];
4533   OS.pwrite(reinterpret_cast<const char *>(&NewEhdr), sizeof(NewEhdr), 0);
4534 }
4535 
4536 template <typename ELFT, typename WriteFuncTy, typename StrTabFuncTy>
4537 void RewriteInstance::updateELFSymbolTable(
4538     ELFObjectFile<ELFT> *File, bool IsDynSym,
4539     const typename object::ELFObjectFile<ELFT>::Elf_Shdr &SymTabSection,
4540     const std::vector<uint32_t> &NewSectionIndex, WriteFuncTy Write,
4541     StrTabFuncTy AddToStrTab) {
4542   const ELFFile<ELFT> &Obj = File->getELFFile();
4543   using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym;
4544 
4545   StringRef StringSection =
4546       cantFail(Obj.getStringTableForSymtab(SymTabSection));
4547 
4548   unsigned NumHotTextSymsUpdated = 0;
4549   unsigned NumHotDataSymsUpdated = 0;
4550 
4551   std::map<const BinaryFunction *, uint64_t> IslandSizes;
4552   auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) {
4553     auto Itr = IslandSizes.find(&BF);
4554     if (Itr != IslandSizes.end())
4555       return Itr->second;
4556     return IslandSizes[&BF] = BF.estimateConstantIslandSize();
4557   };
4558 
4559   // Symbols for the new symbol table.
4560   std::vector<ELFSymTy> Symbols;
4561 
4562   bool EmittedColdFileSymbol = false;
4563 
4564   auto getNewSectionIndex = [&](uint32_t OldIndex) {
4565     // For dynamic symbol table, the section index could be wrong on the input,
4566     // and its value is ignored by the runtime if it's different from
4567     // SHN_UNDEF and SHN_ABS.
4568     // However, we still need to update dynamic symbol table, so return a
4569     // section index, even though the index is broken.
4570     if (IsDynSym && OldIndex >= NewSectionIndex.size())
4571       return OldIndex;
4572 
4573     assert(OldIndex < NewSectionIndex.size() && "section index out of bounds");
4574     const uint32_t NewIndex = NewSectionIndex[OldIndex];
4575 
4576     // We may have stripped the section that dynsym was referencing due to
4577     // the linker bug. In that case return the old index avoiding marking
4578     // the symbol as undefined.
4579     if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF)
4580       return OldIndex;
4581     return NewIndex;
4582   };
4583 
4584   // Get the extra symbol name of a split fragment; used in addExtraSymbols.
4585   auto getSplitSymbolName = [&](const FunctionFragment &FF,
4586                                 const ELFSymTy &FunctionSymbol) {
4587     SmallString<256> SymbolName;
4588     if (BC->HasWarmSection)
4589       SymbolName =
4590           formatv("{0}.{1}", cantFail(FunctionSymbol.getName(StringSection)),
4591                   FF.getFragmentNum() == FragmentNum::warm() ? "warm" : "cold");
4592     else
4593       SymbolName = formatv("{0}.cold.{1}",
4594                            cantFail(FunctionSymbol.getName(StringSection)),
4595                            FF.getFragmentNum().get() - 1);
4596     return SymbolName;
4597   };
4598 
4599   // Add extra symbols for the function.
4600   //
4601   // Note that addExtraSymbols() could be called multiple times for the same
4602   // function with different FunctionSymbol matching the main function entry
4603   // point.
4604   auto addExtraSymbols = [&](const BinaryFunction &Function,
4605                              const ELFSymTy &FunctionSymbol) {
4606     if (Function.isFolded()) {
4607       BinaryFunction *ICFParent = Function.getFoldedIntoFunction();
4608       while (ICFParent->isFolded())
4609         ICFParent = ICFParent->getFoldedIntoFunction();
4610       ELFSymTy ICFSymbol = FunctionSymbol;
4611       SmallVector<char, 256> Buf;
4612       ICFSymbol.st_name =
4613           AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection)))
4614                           .concat(".icf.0")
4615                           .toStringRef(Buf));
4616       ICFSymbol.st_value = ICFParent->getOutputAddress();
4617       ICFSymbol.st_size = ICFParent->getOutputSize();
4618       ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex();
4619       Symbols.emplace_back(ICFSymbol);
4620     }
4621     if (Function.isSplit()) {
4622       // Prepend synthetic FILE symbol to prevent local cold fragments from
4623       // colliding with existing symbols with the same name.
4624       if (!EmittedColdFileSymbol &&
4625           FunctionSymbol.getBinding() == ELF::STB_GLOBAL) {
4626         ELFSymTy FileSymbol;
4627         FileSymbol.st_shndx = ELF::SHN_ABS;
4628         FileSymbol.st_name = AddToStrTab(getBOLTFileSymbolName());
4629         FileSymbol.st_value = 0;
4630         FileSymbol.st_size = 0;
4631         FileSymbol.st_other = 0;
4632         FileSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FILE);
4633         Symbols.emplace_back(FileSymbol);
4634         EmittedColdFileSymbol = true;
4635       }
4636       for (const FunctionFragment &FF :
4637            Function.getLayout().getSplitFragments()) {
4638         if (FF.getAddress()) {
4639           ELFSymTy NewColdSym = FunctionSymbol;
4640           const SmallString<256> SymbolName =
4641               getSplitSymbolName(FF, FunctionSymbol);
4642           NewColdSym.st_name = AddToStrTab(SymbolName);
4643           NewColdSym.st_shndx =
4644               Function.getCodeSection(FF.getFragmentNum())->getIndex();
4645           NewColdSym.st_value = FF.getAddress();
4646           NewColdSym.st_size = FF.getImageSize();
4647           NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC);
4648           Symbols.emplace_back(NewColdSym);
4649         }
4650       }
4651     }
4652     if (Function.hasConstantIsland()) {
4653       uint64_t DataMark = Function.getOutputDataAddress();
4654       uint64_t CISize = getConstantIslandSize(Function);
4655       uint64_t CodeMark = DataMark + CISize;
4656       ELFSymTy DataMarkSym = FunctionSymbol;
4657       DataMarkSym.st_name = AddToStrTab("$d");
4658       DataMarkSym.st_value = DataMark;
4659       DataMarkSym.st_size = 0;
4660       DataMarkSym.setType(ELF::STT_NOTYPE);
4661       DataMarkSym.setBinding(ELF::STB_LOCAL);
4662       ELFSymTy CodeMarkSym = DataMarkSym;
4663       CodeMarkSym.st_name = AddToStrTab("$x");
4664       CodeMarkSym.st_value = CodeMark;
4665       Symbols.emplace_back(DataMarkSym);
4666       Symbols.emplace_back(CodeMarkSym);
4667     }
4668     if (Function.hasConstantIsland() && Function.isSplit()) {
4669       uint64_t DataMark = Function.getOutputColdDataAddress();
4670       uint64_t CISize = getConstantIslandSize(Function);
4671       uint64_t CodeMark = DataMark + CISize;
4672       ELFSymTy DataMarkSym = FunctionSymbol;
4673       DataMarkSym.st_name = AddToStrTab("$d");
4674       DataMarkSym.st_value = DataMark;
4675       DataMarkSym.st_size = 0;
4676       DataMarkSym.setType(ELF::STT_NOTYPE);
4677       DataMarkSym.setBinding(ELF::STB_LOCAL);
4678       ELFSymTy CodeMarkSym = DataMarkSym;
4679       CodeMarkSym.st_name = AddToStrTab("$x");
4680       CodeMarkSym.st_value = CodeMark;
4681       Symbols.emplace_back(DataMarkSym);
4682       Symbols.emplace_back(CodeMarkSym);
4683     }
4684   };
4685 
4686   // For regular (non-dynamic) symbol table, exclude symbols referring
4687   // to non-allocatable sections.
4688   auto shouldStrip = [&](const ELFSymTy &Symbol) {
4689     if (Symbol.isAbsolute() || !Symbol.isDefined())
4690       return false;
4691 
4692     // If we cannot link the symbol to a section, leave it as is.
4693     Expected<const typename ELFT::Shdr *> Section =
4694         Obj.getSection(Symbol.st_shndx);
4695     if (!Section)
4696       return false;
4697 
4698     // Remove the section symbol iif the corresponding section was stripped.
4699     if (Symbol.getType() == ELF::STT_SECTION) {
4700       if (!getNewSectionIndex(Symbol.st_shndx))
4701         return true;
4702       return false;
4703     }
4704 
4705     // Symbols in non-allocatable sections are typically remnants of relocations
4706     // emitted under "-emit-relocs" linker option. Delete those as we delete
4707     // relocations against non-allocatable sections.
4708     if (!((*Section)->sh_flags & ELF::SHF_ALLOC))
4709       return true;
4710 
4711     return false;
4712   };
4713 
4714   for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) {
4715     // For regular (non-dynamic) symbol table strip unneeded symbols.
4716     if (!IsDynSym && shouldStrip(Symbol))
4717       continue;
4718 
4719     const BinaryFunction *Function =
4720         BC->getBinaryFunctionAtAddress(Symbol.st_value);
4721     // Ignore false function references, e.g. when the section address matches
4722     // the address of the function.
4723     if (Function && Symbol.getType() == ELF::STT_SECTION)
4724       Function = nullptr;
4725 
4726     // For non-dynamic symtab, make sure the symbol section matches that of
4727     // the function. It can mismatch e.g. if the symbol is a section marker
4728     // in which case we treat the symbol separately from the function.
4729     // For dynamic symbol table, the section index could be wrong on the input,
4730     // and its value is ignored by the runtime if it's different from
4731     // SHN_UNDEF and SHN_ABS.
4732     if (!IsDynSym && Function &&
4733         Symbol.st_shndx !=
4734             Function->getOriginSection()->getSectionRef().getIndex())
4735       Function = nullptr;
4736 
4737     // Create a new symbol based on the existing symbol.
4738     ELFSymTy NewSymbol = Symbol;
4739 
4740     // Handle special symbols based on their name.
4741     Expected<StringRef> SymbolName = Symbol.getName(StringSection);
4742     assert(SymbolName && "cannot get symbol name");
4743 
4744     auto updateSymbolValue = [&](const StringRef Name,
4745                                  std::optional<uint64_t> Value = std::nullopt) {
4746       NewSymbol.st_value = Value ? *Value : getNewValueForSymbol(Name);
4747       NewSymbol.st_shndx = ELF::SHN_ABS;
4748       BC->outs() << "BOLT-INFO: setting " << Name << " to 0x"
4749                  << Twine::utohexstr(NewSymbol.st_value) << '\n';
4750     };
4751 
4752     if (*SymbolName == "__hot_start" || *SymbolName == "__hot_end") {
4753       if (opts::HotText) {
4754         updateSymbolValue(*SymbolName);
4755         ++NumHotTextSymsUpdated;
4756       }
4757       goto registerSymbol;
4758     }
4759 
4760     if (*SymbolName == "__hot_data_start" || *SymbolName == "__hot_data_end") {
4761       if (opts::HotData) {
4762         updateSymbolValue(*SymbolName);
4763         ++NumHotDataSymsUpdated;
4764       }
4765       goto registerSymbol;
4766     }
4767 
4768     if (*SymbolName == "_end") {
4769       if (NextAvailableAddress > Symbol.st_value)
4770         updateSymbolValue(*SymbolName, NextAvailableAddress);
4771       goto registerSymbol;
4772     }
4773 
4774     if (Function) {
4775       // If the symbol matched a function that was not emitted, update the
4776       // corresponding section index but otherwise leave it unchanged.
4777       if (Function->isEmitted()) {
4778         NewSymbol.st_value = Function->getOutputAddress();
4779         NewSymbol.st_size = Function->getOutputSize();
4780         NewSymbol.st_shndx = Function->getCodeSection()->getIndex();
4781       } else if (Symbol.st_shndx < ELF::SHN_LORESERVE) {
4782         NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx);
4783       }
4784 
4785       // Add new symbols to the symbol table if necessary.
4786       if (!IsDynSym)
4787         addExtraSymbols(*Function, NewSymbol);
4788     } else {
4789       // Check if the function symbol matches address inside a function, i.e.
4790       // it marks a secondary entry point.
4791       Function =
4792           (Symbol.getType() == ELF::STT_FUNC)
4793               ? BC->getBinaryFunctionContainingAddress(Symbol.st_value,
4794                                                        /*CheckPastEnd=*/false,
4795                                                        /*UseMaxSize=*/true)
4796               : nullptr;
4797 
4798       if (Function && Function->isEmitted()) {
4799         assert(Function->getLayout().isHotColdSplit() &&
4800                "Adding symbols based on cold fragment when there are more than "
4801                "2 fragments");
4802         const uint64_t OutputAddress =
4803             Function->translateInputToOutputAddress(Symbol.st_value);
4804 
4805         NewSymbol.st_value = OutputAddress;
4806         // Force secondary entry points to have zero size.
4807         NewSymbol.st_size = 0;
4808 
4809         // Find fragment containing entrypoint
4810         FunctionLayout::fragment_const_iterator FF = llvm::find_if(
4811             Function->getLayout().fragments(), [&](const FunctionFragment &FF) {
4812               uint64_t Lo = FF.getAddress();
4813               uint64_t Hi = Lo + FF.getImageSize();
4814               return Lo <= OutputAddress && OutputAddress < Hi;
4815             });
4816 
4817         if (FF == Function->getLayout().fragment_end()) {
4818           assert(
4819               OutputAddress >= Function->getCodeSection()->getOutputAddress() &&
4820               OutputAddress < (Function->getCodeSection()->getOutputAddress() +
4821                                Function->getCodeSection()->getOutputSize()) &&
4822               "Cannot locate fragment containing secondary entrypoint");
4823           FF = Function->getLayout().fragment_begin();
4824         }
4825 
4826         NewSymbol.st_shndx =
4827             Function->getCodeSection(FF->getFragmentNum())->getIndex();
4828       } else {
4829         // Check if the symbol belongs to moved data object and update it.
4830         BinaryData *BD = opts::ReorderData.empty()
4831                              ? nullptr
4832                              : BC->getBinaryDataAtAddress(Symbol.st_value);
4833         if (BD && BD->isMoved() && !BD->isJumpTable()) {
4834           assert((!BD->getSize() || !Symbol.st_size ||
4835                   Symbol.st_size == BD->getSize()) &&
4836                  "sizes must match");
4837 
4838           BinarySection &OutputSection = BD->getOutputSection();
4839           assert(OutputSection.getIndex());
4840           LLVM_DEBUG(dbgs()
4841                      << "BOLT-DEBUG: moving " << BD->getName() << " from "
4842                      << *BC->getSectionNameForAddress(Symbol.st_value) << " ("
4843                      << Symbol.st_shndx << ") to " << OutputSection.getName()
4844                      << " (" << OutputSection.getIndex() << ")\n");
4845           NewSymbol.st_shndx = OutputSection.getIndex();
4846           NewSymbol.st_value = BD->getOutputAddress();
4847         } else {
4848           // Otherwise just update the section for the symbol.
4849           if (Symbol.st_shndx < ELF::SHN_LORESERVE)
4850             NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx);
4851         }
4852 
4853         // Detect local syms in the text section that we didn't update
4854         // and that were preserved by the linker to support relocations against
4855         // .text. Remove them from the symtab.
4856         if (Symbol.getType() == ELF::STT_NOTYPE &&
4857             Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) {
4858           if (BC->getBinaryFunctionContainingAddress(Symbol.st_value,
4859                                                      /*CheckPastEnd=*/false,
4860                                                      /*UseMaxSize=*/true)) {
4861             // Can only delete the symbol if not patching. Such symbols should
4862             // not exist in the dynamic symbol table.
4863             assert(!IsDynSym && "cannot delete symbol");
4864             continue;
4865           }
4866         }
4867       }
4868     }
4869 
4870   registerSymbol:
4871     if (IsDynSym)
4872       Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) *
4873                 sizeof(ELFSymTy),
4874             NewSymbol);
4875     else
4876       Symbols.emplace_back(NewSymbol);
4877   }
4878 
4879   if (IsDynSym) {
4880     assert(Symbols.empty());
4881     return;
4882   }
4883 
4884   // Add symbols of injected functions
4885   for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) {
4886     ELFSymTy NewSymbol;
4887     BinarySection *OriginSection = Function->getOriginSection();
4888     NewSymbol.st_shndx =
4889         OriginSection
4890             ? getNewSectionIndex(OriginSection->getSectionRef().getIndex())
4891             : Function->getCodeSection()->getIndex();
4892     NewSymbol.st_value = Function->getOutputAddress();
4893     NewSymbol.st_name = AddToStrTab(Function->getOneName());
4894     NewSymbol.st_size = Function->getOutputSize();
4895     NewSymbol.st_other = 0;
4896     NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC);
4897     Symbols.emplace_back(NewSymbol);
4898 
4899     if (Function->isSplit()) {
4900       assert(Function->getLayout().isHotColdSplit() &&
4901              "Adding symbols based on cold fragment when there are more than "
4902              "2 fragments");
4903       ELFSymTy NewColdSym = NewSymbol;
4904       NewColdSym.setType(ELF::STT_NOTYPE);
4905       SmallVector<char, 256> Buf;
4906       NewColdSym.st_name = AddToStrTab(
4907           Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf));
4908       const FunctionFragment &ColdFF =
4909           Function->getLayout().getFragment(FragmentNum::cold());
4910       NewColdSym.st_value = ColdFF.getAddress();
4911       NewColdSym.st_size = ColdFF.getImageSize();
4912       Symbols.emplace_back(NewColdSym);
4913     }
4914   }
4915 
4916   auto AddSymbol = [&](const StringRef &Name, uint64_t Address) {
4917     if (!Address)
4918       return;
4919 
4920     ELFSymTy Symbol;
4921     Symbol.st_value = Address;
4922     Symbol.st_shndx = ELF::SHN_ABS;
4923     Symbol.st_name = AddToStrTab(Name);
4924     Symbol.st_size = 0;
4925     Symbol.st_other = 0;
4926     Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE);
4927 
4928     BC->outs() << "BOLT-INFO: setting " << Name << " to 0x"
4929                << Twine::utohexstr(Symbol.st_value) << '\n';
4930 
4931     Symbols.emplace_back(Symbol);
4932   };
4933 
4934   // Add runtime library start and fini address symbols
4935   if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) {
4936     AddSymbol("__bolt_runtime_start", RtLibrary->getRuntimeStartAddress());
4937     AddSymbol("__bolt_runtime_fini", RtLibrary->getRuntimeFiniAddress());
4938   }
4939 
4940   assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) &&
4941          "either none or both __hot_start/__hot_end symbols were expected");
4942   assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) &&
4943          "either none or both __hot_data_start/__hot_data_end symbols were "
4944          "expected");
4945 
4946   auto AddEmittedSymbol = [&](const StringRef &Name) {
4947     AddSymbol(Name, getNewValueForSymbol(Name));
4948   };
4949 
4950   if (opts::HotText && !NumHotTextSymsUpdated) {
4951     AddEmittedSymbol("__hot_start");
4952     AddEmittedSymbol("__hot_end");
4953   }
4954 
4955   if (opts::HotData && !NumHotDataSymsUpdated) {
4956     AddEmittedSymbol("__hot_data_start");
4957     AddEmittedSymbol("__hot_data_end");
4958   }
4959 
4960   // Put local symbols at the beginning.
4961   llvm::stable_sort(Symbols, [](const ELFSymTy &A, const ELFSymTy &B) {
4962     if (A.getBinding() == ELF::STB_LOCAL && B.getBinding() != ELF::STB_LOCAL)
4963       return true;
4964     return false;
4965   });
4966 
4967   for (const ELFSymTy &Symbol : Symbols)
4968     Write(0, Symbol);
4969 }
4970 
4971 template <typename ELFT>
4972 void RewriteInstance::patchELFSymTabs(ELFObjectFile<ELFT> *File) {
4973   const ELFFile<ELFT> &Obj = File->getELFFile();
4974   using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
4975   using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym;
4976 
4977   // Compute a preview of how section indices will change after rewriting, so
4978   // we can properly update the symbol table based on new section indices.
4979   std::vector<uint32_t> NewSectionIndex;
4980   getOutputSections(File, NewSectionIndex);
4981 
4982   // Update dynamic symbol table.
4983   const ELFShdrTy *DynSymSection = nullptr;
4984   for (const ELFShdrTy &Section : cantFail(Obj.sections())) {
4985     if (Section.sh_type == ELF::SHT_DYNSYM) {
4986       DynSymSection = &Section;
4987       break;
4988     }
4989   }
4990   assert((DynSymSection || BC->IsStaticExecutable) &&
4991          "dynamic symbol table expected");
4992   if (DynSymSection) {
4993     updateELFSymbolTable(
4994         File,
4995         /*IsDynSym=*/true,
4996         *DynSymSection,
4997         NewSectionIndex,
4998         [&](size_t Offset, const ELFSymTy &Sym) {
4999           Out->os().pwrite(reinterpret_cast<const char *>(&Sym),
5000                            sizeof(ELFSymTy),
5001                            DynSymSection->sh_offset + Offset);
5002         },
5003         [](StringRef) -> size_t { return 0; });
5004   }
5005 
5006   if (opts::RemoveSymtab)
5007     return;
5008 
5009   // (re)create regular symbol table.
5010   const ELFShdrTy *SymTabSection = nullptr;
5011   for (const ELFShdrTy &Section : cantFail(Obj.sections())) {
5012     if (Section.sh_type == ELF::SHT_SYMTAB) {
5013       SymTabSection = &Section;
5014       break;
5015     }
5016   }
5017   if (!SymTabSection) {
5018     BC->errs() << "BOLT-WARNING: no symbol table found\n";
5019     return;
5020   }
5021 
5022   const ELFShdrTy *StrTabSection =
5023       cantFail(Obj.getSection(SymTabSection->sh_link));
5024   std::string NewContents;
5025   std::string NewStrTab = std::string(
5026       File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size));
5027   StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection));
5028   StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection));
5029 
5030   NumLocalSymbols = 0;
5031   updateELFSymbolTable(
5032       File,
5033       /*IsDynSym=*/false,
5034       *SymTabSection,
5035       NewSectionIndex,
5036       [&](size_t Offset, const ELFSymTy &Sym) {
5037         if (Sym.getBinding() == ELF::STB_LOCAL)
5038           ++NumLocalSymbols;
5039         NewContents.append(reinterpret_cast<const char *>(&Sym),
5040                            sizeof(ELFSymTy));
5041       },
5042       [&](StringRef Str) {
5043         size_t Idx = NewStrTab.size();
5044         NewStrTab.append(NameResolver::restore(Str).str());
5045         NewStrTab.append(1, '\0');
5046         return Idx;
5047       });
5048 
5049   BC->registerOrUpdateNoteSection(SecName,
5050                                   copyByteArray(NewContents),
5051                                   NewContents.size(),
5052                                   /*Alignment=*/1,
5053                                   /*IsReadOnly=*/true,
5054                                   ELF::SHT_SYMTAB);
5055 
5056   BC->registerOrUpdateNoteSection(StrSecName,
5057                                   copyByteArray(NewStrTab),
5058                                   NewStrTab.size(),
5059                                   /*Alignment=*/1,
5060                                   /*IsReadOnly=*/true,
5061                                   ELF::SHT_STRTAB);
5062 }
5063 
5064 template <typename ELFT>
5065 void RewriteInstance::patchELFAllocatableRelrSection(
5066     ELFObjectFile<ELFT> *File) {
5067   if (!DynamicRelrAddress)
5068     return;
5069 
5070   raw_fd_ostream &OS = Out->os();
5071   const uint8_t PSize = BC->AsmInfo->getCodePointerSize();
5072   const uint64_t MaxDelta = ((CHAR_BIT * DynamicRelrEntrySize) - 1) * PSize;
5073 
5074   auto FixAddend = [&](const BinarySection &Section, const Relocation &Rel,
5075                        uint64_t FileOffset) {
5076     // Fix relocation symbol value in place if no static relocation found
5077     // on the same address. We won't check the BF relocations here since it
5078     // is rare case and no optimization is required.
5079     if (Section.getRelocationAt(Rel.Offset))
5080       return;
5081 
5082     // No fixup needed if symbol address was not changed
5083     const uint64_t Addend = getNewFunctionOrDataAddress(Rel.Addend);
5084     if (!Addend)
5085       return;
5086 
5087     OS.pwrite(reinterpret_cast<const char *>(&Addend), PSize, FileOffset);
5088   };
5089 
5090   // Fill new relative relocation offsets set
5091   std::set<uint64_t> RelOffsets;
5092   for (const BinarySection &Section : BC->allocatableSections()) {
5093     const uint64_t SectionInputAddress = Section.getAddress();
5094     uint64_t SectionAddress = Section.getOutputAddress();
5095     if (!SectionAddress)
5096       SectionAddress = SectionInputAddress;
5097 
5098     for (const Relocation &Rel : Section.dynamicRelocations()) {
5099       if (!Rel.isRelative())
5100         continue;
5101 
5102       uint64_t RelOffset =
5103           getNewFunctionOrDataAddress(SectionInputAddress + Rel.Offset);
5104 
5105       RelOffset = RelOffset == 0 ? SectionAddress + Rel.Offset : RelOffset;
5106       assert((RelOffset & 1) == 0 && "Wrong relocation offset");
5107       RelOffsets.emplace(RelOffset);
5108       FixAddend(Section, Rel, RelOffset);
5109     }
5110   }
5111 
5112   ErrorOr<BinarySection &> Section =
5113       BC->getSectionForAddress(*DynamicRelrAddress);
5114   assert(Section && "cannot get .relr.dyn section");
5115   assert(Section->isRelr() && "Expected section to be SHT_RELR type");
5116   uint64_t RelrDynOffset = Section->getInputFileOffset();
5117   const uint64_t RelrDynEndOffset = RelrDynOffset + Section->getSize();
5118 
5119   auto WriteRelr = [&](uint64_t Value) {
5120     if (RelrDynOffset + DynamicRelrEntrySize > RelrDynEndOffset) {
5121       BC->errs() << "BOLT-ERROR: Offset overflow for relr.dyn section\n";
5122       exit(1);
5123     }
5124 
5125     OS.pwrite(reinterpret_cast<const char *>(&Value), DynamicRelrEntrySize,
5126               RelrDynOffset);
5127     RelrDynOffset += DynamicRelrEntrySize;
5128   };
5129 
5130   for (auto RelIt = RelOffsets.begin(); RelIt != RelOffsets.end();) {
5131     WriteRelr(*RelIt);
5132     uint64_t Base = *RelIt++ + PSize;
5133     while (1) {
5134       uint64_t Bitmap = 0;
5135       for (; RelIt != RelOffsets.end(); ++RelIt) {
5136         const uint64_t Delta = *RelIt - Base;
5137         if (Delta >= MaxDelta || Delta % PSize)
5138           break;
5139 
5140         Bitmap |= (1ULL << (Delta / PSize));
5141       }
5142 
5143       if (!Bitmap)
5144         break;
5145 
5146       WriteRelr((Bitmap << 1) | 1);
5147       Base += MaxDelta;
5148     }
5149   }
5150 
5151   // Fill the rest of the section with empty bitmap value
5152   while (RelrDynOffset != RelrDynEndOffset)
5153     WriteRelr(1);
5154 }
5155 
5156 template <typename ELFT>
5157 void
5158 RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile<ELFT> *File) {
5159   using Elf_Rela = typename ELFT::Rela;
5160   raw_fd_ostream &OS = Out->os();
5161   const ELFFile<ELFT> &EF = File->getELFFile();
5162 
5163   uint64_t RelDynOffset = 0, RelDynEndOffset = 0;
5164   uint64_t RelPltOffset = 0, RelPltEndOffset = 0;
5165 
5166   auto setSectionFileOffsets = [&](uint64_t Address, uint64_t &Start,
5167                                    uint64_t &End) {
5168     ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
5169     assert(Section && "cannot get relocation section");
5170     Start = Section->getInputFileOffset();
5171     End = Start + Section->getSize();
5172   };
5173 
5174   if (!DynamicRelocationsAddress && !PLTRelocationsAddress)
5175     return;
5176 
5177   if (DynamicRelocationsAddress)
5178     setSectionFileOffsets(*DynamicRelocationsAddress, RelDynOffset,
5179                           RelDynEndOffset);
5180 
5181   if (PLTRelocationsAddress)
5182     setSectionFileOffsets(*PLTRelocationsAddress, RelPltOffset,
5183                           RelPltEndOffset);
5184 
5185   DynamicRelativeRelocationsCount = 0;
5186 
5187   auto writeRela = [&OS](const Elf_Rela *RelA, uint64_t &Offset) {
5188     OS.pwrite(reinterpret_cast<const char *>(RelA), sizeof(*RelA), Offset);
5189     Offset += sizeof(*RelA);
5190   };
5191 
5192   auto writeRelocations = [&](bool PatchRelative) {
5193     for (BinarySection &Section : BC->allocatableSections()) {
5194       const uint64_t SectionInputAddress = Section.getAddress();
5195       uint64_t SectionAddress = Section.getOutputAddress();
5196       if (!SectionAddress)
5197         SectionAddress = SectionInputAddress;
5198 
5199       for (const Relocation &Rel : Section.dynamicRelocations()) {
5200         const bool IsRelative = Rel.isRelative();
5201         if (PatchRelative != IsRelative)
5202           continue;
5203 
5204         if (IsRelative)
5205           ++DynamicRelativeRelocationsCount;
5206 
5207         Elf_Rela NewRelA;
5208         MCSymbol *Symbol = Rel.Symbol;
5209         uint32_t SymbolIdx = 0;
5210         uint64_t Addend = Rel.Addend;
5211         uint64_t RelOffset =
5212             getNewFunctionOrDataAddress(SectionInputAddress + Rel.Offset);
5213 
5214         RelOffset = RelOffset == 0 ? SectionAddress + Rel.Offset : RelOffset;
5215         if (Rel.Symbol) {
5216           SymbolIdx = getOutputDynamicSymbolIndex(Symbol);
5217         } else {
5218           // Usually this case is used for R_*_(I)RELATIVE relocations
5219           const uint64_t Address = getNewFunctionOrDataAddress(Addend);
5220           if (Address)
5221             Addend = Address;
5222         }
5223 
5224         NewRelA.setSymbolAndType(SymbolIdx, Rel.Type, EF.isMips64EL());
5225         NewRelA.r_offset = RelOffset;
5226         NewRelA.r_addend = Addend;
5227 
5228         const bool IsJmpRel = IsJmpRelocation.contains(Rel.Type);
5229         uint64_t &Offset = IsJmpRel ? RelPltOffset : RelDynOffset;
5230         const uint64_t &EndOffset =
5231             IsJmpRel ? RelPltEndOffset : RelDynEndOffset;
5232         if (!Offset || !EndOffset) {
5233           BC->errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n";
5234           exit(1);
5235         }
5236 
5237         if (Offset + sizeof(NewRelA) > EndOffset) {
5238           BC->errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n";
5239           exit(1);
5240         }
5241 
5242         writeRela(&NewRelA, Offset);
5243       }
5244     }
5245   };
5246 
5247   // Place R_*_RELATIVE relocations in RELA section if RELR is not presented.
5248   // The dynamic linker expects all R_*_RELATIVE relocations in RELA
5249   // to be emitted first.
5250   if (!DynamicRelrAddress)
5251     writeRelocations(/* PatchRelative */ true);
5252   writeRelocations(/* PatchRelative */ false);
5253 
5254   auto fillNone = [&](uint64_t &Offset, uint64_t EndOffset) {
5255     if (!Offset)
5256       return;
5257 
5258     typename ELFObjectFile<ELFT>::Elf_Rela RelA;
5259     RelA.setSymbolAndType(0, Relocation::getNone(), EF.isMips64EL());
5260     RelA.r_offset = 0;
5261     RelA.r_addend = 0;
5262     while (Offset < EndOffset)
5263       writeRela(&RelA, Offset);
5264 
5265     assert(Offset == EndOffset && "Unexpected section overflow");
5266   };
5267 
5268   // Fill the rest of the sections with R_*_NONE relocations
5269   fillNone(RelDynOffset, RelDynEndOffset);
5270   fillNone(RelPltOffset, RelPltEndOffset);
5271 }
5272 
5273 template <typename ELFT>
5274 void RewriteInstance::patchELFGOT(ELFObjectFile<ELFT> *File) {
5275   raw_fd_ostream &OS = Out->os();
5276 
5277   SectionRef GOTSection;
5278   for (const SectionRef &Section : File->sections()) {
5279     StringRef SectionName = cantFail(Section.getName());
5280     if (SectionName == ".got") {
5281       GOTSection = Section;
5282       break;
5283     }
5284   }
5285   if (!GOTSection.getObject()) {
5286     if (!BC->IsStaticExecutable)
5287       BC->errs() << "BOLT-INFO: no .got section found\n";
5288     return;
5289   }
5290 
5291   StringRef GOTContents = cantFail(GOTSection.getContents());
5292   for (const uint64_t *GOTEntry =
5293            reinterpret_cast<const uint64_t *>(GOTContents.data());
5294        GOTEntry < reinterpret_cast<const uint64_t *>(GOTContents.data() +
5295                                                      GOTContents.size());
5296        ++GOTEntry) {
5297     if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) {
5298       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x"
5299                         << Twine::utohexstr(*GOTEntry) << " with 0x"
5300                         << Twine::utohexstr(NewAddress) << '\n');
5301       OS.pwrite(reinterpret_cast<const char *>(&NewAddress), sizeof(NewAddress),
5302                 reinterpret_cast<const char *>(GOTEntry) -
5303                     File->getData().data());
5304     }
5305   }
5306 }
5307 
5308 template <typename ELFT>
5309 void RewriteInstance::patchELFDynamic(ELFObjectFile<ELFT> *File) {
5310   if (BC->IsStaticExecutable)
5311     return;
5312 
5313   const ELFFile<ELFT> &Obj = File->getELFFile();
5314   raw_fd_ostream &OS = Out->os();
5315 
5316   using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr;
5317   using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn;
5318 
5319   // Locate DYNAMIC by looking through program headers.
5320   uint64_t DynamicOffset = 0;
5321   const Elf_Phdr *DynamicPhdr = nullptr;
5322   for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) {
5323     if (Phdr.p_type == ELF::PT_DYNAMIC) {
5324       DynamicOffset = Phdr.p_offset;
5325       DynamicPhdr = &Phdr;
5326       assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match");
5327       break;
5328     }
5329   }
5330   assert(DynamicPhdr && "missing dynamic in ELF binary");
5331 
5332   bool ZNowSet = false;
5333 
5334   // Go through all dynamic entries and patch functions addresses with
5335   // new ones.
5336   typename ELFT::DynRange DynamicEntries =
5337       cantFail(Obj.dynamicEntries(), "error accessing dynamic table");
5338   auto DTB = DynamicEntries.begin();
5339   for (const Elf_Dyn &Dyn : DynamicEntries) {
5340     Elf_Dyn NewDE = Dyn;
5341     bool ShouldPatch = true;
5342     switch (Dyn.d_tag) {
5343     default:
5344       ShouldPatch = false;
5345       break;
5346     case ELF::DT_RELACOUNT:
5347       NewDE.d_un.d_val = DynamicRelativeRelocationsCount;
5348       break;
5349     case ELF::DT_INIT:
5350     case ELF::DT_FINI: {
5351       if (BC->HasRelocations) {
5352         if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) {
5353           LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type "
5354                             << Dyn.getTag() << '\n');
5355           NewDE.d_un.d_ptr = NewAddress;
5356         }
5357       }
5358       RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary();
5359       if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) {
5360         if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress())
5361           NewDE.d_un.d_ptr = Addr;
5362       }
5363       if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) {
5364         if (auto Addr = RtLibrary->getRuntimeStartAddress()) {
5365           LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x"
5366                             << Twine::utohexstr(Addr) << '\n');
5367           NewDE.d_un.d_ptr = Addr;
5368         }
5369       }
5370       break;
5371     }
5372     case ELF::DT_FLAGS:
5373       if (BC->RequiresZNow) {
5374         NewDE.d_un.d_val |= ELF::DF_BIND_NOW;
5375         ZNowSet = true;
5376       }
5377       break;
5378     case ELF::DT_FLAGS_1:
5379       if (BC->RequiresZNow) {
5380         NewDE.d_un.d_val |= ELF::DF_1_NOW;
5381         ZNowSet = true;
5382       }
5383       break;
5384     }
5385     if (ShouldPatch)
5386       OS.pwrite(reinterpret_cast<const char *>(&NewDE), sizeof(NewDE),
5387                 DynamicOffset + (&Dyn - DTB) * sizeof(Dyn));
5388   }
5389 
5390   if (BC->RequiresZNow && !ZNowSet) {
5391     BC->errs()
5392         << "BOLT-ERROR: output binary requires immediate relocation "
5393            "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in "
5394            ".dynamic. Please re-link the binary with -znow.\n";
5395     exit(1);
5396   }
5397 }
5398 
5399 template <typename ELFT>
5400 Error RewriteInstance::readELFDynamic(ELFObjectFile<ELFT> *File) {
5401   const ELFFile<ELFT> &Obj = File->getELFFile();
5402 
5403   using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr;
5404   using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn;
5405 
5406   // Locate DYNAMIC by looking through program headers.
5407   const Elf_Phdr *DynamicPhdr = nullptr;
5408   for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) {
5409     if (Phdr.p_type == ELF::PT_DYNAMIC) {
5410       DynamicPhdr = &Phdr;
5411       break;
5412     }
5413   }
5414 
5415   if (!DynamicPhdr) {
5416     BC->outs() << "BOLT-INFO: static input executable detected\n";
5417     // TODO: static PIE executable might have dynamic header
5418     BC->IsStaticExecutable = true;
5419     return Error::success();
5420   }
5421 
5422   if (DynamicPhdr->p_memsz != DynamicPhdr->p_filesz)
5423     return createStringError(errc::executable_format_error,
5424                              "dynamic section sizes should match");
5425 
5426   // Go through all dynamic entries to locate entries of interest.
5427   auto DynamicEntriesOrErr = Obj.dynamicEntries();
5428   if (!DynamicEntriesOrErr)
5429     return DynamicEntriesOrErr.takeError();
5430   typename ELFT::DynRange DynamicEntries = DynamicEntriesOrErr.get();
5431 
5432   for (const Elf_Dyn &Dyn : DynamicEntries) {
5433     switch (Dyn.d_tag) {
5434     case ELF::DT_INIT:
5435       if (!BC->HasInterpHeader) {
5436         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n");
5437         BC->StartFunctionAddress = Dyn.getPtr();
5438       }
5439       break;
5440     case ELF::DT_FINI:
5441       BC->FiniAddress = Dyn.getPtr();
5442       break;
5443     case ELF::DT_FINI_ARRAY:
5444       BC->FiniArrayAddress = Dyn.getPtr();
5445       break;
5446     case ELF::DT_FINI_ARRAYSZ:
5447       BC->FiniArraySize = Dyn.getPtr();
5448       break;
5449     case ELF::DT_RELA:
5450       DynamicRelocationsAddress = Dyn.getPtr();
5451       break;
5452     case ELF::DT_RELASZ:
5453       DynamicRelocationsSize = Dyn.getVal();
5454       break;
5455     case ELF::DT_JMPREL:
5456       PLTRelocationsAddress = Dyn.getPtr();
5457       break;
5458     case ELF::DT_PLTRELSZ:
5459       PLTRelocationsSize = Dyn.getVal();
5460       break;
5461     case ELF::DT_RELACOUNT:
5462       DynamicRelativeRelocationsCount = Dyn.getVal();
5463       break;
5464     case ELF::DT_RELR:
5465       DynamicRelrAddress = Dyn.getPtr();
5466       break;
5467     case ELF::DT_RELRSZ:
5468       DynamicRelrSize = Dyn.getVal();
5469       break;
5470     case ELF::DT_RELRENT:
5471       DynamicRelrEntrySize = Dyn.getVal();
5472       break;
5473     }
5474   }
5475 
5476   if (!DynamicRelocationsAddress || !DynamicRelocationsSize) {
5477     DynamicRelocationsAddress.reset();
5478     DynamicRelocationsSize = 0;
5479   }
5480 
5481   if (!PLTRelocationsAddress || !PLTRelocationsSize) {
5482     PLTRelocationsAddress.reset();
5483     PLTRelocationsSize = 0;
5484   }
5485 
5486   if (!DynamicRelrAddress || !DynamicRelrSize) {
5487     DynamicRelrAddress.reset();
5488     DynamicRelrSize = 0;
5489   } else if (!DynamicRelrEntrySize) {
5490     BC->errs() << "BOLT-ERROR: expected DT_RELRENT to be presented "
5491                << "in DYNAMIC section\n";
5492     exit(1);
5493   } else if (DynamicRelrSize % DynamicRelrEntrySize) {
5494     BC->errs() << "BOLT-ERROR: expected RELR table size to be divisible "
5495                << "by RELR entry size\n";
5496     exit(1);
5497   }
5498 
5499   return Error::success();
5500 }
5501 
5502 uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) {
5503   const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress);
5504   if (!Function)
5505     return 0;
5506 
5507   return Function->getOutputAddress();
5508 }
5509 
5510 uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress) {
5511   if (uint64_t Function = getNewFunctionAddress(OldAddress))
5512     return Function;
5513 
5514   const BinaryData *BD = BC->getBinaryDataAtAddress(OldAddress);
5515   if (BD && BD->isMoved())
5516     return BD->getOutputAddress();
5517 
5518   if (const BinaryFunction *BF =
5519           BC->getBinaryFunctionContainingAddress(OldAddress)) {
5520     if (BF->isEmitted()) {
5521       // If OldAddress is the another entry point of
5522       // the function, then BOLT could get the new address.
5523       if (BF->isMultiEntry()) {
5524         for (const BinaryBasicBlock &BB : *BF)
5525           if (BB.isEntryPoint() &&
5526               (BF->getAddress() + BB.getOffset()) == OldAddress)
5527             return BF->getOutputAddress() + BB.getOffset();
5528       }
5529       BC->errs() << "BOLT-ERROR: unable to get new address corresponding to "
5530                     "input address 0x"
5531                  << Twine::utohexstr(OldAddress) << " in function " << *BF
5532                  << ". Consider adding this function to --skip-funcs=...\n";
5533       exit(1);
5534     }
5535   }
5536 
5537   return 0;
5538 }
5539 
5540 void RewriteInstance::rewriteFile() {
5541   std::error_code EC;
5542   Out = std::make_unique<ToolOutputFile>(opts::OutputFilename, EC,
5543                                          sys::fs::OF_None);
5544   check_error(EC, "cannot create output executable file");
5545 
5546   raw_fd_ostream &OS = Out->os();
5547 
5548   // Copy allocatable part of the input.
5549   OS << InputFile->getData().substr(0, FirstNonAllocatableOffset);
5550 
5551   auto Streamer = BC->createStreamer(OS);
5552   // Make sure output stream has enough reserved space, otherwise
5553   // pwrite() will fail.
5554   uint64_t Offset = std::max(getFileOffsetForAddress(NextAvailableAddress),
5555                              FirstNonAllocatableOffset);
5556   Offset = OS.seek(Offset);
5557   assert((Offset != (uint64_t)-1) && "Error resizing output file");
5558 
5559   // Overwrite functions with fixed output address. This is mostly used by
5560   // non-relocation mode, with one exception: injected functions are covered
5561   // here in both modes.
5562   uint64_t CountOverwrittenFunctions = 0;
5563   uint64_t OverwrittenScore = 0;
5564   for (BinaryFunction *Function : BC->getAllBinaryFunctions()) {
5565     if (Function->getImageAddress() == 0 || Function->getImageSize() == 0)
5566       continue;
5567 
5568     if (Function->getImageSize() > Function->getMaxSize()) {
5569       assert(!BC->isX86() && "Unexpected large function.");
5570       if (opts::Verbosity >= 1)
5571         BC->errs() << "BOLT-WARNING: new function size (0x"
5572                    << Twine::utohexstr(Function->getImageSize())
5573                    << ") is larger than maximum allowed size (0x"
5574                    << Twine::utohexstr(Function->getMaxSize())
5575                    << ") for function " << *Function << '\n';
5576 
5577       // Remove jump table sections that this function owns in non-reloc mode
5578       // because we don't want to write them anymore.
5579       if (!BC->HasRelocations && opts::JumpTables == JTS_BASIC) {
5580         for (auto &JTI : Function->JumpTables) {
5581           JumpTable *JT = JTI.second;
5582           BinarySection &Section = JT->getOutputSection();
5583           BC->deregisterSection(Section);
5584         }
5585       }
5586       continue;
5587     }
5588 
5589     const auto HasAddress = [](const FunctionFragment &FF) {
5590       return FF.empty() ||
5591              (FF.getImageAddress() != 0 && FF.getImageSize() != 0);
5592     };
5593     const bool SplitFragmentsHaveAddress =
5594         llvm::all_of(Function->getLayout().getSplitFragments(), HasAddress);
5595     if (Function->isSplit() && !SplitFragmentsHaveAddress) {
5596       const auto HasNoAddress = [](const FunctionFragment &FF) {
5597         return FF.getImageAddress() == 0 && FF.getImageSize() == 0;
5598       };
5599       assert(llvm::all_of(Function->getLayout().getSplitFragments(),
5600                           HasNoAddress) &&
5601              "Some split fragments have an address while others do not");
5602       (void)HasNoAddress;
5603       continue;
5604     }
5605 
5606     OverwrittenScore += Function->getFunctionScore();
5607     ++CountOverwrittenFunctions;
5608 
5609     // Overwrite function in the output file.
5610     if (opts::Verbosity >= 2)
5611       BC->outs() << "BOLT: rewriting function \"" << *Function << "\"\n";
5612 
5613     OS.pwrite(reinterpret_cast<char *>(Function->getImageAddress()),
5614               Function->getImageSize(), Function->getFileOffset());
5615 
5616     // Write nops at the end of the function.
5617     if (Function->getMaxSize() != std::numeric_limits<uint64_t>::max()) {
5618       uint64_t Pos = OS.tell();
5619       OS.seek(Function->getFileOffset() + Function->getImageSize());
5620       BC->MAB->writeNopData(
5621           OS, Function->getMaxSize() - Function->getImageSize(), &*BC->STI);
5622 
5623       OS.seek(Pos);
5624     }
5625 
5626     if (!Function->isSplit())
5627       continue;
5628 
5629     // Write cold part
5630     if (opts::Verbosity >= 2) {
5631       BC->outs() << formatv("BOLT: rewriting function \"{0}\" (split parts)\n",
5632                             *Function);
5633     }
5634 
5635     for (const FunctionFragment &FF :
5636          Function->getLayout().getSplitFragments()) {
5637       OS.pwrite(reinterpret_cast<char *>(FF.getImageAddress()),
5638                 FF.getImageSize(), FF.getFileOffset());
5639     }
5640   }
5641 
5642   // Print function statistics for non-relocation mode.
5643   if (!BC->HasRelocations) {
5644     BC->outs() << "BOLT: " << CountOverwrittenFunctions << " out of "
5645                << BC->getBinaryFunctions().size()
5646                << " functions were overwritten.\n";
5647     if (BC->TotalScore != 0) {
5648       double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0;
5649       BC->outs() << format("BOLT-INFO: rewritten functions cover %.2lf",
5650                            Coverage)
5651                  << "% of the execution count of simple functions of "
5652                     "this binary\n";
5653     }
5654   }
5655 
5656   if (BC->HasRelocations && opts::TrapOldCode) {
5657     uint64_t SavedPos = OS.tell();
5658     // Overwrite function body to make sure we never execute these instructions.
5659     for (auto &BFI : BC->getBinaryFunctions()) {
5660       BinaryFunction &BF = BFI.second;
5661       if (!BF.getFileOffset() || !BF.isEmitted())
5662         continue;
5663       OS.seek(BF.getFileOffset());
5664       StringRef TrapInstr = BC->MIB->getTrapFillValue();
5665       unsigned NInstr = BF.getMaxSize() / TrapInstr.size();
5666       for (unsigned I = 0; I < NInstr; ++I)
5667         OS.write(TrapInstr.data(), TrapInstr.size());
5668     }
5669     OS.seek(SavedPos);
5670   }
5671 
5672   // Write all allocatable sections - reloc-mode text is written here as well
5673   for (BinarySection &Section : BC->allocatableSections()) {
5674     if (!Section.isFinalized() || !Section.getOutputData())
5675       continue;
5676     if (Section.isLinkOnly())
5677       continue;
5678 
5679     if (opts::Verbosity >= 1)
5680       BC->outs() << "BOLT: writing new section " << Section.getName()
5681                  << "\n data at 0x"
5682                  << Twine::utohexstr(Section.getAllocAddress()) << "\n of size "
5683                  << Section.getOutputSize() << "\n at offset "
5684                  << Section.getOutputFileOffset() << '\n';
5685     OS.pwrite(reinterpret_cast<const char *>(Section.getOutputData()),
5686               Section.getOutputSize(), Section.getOutputFileOffset());
5687   }
5688 
5689   for (BinarySection &Section : BC->allocatableSections())
5690     Section.flushPendingRelocations(OS, [this](const MCSymbol *S) {
5691       return getNewValueForSymbol(S->getName());
5692     });
5693 
5694   // If .eh_frame is present create .eh_frame_hdr.
5695   if (EHFrameSection)
5696     writeEHFrameHeader();
5697 
5698   // Add BOLT Addresses Translation maps to allow profile collection to
5699   // happen in the output binary
5700   if (opts::EnableBAT)
5701     addBATSection();
5702 
5703   // Patch program header table.
5704   if (!BC->IsLinuxKernel)
5705     patchELFPHDRTable();
5706 
5707   // Finalize memory image of section string table.
5708   finalizeSectionStringTable();
5709 
5710   // Update symbol tables.
5711   patchELFSymTabs();
5712 
5713   if (opts::EnableBAT)
5714     encodeBATSection();
5715 
5716   // Copy non-allocatable sections once allocatable part is finished.
5717   rewriteNoteSections();
5718 
5719   if (BC->HasRelocations) {
5720     patchELFAllocatableRelaSections();
5721     patchELFAllocatableRelrSection();
5722     patchELFGOT();
5723   }
5724 
5725   // Patch dynamic section/segment.
5726   patchELFDynamic();
5727 
5728   // Update ELF book-keeping info.
5729   patchELFSectionHeaderTable();
5730 
5731   if (opts::PrintSections) {
5732     BC->outs() << "BOLT-INFO: Sections after processing:\n";
5733     BC->printSections(BC->outs());
5734   }
5735 
5736   Out->keep();
5737   EC = sys::fs::setPermissions(
5738       opts::OutputFilename,
5739       static_cast<sys::fs::perms>(sys::fs::perms::all_all &
5740                                   ~sys::fs::getUmask()));
5741   check_error(EC, "cannot set permissions of output file");
5742 }
5743 
5744 void RewriteInstance::writeEHFrameHeader() {
5745   BinarySection *NewEHFrameSection =
5746       getSection(getNewSecPrefix() + getEHFrameSectionName());
5747 
5748   // No need to update the header if no new .eh_frame was created.
5749   if (!NewEHFrameSection)
5750     return;
5751 
5752   DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true,
5753                              NewEHFrameSection->getOutputAddress());
5754   Error E = NewEHFrame.parse(DWARFDataExtractor(
5755       NewEHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(),
5756       BC->AsmInfo->getCodePointerSize()));
5757   check_error(std::move(E), "failed to parse EH frame");
5758 
5759   uint64_t RelocatedEHFrameAddress = 0;
5760   StringRef RelocatedEHFrameContents;
5761   BinarySection *RelocatedEHFrameSection =
5762       getSection(".relocated" + getEHFrameSectionName());
5763   if (RelocatedEHFrameSection) {
5764     RelocatedEHFrameAddress = RelocatedEHFrameSection->getOutputAddress();
5765     RelocatedEHFrameContents = RelocatedEHFrameSection->getOutputContents();
5766   }
5767   DWARFDebugFrame RelocatedEHFrame(BC->TheTriple->getArch(), true,
5768                                    RelocatedEHFrameAddress);
5769   Error Er = RelocatedEHFrame.parse(DWARFDataExtractor(
5770       RelocatedEHFrameContents, BC->AsmInfo->isLittleEndian(),
5771       BC->AsmInfo->getCodePointerSize()));
5772   check_error(std::move(Er), "failed to parse EH frame");
5773 
5774   LLVM_DEBUG(dbgs() << "BOLT: writing a new " << getEHFrameHdrSectionName()
5775                     << '\n');
5776 
5777   NextAvailableAddress =
5778       appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign);
5779 
5780   const uint64_t EHFrameHdrOutputAddress = NextAvailableAddress;
5781   const uint64_t EHFrameHdrFileOffset =
5782       getFileOffsetForAddress(NextAvailableAddress);
5783 
5784   std::vector<char> NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader(
5785       RelocatedEHFrame, NewEHFrame, EHFrameHdrOutputAddress, FailedAddresses);
5786 
5787   Out->os().seek(EHFrameHdrFileOffset);
5788   Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size());
5789 
5790   const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true,
5791                                                  /*IsText=*/false,
5792                                                  /*IsAllocatable=*/true);
5793   BinarySection *OldEHFrameHdrSection = getSection(getEHFrameHdrSectionName());
5794   if (OldEHFrameHdrSection)
5795     OldEHFrameHdrSection->setOutputName(getOrgSecPrefix() +
5796                                         getEHFrameHdrSectionName());
5797 
5798   BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection(
5799       getNewSecPrefix() + getEHFrameHdrSectionName(), ELF::SHT_PROGBITS, Flags,
5800       nullptr, NewEHFrameHdr.size(), /*Alignment=*/1);
5801   EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset);
5802   EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress);
5803   EHFrameHdrSec.setOutputName(getEHFrameHdrSectionName());
5804 
5805   NextAvailableAddress += EHFrameHdrSec.getOutputSize();
5806 
5807   if (!BC->BOLTReserved.empty() &&
5808       (NextAvailableAddress > BC->BOLTReserved.end())) {
5809     BC->errs() << "BOLT-ERROR: unable to fit " << getEHFrameHdrSectionName()
5810                << " into reserved space\n";
5811     exit(1);
5812   }
5813 
5814   // Merge new .eh_frame with the relocated original so that gdb can locate all
5815   // FDEs.
5816   if (RelocatedEHFrameSection) {
5817     const uint64_t NewEHFrameSectionSize =
5818         RelocatedEHFrameSection->getOutputAddress() +
5819         RelocatedEHFrameSection->getOutputSize() -
5820         NewEHFrameSection->getOutputAddress();
5821     NewEHFrameSection->updateContents(NewEHFrameSection->getOutputData(),
5822                                       NewEHFrameSectionSize);
5823     BC->deregisterSection(*RelocatedEHFrameSection);
5824   }
5825 
5826   LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is "
5827                     << NewEHFrameSection->getOutputSize() << '\n');
5828 }
5829 
5830 uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) {
5831   auto Value = Linker->lookupSymbol(Name);
5832   if (Value)
5833     return *Value;
5834 
5835   // Return the original value if we haven't emitted the symbol.
5836   BinaryData *BD = BC->getBinaryDataByName(Name);
5837   if (!BD)
5838     return 0;
5839 
5840   return BD->getAddress();
5841 }
5842 
5843 uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const {
5844   // Check if it's possibly part of the new segment.
5845   if (NewTextSegmentAddress && Address >= NewTextSegmentAddress)
5846     return Address - NewTextSegmentAddress + NewTextSegmentOffset;
5847 
5848   // Find an existing segment that matches the address.
5849   const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address);
5850   if (SegmentInfoI == BC->SegmentMapInfo.begin())
5851     return 0;
5852 
5853   const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second;
5854   if (Address < SegmentInfo.Address ||
5855       Address >= SegmentInfo.Address + SegmentInfo.FileSize)
5856     return 0;
5857 
5858   return SegmentInfo.FileOffset + Address - SegmentInfo.Address;
5859 }
5860 
5861 bool RewriteInstance::willOverwriteSection(StringRef SectionName) {
5862   if (llvm::is_contained(SectionsToOverwrite, SectionName))
5863     return true;
5864   if (llvm::is_contained(DebugSectionsToOverwrite, SectionName))
5865     return true;
5866 
5867   ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName);
5868   return Section && Section->isAllocatable() && Section->isFinalized();
5869 }
5870 
5871 bool RewriteInstance::isDebugSection(StringRef SectionName) {
5872   if (SectionName.starts_with(".debug_") ||
5873       SectionName.starts_with(".zdebug_") || SectionName == ".gdb_index" ||
5874       SectionName == ".stab" || SectionName == ".stabstr")
5875     return true;
5876 
5877   return false;
5878 }
5879