1 //===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "bolt/Rewrite/RewriteInstance.h" 10 #include "bolt/Core/AddressMap.h" 11 #include "bolt/Core/BinaryContext.h" 12 #include "bolt/Core/BinaryEmitter.h" 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/DebugData.h" 15 #include "bolt/Core/Exceptions.h" 16 #include "bolt/Core/FunctionLayout.h" 17 #include "bolt/Core/MCPlusBuilder.h" 18 #include "bolt/Core/ParallelUtilities.h" 19 #include "bolt/Core/Relocation.h" 20 #include "bolt/Passes/BinaryPasses.h" 21 #include "bolt/Passes/CacheMetrics.h" 22 #include "bolt/Passes/ReorderFunctions.h" 23 #include "bolt/Profile/BoltAddressTranslation.h" 24 #include "bolt/Profile/DataAggregator.h" 25 #include "bolt/Profile/DataReader.h" 26 #include "bolt/Profile/YAMLProfileReader.h" 27 #include "bolt/Profile/YAMLProfileWriter.h" 28 #include "bolt/Rewrite/BinaryPassManager.h" 29 #include "bolt/Rewrite/DWARFRewriter.h" 30 #include "bolt/Rewrite/ExecutableFileMemoryManager.h" 31 #include "bolt/Rewrite/JITLinkLinker.h" 32 #include "bolt/Rewrite/MetadataRewriters.h" 33 #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h" 34 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h" 35 #include "bolt/Utils/CommandLineOpts.h" 36 #include "bolt/Utils/Utils.h" 37 #include "llvm/ADT/AddressRanges.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 40 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" 41 #include "llvm/MC/MCAsmBackend.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 44 #include "llvm/MC/MCObjectStreamer.h" 45 #include "llvm/MC/MCStreamer.h" 46 #include "llvm/MC/MCSymbol.h" 47 #include "llvm/MC/TargetRegistry.h" 48 #include "llvm/Object/ObjectFile.h" 49 #include "llvm/Support/Alignment.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/DataExtractor.h" 53 #include "llvm/Support/Errc.h" 54 #include "llvm/Support/Error.h" 55 #include "llvm/Support/FileSystem.h" 56 #include "llvm/Support/ManagedStatic.h" 57 #include "llvm/Support/Timer.h" 58 #include "llvm/Support/ToolOutputFile.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <fstream> 62 #include <memory> 63 #include <optional> 64 #include <system_error> 65 66 #undef DEBUG_TYPE 67 #define DEBUG_TYPE "bolt" 68 69 using namespace llvm; 70 using namespace object; 71 using namespace bolt; 72 73 extern cl::opt<uint32_t> X86AlignBranchBoundary; 74 extern cl::opt<bool> X86AlignBranchWithin32BBoundaries; 75 76 namespace opts { 77 78 extern cl::list<std::string> HotTextMoveSections; 79 extern cl::opt<bool> Hugify; 80 extern cl::opt<bool> Instrument; 81 extern cl::opt<JumpTableSupportLevel> JumpTables; 82 extern cl::opt<bool> KeepNops; 83 extern cl::opt<bool> Lite; 84 extern cl::list<std::string> ReorderData; 85 extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions; 86 extern cl::opt<bool> TerminalTrap; 87 extern cl::opt<bool> TimeBuild; 88 extern cl::opt<bool> TimeRewrite; 89 90 cl::opt<bool> AllowStripped("allow-stripped", 91 cl::desc("allow processing of stripped binaries"), 92 cl::Hidden, cl::cat(BoltCategory)); 93 94 static cl::opt<bool> ForceToDataRelocations( 95 "force-data-relocations", 96 cl::desc("force relocations to data sections to always be processed"), 97 98 cl::Hidden, cl::cat(BoltCategory)); 99 100 cl::opt<std::string> 101 BoltID("bolt-id", 102 cl::desc("add any string to tag this execution in the " 103 "output binary via bolt info section"), 104 cl::cat(BoltCategory)); 105 106 cl::opt<bool> DumpDotAll( 107 "dump-dot-all", 108 cl::desc("dump function CFGs to graphviz format after each stage;" 109 "enable '-print-loops' for color-coded blocks"), 110 cl::Hidden, cl::cat(BoltCategory)); 111 112 static cl::list<std::string> 113 ForceFunctionNames("funcs", 114 cl::CommaSeparated, 115 cl::desc("limit optimizations to functions from the list"), 116 cl::value_desc("func1,func2,func3,..."), 117 cl::Hidden, 118 cl::cat(BoltCategory)); 119 120 static cl::opt<std::string> 121 FunctionNamesFile("funcs-file", 122 cl::desc("file with list of functions to optimize"), 123 cl::Hidden, 124 cl::cat(BoltCategory)); 125 126 static cl::list<std::string> ForceFunctionNamesNR( 127 "funcs-no-regex", cl::CommaSeparated, 128 cl::desc("limit optimizations to functions from the list (non-regex)"), 129 cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory)); 130 131 static cl::opt<std::string> FunctionNamesFileNR( 132 "funcs-file-no-regex", 133 cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden, 134 cl::cat(BoltCategory)); 135 136 cl::opt<bool> 137 KeepTmp("keep-tmp", 138 cl::desc("preserve intermediate .o file"), 139 cl::Hidden, 140 cl::cat(BoltCategory)); 141 142 static cl::opt<unsigned> 143 LiteThresholdPct("lite-threshold-pct", 144 cl::desc("threshold (in percent) for selecting functions to process in lite " 145 "mode. Higher threshold means fewer functions to process. E.g " 146 "threshold of 90 means only top 10 percent of functions with " 147 "profile will be processed."), 148 cl::init(0), 149 cl::ZeroOrMore, 150 cl::Hidden, 151 cl::cat(BoltOptCategory)); 152 153 static cl::opt<unsigned> LiteThresholdCount( 154 "lite-threshold-count", 155 cl::desc("similar to '-lite-threshold-pct' but specify threshold using " 156 "absolute function call count. I.e. limit processing to functions " 157 "executed at least the specified number of times."), 158 cl::init(0), cl::Hidden, cl::cat(BoltOptCategory)); 159 160 static cl::opt<unsigned> 161 MaxFunctions("max-funcs", 162 cl::desc("maximum number of functions to process"), cl::Hidden, 163 cl::cat(BoltCategory)); 164 165 static cl::opt<unsigned> MaxDataRelocations( 166 "max-data-relocations", 167 cl::desc("maximum number of data relocations to process"), cl::Hidden, 168 cl::cat(BoltCategory)); 169 170 cl::opt<bool> PrintAll("print-all", 171 cl::desc("print functions after each stage"), cl::Hidden, 172 cl::cat(BoltCategory)); 173 174 cl::opt<bool> PrintProfile("print-profile", 175 cl::desc("print functions after attaching profile"), 176 cl::Hidden, cl::cat(BoltCategory)); 177 178 cl::opt<bool> PrintCFG("print-cfg", 179 cl::desc("print functions after CFG construction"), 180 cl::Hidden, cl::cat(BoltCategory)); 181 182 cl::opt<bool> PrintDisasm("print-disasm", 183 cl::desc("print function after disassembly"), 184 cl::Hidden, cl::cat(BoltCategory)); 185 186 static cl::opt<bool> 187 PrintGlobals("print-globals", 188 cl::desc("print global symbols after disassembly"), cl::Hidden, 189 cl::cat(BoltCategory)); 190 191 extern cl::opt<bool> PrintSections; 192 193 static cl::opt<bool> PrintLoopInfo("print-loops", 194 cl::desc("print loop related information"), 195 cl::Hidden, cl::cat(BoltCategory)); 196 197 static cl::opt<cl::boolOrDefault> RelocationMode( 198 "relocs", cl::desc("use relocations in the binary (default=autodetect)"), 199 cl::cat(BoltCategory)); 200 201 extern cl::opt<std::string> SaveProfile; 202 203 static cl::list<std::string> 204 SkipFunctionNames("skip-funcs", 205 cl::CommaSeparated, 206 cl::desc("list of functions to skip"), 207 cl::value_desc("func1,func2,func3,..."), 208 cl::Hidden, 209 cl::cat(BoltCategory)); 210 211 static cl::opt<std::string> 212 SkipFunctionNamesFile("skip-funcs-file", 213 cl::desc("file with list of functions to skip"), 214 cl::Hidden, 215 cl::cat(BoltCategory)); 216 217 cl::opt<bool> 218 TrapOldCode("trap-old-code", 219 cl::desc("insert traps in old function bodies (relocation mode)"), 220 cl::Hidden, 221 cl::cat(BoltCategory)); 222 223 static cl::opt<std::string> DWPPathName("dwp", 224 cl::desc("Path and name to DWP file."), 225 cl::Hidden, cl::init(""), 226 cl::cat(BoltCategory)); 227 228 static cl::opt<bool> 229 UseGnuStack("use-gnu-stack", 230 cl::desc("use GNU_STACK program header for new segment (workaround for " 231 "issues with strip/objcopy)"), 232 cl::ZeroOrMore, 233 cl::cat(BoltCategory)); 234 235 static cl::opt<bool> 236 SequentialDisassembly("sequential-disassembly", 237 cl::desc("performs disassembly sequentially"), 238 cl::init(false), 239 cl::cat(BoltOptCategory)); 240 241 static cl::opt<bool> WriteBoltInfoSection( 242 "bolt-info", cl::desc("write bolt info section in the output binary"), 243 cl::init(true), cl::Hidden, cl::cat(BoltOutputCategory)); 244 245 } // namespace opts 246 247 // FIXME: implement a better way to mark sections for replacement. 248 constexpr const char *RewriteInstance::SectionsToOverwrite[]; 249 std::vector<std::string> RewriteInstance::DebugSectionsToOverwrite = { 250 ".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_line_str", 251 ".debug_loc", ".debug_loclists", ".debug_ranges", ".debug_rnglists", 252 ".gdb_index", ".debug_addr", ".debug_abbrev", ".debug_info", 253 ".debug_types", ".pseudo_probe"}; 254 255 const char RewriteInstance::TimerGroupName[] = "rewrite"; 256 const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes"; 257 258 namespace llvm { 259 namespace bolt { 260 261 extern const char *BoltRevision; 262 263 // Weird location for createMCPlusBuilder, but this is here to avoid a 264 // cyclic dependency of libCore (its natural place) and libTarget. libRewrite 265 // can depend on libTarget, but not libCore. Since libRewrite is the only 266 // user of this function, we define it here. 267 MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch, 268 const MCInstrAnalysis *Analysis, 269 const MCInstrInfo *Info, 270 const MCRegisterInfo *RegInfo, 271 const MCSubtargetInfo *STI) { 272 #ifdef X86_AVAILABLE 273 if (Arch == Triple::x86_64) 274 return createX86MCPlusBuilder(Analysis, Info, RegInfo, STI); 275 #endif 276 277 #ifdef AARCH64_AVAILABLE 278 if (Arch == Triple::aarch64) 279 return createAArch64MCPlusBuilder(Analysis, Info, RegInfo, STI); 280 #endif 281 282 #ifdef RISCV_AVAILABLE 283 if (Arch == Triple::riscv64) 284 return createRISCVMCPlusBuilder(Analysis, Info, RegInfo, STI); 285 #endif 286 287 llvm_unreachable("architecture unsupported by MCPlusBuilder"); 288 } 289 290 } // namespace bolt 291 } // namespace llvm 292 293 using ELF64LEPhdrTy = ELF64LEFile::Elf_Phdr; 294 295 namespace { 296 297 bool refersToReorderedSection(ErrorOr<BinarySection &> Section) { 298 return llvm::any_of(opts::ReorderData, [&](const std::string &SectionName) { 299 return Section && Section->getName() == SectionName; 300 }); 301 } 302 303 } // anonymous namespace 304 305 Expected<std::unique_ptr<RewriteInstance>> 306 RewriteInstance::create(ELFObjectFileBase *File, const int Argc, 307 const char *const *Argv, StringRef ToolPath, 308 raw_ostream &Stdout, raw_ostream &Stderr) { 309 Error Err = Error::success(); 310 auto RI = std::make_unique<RewriteInstance>(File, Argc, Argv, ToolPath, 311 Stdout, Stderr, Err); 312 if (Err) 313 return std::move(Err); 314 return std::move(RI); 315 } 316 317 RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc, 318 const char *const *Argv, StringRef ToolPath, 319 raw_ostream &Stdout, raw_ostream &Stderr, 320 Error &Err) 321 : InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath), 322 SHStrTab(StringTableBuilder::ELF) { 323 ErrorAsOutParameter EAO(&Err); 324 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 325 if (!ELF64LEFile) { 326 Err = createStringError(errc::not_supported, 327 "Only 64-bit LE ELF binaries are supported"); 328 return; 329 } 330 331 bool IsPIC = false; 332 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 333 if (Obj.getHeader().e_type != ELF::ET_EXEC) { 334 Stdout << "BOLT-INFO: shared object or position-independent executable " 335 "detected\n"; 336 IsPIC = true; 337 } 338 339 // Make sure we don't miss any output on core dumps. 340 Stdout.SetUnbuffered(); 341 Stderr.SetUnbuffered(); 342 LLVM_DEBUG(dbgs().SetUnbuffered()); 343 344 // Read RISCV subtarget features from input file 345 std::unique_ptr<SubtargetFeatures> Features; 346 Triple TheTriple = File->makeTriple(); 347 if (TheTriple.getArch() == llvm::Triple::riscv64) { 348 Expected<SubtargetFeatures> FeaturesOrErr = File->getFeatures(); 349 if (auto E = FeaturesOrErr.takeError()) { 350 Err = std::move(E); 351 return; 352 } else { 353 Features.reset(new SubtargetFeatures(*FeaturesOrErr)); 354 } 355 } 356 357 auto BCOrErr = BinaryContext::createBinaryContext( 358 TheTriple, File->getFileName(), Features.get(), IsPIC, 359 DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore, 360 nullptr, opts::DWPPathName, 361 WithColor::defaultErrorHandler, 362 WithColor::defaultWarningHandler), 363 JournalingStreams{Stdout, Stderr}); 364 if (Error E = BCOrErr.takeError()) { 365 Err = std::move(E); 366 return; 367 } 368 BC = std::move(BCOrErr.get()); 369 BC->initializeTarget(std::unique_ptr<MCPlusBuilder>( 370 createMCPlusBuilder(BC->TheTriple->getArch(), BC->MIA.get(), 371 BC->MII.get(), BC->MRI.get(), BC->STI.get()))); 372 373 BAT = std::make_unique<BoltAddressTranslation>(); 374 375 if (opts::UpdateDebugSections) 376 DebugInfoRewriter = std::make_unique<DWARFRewriter>(*BC); 377 378 if (opts::Instrument) 379 BC->setRuntimeLibrary(std::make_unique<InstrumentationRuntimeLibrary>()); 380 else if (opts::Hugify) 381 BC->setRuntimeLibrary(std::make_unique<HugifyRuntimeLibrary>()); 382 } 383 384 RewriteInstance::~RewriteInstance() {} 385 386 Error RewriteInstance::setProfile(StringRef Filename) { 387 if (!sys::fs::exists(Filename)) 388 return errorCodeToError(make_error_code(errc::no_such_file_or_directory)); 389 390 if (ProfileReader) { 391 // Already exists 392 return make_error<StringError>(Twine("multiple profiles specified: ") + 393 ProfileReader->getFilename() + " and " + 394 Filename, 395 inconvertibleErrorCode()); 396 } 397 398 // Spawn a profile reader based on file contents. 399 if (DataAggregator::checkPerfDataMagic(Filename)) 400 ProfileReader = std::make_unique<DataAggregator>(Filename); 401 else if (YAMLProfileReader::isYAML(Filename)) 402 ProfileReader = std::make_unique<YAMLProfileReader>(Filename); 403 else 404 ProfileReader = std::make_unique<DataReader>(Filename); 405 406 return Error::success(); 407 } 408 409 /// Return true if the function \p BF should be disassembled. 410 static bool shouldDisassemble(const BinaryFunction &BF) { 411 if (BF.isPseudo()) 412 return false; 413 414 if (opts::processAllFunctions()) 415 return true; 416 417 return !BF.isIgnored(); 418 } 419 420 // Return if a section stored in the image falls into a segment address space. 421 // If not, Set \p Overlap to true if there's a partial overlap. 422 template <class ELFT> 423 static bool checkOffsets(const typename ELFT::Phdr &Phdr, 424 const typename ELFT::Shdr &Sec, bool &Overlap) { 425 // SHT_NOBITS sections don't need to have an offset inside the segment. 426 if (Sec.sh_type == ELF::SHT_NOBITS) 427 return true; 428 429 // Only non-empty sections can be at the end of a segment. 430 uint64_t SectionSize = Sec.sh_size ? Sec.sh_size : 1ull; 431 AddressRange SectionAddressRange((uint64_t)Sec.sh_offset, 432 Sec.sh_offset + SectionSize); 433 AddressRange SegmentAddressRange(Phdr.p_offset, 434 Phdr.p_offset + Phdr.p_filesz); 435 if (SegmentAddressRange.contains(SectionAddressRange)) 436 return true; 437 438 Overlap = SegmentAddressRange.intersects(SectionAddressRange); 439 return false; 440 } 441 442 // Check that an allocatable section belongs to a virtual address 443 // space of a segment. 444 template <class ELFT> 445 static bool checkVMA(const typename ELFT::Phdr &Phdr, 446 const typename ELFT::Shdr &Sec, bool &Overlap) { 447 // Only non-empty sections can be at the end of a segment. 448 uint64_t SectionSize = Sec.sh_size ? Sec.sh_size : 1ull; 449 AddressRange SectionAddressRange((uint64_t)Sec.sh_addr, 450 Sec.sh_addr + SectionSize); 451 AddressRange SegmentAddressRange(Phdr.p_vaddr, Phdr.p_vaddr + Phdr.p_memsz); 452 453 if (SegmentAddressRange.contains(SectionAddressRange)) 454 return true; 455 Overlap = SegmentAddressRange.intersects(SectionAddressRange); 456 return false; 457 } 458 459 void RewriteInstance::markGnuRelroSections() { 460 using ELFT = ELF64LE; 461 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 462 auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile); 463 const ELFFile<ELFT> &Obj = ELF64LEFile->getELFFile(); 464 465 auto handleSection = [&](const ELFT::Phdr &Phdr, SectionRef SecRef) { 466 BinarySection *BinarySection = BC->getSectionForSectionRef(SecRef); 467 // If the section is non-allocatable, ignore it for GNU_RELRO purposes: 468 // it can't be made read-only after runtime relocations processing. 469 if (!BinarySection || !BinarySection->isAllocatable()) 470 return; 471 const ELFShdrTy *Sec = cantFail(Obj.getSection(SecRef.getIndex())); 472 bool ImageOverlap{false}, VMAOverlap{false}; 473 bool ImageContains = checkOffsets<ELFT>(Phdr, *Sec, ImageOverlap); 474 bool VMAContains = checkVMA<ELFT>(Phdr, *Sec, VMAOverlap); 475 if (ImageOverlap) { 476 if (opts::Verbosity >= 1) 477 BC->errs() << "BOLT-WARNING: GNU_RELRO segment has partial file offset " 478 << "overlap with section " << BinarySection->getName() 479 << '\n'; 480 return; 481 } 482 if (VMAOverlap) { 483 if (opts::Verbosity >= 1) 484 BC->errs() << "BOLT-WARNING: GNU_RELRO segment has partial VMA overlap " 485 << "with section " << BinarySection->getName() << '\n'; 486 return; 487 } 488 if (!ImageContains || !VMAContains) 489 return; 490 BinarySection->setRelro(); 491 if (opts::Verbosity >= 1) 492 BC->outs() << "BOLT-INFO: marking " << BinarySection->getName() 493 << " as GNU_RELRO\n"; 494 }; 495 496 for (const ELFT::Phdr &Phdr : cantFail(Obj.program_headers())) 497 if (Phdr.p_type == ELF::PT_GNU_RELRO) 498 for (SectionRef SecRef : InputFile->sections()) 499 handleSection(Phdr, SecRef); 500 } 501 502 Error RewriteInstance::discoverStorage() { 503 NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName, 504 TimerGroupDesc, opts::TimeRewrite); 505 506 auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile); 507 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 508 509 BC->StartFunctionAddress = Obj.getHeader().e_entry; 510 511 NextAvailableAddress = 0; 512 uint64_t NextAvailableOffset = 0; 513 Expected<ELF64LE::PhdrRange> PHsOrErr = Obj.program_headers(); 514 if (Error E = PHsOrErr.takeError()) 515 return E; 516 517 ELF64LE::PhdrRange PHs = PHsOrErr.get(); 518 for (const ELF64LE::Phdr &Phdr : PHs) { 519 switch (Phdr.p_type) { 520 case ELF::PT_LOAD: 521 BC->FirstAllocAddress = std::min(BC->FirstAllocAddress, 522 static_cast<uint64_t>(Phdr.p_vaddr)); 523 NextAvailableAddress = std::max(NextAvailableAddress, 524 Phdr.p_vaddr + Phdr.p_memsz); 525 NextAvailableOffset = std::max(NextAvailableOffset, 526 Phdr.p_offset + Phdr.p_filesz); 527 528 BC->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{Phdr.p_vaddr, 529 Phdr.p_memsz, 530 Phdr.p_offset, 531 Phdr.p_filesz, 532 Phdr.p_align}; 533 if (BC->TheTriple->getArch() == llvm::Triple::x86_64 && 534 Phdr.p_vaddr >= BinaryContext::KernelStartX86_64) 535 BC->IsLinuxKernel = true; 536 break; 537 case ELF::PT_INTERP: 538 BC->HasInterpHeader = true; 539 break; 540 } 541 } 542 543 if (BC->IsLinuxKernel) 544 BC->outs() << "BOLT-INFO: Linux kernel binary detected\n"; 545 546 for (const SectionRef &Section : InputFile->sections()) { 547 Expected<StringRef> SectionNameOrErr = Section.getName(); 548 if (Error E = SectionNameOrErr.takeError()) 549 return E; 550 StringRef SectionName = SectionNameOrErr.get(); 551 if (SectionName == BC->getMainCodeSectionName()) { 552 BC->OldTextSectionAddress = Section.getAddress(); 553 BC->OldTextSectionSize = Section.getSize(); 554 555 Expected<StringRef> SectionContentsOrErr = Section.getContents(); 556 if (Error E = SectionContentsOrErr.takeError()) 557 return E; 558 StringRef SectionContents = SectionContentsOrErr.get(); 559 BC->OldTextSectionOffset = 560 SectionContents.data() - InputFile->getData().data(); 561 } 562 563 if (!opts::HeatmapMode && 564 !(opts::AggregateOnly && BAT->enabledFor(InputFile)) && 565 (SectionName.starts_with(getOrgSecPrefix()) || 566 SectionName == getBOLTTextSectionName())) 567 return createStringError( 568 errc::function_not_supported, 569 "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize"); 570 } 571 572 if (!NextAvailableAddress || !NextAvailableOffset) 573 return createStringError(errc::executable_format_error, 574 "no PT_LOAD pheader seen"); 575 576 BC->outs() << "BOLT-INFO: first alloc address is 0x" 577 << Twine::utohexstr(BC->FirstAllocAddress) << '\n'; 578 579 FirstNonAllocatableOffset = NextAvailableOffset; 580 581 NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign); 582 NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign); 583 584 // Hugify: Additional huge page from left side due to 585 // weird ASLR mapping addresses (4KB aligned) 586 if (opts::Hugify && !BC->HasFixedLoadAddress) 587 NextAvailableAddress += BC->PageAlign; 588 589 if (!opts::UseGnuStack && !BC->IsLinuxKernel) { 590 // This is where the black magic happens. Creating PHDR table in a segment 591 // other than that containing ELF header is tricky. Some loaders and/or 592 // parts of loaders will apply e_phoff from ELF header assuming both are in 593 // the same segment, while others will do the proper calculation. 594 // We create the new PHDR table in such a way that both of the methods 595 // of loading and locating the table work. There's a slight file size 596 // overhead because of that. 597 // 598 // NB: bfd's strip command cannot do the above and will corrupt the 599 // binary during the process of stripping non-allocatable sections. 600 if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress) 601 NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress; 602 else 603 NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress; 604 605 assert(NextAvailableOffset == 606 NextAvailableAddress - BC->FirstAllocAddress && 607 "PHDR table address calculation error"); 608 609 BC->outs() << "BOLT-INFO: creating new program header table at address 0x" 610 << Twine::utohexstr(NextAvailableAddress) << ", offset 0x" 611 << Twine::utohexstr(NextAvailableOffset) << '\n'; 612 613 PHDRTableAddress = NextAvailableAddress; 614 PHDRTableOffset = NextAvailableOffset; 615 616 // Reserve space for 3 extra pheaders. 617 unsigned Phnum = Obj.getHeader().e_phnum; 618 Phnum += 3; 619 620 NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy); 621 NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy); 622 } 623 624 // Align at cache line. 625 NextAvailableAddress = alignTo(NextAvailableAddress, 64); 626 NextAvailableOffset = alignTo(NextAvailableOffset, 64); 627 628 NewTextSegmentAddress = NextAvailableAddress; 629 NewTextSegmentOffset = NextAvailableOffset; 630 BC->LayoutStartAddress = NextAvailableAddress; 631 632 // Tools such as objcopy can strip section contents but leave header 633 // entries. Check that at least .text is mapped in the file. 634 if (!getFileOffsetForAddress(BC->OldTextSectionAddress)) 635 return createStringError(errc::executable_format_error, 636 "BOLT-ERROR: input binary is not a valid ELF " 637 "executable as its text section is not " 638 "mapped to a valid segment"); 639 return Error::success(); 640 } 641 642 Error RewriteInstance::run() { 643 assert(BC && "failed to create a binary context"); 644 645 BC->outs() << "BOLT-INFO: Target architecture: " 646 << Triple::getArchTypeName( 647 (llvm::Triple::ArchType)InputFile->getArch()) 648 << "\n"; 649 BC->outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n"; 650 651 if (Error E = discoverStorage()) 652 return E; 653 if (Error E = readSpecialSections()) 654 return E; 655 adjustCommandLineOptions(); 656 discoverFileObjects(); 657 658 if (opts::Instrument && !BC->IsStaticExecutable) 659 if (Error E = discoverRtFiniAddress()) 660 return E; 661 662 preprocessProfileData(); 663 664 // Skip disassembling if we have a translation table and we are running an 665 // aggregation job. 666 if (opts::AggregateOnly && BAT->enabledFor(InputFile)) { 667 // YAML profile in BAT mode requires CFG for .bolt.org.text functions 668 if (!opts::SaveProfile.empty() || 669 opts::ProfileFormat == opts::ProfileFormatKind::PF_YAML) { 670 selectFunctionsToProcess(); 671 disassembleFunctions(); 672 buildFunctionsCFG(); 673 } 674 processProfileData(); 675 return Error::success(); 676 } 677 678 selectFunctionsToProcess(); 679 680 readDebugInfo(); 681 682 disassembleFunctions(); 683 684 processMetadataPreCFG(); 685 686 buildFunctionsCFG(); 687 688 processProfileData(); 689 690 // Save input binary metadata if BAT section needs to be emitted 691 if (opts::EnableBAT) 692 BAT->saveMetadata(*BC); 693 694 postProcessFunctions(); 695 696 processMetadataPostCFG(); 697 698 if (opts::DiffOnly) 699 return Error::success(); 700 701 preregisterSections(); 702 703 runOptimizationPasses(); 704 705 finalizeMetadataPreEmit(); 706 707 emitAndLink(); 708 709 updateMetadata(); 710 711 if (opts::Instrument && !BC->IsStaticExecutable) 712 updateRtFiniReloc(); 713 714 if (opts::OutputFilename == "/dev/null") { 715 BC->outs() << "BOLT-INFO: skipping writing final binary to disk\n"; 716 return Error::success(); 717 } else if (BC->IsLinuxKernel) { 718 BC->errs() << "BOLT-WARNING: Linux kernel support is experimental\n"; 719 } 720 721 // Rewrite allocatable contents and copy non-allocatable parts with mods. 722 rewriteFile(); 723 return Error::success(); 724 } 725 726 void RewriteInstance::discoverFileObjects() { 727 NamedRegionTimer T("discoverFileObjects", "discover file objects", 728 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 729 730 // For local symbols we want to keep track of associated FILE symbol name for 731 // disambiguation by combined name. 732 StringRef FileSymbolName; 733 bool SeenFileName = false; 734 struct SymbolRefHash { 735 size_t operator()(SymbolRef const &S) const { 736 return std::hash<decltype(DataRefImpl::p)>{}(S.getRawDataRefImpl().p); 737 } 738 }; 739 std::unordered_map<SymbolRef, StringRef, SymbolRefHash> SymbolToFileName; 740 for (const ELFSymbolRef &Symbol : InputFile->symbols()) { 741 Expected<StringRef> NameOrError = Symbol.getName(); 742 if (NameOrError && NameOrError->starts_with("__asan_init")) { 743 BC->errs() 744 << "BOLT-ERROR: input file was compiled or linked with sanitizer " 745 "support. Cannot optimize.\n"; 746 exit(1); 747 } 748 if (NameOrError && NameOrError->starts_with("__llvm_coverage_mapping")) { 749 BC->errs() 750 << "BOLT-ERROR: input file was compiled or linked with coverage " 751 "support. Cannot optimize.\n"; 752 exit(1); 753 } 754 755 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) 756 continue; 757 758 if (cantFail(Symbol.getType()) == SymbolRef::ST_File) { 759 FileSymbols.emplace_back(Symbol); 760 StringRef Name = 761 cantFail(std::move(NameOrError), "cannot get symbol name for file"); 762 // Ignore Clang LTO artificial FILE symbol as it is not always generated, 763 // and this uncertainty is causing havoc in function name matching. 764 if (Name == "ld-temp.o") 765 continue; 766 FileSymbolName = Name; 767 SeenFileName = true; 768 continue; 769 } 770 if (!FileSymbolName.empty() && 771 !(cantFail(Symbol.getFlags()) & SymbolRef::SF_Global)) 772 SymbolToFileName[Symbol] = FileSymbolName; 773 } 774 775 // Sort symbols in the file by value. Ignore symbols from non-allocatable 776 // sections. We memoize getAddress(), as it has rather high overhead. 777 struct SymbolInfo { 778 uint64_t Address; 779 SymbolRef Symbol; 780 }; 781 std::vector<SymbolInfo> SortedSymbols; 782 auto isSymbolInMemory = [this](const SymbolRef &Sym) { 783 if (cantFail(Sym.getType()) == SymbolRef::ST_File) 784 return false; 785 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute) 786 return true; 787 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined) 788 return false; 789 BinarySection Section(*BC, *cantFail(Sym.getSection())); 790 return Section.isAllocatable(); 791 }; 792 for (const SymbolRef &Symbol : InputFile->symbols()) 793 if (isSymbolInMemory(Symbol)) 794 SortedSymbols.push_back({cantFail(Symbol.getAddress()), Symbol}); 795 796 auto CompareSymbols = [this](const SymbolInfo &A, const SymbolInfo &B) { 797 if (A.Address != B.Address) 798 return A.Address < B.Address; 799 800 const bool AMarker = BC->isMarker(A.Symbol); 801 const bool BMarker = BC->isMarker(B.Symbol); 802 if (AMarker || BMarker) { 803 return AMarker && !BMarker; 804 } 805 806 const auto AType = cantFail(A.Symbol.getType()); 807 const auto BType = cantFail(B.Symbol.getType()); 808 if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function) 809 return true; 810 if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug) 811 return true; 812 813 return false; 814 }; 815 llvm::stable_sort(SortedSymbols, CompareSymbols); 816 817 auto LastSymbol = SortedSymbols.end(); 818 if (!SortedSymbols.empty()) 819 --LastSymbol; 820 821 // For aarch64, the ABI defines mapping symbols so we identify data in the 822 // code section (see IHI0056B). $d identifies data contents. 823 // Compilers usually merge multiple data objects in a single $d-$x interval, 824 // but we need every data object to be marked with $d. Because of that we 825 // create a vector of MarkerSyms with all locations of data objects. 826 827 struct MarkerSym { 828 uint64_t Address; 829 MarkerSymType Type; 830 }; 831 832 std::vector<MarkerSym> SortedMarkerSymbols; 833 auto addExtraDataMarkerPerSymbol = [&]() { 834 bool IsData = false; 835 uint64_t LastAddr = 0; 836 for (const auto &SymInfo : SortedSymbols) { 837 if (LastAddr == SymInfo.Address) // don't repeat markers 838 continue; 839 840 MarkerSymType MarkerType = BC->getMarkerType(SymInfo.Symbol); 841 if (MarkerType != MarkerSymType::NONE) { 842 SortedMarkerSymbols.push_back(MarkerSym{SymInfo.Address, MarkerType}); 843 LastAddr = SymInfo.Address; 844 IsData = MarkerType == MarkerSymType::DATA; 845 continue; 846 } 847 848 if (IsData) { 849 SortedMarkerSymbols.push_back({SymInfo.Address, MarkerSymType::DATA}); 850 LastAddr = SymInfo.Address; 851 } 852 } 853 }; 854 855 if (BC->isAArch64() || BC->isRISCV()) { 856 addExtraDataMarkerPerSymbol(); 857 LastSymbol = std::stable_partition( 858 SortedSymbols.begin(), SortedSymbols.end(), 859 [this](const SymbolInfo &S) { return !BC->isMarker(S.Symbol); }); 860 if (!SortedSymbols.empty()) 861 --LastSymbol; 862 } 863 864 BinaryFunction *PreviousFunction = nullptr; 865 unsigned AnonymousId = 0; 866 867 const auto SortedSymbolsEnd = 868 LastSymbol == SortedSymbols.end() ? LastSymbol : std::next(LastSymbol); 869 for (auto Iter = SortedSymbols.begin(); Iter != SortedSymbolsEnd; ++Iter) { 870 const SymbolRef &Symbol = Iter->Symbol; 871 const uint64_t SymbolAddress = Iter->Address; 872 const auto SymbolFlags = cantFail(Symbol.getFlags()); 873 const SymbolRef::Type SymbolType = cantFail(Symbol.getType()); 874 875 if (SymbolType == SymbolRef::ST_File) 876 continue; 877 878 StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name"); 879 if (SymbolAddress == 0) { 880 if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function) 881 BC->errs() << "BOLT-WARNING: function with 0 address seen\n"; 882 continue; 883 } 884 885 // Ignore input hot markers 886 if (SymName == "__hot_start" || SymName == "__hot_end") 887 continue; 888 889 FileSymRefs.emplace(SymbolAddress, Symbol); 890 891 // Skip section symbols that will be registered by disassemblePLT(). 892 if (SymbolType == SymbolRef::ST_Debug) { 893 ErrorOr<BinarySection &> BSection = 894 BC->getSectionForAddress(SymbolAddress); 895 if (BSection && getPLTSectionInfo(BSection->getName())) 896 continue; 897 } 898 899 /// It is possible we are seeing a globalized local. LLVM might treat it as 900 /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to 901 /// change the prefix to enforce global scope of the symbol. 902 std::string Name = 903 SymName.starts_with(BC->AsmInfo->getPrivateGlobalPrefix()) 904 ? "PG" + std::string(SymName) 905 : std::string(SymName); 906 907 // Disambiguate all local symbols before adding to symbol table. 908 // Since we don't know if we will see a global with the same name, 909 // always modify the local name. 910 // 911 // NOTE: the naming convention for local symbols should match 912 // the one we use for profile data. 913 std::string UniqueName; 914 std::string AlternativeName; 915 if (Name.empty()) { 916 UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++); 917 } else if (SymbolFlags & SymbolRef::SF_Global) { 918 if (const BinaryData *BD = BC->getBinaryDataByName(Name)) { 919 if (BD->getSize() == ELFSymbolRef(Symbol).getSize() && 920 BD->getAddress() == SymbolAddress) { 921 if (opts::Verbosity > 1) 922 BC->errs() << "BOLT-WARNING: ignoring duplicate global symbol " 923 << Name << "\n"; 924 // Ignore duplicate entry - possibly a bug in the linker 925 continue; 926 } 927 BC->errs() << "BOLT-ERROR: bad input binary, global symbol \"" << Name 928 << "\" is not unique\n"; 929 exit(1); 930 } 931 UniqueName = Name; 932 } else { 933 // If we have a local file name, we should create 2 variants for the 934 // function name. The reason is that perf profile might have been 935 // collected on a binary that did not have the local file name (e.g. as 936 // a side effect of stripping debug info from the binary): 937 // 938 // primary: <function>/<id> 939 // alternative: <function>/<file>/<id2> 940 // 941 // The <id> field is used for disambiguation of local symbols since there 942 // could be identical function names coming from identical file names 943 // (e.g. from different directories). 944 std::string AltPrefix; 945 auto SFI = SymbolToFileName.find(Symbol); 946 if (SymbolType == SymbolRef::ST_Function && SFI != SymbolToFileName.end()) 947 AltPrefix = Name + "/" + std::string(SFI->second); 948 949 UniqueName = NR.uniquify(Name); 950 if (!AltPrefix.empty()) 951 AlternativeName = NR.uniquify(AltPrefix); 952 } 953 954 uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 955 uint64_t SymbolAlignment = Symbol.getAlignment(); 956 957 auto registerName = [&](uint64_t FinalSize) { 958 // Register names even if it's not a function, e.g. for an entry point. 959 BC->registerNameAtAddress(UniqueName, SymbolAddress, FinalSize, 960 SymbolAlignment, SymbolFlags); 961 if (!AlternativeName.empty()) 962 BC->registerNameAtAddress(AlternativeName, SymbolAddress, FinalSize, 963 SymbolAlignment, SymbolFlags); 964 }; 965 966 section_iterator Section = 967 cantFail(Symbol.getSection(), "cannot get symbol section"); 968 if (Section == InputFile->section_end()) { 969 // Could be an absolute symbol. Used on RISC-V for __global_pointer$ so we 970 // need to record it to handle relocations against it. For other instances 971 // of absolute symbols, we record for pretty printing. 972 LLVM_DEBUG(if (opts::Verbosity > 1) { 973 dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n"; 974 }); 975 registerName(SymbolSize); 976 continue; 977 } 978 979 if (SymName == getBOLTReservedStart() || SymName == getBOLTReservedEnd()) { 980 registerName(SymbolSize); 981 continue; 982 } 983 984 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName 985 << " for function\n"); 986 987 if (SymbolAddress == Section->getAddress() + Section->getSize()) { 988 assert(SymbolSize == 0 && 989 "unexpect non-zero sized symbol at end of section"); 990 LLVM_DEBUG( 991 dbgs() 992 << "BOLT-DEBUG: rejecting as symbol points to end of its section\n"); 993 registerName(SymbolSize); 994 continue; 995 } 996 997 if (!Section->isText()) { 998 assert(SymbolType != SymbolRef::ST_Function && 999 "unexpected function inside non-code section"); 1000 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n"); 1001 registerName(SymbolSize); 1002 continue; 1003 } 1004 1005 // Assembly functions could be ST_NONE with 0 size. Check that the 1006 // corresponding section is a code section and they are not inside any 1007 // other known function to consider them. 1008 // 1009 // Sometimes assembly functions are not marked as functions and neither are 1010 // their local labels. The only way to tell them apart is to look at 1011 // symbol scope - global vs local. 1012 if (PreviousFunction && SymbolType != SymbolRef::ST_Function) { 1013 if (PreviousFunction->containsAddress(SymbolAddress)) { 1014 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1015 LLVM_DEBUG(dbgs() 1016 << "BOLT-DEBUG: symbol is a function local symbol\n"); 1017 } else if (SymbolAddress == PreviousFunction->getAddress() && 1018 !SymbolSize) { 1019 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n"); 1020 } else if (opts::Verbosity > 1) { 1021 BC->errs() << "BOLT-WARNING: symbol " << UniqueName 1022 << " seen in the middle of function " << *PreviousFunction 1023 << ". Could be a new entry.\n"; 1024 } 1025 registerName(SymbolSize); 1026 continue; 1027 } else if (PreviousFunction->getSize() == 0 && 1028 PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1029 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n"); 1030 registerName(SymbolSize); 1031 continue; 1032 } 1033 } 1034 1035 if (PreviousFunction && PreviousFunction->containsAddress(SymbolAddress) && 1036 PreviousFunction->getAddress() != SymbolAddress) { 1037 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1038 if (opts::Verbosity >= 1) 1039 BC->outs() 1040 << "BOLT-INFO: skipping possibly another entry for function " 1041 << *PreviousFunction << " : " << UniqueName << '\n'; 1042 registerName(SymbolSize); 1043 } else { 1044 BC->outs() << "BOLT-INFO: using " << UniqueName 1045 << " as another entry to " 1046 << "function " << *PreviousFunction << '\n'; 1047 1048 registerName(0); 1049 1050 PreviousFunction->addEntryPointAtOffset(SymbolAddress - 1051 PreviousFunction->getAddress()); 1052 1053 // Remove the symbol from FileSymRefs so that we can skip it from 1054 // in the future. 1055 auto SI = llvm::find_if( 1056 llvm::make_range(FileSymRefs.equal_range(SymbolAddress)), 1057 [&](auto SymIt) { return SymIt.second == Symbol; }); 1058 assert(SI != FileSymRefs.end() && "symbol expected to be present"); 1059 assert(SI->second == Symbol && "wrong symbol found"); 1060 FileSymRefs.erase(SI); 1061 } 1062 continue; 1063 } 1064 1065 // Checkout for conflicts with function data from FDEs. 1066 bool IsSimple = true; 1067 auto FDEI = CFIRdWrt->getFDEs().lower_bound(SymbolAddress); 1068 if (FDEI != CFIRdWrt->getFDEs().end()) { 1069 const dwarf::FDE &FDE = *FDEI->second; 1070 if (FDEI->first != SymbolAddress) { 1071 // There's no matching starting address in FDE. Make sure the previous 1072 // FDE does not contain this address. 1073 if (FDEI != CFIRdWrt->getFDEs().begin()) { 1074 --FDEI; 1075 const dwarf::FDE &PrevFDE = *FDEI->second; 1076 uint64_t PrevStart = PrevFDE.getInitialLocation(); 1077 uint64_t PrevLength = PrevFDE.getAddressRange(); 1078 if (SymbolAddress > PrevStart && 1079 SymbolAddress < PrevStart + PrevLength) { 1080 BC->errs() << "BOLT-ERROR: function " << UniqueName 1081 << " is in conflict with FDE [" 1082 << Twine::utohexstr(PrevStart) << ", " 1083 << Twine::utohexstr(PrevStart + PrevLength) 1084 << "). Skipping.\n"; 1085 IsSimple = false; 1086 } 1087 } 1088 } else if (FDE.getAddressRange() != SymbolSize) { 1089 if (SymbolSize) { 1090 // Function addresses match but sizes differ. 1091 BC->errs() << "BOLT-WARNING: sizes differ for function " << UniqueName 1092 << ". FDE : " << FDE.getAddressRange() 1093 << "; symbol table : " << SymbolSize 1094 << ". Using max size.\n"; 1095 } 1096 SymbolSize = std::max(SymbolSize, FDE.getAddressRange()); 1097 if (BC->getBinaryDataAtAddress(SymbolAddress)) { 1098 BC->setBinaryDataSize(SymbolAddress, SymbolSize); 1099 } else { 1100 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x" 1101 << Twine::utohexstr(SymbolAddress) << "\n"); 1102 } 1103 } 1104 } 1105 1106 BinaryFunction *BF = nullptr; 1107 // Since function may not have yet obtained its real size, do a search 1108 // using the list of registered functions instead of calling 1109 // getBinaryFunctionAtAddress(). 1110 auto BFI = BC->getBinaryFunctions().find(SymbolAddress); 1111 if (BFI != BC->getBinaryFunctions().end()) { 1112 BF = &BFI->second; 1113 // Duplicate the function name. Make sure everything matches before we add 1114 // an alternative name. 1115 if (SymbolSize != BF->getSize()) { 1116 if (opts::Verbosity >= 1) { 1117 if (SymbolSize && BF->getSize()) 1118 BC->errs() << "BOLT-WARNING: size mismatch for duplicate entries " 1119 << *BF << " and " << UniqueName << '\n'; 1120 BC->outs() << "BOLT-INFO: adjusting size of function " << *BF 1121 << " old " << BF->getSize() << " new " << SymbolSize 1122 << "\n"; 1123 } 1124 BF->setSize(std::max(SymbolSize, BF->getSize())); 1125 BC->setBinaryDataSize(SymbolAddress, BF->getSize()); 1126 } 1127 BF->addAlternativeName(UniqueName); 1128 } else { 1129 ErrorOr<BinarySection &> Section = 1130 BC->getSectionForAddress(SymbolAddress); 1131 // Skip symbols from invalid sections 1132 if (!Section) { 1133 BC->errs() << "BOLT-WARNING: " << UniqueName << " (0x" 1134 << Twine::utohexstr(SymbolAddress) 1135 << ") does not have any section\n"; 1136 continue; 1137 } 1138 1139 // Skip symbols from zero-sized sections. 1140 if (!Section->getSize()) 1141 continue; 1142 1143 BF = BC->createBinaryFunction(UniqueName, *Section, SymbolAddress, 1144 SymbolSize); 1145 if (!IsSimple) 1146 BF->setSimple(false); 1147 } 1148 1149 // Check if it's a cold function fragment. 1150 if (FunctionFragmentTemplate.match(SymName)) { 1151 static bool PrintedWarning = false; 1152 if (!PrintedWarning) { 1153 PrintedWarning = true; 1154 BC->errs() << "BOLT-WARNING: split function detected on input : " 1155 << SymName; 1156 if (BC->HasRelocations) 1157 BC->errs() << ". The support is limited in relocation mode\n"; 1158 else 1159 BC->errs() << '\n'; 1160 } 1161 BC->HasSplitFunctions = true; 1162 BF->IsFragment = true; 1163 } 1164 1165 if (!AlternativeName.empty()) 1166 BF->addAlternativeName(AlternativeName); 1167 1168 registerName(SymbolSize); 1169 PreviousFunction = BF; 1170 } 1171 1172 // Read dynamic relocation first as their presence affects the way we process 1173 // static relocations. E.g. we will ignore a static relocation at an address 1174 // that is a subject to dynamic relocation processing. 1175 processDynamicRelocations(); 1176 1177 // Process PLT section. 1178 disassemblePLT(); 1179 1180 // See if we missed any functions marked by FDE. 1181 for (const auto &FDEI : CFIRdWrt->getFDEs()) { 1182 const uint64_t Address = FDEI.first; 1183 const dwarf::FDE *FDE = FDEI.second; 1184 const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address); 1185 if (BF) 1186 continue; 1187 1188 BF = BC->getBinaryFunctionContainingAddress(Address); 1189 if (BF) { 1190 BC->errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) 1191 << ", 0x" << Twine::utohexstr(Address + FDE->getAddressRange()) 1192 << ") conflicts with function " << *BF << '\n'; 1193 continue; 1194 } 1195 1196 if (opts::Verbosity >= 1) 1197 BC->errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) 1198 << ", 0x" << Twine::utohexstr(Address + FDE->getAddressRange()) 1199 << ") has no corresponding symbol table entry\n"; 1200 1201 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 1202 assert(Section && "cannot get section for address from FDE"); 1203 std::string FunctionName = 1204 "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str(); 1205 BC->createBinaryFunction(FunctionName, *Section, Address, 1206 FDE->getAddressRange()); 1207 } 1208 1209 BC->setHasSymbolsWithFileName(SeenFileName); 1210 1211 // Now that all the functions were created - adjust their boundaries. 1212 adjustFunctionBoundaries(); 1213 1214 // Annotate functions with code/data markers in AArch64 1215 for (auto ISym = SortedMarkerSymbols.begin(); 1216 ISym != SortedMarkerSymbols.end(); ++ISym) { 1217 1218 auto *BF = 1219 BC->getBinaryFunctionContainingAddress(ISym->Address, true, true); 1220 1221 if (!BF) { 1222 // Stray marker 1223 continue; 1224 } 1225 const auto EntryOffset = ISym->Address - BF->getAddress(); 1226 if (ISym->Type == MarkerSymType::CODE) { 1227 BF->markCodeAtOffset(EntryOffset); 1228 continue; 1229 } 1230 if (ISym->Type == MarkerSymType::DATA) { 1231 BF->markDataAtOffset(EntryOffset); 1232 BC->AddressToConstantIslandMap[ISym->Address] = BF; 1233 continue; 1234 } 1235 llvm_unreachable("Unknown marker"); 1236 } 1237 1238 if (BC->isAArch64()) { 1239 // Check for dynamic relocations that might be contained in 1240 // constant islands. 1241 for (const BinarySection &Section : BC->allocatableSections()) { 1242 const uint64_t SectionAddress = Section.getAddress(); 1243 for (const Relocation &Rel : Section.dynamicRelocations()) { 1244 const uint64_t RelAddress = SectionAddress + Rel.Offset; 1245 BinaryFunction *BF = 1246 BC->getBinaryFunctionContainingAddress(RelAddress, 1247 /*CheckPastEnd*/ false, 1248 /*UseMaxSize*/ true); 1249 if (BF) { 1250 assert(Rel.isRelative() && "Expected relative relocation for island"); 1251 BC->logBOLTErrorsAndQuitOnFatal( 1252 BF->markIslandDynamicRelocationAtAddress(RelAddress)); 1253 } 1254 } 1255 } 1256 } 1257 1258 if (!BC->IsLinuxKernel) { 1259 // Read all relocations now that we have binary functions mapped. 1260 processRelocations(); 1261 } 1262 1263 registerFragments(); 1264 FileSymbols.clear(); 1265 FileSymRefs.clear(); 1266 1267 discoverBOLTReserved(); 1268 } 1269 1270 void RewriteInstance::discoverBOLTReserved() { 1271 BinaryData *StartBD = BC->getBinaryDataByName(getBOLTReservedStart()); 1272 BinaryData *EndBD = BC->getBinaryDataByName(getBOLTReservedEnd()); 1273 if (!StartBD != !EndBD) { 1274 BC->errs() << "BOLT-ERROR: one of the symbols is missing from the binary: " 1275 << getBOLTReservedStart() << ", " << getBOLTReservedEnd() 1276 << '\n'; 1277 exit(1); 1278 } 1279 1280 if (!StartBD) 1281 return; 1282 1283 if (StartBD->getAddress() >= EndBD->getAddress()) { 1284 BC->errs() << "BOLT-ERROR: invalid reserved space boundaries\n"; 1285 exit(1); 1286 } 1287 BC->BOLTReserved = AddressRange(StartBD->getAddress(), EndBD->getAddress()); 1288 BC->outs() << "BOLT-INFO: using reserved space for allocating new sections\n"; 1289 1290 PHDRTableOffset = 0; 1291 PHDRTableAddress = 0; 1292 NewTextSegmentAddress = 0; 1293 NewTextSegmentOffset = 0; 1294 NextAvailableAddress = BC->BOLTReserved.start(); 1295 } 1296 1297 Error RewriteInstance::discoverRtFiniAddress() { 1298 // Use DT_FINI if it's available. 1299 if (BC->FiniAddress) { 1300 BC->FiniFunctionAddress = BC->FiniAddress; 1301 return Error::success(); 1302 } 1303 1304 if (!BC->FiniArrayAddress || !BC->FiniArraySize) { 1305 return createStringError( 1306 std::errc::not_supported, 1307 "Instrumentation needs either DT_FINI or DT_FINI_ARRAY"); 1308 } 1309 1310 if (*BC->FiniArraySize < BC->AsmInfo->getCodePointerSize()) { 1311 return createStringError(std::errc::not_supported, 1312 "Need at least 1 DT_FINI_ARRAY slot"); 1313 } 1314 1315 ErrorOr<BinarySection &> FiniArraySection = 1316 BC->getSectionForAddress(*BC->FiniArrayAddress); 1317 if (auto EC = FiniArraySection.getError()) 1318 return errorCodeToError(EC); 1319 1320 if (const Relocation *Reloc = FiniArraySection->getDynamicRelocationAt(0)) { 1321 BC->FiniFunctionAddress = Reloc->Addend; 1322 return Error::success(); 1323 } 1324 1325 if (const Relocation *Reloc = FiniArraySection->getRelocationAt(0)) { 1326 BC->FiniFunctionAddress = Reloc->Value; 1327 return Error::success(); 1328 } 1329 1330 return createStringError(std::errc::not_supported, 1331 "No relocation for first DT_FINI_ARRAY slot"); 1332 } 1333 1334 void RewriteInstance::updateRtFiniReloc() { 1335 // Updating DT_FINI is handled by patchELFDynamic. 1336 if (BC->FiniAddress) 1337 return; 1338 1339 const RuntimeLibrary *RT = BC->getRuntimeLibrary(); 1340 if (!RT || !RT->getRuntimeFiniAddress()) 1341 return; 1342 1343 assert(BC->FiniArrayAddress && BC->FiniArraySize && 1344 "inconsistent .fini_array state"); 1345 1346 ErrorOr<BinarySection &> FiniArraySection = 1347 BC->getSectionForAddress(*BC->FiniArrayAddress); 1348 assert(FiniArraySection && ".fini_array removed"); 1349 1350 if (std::optional<Relocation> Reloc = 1351 FiniArraySection->takeDynamicRelocationAt(0)) { 1352 assert(Reloc->Addend == BC->FiniFunctionAddress && 1353 "inconsistent .fini_array dynamic relocation"); 1354 Reloc->Addend = RT->getRuntimeFiniAddress(); 1355 FiniArraySection->addDynamicRelocation(*Reloc); 1356 } 1357 1358 // Update the static relocation by adding a pending relocation which will get 1359 // patched when flushPendingRelocations is called in rewriteFile. Note that 1360 // flushPendingRelocations will calculate the value to patch as 1361 // "Symbol + Addend". Since we don't have a symbol, just set the addend to the 1362 // desired value. 1363 FiniArraySection->addPendingRelocation(Relocation{ 1364 /*Offset*/ 0, /*Symbol*/ nullptr, /*Type*/ Relocation::getAbs64(), 1365 /*Addend*/ RT->getRuntimeFiniAddress(), /*Value*/ 0}); 1366 } 1367 1368 void RewriteInstance::registerFragments() { 1369 if (!BC->HasSplitFunctions) 1370 return; 1371 1372 // Process fragments with ambiguous parents separately as they are typically a 1373 // vanishing minority of cases and require expensive symbol table lookups. 1374 std::vector<std::pair<StringRef, BinaryFunction *>> AmbiguousFragments; 1375 for (auto &BFI : BC->getBinaryFunctions()) { 1376 BinaryFunction &Function = BFI.second; 1377 if (!Function.isFragment()) 1378 continue; 1379 for (StringRef Name : Function.getNames()) { 1380 StringRef BaseName = NR.restore(Name); 1381 const bool IsGlobal = BaseName == Name; 1382 SmallVector<StringRef> Matches; 1383 if (!FunctionFragmentTemplate.match(BaseName, &Matches)) 1384 continue; 1385 StringRef ParentName = Matches[1]; 1386 const BinaryData *BD = BC->getBinaryDataByName(ParentName); 1387 const uint64_t NumPossibleLocalParents = 1388 NR.getUniquifiedNameCount(ParentName); 1389 // The most common case: single local parent fragment. 1390 if (!BD && NumPossibleLocalParents == 1) { 1391 BD = BC->getBinaryDataByName(NR.getUniqueName(ParentName, 1)); 1392 } else if (BD && (!NumPossibleLocalParents || IsGlobal)) { 1393 // Global parent and either no local candidates (second most common), or 1394 // the fragment is global as well (uncommon). 1395 } else { 1396 // Any other case: need to disambiguate using FILE symbols. 1397 AmbiguousFragments.emplace_back(ParentName, &Function); 1398 continue; 1399 } 1400 if (BD) { 1401 BinaryFunction *BF = BC->getFunctionForSymbol(BD->getSymbol()); 1402 if (BF) { 1403 BC->registerFragment(Function, *BF); 1404 continue; 1405 } 1406 } 1407 BC->errs() << "BOLT-ERROR: parent function not found for " << Function 1408 << '\n'; 1409 exit(1); 1410 } 1411 } 1412 1413 if (AmbiguousFragments.empty()) 1414 return; 1415 1416 if (!BC->hasSymbolsWithFileName()) { 1417 BC->errs() << "BOLT-ERROR: input file has split functions but does not " 1418 "have FILE symbols. If the binary was stripped, preserve " 1419 "FILE symbols with --keep-file-symbols strip option\n"; 1420 exit(1); 1421 } 1422 1423 // The first global symbol is identified by the symbol table sh_info value. 1424 // Used as local symbol search stopping point. 1425 auto *ELF64LEFile = cast<ELF64LEObjectFile>(InputFile); 1426 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 1427 auto *SymTab = llvm::find_if(cantFail(Obj.sections()), [](const auto &Sec) { 1428 return Sec.sh_type == ELF::SHT_SYMTAB; 1429 }); 1430 assert(SymTab); 1431 // Symtab sh_info contains the value one greater than the symbol table index 1432 // of the last local symbol. 1433 ELFSymbolRef LocalSymEnd = ELF64LEFile->toSymbolRef(SymTab, SymTab->sh_info); 1434 1435 for (auto &Fragment : AmbiguousFragments) { 1436 const StringRef &ParentName = Fragment.first; 1437 BinaryFunction *BF = Fragment.second; 1438 const uint64_t Address = BF->getAddress(); 1439 1440 // Get fragment's own symbol 1441 const auto SymIt = llvm::find_if( 1442 llvm::make_range(FileSymRefs.equal_range(Address)), [&](auto SI) { 1443 StringRef Name = cantFail(SI.second.getName()); 1444 return Name.contains(ParentName); 1445 }); 1446 if (SymIt == FileSymRefs.end()) { 1447 BC->errs() 1448 << "BOLT-ERROR: symbol lookup failed for function at address 0x" 1449 << Twine::utohexstr(Address) << '\n'; 1450 exit(1); 1451 } 1452 1453 // Find containing FILE symbol 1454 ELFSymbolRef Symbol = SymIt->second; 1455 auto FSI = llvm::upper_bound(FileSymbols, Symbol); 1456 if (FSI == FileSymbols.begin()) { 1457 BC->errs() << "BOLT-ERROR: owning FILE symbol not found for symbol " 1458 << cantFail(Symbol.getName()) << '\n'; 1459 exit(1); 1460 } 1461 1462 ELFSymbolRef StopSymbol = LocalSymEnd; 1463 if (FSI != FileSymbols.end()) 1464 StopSymbol = *FSI; 1465 1466 uint64_t ParentAddress{0}; 1467 1468 // BOLT split fragment symbols are emitted just before the main function 1469 // symbol. 1470 for (ELFSymbolRef NextSymbol = Symbol; NextSymbol < StopSymbol; 1471 NextSymbol.moveNext()) { 1472 StringRef Name = cantFail(NextSymbol.getName()); 1473 if (Name == ParentName) { 1474 ParentAddress = cantFail(NextSymbol.getValue()); 1475 goto registerParent; 1476 } 1477 if (Name.starts_with(ParentName)) 1478 // With multi-way splitting, there are multiple fragments with different 1479 // suffixes. Parent follows the last fragment. 1480 continue; 1481 break; 1482 } 1483 1484 // Iterate over local file symbols and check symbol names to match parent. 1485 for (ELFSymbolRef Symbol(FSI[-1]); Symbol < StopSymbol; Symbol.moveNext()) { 1486 if (cantFail(Symbol.getName()) == ParentName) { 1487 ParentAddress = cantFail(Symbol.getAddress()); 1488 break; 1489 } 1490 } 1491 1492 registerParent: 1493 // No local parent is found, use global parent function. 1494 if (!ParentAddress) 1495 if (BinaryData *ParentBD = BC->getBinaryDataByName(ParentName)) 1496 ParentAddress = ParentBD->getAddress(); 1497 1498 if (BinaryFunction *ParentBF = 1499 BC->getBinaryFunctionAtAddress(ParentAddress)) { 1500 BC->registerFragment(*BF, *ParentBF); 1501 continue; 1502 } 1503 BC->errs() << "BOLT-ERROR: parent function not found for " << *BF << '\n'; 1504 exit(1); 1505 } 1506 } 1507 1508 void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress, 1509 uint64_t EntryAddress, 1510 uint64_t EntrySize) { 1511 if (!TargetAddress) 1512 return; 1513 1514 auto setPLTSymbol = [&](BinaryFunction *BF, StringRef Name) { 1515 const unsigned PtrSize = BC->AsmInfo->getCodePointerSize(); 1516 MCSymbol *TargetSymbol = BC->registerNameAtAddress( 1517 Name.str() + "@GOT", TargetAddress, PtrSize, PtrSize); 1518 BF->setPLTSymbol(TargetSymbol); 1519 }; 1520 1521 BinaryFunction *BF = BC->getBinaryFunctionAtAddress(EntryAddress); 1522 if (BF && BC->isAArch64()) { 1523 // Handle IFUNC trampoline with symbol 1524 setPLTSymbol(BF, BF->getOneName()); 1525 return; 1526 } 1527 1528 const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress); 1529 if (!Rel) 1530 return; 1531 1532 MCSymbol *Symbol = Rel->Symbol; 1533 if (!Symbol) { 1534 if (!BC->isAArch64() || !Rel->Addend || !Rel->isIRelative()) 1535 return; 1536 1537 // IFUNC trampoline without symbol 1538 BinaryFunction *TargetBF = BC->getBinaryFunctionAtAddress(Rel->Addend); 1539 if (!TargetBF) { 1540 BC->errs() 1541 << "BOLT-WARNING: Expected BF to be presented as IFUNC resolver at " 1542 << Twine::utohexstr(Rel->Addend) << ", skipping\n"; 1543 return; 1544 } 1545 1546 Symbol = TargetBF->getSymbol(); 1547 } 1548 1549 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(EntryAddress); 1550 assert(Section && "cannot get section for address"); 1551 if (!BF) 1552 BF = BC->createBinaryFunction(Symbol->getName().str() + "@PLT", *Section, 1553 EntryAddress, 0, EntrySize, 1554 Section->getAlignment()); 1555 else 1556 BF->addAlternativeName(Symbol->getName().str() + "@PLT"); 1557 setPLTSymbol(BF, Symbol->getName()); 1558 } 1559 1560 void RewriteInstance::disassemblePLTInstruction(const BinarySection &Section, 1561 uint64_t InstrOffset, 1562 MCInst &Instruction, 1563 uint64_t &InstrSize) { 1564 const uint64_t SectionAddress = Section.getAddress(); 1565 const uint64_t SectionSize = Section.getSize(); 1566 StringRef PLTContents = Section.getContents(); 1567 ArrayRef<uint8_t> PLTData( 1568 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); 1569 1570 const uint64_t InstrAddr = SectionAddress + InstrOffset; 1571 if (!BC->DisAsm->getInstruction(Instruction, InstrSize, 1572 PLTData.slice(InstrOffset), InstrAddr, 1573 nulls())) { 1574 BC->errs() 1575 << "BOLT-ERROR: unable to disassemble instruction in PLT section " 1576 << Section.getName() << formatv(" at offset {0:x}\n", InstrOffset); 1577 exit(1); 1578 } 1579 } 1580 1581 void RewriteInstance::disassemblePLTSectionAArch64(BinarySection &Section) { 1582 const uint64_t SectionAddress = Section.getAddress(); 1583 const uint64_t SectionSize = Section.getSize(); 1584 1585 uint64_t InstrOffset = 0; 1586 // Locate new plt entry 1587 while (InstrOffset < SectionSize) { 1588 InstructionListType Instructions; 1589 MCInst Instruction; 1590 uint64_t EntryOffset = InstrOffset; 1591 uint64_t EntrySize = 0; 1592 uint64_t InstrSize; 1593 // Loop through entry instructions 1594 while (InstrOffset < SectionSize) { 1595 disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize); 1596 EntrySize += InstrSize; 1597 if (!BC->MIB->isIndirectBranch(Instruction)) { 1598 Instructions.emplace_back(Instruction); 1599 InstrOffset += InstrSize; 1600 continue; 1601 } 1602 1603 const uint64_t EntryAddress = SectionAddress + EntryOffset; 1604 const uint64_t TargetAddress = BC->MIB->analyzePLTEntry( 1605 Instruction, Instructions.begin(), Instructions.end(), EntryAddress); 1606 1607 createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize); 1608 break; 1609 } 1610 1611 // Branch instruction 1612 InstrOffset += InstrSize; 1613 1614 // Skip nops if any 1615 while (InstrOffset < SectionSize) { 1616 disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize); 1617 if (!BC->MIB->isNoop(Instruction)) 1618 break; 1619 1620 InstrOffset += InstrSize; 1621 } 1622 } 1623 } 1624 1625 void RewriteInstance::disassemblePLTSectionRISCV(BinarySection &Section) { 1626 const uint64_t SectionAddress = Section.getAddress(); 1627 const uint64_t SectionSize = Section.getSize(); 1628 StringRef PLTContents = Section.getContents(); 1629 ArrayRef<uint8_t> PLTData( 1630 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); 1631 1632 auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, 1633 uint64_t &InstrSize) { 1634 const uint64_t InstrAddr = SectionAddress + InstrOffset; 1635 if (!BC->DisAsm->getInstruction(Instruction, InstrSize, 1636 PLTData.slice(InstrOffset), InstrAddr, 1637 nulls())) { 1638 BC->errs() 1639 << "BOLT-ERROR: unable to disassemble instruction in PLT section " 1640 << Section.getName() << " at offset 0x" 1641 << Twine::utohexstr(InstrOffset) << '\n'; 1642 exit(1); 1643 } 1644 }; 1645 1646 // Skip the first special entry since no relocation points to it. 1647 uint64_t InstrOffset = 32; 1648 1649 while (InstrOffset < SectionSize) { 1650 InstructionListType Instructions; 1651 MCInst Instruction; 1652 const uint64_t EntryOffset = InstrOffset; 1653 const uint64_t EntrySize = 16; 1654 uint64_t InstrSize; 1655 1656 while (InstrOffset < EntryOffset + EntrySize) { 1657 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1658 Instructions.emplace_back(Instruction); 1659 InstrOffset += InstrSize; 1660 } 1661 1662 const uint64_t EntryAddress = SectionAddress + EntryOffset; 1663 const uint64_t TargetAddress = BC->MIB->analyzePLTEntry( 1664 Instruction, Instructions.begin(), Instructions.end(), EntryAddress); 1665 1666 createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize); 1667 } 1668 } 1669 1670 void RewriteInstance::disassemblePLTSectionX86(BinarySection &Section, 1671 uint64_t EntrySize) { 1672 const uint64_t SectionAddress = Section.getAddress(); 1673 const uint64_t SectionSize = Section.getSize(); 1674 1675 for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= SectionSize; 1676 EntryOffset += EntrySize) { 1677 MCInst Instruction; 1678 uint64_t InstrSize, InstrOffset = EntryOffset; 1679 while (InstrOffset < EntryOffset + EntrySize) { 1680 disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize); 1681 // Check if the entry size needs adjustment. 1682 if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) && 1683 EntrySize == 8) 1684 EntrySize = 16; 1685 1686 if (BC->MIB->isIndirectBranch(Instruction)) 1687 break; 1688 1689 InstrOffset += InstrSize; 1690 } 1691 1692 if (InstrOffset + InstrSize > EntryOffset + EntrySize) 1693 continue; 1694 1695 uint64_t TargetAddress; 1696 if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1697 SectionAddress + InstrOffset, 1698 InstrSize)) { 1699 BC->errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x" 1700 << Twine::utohexstr(SectionAddress + InstrOffset) << '\n'; 1701 exit(1); 1702 } 1703 1704 createPLTBinaryFunction(TargetAddress, SectionAddress + EntryOffset, 1705 EntrySize); 1706 } 1707 } 1708 1709 void RewriteInstance::disassemblePLT() { 1710 auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) { 1711 if (BC->isAArch64()) 1712 return disassemblePLTSectionAArch64(Section); 1713 if (BC->isRISCV()) 1714 return disassemblePLTSectionRISCV(Section); 1715 if (BC->isX86()) 1716 return disassemblePLTSectionX86(Section, EntrySize); 1717 llvm_unreachable("Unmplemented PLT"); 1718 }; 1719 1720 for (BinarySection &Section : BC->allocatableSections()) { 1721 const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName()); 1722 if (!PLTSI) 1723 continue; 1724 1725 analyzeOnePLTSection(Section, PLTSI->EntrySize); 1726 1727 BinaryFunction *PltBF; 1728 auto BFIter = BC->getBinaryFunctions().find(Section.getAddress()); 1729 if (BFIter != BC->getBinaryFunctions().end()) { 1730 PltBF = &BFIter->second; 1731 } else { 1732 // If we did not register any function at the start of the section, 1733 // then it must be a general PLT entry. Add a function at the location. 1734 PltBF = BC->createBinaryFunction( 1735 "__BOLT_PSEUDO_" + Section.getName().str(), Section, 1736 Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment()); 1737 } 1738 PltBF->setPseudo(true); 1739 } 1740 } 1741 1742 void RewriteInstance::adjustFunctionBoundaries() { 1743 for (auto BFI = BC->getBinaryFunctions().begin(), 1744 BFE = BC->getBinaryFunctions().end(); 1745 BFI != BFE; ++BFI) { 1746 BinaryFunction &Function = BFI->second; 1747 const BinaryFunction *NextFunction = nullptr; 1748 if (std::next(BFI) != BFE) 1749 NextFunction = &std::next(BFI)->second; 1750 1751 // Check if there's a symbol or a function with a larger address in the 1752 // same section. If there is - it determines the maximum size for the 1753 // current function. Otherwise, it is the size of a containing section 1754 // the defines it. 1755 // 1756 // NOTE: ignore some symbols that could be tolerated inside the body 1757 // of a function. 1758 auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress()); 1759 while (NextSymRefI != FileSymRefs.end()) { 1760 SymbolRef &Symbol = NextSymRefI->second; 1761 const uint64_t SymbolAddress = NextSymRefI->first; 1762 const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 1763 1764 if (NextFunction && SymbolAddress >= NextFunction->getAddress()) 1765 break; 1766 1767 if (!Function.isSymbolValidInScope(Symbol, SymbolSize)) 1768 break; 1769 1770 // Skip basic block labels. This happens on RISC-V with linker relaxation 1771 // enabled because every branch needs a relocation and corresponding 1772 // symbol. We don't want to add such symbols as entry points. 1773 const auto PrivateLabelPrefix = BC->AsmInfo->getPrivateLabelPrefix(); 1774 if (!PrivateLabelPrefix.empty() && 1775 cantFail(Symbol.getName()).starts_with(PrivateLabelPrefix)) { 1776 ++NextSymRefI; 1777 continue; 1778 } 1779 1780 // This is potentially another entry point into the function. 1781 uint64_t EntryOffset = NextSymRefI->first - Function.getAddress(); 1782 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function " 1783 << Function << " at offset 0x" 1784 << Twine::utohexstr(EntryOffset) << '\n'); 1785 Function.addEntryPointAtOffset(EntryOffset); 1786 1787 ++NextSymRefI; 1788 } 1789 1790 // Function runs at most till the end of the containing section. 1791 uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress(); 1792 // Or till the next object marked by a symbol. 1793 if (NextSymRefI != FileSymRefs.end()) 1794 NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress); 1795 1796 // Or till the next function not marked by a symbol. 1797 if (NextFunction) 1798 NextObjectAddress = 1799 std::min(NextFunction->getAddress(), NextObjectAddress); 1800 1801 const uint64_t MaxSize = NextObjectAddress - Function.getAddress(); 1802 if (MaxSize < Function.getSize()) { 1803 BC->errs() << "BOLT-ERROR: symbol seen in the middle of the function " 1804 << Function << ". Skipping.\n"; 1805 Function.setSimple(false); 1806 Function.setMaxSize(Function.getSize()); 1807 continue; 1808 } 1809 Function.setMaxSize(MaxSize); 1810 if (!Function.getSize() && Function.isSimple()) { 1811 // Some assembly functions have their size set to 0, use the max 1812 // size as their real size. 1813 if (opts::Verbosity >= 1) 1814 BC->outs() << "BOLT-INFO: setting size of function " << Function 1815 << " to " << Function.getMaxSize() << " (was 0)\n"; 1816 Function.setSize(Function.getMaxSize()); 1817 } 1818 } 1819 } 1820 1821 void RewriteInstance::relocateEHFrameSection() { 1822 assert(EHFrameSection && "Non-empty .eh_frame section expected."); 1823 1824 BinarySection *RelocatedEHFrameSection = 1825 getSection(".relocated" + getEHFrameSectionName()); 1826 assert(RelocatedEHFrameSection && 1827 "Relocated eh_frame section should be preregistered."); 1828 DWARFDataExtractor DE(EHFrameSection->getContents(), 1829 BC->AsmInfo->isLittleEndian(), 1830 BC->AsmInfo->getCodePointerSize()); 1831 auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) { 1832 if (DwarfType == dwarf::DW_EH_PE_omit) 1833 return; 1834 1835 // Only fix references that are relative to other locations. 1836 if (!(DwarfType & dwarf::DW_EH_PE_pcrel) && 1837 !(DwarfType & dwarf::DW_EH_PE_textrel) && 1838 !(DwarfType & dwarf::DW_EH_PE_funcrel) && 1839 !(DwarfType & dwarf::DW_EH_PE_datarel)) 1840 return; 1841 1842 if (!(DwarfType & dwarf::DW_EH_PE_sdata4)) 1843 return; 1844 1845 uint64_t RelType; 1846 switch (DwarfType & 0x0f) { 1847 default: 1848 llvm_unreachable("unsupported DWARF encoding type"); 1849 case dwarf::DW_EH_PE_sdata4: 1850 case dwarf::DW_EH_PE_udata4: 1851 RelType = Relocation::getPC32(); 1852 Offset -= 4; 1853 break; 1854 case dwarf::DW_EH_PE_sdata8: 1855 case dwarf::DW_EH_PE_udata8: 1856 RelType = Relocation::getPC64(); 1857 Offset -= 8; 1858 break; 1859 } 1860 1861 // Create a relocation against an absolute value since the goal is to 1862 // preserve the contents of the section independent of the new values 1863 // of referenced symbols. 1864 RelocatedEHFrameSection->addRelocation(Offset, nullptr, RelType, Value); 1865 }; 1866 1867 Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc); 1868 check_error(std::move(E), "failed to patch EH frame"); 1869 } 1870 1871 Error RewriteInstance::readSpecialSections() { 1872 NamedRegionTimer T("readSpecialSections", "read special sections", 1873 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 1874 1875 bool HasTextRelocations = false; 1876 bool HasSymbolTable = false; 1877 bool HasDebugInfo = false; 1878 1879 // Process special sections. 1880 for (const SectionRef &Section : InputFile->sections()) { 1881 Expected<StringRef> SectionNameOrErr = Section.getName(); 1882 check_error(SectionNameOrErr.takeError(), "cannot get section name"); 1883 StringRef SectionName = *SectionNameOrErr; 1884 1885 if (Error E = Section.getContents().takeError()) 1886 return E; 1887 BC->registerSection(Section); 1888 LLVM_DEBUG( 1889 dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x" 1890 << Twine::utohexstr(Section.getAddress()) << ":0x" 1891 << Twine::utohexstr(Section.getAddress() + Section.getSize()) 1892 << "\n"); 1893 if (isDebugSection(SectionName)) 1894 HasDebugInfo = true; 1895 } 1896 1897 // Set IsRelro section attribute based on PT_GNU_RELRO segment. 1898 markGnuRelroSections(); 1899 1900 if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) { 1901 BC->errs() << "BOLT-WARNING: debug info will be stripped from the binary. " 1902 "Use -update-debug-sections to keep it.\n"; 1903 } 1904 1905 HasTextRelocations = (bool)BC->getUniqueSectionByName( 1906 ".rela" + std::string(BC->getMainCodeSectionName())); 1907 HasSymbolTable = (bool)BC->getUniqueSectionByName(".symtab"); 1908 EHFrameSection = BC->getUniqueSectionByName(".eh_frame"); 1909 1910 if (ErrorOr<BinarySection &> BATSec = 1911 BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) { 1912 BC->HasBATSection = true; 1913 // Do not read BAT when plotting a heatmap 1914 if (!opts::HeatmapMode) { 1915 if (std::error_code EC = BAT->parse(BC->outs(), BATSec->getContents())) { 1916 BC->errs() << "BOLT-ERROR: failed to parse BOLT address translation " 1917 "table.\n"; 1918 exit(1); 1919 } 1920 } 1921 } 1922 1923 if (opts::PrintSections) { 1924 BC->outs() << "BOLT-INFO: Sections from original binary:\n"; 1925 BC->printSections(BC->outs()); 1926 } 1927 1928 if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) { 1929 BC->errs() 1930 << "BOLT-ERROR: relocations against code are missing from the input " 1931 "file. Cannot proceed in relocations mode (-relocs).\n"; 1932 exit(1); 1933 } 1934 1935 BC->HasRelocations = 1936 HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE); 1937 1938 if (BC->IsLinuxKernel && BC->HasRelocations) { 1939 BC->outs() << "BOLT-INFO: disabling relocation mode for Linux kernel\n"; 1940 BC->HasRelocations = false; 1941 } 1942 1943 BC->IsStripped = !HasSymbolTable; 1944 1945 if (BC->IsStripped && !opts::AllowStripped) { 1946 BC->errs() 1947 << "BOLT-ERROR: stripped binaries are not supported. If you know " 1948 "what you're doing, use --allow-stripped to proceed"; 1949 exit(1); 1950 } 1951 1952 // Force non-relocation mode for heatmap generation 1953 if (opts::HeatmapMode) 1954 BC->HasRelocations = false; 1955 1956 if (BC->HasRelocations) 1957 BC->outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "") 1958 << "relocation mode\n"; 1959 1960 // Read EH frame for function boundaries info. 1961 Expected<const DWARFDebugFrame *> EHFrameOrError = BC->DwCtx->getEHFrame(); 1962 if (!EHFrameOrError) 1963 report_error("expected valid eh_frame section", EHFrameOrError.takeError()); 1964 CFIRdWrt.reset(new CFIReaderWriter(*BC, *EHFrameOrError.get())); 1965 1966 processSectionMetadata(); 1967 1968 // Read .dynamic/PT_DYNAMIC. 1969 return readELFDynamic(); 1970 } 1971 1972 void RewriteInstance::adjustCommandLineOptions() { 1973 if (BC->isAArch64() && !BC->HasRelocations) 1974 BC->errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully " 1975 "supported\n"; 1976 1977 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 1978 RtLibrary->adjustCommandLineOptions(*BC); 1979 1980 if (BC->isX86() && BC->MAB->allowAutoPadding()) { 1981 if (!BC->HasRelocations) { 1982 BC->errs() 1983 << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in " 1984 "non-relocation mode\n"; 1985 exit(1); 1986 } 1987 BC->outs() 1988 << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout " 1989 "may take several minutes\n"; 1990 } 1991 1992 if (opts::SplitEH && !BC->HasRelocations) { 1993 BC->errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n"; 1994 opts::SplitEH = false; 1995 } 1996 1997 if (opts::StrictMode && !BC->HasRelocations) { 1998 BC->errs() 1999 << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation " 2000 "mode\n"; 2001 opts::StrictMode = false; 2002 } 2003 2004 if (BC->HasRelocations && opts::AggregateOnly && 2005 !opts::StrictMode.getNumOccurrences()) { 2006 BC->outs() << "BOLT-INFO: enabling strict relocation mode for aggregation " 2007 "purposes\n"; 2008 opts::StrictMode = true; 2009 } 2010 2011 if (!BC->HasRelocations && 2012 opts::ReorderFunctions != ReorderFunctions::RT_NONE) { 2013 BC->errs() << "BOLT-ERROR: function reordering only works when " 2014 << "relocations are enabled\n"; 2015 exit(1); 2016 } 2017 2018 if (opts::Instrument || 2019 (opts::ReorderFunctions != ReorderFunctions::RT_NONE && 2020 !opts::HotText.getNumOccurrences())) { 2021 opts::HotText = true; 2022 } else if (opts::HotText && !BC->HasRelocations) { 2023 BC->errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n"; 2024 opts::HotText = false; 2025 } 2026 2027 if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) { 2028 opts::HotTextMoveSections.addValue(".stub"); 2029 opts::HotTextMoveSections.addValue(".mover"); 2030 opts::HotTextMoveSections.addValue(".never_hugify"); 2031 } 2032 2033 if (opts::UseOldText && !BC->OldTextSectionAddress) { 2034 BC->errs() 2035 << "BOLT-WARNING: cannot use old .text as the section was not found" 2036 "\n"; 2037 opts::UseOldText = false; 2038 } 2039 if (opts::UseOldText && !BC->HasRelocations) { 2040 BC->errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n"; 2041 opts::UseOldText = false; 2042 } 2043 2044 if (!opts::AlignText.getNumOccurrences()) 2045 opts::AlignText = BC->PageAlign; 2046 2047 if (opts::AlignText < opts::AlignFunctions) 2048 opts::AlignText = (unsigned)opts::AlignFunctions; 2049 2050 if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode && 2051 !opts::UseOldText) 2052 opts::Lite = true; 2053 2054 if (opts::Lite && opts::UseOldText) { 2055 BC->errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. " 2056 "Disabling -use-old-text.\n"; 2057 opts::UseOldText = false; 2058 } 2059 2060 if (opts::Lite && opts::StrictMode) { 2061 BC->errs() 2062 << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n"; 2063 exit(1); 2064 } 2065 2066 if (opts::Lite) 2067 BC->outs() << "BOLT-INFO: enabling lite mode\n"; 2068 2069 if (BC->IsLinuxKernel) { 2070 if (!opts::KeepNops.getNumOccurrences()) 2071 opts::KeepNops = true; 2072 2073 // Linux kernel may resume execution after a trap instruction in some cases. 2074 if (!opts::TerminalTrap.getNumOccurrences()) 2075 opts::TerminalTrap = false; 2076 } 2077 } 2078 2079 namespace { 2080 template <typename ELFT> 2081 int64_t getRelocationAddend(const ELFObjectFile<ELFT> *Obj, 2082 const RelocationRef &RelRef) { 2083 using ELFShdrTy = typename ELFT::Shdr; 2084 using Elf_Rela = typename ELFT::Rela; 2085 int64_t Addend = 0; 2086 const ELFFile<ELFT> &EF = Obj->getELFFile(); 2087 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 2088 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); 2089 switch (RelocationSection->sh_type) { 2090 default: 2091 llvm_unreachable("unexpected relocation section type"); 2092 case ELF::SHT_REL: 2093 break; 2094 case ELF::SHT_RELA: { 2095 const Elf_Rela *RelA = Obj->getRela(Rel); 2096 Addend = RelA->r_addend; 2097 break; 2098 } 2099 } 2100 2101 return Addend; 2102 } 2103 2104 int64_t getRelocationAddend(const ELFObjectFileBase *Obj, 2105 const RelocationRef &Rel) { 2106 return getRelocationAddend(cast<ELF64LEObjectFile>(Obj), Rel); 2107 } 2108 2109 template <typename ELFT> 2110 uint32_t getRelocationSymbol(const ELFObjectFile<ELFT> *Obj, 2111 const RelocationRef &RelRef) { 2112 using ELFShdrTy = typename ELFT::Shdr; 2113 uint32_t Symbol = 0; 2114 const ELFFile<ELFT> &EF = Obj->getELFFile(); 2115 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 2116 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); 2117 switch (RelocationSection->sh_type) { 2118 default: 2119 llvm_unreachable("unexpected relocation section type"); 2120 case ELF::SHT_REL: 2121 Symbol = Obj->getRel(Rel)->getSymbol(EF.isMips64EL()); 2122 break; 2123 case ELF::SHT_RELA: 2124 Symbol = Obj->getRela(Rel)->getSymbol(EF.isMips64EL()); 2125 break; 2126 } 2127 2128 return Symbol; 2129 } 2130 2131 uint32_t getRelocationSymbol(const ELFObjectFileBase *Obj, 2132 const RelocationRef &Rel) { 2133 return getRelocationSymbol(cast<ELF64LEObjectFile>(Obj), Rel); 2134 } 2135 } // anonymous namespace 2136 2137 bool RewriteInstance::analyzeRelocation( 2138 const RelocationRef &Rel, uint64_t &RType, std::string &SymbolName, 2139 bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend, 2140 uint64_t &ExtractedValue, bool &Skip) const { 2141 Skip = false; 2142 if (!Relocation::isSupported(RType)) 2143 return false; 2144 2145 const bool IsAArch64 = BC->isAArch64(); 2146 2147 const size_t RelSize = Relocation::getSizeForType(RType); 2148 2149 ErrorOr<uint64_t> Value = 2150 BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize); 2151 assert(Value && "failed to extract relocated value"); 2152 if ((Skip = Relocation::skipRelocationProcess(RType, *Value))) 2153 return true; 2154 2155 ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset()); 2156 Addend = getRelocationAddend(InputFile, Rel); 2157 2158 const bool IsPCRelative = Relocation::isPCRelative(RType); 2159 const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0; 2160 bool SkipVerification = false; 2161 auto SymbolIter = Rel.getSymbol(); 2162 if (SymbolIter == InputFile->symbol_end()) { 2163 SymbolAddress = ExtractedValue - Addend + PCRelOffset; 2164 MCSymbol *RelSymbol = 2165 BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat"); 2166 SymbolName = std::string(RelSymbol->getName()); 2167 IsSectionRelocation = false; 2168 } else { 2169 const SymbolRef &Symbol = *SymbolIter; 2170 SymbolName = std::string(cantFail(Symbol.getName())); 2171 SymbolAddress = cantFail(Symbol.getAddress()); 2172 SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other); 2173 // Section symbols are marked as ST_Debug. 2174 IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug); 2175 // Check for PLT entry registered with symbol name 2176 if (!SymbolAddress && (IsAArch64 || BC->isRISCV())) { 2177 const BinaryData *BD = BC->getPLTBinaryDataByName(SymbolName); 2178 SymbolAddress = BD ? BD->getAddress() : 0; 2179 } 2180 } 2181 // For PIE or dynamic libs, the linker may choose not to put the relocation 2182 // result at the address if it is a X86_64_64 one because it will emit a 2183 // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to 2184 // resolve it at run time. The static relocation result goes as the addend 2185 // of the dynamic relocation in this case. We can't verify these cases. 2186 // FIXME: perhaps we can try to find if it really emitted a corresponding 2187 // RELATIVE relocation at this offset with the correct value as the addend. 2188 if (!BC->HasFixedLoadAddress && RelSize == 8) 2189 SkipVerification = true; 2190 2191 if (IsSectionRelocation && !IsAArch64) { 2192 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); 2193 assert(Section && "section expected for section relocation"); 2194 SymbolName = "section " + std::string(Section->getName()); 2195 // Convert section symbol relocations to regular relocations inside 2196 // non-section symbols. 2197 if (Section->containsAddress(ExtractedValue) && !IsPCRelative) { 2198 SymbolAddress = ExtractedValue; 2199 Addend = 0; 2200 } else { 2201 Addend = ExtractedValue - (SymbolAddress - PCRelOffset); 2202 } 2203 } 2204 2205 // If no symbol has been found or if it is a relocation requiring the 2206 // creation of a GOT entry, do not link against the symbol but against 2207 // whatever address was extracted from the instruction itself. We are 2208 // not creating a GOT entry as this was already processed by the linker. 2209 // For GOT relocs, do not subtract addend as the addend does not refer 2210 // to this instruction's target, but it refers to the target in the GOT 2211 // entry. 2212 if (Relocation::isGOT(RType)) { 2213 Addend = 0; 2214 SymbolAddress = ExtractedValue + PCRelOffset; 2215 } else if (Relocation::isTLS(RType)) { 2216 SkipVerification = true; 2217 } else if (!SymbolAddress) { 2218 assert(!IsSectionRelocation); 2219 if (ExtractedValue || Addend == 0 || IsPCRelative) { 2220 SymbolAddress = 2221 truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize); 2222 } else { 2223 // This is weird case. The extracted value is zero but the addend is 2224 // non-zero and the relocation is not pc-rel. Using the previous logic, 2225 // the SymbolAddress would end up as a huge number. Seen in 2226 // exceptions_pic.test. 2227 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x" 2228 << Twine::utohexstr(Rel.getOffset()) 2229 << " value does not match addend for " 2230 << "relocation to undefined symbol.\n"); 2231 return true; 2232 } 2233 } 2234 2235 auto verifyExtractedValue = [&]() { 2236 if (SkipVerification) 2237 return true; 2238 2239 if (IsAArch64 || BC->isRISCV()) 2240 return true; 2241 2242 if (SymbolName == "__hot_start" || SymbolName == "__hot_end") 2243 return true; 2244 2245 if (RType == ELF::R_X86_64_PLT32) 2246 return true; 2247 2248 return truncateToSize(ExtractedValue, RelSize) == 2249 truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize); 2250 }; 2251 2252 (void)verifyExtractedValue; 2253 assert(verifyExtractedValue() && "mismatched extracted relocation value"); 2254 2255 return true; 2256 } 2257 2258 void RewriteInstance::processDynamicRelocations() { 2259 // Read .relr.dyn section containing compressed R_*_RELATIVE relocations. 2260 if (DynamicRelrSize > 0) { 2261 ErrorOr<BinarySection &> DynamicRelrSectionOrErr = 2262 BC->getSectionForAddress(*DynamicRelrAddress); 2263 if (!DynamicRelrSectionOrErr) 2264 report_error("unable to find section corresponding to DT_RELR", 2265 DynamicRelrSectionOrErr.getError()); 2266 if (DynamicRelrSectionOrErr->getSize() != DynamicRelrSize) 2267 report_error("section size mismatch for DT_RELRSZ", 2268 errc::executable_format_error); 2269 readDynamicRelrRelocations(*DynamicRelrSectionOrErr); 2270 } 2271 2272 // Read relocations for PLT - DT_JMPREL. 2273 if (PLTRelocationsSize > 0) { 2274 ErrorOr<BinarySection &> PLTRelSectionOrErr = 2275 BC->getSectionForAddress(*PLTRelocationsAddress); 2276 if (!PLTRelSectionOrErr) 2277 report_error("unable to find section corresponding to DT_JMPREL", 2278 PLTRelSectionOrErr.getError()); 2279 if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize) 2280 report_error("section size mismatch for DT_PLTRELSZ", 2281 errc::executable_format_error); 2282 readDynamicRelocations(PLTRelSectionOrErr->getSectionRef(), 2283 /*IsJmpRel*/ true); 2284 } 2285 2286 // The rest of dynamic relocations - DT_RELA. 2287 // The static executable might have .rela.dyn secion and not have PT_DYNAMIC 2288 if (!DynamicRelocationsSize && BC->IsStaticExecutable) { 2289 ErrorOr<BinarySection &> DynamicRelSectionOrErr = 2290 BC->getUniqueSectionByName(getRelaDynSectionName()); 2291 if (DynamicRelSectionOrErr) { 2292 DynamicRelocationsAddress = DynamicRelSectionOrErr->getAddress(); 2293 DynamicRelocationsSize = DynamicRelSectionOrErr->getSize(); 2294 const SectionRef &SectionRef = DynamicRelSectionOrErr->getSectionRef(); 2295 DynamicRelativeRelocationsCount = std::distance( 2296 SectionRef.relocation_begin(), SectionRef.relocation_end()); 2297 } 2298 } 2299 2300 if (DynamicRelocationsSize > 0) { 2301 ErrorOr<BinarySection &> DynamicRelSectionOrErr = 2302 BC->getSectionForAddress(*DynamicRelocationsAddress); 2303 if (!DynamicRelSectionOrErr) 2304 report_error("unable to find section corresponding to DT_RELA", 2305 DynamicRelSectionOrErr.getError()); 2306 auto DynamicRelSectionSize = DynamicRelSectionOrErr->getSize(); 2307 // On RISC-V DT_RELASZ seems to include both .rela.dyn and .rela.plt 2308 if (DynamicRelocationsSize == DynamicRelSectionSize + PLTRelocationsSize) 2309 DynamicRelocationsSize = DynamicRelSectionSize; 2310 if (DynamicRelSectionSize != DynamicRelocationsSize) 2311 report_error("section size mismatch for DT_RELASZ", 2312 errc::executable_format_error); 2313 readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef(), 2314 /*IsJmpRel*/ false); 2315 } 2316 } 2317 2318 void RewriteInstance::processRelocations() { 2319 if (!BC->HasRelocations) 2320 return; 2321 2322 for (const SectionRef &Section : InputFile->sections()) { 2323 section_iterator SecIter = cantFail(Section.getRelocatedSection()); 2324 if (SecIter == InputFile->section_end()) 2325 continue; 2326 if (BinarySection(*BC, Section).isAllocatable()) 2327 continue; 2328 2329 readRelocations(Section); 2330 } 2331 2332 if (NumFailedRelocations) 2333 BC->errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations 2334 << " relocations\n"; 2335 } 2336 2337 void RewriteInstance::readDynamicRelocations(const SectionRef &Section, 2338 bool IsJmpRel) { 2339 assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected"); 2340 2341 LLVM_DEBUG({ 2342 StringRef SectionName = cantFail(Section.getName()); 2343 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName 2344 << ":\n"; 2345 }); 2346 2347 for (const RelocationRef &Rel : Section.relocations()) { 2348 const uint64_t RType = Rel.getType(); 2349 if (Relocation::isNone(RType)) 2350 continue; 2351 2352 StringRef SymbolName = "<none>"; 2353 MCSymbol *Symbol = nullptr; 2354 uint64_t SymbolAddress = 0; 2355 const uint64_t Addend = getRelocationAddend(InputFile, Rel); 2356 2357 symbol_iterator SymbolIter = Rel.getSymbol(); 2358 if (SymbolIter != InputFile->symbol_end()) { 2359 SymbolName = cantFail(SymbolIter->getName()); 2360 BinaryData *BD = BC->getBinaryDataByName(SymbolName); 2361 Symbol = BD ? BD->getSymbol() 2362 : BC->getOrCreateUndefinedGlobalSymbol(SymbolName); 2363 SymbolAddress = cantFail(SymbolIter->getAddress()); 2364 (void)SymbolAddress; 2365 } 2366 2367 LLVM_DEBUG( 2368 SmallString<16> TypeName; 2369 Rel.getTypeName(TypeName); 2370 dbgs() << "BOLT-DEBUG: dynamic relocation at 0x" 2371 << Twine::utohexstr(Rel.getOffset()) << " : " << TypeName 2372 << " : " << SymbolName << " : " << Twine::utohexstr(SymbolAddress) 2373 << " : + 0x" << Twine::utohexstr(Addend) << '\n' 2374 ); 2375 2376 if (IsJmpRel) 2377 IsJmpRelocation[RType] = true; 2378 2379 if (Symbol) 2380 SymbolIndex[Symbol] = getRelocationSymbol(InputFile, Rel); 2381 2382 BC->addDynamicRelocation(Rel.getOffset(), Symbol, RType, Addend); 2383 } 2384 } 2385 2386 void RewriteInstance::readDynamicRelrRelocations(BinarySection &Section) { 2387 assert(Section.isAllocatable() && "allocatable expected"); 2388 2389 LLVM_DEBUG({ 2390 StringRef SectionName = Section.getName(); 2391 dbgs() << "BOLT-DEBUG: reading relocations in section " << SectionName 2392 << ":\n"; 2393 }); 2394 2395 const uint64_t RType = Relocation::getRelative(); 2396 const uint8_t PSize = BC->AsmInfo->getCodePointerSize(); 2397 const uint64_t MaxDelta = ((CHAR_BIT * DynamicRelrEntrySize) - 1) * PSize; 2398 2399 auto ExtractAddendValue = [&](uint64_t Address) -> uint64_t { 2400 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 2401 assert(Section && "cannot get section for data address from RELR"); 2402 DataExtractor DE = DataExtractor(Section->getContents(), 2403 BC->AsmInfo->isLittleEndian(), PSize); 2404 uint64_t Offset = Address - Section->getAddress(); 2405 return DE.getUnsigned(&Offset, PSize); 2406 }; 2407 2408 auto AddRelocation = [&](uint64_t Address) { 2409 uint64_t Addend = ExtractAddendValue(Address); 2410 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: R_*_RELATIVE relocation at 0x" 2411 << Twine::utohexstr(Address) << " to 0x" 2412 << Twine::utohexstr(Addend) << '\n';); 2413 BC->addDynamicRelocation(Address, nullptr, RType, Addend); 2414 }; 2415 2416 DataExtractor DE = DataExtractor(Section.getContents(), 2417 BC->AsmInfo->isLittleEndian(), PSize); 2418 uint64_t Offset = 0, Address = 0; 2419 uint64_t RelrCount = DynamicRelrSize / DynamicRelrEntrySize; 2420 while (RelrCount--) { 2421 assert(DE.isValidOffset(Offset)); 2422 uint64_t Entry = DE.getUnsigned(&Offset, DynamicRelrEntrySize); 2423 if ((Entry & 1) == 0) { 2424 AddRelocation(Entry); 2425 Address = Entry + PSize; 2426 } else { 2427 const uint64_t StartAddress = Address; 2428 while (Entry >>= 1) { 2429 if (Entry & 1) 2430 AddRelocation(Address); 2431 2432 Address += PSize; 2433 } 2434 2435 Address = StartAddress + MaxDelta; 2436 } 2437 } 2438 } 2439 2440 void RewriteInstance::printRelocationInfo(const RelocationRef &Rel, 2441 StringRef SymbolName, 2442 uint64_t SymbolAddress, 2443 uint64_t Addend, 2444 uint64_t ExtractedValue) const { 2445 SmallString<16> TypeName; 2446 Rel.getTypeName(TypeName); 2447 const uint64_t Address = SymbolAddress + Addend; 2448 const uint64_t Offset = Rel.getOffset(); 2449 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); 2450 BinaryFunction *Func = 2451 BC->getBinaryFunctionContainingAddress(Offset, false, BC->isAArch64()); 2452 dbgs() << formatv("Relocation: offset = {0:x}; type = {1}; value = {2:x}; ", 2453 Offset, TypeName, ExtractedValue) 2454 << formatv("symbol = {0} ({1}); symbol address = {2:x}; ", SymbolName, 2455 Section ? Section->getName() : "", SymbolAddress) 2456 << formatv("addend = {0:x}; address = {1:x}; in = ", Addend, Address); 2457 if (Func) 2458 dbgs() << Func->getPrintName(); 2459 else 2460 dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName(); 2461 dbgs() << '\n'; 2462 } 2463 2464 void RewriteInstance::readRelocations(const SectionRef &Section) { 2465 LLVM_DEBUG({ 2466 StringRef SectionName = cantFail(Section.getName()); 2467 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName 2468 << ":\n"; 2469 }); 2470 if (BinarySection(*BC, Section).isAllocatable()) { 2471 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n"); 2472 return; 2473 } 2474 section_iterator SecIter = cantFail(Section.getRelocatedSection()); 2475 assert(SecIter != InputFile->section_end() && "relocated section expected"); 2476 SectionRef RelocatedSection = *SecIter; 2477 2478 StringRef RelocatedSectionName = cantFail(RelocatedSection.getName()); 2479 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is " 2480 << RelocatedSectionName << '\n'); 2481 2482 if (!BinarySection(*BC, RelocatedSection).isAllocatable()) { 2483 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against " 2484 << "non-allocatable section\n"); 2485 return; 2486 } 2487 const bool SkipRelocs = StringSwitch<bool>(RelocatedSectionName) 2488 .Cases(".plt", ".rela.plt", ".got.plt", 2489 ".eh_frame", ".gcc_except_table", true) 2490 .Default(false); 2491 if (SkipRelocs) { 2492 LLVM_DEBUG( 2493 dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n"); 2494 return; 2495 } 2496 2497 for (const RelocationRef &Rel : Section.relocations()) 2498 handleRelocation(RelocatedSection, Rel); 2499 } 2500 2501 void RewriteInstance::handleRelocation(const SectionRef &RelocatedSection, 2502 const RelocationRef &Rel) { 2503 const bool IsAArch64 = BC->isAArch64(); 2504 const bool IsFromCode = RelocatedSection.isText(); 2505 2506 SmallString<16> TypeName; 2507 Rel.getTypeName(TypeName); 2508 uint64_t RType = Rel.getType(); 2509 if (Relocation::skipRelocationType(RType)) 2510 return; 2511 2512 // Adjust the relocation type as the linker might have skewed it. 2513 if (BC->isX86() && (RType & ELF::R_X86_64_converted_reloc_bit)) { 2514 if (opts::Verbosity >= 1) 2515 dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n"; 2516 RType &= ~ELF::R_X86_64_converted_reloc_bit; 2517 } 2518 2519 if (Relocation::isTLS(RType)) { 2520 // No special handling required for TLS relocations on X86. 2521 if (BC->isX86()) 2522 return; 2523 2524 // The non-got related TLS relocations on AArch64 and RISC-V also could be 2525 // skipped. 2526 if (!Relocation::isGOT(RType)) 2527 return; 2528 } 2529 2530 if (!IsAArch64 && BC->getDynamicRelocationAt(Rel.getOffset())) { 2531 LLVM_DEBUG({ 2532 dbgs() << formatv("BOLT-DEBUG: address {0:x} has a ", Rel.getOffset()) 2533 << "dynamic relocation against it. Ignoring static relocation.\n"; 2534 }); 2535 return; 2536 } 2537 2538 std::string SymbolName; 2539 uint64_t SymbolAddress; 2540 int64_t Addend; 2541 uint64_t ExtractedValue; 2542 bool IsSectionRelocation; 2543 bool Skip; 2544 if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation, 2545 SymbolAddress, Addend, ExtractedValue, Skip)) { 2546 LLVM_DEBUG({ 2547 dbgs() << "BOLT-WARNING: failed to analyze relocation @ offset = " 2548 << formatv("{0:x}; type name = {1}\n", Rel.getOffset(), TypeName); 2549 }); 2550 ++NumFailedRelocations; 2551 return; 2552 } 2553 2554 if (Skip) { 2555 LLVM_DEBUG({ 2556 dbgs() << "BOLT-DEBUG: skipping relocation @ offset = " 2557 << formatv("{0:x}; type name = {1}\n", Rel.getOffset(), TypeName); 2558 }); 2559 return; 2560 } 2561 2562 const uint64_t Address = SymbolAddress + Addend; 2563 2564 LLVM_DEBUG({ 2565 dbgs() << "BOLT-DEBUG: "; 2566 printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, ExtractedValue); 2567 }); 2568 2569 BinaryFunction *ContainingBF = nullptr; 2570 if (IsFromCode) { 2571 ContainingBF = 2572 BC->getBinaryFunctionContainingAddress(Rel.getOffset(), 2573 /*CheckPastEnd*/ false, 2574 /*UseMaxSize*/ true); 2575 assert(ContainingBF && "cannot find function for address in code"); 2576 if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) { 2577 if (opts::Verbosity >= 1) 2578 BC->outs() << formatv( 2579 "BOLT-INFO: {0} has relocations in padding area\n", *ContainingBF); 2580 ContainingBF->setSize(ContainingBF->getMaxSize()); 2581 ContainingBF->setSimple(false); 2582 return; 2583 } 2584 } 2585 2586 MCSymbol *ReferencedSymbol = nullptr; 2587 if (!IsSectionRelocation) { 2588 if (BinaryData *BD = BC->getBinaryDataByName(SymbolName)) 2589 ReferencedSymbol = BD->getSymbol(); 2590 else if (BC->isGOTSymbol(SymbolName)) 2591 if (BinaryData *BD = BC->getGOTSymbol()) 2592 ReferencedSymbol = BD->getSymbol(); 2593 } 2594 2595 ErrorOr<BinarySection &> ReferencedSection{std::errc::bad_address}; 2596 symbol_iterator SymbolIter = Rel.getSymbol(); 2597 if (SymbolIter != InputFile->symbol_end()) { 2598 SymbolRef Symbol = *SymbolIter; 2599 section_iterator Section = 2600 cantFail(Symbol.getSection(), "cannot get symbol section"); 2601 if (Section != InputFile->section_end()) { 2602 Expected<StringRef> SectionName = Section->getName(); 2603 if (SectionName && !SectionName->empty()) 2604 ReferencedSection = BC->getUniqueSectionByName(*SectionName); 2605 } else if (ReferencedSymbol && ContainingBF && 2606 (cantFail(Symbol.getFlags()) & SymbolRef::SF_Absolute)) { 2607 // This might be a relocation for an ABS symbols like __global_pointer$ on 2608 // RISC-V 2609 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, 2610 Rel.getType(), 0, 2611 cantFail(Symbol.getValue())); 2612 return; 2613 } 2614 } 2615 2616 if (!ReferencedSection) 2617 ReferencedSection = BC->getSectionForAddress(SymbolAddress); 2618 2619 const bool IsToCode = ReferencedSection && ReferencedSection->isText(); 2620 2621 // Special handling of PC-relative relocations. 2622 if (BC->isX86() && Relocation::isPCRelative(RType)) { 2623 if (!IsFromCode && IsToCode) { 2624 // PC-relative relocations from data to code are tricky since the 2625 // original information is typically lost after linking, even with 2626 // '--emit-relocs'. Such relocations are normally used by PIC-style 2627 // jump tables and they reference both the jump table and jump 2628 // targets by computing the difference between the two. If we blindly 2629 // apply the relocation, it will appear that it references an arbitrary 2630 // location in the code, possibly in a different function from the one 2631 // containing the jump table. 2632 // 2633 // For that reason, we only register the fact that there is a 2634 // PC-relative relocation at a given address against the code. 2635 // The actual referenced label/address will be determined during jump 2636 // table analysis. 2637 BC->addPCRelativeDataRelocation(Rel.getOffset()); 2638 } else if (ContainingBF && !IsSectionRelocation && ReferencedSymbol) { 2639 // If we know the referenced symbol, register the relocation from 2640 // the code. It's required to properly handle cases where 2641 // "symbol + addend" references an object different from "symbol". 2642 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, 2643 Addend, ExtractedValue); 2644 } else { 2645 LLVM_DEBUG({ 2646 dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at" 2647 << formatv("{0:x} for {1}\n", Rel.getOffset(), SymbolName); 2648 }); 2649 } 2650 2651 return; 2652 } 2653 2654 bool ForceRelocation = BC->forceSymbolRelocations(SymbolName); 2655 if ((BC->isAArch64() || BC->isRISCV()) && Relocation::isGOT(RType)) 2656 ForceRelocation = true; 2657 2658 if (!ReferencedSection && !ForceRelocation) { 2659 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n"); 2660 return; 2661 } 2662 2663 // Occasionally we may see a reference past the last byte of the function 2664 // typically as a result of __builtin_unreachable(). Check it here. 2665 BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress( 2666 Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64); 2667 2668 if (!IsSectionRelocation) { 2669 if (BinaryFunction *BF = 2670 BC->getBinaryFunctionContainingAddress(SymbolAddress)) { 2671 if (BF != ReferencedBF) { 2672 // It's possible we are referencing a function without referencing any 2673 // code, e.g. when taking a bitmask action on a function address. 2674 BC->errs() 2675 << "BOLT-WARNING: non-standard function reference (e.g. bitmask)" 2676 << formatv(" detected against function {0} from ", *BF); 2677 if (IsFromCode) 2678 BC->errs() << formatv("function {0}\n", *ContainingBF); 2679 else 2680 BC->errs() << formatv("data section at {0:x}\n", Rel.getOffset()); 2681 LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, 2682 ExtractedValue)); 2683 ReferencedBF = BF; 2684 } 2685 } 2686 } else if (ReferencedBF) { 2687 assert(ReferencedSection && "section expected for section relocation"); 2688 if (*ReferencedBF->getOriginSection() != *ReferencedSection) { 2689 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n"); 2690 ReferencedBF = nullptr; 2691 } 2692 } 2693 2694 // Workaround for a member function pointer de-virtualization bug. We check 2695 // if a non-pc-relative relocation in the code is pointing to (fptr - 1). 2696 if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) && 2697 (!ReferencedBF || (ReferencedBF->getAddress() != Address))) { 2698 if (const BinaryFunction *RogueBF = 2699 BC->getBinaryFunctionAtAddress(Address + 1)) { 2700 // Do an extra check that the function was referenced previously. 2701 // It's a linear search, but it should rarely happen. 2702 auto CheckReloc = [&](const Relocation &Rel) { 2703 return Rel.Symbol == RogueBF->getSymbol() && 2704 !Relocation::isPCRelative(Rel.Type); 2705 }; 2706 bool Found = llvm::any_of( 2707 llvm::make_second_range(ContainingBF->Relocations), CheckReloc); 2708 2709 if (Found) { 2710 BC->errs() 2711 << "BOLT-WARNING: detected possible compiler de-virtualization " 2712 "bug: -1 addend used with non-pc-relative relocation against " 2713 << formatv("function {0} in function {1}\n", *RogueBF, 2714 *ContainingBF); 2715 return; 2716 } 2717 } 2718 } 2719 2720 if (ForceRelocation) { 2721 std::string Name = 2722 Relocation::isGOT(RType) ? "__BOLT_got_zero" : SymbolName; 2723 ReferencedSymbol = BC->registerNameAtAddress(Name, 0, 0, 0); 2724 SymbolAddress = 0; 2725 if (Relocation::isGOT(RType)) 2726 Addend = Address; 2727 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol " 2728 << SymbolName << " with addend " << Addend << '\n'); 2729 } else if (ReferencedBF) { 2730 ReferencedSymbol = ReferencedBF->getSymbol(); 2731 uint64_t RefFunctionOffset = 0; 2732 2733 // Adjust the point of reference to a code location inside a function. 2734 if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */ true)) { 2735 RefFunctionOffset = Address - ReferencedBF->getAddress(); 2736 if (Relocation::isInstructionReference(RType)) { 2737 // Instruction labels are created while disassembling so we just leave 2738 // the symbol empty for now. Since the extracted value is typically 2739 // unrelated to the referenced symbol (e.g., %pcrel_lo in RISC-V 2740 // references an instruction but the patched value references the low 2741 // bits of a data address), we set the extracted value to the symbol 2742 // address in order to be able to correctly reconstruct the reference 2743 // later. 2744 ReferencedSymbol = nullptr; 2745 ExtractedValue = Address; 2746 } else if (RefFunctionOffset) { 2747 if (ContainingBF && ContainingBF != ReferencedBF) { 2748 ReferencedSymbol = 2749 ReferencedBF->addEntryPointAtOffset(RefFunctionOffset); 2750 } else { 2751 ReferencedSymbol = 2752 ReferencedBF->getOrCreateLocalLabel(Address, 2753 /*CreatePastEnd =*/true); 2754 2755 // If ContainingBF != nullptr, it equals ReferencedBF (see 2756 // if-condition above) so we're handling a relocation from a function 2757 // to itself. RISC-V uses such relocations for branches, for example. 2758 // These should not be registered as externally references offsets. 2759 if (!ContainingBF) 2760 ReferencedBF->registerReferencedOffset(RefFunctionOffset); 2761 } 2762 if (opts::Verbosity > 1 && 2763 BinarySection(*BC, RelocatedSection).isWritable()) 2764 BC->errs() 2765 << "BOLT-WARNING: writable reference into the middle of the " 2766 << formatv("function {0} detected at address {1:x}\n", 2767 *ReferencedBF, Rel.getOffset()); 2768 } 2769 SymbolAddress = Address; 2770 Addend = 0; 2771 } 2772 LLVM_DEBUG({ 2773 dbgs() << " referenced function " << *ReferencedBF; 2774 if (Address != ReferencedBF->getAddress()) 2775 dbgs() << formatv(" at offset {0:x}", RefFunctionOffset); 2776 dbgs() << '\n'; 2777 }); 2778 } else { 2779 if (IsToCode && SymbolAddress) { 2780 // This can happen e.g. with PIC-style jump tables. 2781 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for " 2782 "relocation against code\n"); 2783 } 2784 2785 // In AArch64 there are zero reasons to keep a reference to the 2786 // "original" symbol plus addend. The original symbol is probably just a 2787 // section symbol. If we are here, this means we are probably accessing 2788 // data, so it is imperative to keep the original address. 2789 if (IsAArch64) { 2790 SymbolName = formatv("SYMBOLat{0:x}", Address); 2791 SymbolAddress = Address; 2792 Addend = 0; 2793 } 2794 2795 if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) { 2796 // Note: this assertion is trying to check sanity of BinaryData objects 2797 // but AArch64 has inferred and incomplete object locations coming from 2798 // GOT/TLS or any other non-trivial relocation (that requires creation 2799 // of sections and whose symbol address is not really what should be 2800 // encoded in the instruction). So we essentially disabled this check 2801 // for AArch64 and live with bogus names for objects. 2802 assert((IsAArch64 || IsSectionRelocation || 2803 BD->nameStartsWith(SymbolName) || 2804 BD->nameStartsWith("PG" + SymbolName) || 2805 (BD->nameStartsWith("ANONYMOUS") && 2806 (BD->getSectionName().starts_with(".plt") || 2807 BD->getSectionName().ends_with(".plt")))) && 2808 "BOLT symbol names of all non-section relocations must match up " 2809 "with symbol names referenced in the relocation"); 2810 2811 if (IsSectionRelocation) 2812 BC->markAmbiguousRelocations(*BD, Address); 2813 2814 ReferencedSymbol = BD->getSymbol(); 2815 Addend += (SymbolAddress - BD->getAddress()); 2816 SymbolAddress = BD->getAddress(); 2817 assert(Address == SymbolAddress + Addend); 2818 } else { 2819 // These are mostly local data symbols but undefined symbols 2820 // in relocation sections can get through here too, from .plt. 2821 assert( 2822 (IsAArch64 || BC->isRISCV() || IsSectionRelocation || 2823 BC->getSectionNameForAddress(SymbolAddress)->starts_with(".plt")) && 2824 "known symbols should not resolve to anonymous locals"); 2825 2826 if (IsSectionRelocation) { 2827 ReferencedSymbol = 2828 BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat"); 2829 } else { 2830 SymbolRef Symbol = *Rel.getSymbol(); 2831 const uint64_t SymbolSize = 2832 IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize(); 2833 const uint64_t SymbolAlignment = IsAArch64 ? 1 : Symbol.getAlignment(); 2834 const uint32_t SymbolFlags = cantFail(Symbol.getFlags()); 2835 std::string Name; 2836 if (SymbolFlags & SymbolRef::SF_Global) { 2837 Name = SymbolName; 2838 } else { 2839 if (StringRef(SymbolName) 2840 .starts_with(BC->AsmInfo->getPrivateGlobalPrefix())) 2841 Name = NR.uniquify("PG" + SymbolName); 2842 else 2843 Name = NR.uniquify(SymbolName); 2844 } 2845 ReferencedSymbol = BC->registerNameAtAddress( 2846 Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags); 2847 } 2848 2849 if (IsSectionRelocation) { 2850 BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName()); 2851 BC->markAmbiguousRelocations(*BD, Address); 2852 } 2853 } 2854 } 2855 2856 auto checkMaxDataRelocations = [&]() { 2857 ++NumDataRelocations; 2858 LLVM_DEBUG(if (opts::MaxDataRelocations && 2859 NumDataRelocations + 1 == opts::MaxDataRelocations) { 2860 dbgs() << "BOLT-DEBUG: processing ending on data relocation " 2861 << NumDataRelocations << ": "; 2862 printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress, 2863 Addend, ExtractedValue); 2864 }); 2865 2866 return (!opts::MaxDataRelocations || 2867 NumDataRelocations < opts::MaxDataRelocations); 2868 }; 2869 2870 if ((ReferencedSection && refersToReorderedSection(ReferencedSection)) || 2871 (opts::ForceToDataRelocations && checkMaxDataRelocations()) || 2872 // RISC-V has ADD/SUB data-to-data relocations 2873 BC->isRISCV()) 2874 ForceRelocation = true; 2875 2876 if (IsFromCode) 2877 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, 2878 Addend, ExtractedValue); 2879 else if (IsToCode || ForceRelocation) 2880 BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend, 2881 ExtractedValue); 2882 else 2883 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n"); 2884 } 2885 2886 void RewriteInstance::selectFunctionsToProcess() { 2887 // Extend the list of functions to process or skip from a file. 2888 auto populateFunctionNames = [](cl::opt<std::string> &FunctionNamesFile, 2889 cl::list<std::string> &FunctionNames) { 2890 if (FunctionNamesFile.empty()) 2891 return; 2892 std::ifstream FuncsFile(FunctionNamesFile, std::ios::in); 2893 std::string FuncName; 2894 while (std::getline(FuncsFile, FuncName)) 2895 FunctionNames.push_back(FuncName); 2896 }; 2897 populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames); 2898 populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames); 2899 populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR); 2900 2901 // Make a set of functions to process to speed up lookups. 2902 std::unordered_set<std::string> ForceFunctionsNR( 2903 opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end()); 2904 2905 if ((!opts::ForceFunctionNames.empty() || 2906 !opts::ForceFunctionNamesNR.empty()) && 2907 !opts::SkipFunctionNames.empty()) { 2908 BC->errs() 2909 << "BOLT-ERROR: cannot select functions to process and skip at the " 2910 "same time. Please use only one type of selection.\n"; 2911 exit(1); 2912 } 2913 2914 uint64_t LiteThresholdExecCount = 0; 2915 if (opts::LiteThresholdPct) { 2916 if (opts::LiteThresholdPct > 100) 2917 opts::LiteThresholdPct = 100; 2918 2919 std::vector<const BinaryFunction *> TopFunctions; 2920 for (auto &BFI : BC->getBinaryFunctions()) { 2921 const BinaryFunction &Function = BFI.second; 2922 if (ProfileReader->mayHaveProfileData(Function)) 2923 TopFunctions.push_back(&Function); 2924 } 2925 llvm::sort( 2926 TopFunctions, [](const BinaryFunction *A, const BinaryFunction *B) { 2927 return A->getKnownExecutionCount() < B->getKnownExecutionCount(); 2928 }); 2929 2930 size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100; 2931 if (Index) 2932 --Index; 2933 LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount(); 2934 BC->outs() << "BOLT-INFO: limiting processing to functions with at least " 2935 << LiteThresholdExecCount << " invocations\n"; 2936 } 2937 LiteThresholdExecCount = std::max( 2938 LiteThresholdExecCount, static_cast<uint64_t>(opts::LiteThresholdCount)); 2939 2940 StringSet<> ReorderFunctionsUserSet; 2941 StringSet<> ReorderFunctionsLTOCommonSet; 2942 if (opts::ReorderFunctions == ReorderFunctions::RT_USER) { 2943 std::vector<std::string> FunctionNames; 2944 BC->logBOLTErrorsAndQuitOnFatal( 2945 ReorderFunctions::readFunctionOrderFile(FunctionNames)); 2946 for (const std::string &Function : FunctionNames) { 2947 ReorderFunctionsUserSet.insert(Function); 2948 if (std::optional<StringRef> LTOCommonName = getLTOCommonName(Function)) 2949 ReorderFunctionsLTOCommonSet.insert(*LTOCommonName); 2950 } 2951 } 2952 2953 uint64_t NumFunctionsToProcess = 0; 2954 auto mustSkip = [&](const BinaryFunction &Function) { 2955 if (opts::MaxFunctions.getNumOccurrences() && 2956 NumFunctionsToProcess >= opts::MaxFunctions) 2957 return true; 2958 for (std::string &Name : opts::SkipFunctionNames) 2959 if (Function.hasNameRegex(Name)) 2960 return true; 2961 2962 return false; 2963 }; 2964 2965 auto shouldProcess = [&](const BinaryFunction &Function) { 2966 if (mustSkip(Function)) 2967 return false; 2968 2969 // If the list is not empty, only process functions from the list. 2970 if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) { 2971 // Regex check (-funcs and -funcs-file options). 2972 for (std::string &Name : opts::ForceFunctionNames) 2973 if (Function.hasNameRegex(Name)) 2974 return true; 2975 2976 // Non-regex check (-funcs-no-regex and -funcs-file-no-regex). 2977 for (const StringRef Name : Function.getNames()) 2978 if (ForceFunctionsNR.count(Name.str())) 2979 return true; 2980 2981 return false; 2982 } 2983 2984 if (opts::Lite) { 2985 // Forcibly include functions specified in the -function-order file. 2986 if (opts::ReorderFunctions == ReorderFunctions::RT_USER) { 2987 for (const StringRef Name : Function.getNames()) 2988 if (ReorderFunctionsUserSet.contains(Name)) 2989 return true; 2990 for (const StringRef Name : Function.getNames()) 2991 if (std::optional<StringRef> LTOCommonName = getLTOCommonName(Name)) 2992 if (ReorderFunctionsLTOCommonSet.contains(*LTOCommonName)) 2993 return true; 2994 } 2995 2996 if (ProfileReader && !ProfileReader->mayHaveProfileData(Function)) 2997 return false; 2998 2999 if (Function.getKnownExecutionCount() < LiteThresholdExecCount) 3000 return false; 3001 } 3002 3003 return true; 3004 }; 3005 3006 for (auto &BFI : BC->getBinaryFunctions()) { 3007 BinaryFunction &Function = BFI.second; 3008 3009 // Pseudo functions are explicitly marked by us not to be processed. 3010 if (Function.isPseudo()) { 3011 Function.IsIgnored = true; 3012 Function.HasExternalRefRelocations = true; 3013 continue; 3014 } 3015 3016 // Decide what to do with fragments after parent functions are processed. 3017 if (Function.isFragment()) 3018 continue; 3019 3020 if (!shouldProcess(Function)) { 3021 if (opts::Verbosity >= 1) { 3022 BC->outs() << "BOLT-INFO: skipping processing " << Function 3023 << " per user request\n"; 3024 } 3025 Function.setIgnored(); 3026 } else { 3027 ++NumFunctionsToProcess; 3028 if (opts::MaxFunctions.getNumOccurrences() && 3029 NumFunctionsToProcess == opts::MaxFunctions) 3030 BC->outs() << "BOLT-INFO: processing ending on " << Function << '\n'; 3031 } 3032 } 3033 3034 if (!BC->HasSplitFunctions) 3035 return; 3036 3037 // Fragment overrides: 3038 // - If the fragment must be skipped, then the parent must be skipped as well. 3039 // Otherwise, fragment should follow the parent function: 3040 // - if the parent is skipped, skip fragment, 3041 // - if the parent is processed, process the fragment(s) as well. 3042 for (auto &BFI : BC->getBinaryFunctions()) { 3043 BinaryFunction &Function = BFI.second; 3044 if (!Function.isFragment()) 3045 continue; 3046 if (mustSkip(Function)) { 3047 for (BinaryFunction *Parent : Function.ParentFragments) { 3048 if (opts::Verbosity >= 1) { 3049 BC->outs() << "BOLT-INFO: skipping processing " << *Parent 3050 << " together with fragment function\n"; 3051 } 3052 Parent->setIgnored(); 3053 --NumFunctionsToProcess; 3054 } 3055 Function.setIgnored(); 3056 continue; 3057 } 3058 3059 bool IgnoredParent = 3060 llvm::any_of(Function.ParentFragments, [&](BinaryFunction *Parent) { 3061 return Parent->isIgnored(); 3062 }); 3063 if (IgnoredParent) { 3064 if (opts::Verbosity >= 1) { 3065 BC->outs() << "BOLT-INFO: skipping processing " << Function 3066 << " together with parent function\n"; 3067 } 3068 Function.setIgnored(); 3069 } else { 3070 ++NumFunctionsToProcess; 3071 if (opts::Verbosity >= 1) { 3072 BC->outs() << "BOLT-INFO: processing " << Function 3073 << " as a sibling of non-ignored function\n"; 3074 } 3075 if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions) 3076 BC->outs() << "BOLT-INFO: processing ending on " << Function << '\n'; 3077 } 3078 } 3079 } 3080 3081 void RewriteInstance::readDebugInfo() { 3082 NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName, 3083 TimerGroupDesc, opts::TimeRewrite); 3084 if (!opts::UpdateDebugSections) 3085 return; 3086 3087 BC->preprocessDebugInfo(); 3088 } 3089 3090 void RewriteInstance::preprocessProfileData() { 3091 if (!ProfileReader) 3092 return; 3093 3094 NamedRegionTimer T("preprocessprofile", "pre-process profile data", 3095 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3096 3097 BC->outs() << "BOLT-INFO: pre-processing profile using " 3098 << ProfileReader->getReaderName() << '\n'; 3099 3100 if (BAT->enabledFor(InputFile)) { 3101 BC->outs() << "BOLT-INFO: profile collection done on a binary already " 3102 "processed by BOLT\n"; 3103 ProfileReader->setBAT(&*BAT); 3104 } 3105 3106 if (Error E = ProfileReader->preprocessProfile(*BC.get())) 3107 report_error("cannot pre-process profile", std::move(E)); 3108 3109 if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName() && 3110 !opts::AllowStripped) { 3111 BC->errs() 3112 << "BOLT-ERROR: input binary does not have local file symbols " 3113 "but profile data includes function names with embedded file " 3114 "names. It appears that the input binary was stripped while a " 3115 "profiled binary was not. If you know what you are doing and " 3116 "wish to proceed, use -allow-stripped option.\n"; 3117 exit(1); 3118 } 3119 } 3120 3121 void RewriteInstance::initializeMetadataManager() { 3122 if (BC->IsLinuxKernel) 3123 MetadataManager.registerRewriter(createLinuxKernelRewriter(*BC)); 3124 3125 MetadataManager.registerRewriter(createBuildIDRewriter(*BC)); 3126 3127 MetadataManager.registerRewriter(createPseudoProbeRewriter(*BC)); 3128 3129 MetadataManager.registerRewriter(createSDTRewriter(*BC)); 3130 } 3131 3132 void RewriteInstance::processSectionMetadata() { 3133 initializeMetadataManager(); 3134 3135 MetadataManager.runSectionInitializers(); 3136 } 3137 3138 void RewriteInstance::processMetadataPreCFG() { 3139 MetadataManager.runInitializersPreCFG(); 3140 3141 processProfileDataPreCFG(); 3142 } 3143 3144 void RewriteInstance::processMetadataPostCFG() { 3145 MetadataManager.runInitializersPostCFG(); 3146 } 3147 3148 void RewriteInstance::processProfileDataPreCFG() { 3149 if (!ProfileReader) 3150 return; 3151 3152 NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG", 3153 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3154 3155 if (Error E = ProfileReader->readProfilePreCFG(*BC.get())) 3156 report_error("cannot read profile pre-CFG", std::move(E)); 3157 } 3158 3159 void RewriteInstance::processProfileData() { 3160 if (!ProfileReader) 3161 return; 3162 3163 NamedRegionTimer T("processprofile", "process profile data", TimerGroupName, 3164 TimerGroupDesc, opts::TimeRewrite); 3165 3166 if (Error E = ProfileReader->readProfile(*BC.get())) 3167 report_error("cannot read profile", std::move(E)); 3168 3169 if (opts::PrintProfile || opts::PrintAll) { 3170 for (auto &BFI : BC->getBinaryFunctions()) { 3171 BinaryFunction &Function = BFI.second; 3172 if (Function.empty()) 3173 continue; 3174 3175 Function.print(BC->outs(), "after attaching profile"); 3176 } 3177 } 3178 3179 if (!opts::SaveProfile.empty() && !BAT->enabledFor(InputFile)) { 3180 YAMLProfileWriter PW(opts::SaveProfile); 3181 PW.writeProfile(*this); 3182 } 3183 if (opts::AggregateOnly && 3184 opts::ProfileFormat == opts::ProfileFormatKind::PF_YAML && 3185 !BAT->enabledFor(InputFile)) { 3186 YAMLProfileWriter PW(opts::OutputFilename); 3187 PW.writeProfile(*this); 3188 } 3189 3190 // Release memory used by profile reader. 3191 ProfileReader.reset(); 3192 3193 if (opts::AggregateOnly) { 3194 PrintProgramStats PPS(&*BAT); 3195 BC->logBOLTErrorsAndQuitOnFatal(PPS.runOnFunctions(*BC)); 3196 exit(0); 3197 } 3198 } 3199 3200 void RewriteInstance::disassembleFunctions() { 3201 NamedRegionTimer T("disassembleFunctions", "disassemble functions", 3202 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3203 for (auto &BFI : BC->getBinaryFunctions()) { 3204 BinaryFunction &Function = BFI.second; 3205 3206 ErrorOr<ArrayRef<uint8_t>> FunctionData = Function.getData(); 3207 if (!FunctionData) { 3208 BC->errs() << "BOLT-ERROR: corresponding section is non-executable or " 3209 << "empty for function " << Function << '\n'; 3210 exit(1); 3211 } 3212 3213 // Treat zero-sized functions as non-simple ones. 3214 if (Function.getSize() == 0) { 3215 Function.setSimple(false); 3216 continue; 3217 } 3218 3219 // Offset of the function in the file. 3220 const auto *FileBegin = 3221 reinterpret_cast<const uint8_t *>(InputFile->getData().data()); 3222 Function.setFileOffset(FunctionData->begin() - FileBegin); 3223 3224 if (!shouldDisassemble(Function)) { 3225 NamedRegionTimer T("scan", "scan functions", "buildfuncs", 3226 "Scan Binary Functions", opts::TimeBuild); 3227 Function.scanExternalRefs(); 3228 Function.setSimple(false); 3229 continue; 3230 } 3231 3232 bool DisasmFailed{false}; 3233 handleAllErrors(Function.disassemble(), [&](const BOLTError &E) { 3234 DisasmFailed = true; 3235 if (E.isFatal()) { 3236 E.log(BC->errs()); 3237 exit(1); 3238 } 3239 if (opts::processAllFunctions()) { 3240 BC->errs() << BC->generateBugReportMessage( 3241 "function cannot be properly disassembled. " 3242 "Unable to continue in relocation mode.", 3243 Function); 3244 exit(1); 3245 } 3246 if (opts::Verbosity >= 1) 3247 BC->outs() << "BOLT-INFO: could not disassemble function " << Function 3248 << ". Will ignore.\n"; 3249 // Forcefully ignore the function. 3250 Function.setIgnored(); 3251 }); 3252 3253 if (DisasmFailed) 3254 continue; 3255 3256 if (opts::PrintAll || opts::PrintDisasm) 3257 Function.print(BC->outs(), "after disassembly"); 3258 } 3259 3260 BC->processInterproceduralReferences(); 3261 BC->populateJumpTables(); 3262 3263 for (auto &BFI : BC->getBinaryFunctions()) { 3264 BinaryFunction &Function = BFI.second; 3265 3266 if (!shouldDisassemble(Function)) 3267 continue; 3268 3269 Function.postProcessEntryPoints(); 3270 Function.postProcessJumpTables(); 3271 } 3272 3273 BC->clearJumpTableTempData(); 3274 BC->adjustCodePadding(); 3275 3276 for (auto &BFI : BC->getBinaryFunctions()) { 3277 BinaryFunction &Function = BFI.second; 3278 3279 if (!shouldDisassemble(Function)) 3280 continue; 3281 3282 if (!Function.isSimple()) { 3283 assert((!BC->HasRelocations || Function.getSize() == 0 || 3284 Function.hasIndirectTargetToSplitFragment()) && 3285 "unexpected non-simple function in relocation mode"); 3286 continue; 3287 } 3288 3289 // Fill in CFI information for this function 3290 if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) { 3291 if (BC->HasRelocations) { 3292 BC->errs() << BC->generateBugReportMessage("unable to fill CFI.", 3293 Function); 3294 exit(1); 3295 } else { 3296 BC->errs() << "BOLT-WARNING: unable to fill CFI for function " 3297 << Function << ". Skipping.\n"; 3298 Function.setSimple(false); 3299 continue; 3300 } 3301 } 3302 3303 // Parse LSDA. 3304 if (Function.getLSDAAddress() != 0 && 3305 !BC->getFragmentsToSkip().count(&Function)) { 3306 ErrorOr<BinarySection &> LSDASection = 3307 BC->getSectionForAddress(Function.getLSDAAddress()); 3308 check_error(LSDASection.getError(), "failed to get LSDA section"); 3309 ArrayRef<uint8_t> LSDAData = ArrayRef<uint8_t>( 3310 LSDASection->getData(), LSDASection->getContents().size()); 3311 BC->logBOLTErrorsAndQuitOnFatal( 3312 Function.parseLSDA(LSDAData, LSDASection->getAddress())); 3313 } 3314 } 3315 } 3316 3317 void RewriteInstance::buildFunctionsCFG() { 3318 NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs", 3319 "Build Binary Functions", opts::TimeBuild); 3320 3321 // Create annotation indices to allow lock-free execution 3322 BC->MIB->getOrCreateAnnotationIndex("JTIndexReg"); 3323 BC->MIB->getOrCreateAnnotationIndex("NOP"); 3324 3325 ParallelUtilities::WorkFuncWithAllocTy WorkFun = 3326 [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) { 3327 bool HadErrors{false}; 3328 handleAllErrors(BF.buildCFG(AllocId), [&](const BOLTError &E) { 3329 if (!E.getMessage().empty()) 3330 E.log(BC->errs()); 3331 if (E.isFatal()) 3332 exit(1); 3333 HadErrors = true; 3334 }); 3335 3336 if (HadErrors) 3337 return; 3338 3339 if (opts::PrintAll) { 3340 auto L = BC->scopeLock(); 3341 BF.print(BC->outs(), "while building cfg"); 3342 } 3343 }; 3344 3345 ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) { 3346 return !shouldDisassemble(BF) || !BF.isSimple(); 3347 }; 3348 3349 ParallelUtilities::runOnEachFunctionWithUniqueAllocId( 3350 *BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun, 3351 SkipPredicate, "disassembleFunctions-buildCFG", 3352 /*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll); 3353 3354 BC->postProcessSymbolTable(); 3355 } 3356 3357 void RewriteInstance::postProcessFunctions() { 3358 // We mark fragments as non-simple here, not during disassembly, 3359 // So we can build their CFGs. 3360 BC->skipMarkedFragments(); 3361 BC->clearFragmentsToSkip(); 3362 3363 BC->TotalScore = 0; 3364 BC->SumExecutionCount = 0; 3365 for (auto &BFI : BC->getBinaryFunctions()) { 3366 BinaryFunction &Function = BFI.second; 3367 3368 // Set function as non-simple if it has dynamic relocations 3369 // in constant island, we don't want this function to be optimized 3370 // e.g. function splitting is unsupported. 3371 if (Function.hasDynamicRelocationAtIsland()) 3372 Function.setSimple(false); 3373 3374 if (Function.empty()) 3375 continue; 3376 3377 Function.postProcessCFG(); 3378 3379 if (opts::PrintAll || opts::PrintCFG) 3380 Function.print(BC->outs(), "after building cfg"); 3381 3382 if (opts::DumpDotAll) 3383 Function.dumpGraphForPass("00_build-cfg"); 3384 3385 if (opts::PrintLoopInfo) { 3386 Function.calculateLoopInfo(); 3387 Function.printLoopInfo(BC->outs()); 3388 } 3389 3390 BC->TotalScore += Function.getFunctionScore(); 3391 BC->SumExecutionCount += Function.getKnownExecutionCount(); 3392 } 3393 3394 if (opts::PrintGlobals) { 3395 BC->outs() << "BOLT-INFO: Global symbols:\n"; 3396 BC->printGlobalSymbols(BC->outs()); 3397 } 3398 } 3399 3400 void RewriteInstance::runOptimizationPasses() { 3401 NamedRegionTimer T("runOptimizationPasses", "run optimization passes", 3402 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3403 BC->logBOLTErrorsAndQuitOnFatal(BinaryFunctionPassManager::runAllPasses(*BC)); 3404 } 3405 3406 void RewriteInstance::preregisterSections() { 3407 // Preregister sections before emission to set their order in the output. 3408 const unsigned ROFlags = BinarySection::getFlags(/*IsReadOnly*/ true, 3409 /*IsText*/ false, 3410 /*IsAllocatable*/ true); 3411 if (BinarySection *EHFrameSection = getSection(getEHFrameSectionName())) { 3412 // New .eh_frame. 3413 BC->registerOrUpdateSection(getNewSecPrefix() + getEHFrameSectionName(), 3414 ELF::SHT_PROGBITS, ROFlags); 3415 // Fully register a relocatable copy of the original .eh_frame. 3416 BC->registerSection(".relocated.eh_frame", *EHFrameSection); 3417 } 3418 BC->registerOrUpdateSection(getNewSecPrefix() + ".gcc_except_table", 3419 ELF::SHT_PROGBITS, ROFlags); 3420 BC->registerOrUpdateSection(getNewSecPrefix() + ".rodata", ELF::SHT_PROGBITS, 3421 ROFlags); 3422 BC->registerOrUpdateSection(getNewSecPrefix() + ".rodata.cold", 3423 ELF::SHT_PROGBITS, ROFlags); 3424 } 3425 3426 void RewriteInstance::emitAndLink() { 3427 NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName, 3428 TimerGroupDesc, opts::TimeRewrite); 3429 3430 SmallString<0> ObjectBuffer; 3431 raw_svector_ostream OS(ObjectBuffer); 3432 3433 // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB) 3434 // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these 3435 // two instances. 3436 std::unique_ptr<MCStreamer> Streamer = BC->createStreamer(OS); 3437 3438 if (EHFrameSection) { 3439 if (opts::UseOldText || opts::StrictMode) { 3440 // The section is going to be regenerated from scratch. 3441 // Empty the contents, but keep the section reference. 3442 EHFrameSection->clearContents(); 3443 } else { 3444 // Make .eh_frame relocatable. 3445 relocateEHFrameSection(); 3446 } 3447 } 3448 3449 emitBinaryContext(*Streamer, *BC, getOrgSecPrefix()); 3450 3451 Streamer->finish(); 3452 if (Streamer->getContext().hadError()) { 3453 BC->errs() << "BOLT-ERROR: Emission failed.\n"; 3454 exit(1); 3455 } 3456 3457 if (opts::KeepTmp) { 3458 SmallString<128> OutObjectPath; 3459 sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath); 3460 std::error_code EC; 3461 raw_fd_ostream FOS(OutObjectPath, EC); 3462 check_error(EC, "cannot create output object file"); 3463 FOS << ObjectBuffer; 3464 BC->outs() 3465 << "BOLT-INFO: intermediary output object file saved for debugging " 3466 "purposes: " 3467 << OutObjectPath << "\n"; 3468 } 3469 3470 ErrorOr<BinarySection &> TextSection = 3471 BC->getUniqueSectionByName(BC->getMainCodeSectionName()); 3472 if (BC->HasRelocations && TextSection) 3473 BC->renameSection(*TextSection, 3474 getOrgSecPrefix() + BC->getMainCodeSectionName()); 3475 3476 ////////////////////////////////////////////////////////////////////////////// 3477 // Assign addresses to new sections. 3478 ////////////////////////////////////////////////////////////////////////////// 3479 3480 // Get output object as ObjectFile. 3481 std::unique_ptr<MemoryBuffer> ObjectMemBuffer = 3482 MemoryBuffer::getMemBuffer(ObjectBuffer, "in-memory object file", false); 3483 3484 auto EFMM = std::make_unique<ExecutableFileMemoryManager>(*BC); 3485 EFMM->setNewSecPrefix(getNewSecPrefix()); 3486 EFMM->setOrgSecPrefix(getOrgSecPrefix()); 3487 3488 Linker = std::make_unique<JITLinkLinker>(*BC, std::move(EFMM)); 3489 Linker->loadObject(ObjectMemBuffer->getMemBufferRef(), 3490 [this](auto MapSection) { mapFileSections(MapSection); }); 3491 3492 // Update output addresses based on the new section map and 3493 // layout. Only do this for the object created by ourselves. 3494 updateOutputValues(*Linker); 3495 3496 if (opts::UpdateDebugSections) { 3497 DebugInfoRewriter->updateLineTableOffsets( 3498 static_cast<MCObjectStreamer &>(*Streamer).getAssembler()); 3499 } 3500 3501 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 3502 RtLibrary->link(*BC, ToolPath, *Linker, [this](auto MapSection) { 3503 // Map newly registered sections. 3504 this->mapAllocatableSections(MapSection); 3505 }); 3506 3507 // Once the code is emitted, we can rename function sections to actual 3508 // output sections and de-register sections used for emission. 3509 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { 3510 ErrorOr<BinarySection &> Section = Function->getCodeSection(); 3511 if (Section && 3512 (Function->getImageAddress() == 0 || Function->getImageSize() == 0)) 3513 continue; 3514 3515 // Restore origin section for functions that were emitted or supposed to 3516 // be emitted to patch sections. 3517 if (Section) 3518 BC->deregisterSection(*Section); 3519 assert(Function->getOriginSectionName() && "expected origin section"); 3520 Function->CodeSectionName = Function->getOriginSectionName()->str(); 3521 for (const FunctionFragment &FF : 3522 Function->getLayout().getSplitFragments()) { 3523 if (ErrorOr<BinarySection &> ColdSection = 3524 Function->getCodeSection(FF.getFragmentNum())) 3525 BC->deregisterSection(*ColdSection); 3526 } 3527 if (Function->getLayout().isSplit()) 3528 Function->setColdCodeSectionName(getBOLTTextSectionName()); 3529 } 3530 3531 if (opts::PrintCacheMetrics) { 3532 BC->outs() << "BOLT-INFO: cache metrics after emitting functions:\n"; 3533 CacheMetrics::printAll(BC->outs(), BC->getSortedFunctions()); 3534 } 3535 } 3536 3537 void RewriteInstance::finalizeMetadataPreEmit() { 3538 MetadataManager.runFinalizersPreEmit(); 3539 } 3540 3541 void RewriteInstance::updateMetadata() { 3542 MetadataManager.runFinalizersAfterEmit(); 3543 3544 if (opts::UpdateDebugSections) { 3545 NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName, 3546 TimerGroupDesc, opts::TimeRewrite); 3547 DebugInfoRewriter->updateDebugInfo(); 3548 } 3549 3550 if (opts::WriteBoltInfoSection) 3551 addBoltInfoSection(); 3552 } 3553 3554 void RewriteInstance::mapFileSections(BOLTLinker::SectionMapper MapSection) { 3555 BC->deregisterUnusedSections(); 3556 3557 // If no new .eh_frame was written, remove relocated original .eh_frame. 3558 BinarySection *RelocatedEHFrameSection = 3559 getSection(".relocated" + getEHFrameSectionName()); 3560 if (RelocatedEHFrameSection && RelocatedEHFrameSection->hasValidSectionID()) { 3561 BinarySection *NewEHFrameSection = 3562 getSection(getNewSecPrefix() + getEHFrameSectionName()); 3563 if (!NewEHFrameSection || !NewEHFrameSection->isFinalized()) { 3564 // JITLink will still have to process relocations for the section, hence 3565 // we need to assign it the address that wouldn't result in relocation 3566 // processing failure. 3567 MapSection(*RelocatedEHFrameSection, NextAvailableAddress); 3568 BC->deregisterSection(*RelocatedEHFrameSection); 3569 } 3570 } 3571 3572 mapCodeSections(MapSection); 3573 3574 // Map the rest of the sections. 3575 mapAllocatableSections(MapSection); 3576 3577 if (!BC->BOLTReserved.empty()) { 3578 const uint64_t AllocatedSize = 3579 NextAvailableAddress - BC->BOLTReserved.start(); 3580 if (BC->BOLTReserved.size() < AllocatedSize) { 3581 BC->errs() << "BOLT-ERROR: reserved space (" << BC->BOLTReserved.size() 3582 << " byte" << (BC->BOLTReserved.size() == 1 ? "" : "s") 3583 << ") is smaller than required for new allocations (" 3584 << AllocatedSize << " bytes)\n"; 3585 exit(1); 3586 } 3587 } 3588 } 3589 3590 std::vector<BinarySection *> RewriteInstance::getCodeSections() { 3591 std::vector<BinarySection *> CodeSections; 3592 for (BinarySection &Section : BC->textSections()) 3593 if (Section.hasValidSectionID()) 3594 CodeSections.emplace_back(&Section); 3595 3596 auto compareSections = [&](const BinarySection *A, const BinarySection *B) { 3597 // If both A and B have names starting with ".text.cold", then 3598 // - if opts::HotFunctionsAtEnd is true, we want order 3599 // ".text.cold.T", ".text.cold.T-1", ... ".text.cold.1", ".text.cold" 3600 // - if opts::HotFunctionsAtEnd is false, we want order 3601 // ".text.cold", ".text.cold.1", ... ".text.cold.T-1", ".text.cold.T" 3602 if (A->getName().starts_with(BC->getColdCodeSectionName()) && 3603 B->getName().starts_with(BC->getColdCodeSectionName())) { 3604 if (A->getName().size() != B->getName().size()) 3605 return (opts::HotFunctionsAtEnd) 3606 ? (A->getName().size() > B->getName().size()) 3607 : (A->getName().size() < B->getName().size()); 3608 return (opts::HotFunctionsAtEnd) ? (A->getName() > B->getName()) 3609 : (A->getName() < B->getName()); 3610 } 3611 3612 // Place movers before anything else. 3613 if (A->getName() == BC->getHotTextMoverSectionName()) 3614 return true; 3615 if (B->getName() == BC->getHotTextMoverSectionName()) 3616 return false; 3617 3618 // Depending on opts::HotFunctionsAtEnd, place main and warm sections in 3619 // order. 3620 if (opts::HotFunctionsAtEnd) { 3621 if (B->getName() == BC->getMainCodeSectionName()) 3622 return true; 3623 if (A->getName() == BC->getMainCodeSectionName()) 3624 return false; 3625 return (B->getName() == BC->getWarmCodeSectionName()); 3626 } else { 3627 if (A->getName() == BC->getMainCodeSectionName()) 3628 return true; 3629 if (B->getName() == BC->getMainCodeSectionName()) 3630 return false; 3631 return (A->getName() == BC->getWarmCodeSectionName()); 3632 } 3633 }; 3634 3635 // Determine the order of sections. 3636 llvm::stable_sort(CodeSections, compareSections); 3637 3638 return CodeSections; 3639 } 3640 3641 void RewriteInstance::mapCodeSections(BOLTLinker::SectionMapper MapSection) { 3642 if (BC->HasRelocations) { 3643 // Map sections for functions with pre-assigned addresses. 3644 for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) { 3645 const uint64_t OutputAddress = InjectedFunction->getOutputAddress(); 3646 if (!OutputAddress) 3647 continue; 3648 3649 ErrorOr<BinarySection &> FunctionSection = 3650 InjectedFunction->getCodeSection(); 3651 assert(FunctionSection && "function should have section"); 3652 FunctionSection->setOutputAddress(OutputAddress); 3653 MapSection(*FunctionSection, OutputAddress); 3654 InjectedFunction->setImageAddress(FunctionSection->getAllocAddress()); 3655 InjectedFunction->setImageSize(FunctionSection->getOutputSize()); 3656 } 3657 3658 // Populate the list of sections to be allocated. 3659 std::vector<BinarySection *> CodeSections = getCodeSections(); 3660 3661 // Remove sections that were pre-allocated (patch sections). 3662 llvm::erase_if(CodeSections, [](BinarySection *Section) { 3663 return Section->getOutputAddress(); 3664 }); 3665 LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n"; 3666 for (const BinarySection *Section : CodeSections) 3667 dbgs() << Section->getName() << '\n'; 3668 ); 3669 3670 uint64_t PaddingSize = 0; // size of padding required at the end 3671 3672 // Allocate sections starting at a given Address. 3673 auto allocateAt = [&](uint64_t Address) { 3674 const char *LastNonColdSectionName = BC->HasWarmSection 3675 ? BC->getWarmCodeSectionName() 3676 : BC->getMainCodeSectionName(); 3677 for (BinarySection *Section : CodeSections) { 3678 Address = alignTo(Address, Section->getAlignment()); 3679 Section->setOutputAddress(Address); 3680 Address += Section->getOutputSize(); 3681 3682 // Hugify: Additional huge page from right side due to 3683 // weird ASLR mapping addresses (4KB aligned) 3684 if (opts::Hugify && !BC->HasFixedLoadAddress && 3685 Section->getName() == LastNonColdSectionName) 3686 Address = alignTo(Address, Section->getAlignment()); 3687 } 3688 3689 // Make sure we allocate enough space for huge pages. 3690 ErrorOr<BinarySection &> TextSection = 3691 BC->getUniqueSectionByName(LastNonColdSectionName); 3692 if (opts::HotText && TextSection && TextSection->hasValidSectionID()) { 3693 uint64_t HotTextEnd = 3694 TextSection->getOutputAddress() + TextSection->getOutputSize(); 3695 HotTextEnd = alignTo(HotTextEnd, BC->PageAlign); 3696 if (HotTextEnd > Address) { 3697 PaddingSize = HotTextEnd - Address; 3698 Address = HotTextEnd; 3699 } 3700 } 3701 return Address; 3702 }; 3703 3704 // Check if we can fit code in the original .text 3705 bool AllocationDone = false; 3706 if (opts::UseOldText) { 3707 const uint64_t CodeSize = 3708 allocateAt(BC->OldTextSectionAddress) - BC->OldTextSectionAddress; 3709 3710 if (CodeSize <= BC->OldTextSectionSize) { 3711 BC->outs() << "BOLT-INFO: using original .text for new code with 0x" 3712 << Twine::utohexstr(opts::AlignText) << " alignment\n"; 3713 AllocationDone = true; 3714 } else { 3715 BC->errs() 3716 << "BOLT-WARNING: original .text too small to fit the new code" 3717 << " using 0x" << Twine::utohexstr(opts::AlignText) 3718 << " alignment. " << CodeSize << " bytes needed, have " 3719 << BC->OldTextSectionSize << " bytes available.\n"; 3720 opts::UseOldText = false; 3721 } 3722 } 3723 3724 if (!AllocationDone) 3725 NextAvailableAddress = allocateAt(NextAvailableAddress); 3726 3727 // Do the mapping for ORC layer based on the allocation. 3728 for (BinarySection *Section : CodeSections) { 3729 LLVM_DEBUG( 3730 dbgs() << "BOLT: mapping " << Section->getName() << " at 0x" 3731 << Twine::utohexstr(Section->getAllocAddress()) << " to 0x" 3732 << Twine::utohexstr(Section->getOutputAddress()) << '\n'); 3733 MapSection(*Section, Section->getOutputAddress()); 3734 Section->setOutputFileOffset( 3735 getFileOffsetForAddress(Section->getOutputAddress())); 3736 } 3737 3738 // Check if we need to insert a padding section for hot text. 3739 if (PaddingSize && !opts::UseOldText) 3740 BC->outs() << "BOLT-INFO: padding code to 0x" 3741 << Twine::utohexstr(NextAvailableAddress) 3742 << " to accommodate hot text\n"; 3743 3744 return; 3745 } 3746 3747 // Processing in non-relocation mode. 3748 uint64_t NewTextSectionStartAddress = NextAvailableAddress; 3749 3750 for (auto &BFI : BC->getBinaryFunctions()) { 3751 BinaryFunction &Function = BFI.second; 3752 if (!Function.isEmitted()) 3753 continue; 3754 3755 bool TooLarge = false; 3756 ErrorOr<BinarySection &> FuncSection = Function.getCodeSection(); 3757 assert(FuncSection && "cannot find section for function"); 3758 FuncSection->setOutputAddress(Function.getAddress()); 3759 LLVM_DEBUG(dbgs() << "BOLT: mapping 0x" 3760 << Twine::utohexstr(FuncSection->getAllocAddress()) 3761 << " to 0x" << Twine::utohexstr(Function.getAddress()) 3762 << '\n'); 3763 MapSection(*FuncSection, Function.getAddress()); 3764 Function.setImageAddress(FuncSection->getAllocAddress()); 3765 Function.setImageSize(FuncSection->getOutputSize()); 3766 if (Function.getImageSize() > Function.getMaxSize()) { 3767 assert(!BC->isX86() && "Unexpected large function."); 3768 TooLarge = true; 3769 FailedAddresses.emplace_back(Function.getAddress()); 3770 } 3771 3772 // Map jump tables if updating in-place. 3773 if (opts::JumpTables == JTS_BASIC) { 3774 for (auto &JTI : Function.JumpTables) { 3775 JumpTable *JT = JTI.second; 3776 BinarySection &Section = JT->getOutputSection(); 3777 Section.setOutputAddress(JT->getAddress()); 3778 Section.setOutputFileOffset(getFileOffsetForAddress(JT->getAddress())); 3779 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping JT " << Section.getName() 3780 << " to 0x" << Twine::utohexstr(JT->getAddress()) 3781 << '\n'); 3782 MapSection(Section, JT->getAddress()); 3783 } 3784 } 3785 3786 if (!Function.isSplit()) 3787 continue; 3788 3789 assert(Function.getLayout().isHotColdSplit() && 3790 "Cannot allocate more than two fragments per function in " 3791 "non-relocation mode."); 3792 3793 FunctionFragment &FF = 3794 Function.getLayout().getFragment(FragmentNum::cold()); 3795 ErrorOr<BinarySection &> ColdSection = 3796 Function.getCodeSection(FF.getFragmentNum()); 3797 assert(ColdSection && "cannot find section for cold part"); 3798 // Cold fragments are aligned at 16 bytes. 3799 NextAvailableAddress = alignTo(NextAvailableAddress, 16); 3800 if (TooLarge) { 3801 // The corresponding FDE will refer to address 0. 3802 FF.setAddress(0); 3803 FF.setImageAddress(0); 3804 FF.setImageSize(0); 3805 FF.setFileOffset(0); 3806 } else { 3807 FF.setAddress(NextAvailableAddress); 3808 FF.setImageAddress(ColdSection->getAllocAddress()); 3809 FF.setImageSize(ColdSection->getOutputSize()); 3810 FF.setFileOffset(getFileOffsetForAddress(NextAvailableAddress)); 3811 ColdSection->setOutputAddress(FF.getAddress()); 3812 } 3813 3814 LLVM_DEBUG( 3815 dbgs() << formatv( 3816 "BOLT: mapping cold fragment {0:x+} to {1:x+} with size {2:x+}\n", 3817 FF.getImageAddress(), FF.getAddress(), FF.getImageSize())); 3818 MapSection(*ColdSection, FF.getAddress()); 3819 3820 if (TooLarge) 3821 BC->deregisterSection(*ColdSection); 3822 3823 NextAvailableAddress += FF.getImageSize(); 3824 } 3825 3826 // Add the new text section aggregating all existing code sections. 3827 // This is pseudo-section that serves a purpose of creating a corresponding 3828 // entry in section header table. 3829 const uint64_t NewTextSectionSize = 3830 NextAvailableAddress - NewTextSectionStartAddress; 3831 if (NewTextSectionSize) { 3832 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, 3833 /*IsText=*/true, 3834 /*IsAllocatable=*/true); 3835 BinarySection &Section = 3836 BC->registerOrUpdateSection(getBOLTTextSectionName(), 3837 ELF::SHT_PROGBITS, 3838 Flags, 3839 /*Data=*/nullptr, 3840 NewTextSectionSize, 3841 16); 3842 Section.setOutputAddress(NewTextSectionStartAddress); 3843 Section.setOutputFileOffset( 3844 getFileOffsetForAddress(NewTextSectionStartAddress)); 3845 } 3846 } 3847 3848 void RewriteInstance::mapAllocatableSections( 3849 BOLTLinker::SectionMapper MapSection) { 3850 // Allocate read-only sections first, then writable sections. 3851 enum : uint8_t { ST_READONLY, ST_READWRITE }; 3852 for (uint8_t SType = ST_READONLY; SType <= ST_READWRITE; ++SType) { 3853 const uint64_t LastNextAvailableAddress = NextAvailableAddress; 3854 if (SType == ST_READWRITE) { 3855 // Align R+W segment to regular page size 3856 NextAvailableAddress = alignTo(NextAvailableAddress, BC->RegularPageSize); 3857 NewWritableSegmentAddress = NextAvailableAddress; 3858 } 3859 3860 for (BinarySection &Section : BC->allocatableSections()) { 3861 if (Section.isLinkOnly()) 3862 continue; 3863 3864 if (!Section.hasValidSectionID()) 3865 continue; 3866 3867 if (Section.isWritable() == (SType == ST_READONLY)) 3868 continue; 3869 3870 if (Section.getOutputAddress()) { 3871 LLVM_DEBUG({ 3872 dbgs() << "BOLT-DEBUG: section " << Section.getName() 3873 << " is already mapped at 0x" 3874 << Twine::utohexstr(Section.getOutputAddress()) << '\n'; 3875 }); 3876 continue; 3877 } 3878 3879 if (Section.hasSectionRef()) { 3880 LLVM_DEBUG({ 3881 dbgs() << "BOLT-DEBUG: mapping original section " << Section.getName() 3882 << " to 0x" << Twine::utohexstr(Section.getAddress()) << '\n'; 3883 }); 3884 Section.setOutputAddress(Section.getAddress()); 3885 Section.setOutputFileOffset(Section.getInputFileOffset()); 3886 MapSection(Section, Section.getAddress()); 3887 } else { 3888 NextAvailableAddress = 3889 alignTo(NextAvailableAddress, Section.getAlignment()); 3890 LLVM_DEBUG({ 3891 dbgs() << "BOLT: mapping section " << Section.getName() << " (0x" 3892 << Twine::utohexstr(Section.getAllocAddress()) << ") to 0x" 3893 << Twine::utohexstr(NextAvailableAddress) << ":0x" 3894 << Twine::utohexstr(NextAvailableAddress + 3895 Section.getOutputSize()) 3896 << '\n'; 3897 }); 3898 3899 MapSection(Section, NextAvailableAddress); 3900 Section.setOutputAddress(NextAvailableAddress); 3901 Section.setOutputFileOffset( 3902 getFileOffsetForAddress(NextAvailableAddress)); 3903 3904 NextAvailableAddress += Section.getOutputSize(); 3905 } 3906 } 3907 3908 if (SType == ST_READONLY) { 3909 if (PHDRTableAddress) { 3910 // Segment size includes the size of the PHDR area. 3911 NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress; 3912 } else if (NewTextSegmentAddress) { 3913 // Existing PHDR table would be updated. 3914 NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress; 3915 } 3916 } else if (SType == ST_READWRITE) { 3917 NewWritableSegmentSize = NextAvailableAddress - NewWritableSegmentAddress; 3918 // Restore NextAvailableAddress if no new writable sections 3919 if (!NewWritableSegmentSize) 3920 NextAvailableAddress = LastNextAvailableAddress; 3921 } 3922 } 3923 } 3924 3925 void RewriteInstance::updateOutputValues(const BOLTLinker &Linker) { 3926 if (std::optional<AddressMap> Map = AddressMap::parse(*BC)) 3927 BC->setIOAddressMap(std::move(*Map)); 3928 3929 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) 3930 Function->updateOutputValues(Linker); 3931 } 3932 3933 void RewriteInstance::patchELFPHDRTable() { 3934 auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile); 3935 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 3936 raw_fd_ostream &OS = Out->os(); 3937 3938 // Write/re-write program headers. 3939 Phnum = Obj.getHeader().e_phnum; 3940 if (PHDRTableOffset) { 3941 // Writing new pheader table and adding one new entry for R+X segment. 3942 Phnum += 1; 3943 if (NewWritableSegmentSize) { 3944 // Adding one more entry for R+W segment. 3945 Phnum += 1; 3946 } 3947 } else { 3948 assert(!PHDRTableAddress && "unexpected address for program header table"); 3949 PHDRTableOffset = Obj.getHeader().e_phoff; 3950 if (NewWritableSegmentSize) { 3951 BC->errs() << "BOLT-ERROR: unable to add writable segment\n"; 3952 exit(1); 3953 } 3954 } 3955 3956 // NOTE Currently .eh_frame_hdr appends to the last segment, recalculate 3957 // last segments size based on the NextAvailableAddress variable. 3958 if (!NewWritableSegmentSize) { 3959 if (PHDRTableAddress) 3960 NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress; 3961 else if (NewTextSegmentAddress) 3962 NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress; 3963 } else { 3964 NewWritableSegmentSize = NextAvailableAddress - NewWritableSegmentAddress; 3965 } 3966 3967 const uint64_t SavedPos = OS.tell(); 3968 OS.seek(PHDRTableOffset); 3969 3970 auto createNewTextPhdr = [&]() { 3971 ELF64LEPhdrTy NewPhdr; 3972 NewPhdr.p_type = ELF::PT_LOAD; 3973 if (PHDRTableAddress) { 3974 NewPhdr.p_offset = PHDRTableOffset; 3975 NewPhdr.p_vaddr = PHDRTableAddress; 3976 NewPhdr.p_paddr = PHDRTableAddress; 3977 } else { 3978 NewPhdr.p_offset = NewTextSegmentOffset; 3979 NewPhdr.p_vaddr = NewTextSegmentAddress; 3980 NewPhdr.p_paddr = NewTextSegmentAddress; 3981 } 3982 NewPhdr.p_filesz = NewTextSegmentSize; 3983 NewPhdr.p_memsz = NewTextSegmentSize; 3984 NewPhdr.p_flags = ELF::PF_X | ELF::PF_R; 3985 if (opts::Instrument) { 3986 // FIXME: Currently instrumentation is experimental and the runtime data 3987 // is emitted with code, thus everything needs to be writable. 3988 NewPhdr.p_flags |= ELF::PF_W; 3989 } 3990 NewPhdr.p_align = BC->PageAlign; 3991 3992 return NewPhdr; 3993 }; 3994 3995 auto writeNewSegmentPhdrs = [&]() { 3996 if (PHDRTableAddress || NewTextSegmentSize) { 3997 ELF64LE::Phdr NewPhdr = createNewTextPhdr(); 3998 OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr)); 3999 } 4000 4001 if (NewWritableSegmentSize) { 4002 ELF64LEPhdrTy NewPhdr; 4003 NewPhdr.p_type = ELF::PT_LOAD; 4004 NewPhdr.p_offset = getFileOffsetForAddress(NewWritableSegmentAddress); 4005 NewPhdr.p_vaddr = NewWritableSegmentAddress; 4006 NewPhdr.p_paddr = NewWritableSegmentAddress; 4007 NewPhdr.p_filesz = NewWritableSegmentSize; 4008 NewPhdr.p_memsz = NewWritableSegmentSize; 4009 NewPhdr.p_align = BC->RegularPageSize; 4010 NewPhdr.p_flags = ELF::PF_R | ELF::PF_W; 4011 OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr)); 4012 } 4013 }; 4014 4015 bool ModdedGnuStack = false; 4016 bool AddedSegment = false; 4017 4018 // Copy existing program headers with modifications. 4019 for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) { 4020 ELF64LE::Phdr NewPhdr = Phdr; 4021 switch (Phdr.p_type) { 4022 case ELF::PT_PHDR: 4023 if (PHDRTableAddress) { 4024 NewPhdr.p_offset = PHDRTableOffset; 4025 NewPhdr.p_vaddr = PHDRTableAddress; 4026 NewPhdr.p_paddr = PHDRTableAddress; 4027 NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum; 4028 NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum; 4029 } 4030 break; 4031 case ELF::PT_GNU_EH_FRAME: { 4032 ErrorOr<BinarySection &> EHFrameHdrSec = BC->getUniqueSectionByName( 4033 getNewSecPrefix() + getEHFrameHdrSectionName()); 4034 if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() && 4035 EHFrameHdrSec->isFinalized()) { 4036 NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset(); 4037 NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress(); 4038 NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress(); 4039 NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize(); 4040 NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize(); 4041 } 4042 break; 4043 } 4044 case ELF::PT_GNU_STACK: 4045 if (opts::UseGnuStack) { 4046 // Overwrite the header with the new text segment header. 4047 NewPhdr = createNewTextPhdr(); 4048 ModdedGnuStack = true; 4049 } 4050 break; 4051 case ELF::PT_DYNAMIC: 4052 if (!opts::UseGnuStack) { 4053 // Insert new headers before DYNAMIC. 4054 writeNewSegmentPhdrs(); 4055 AddedSegment = true; 4056 } 4057 break; 4058 } 4059 OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr)); 4060 } 4061 4062 if (!opts::UseGnuStack && !AddedSegment) { 4063 // Append new headers to the end of the table. 4064 writeNewSegmentPhdrs(); 4065 } 4066 4067 if (opts::UseGnuStack && !ModdedGnuStack) { 4068 BC->errs() 4069 << "BOLT-ERROR: could not find PT_GNU_STACK program header to modify\n"; 4070 exit(1); 4071 } 4072 4073 OS.seek(SavedPos); 4074 } 4075 4076 namespace { 4077 4078 /// Write padding to \p OS such that its current \p Offset becomes aligned 4079 /// at \p Alignment. Return new (aligned) offset. 4080 uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset, 4081 uint64_t Alignment) { 4082 if (!Alignment) 4083 return Offset; 4084 4085 const uint64_t PaddingSize = 4086 offsetToAlignment(Offset, llvm::Align(Alignment)); 4087 for (unsigned I = 0; I < PaddingSize; ++I) 4088 OS.write((unsigned char)0); 4089 return Offset + PaddingSize; 4090 } 4091 4092 } 4093 4094 void RewriteInstance::rewriteNoteSections() { 4095 auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile); 4096 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 4097 raw_fd_ostream &OS = Out->os(); 4098 4099 uint64_t NextAvailableOffset = std::max( 4100 getFileOffsetForAddress(NextAvailableAddress), FirstNonAllocatableOffset); 4101 OS.seek(NextAvailableOffset); 4102 4103 // Copy over non-allocatable section contents and update file offsets. 4104 for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) { 4105 if (Section.sh_type == ELF::SHT_NULL) 4106 continue; 4107 if (Section.sh_flags & ELF::SHF_ALLOC) 4108 continue; 4109 4110 SectionRef SecRef = ELF64LEFile->toSectionRef(&Section); 4111 BinarySection *BSec = BC->getSectionForSectionRef(SecRef); 4112 assert(BSec && !BSec->isAllocatable() && 4113 "Matching non-allocatable BinarySection should exist."); 4114 4115 StringRef SectionName = 4116 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4117 if (shouldStrip(Section, SectionName)) 4118 continue; 4119 4120 // Insert padding as needed. 4121 NextAvailableOffset = 4122 appendPadding(OS, NextAvailableOffset, Section.sh_addralign); 4123 4124 // New section size. 4125 uint64_t Size = 0; 4126 bool DataWritten = false; 4127 uint8_t *SectionData = nullptr; 4128 // Copy over section contents unless it's one of the sections we overwrite. 4129 if (!willOverwriteSection(SectionName)) { 4130 Size = Section.sh_size; 4131 StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size); 4132 std::string Data; 4133 if (BSec->getPatcher()) { 4134 Data = BSec->getPatcher()->patchBinary(Dataref); 4135 Dataref = StringRef(Data); 4136 } 4137 4138 // Section was expanded, so need to treat it as overwrite. 4139 if (Size != Dataref.size()) { 4140 BSec = &BC->registerOrUpdateNoteSection( 4141 SectionName, copyByteArray(Dataref), Dataref.size()); 4142 Size = 0; 4143 } else { 4144 OS << Dataref; 4145 DataWritten = true; 4146 4147 // Add padding as the section extension might rely on the alignment. 4148 Size = appendPadding(OS, Size, Section.sh_addralign); 4149 } 4150 } 4151 4152 // Perform section post-processing. 4153 assert(BSec->getAlignment() <= Section.sh_addralign && 4154 "alignment exceeds value in file"); 4155 4156 if (BSec->getAllocAddress()) { 4157 assert(!DataWritten && "Writing section twice."); 4158 (void)DataWritten; 4159 SectionData = BSec->getOutputData(); 4160 4161 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing") 4162 << " contents to section " << SectionName << '\n'); 4163 OS.write(reinterpret_cast<char *>(SectionData), BSec->getOutputSize()); 4164 Size += BSec->getOutputSize(); 4165 } 4166 4167 BSec->setOutputFileOffset(NextAvailableOffset); 4168 BSec->flushPendingRelocations(OS, [this](const MCSymbol *S) { 4169 return getNewValueForSymbol(S->getName()); 4170 }); 4171 4172 // Section contents are no longer needed, but we need to update the size so 4173 // that it will be reflected in the section header table. 4174 BSec->updateContents(nullptr, Size); 4175 4176 NextAvailableOffset += Size; 4177 } 4178 4179 // Write new note sections. 4180 for (BinarySection &Section : BC->nonAllocatableSections()) { 4181 if (Section.getOutputFileOffset() || !Section.getAllocAddress()) 4182 continue; 4183 4184 assert(!Section.hasPendingRelocations() && "cannot have pending relocs"); 4185 4186 NextAvailableOffset = 4187 appendPadding(OS, NextAvailableOffset, Section.getAlignment()); 4188 Section.setOutputFileOffset(NextAvailableOffset); 4189 4190 LLVM_DEBUG( 4191 dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName() 4192 << " of size " << Section.getOutputSize() << " at offset 0x" 4193 << Twine::utohexstr(Section.getOutputFileOffset()) << '\n'); 4194 4195 OS.write(Section.getOutputContents().data(), Section.getOutputSize()); 4196 NextAvailableOffset += Section.getOutputSize(); 4197 } 4198 } 4199 4200 template <typename ELFT> 4201 void RewriteInstance::finalizeSectionStringTable(ELFObjectFile<ELFT> *File) { 4202 // Pre-populate section header string table. 4203 for (const BinarySection &Section : BC->sections()) 4204 if (!Section.isAnonymous()) 4205 SHStrTab.add(Section.getOutputName()); 4206 SHStrTab.finalize(); 4207 4208 const size_t SHStrTabSize = SHStrTab.getSize(); 4209 uint8_t *DataCopy = new uint8_t[SHStrTabSize]; 4210 memset(DataCopy, 0, SHStrTabSize); 4211 SHStrTab.write(DataCopy); 4212 BC->registerOrUpdateNoteSection(".shstrtab", 4213 DataCopy, 4214 SHStrTabSize, 4215 /*Alignment=*/1, 4216 /*IsReadOnly=*/true, 4217 ELF::SHT_STRTAB); 4218 } 4219 4220 void RewriteInstance::addBoltInfoSection() { 4221 std::string DescStr; 4222 raw_string_ostream DescOS(DescStr); 4223 4224 DescOS << "BOLT revision: " << BoltRevision << ", " 4225 << "command line:"; 4226 for (int I = 0; I < Argc; ++I) 4227 DescOS << " " << Argv[I]; 4228 DescOS.flush(); 4229 4230 // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n' 4231 const std::string BoltInfo = 4232 BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/); 4233 BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo), 4234 BoltInfo.size(), 4235 /*Alignment=*/1, 4236 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4237 } 4238 4239 void RewriteInstance::addBATSection() { 4240 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr, 4241 0, 4242 /*Alignment=*/1, 4243 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4244 } 4245 4246 void RewriteInstance::encodeBATSection() { 4247 std::string DescStr; 4248 raw_string_ostream DescOS(DescStr); 4249 4250 BAT->write(*BC, DescOS); 4251 DescOS.flush(); 4252 4253 const std::string BoltInfo = 4254 BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT); 4255 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, 4256 copyByteArray(BoltInfo), BoltInfo.size(), 4257 /*Alignment=*/1, 4258 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4259 BC->outs() << "BOLT-INFO: BAT section size (bytes): " << BoltInfo.size() 4260 << '\n'; 4261 } 4262 4263 template <typename ELFShdrTy> 4264 bool RewriteInstance::shouldStrip(const ELFShdrTy &Section, 4265 StringRef SectionName) { 4266 // Strip non-allocatable relocation sections. 4267 if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA) 4268 return true; 4269 4270 // Strip debug sections if not updating them. 4271 if (isDebugSection(SectionName) && !opts::UpdateDebugSections) 4272 return true; 4273 4274 // Strip symtab section if needed 4275 if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB) 4276 return true; 4277 4278 return false; 4279 } 4280 4281 template <typename ELFT> 4282 std::vector<typename object::ELFObjectFile<ELFT>::Elf_Shdr> 4283 RewriteInstance::getOutputSections(ELFObjectFile<ELFT> *File, 4284 std::vector<uint32_t> &NewSectionIndex) { 4285 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4286 const ELFFile<ELFT> &Obj = File->getELFFile(); 4287 typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); 4288 4289 // Keep track of section header entries attached to the corresponding section. 4290 std::vector<std::pair<BinarySection *, ELFShdrTy>> OutputSections; 4291 auto addSection = [&](const ELFShdrTy &Section, BinarySection &BinSec) { 4292 ELFShdrTy NewSection = Section; 4293 NewSection.sh_name = SHStrTab.getOffset(BinSec.getOutputName()); 4294 OutputSections.emplace_back(&BinSec, std::move(NewSection)); 4295 }; 4296 4297 // Copy over entries for original allocatable sections using modified name. 4298 for (const ELFShdrTy &Section : Sections) { 4299 // Always ignore this section. 4300 if (Section.sh_type == ELF::SHT_NULL) { 4301 OutputSections.emplace_back(nullptr, Section); 4302 continue; 4303 } 4304 4305 if (!(Section.sh_flags & ELF::SHF_ALLOC)) 4306 continue; 4307 4308 SectionRef SecRef = File->toSectionRef(&Section); 4309 BinarySection *BinSec = BC->getSectionForSectionRef(SecRef); 4310 assert(BinSec && "Matching BinarySection should exist."); 4311 4312 addSection(Section, *BinSec); 4313 } 4314 4315 for (BinarySection &Section : BC->allocatableSections()) { 4316 if (!Section.isFinalized()) 4317 continue; 4318 4319 if (Section.hasSectionRef() || Section.isAnonymous()) { 4320 if (opts::Verbosity) 4321 BC->outs() << "BOLT-INFO: not writing section header for section " 4322 << Section.getOutputName() << '\n'; 4323 continue; 4324 } 4325 4326 if (opts::Verbosity >= 1) 4327 BC->outs() << "BOLT-INFO: writing section header for " 4328 << Section.getOutputName() << '\n'; 4329 ELFShdrTy NewSection; 4330 NewSection.sh_type = ELF::SHT_PROGBITS; 4331 NewSection.sh_addr = Section.getOutputAddress(); 4332 NewSection.sh_offset = Section.getOutputFileOffset(); 4333 NewSection.sh_size = Section.getOutputSize(); 4334 NewSection.sh_entsize = 0; 4335 NewSection.sh_flags = Section.getELFFlags(); 4336 NewSection.sh_link = 0; 4337 NewSection.sh_info = 0; 4338 NewSection.sh_addralign = Section.getAlignment(); 4339 addSection(NewSection, Section); 4340 } 4341 4342 // Sort all allocatable sections by their offset. 4343 llvm::stable_sort(OutputSections, [](const auto &A, const auto &B) { 4344 return A.second.sh_offset < B.second.sh_offset; 4345 }); 4346 4347 // Fix section sizes to prevent overlapping. 4348 ELFShdrTy *PrevSection = nullptr; 4349 BinarySection *PrevBinSec = nullptr; 4350 for (auto &SectionKV : OutputSections) { 4351 ELFShdrTy &Section = SectionKV.second; 4352 4353 // Ignore NOBITS sections as they don't take any space in the file. 4354 if (Section.sh_type == ELF::SHT_NOBITS) 4355 continue; 4356 4357 // Note that address continuity is not guaranteed as sections could be 4358 // placed in different loadable segments. 4359 if (PrevSection && 4360 PrevSection->sh_offset + PrevSection->sh_size > Section.sh_offset) { 4361 if (opts::Verbosity > 1) 4362 BC->outs() << "BOLT-INFO: adjusting size for section " 4363 << PrevBinSec->getOutputName() << '\n'; 4364 PrevSection->sh_size = Section.sh_offset - PrevSection->sh_offset; 4365 } 4366 4367 PrevSection = &Section; 4368 PrevBinSec = SectionKV.first; 4369 } 4370 4371 uint64_t LastFileOffset = 0; 4372 4373 // Copy over entries for non-allocatable sections performing necessary 4374 // adjustments. 4375 for (const ELFShdrTy &Section : Sections) { 4376 if (Section.sh_type == ELF::SHT_NULL) 4377 continue; 4378 if (Section.sh_flags & ELF::SHF_ALLOC) 4379 continue; 4380 4381 StringRef SectionName = 4382 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4383 4384 if (shouldStrip(Section, SectionName)) 4385 continue; 4386 4387 SectionRef SecRef = File->toSectionRef(&Section); 4388 BinarySection *BinSec = BC->getSectionForSectionRef(SecRef); 4389 assert(BinSec && "Matching BinarySection should exist."); 4390 4391 ELFShdrTy NewSection = Section; 4392 NewSection.sh_offset = BinSec->getOutputFileOffset(); 4393 NewSection.sh_size = BinSec->getOutputSize(); 4394 4395 if (NewSection.sh_type == ELF::SHT_SYMTAB) 4396 NewSection.sh_info = NumLocalSymbols; 4397 4398 addSection(NewSection, *BinSec); 4399 4400 LastFileOffset = BinSec->getOutputFileOffset(); 4401 } 4402 4403 // Create entries for new non-allocatable sections. 4404 for (BinarySection &Section : BC->nonAllocatableSections()) { 4405 if (Section.getOutputFileOffset() <= LastFileOffset) 4406 continue; 4407 4408 if (opts::Verbosity >= 1) 4409 BC->outs() << "BOLT-INFO: writing section header for " 4410 << Section.getOutputName() << '\n'; 4411 4412 ELFShdrTy NewSection; 4413 NewSection.sh_type = Section.getELFType(); 4414 NewSection.sh_addr = 0; 4415 NewSection.sh_offset = Section.getOutputFileOffset(); 4416 NewSection.sh_size = Section.getOutputSize(); 4417 NewSection.sh_entsize = 0; 4418 NewSection.sh_flags = Section.getELFFlags(); 4419 NewSection.sh_link = 0; 4420 NewSection.sh_info = 0; 4421 NewSection.sh_addralign = Section.getAlignment(); 4422 4423 addSection(NewSection, Section); 4424 } 4425 4426 // Assign indices to sections. 4427 std::unordered_map<std::string, uint64_t> NameToIndex; 4428 for (uint32_t Index = 1; Index < OutputSections.size(); ++Index) 4429 OutputSections[Index].first->setIndex(Index); 4430 4431 // Update section index mapping 4432 NewSectionIndex.clear(); 4433 NewSectionIndex.resize(Sections.size(), 0); 4434 for (const ELFShdrTy &Section : Sections) { 4435 if (Section.sh_type == ELF::SHT_NULL) 4436 continue; 4437 4438 size_t OrgIndex = std::distance(Sections.begin(), &Section); 4439 4440 SectionRef SecRef = File->toSectionRef(&Section); 4441 BinarySection *BinSec = BC->getSectionForSectionRef(SecRef); 4442 assert(BinSec && "BinarySection should exist for an input section."); 4443 4444 // Some sections are stripped 4445 if (!BinSec->hasValidIndex()) 4446 continue; 4447 4448 NewSectionIndex[OrgIndex] = BinSec->getIndex(); 4449 } 4450 4451 std::vector<ELFShdrTy> SectionsOnly(OutputSections.size()); 4452 llvm::copy(llvm::make_second_range(OutputSections), SectionsOnly.begin()); 4453 4454 return SectionsOnly; 4455 } 4456 4457 // Rewrite section header table inserting new entries as needed. The sections 4458 // header table size itself may affect the offsets of other sections, 4459 // so we are placing it at the end of the binary. 4460 // 4461 // As we rewrite entries we need to track how many sections were inserted 4462 // as it changes the sh_link value. We map old indices to new ones for 4463 // existing sections. 4464 template <typename ELFT> 4465 void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile<ELFT> *File) { 4466 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4467 using ELFEhdrTy = typename ELFObjectFile<ELFT>::Elf_Ehdr; 4468 raw_fd_ostream &OS = Out->os(); 4469 const ELFFile<ELFT> &Obj = File->getELFFile(); 4470 4471 // Mapping from old section indices to new ones 4472 std::vector<uint32_t> NewSectionIndex; 4473 std::vector<ELFShdrTy> OutputSections = 4474 getOutputSections(File, NewSectionIndex); 4475 LLVM_DEBUG( 4476 dbgs() << "BOLT-DEBUG: old to new section index mapping:\n"; 4477 for (uint64_t I = 0; I < NewSectionIndex.size(); ++I) 4478 dbgs() << " " << I << " -> " << NewSectionIndex[I] << '\n'; 4479 ); 4480 4481 // Align starting address for section header table. There's no architecutal 4482 // need to align this, it is just for pleasant human readability. 4483 uint64_t SHTOffset = OS.tell(); 4484 SHTOffset = appendPadding(OS, SHTOffset, 16); 4485 4486 // Write all section header entries while patching section references. 4487 for (ELFShdrTy &Section : OutputSections) { 4488 Section.sh_link = NewSectionIndex[Section.sh_link]; 4489 if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA) 4490 Section.sh_info = NewSectionIndex[Section.sh_info]; 4491 OS.write(reinterpret_cast<const char *>(&Section), sizeof(Section)); 4492 } 4493 4494 // Fix ELF header. 4495 ELFEhdrTy NewEhdr = Obj.getHeader(); 4496 4497 if (BC->HasRelocations) { 4498 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 4499 NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress(); 4500 else 4501 NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry); 4502 assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) && 4503 "cannot find new address for entry point"); 4504 } 4505 if (PHDRTableOffset) { 4506 NewEhdr.e_phoff = PHDRTableOffset; 4507 NewEhdr.e_phnum = Phnum; 4508 } 4509 NewEhdr.e_shoff = SHTOffset; 4510 NewEhdr.e_shnum = OutputSections.size(); 4511 NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx]; 4512 OS.pwrite(reinterpret_cast<const char *>(&NewEhdr), sizeof(NewEhdr), 0); 4513 } 4514 4515 template <typename ELFT, typename WriteFuncTy, typename StrTabFuncTy> 4516 void RewriteInstance::updateELFSymbolTable( 4517 ELFObjectFile<ELFT> *File, bool IsDynSym, 4518 const typename object::ELFObjectFile<ELFT>::Elf_Shdr &SymTabSection, 4519 const std::vector<uint32_t> &NewSectionIndex, WriteFuncTy Write, 4520 StrTabFuncTy AddToStrTab) { 4521 const ELFFile<ELFT> &Obj = File->getELFFile(); 4522 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; 4523 4524 StringRef StringSection = 4525 cantFail(Obj.getStringTableForSymtab(SymTabSection)); 4526 4527 unsigned NumHotTextSymsUpdated = 0; 4528 unsigned NumHotDataSymsUpdated = 0; 4529 4530 std::map<const BinaryFunction *, uint64_t> IslandSizes; 4531 auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) { 4532 auto Itr = IslandSizes.find(&BF); 4533 if (Itr != IslandSizes.end()) 4534 return Itr->second; 4535 return IslandSizes[&BF] = BF.estimateConstantIslandSize(); 4536 }; 4537 4538 // Symbols for the new symbol table. 4539 std::vector<ELFSymTy> Symbols; 4540 4541 bool EmittedColdFileSymbol = false; 4542 4543 auto getNewSectionIndex = [&](uint32_t OldIndex) { 4544 // For dynamic symbol table, the section index could be wrong on the input, 4545 // and its value is ignored by the runtime if it's different from 4546 // SHN_UNDEF and SHN_ABS. 4547 // However, we still need to update dynamic symbol table, so return a 4548 // section index, even though the index is broken. 4549 if (IsDynSym && OldIndex >= NewSectionIndex.size()) 4550 return OldIndex; 4551 4552 assert(OldIndex < NewSectionIndex.size() && "section index out of bounds"); 4553 const uint32_t NewIndex = NewSectionIndex[OldIndex]; 4554 4555 // We may have stripped the section that dynsym was referencing due to 4556 // the linker bug. In that case return the old index avoiding marking 4557 // the symbol as undefined. 4558 if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF) 4559 return OldIndex; 4560 return NewIndex; 4561 }; 4562 4563 // Get the extra symbol name of a split fragment; used in addExtraSymbols. 4564 auto getSplitSymbolName = [&](const FunctionFragment &FF, 4565 const ELFSymTy &FunctionSymbol) { 4566 SmallString<256> SymbolName; 4567 if (BC->HasWarmSection) 4568 SymbolName = 4569 formatv("{0}.{1}", cantFail(FunctionSymbol.getName(StringSection)), 4570 FF.getFragmentNum() == FragmentNum::warm() ? "warm" : "cold"); 4571 else 4572 SymbolName = formatv("{0}.cold.{1}", 4573 cantFail(FunctionSymbol.getName(StringSection)), 4574 FF.getFragmentNum().get() - 1); 4575 return SymbolName; 4576 }; 4577 4578 // Add extra symbols for the function. 4579 // 4580 // Note that addExtraSymbols() could be called multiple times for the same 4581 // function with different FunctionSymbol matching the main function entry 4582 // point. 4583 auto addExtraSymbols = [&](const BinaryFunction &Function, 4584 const ELFSymTy &FunctionSymbol) { 4585 if (Function.isFolded()) { 4586 BinaryFunction *ICFParent = Function.getFoldedIntoFunction(); 4587 while (ICFParent->isFolded()) 4588 ICFParent = ICFParent->getFoldedIntoFunction(); 4589 ELFSymTy ICFSymbol = FunctionSymbol; 4590 SmallVector<char, 256> Buf; 4591 ICFSymbol.st_name = 4592 AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) 4593 .concat(".icf.0") 4594 .toStringRef(Buf)); 4595 ICFSymbol.st_value = ICFParent->getOutputAddress(); 4596 ICFSymbol.st_size = ICFParent->getOutputSize(); 4597 ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex(); 4598 Symbols.emplace_back(ICFSymbol); 4599 } 4600 if (Function.isSplit()) { 4601 // Prepend synthetic FILE symbol to prevent local cold fragments from 4602 // colliding with existing symbols with the same name. 4603 if (!EmittedColdFileSymbol && 4604 FunctionSymbol.getBinding() == ELF::STB_GLOBAL) { 4605 ELFSymTy FileSymbol; 4606 FileSymbol.st_shndx = ELF::SHN_ABS; 4607 FileSymbol.st_name = AddToStrTab(getBOLTFileSymbolName()); 4608 FileSymbol.st_value = 0; 4609 FileSymbol.st_size = 0; 4610 FileSymbol.st_other = 0; 4611 FileSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FILE); 4612 Symbols.emplace_back(FileSymbol); 4613 EmittedColdFileSymbol = true; 4614 } 4615 for (const FunctionFragment &FF : 4616 Function.getLayout().getSplitFragments()) { 4617 if (FF.getAddress()) { 4618 ELFSymTy NewColdSym = FunctionSymbol; 4619 const SmallString<256> SymbolName = 4620 getSplitSymbolName(FF, FunctionSymbol); 4621 NewColdSym.st_name = AddToStrTab(SymbolName); 4622 NewColdSym.st_shndx = 4623 Function.getCodeSection(FF.getFragmentNum())->getIndex(); 4624 NewColdSym.st_value = FF.getAddress(); 4625 NewColdSym.st_size = FF.getImageSize(); 4626 NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); 4627 Symbols.emplace_back(NewColdSym); 4628 } 4629 } 4630 } 4631 if (Function.hasConstantIsland()) { 4632 uint64_t DataMark = Function.getOutputDataAddress(); 4633 uint64_t CISize = getConstantIslandSize(Function); 4634 uint64_t CodeMark = DataMark + CISize; 4635 ELFSymTy DataMarkSym = FunctionSymbol; 4636 DataMarkSym.st_name = AddToStrTab("$d"); 4637 DataMarkSym.st_value = DataMark; 4638 DataMarkSym.st_size = 0; 4639 DataMarkSym.setType(ELF::STT_NOTYPE); 4640 DataMarkSym.setBinding(ELF::STB_LOCAL); 4641 ELFSymTy CodeMarkSym = DataMarkSym; 4642 CodeMarkSym.st_name = AddToStrTab("$x"); 4643 CodeMarkSym.st_value = CodeMark; 4644 Symbols.emplace_back(DataMarkSym); 4645 Symbols.emplace_back(CodeMarkSym); 4646 } 4647 if (Function.hasConstantIsland() && Function.isSplit()) { 4648 uint64_t DataMark = Function.getOutputColdDataAddress(); 4649 uint64_t CISize = getConstantIslandSize(Function); 4650 uint64_t CodeMark = DataMark + CISize; 4651 ELFSymTy DataMarkSym = FunctionSymbol; 4652 DataMarkSym.st_name = AddToStrTab("$d"); 4653 DataMarkSym.st_value = DataMark; 4654 DataMarkSym.st_size = 0; 4655 DataMarkSym.setType(ELF::STT_NOTYPE); 4656 DataMarkSym.setBinding(ELF::STB_LOCAL); 4657 ELFSymTy CodeMarkSym = DataMarkSym; 4658 CodeMarkSym.st_name = AddToStrTab("$x"); 4659 CodeMarkSym.st_value = CodeMark; 4660 Symbols.emplace_back(DataMarkSym); 4661 Symbols.emplace_back(CodeMarkSym); 4662 } 4663 }; 4664 4665 // For regular (non-dynamic) symbol table, exclude symbols referring 4666 // to non-allocatable sections. 4667 auto shouldStrip = [&](const ELFSymTy &Symbol) { 4668 if (Symbol.isAbsolute() || !Symbol.isDefined()) 4669 return false; 4670 4671 // If we cannot link the symbol to a section, leave it as is. 4672 Expected<const typename ELFT::Shdr *> Section = 4673 Obj.getSection(Symbol.st_shndx); 4674 if (!Section) 4675 return false; 4676 4677 // Remove the section symbol iif the corresponding section was stripped. 4678 if (Symbol.getType() == ELF::STT_SECTION) { 4679 if (!getNewSectionIndex(Symbol.st_shndx)) 4680 return true; 4681 return false; 4682 } 4683 4684 // Symbols in non-allocatable sections are typically remnants of relocations 4685 // emitted under "-emit-relocs" linker option. Delete those as we delete 4686 // relocations against non-allocatable sections. 4687 if (!((*Section)->sh_flags & ELF::SHF_ALLOC)) 4688 return true; 4689 4690 return false; 4691 }; 4692 4693 for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) { 4694 // For regular (non-dynamic) symbol table strip unneeded symbols. 4695 if (!IsDynSym && shouldStrip(Symbol)) 4696 continue; 4697 4698 const BinaryFunction *Function = 4699 BC->getBinaryFunctionAtAddress(Symbol.st_value); 4700 // Ignore false function references, e.g. when the section address matches 4701 // the address of the function. 4702 if (Function && Symbol.getType() == ELF::STT_SECTION) 4703 Function = nullptr; 4704 4705 // For non-dynamic symtab, make sure the symbol section matches that of 4706 // the function. It can mismatch e.g. if the symbol is a section marker 4707 // in which case we treat the symbol separately from the function. 4708 // For dynamic symbol table, the section index could be wrong on the input, 4709 // and its value is ignored by the runtime if it's different from 4710 // SHN_UNDEF and SHN_ABS. 4711 if (!IsDynSym && Function && 4712 Symbol.st_shndx != 4713 Function->getOriginSection()->getSectionRef().getIndex()) 4714 Function = nullptr; 4715 4716 // Create a new symbol based on the existing symbol. 4717 ELFSymTy NewSymbol = Symbol; 4718 4719 // Handle special symbols based on their name. 4720 Expected<StringRef> SymbolName = Symbol.getName(StringSection); 4721 assert(SymbolName && "cannot get symbol name"); 4722 4723 auto updateSymbolValue = [&](const StringRef Name, 4724 std::optional<uint64_t> Value = std::nullopt) { 4725 NewSymbol.st_value = Value ? *Value : getNewValueForSymbol(Name); 4726 NewSymbol.st_shndx = ELF::SHN_ABS; 4727 BC->outs() << "BOLT-INFO: setting " << Name << " to 0x" 4728 << Twine::utohexstr(NewSymbol.st_value) << '\n'; 4729 }; 4730 4731 if (*SymbolName == "__hot_start" || *SymbolName == "__hot_end") { 4732 if (opts::HotText) { 4733 updateSymbolValue(*SymbolName); 4734 ++NumHotTextSymsUpdated; 4735 } 4736 goto registerSymbol; 4737 } 4738 4739 if (*SymbolName == "__hot_data_start" || *SymbolName == "__hot_data_end") { 4740 if (opts::HotData) { 4741 updateSymbolValue(*SymbolName); 4742 ++NumHotDataSymsUpdated; 4743 } 4744 goto registerSymbol; 4745 } 4746 4747 if (*SymbolName == "_end") { 4748 if (NextAvailableAddress > Symbol.st_value) 4749 updateSymbolValue(*SymbolName, NextAvailableAddress); 4750 goto registerSymbol; 4751 } 4752 4753 if (Function) { 4754 // If the symbol matched a function that was not emitted, update the 4755 // corresponding section index but otherwise leave it unchanged. 4756 if (Function->isEmitted()) { 4757 NewSymbol.st_value = Function->getOutputAddress(); 4758 NewSymbol.st_size = Function->getOutputSize(); 4759 NewSymbol.st_shndx = Function->getCodeSection()->getIndex(); 4760 } else if (Symbol.st_shndx < ELF::SHN_LORESERVE) { 4761 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); 4762 } 4763 4764 // Add new symbols to the symbol table if necessary. 4765 if (!IsDynSym) 4766 addExtraSymbols(*Function, NewSymbol); 4767 } else { 4768 // Check if the function symbol matches address inside a function, i.e. 4769 // it marks a secondary entry point. 4770 Function = 4771 (Symbol.getType() == ELF::STT_FUNC) 4772 ? BC->getBinaryFunctionContainingAddress(Symbol.st_value, 4773 /*CheckPastEnd=*/false, 4774 /*UseMaxSize=*/true) 4775 : nullptr; 4776 4777 if (Function && Function->isEmitted()) { 4778 assert(Function->getLayout().isHotColdSplit() && 4779 "Adding symbols based on cold fragment when there are more than " 4780 "2 fragments"); 4781 const uint64_t OutputAddress = 4782 Function->translateInputToOutputAddress(Symbol.st_value); 4783 4784 NewSymbol.st_value = OutputAddress; 4785 // Force secondary entry points to have zero size. 4786 NewSymbol.st_size = 0; 4787 4788 // Find fragment containing entrypoint 4789 FunctionLayout::fragment_const_iterator FF = llvm::find_if( 4790 Function->getLayout().fragments(), [&](const FunctionFragment &FF) { 4791 uint64_t Lo = FF.getAddress(); 4792 uint64_t Hi = Lo + FF.getImageSize(); 4793 return Lo <= OutputAddress && OutputAddress < Hi; 4794 }); 4795 4796 if (FF == Function->getLayout().fragment_end()) { 4797 assert( 4798 OutputAddress >= Function->getCodeSection()->getOutputAddress() && 4799 OutputAddress < (Function->getCodeSection()->getOutputAddress() + 4800 Function->getCodeSection()->getOutputSize()) && 4801 "Cannot locate fragment containing secondary entrypoint"); 4802 FF = Function->getLayout().fragment_begin(); 4803 } 4804 4805 NewSymbol.st_shndx = 4806 Function->getCodeSection(FF->getFragmentNum())->getIndex(); 4807 } else { 4808 // Check if the symbol belongs to moved data object and update it. 4809 BinaryData *BD = opts::ReorderData.empty() 4810 ? nullptr 4811 : BC->getBinaryDataAtAddress(Symbol.st_value); 4812 if (BD && BD->isMoved() && !BD->isJumpTable()) { 4813 assert((!BD->getSize() || !Symbol.st_size || 4814 Symbol.st_size == BD->getSize()) && 4815 "sizes must match"); 4816 4817 BinarySection &OutputSection = BD->getOutputSection(); 4818 assert(OutputSection.getIndex()); 4819 LLVM_DEBUG(dbgs() 4820 << "BOLT-DEBUG: moving " << BD->getName() << " from " 4821 << *BC->getSectionNameForAddress(Symbol.st_value) << " (" 4822 << Symbol.st_shndx << ") to " << OutputSection.getName() 4823 << " (" << OutputSection.getIndex() << ")\n"); 4824 NewSymbol.st_shndx = OutputSection.getIndex(); 4825 NewSymbol.st_value = BD->getOutputAddress(); 4826 } else { 4827 // Otherwise just update the section for the symbol. 4828 if (Symbol.st_shndx < ELF::SHN_LORESERVE) 4829 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); 4830 } 4831 4832 // Detect local syms in the text section that we didn't update 4833 // and that were preserved by the linker to support relocations against 4834 // .text. Remove them from the symtab. 4835 if (Symbol.getType() == ELF::STT_NOTYPE && 4836 Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) { 4837 if (BC->getBinaryFunctionContainingAddress(Symbol.st_value, 4838 /*CheckPastEnd=*/false, 4839 /*UseMaxSize=*/true)) { 4840 // Can only delete the symbol if not patching. Such symbols should 4841 // not exist in the dynamic symbol table. 4842 assert(!IsDynSym && "cannot delete symbol"); 4843 continue; 4844 } 4845 } 4846 } 4847 } 4848 4849 registerSymbol: 4850 if (IsDynSym) 4851 Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) * 4852 sizeof(ELFSymTy), 4853 NewSymbol); 4854 else 4855 Symbols.emplace_back(NewSymbol); 4856 } 4857 4858 if (IsDynSym) { 4859 assert(Symbols.empty()); 4860 return; 4861 } 4862 4863 // Add symbols of injected functions 4864 for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) { 4865 ELFSymTy NewSymbol; 4866 BinarySection *OriginSection = Function->getOriginSection(); 4867 NewSymbol.st_shndx = 4868 OriginSection 4869 ? getNewSectionIndex(OriginSection->getSectionRef().getIndex()) 4870 : Function->getCodeSection()->getIndex(); 4871 NewSymbol.st_value = Function->getOutputAddress(); 4872 NewSymbol.st_name = AddToStrTab(Function->getOneName()); 4873 NewSymbol.st_size = Function->getOutputSize(); 4874 NewSymbol.st_other = 0; 4875 NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); 4876 Symbols.emplace_back(NewSymbol); 4877 4878 if (Function->isSplit()) { 4879 assert(Function->getLayout().isHotColdSplit() && 4880 "Adding symbols based on cold fragment when there are more than " 4881 "2 fragments"); 4882 ELFSymTy NewColdSym = NewSymbol; 4883 NewColdSym.setType(ELF::STT_NOTYPE); 4884 SmallVector<char, 256> Buf; 4885 NewColdSym.st_name = AddToStrTab( 4886 Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf)); 4887 const FunctionFragment &ColdFF = 4888 Function->getLayout().getFragment(FragmentNum::cold()); 4889 NewColdSym.st_value = ColdFF.getAddress(); 4890 NewColdSym.st_size = ColdFF.getImageSize(); 4891 Symbols.emplace_back(NewColdSym); 4892 } 4893 } 4894 4895 auto AddSymbol = [&](const StringRef &Name, uint64_t Address) { 4896 if (!Address) 4897 return; 4898 4899 ELFSymTy Symbol; 4900 Symbol.st_value = Address; 4901 Symbol.st_shndx = ELF::SHN_ABS; 4902 Symbol.st_name = AddToStrTab(Name); 4903 Symbol.st_size = 0; 4904 Symbol.st_other = 0; 4905 Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE); 4906 4907 BC->outs() << "BOLT-INFO: setting " << Name << " to 0x" 4908 << Twine::utohexstr(Symbol.st_value) << '\n'; 4909 4910 Symbols.emplace_back(Symbol); 4911 }; 4912 4913 // Add runtime library start and fini address symbols 4914 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) { 4915 AddSymbol("__bolt_runtime_start", RtLibrary->getRuntimeStartAddress()); 4916 AddSymbol("__bolt_runtime_fini", RtLibrary->getRuntimeFiniAddress()); 4917 } 4918 4919 assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) && 4920 "either none or both __hot_start/__hot_end symbols were expected"); 4921 assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) && 4922 "either none or both __hot_data_start/__hot_data_end symbols were " 4923 "expected"); 4924 4925 auto AddEmittedSymbol = [&](const StringRef &Name) { 4926 AddSymbol(Name, getNewValueForSymbol(Name)); 4927 }; 4928 4929 if (opts::HotText && !NumHotTextSymsUpdated) { 4930 AddEmittedSymbol("__hot_start"); 4931 AddEmittedSymbol("__hot_end"); 4932 } 4933 4934 if (opts::HotData && !NumHotDataSymsUpdated) { 4935 AddEmittedSymbol("__hot_data_start"); 4936 AddEmittedSymbol("__hot_data_end"); 4937 } 4938 4939 // Put local symbols at the beginning. 4940 llvm::stable_sort(Symbols, [](const ELFSymTy &A, const ELFSymTy &B) { 4941 if (A.getBinding() == ELF::STB_LOCAL && B.getBinding() != ELF::STB_LOCAL) 4942 return true; 4943 return false; 4944 }); 4945 4946 for (const ELFSymTy &Symbol : Symbols) 4947 Write(0, Symbol); 4948 } 4949 4950 template <typename ELFT> 4951 void RewriteInstance::patchELFSymTabs(ELFObjectFile<ELFT> *File) { 4952 const ELFFile<ELFT> &Obj = File->getELFFile(); 4953 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4954 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; 4955 4956 // Compute a preview of how section indices will change after rewriting, so 4957 // we can properly update the symbol table based on new section indices. 4958 std::vector<uint32_t> NewSectionIndex; 4959 getOutputSections(File, NewSectionIndex); 4960 4961 // Update dynamic symbol table. 4962 const ELFShdrTy *DynSymSection = nullptr; 4963 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4964 if (Section.sh_type == ELF::SHT_DYNSYM) { 4965 DynSymSection = &Section; 4966 break; 4967 } 4968 } 4969 assert((DynSymSection || BC->IsStaticExecutable) && 4970 "dynamic symbol table expected"); 4971 if (DynSymSection) { 4972 updateELFSymbolTable( 4973 File, 4974 /*IsDynSym=*/true, 4975 *DynSymSection, 4976 NewSectionIndex, 4977 [&](size_t Offset, const ELFSymTy &Sym) { 4978 Out->os().pwrite(reinterpret_cast<const char *>(&Sym), 4979 sizeof(ELFSymTy), 4980 DynSymSection->sh_offset + Offset); 4981 }, 4982 [](StringRef) -> size_t { return 0; }); 4983 } 4984 4985 if (opts::RemoveSymtab) 4986 return; 4987 4988 // (re)create regular symbol table. 4989 const ELFShdrTy *SymTabSection = nullptr; 4990 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4991 if (Section.sh_type == ELF::SHT_SYMTAB) { 4992 SymTabSection = &Section; 4993 break; 4994 } 4995 } 4996 if (!SymTabSection) { 4997 BC->errs() << "BOLT-WARNING: no symbol table found\n"; 4998 return; 4999 } 5000 5001 const ELFShdrTy *StrTabSection = 5002 cantFail(Obj.getSection(SymTabSection->sh_link)); 5003 std::string NewContents; 5004 std::string NewStrTab = std::string( 5005 File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size)); 5006 StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection)); 5007 StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection)); 5008 5009 NumLocalSymbols = 0; 5010 updateELFSymbolTable( 5011 File, 5012 /*IsDynSym=*/false, 5013 *SymTabSection, 5014 NewSectionIndex, 5015 [&](size_t Offset, const ELFSymTy &Sym) { 5016 if (Sym.getBinding() == ELF::STB_LOCAL) 5017 ++NumLocalSymbols; 5018 NewContents.append(reinterpret_cast<const char *>(&Sym), 5019 sizeof(ELFSymTy)); 5020 }, 5021 [&](StringRef Str) { 5022 size_t Idx = NewStrTab.size(); 5023 NewStrTab.append(NameResolver::restore(Str).str()); 5024 NewStrTab.append(1, '\0'); 5025 return Idx; 5026 }); 5027 5028 BC->registerOrUpdateNoteSection(SecName, 5029 copyByteArray(NewContents), 5030 NewContents.size(), 5031 /*Alignment=*/1, 5032 /*IsReadOnly=*/true, 5033 ELF::SHT_SYMTAB); 5034 5035 BC->registerOrUpdateNoteSection(StrSecName, 5036 copyByteArray(NewStrTab), 5037 NewStrTab.size(), 5038 /*Alignment=*/1, 5039 /*IsReadOnly=*/true, 5040 ELF::SHT_STRTAB); 5041 } 5042 5043 template <typename ELFT> 5044 void RewriteInstance::patchELFAllocatableRelrSection( 5045 ELFObjectFile<ELFT> *File) { 5046 if (!DynamicRelrAddress) 5047 return; 5048 5049 raw_fd_ostream &OS = Out->os(); 5050 const uint8_t PSize = BC->AsmInfo->getCodePointerSize(); 5051 const uint64_t MaxDelta = ((CHAR_BIT * DynamicRelrEntrySize) - 1) * PSize; 5052 5053 auto FixAddend = [&](const BinarySection &Section, const Relocation &Rel, 5054 uint64_t FileOffset) { 5055 // Fix relocation symbol value in place if no static relocation found 5056 // on the same address. We won't check the BF relocations here since it 5057 // is rare case and no optimization is required. 5058 if (Section.getRelocationAt(Rel.Offset)) 5059 return; 5060 5061 // No fixup needed if symbol address was not changed 5062 const uint64_t Addend = getNewFunctionOrDataAddress(Rel.Addend); 5063 if (!Addend) 5064 return; 5065 5066 OS.pwrite(reinterpret_cast<const char *>(&Addend), PSize, FileOffset); 5067 }; 5068 5069 // Fill new relative relocation offsets set 5070 std::set<uint64_t> RelOffsets; 5071 for (const BinarySection &Section : BC->allocatableSections()) { 5072 const uint64_t SectionInputAddress = Section.getAddress(); 5073 uint64_t SectionAddress = Section.getOutputAddress(); 5074 if (!SectionAddress) 5075 SectionAddress = SectionInputAddress; 5076 5077 for (const Relocation &Rel : Section.dynamicRelocations()) { 5078 if (!Rel.isRelative()) 5079 continue; 5080 5081 uint64_t RelOffset = 5082 getNewFunctionOrDataAddress(SectionInputAddress + Rel.Offset); 5083 5084 RelOffset = RelOffset == 0 ? SectionAddress + Rel.Offset : RelOffset; 5085 assert((RelOffset & 1) == 0 && "Wrong relocation offset"); 5086 RelOffsets.emplace(RelOffset); 5087 FixAddend(Section, Rel, RelOffset); 5088 } 5089 } 5090 5091 ErrorOr<BinarySection &> Section = 5092 BC->getSectionForAddress(*DynamicRelrAddress); 5093 assert(Section && "cannot get .relr.dyn section"); 5094 assert(Section->isRelr() && "Expected section to be SHT_RELR type"); 5095 uint64_t RelrDynOffset = Section->getInputFileOffset(); 5096 const uint64_t RelrDynEndOffset = RelrDynOffset + Section->getSize(); 5097 5098 auto WriteRelr = [&](uint64_t Value) { 5099 if (RelrDynOffset + DynamicRelrEntrySize > RelrDynEndOffset) { 5100 BC->errs() << "BOLT-ERROR: Offset overflow for relr.dyn section\n"; 5101 exit(1); 5102 } 5103 5104 OS.pwrite(reinterpret_cast<const char *>(&Value), DynamicRelrEntrySize, 5105 RelrDynOffset); 5106 RelrDynOffset += DynamicRelrEntrySize; 5107 }; 5108 5109 for (auto RelIt = RelOffsets.begin(); RelIt != RelOffsets.end();) { 5110 WriteRelr(*RelIt); 5111 uint64_t Base = *RelIt++ + PSize; 5112 while (1) { 5113 uint64_t Bitmap = 0; 5114 for (; RelIt != RelOffsets.end(); ++RelIt) { 5115 const uint64_t Delta = *RelIt - Base; 5116 if (Delta >= MaxDelta || Delta % PSize) 5117 break; 5118 5119 Bitmap |= (1ULL << (Delta / PSize)); 5120 } 5121 5122 if (!Bitmap) 5123 break; 5124 5125 WriteRelr((Bitmap << 1) | 1); 5126 Base += MaxDelta; 5127 } 5128 } 5129 5130 // Fill the rest of the section with empty bitmap value 5131 while (RelrDynOffset != RelrDynEndOffset) 5132 WriteRelr(1); 5133 } 5134 5135 template <typename ELFT> 5136 void 5137 RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile<ELFT> *File) { 5138 using Elf_Rela = typename ELFT::Rela; 5139 raw_fd_ostream &OS = Out->os(); 5140 const ELFFile<ELFT> &EF = File->getELFFile(); 5141 5142 uint64_t RelDynOffset = 0, RelDynEndOffset = 0; 5143 uint64_t RelPltOffset = 0, RelPltEndOffset = 0; 5144 5145 auto setSectionFileOffsets = [&](uint64_t Address, uint64_t &Start, 5146 uint64_t &End) { 5147 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 5148 assert(Section && "cannot get relocation section"); 5149 Start = Section->getInputFileOffset(); 5150 End = Start + Section->getSize(); 5151 }; 5152 5153 if (!DynamicRelocationsAddress && !PLTRelocationsAddress) 5154 return; 5155 5156 if (DynamicRelocationsAddress) 5157 setSectionFileOffsets(*DynamicRelocationsAddress, RelDynOffset, 5158 RelDynEndOffset); 5159 5160 if (PLTRelocationsAddress) 5161 setSectionFileOffsets(*PLTRelocationsAddress, RelPltOffset, 5162 RelPltEndOffset); 5163 5164 DynamicRelativeRelocationsCount = 0; 5165 5166 auto writeRela = [&OS](const Elf_Rela *RelA, uint64_t &Offset) { 5167 OS.pwrite(reinterpret_cast<const char *>(RelA), sizeof(*RelA), Offset); 5168 Offset += sizeof(*RelA); 5169 }; 5170 5171 auto writeRelocations = [&](bool PatchRelative) { 5172 for (BinarySection &Section : BC->allocatableSections()) { 5173 const uint64_t SectionInputAddress = Section.getAddress(); 5174 uint64_t SectionAddress = Section.getOutputAddress(); 5175 if (!SectionAddress) 5176 SectionAddress = SectionInputAddress; 5177 5178 for (const Relocation &Rel : Section.dynamicRelocations()) { 5179 const bool IsRelative = Rel.isRelative(); 5180 if (PatchRelative != IsRelative) 5181 continue; 5182 5183 if (IsRelative) 5184 ++DynamicRelativeRelocationsCount; 5185 5186 Elf_Rela NewRelA; 5187 MCSymbol *Symbol = Rel.Symbol; 5188 uint32_t SymbolIdx = 0; 5189 uint64_t Addend = Rel.Addend; 5190 uint64_t RelOffset = 5191 getNewFunctionOrDataAddress(SectionInputAddress + Rel.Offset); 5192 5193 RelOffset = RelOffset == 0 ? SectionAddress + Rel.Offset : RelOffset; 5194 if (Rel.Symbol) { 5195 SymbolIdx = getOutputDynamicSymbolIndex(Symbol); 5196 } else { 5197 // Usually this case is used for R_*_(I)RELATIVE relocations 5198 const uint64_t Address = getNewFunctionOrDataAddress(Addend); 5199 if (Address) 5200 Addend = Address; 5201 } 5202 5203 NewRelA.setSymbolAndType(SymbolIdx, Rel.Type, EF.isMips64EL()); 5204 NewRelA.r_offset = RelOffset; 5205 NewRelA.r_addend = Addend; 5206 5207 const bool IsJmpRel = IsJmpRelocation.contains(Rel.Type); 5208 uint64_t &Offset = IsJmpRel ? RelPltOffset : RelDynOffset; 5209 const uint64_t &EndOffset = 5210 IsJmpRel ? RelPltEndOffset : RelDynEndOffset; 5211 if (!Offset || !EndOffset) { 5212 BC->errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n"; 5213 exit(1); 5214 } 5215 5216 if (Offset + sizeof(NewRelA) > EndOffset) { 5217 BC->errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n"; 5218 exit(1); 5219 } 5220 5221 writeRela(&NewRelA, Offset); 5222 } 5223 } 5224 }; 5225 5226 // Place R_*_RELATIVE relocations in RELA section if RELR is not presented. 5227 // The dynamic linker expects all R_*_RELATIVE relocations in RELA 5228 // to be emitted first. 5229 if (!DynamicRelrAddress) 5230 writeRelocations(/* PatchRelative */ true); 5231 writeRelocations(/* PatchRelative */ false); 5232 5233 auto fillNone = [&](uint64_t &Offset, uint64_t EndOffset) { 5234 if (!Offset) 5235 return; 5236 5237 typename ELFObjectFile<ELFT>::Elf_Rela RelA; 5238 RelA.setSymbolAndType(0, Relocation::getNone(), EF.isMips64EL()); 5239 RelA.r_offset = 0; 5240 RelA.r_addend = 0; 5241 while (Offset < EndOffset) 5242 writeRela(&RelA, Offset); 5243 5244 assert(Offset == EndOffset && "Unexpected section overflow"); 5245 }; 5246 5247 // Fill the rest of the sections with R_*_NONE relocations 5248 fillNone(RelDynOffset, RelDynEndOffset); 5249 fillNone(RelPltOffset, RelPltEndOffset); 5250 } 5251 5252 template <typename ELFT> 5253 void RewriteInstance::patchELFGOT(ELFObjectFile<ELFT> *File) { 5254 raw_fd_ostream &OS = Out->os(); 5255 5256 SectionRef GOTSection; 5257 for (const SectionRef &Section : File->sections()) { 5258 StringRef SectionName = cantFail(Section.getName()); 5259 if (SectionName == ".got") { 5260 GOTSection = Section; 5261 break; 5262 } 5263 } 5264 if (!GOTSection.getObject()) { 5265 if (!BC->IsStaticExecutable) 5266 BC->errs() << "BOLT-INFO: no .got section found\n"; 5267 return; 5268 } 5269 5270 StringRef GOTContents = cantFail(GOTSection.getContents()); 5271 for (const uint64_t *GOTEntry = 5272 reinterpret_cast<const uint64_t *>(GOTContents.data()); 5273 GOTEntry < reinterpret_cast<const uint64_t *>(GOTContents.data() + 5274 GOTContents.size()); 5275 ++GOTEntry) { 5276 if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) { 5277 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x" 5278 << Twine::utohexstr(*GOTEntry) << " with 0x" 5279 << Twine::utohexstr(NewAddress) << '\n'); 5280 OS.pwrite(reinterpret_cast<const char *>(&NewAddress), sizeof(NewAddress), 5281 reinterpret_cast<const char *>(GOTEntry) - 5282 File->getData().data()); 5283 } 5284 } 5285 } 5286 5287 template <typename ELFT> 5288 void RewriteInstance::patchELFDynamic(ELFObjectFile<ELFT> *File) { 5289 if (BC->IsStaticExecutable) 5290 return; 5291 5292 const ELFFile<ELFT> &Obj = File->getELFFile(); 5293 raw_fd_ostream &OS = Out->os(); 5294 5295 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; 5296 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; 5297 5298 // Locate DYNAMIC by looking through program headers. 5299 uint64_t DynamicOffset = 0; 5300 const Elf_Phdr *DynamicPhdr = nullptr; 5301 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { 5302 if (Phdr.p_type == ELF::PT_DYNAMIC) { 5303 DynamicOffset = Phdr.p_offset; 5304 DynamicPhdr = &Phdr; 5305 assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match"); 5306 break; 5307 } 5308 } 5309 assert(DynamicPhdr && "missing dynamic in ELF binary"); 5310 5311 bool ZNowSet = false; 5312 5313 // Go through all dynamic entries and patch functions addresses with 5314 // new ones. 5315 typename ELFT::DynRange DynamicEntries = 5316 cantFail(Obj.dynamicEntries(), "error accessing dynamic table"); 5317 auto DTB = DynamicEntries.begin(); 5318 for (const Elf_Dyn &Dyn : DynamicEntries) { 5319 Elf_Dyn NewDE = Dyn; 5320 bool ShouldPatch = true; 5321 switch (Dyn.d_tag) { 5322 default: 5323 ShouldPatch = false; 5324 break; 5325 case ELF::DT_RELACOUNT: 5326 NewDE.d_un.d_val = DynamicRelativeRelocationsCount; 5327 break; 5328 case ELF::DT_INIT: 5329 case ELF::DT_FINI: { 5330 if (BC->HasRelocations) { 5331 if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) { 5332 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type " 5333 << Dyn.getTag() << '\n'); 5334 NewDE.d_un.d_ptr = NewAddress; 5335 } 5336 } 5337 RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary(); 5338 if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) { 5339 if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress()) 5340 NewDE.d_un.d_ptr = Addr; 5341 } 5342 if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) { 5343 if (auto Addr = RtLibrary->getRuntimeStartAddress()) { 5344 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x" 5345 << Twine::utohexstr(Addr) << '\n'); 5346 NewDE.d_un.d_ptr = Addr; 5347 } 5348 } 5349 break; 5350 } 5351 case ELF::DT_FLAGS: 5352 if (BC->RequiresZNow) { 5353 NewDE.d_un.d_val |= ELF::DF_BIND_NOW; 5354 ZNowSet = true; 5355 } 5356 break; 5357 case ELF::DT_FLAGS_1: 5358 if (BC->RequiresZNow) { 5359 NewDE.d_un.d_val |= ELF::DF_1_NOW; 5360 ZNowSet = true; 5361 } 5362 break; 5363 } 5364 if (ShouldPatch) 5365 OS.pwrite(reinterpret_cast<const char *>(&NewDE), sizeof(NewDE), 5366 DynamicOffset + (&Dyn - DTB) * sizeof(Dyn)); 5367 } 5368 5369 if (BC->RequiresZNow && !ZNowSet) { 5370 BC->errs() 5371 << "BOLT-ERROR: output binary requires immediate relocation " 5372 "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in " 5373 ".dynamic. Please re-link the binary with -znow.\n"; 5374 exit(1); 5375 } 5376 } 5377 5378 template <typename ELFT> 5379 Error RewriteInstance::readELFDynamic(ELFObjectFile<ELFT> *File) { 5380 const ELFFile<ELFT> &Obj = File->getELFFile(); 5381 5382 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; 5383 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; 5384 5385 // Locate DYNAMIC by looking through program headers. 5386 const Elf_Phdr *DynamicPhdr = nullptr; 5387 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { 5388 if (Phdr.p_type == ELF::PT_DYNAMIC) { 5389 DynamicPhdr = &Phdr; 5390 break; 5391 } 5392 } 5393 5394 if (!DynamicPhdr) { 5395 BC->outs() << "BOLT-INFO: static input executable detected\n"; 5396 // TODO: static PIE executable might have dynamic header 5397 BC->IsStaticExecutable = true; 5398 return Error::success(); 5399 } 5400 5401 if (DynamicPhdr->p_memsz != DynamicPhdr->p_filesz) 5402 return createStringError(errc::executable_format_error, 5403 "dynamic section sizes should match"); 5404 5405 // Go through all dynamic entries to locate entries of interest. 5406 auto DynamicEntriesOrErr = Obj.dynamicEntries(); 5407 if (!DynamicEntriesOrErr) 5408 return DynamicEntriesOrErr.takeError(); 5409 typename ELFT::DynRange DynamicEntries = DynamicEntriesOrErr.get(); 5410 5411 for (const Elf_Dyn &Dyn : DynamicEntries) { 5412 switch (Dyn.d_tag) { 5413 case ELF::DT_INIT: 5414 if (!BC->HasInterpHeader) { 5415 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n"); 5416 BC->StartFunctionAddress = Dyn.getPtr(); 5417 } 5418 break; 5419 case ELF::DT_FINI: 5420 BC->FiniAddress = Dyn.getPtr(); 5421 break; 5422 case ELF::DT_FINI_ARRAY: 5423 BC->FiniArrayAddress = Dyn.getPtr(); 5424 break; 5425 case ELF::DT_FINI_ARRAYSZ: 5426 BC->FiniArraySize = Dyn.getPtr(); 5427 break; 5428 case ELF::DT_RELA: 5429 DynamicRelocationsAddress = Dyn.getPtr(); 5430 break; 5431 case ELF::DT_RELASZ: 5432 DynamicRelocationsSize = Dyn.getVal(); 5433 break; 5434 case ELF::DT_JMPREL: 5435 PLTRelocationsAddress = Dyn.getPtr(); 5436 break; 5437 case ELF::DT_PLTRELSZ: 5438 PLTRelocationsSize = Dyn.getVal(); 5439 break; 5440 case ELF::DT_RELACOUNT: 5441 DynamicRelativeRelocationsCount = Dyn.getVal(); 5442 break; 5443 case ELF::DT_RELR: 5444 DynamicRelrAddress = Dyn.getPtr(); 5445 break; 5446 case ELF::DT_RELRSZ: 5447 DynamicRelrSize = Dyn.getVal(); 5448 break; 5449 case ELF::DT_RELRENT: 5450 DynamicRelrEntrySize = Dyn.getVal(); 5451 break; 5452 } 5453 } 5454 5455 if (!DynamicRelocationsAddress || !DynamicRelocationsSize) { 5456 DynamicRelocationsAddress.reset(); 5457 DynamicRelocationsSize = 0; 5458 } 5459 5460 if (!PLTRelocationsAddress || !PLTRelocationsSize) { 5461 PLTRelocationsAddress.reset(); 5462 PLTRelocationsSize = 0; 5463 } 5464 5465 if (!DynamicRelrAddress || !DynamicRelrSize) { 5466 DynamicRelrAddress.reset(); 5467 DynamicRelrSize = 0; 5468 } else if (!DynamicRelrEntrySize) { 5469 BC->errs() << "BOLT-ERROR: expected DT_RELRENT to be presented " 5470 << "in DYNAMIC section\n"; 5471 exit(1); 5472 } else if (DynamicRelrSize % DynamicRelrEntrySize) { 5473 BC->errs() << "BOLT-ERROR: expected RELR table size to be divisible " 5474 << "by RELR entry size\n"; 5475 exit(1); 5476 } 5477 5478 return Error::success(); 5479 } 5480 5481 uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) { 5482 const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress); 5483 if (!Function) 5484 return 0; 5485 5486 return Function->getOutputAddress(); 5487 } 5488 5489 uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress) { 5490 if (uint64_t Function = getNewFunctionAddress(OldAddress)) 5491 return Function; 5492 5493 const BinaryData *BD = BC->getBinaryDataAtAddress(OldAddress); 5494 if (BD && BD->isMoved()) 5495 return BD->getOutputAddress(); 5496 5497 if (const BinaryFunction *BF = 5498 BC->getBinaryFunctionContainingAddress(OldAddress)) { 5499 if (BF->isEmitted()) { 5500 BC->errs() << "BOLT-ERROR: unable to get new address corresponding to " 5501 "input address 0x" 5502 << Twine::utohexstr(OldAddress) << " in function " << *BF 5503 << ". Consider adding this function to --skip-funcs=...\n"; 5504 exit(1); 5505 } 5506 } 5507 5508 return 0; 5509 } 5510 5511 void RewriteInstance::rewriteFile() { 5512 std::error_code EC; 5513 Out = std::make_unique<ToolOutputFile>(opts::OutputFilename, EC, 5514 sys::fs::OF_None); 5515 check_error(EC, "cannot create output executable file"); 5516 5517 raw_fd_ostream &OS = Out->os(); 5518 5519 // Copy allocatable part of the input. 5520 OS << InputFile->getData().substr(0, FirstNonAllocatableOffset); 5521 5522 auto Streamer = BC->createStreamer(OS); 5523 // Make sure output stream has enough reserved space, otherwise 5524 // pwrite() will fail. 5525 uint64_t Offset = std::max(getFileOffsetForAddress(NextAvailableAddress), 5526 FirstNonAllocatableOffset); 5527 Offset = OS.seek(Offset); 5528 assert((Offset != (uint64_t)-1) && "Error resizing output file"); 5529 5530 // Overwrite functions with fixed output address. This is mostly used by 5531 // non-relocation mode, with one exception: injected functions are covered 5532 // here in both modes. 5533 uint64_t CountOverwrittenFunctions = 0; 5534 uint64_t OverwrittenScore = 0; 5535 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { 5536 if (Function->getImageAddress() == 0 || Function->getImageSize() == 0) 5537 continue; 5538 5539 if (Function->getImageSize() > Function->getMaxSize()) { 5540 assert(!BC->isX86() && "Unexpected large function."); 5541 if (opts::Verbosity >= 1) 5542 BC->errs() << "BOLT-WARNING: new function size (0x" 5543 << Twine::utohexstr(Function->getImageSize()) 5544 << ") is larger than maximum allowed size (0x" 5545 << Twine::utohexstr(Function->getMaxSize()) 5546 << ") for function " << *Function << '\n'; 5547 5548 // Remove jump table sections that this function owns in non-reloc mode 5549 // because we don't want to write them anymore. 5550 if (!BC->HasRelocations && opts::JumpTables == JTS_BASIC) { 5551 for (auto &JTI : Function->JumpTables) { 5552 JumpTable *JT = JTI.second; 5553 BinarySection &Section = JT->getOutputSection(); 5554 BC->deregisterSection(Section); 5555 } 5556 } 5557 continue; 5558 } 5559 5560 const auto HasAddress = [](const FunctionFragment &FF) { 5561 return FF.empty() || 5562 (FF.getImageAddress() != 0 && FF.getImageSize() != 0); 5563 }; 5564 const bool SplitFragmentsHaveAddress = 5565 llvm::all_of(Function->getLayout().getSplitFragments(), HasAddress); 5566 if (Function->isSplit() && !SplitFragmentsHaveAddress) { 5567 const auto HasNoAddress = [](const FunctionFragment &FF) { 5568 return FF.getImageAddress() == 0 && FF.getImageSize() == 0; 5569 }; 5570 assert(llvm::all_of(Function->getLayout().getSplitFragments(), 5571 HasNoAddress) && 5572 "Some split fragments have an address while others do not"); 5573 (void)HasNoAddress; 5574 continue; 5575 } 5576 5577 OverwrittenScore += Function->getFunctionScore(); 5578 ++CountOverwrittenFunctions; 5579 5580 // Overwrite function in the output file. 5581 if (opts::Verbosity >= 2) 5582 BC->outs() << "BOLT: rewriting function \"" << *Function << "\"\n"; 5583 5584 OS.pwrite(reinterpret_cast<char *>(Function->getImageAddress()), 5585 Function->getImageSize(), Function->getFileOffset()); 5586 5587 // Write nops at the end of the function. 5588 if (Function->getMaxSize() != std::numeric_limits<uint64_t>::max()) { 5589 uint64_t Pos = OS.tell(); 5590 OS.seek(Function->getFileOffset() + Function->getImageSize()); 5591 BC->MAB->writeNopData( 5592 OS, Function->getMaxSize() - Function->getImageSize(), &*BC->STI); 5593 5594 OS.seek(Pos); 5595 } 5596 5597 if (!Function->isSplit()) 5598 continue; 5599 5600 // Write cold part 5601 if (opts::Verbosity >= 2) { 5602 BC->outs() << formatv("BOLT: rewriting function \"{0}\" (split parts)\n", 5603 *Function); 5604 } 5605 5606 for (const FunctionFragment &FF : 5607 Function->getLayout().getSplitFragments()) { 5608 OS.pwrite(reinterpret_cast<char *>(FF.getImageAddress()), 5609 FF.getImageSize(), FF.getFileOffset()); 5610 } 5611 } 5612 5613 // Print function statistics for non-relocation mode. 5614 if (!BC->HasRelocations) { 5615 BC->outs() << "BOLT: " << CountOverwrittenFunctions << " out of " 5616 << BC->getBinaryFunctions().size() 5617 << " functions were overwritten.\n"; 5618 if (BC->TotalScore != 0) { 5619 double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0; 5620 BC->outs() << format("BOLT-INFO: rewritten functions cover %.2lf", 5621 Coverage) 5622 << "% of the execution count of simple functions of " 5623 "this binary\n"; 5624 } 5625 } 5626 5627 if (BC->HasRelocations && opts::TrapOldCode) { 5628 uint64_t SavedPos = OS.tell(); 5629 // Overwrite function body to make sure we never execute these instructions. 5630 for (auto &BFI : BC->getBinaryFunctions()) { 5631 BinaryFunction &BF = BFI.second; 5632 if (!BF.getFileOffset() || !BF.isEmitted()) 5633 continue; 5634 OS.seek(BF.getFileOffset()); 5635 StringRef TrapInstr = BC->MIB->getTrapFillValue(); 5636 unsigned NInstr = BF.getMaxSize() / TrapInstr.size(); 5637 for (unsigned I = 0; I < NInstr; ++I) 5638 OS.write(TrapInstr.data(), TrapInstr.size()); 5639 } 5640 OS.seek(SavedPos); 5641 } 5642 5643 // Write all allocatable sections - reloc-mode text is written here as well 5644 for (BinarySection &Section : BC->allocatableSections()) { 5645 if (!Section.isFinalized() || !Section.getOutputData()) 5646 continue; 5647 if (Section.isLinkOnly()) 5648 continue; 5649 5650 if (opts::Verbosity >= 1) 5651 BC->outs() << "BOLT: writing new section " << Section.getName() 5652 << "\n data at 0x" 5653 << Twine::utohexstr(Section.getAllocAddress()) << "\n of size " 5654 << Section.getOutputSize() << "\n at offset " 5655 << Section.getOutputFileOffset() << '\n'; 5656 OS.pwrite(reinterpret_cast<const char *>(Section.getOutputData()), 5657 Section.getOutputSize(), Section.getOutputFileOffset()); 5658 } 5659 5660 for (BinarySection &Section : BC->allocatableSections()) 5661 Section.flushPendingRelocations(OS, [this](const MCSymbol *S) { 5662 return getNewValueForSymbol(S->getName()); 5663 }); 5664 5665 // If .eh_frame is present create .eh_frame_hdr. 5666 if (EHFrameSection) 5667 writeEHFrameHeader(); 5668 5669 // Add BOLT Addresses Translation maps to allow profile collection to 5670 // happen in the output binary 5671 if (opts::EnableBAT) 5672 addBATSection(); 5673 5674 // Patch program header table. 5675 if (!BC->IsLinuxKernel) 5676 patchELFPHDRTable(); 5677 5678 // Finalize memory image of section string table. 5679 finalizeSectionStringTable(); 5680 5681 // Update symbol tables. 5682 patchELFSymTabs(); 5683 5684 if (opts::EnableBAT) 5685 encodeBATSection(); 5686 5687 // Copy non-allocatable sections once allocatable part is finished. 5688 rewriteNoteSections(); 5689 5690 if (BC->HasRelocations) { 5691 patchELFAllocatableRelaSections(); 5692 patchELFAllocatableRelrSection(); 5693 patchELFGOT(); 5694 } 5695 5696 // Patch dynamic section/segment. 5697 patchELFDynamic(); 5698 5699 // Update ELF book-keeping info. 5700 patchELFSectionHeaderTable(); 5701 5702 if (opts::PrintSections) { 5703 BC->outs() << "BOLT-INFO: Sections after processing:\n"; 5704 BC->printSections(BC->outs()); 5705 } 5706 5707 Out->keep(); 5708 EC = sys::fs::setPermissions( 5709 opts::OutputFilename, 5710 static_cast<sys::fs::perms>(sys::fs::perms::all_all & 5711 ~sys::fs::getUmask())); 5712 check_error(EC, "cannot set permissions of output file"); 5713 } 5714 5715 void RewriteInstance::writeEHFrameHeader() { 5716 BinarySection *NewEHFrameSection = 5717 getSection(getNewSecPrefix() + getEHFrameSectionName()); 5718 5719 // No need to update the header if no new .eh_frame was created. 5720 if (!NewEHFrameSection) 5721 return; 5722 5723 DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true, 5724 NewEHFrameSection->getOutputAddress()); 5725 Error E = NewEHFrame.parse(DWARFDataExtractor( 5726 NewEHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(), 5727 BC->AsmInfo->getCodePointerSize())); 5728 check_error(std::move(E), "failed to parse EH frame"); 5729 5730 uint64_t RelocatedEHFrameAddress = 0; 5731 StringRef RelocatedEHFrameContents; 5732 BinarySection *RelocatedEHFrameSection = 5733 getSection(".relocated" + getEHFrameSectionName()); 5734 if (RelocatedEHFrameSection) { 5735 RelocatedEHFrameAddress = RelocatedEHFrameSection->getOutputAddress(); 5736 RelocatedEHFrameContents = RelocatedEHFrameSection->getOutputContents(); 5737 } 5738 DWARFDebugFrame RelocatedEHFrame(BC->TheTriple->getArch(), true, 5739 RelocatedEHFrameAddress); 5740 Error Er = RelocatedEHFrame.parse(DWARFDataExtractor( 5741 RelocatedEHFrameContents, BC->AsmInfo->isLittleEndian(), 5742 BC->AsmInfo->getCodePointerSize())); 5743 check_error(std::move(Er), "failed to parse EH frame"); 5744 5745 LLVM_DEBUG(dbgs() << "BOLT: writing a new " << getEHFrameHdrSectionName() 5746 << '\n'); 5747 5748 NextAvailableAddress = 5749 appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign); 5750 5751 const uint64_t EHFrameHdrOutputAddress = NextAvailableAddress; 5752 const uint64_t EHFrameHdrFileOffset = 5753 getFileOffsetForAddress(NextAvailableAddress); 5754 5755 std::vector<char> NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader( 5756 RelocatedEHFrame, NewEHFrame, EHFrameHdrOutputAddress, FailedAddresses); 5757 5758 Out->os().seek(EHFrameHdrFileOffset); 5759 Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size()); 5760 5761 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, 5762 /*IsText=*/false, 5763 /*IsAllocatable=*/true); 5764 BinarySection *OldEHFrameHdrSection = getSection(getEHFrameHdrSectionName()); 5765 if (OldEHFrameHdrSection) 5766 OldEHFrameHdrSection->setOutputName(getOrgSecPrefix() + 5767 getEHFrameHdrSectionName()); 5768 5769 BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection( 5770 getNewSecPrefix() + getEHFrameHdrSectionName(), ELF::SHT_PROGBITS, Flags, 5771 nullptr, NewEHFrameHdr.size(), /*Alignment=*/1); 5772 EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset); 5773 EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress); 5774 EHFrameHdrSec.setOutputName(getEHFrameHdrSectionName()); 5775 5776 NextAvailableAddress += EHFrameHdrSec.getOutputSize(); 5777 5778 if (!BC->BOLTReserved.empty() && 5779 (NextAvailableAddress > BC->BOLTReserved.end())) { 5780 BC->errs() << "BOLT-ERROR: unable to fit " << getEHFrameHdrSectionName() 5781 << " into reserved space\n"; 5782 exit(1); 5783 } 5784 5785 // Merge new .eh_frame with the relocated original so that gdb can locate all 5786 // FDEs. 5787 if (RelocatedEHFrameSection) { 5788 const uint64_t NewEHFrameSectionSize = 5789 RelocatedEHFrameSection->getOutputAddress() + 5790 RelocatedEHFrameSection->getOutputSize() - 5791 NewEHFrameSection->getOutputAddress(); 5792 NewEHFrameSection->updateContents(NewEHFrameSection->getOutputData(), 5793 NewEHFrameSectionSize); 5794 BC->deregisterSection(*RelocatedEHFrameSection); 5795 } 5796 5797 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is " 5798 << NewEHFrameSection->getOutputSize() << '\n'); 5799 } 5800 5801 uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) { 5802 auto Value = Linker->lookupSymbol(Name); 5803 if (Value) 5804 return *Value; 5805 5806 // Return the original value if we haven't emitted the symbol. 5807 BinaryData *BD = BC->getBinaryDataByName(Name); 5808 if (!BD) 5809 return 0; 5810 5811 return BD->getAddress(); 5812 } 5813 5814 uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const { 5815 // Check if it's possibly part of the new segment. 5816 if (NewTextSegmentAddress && Address >= NewTextSegmentAddress) 5817 return Address - NewTextSegmentAddress + NewTextSegmentOffset; 5818 5819 // Find an existing segment that matches the address. 5820 const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address); 5821 if (SegmentInfoI == BC->SegmentMapInfo.begin()) 5822 return 0; 5823 5824 const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second; 5825 if (Address < SegmentInfo.Address || 5826 Address >= SegmentInfo.Address + SegmentInfo.FileSize) 5827 return 0; 5828 5829 return SegmentInfo.FileOffset + Address - SegmentInfo.Address; 5830 } 5831 5832 bool RewriteInstance::willOverwriteSection(StringRef SectionName) { 5833 if (llvm::is_contained(SectionsToOverwrite, SectionName)) 5834 return true; 5835 if (llvm::is_contained(DebugSectionsToOverwrite, SectionName)) 5836 return true; 5837 5838 ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName); 5839 return Section && Section->isAllocatable() && Section->isFinalized(); 5840 } 5841 5842 bool RewriteInstance::isDebugSection(StringRef SectionName) { 5843 if (SectionName.starts_with(".debug_") || 5844 SectionName.starts_with(".zdebug_") || SectionName == ".gdb_index" || 5845 SectionName == ".stab" || SectionName == ".stabstr") 5846 return true; 5847 5848 return false; 5849 } 5850