1 //===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "bolt/Rewrite/RewriteInstance.h" 10 #include "bolt/Core/AddressMap.h" 11 #include "bolt/Core/BinaryContext.h" 12 #include "bolt/Core/BinaryEmitter.h" 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/DebugData.h" 15 #include "bolt/Core/Exceptions.h" 16 #include "bolt/Core/FunctionLayout.h" 17 #include "bolt/Core/MCPlusBuilder.h" 18 #include "bolt/Core/ParallelUtilities.h" 19 #include "bolt/Core/Relocation.h" 20 #include "bolt/Passes/BinaryPasses.h" 21 #include "bolt/Passes/CacheMetrics.h" 22 #include "bolt/Passes/ReorderFunctions.h" 23 #include "bolt/Profile/BoltAddressTranslation.h" 24 #include "bolt/Profile/DataAggregator.h" 25 #include "bolt/Profile/DataReader.h" 26 #include "bolt/Profile/YAMLProfileReader.h" 27 #include "bolt/Profile/YAMLProfileWriter.h" 28 #include "bolt/Rewrite/BinaryPassManager.h" 29 #include "bolt/Rewrite/DWARFRewriter.h" 30 #include "bolt/Rewrite/ExecutableFileMemoryManager.h" 31 #include "bolt/Rewrite/JITLinkLinker.h" 32 #include "bolt/Rewrite/MetadataRewriters.h" 33 #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h" 34 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h" 35 #include "bolt/Utils/CommandLineOpts.h" 36 #include "bolt/Utils/Utils.h" 37 #include "llvm/ADT/AddressRanges.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 40 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" 41 #include "llvm/MC/MCAsmBackend.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 44 #include "llvm/MC/MCObjectStreamer.h" 45 #include "llvm/MC/MCStreamer.h" 46 #include "llvm/MC/MCSymbol.h" 47 #include "llvm/MC/TargetRegistry.h" 48 #include "llvm/Object/ObjectFile.h" 49 #include "llvm/Support/Alignment.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/DataExtractor.h" 53 #include "llvm/Support/Errc.h" 54 #include "llvm/Support/Error.h" 55 #include "llvm/Support/FileSystem.h" 56 #include "llvm/Support/ManagedStatic.h" 57 #include "llvm/Support/Timer.h" 58 #include "llvm/Support/ToolOutputFile.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <fstream> 62 #include <memory> 63 #include <optional> 64 #include <system_error> 65 66 #undef DEBUG_TYPE 67 #define DEBUG_TYPE "bolt" 68 69 using namespace llvm; 70 using namespace object; 71 using namespace bolt; 72 73 extern cl::opt<uint32_t> X86AlignBranchBoundary; 74 extern cl::opt<bool> X86AlignBranchWithin32BBoundaries; 75 76 namespace opts { 77 78 extern cl::list<std::string> HotTextMoveSections; 79 extern cl::opt<bool> Hugify; 80 extern cl::opt<bool> Instrument; 81 extern cl::opt<JumpTableSupportLevel> JumpTables; 82 extern cl::opt<bool> KeepNops; 83 extern cl::opt<bool> Lite; 84 extern cl::list<std::string> ReorderData; 85 extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions; 86 extern cl::opt<bool> TerminalTrap; 87 extern cl::opt<bool> TimeBuild; 88 extern cl::opt<bool> TimeRewrite; 89 90 cl::opt<bool> AllowStripped("allow-stripped", 91 cl::desc("allow processing of stripped binaries"), 92 cl::Hidden, cl::cat(BoltCategory)); 93 94 static cl::opt<bool> ForceToDataRelocations( 95 "force-data-relocations", 96 cl::desc("force relocations to data sections to always be processed"), 97 98 cl::Hidden, cl::cat(BoltCategory)); 99 100 cl::opt<std::string> 101 BoltID("bolt-id", 102 cl::desc("add any string to tag this execution in the " 103 "output binary via bolt info section"), 104 cl::cat(BoltCategory)); 105 106 cl::opt<bool> DumpDotAll( 107 "dump-dot-all", 108 cl::desc("dump function CFGs to graphviz format after each stage;" 109 "enable '-print-loops' for color-coded blocks"), 110 cl::Hidden, cl::cat(BoltCategory)); 111 112 static cl::list<std::string> 113 ForceFunctionNames("funcs", 114 cl::CommaSeparated, 115 cl::desc("limit optimizations to functions from the list"), 116 cl::value_desc("func1,func2,func3,..."), 117 cl::Hidden, 118 cl::cat(BoltCategory)); 119 120 static cl::opt<std::string> 121 FunctionNamesFile("funcs-file", 122 cl::desc("file with list of functions to optimize"), 123 cl::Hidden, 124 cl::cat(BoltCategory)); 125 126 static cl::list<std::string> ForceFunctionNamesNR( 127 "funcs-no-regex", cl::CommaSeparated, 128 cl::desc("limit optimizations to functions from the list (non-regex)"), 129 cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory)); 130 131 static cl::opt<std::string> FunctionNamesFileNR( 132 "funcs-file-no-regex", 133 cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden, 134 cl::cat(BoltCategory)); 135 136 cl::opt<bool> 137 KeepTmp("keep-tmp", 138 cl::desc("preserve intermediate .o file"), 139 cl::Hidden, 140 cl::cat(BoltCategory)); 141 142 static cl::opt<unsigned> 143 LiteThresholdPct("lite-threshold-pct", 144 cl::desc("threshold (in percent) for selecting functions to process in lite " 145 "mode. Higher threshold means fewer functions to process. E.g " 146 "threshold of 90 means only top 10 percent of functions with " 147 "profile will be processed."), 148 cl::init(0), 149 cl::ZeroOrMore, 150 cl::Hidden, 151 cl::cat(BoltOptCategory)); 152 153 static cl::opt<unsigned> LiteThresholdCount( 154 "lite-threshold-count", 155 cl::desc("similar to '-lite-threshold-pct' but specify threshold using " 156 "absolute function call count. I.e. limit processing to functions " 157 "executed at least the specified number of times."), 158 cl::init(0), cl::Hidden, cl::cat(BoltOptCategory)); 159 160 static cl::opt<unsigned> 161 MaxFunctions("max-funcs", 162 cl::desc("maximum number of functions to process"), cl::Hidden, 163 cl::cat(BoltCategory)); 164 165 static cl::opt<unsigned> MaxDataRelocations( 166 "max-data-relocations", 167 cl::desc("maximum number of data relocations to process"), cl::Hidden, 168 cl::cat(BoltCategory)); 169 170 cl::opt<bool> PrintAll("print-all", 171 cl::desc("print functions after each stage"), cl::Hidden, 172 cl::cat(BoltCategory)); 173 174 cl::opt<bool> PrintProfile("print-profile", 175 cl::desc("print functions after attaching profile"), 176 cl::Hidden, cl::cat(BoltCategory)); 177 178 cl::opt<bool> PrintCFG("print-cfg", 179 cl::desc("print functions after CFG construction"), 180 cl::Hidden, cl::cat(BoltCategory)); 181 182 cl::opt<bool> PrintDisasm("print-disasm", 183 cl::desc("print function after disassembly"), 184 cl::Hidden, cl::cat(BoltCategory)); 185 186 static cl::opt<bool> 187 PrintGlobals("print-globals", 188 cl::desc("print global symbols after disassembly"), cl::Hidden, 189 cl::cat(BoltCategory)); 190 191 extern cl::opt<bool> PrintSections; 192 193 static cl::opt<bool> PrintLoopInfo("print-loops", 194 cl::desc("print loop related information"), 195 cl::Hidden, cl::cat(BoltCategory)); 196 197 static cl::opt<cl::boolOrDefault> RelocationMode( 198 "relocs", cl::desc("use relocations in the binary (default=autodetect)"), 199 cl::cat(BoltCategory)); 200 201 extern cl::opt<std::string> SaveProfile; 202 203 static cl::list<std::string> 204 SkipFunctionNames("skip-funcs", 205 cl::CommaSeparated, 206 cl::desc("list of functions to skip"), 207 cl::value_desc("func1,func2,func3,..."), 208 cl::Hidden, 209 cl::cat(BoltCategory)); 210 211 static cl::opt<std::string> 212 SkipFunctionNamesFile("skip-funcs-file", 213 cl::desc("file with list of functions to skip"), 214 cl::Hidden, 215 cl::cat(BoltCategory)); 216 217 cl::opt<bool> 218 TrapOldCode("trap-old-code", 219 cl::desc("insert traps in old function bodies (relocation mode)"), 220 cl::Hidden, 221 cl::cat(BoltCategory)); 222 223 static cl::opt<std::string> DWPPathName("dwp", 224 cl::desc("Path and name to DWP file."), 225 cl::Hidden, cl::init(""), 226 cl::cat(BoltCategory)); 227 228 static cl::opt<bool> 229 UseGnuStack("use-gnu-stack", 230 cl::desc("use GNU_STACK program header for new segment (workaround for " 231 "issues with strip/objcopy)"), 232 cl::ZeroOrMore, 233 cl::cat(BoltCategory)); 234 235 static cl::opt<bool> 236 SequentialDisassembly("sequential-disassembly", 237 cl::desc("performs disassembly sequentially"), 238 cl::init(false), 239 cl::cat(BoltOptCategory)); 240 241 static cl::opt<bool> WriteBoltInfoSection( 242 "bolt-info", cl::desc("write bolt info section in the output binary"), 243 cl::init(true), cl::Hidden, cl::cat(BoltOutputCategory)); 244 245 } // namespace opts 246 247 // FIXME: implement a better way to mark sections for replacement. 248 constexpr const char *RewriteInstance::SectionsToOverwrite[]; 249 std::vector<std::string> RewriteInstance::DebugSectionsToOverwrite = { 250 ".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_line_str", 251 ".debug_loc", ".debug_loclists", ".debug_ranges", ".debug_rnglists", 252 ".gdb_index", ".debug_addr", ".debug_abbrev", ".debug_info", 253 ".debug_types", ".pseudo_probe"}; 254 255 const char RewriteInstance::TimerGroupName[] = "rewrite"; 256 const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes"; 257 258 namespace llvm { 259 namespace bolt { 260 261 extern const char *BoltRevision; 262 263 // Weird location for createMCPlusBuilder, but this is here to avoid a 264 // cyclic dependency of libCore (its natural place) and libTarget. libRewrite 265 // can depend on libTarget, but not libCore. Since libRewrite is the only 266 // user of this function, we define it here. 267 MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch, 268 const MCInstrAnalysis *Analysis, 269 const MCInstrInfo *Info, 270 const MCRegisterInfo *RegInfo, 271 const MCSubtargetInfo *STI) { 272 #ifdef X86_AVAILABLE 273 if (Arch == Triple::x86_64) 274 return createX86MCPlusBuilder(Analysis, Info, RegInfo, STI); 275 #endif 276 277 #ifdef AARCH64_AVAILABLE 278 if (Arch == Triple::aarch64) 279 return createAArch64MCPlusBuilder(Analysis, Info, RegInfo, STI); 280 #endif 281 282 #ifdef RISCV_AVAILABLE 283 if (Arch == Triple::riscv64) 284 return createRISCVMCPlusBuilder(Analysis, Info, RegInfo, STI); 285 #endif 286 287 llvm_unreachable("architecture unsupported by MCPlusBuilder"); 288 } 289 290 } // namespace bolt 291 } // namespace llvm 292 293 using ELF64LEPhdrTy = ELF64LEFile::Elf_Phdr; 294 295 namespace { 296 297 bool refersToReorderedSection(ErrorOr<BinarySection &> Section) { 298 return llvm::any_of(opts::ReorderData, [&](const std::string &SectionName) { 299 return Section && Section->getName() == SectionName; 300 }); 301 } 302 303 } // anonymous namespace 304 305 Expected<std::unique_ptr<RewriteInstance>> 306 RewriteInstance::create(ELFObjectFileBase *File, const int Argc, 307 const char *const *Argv, StringRef ToolPath, 308 raw_ostream &Stdout, raw_ostream &Stderr) { 309 Error Err = Error::success(); 310 auto RI = std::make_unique<RewriteInstance>(File, Argc, Argv, ToolPath, 311 Stdout, Stderr, Err); 312 if (Err) 313 return std::move(Err); 314 return std::move(RI); 315 } 316 317 RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc, 318 const char *const *Argv, StringRef ToolPath, 319 raw_ostream &Stdout, raw_ostream &Stderr, 320 Error &Err) 321 : InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath), 322 SHStrTab(StringTableBuilder::ELF) { 323 ErrorAsOutParameter EAO(&Err); 324 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 325 if (!ELF64LEFile) { 326 Err = createStringError(errc::not_supported, 327 "Only 64-bit LE ELF binaries are supported"); 328 return; 329 } 330 331 bool IsPIC = false; 332 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 333 if (Obj.getHeader().e_type != ELF::ET_EXEC) { 334 Stdout << "BOLT-INFO: shared object or position-independent executable " 335 "detected\n"; 336 IsPIC = true; 337 } 338 339 // Make sure we don't miss any output on core dumps. 340 Stdout.SetUnbuffered(); 341 Stderr.SetUnbuffered(); 342 LLVM_DEBUG(dbgs().SetUnbuffered()); 343 344 // Read RISCV subtarget features from input file 345 std::unique_ptr<SubtargetFeatures> Features; 346 Triple TheTriple = File->makeTriple(); 347 if (TheTriple.getArch() == llvm::Triple::riscv64) { 348 Expected<SubtargetFeatures> FeaturesOrErr = File->getFeatures(); 349 if (auto E = FeaturesOrErr.takeError()) { 350 Err = std::move(E); 351 return; 352 } else { 353 Features.reset(new SubtargetFeatures(*FeaturesOrErr)); 354 } 355 } 356 357 auto BCOrErr = BinaryContext::createBinaryContext( 358 TheTriple, File->getFileName(), Features.get(), IsPIC, 359 DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore, 360 nullptr, opts::DWPPathName, 361 WithColor::defaultErrorHandler, 362 WithColor::defaultWarningHandler), 363 JournalingStreams{Stdout, Stderr}); 364 if (Error E = BCOrErr.takeError()) { 365 Err = std::move(E); 366 return; 367 } 368 BC = std::move(BCOrErr.get()); 369 BC->initializeTarget(std::unique_ptr<MCPlusBuilder>( 370 createMCPlusBuilder(BC->TheTriple->getArch(), BC->MIA.get(), 371 BC->MII.get(), BC->MRI.get(), BC->STI.get()))); 372 373 BAT = std::make_unique<BoltAddressTranslation>(); 374 375 if (opts::UpdateDebugSections) 376 DebugInfoRewriter = std::make_unique<DWARFRewriter>(*BC); 377 378 if (opts::Instrument) 379 BC->setRuntimeLibrary(std::make_unique<InstrumentationRuntimeLibrary>()); 380 else if (opts::Hugify) 381 BC->setRuntimeLibrary(std::make_unique<HugifyRuntimeLibrary>()); 382 } 383 384 RewriteInstance::~RewriteInstance() {} 385 386 Error RewriteInstance::setProfile(StringRef Filename) { 387 if (!sys::fs::exists(Filename)) 388 return errorCodeToError(make_error_code(errc::no_such_file_or_directory)); 389 390 if (ProfileReader) { 391 // Already exists 392 return make_error<StringError>(Twine("multiple profiles specified: ") + 393 ProfileReader->getFilename() + " and " + 394 Filename, 395 inconvertibleErrorCode()); 396 } 397 398 // Spawn a profile reader based on file contents. 399 if (DataAggregator::checkPerfDataMagic(Filename)) 400 ProfileReader = std::make_unique<DataAggregator>(Filename); 401 else if (YAMLProfileReader::isYAML(Filename)) 402 ProfileReader = std::make_unique<YAMLProfileReader>(Filename); 403 else 404 ProfileReader = std::make_unique<DataReader>(Filename); 405 406 return Error::success(); 407 } 408 409 /// Return true if the function \p BF should be disassembled. 410 static bool shouldDisassemble(const BinaryFunction &BF) { 411 if (BF.isPseudo()) 412 return false; 413 414 if (opts::processAllFunctions()) 415 return true; 416 417 return !BF.isIgnored(); 418 } 419 420 // Return if a section stored in the image falls into a segment address space. 421 // If not, Set \p Overlap to true if there's a partial overlap. 422 template <class ELFT> 423 static bool checkOffsets(const typename ELFT::Phdr &Phdr, 424 const typename ELFT::Shdr &Sec, bool &Overlap) { 425 // SHT_NOBITS sections don't need to have an offset inside the segment. 426 if (Sec.sh_type == ELF::SHT_NOBITS) 427 return true; 428 429 // Only non-empty sections can be at the end of a segment. 430 uint64_t SectionSize = Sec.sh_size ? Sec.sh_size : 1ull; 431 AddressRange SectionAddressRange((uint64_t)Sec.sh_offset, 432 Sec.sh_offset + SectionSize); 433 AddressRange SegmentAddressRange(Phdr.p_offset, 434 Phdr.p_offset + Phdr.p_filesz); 435 if (SegmentAddressRange.contains(SectionAddressRange)) 436 return true; 437 438 Overlap = SegmentAddressRange.intersects(SectionAddressRange); 439 return false; 440 } 441 442 // Check that an allocatable section belongs to a virtual address 443 // space of a segment. 444 template <class ELFT> 445 static bool checkVMA(const typename ELFT::Phdr &Phdr, 446 const typename ELFT::Shdr &Sec, bool &Overlap) { 447 // Only non-empty sections can be at the end of a segment. 448 uint64_t SectionSize = Sec.sh_size ? Sec.sh_size : 1ull; 449 AddressRange SectionAddressRange((uint64_t)Sec.sh_addr, 450 Sec.sh_addr + SectionSize); 451 AddressRange SegmentAddressRange(Phdr.p_vaddr, Phdr.p_vaddr + Phdr.p_memsz); 452 453 if (SegmentAddressRange.contains(SectionAddressRange)) 454 return true; 455 Overlap = SegmentAddressRange.intersects(SectionAddressRange); 456 return false; 457 } 458 459 void RewriteInstance::markGnuRelroSections() { 460 using ELFT = ELF64LE; 461 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 462 auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile); 463 const ELFFile<ELFT> &Obj = ELF64LEFile->getELFFile(); 464 465 auto handleSection = [&](const ELFT::Phdr &Phdr, SectionRef SecRef) { 466 BinarySection *BinarySection = BC->getSectionForSectionRef(SecRef); 467 // If the section is non-allocatable, ignore it for GNU_RELRO purposes: 468 // it can't be made read-only after runtime relocations processing. 469 if (!BinarySection || !BinarySection->isAllocatable()) 470 return; 471 const ELFShdrTy *Sec = cantFail(Obj.getSection(SecRef.getIndex())); 472 bool ImageOverlap{false}, VMAOverlap{false}; 473 bool ImageContains = checkOffsets<ELFT>(Phdr, *Sec, ImageOverlap); 474 bool VMAContains = checkVMA<ELFT>(Phdr, *Sec, VMAOverlap); 475 if (ImageOverlap) { 476 if (opts::Verbosity >= 1) 477 BC->errs() << "BOLT-WARNING: GNU_RELRO segment has partial file offset " 478 << "overlap with section " << BinarySection->getName() 479 << '\n'; 480 return; 481 } 482 if (VMAOverlap) { 483 if (opts::Verbosity >= 1) 484 BC->errs() << "BOLT-WARNING: GNU_RELRO segment has partial VMA overlap " 485 << "with section " << BinarySection->getName() << '\n'; 486 return; 487 } 488 if (!ImageContains || !VMAContains) 489 return; 490 BinarySection->setRelro(); 491 if (opts::Verbosity >= 1) 492 BC->outs() << "BOLT-INFO: marking " << BinarySection->getName() 493 << " as GNU_RELRO\n"; 494 }; 495 496 for (const ELFT::Phdr &Phdr : cantFail(Obj.program_headers())) 497 if (Phdr.p_type == ELF::PT_GNU_RELRO) 498 for (SectionRef SecRef : InputFile->sections()) 499 handleSection(Phdr, SecRef); 500 } 501 502 Error RewriteInstance::discoverStorage() { 503 NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName, 504 TimerGroupDesc, opts::TimeRewrite); 505 506 auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile); 507 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 508 509 BC->StartFunctionAddress = Obj.getHeader().e_entry; 510 511 NextAvailableAddress = 0; 512 uint64_t NextAvailableOffset = 0; 513 Expected<ELF64LE::PhdrRange> PHsOrErr = Obj.program_headers(); 514 if (Error E = PHsOrErr.takeError()) 515 return E; 516 517 ELF64LE::PhdrRange PHs = PHsOrErr.get(); 518 for (const ELF64LE::Phdr &Phdr : PHs) { 519 switch (Phdr.p_type) { 520 case ELF::PT_LOAD: 521 BC->FirstAllocAddress = std::min(BC->FirstAllocAddress, 522 static_cast<uint64_t>(Phdr.p_vaddr)); 523 NextAvailableAddress = std::max(NextAvailableAddress, 524 Phdr.p_vaddr + Phdr.p_memsz); 525 NextAvailableOffset = std::max(NextAvailableOffset, 526 Phdr.p_offset + Phdr.p_filesz); 527 528 BC->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{Phdr.p_vaddr, 529 Phdr.p_memsz, 530 Phdr.p_offset, 531 Phdr.p_filesz, 532 Phdr.p_align}; 533 if (BC->TheTriple->getArch() == llvm::Triple::x86_64 && 534 Phdr.p_vaddr >= BinaryContext::KernelStartX86_64) 535 BC->IsLinuxKernel = true; 536 break; 537 case ELF::PT_INTERP: 538 BC->HasInterpHeader = true; 539 break; 540 } 541 } 542 543 if (BC->IsLinuxKernel) 544 BC->outs() << "BOLT-INFO: Linux kernel binary detected\n"; 545 546 for (const SectionRef &Section : InputFile->sections()) { 547 Expected<StringRef> SectionNameOrErr = Section.getName(); 548 if (Error E = SectionNameOrErr.takeError()) 549 return E; 550 StringRef SectionName = SectionNameOrErr.get(); 551 if (SectionName == BC->getMainCodeSectionName()) { 552 BC->OldTextSectionAddress = Section.getAddress(); 553 BC->OldTextSectionSize = Section.getSize(); 554 555 Expected<StringRef> SectionContentsOrErr = Section.getContents(); 556 if (Error E = SectionContentsOrErr.takeError()) 557 return E; 558 StringRef SectionContents = SectionContentsOrErr.get(); 559 BC->OldTextSectionOffset = 560 SectionContents.data() - InputFile->getData().data(); 561 } 562 563 if (!opts::HeatmapMode && 564 !(opts::AggregateOnly && BAT->enabledFor(InputFile)) && 565 (SectionName.starts_with(getOrgSecPrefix()) || 566 SectionName == getBOLTTextSectionName())) 567 return createStringError( 568 errc::function_not_supported, 569 "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize"); 570 } 571 572 if (!NextAvailableAddress || !NextAvailableOffset) 573 return createStringError(errc::executable_format_error, 574 "no PT_LOAD pheader seen"); 575 576 BC->outs() << "BOLT-INFO: first alloc address is 0x" 577 << Twine::utohexstr(BC->FirstAllocAddress) << '\n'; 578 579 FirstNonAllocatableOffset = NextAvailableOffset; 580 581 NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign); 582 NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign); 583 584 // Hugify: Additional huge page from left side due to 585 // weird ASLR mapping addresses (4KB aligned) 586 if (opts::Hugify && !BC->HasFixedLoadAddress) 587 NextAvailableAddress += BC->PageAlign; 588 589 if (!opts::UseGnuStack && !BC->IsLinuxKernel) { 590 // This is where the black magic happens. Creating PHDR table in a segment 591 // other than that containing ELF header is tricky. Some loaders and/or 592 // parts of loaders will apply e_phoff from ELF header assuming both are in 593 // the same segment, while others will do the proper calculation. 594 // We create the new PHDR table in such a way that both of the methods 595 // of loading and locating the table work. There's a slight file size 596 // overhead because of that. 597 // 598 // NB: bfd's strip command cannot do the above and will corrupt the 599 // binary during the process of stripping non-allocatable sections. 600 if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress) 601 NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress; 602 else 603 NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress; 604 605 assert(NextAvailableOffset == 606 NextAvailableAddress - BC->FirstAllocAddress && 607 "PHDR table address calculation error"); 608 609 BC->outs() << "BOLT-INFO: creating new program header table at address 0x" 610 << Twine::utohexstr(NextAvailableAddress) << ", offset 0x" 611 << Twine::utohexstr(NextAvailableOffset) << '\n'; 612 613 PHDRTableAddress = NextAvailableAddress; 614 PHDRTableOffset = NextAvailableOffset; 615 616 // Reserve space for 3 extra pheaders. 617 unsigned Phnum = Obj.getHeader().e_phnum; 618 Phnum += 3; 619 620 NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy); 621 NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy); 622 } 623 624 // Align at cache line. 625 NextAvailableAddress = alignTo(NextAvailableAddress, 64); 626 NextAvailableOffset = alignTo(NextAvailableOffset, 64); 627 628 NewTextSegmentAddress = NextAvailableAddress; 629 NewTextSegmentOffset = NextAvailableOffset; 630 BC->LayoutStartAddress = NextAvailableAddress; 631 632 // Tools such as objcopy can strip section contents but leave header 633 // entries. Check that at least .text is mapped in the file. 634 if (!getFileOffsetForAddress(BC->OldTextSectionAddress)) 635 return createStringError(errc::executable_format_error, 636 "BOLT-ERROR: input binary is not a valid ELF " 637 "executable as its text section is not " 638 "mapped to a valid segment"); 639 return Error::success(); 640 } 641 642 Error RewriteInstance::run() { 643 assert(BC && "failed to create a binary context"); 644 645 BC->outs() << "BOLT-INFO: Target architecture: " 646 << Triple::getArchTypeName( 647 (llvm::Triple::ArchType)InputFile->getArch()) 648 << "\n"; 649 BC->outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n"; 650 651 if (Error E = discoverStorage()) 652 return E; 653 if (Error E = readSpecialSections()) 654 return E; 655 adjustCommandLineOptions(); 656 discoverFileObjects(); 657 658 if (opts::Instrument && !BC->IsStaticExecutable) 659 if (Error E = discoverRtFiniAddress()) 660 return E; 661 662 preprocessProfileData(); 663 664 // Skip disassembling if we have a translation table and we are running an 665 // aggregation job. 666 if (opts::AggregateOnly && BAT->enabledFor(InputFile)) { 667 // YAML profile in BAT mode requires CFG for .bolt.org.text functions 668 if (!opts::SaveProfile.empty() || 669 opts::ProfileFormat == opts::ProfileFormatKind::PF_YAML) { 670 selectFunctionsToProcess(); 671 disassembleFunctions(); 672 buildFunctionsCFG(); 673 } 674 processProfileData(); 675 return Error::success(); 676 } 677 678 selectFunctionsToProcess(); 679 680 readDebugInfo(); 681 682 disassembleFunctions(); 683 684 processMetadataPreCFG(); 685 686 buildFunctionsCFG(); 687 688 processProfileData(); 689 690 // Save input binary metadata if BAT section needs to be emitted 691 if (opts::EnableBAT) 692 BAT->saveMetadata(*BC); 693 694 postProcessFunctions(); 695 696 processMetadataPostCFG(); 697 698 if (opts::DiffOnly) 699 return Error::success(); 700 701 preregisterSections(); 702 703 runOptimizationPasses(); 704 705 finalizeMetadataPreEmit(); 706 707 emitAndLink(); 708 709 updateMetadata(); 710 711 if (opts::Instrument && !BC->IsStaticExecutable) 712 updateRtFiniReloc(); 713 714 if (opts::OutputFilename == "/dev/null") { 715 BC->outs() << "BOLT-INFO: skipping writing final binary to disk\n"; 716 return Error::success(); 717 } else if (BC->IsLinuxKernel) { 718 BC->errs() << "BOLT-WARNING: Linux kernel support is experimental\n"; 719 } 720 721 // Rewrite allocatable contents and copy non-allocatable parts with mods. 722 rewriteFile(); 723 return Error::success(); 724 } 725 726 void RewriteInstance::discoverFileObjects() { 727 NamedRegionTimer T("discoverFileObjects", "discover file objects", 728 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 729 730 // For local symbols we want to keep track of associated FILE symbol name for 731 // disambiguation by combined name. 732 StringRef FileSymbolName; 733 bool SeenFileName = false; 734 struct SymbolRefHash { 735 size_t operator()(SymbolRef const &S) const { 736 return std::hash<decltype(DataRefImpl::p)>{}(S.getRawDataRefImpl().p); 737 } 738 }; 739 std::unordered_map<SymbolRef, StringRef, SymbolRefHash> SymbolToFileName; 740 for (const ELFSymbolRef &Symbol : InputFile->symbols()) { 741 Expected<StringRef> NameOrError = Symbol.getName(); 742 if (NameOrError && NameOrError->starts_with("__asan_init")) { 743 BC->errs() 744 << "BOLT-ERROR: input file was compiled or linked with sanitizer " 745 "support. Cannot optimize.\n"; 746 exit(1); 747 } 748 if (NameOrError && NameOrError->starts_with("__llvm_coverage_mapping")) { 749 BC->errs() 750 << "BOLT-ERROR: input file was compiled or linked with coverage " 751 "support. Cannot optimize.\n"; 752 exit(1); 753 } 754 755 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) 756 continue; 757 758 if (cantFail(Symbol.getType()) == SymbolRef::ST_File) { 759 FileSymbols.emplace_back(Symbol); 760 StringRef Name = 761 cantFail(std::move(NameOrError), "cannot get symbol name for file"); 762 // Ignore Clang LTO artificial FILE symbol as it is not always generated, 763 // and this uncertainty is causing havoc in function name matching. 764 if (Name == "ld-temp.o") 765 continue; 766 FileSymbolName = Name; 767 SeenFileName = true; 768 continue; 769 } 770 if (!FileSymbolName.empty() && 771 !(cantFail(Symbol.getFlags()) & SymbolRef::SF_Global)) 772 SymbolToFileName[Symbol] = FileSymbolName; 773 } 774 775 // Sort symbols in the file by value. Ignore symbols from non-allocatable 776 // sections. We memoize getAddress(), as it has rather high overhead. 777 struct SymbolInfo { 778 uint64_t Address; 779 SymbolRef Symbol; 780 }; 781 std::vector<SymbolInfo> SortedSymbols; 782 auto isSymbolInMemory = [this](const SymbolRef &Sym) { 783 if (cantFail(Sym.getType()) == SymbolRef::ST_File) 784 return false; 785 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute) 786 return true; 787 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined) 788 return false; 789 BinarySection Section(*BC, *cantFail(Sym.getSection())); 790 return Section.isAllocatable(); 791 }; 792 for (const SymbolRef &Symbol : InputFile->symbols()) 793 if (isSymbolInMemory(Symbol)) 794 SortedSymbols.push_back({cantFail(Symbol.getAddress()), Symbol}); 795 796 auto CompareSymbols = [this](const SymbolInfo &A, const SymbolInfo &B) { 797 if (A.Address != B.Address) 798 return A.Address < B.Address; 799 800 const bool AMarker = BC->isMarker(A.Symbol); 801 const bool BMarker = BC->isMarker(B.Symbol); 802 if (AMarker || BMarker) { 803 return AMarker && !BMarker; 804 } 805 806 const auto AType = cantFail(A.Symbol.getType()); 807 const auto BType = cantFail(B.Symbol.getType()); 808 if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function) 809 return true; 810 if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug) 811 return true; 812 813 return false; 814 }; 815 llvm::stable_sort(SortedSymbols, CompareSymbols); 816 817 auto LastSymbol = SortedSymbols.end(); 818 if (!SortedSymbols.empty()) 819 --LastSymbol; 820 821 // For aarch64, the ABI defines mapping symbols so we identify data in the 822 // code section (see IHI0056B). $d identifies data contents. 823 // Compilers usually merge multiple data objects in a single $d-$x interval, 824 // but we need every data object to be marked with $d. Because of that we 825 // create a vector of MarkerSyms with all locations of data objects. 826 827 struct MarkerSym { 828 uint64_t Address; 829 MarkerSymType Type; 830 }; 831 832 std::vector<MarkerSym> SortedMarkerSymbols; 833 auto addExtraDataMarkerPerSymbol = [&]() { 834 bool IsData = false; 835 uint64_t LastAddr = 0; 836 for (const auto &SymInfo : SortedSymbols) { 837 if (LastAddr == SymInfo.Address) // don't repeat markers 838 continue; 839 840 MarkerSymType MarkerType = BC->getMarkerType(SymInfo.Symbol); 841 if (MarkerType != MarkerSymType::NONE) { 842 SortedMarkerSymbols.push_back(MarkerSym{SymInfo.Address, MarkerType}); 843 LastAddr = SymInfo.Address; 844 IsData = MarkerType == MarkerSymType::DATA; 845 continue; 846 } 847 848 if (IsData) { 849 SortedMarkerSymbols.push_back({SymInfo.Address, MarkerSymType::DATA}); 850 LastAddr = SymInfo.Address; 851 } 852 } 853 }; 854 855 if (BC->isAArch64() || BC->isRISCV()) { 856 addExtraDataMarkerPerSymbol(); 857 LastSymbol = std::stable_partition( 858 SortedSymbols.begin(), SortedSymbols.end(), 859 [this](const SymbolInfo &S) { return !BC->isMarker(S.Symbol); }); 860 if (!SortedSymbols.empty()) 861 --LastSymbol; 862 } 863 864 BinaryFunction *PreviousFunction = nullptr; 865 unsigned AnonymousId = 0; 866 867 const auto SortedSymbolsEnd = 868 LastSymbol == SortedSymbols.end() ? LastSymbol : std::next(LastSymbol); 869 for (auto Iter = SortedSymbols.begin(); Iter != SortedSymbolsEnd; ++Iter) { 870 const SymbolRef &Symbol = Iter->Symbol; 871 const uint64_t SymbolAddress = Iter->Address; 872 const auto SymbolFlags = cantFail(Symbol.getFlags()); 873 const SymbolRef::Type SymbolType = cantFail(Symbol.getType()); 874 875 if (SymbolType == SymbolRef::ST_File) 876 continue; 877 878 StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name"); 879 if (SymbolAddress == 0) { 880 if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function) 881 BC->errs() << "BOLT-WARNING: function with 0 address seen\n"; 882 continue; 883 } 884 885 // Ignore input hot markers 886 if (SymName == "__hot_start" || SymName == "__hot_end") 887 continue; 888 889 FileSymRefs.emplace(SymbolAddress, Symbol); 890 891 // Skip section symbols that will be registered by disassemblePLT(). 892 if (SymbolType == SymbolRef::ST_Debug) { 893 ErrorOr<BinarySection &> BSection = 894 BC->getSectionForAddress(SymbolAddress); 895 if (BSection && getPLTSectionInfo(BSection->getName())) 896 continue; 897 } 898 899 /// It is possible we are seeing a globalized local. LLVM might treat it as 900 /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to 901 /// change the prefix to enforce global scope of the symbol. 902 std::string Name = 903 SymName.starts_with(BC->AsmInfo->getPrivateGlobalPrefix()) 904 ? "PG" + std::string(SymName) 905 : std::string(SymName); 906 907 // Disambiguate all local symbols before adding to symbol table. 908 // Since we don't know if we will see a global with the same name, 909 // always modify the local name. 910 // 911 // NOTE: the naming convention for local symbols should match 912 // the one we use for profile data. 913 std::string UniqueName; 914 std::string AlternativeName; 915 if (Name.empty()) { 916 UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++); 917 } else if (SymbolFlags & SymbolRef::SF_Global) { 918 if (const BinaryData *BD = BC->getBinaryDataByName(Name)) { 919 if (BD->getSize() == ELFSymbolRef(Symbol).getSize() && 920 BD->getAddress() == SymbolAddress) { 921 if (opts::Verbosity > 1) 922 BC->errs() << "BOLT-WARNING: ignoring duplicate global symbol " 923 << Name << "\n"; 924 // Ignore duplicate entry - possibly a bug in the linker 925 continue; 926 } 927 BC->errs() << "BOLT-ERROR: bad input binary, global symbol \"" << Name 928 << "\" is not unique\n"; 929 exit(1); 930 } 931 UniqueName = Name; 932 } else { 933 // If we have a local file name, we should create 2 variants for the 934 // function name. The reason is that perf profile might have been 935 // collected on a binary that did not have the local file name (e.g. as 936 // a side effect of stripping debug info from the binary): 937 // 938 // primary: <function>/<id> 939 // alternative: <function>/<file>/<id2> 940 // 941 // The <id> field is used for disambiguation of local symbols since there 942 // could be identical function names coming from identical file names 943 // (e.g. from different directories). 944 std::string AltPrefix; 945 auto SFI = SymbolToFileName.find(Symbol); 946 if (SymbolType == SymbolRef::ST_Function && SFI != SymbolToFileName.end()) 947 AltPrefix = Name + "/" + std::string(SFI->second); 948 949 UniqueName = NR.uniquify(Name); 950 if (!AltPrefix.empty()) 951 AlternativeName = NR.uniquify(AltPrefix); 952 } 953 954 uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 955 uint64_t SymbolAlignment = Symbol.getAlignment(); 956 957 auto registerName = [&](uint64_t FinalSize) { 958 // Register names even if it's not a function, e.g. for an entry point. 959 BC->registerNameAtAddress(UniqueName, SymbolAddress, FinalSize, 960 SymbolAlignment, SymbolFlags); 961 if (!AlternativeName.empty()) 962 BC->registerNameAtAddress(AlternativeName, SymbolAddress, FinalSize, 963 SymbolAlignment, SymbolFlags); 964 }; 965 966 section_iterator Section = 967 cantFail(Symbol.getSection(), "cannot get symbol section"); 968 if (Section == InputFile->section_end()) { 969 // Could be an absolute symbol. Used on RISC-V for __global_pointer$ so we 970 // need to record it to handle relocations against it. For other instances 971 // of absolute symbols, we record for pretty printing. 972 LLVM_DEBUG(if (opts::Verbosity > 1) { 973 dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n"; 974 }); 975 registerName(SymbolSize); 976 continue; 977 } 978 979 if (SymName == getBOLTReservedStart() || SymName == getBOLTReservedEnd()) { 980 registerName(SymbolSize); 981 continue; 982 } 983 984 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName 985 << " for function\n"); 986 987 if (SymbolAddress == Section->getAddress() + Section->getSize()) { 988 assert(SymbolSize == 0 && 989 "unexpect non-zero sized symbol at end of section"); 990 LLVM_DEBUG( 991 dbgs() 992 << "BOLT-DEBUG: rejecting as symbol points to end of its section\n"); 993 registerName(SymbolSize); 994 continue; 995 } 996 997 if (!Section->isText()) { 998 assert(SymbolType != SymbolRef::ST_Function && 999 "unexpected function inside non-code section"); 1000 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n"); 1001 registerName(SymbolSize); 1002 continue; 1003 } 1004 1005 // Assembly functions could be ST_NONE with 0 size. Check that the 1006 // corresponding section is a code section and they are not inside any 1007 // other known function to consider them. 1008 // 1009 // Sometimes assembly functions are not marked as functions and neither are 1010 // their local labels. The only way to tell them apart is to look at 1011 // symbol scope - global vs local. 1012 if (PreviousFunction && SymbolType != SymbolRef::ST_Function) { 1013 if (PreviousFunction->containsAddress(SymbolAddress)) { 1014 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1015 LLVM_DEBUG(dbgs() 1016 << "BOLT-DEBUG: symbol is a function local symbol\n"); 1017 } else if (SymbolAddress == PreviousFunction->getAddress() && 1018 !SymbolSize) { 1019 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n"); 1020 } else if (opts::Verbosity > 1) { 1021 BC->errs() << "BOLT-WARNING: symbol " << UniqueName 1022 << " seen in the middle of function " << *PreviousFunction 1023 << ". Could be a new entry.\n"; 1024 } 1025 registerName(SymbolSize); 1026 continue; 1027 } else if (PreviousFunction->getSize() == 0 && 1028 PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1029 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n"); 1030 registerName(SymbolSize); 1031 continue; 1032 } 1033 } 1034 1035 if (PreviousFunction && PreviousFunction->containsAddress(SymbolAddress) && 1036 PreviousFunction->getAddress() != SymbolAddress) { 1037 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1038 if (opts::Verbosity >= 1) 1039 BC->outs() 1040 << "BOLT-INFO: skipping possibly another entry for function " 1041 << *PreviousFunction << " : " << UniqueName << '\n'; 1042 registerName(SymbolSize); 1043 } else { 1044 BC->outs() << "BOLT-INFO: using " << UniqueName 1045 << " as another entry to " 1046 << "function " << *PreviousFunction << '\n'; 1047 1048 registerName(0); 1049 1050 PreviousFunction->addEntryPointAtOffset(SymbolAddress - 1051 PreviousFunction->getAddress()); 1052 1053 // Remove the symbol from FileSymRefs so that we can skip it from 1054 // in the future. 1055 auto SI = llvm::find_if( 1056 llvm::make_range(FileSymRefs.equal_range(SymbolAddress)), 1057 [&](auto SymIt) { return SymIt.second == Symbol; }); 1058 assert(SI != FileSymRefs.end() && "symbol expected to be present"); 1059 assert(SI->second == Symbol && "wrong symbol found"); 1060 FileSymRefs.erase(SI); 1061 } 1062 continue; 1063 } 1064 1065 // Checkout for conflicts with function data from FDEs. 1066 bool IsSimple = true; 1067 auto FDEI = CFIRdWrt->getFDEs().lower_bound(SymbolAddress); 1068 if (FDEI != CFIRdWrt->getFDEs().end()) { 1069 const dwarf::FDE &FDE = *FDEI->second; 1070 if (FDEI->first != SymbolAddress) { 1071 // There's no matching starting address in FDE. Make sure the previous 1072 // FDE does not contain this address. 1073 if (FDEI != CFIRdWrt->getFDEs().begin()) { 1074 --FDEI; 1075 const dwarf::FDE &PrevFDE = *FDEI->second; 1076 uint64_t PrevStart = PrevFDE.getInitialLocation(); 1077 uint64_t PrevLength = PrevFDE.getAddressRange(); 1078 if (SymbolAddress > PrevStart && 1079 SymbolAddress < PrevStart + PrevLength) { 1080 BC->errs() << "BOLT-ERROR: function " << UniqueName 1081 << " is in conflict with FDE [" 1082 << Twine::utohexstr(PrevStart) << ", " 1083 << Twine::utohexstr(PrevStart + PrevLength) 1084 << "). Skipping.\n"; 1085 IsSimple = false; 1086 } 1087 } 1088 } else if (FDE.getAddressRange() != SymbolSize) { 1089 if (SymbolSize) { 1090 // Function addresses match but sizes differ. 1091 BC->errs() << "BOLT-WARNING: sizes differ for function " << UniqueName 1092 << ". FDE : " << FDE.getAddressRange() 1093 << "; symbol table : " << SymbolSize 1094 << ". Using max size.\n"; 1095 } 1096 SymbolSize = std::max(SymbolSize, FDE.getAddressRange()); 1097 if (BC->getBinaryDataAtAddress(SymbolAddress)) { 1098 BC->setBinaryDataSize(SymbolAddress, SymbolSize); 1099 } else { 1100 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x" 1101 << Twine::utohexstr(SymbolAddress) << "\n"); 1102 } 1103 } 1104 } 1105 1106 BinaryFunction *BF = nullptr; 1107 // Since function may not have yet obtained its real size, do a search 1108 // using the list of registered functions instead of calling 1109 // getBinaryFunctionAtAddress(). 1110 auto BFI = BC->getBinaryFunctions().find(SymbolAddress); 1111 if (BFI != BC->getBinaryFunctions().end()) { 1112 BF = &BFI->second; 1113 // Duplicate the function name. Make sure everything matches before we add 1114 // an alternative name. 1115 if (SymbolSize != BF->getSize()) { 1116 if (opts::Verbosity >= 1) { 1117 if (SymbolSize && BF->getSize()) 1118 BC->errs() << "BOLT-WARNING: size mismatch for duplicate entries " 1119 << *BF << " and " << UniqueName << '\n'; 1120 BC->outs() << "BOLT-INFO: adjusting size of function " << *BF 1121 << " old " << BF->getSize() << " new " << SymbolSize 1122 << "\n"; 1123 } 1124 BF->setSize(std::max(SymbolSize, BF->getSize())); 1125 BC->setBinaryDataSize(SymbolAddress, BF->getSize()); 1126 } 1127 BF->addAlternativeName(UniqueName); 1128 } else { 1129 ErrorOr<BinarySection &> Section = 1130 BC->getSectionForAddress(SymbolAddress); 1131 // Skip symbols from invalid sections 1132 if (!Section) { 1133 BC->errs() << "BOLT-WARNING: " << UniqueName << " (0x" 1134 << Twine::utohexstr(SymbolAddress) 1135 << ") does not have any section\n"; 1136 continue; 1137 } 1138 1139 // Skip symbols from zero-sized sections. 1140 if (!Section->getSize()) 1141 continue; 1142 1143 BF = BC->createBinaryFunction(UniqueName, *Section, SymbolAddress, 1144 SymbolSize); 1145 if (!IsSimple) 1146 BF->setSimple(false); 1147 } 1148 1149 // Check if it's a cold function fragment. 1150 if (FunctionFragmentTemplate.match(SymName)) { 1151 static bool PrintedWarning = false; 1152 if (!PrintedWarning) { 1153 PrintedWarning = true; 1154 BC->errs() << "BOLT-WARNING: split function detected on input : " 1155 << SymName; 1156 if (BC->HasRelocations) 1157 BC->errs() << ". The support is limited in relocation mode\n"; 1158 else 1159 BC->errs() << '\n'; 1160 } 1161 BC->HasSplitFunctions = true; 1162 BF->IsFragment = true; 1163 } 1164 1165 if (!AlternativeName.empty()) 1166 BF->addAlternativeName(AlternativeName); 1167 1168 registerName(SymbolSize); 1169 PreviousFunction = BF; 1170 } 1171 1172 // Read dynamic relocation first as their presence affects the way we process 1173 // static relocations. E.g. we will ignore a static relocation at an address 1174 // that is a subject to dynamic relocation processing. 1175 processDynamicRelocations(); 1176 1177 // Process PLT section. 1178 disassemblePLT(); 1179 1180 // See if we missed any functions marked by FDE. 1181 for (const auto &FDEI : CFIRdWrt->getFDEs()) { 1182 const uint64_t Address = FDEI.first; 1183 const dwarf::FDE *FDE = FDEI.second; 1184 const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address); 1185 if (BF) 1186 continue; 1187 1188 BF = BC->getBinaryFunctionContainingAddress(Address); 1189 if (BF) { 1190 BC->errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) 1191 << ", 0x" << Twine::utohexstr(Address + FDE->getAddressRange()) 1192 << ") conflicts with function " << *BF << '\n'; 1193 continue; 1194 } 1195 1196 if (opts::Verbosity >= 1) 1197 BC->errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) 1198 << ", 0x" << Twine::utohexstr(Address + FDE->getAddressRange()) 1199 << ") has no corresponding symbol table entry\n"; 1200 1201 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 1202 assert(Section && "cannot get section for address from FDE"); 1203 std::string FunctionName = 1204 "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str(); 1205 BC->createBinaryFunction(FunctionName, *Section, Address, 1206 FDE->getAddressRange()); 1207 } 1208 1209 BC->setHasSymbolsWithFileName(SeenFileName); 1210 1211 // Now that all the functions were created - adjust their boundaries. 1212 adjustFunctionBoundaries(); 1213 1214 // Annotate functions with code/data markers in AArch64 1215 for (auto ISym = SortedMarkerSymbols.begin(); 1216 ISym != SortedMarkerSymbols.end(); ++ISym) { 1217 1218 auto *BF = 1219 BC->getBinaryFunctionContainingAddress(ISym->Address, true, true); 1220 1221 if (!BF) { 1222 // Stray marker 1223 continue; 1224 } 1225 const auto EntryOffset = ISym->Address - BF->getAddress(); 1226 if (ISym->Type == MarkerSymType::CODE) { 1227 BF->markCodeAtOffset(EntryOffset); 1228 continue; 1229 } 1230 if (ISym->Type == MarkerSymType::DATA) { 1231 BF->markDataAtOffset(EntryOffset); 1232 BC->AddressToConstantIslandMap[ISym->Address] = BF; 1233 continue; 1234 } 1235 llvm_unreachable("Unknown marker"); 1236 } 1237 1238 if (BC->isAArch64()) { 1239 // Check for dynamic relocations that might be contained in 1240 // constant islands. 1241 for (const BinarySection &Section : BC->allocatableSections()) { 1242 const uint64_t SectionAddress = Section.getAddress(); 1243 for (const Relocation &Rel : Section.dynamicRelocations()) { 1244 const uint64_t RelAddress = SectionAddress + Rel.Offset; 1245 BinaryFunction *BF = 1246 BC->getBinaryFunctionContainingAddress(RelAddress, 1247 /*CheckPastEnd*/ false, 1248 /*UseMaxSize*/ true); 1249 if (BF) { 1250 assert(Rel.isRelative() && "Expected relative relocation for island"); 1251 BC->logBOLTErrorsAndQuitOnFatal( 1252 BF->markIslandDynamicRelocationAtAddress(RelAddress)); 1253 } 1254 } 1255 } 1256 } 1257 1258 if (!BC->IsLinuxKernel) { 1259 // Read all relocations now that we have binary functions mapped. 1260 processRelocations(); 1261 } 1262 1263 registerFragments(); 1264 FileSymbols.clear(); 1265 FileSymRefs.clear(); 1266 1267 discoverBOLTReserved(); 1268 } 1269 1270 void RewriteInstance::discoverBOLTReserved() { 1271 BinaryData *StartBD = BC->getBinaryDataByName(getBOLTReservedStart()); 1272 BinaryData *EndBD = BC->getBinaryDataByName(getBOLTReservedEnd()); 1273 if (!StartBD != !EndBD) { 1274 BC->errs() << "BOLT-ERROR: one of the symbols is missing from the binary: " 1275 << getBOLTReservedStart() << ", " << getBOLTReservedEnd() 1276 << '\n'; 1277 exit(1); 1278 } 1279 1280 if (!StartBD) 1281 return; 1282 1283 if (StartBD->getAddress() >= EndBD->getAddress()) { 1284 BC->errs() << "BOLT-ERROR: invalid reserved space boundaries\n"; 1285 exit(1); 1286 } 1287 BC->BOLTReserved = AddressRange(StartBD->getAddress(), EndBD->getAddress()); 1288 BC->outs() << "BOLT-INFO: using reserved space for allocating new sections\n"; 1289 1290 PHDRTableOffset = 0; 1291 PHDRTableAddress = 0; 1292 NewTextSegmentAddress = 0; 1293 NewTextSegmentOffset = 0; 1294 NextAvailableAddress = BC->BOLTReserved.start(); 1295 } 1296 1297 Error RewriteInstance::discoverRtFiniAddress() { 1298 // Use DT_FINI if it's available. 1299 if (BC->FiniAddress) { 1300 BC->FiniFunctionAddress = BC->FiniAddress; 1301 return Error::success(); 1302 } 1303 1304 if (!BC->FiniArrayAddress || !BC->FiniArraySize) { 1305 return createStringError( 1306 std::errc::not_supported, 1307 "Instrumentation needs either DT_FINI or DT_FINI_ARRAY"); 1308 } 1309 1310 if (*BC->FiniArraySize < BC->AsmInfo->getCodePointerSize()) { 1311 return createStringError(std::errc::not_supported, 1312 "Need at least 1 DT_FINI_ARRAY slot"); 1313 } 1314 1315 ErrorOr<BinarySection &> FiniArraySection = 1316 BC->getSectionForAddress(*BC->FiniArrayAddress); 1317 if (auto EC = FiniArraySection.getError()) 1318 return errorCodeToError(EC); 1319 1320 if (const Relocation *Reloc = FiniArraySection->getDynamicRelocationAt(0)) { 1321 BC->FiniFunctionAddress = Reloc->Addend; 1322 return Error::success(); 1323 } 1324 1325 if (const Relocation *Reloc = FiniArraySection->getRelocationAt(0)) { 1326 BC->FiniFunctionAddress = Reloc->Value; 1327 return Error::success(); 1328 } 1329 1330 return createStringError(std::errc::not_supported, 1331 "No relocation for first DT_FINI_ARRAY slot"); 1332 } 1333 1334 void RewriteInstance::updateRtFiniReloc() { 1335 // Updating DT_FINI is handled by patchELFDynamic. 1336 if (BC->FiniAddress) 1337 return; 1338 1339 const RuntimeLibrary *RT = BC->getRuntimeLibrary(); 1340 if (!RT || !RT->getRuntimeFiniAddress()) 1341 return; 1342 1343 assert(BC->FiniArrayAddress && BC->FiniArraySize && 1344 "inconsistent .fini_array state"); 1345 1346 ErrorOr<BinarySection &> FiniArraySection = 1347 BC->getSectionForAddress(*BC->FiniArrayAddress); 1348 assert(FiniArraySection && ".fini_array removed"); 1349 1350 if (std::optional<Relocation> Reloc = 1351 FiniArraySection->takeDynamicRelocationAt(0)) { 1352 assert(Reloc->Addend == BC->FiniFunctionAddress && 1353 "inconsistent .fini_array dynamic relocation"); 1354 Reloc->Addend = RT->getRuntimeFiniAddress(); 1355 FiniArraySection->addDynamicRelocation(*Reloc); 1356 } 1357 1358 // Update the static relocation by adding a pending relocation which will get 1359 // patched when flushPendingRelocations is called in rewriteFile. Note that 1360 // flushPendingRelocations will calculate the value to patch as 1361 // "Symbol + Addend". Since we don't have a symbol, just set the addend to the 1362 // desired value. 1363 FiniArraySection->addPendingRelocation(Relocation{ 1364 /*Offset*/ 0, /*Symbol*/ nullptr, /*Type*/ Relocation::getAbs64(), 1365 /*Addend*/ RT->getRuntimeFiniAddress(), /*Value*/ 0}); 1366 } 1367 1368 void RewriteInstance::registerFragments() { 1369 if (!BC->HasSplitFunctions) 1370 return; 1371 1372 // Process fragments with ambiguous parents separately as they are typically a 1373 // vanishing minority of cases and require expensive symbol table lookups. 1374 std::vector<std::pair<StringRef, BinaryFunction *>> AmbiguousFragments; 1375 for (auto &BFI : BC->getBinaryFunctions()) { 1376 BinaryFunction &Function = BFI.second; 1377 if (!Function.isFragment()) 1378 continue; 1379 for (StringRef Name : Function.getNames()) { 1380 StringRef BaseName = NR.restore(Name); 1381 const bool IsGlobal = BaseName == Name; 1382 SmallVector<StringRef> Matches; 1383 if (!FunctionFragmentTemplate.match(BaseName, &Matches)) 1384 continue; 1385 StringRef ParentName = Matches[1]; 1386 const BinaryData *BD = BC->getBinaryDataByName(ParentName); 1387 const uint64_t NumPossibleLocalParents = 1388 NR.getUniquifiedNameCount(ParentName); 1389 // The most common case: single local parent fragment. 1390 if (!BD && NumPossibleLocalParents == 1) { 1391 BD = BC->getBinaryDataByName(NR.getUniqueName(ParentName, 1)); 1392 } else if (BD && (!NumPossibleLocalParents || IsGlobal)) { 1393 // Global parent and either no local candidates (second most common), or 1394 // the fragment is global as well (uncommon). 1395 } else { 1396 // Any other case: need to disambiguate using FILE symbols. 1397 AmbiguousFragments.emplace_back(ParentName, &Function); 1398 continue; 1399 } 1400 if (BD) { 1401 BinaryFunction *BF = BC->getFunctionForSymbol(BD->getSymbol()); 1402 if (BF) { 1403 BC->registerFragment(Function, *BF); 1404 continue; 1405 } 1406 } 1407 BC->errs() << "BOLT-ERROR: parent function not found for " << Function 1408 << '\n'; 1409 exit(1); 1410 } 1411 } 1412 1413 if (AmbiguousFragments.empty()) 1414 return; 1415 1416 if (!BC->hasSymbolsWithFileName()) { 1417 BC->errs() << "BOLT-ERROR: input file has split functions but does not " 1418 "have FILE symbols. If the binary was stripped, preserve " 1419 "FILE symbols with --keep-file-symbols strip option\n"; 1420 exit(1); 1421 } 1422 1423 // The first global symbol is identified by the symbol table sh_info value. 1424 // Used as local symbol search stopping point. 1425 auto *ELF64LEFile = cast<ELF64LEObjectFile>(InputFile); 1426 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 1427 auto *SymTab = llvm::find_if(cantFail(Obj.sections()), [](const auto &Sec) { 1428 return Sec.sh_type == ELF::SHT_SYMTAB; 1429 }); 1430 assert(SymTab); 1431 // Symtab sh_info contains the value one greater than the symbol table index 1432 // of the last local symbol. 1433 ELFSymbolRef LocalSymEnd = ELF64LEFile->toSymbolRef(SymTab, SymTab->sh_info); 1434 1435 for (auto &[ParentName, BF] : AmbiguousFragments) { 1436 const uint64_t Address = BF->getAddress(); 1437 1438 // Get fragment's own symbol 1439 const auto SymIt = llvm::find_if( 1440 llvm::make_range(FileSymRefs.equal_range(Address)), [&](auto SI) { 1441 StringRef Name = cantFail(SI.second.getName()); 1442 return Name.contains(ParentName); 1443 }); 1444 if (SymIt == FileSymRefs.end()) { 1445 BC->errs() 1446 << "BOLT-ERROR: symbol lookup failed for function at address 0x" 1447 << Twine::utohexstr(Address) << '\n'; 1448 exit(1); 1449 } 1450 1451 // Find containing FILE symbol 1452 ELFSymbolRef Symbol = SymIt->second; 1453 auto FSI = llvm::upper_bound(FileSymbols, Symbol); 1454 if (FSI == FileSymbols.begin()) { 1455 BC->errs() << "BOLT-ERROR: owning FILE symbol not found for symbol " 1456 << cantFail(Symbol.getName()) << '\n'; 1457 exit(1); 1458 } 1459 1460 ELFSymbolRef StopSymbol = LocalSymEnd; 1461 if (FSI != FileSymbols.end()) 1462 StopSymbol = *FSI; 1463 1464 uint64_t ParentAddress{0}; 1465 1466 // BOLT split fragment symbols are emitted just before the main function 1467 // symbol. 1468 for (ELFSymbolRef NextSymbol = Symbol; NextSymbol < StopSymbol; 1469 NextSymbol.moveNext()) { 1470 StringRef Name = cantFail(NextSymbol.getName()); 1471 if (Name == ParentName) { 1472 ParentAddress = cantFail(NextSymbol.getValue()); 1473 goto registerParent; 1474 } 1475 if (Name.starts_with(ParentName)) 1476 // With multi-way splitting, there are multiple fragments with different 1477 // suffixes. Parent follows the last fragment. 1478 continue; 1479 break; 1480 } 1481 1482 // Iterate over local file symbols and check symbol names to match parent. 1483 for (ELFSymbolRef Symbol(FSI[-1]); Symbol < StopSymbol; Symbol.moveNext()) { 1484 if (cantFail(Symbol.getName()) == ParentName) { 1485 ParentAddress = cantFail(Symbol.getAddress()); 1486 break; 1487 } 1488 } 1489 1490 registerParent: 1491 // No local parent is found, use global parent function. 1492 if (!ParentAddress) 1493 if (BinaryData *ParentBD = BC->getBinaryDataByName(ParentName)) 1494 ParentAddress = ParentBD->getAddress(); 1495 1496 if (BinaryFunction *ParentBF = 1497 BC->getBinaryFunctionAtAddress(ParentAddress)) { 1498 BC->registerFragment(*BF, *ParentBF); 1499 continue; 1500 } 1501 BC->errs() << "BOLT-ERROR: parent function not found for " << *BF << '\n'; 1502 exit(1); 1503 } 1504 } 1505 1506 void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress, 1507 uint64_t EntryAddress, 1508 uint64_t EntrySize) { 1509 if (!TargetAddress) 1510 return; 1511 1512 auto setPLTSymbol = [&](BinaryFunction *BF, StringRef Name) { 1513 const unsigned PtrSize = BC->AsmInfo->getCodePointerSize(); 1514 MCSymbol *TargetSymbol = BC->registerNameAtAddress( 1515 Name.str() + "@GOT", TargetAddress, PtrSize, PtrSize); 1516 BF->setPLTSymbol(TargetSymbol); 1517 }; 1518 1519 BinaryFunction *BF = BC->getBinaryFunctionAtAddress(EntryAddress); 1520 if (BF && BC->isAArch64()) { 1521 // Handle IFUNC trampoline with symbol 1522 setPLTSymbol(BF, BF->getOneName()); 1523 return; 1524 } 1525 1526 const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress); 1527 if (!Rel) 1528 return; 1529 1530 MCSymbol *Symbol = Rel->Symbol; 1531 if (!Symbol) { 1532 if (!BC->isAArch64() || !Rel->Addend || !Rel->isIRelative()) 1533 return; 1534 1535 // IFUNC trampoline without symbol 1536 BinaryFunction *TargetBF = BC->getBinaryFunctionAtAddress(Rel->Addend); 1537 if (!TargetBF) { 1538 BC->errs() 1539 << "BOLT-WARNING: Expected BF to be presented as IFUNC resolver at " 1540 << Twine::utohexstr(Rel->Addend) << ", skipping\n"; 1541 return; 1542 } 1543 1544 Symbol = TargetBF->getSymbol(); 1545 } 1546 1547 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(EntryAddress); 1548 assert(Section && "cannot get section for address"); 1549 if (!BF) 1550 BF = BC->createBinaryFunction(Symbol->getName().str() + "@PLT", *Section, 1551 EntryAddress, 0, EntrySize, 1552 Section->getAlignment()); 1553 else 1554 BF->addAlternativeName(Symbol->getName().str() + "@PLT"); 1555 setPLTSymbol(BF, Symbol->getName()); 1556 } 1557 1558 void RewriteInstance::disassemblePLTInstruction(const BinarySection &Section, 1559 uint64_t InstrOffset, 1560 MCInst &Instruction, 1561 uint64_t &InstrSize) { 1562 const uint64_t SectionAddress = Section.getAddress(); 1563 const uint64_t SectionSize = Section.getSize(); 1564 StringRef PLTContents = Section.getContents(); 1565 ArrayRef<uint8_t> PLTData( 1566 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); 1567 1568 const uint64_t InstrAddr = SectionAddress + InstrOffset; 1569 if (!BC->DisAsm->getInstruction(Instruction, InstrSize, 1570 PLTData.slice(InstrOffset), InstrAddr, 1571 nulls())) { 1572 BC->errs() 1573 << "BOLT-ERROR: unable to disassemble instruction in PLT section " 1574 << Section.getName() << formatv(" at offset {0:x}\n", InstrOffset); 1575 exit(1); 1576 } 1577 } 1578 1579 void RewriteInstance::disassemblePLTSectionAArch64(BinarySection &Section) { 1580 const uint64_t SectionAddress = Section.getAddress(); 1581 const uint64_t SectionSize = Section.getSize(); 1582 1583 uint64_t InstrOffset = 0; 1584 // Locate new plt entry 1585 while (InstrOffset < SectionSize) { 1586 InstructionListType Instructions; 1587 MCInst Instruction; 1588 uint64_t EntryOffset = InstrOffset; 1589 uint64_t EntrySize = 0; 1590 uint64_t InstrSize; 1591 // Loop through entry instructions 1592 while (InstrOffset < SectionSize) { 1593 disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize); 1594 EntrySize += InstrSize; 1595 if (!BC->MIB->isIndirectBranch(Instruction)) { 1596 Instructions.emplace_back(Instruction); 1597 InstrOffset += InstrSize; 1598 continue; 1599 } 1600 1601 const uint64_t EntryAddress = SectionAddress + EntryOffset; 1602 const uint64_t TargetAddress = BC->MIB->analyzePLTEntry( 1603 Instruction, Instructions.begin(), Instructions.end(), EntryAddress); 1604 1605 createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize); 1606 break; 1607 } 1608 1609 // Branch instruction 1610 InstrOffset += InstrSize; 1611 1612 // Skip nops if any 1613 while (InstrOffset < SectionSize) { 1614 disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize); 1615 if (!BC->MIB->isNoop(Instruction)) 1616 break; 1617 1618 InstrOffset += InstrSize; 1619 } 1620 } 1621 } 1622 1623 void RewriteInstance::disassemblePLTSectionRISCV(BinarySection &Section) { 1624 const uint64_t SectionAddress = Section.getAddress(); 1625 const uint64_t SectionSize = Section.getSize(); 1626 StringRef PLTContents = Section.getContents(); 1627 ArrayRef<uint8_t> PLTData( 1628 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); 1629 1630 auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, 1631 uint64_t &InstrSize) { 1632 const uint64_t InstrAddr = SectionAddress + InstrOffset; 1633 if (!BC->DisAsm->getInstruction(Instruction, InstrSize, 1634 PLTData.slice(InstrOffset), InstrAddr, 1635 nulls())) { 1636 BC->errs() 1637 << "BOLT-ERROR: unable to disassemble instruction in PLT section " 1638 << Section.getName() << " at offset 0x" 1639 << Twine::utohexstr(InstrOffset) << '\n'; 1640 exit(1); 1641 } 1642 }; 1643 1644 // Skip the first special entry since no relocation points to it. 1645 uint64_t InstrOffset = 32; 1646 1647 while (InstrOffset < SectionSize) { 1648 InstructionListType Instructions; 1649 MCInst Instruction; 1650 const uint64_t EntryOffset = InstrOffset; 1651 const uint64_t EntrySize = 16; 1652 uint64_t InstrSize; 1653 1654 while (InstrOffset < EntryOffset + EntrySize) { 1655 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1656 Instructions.emplace_back(Instruction); 1657 InstrOffset += InstrSize; 1658 } 1659 1660 const uint64_t EntryAddress = SectionAddress + EntryOffset; 1661 const uint64_t TargetAddress = BC->MIB->analyzePLTEntry( 1662 Instruction, Instructions.begin(), Instructions.end(), EntryAddress); 1663 1664 createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize); 1665 } 1666 } 1667 1668 void RewriteInstance::disassemblePLTSectionX86(BinarySection &Section, 1669 uint64_t EntrySize) { 1670 const uint64_t SectionAddress = Section.getAddress(); 1671 const uint64_t SectionSize = Section.getSize(); 1672 1673 for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= SectionSize; 1674 EntryOffset += EntrySize) { 1675 MCInst Instruction; 1676 uint64_t InstrSize, InstrOffset = EntryOffset; 1677 while (InstrOffset < EntryOffset + EntrySize) { 1678 disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize); 1679 // Check if the entry size needs adjustment. 1680 if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) && 1681 EntrySize == 8) 1682 EntrySize = 16; 1683 1684 if (BC->MIB->isIndirectBranch(Instruction)) 1685 break; 1686 1687 InstrOffset += InstrSize; 1688 } 1689 1690 if (InstrOffset + InstrSize > EntryOffset + EntrySize) 1691 continue; 1692 1693 uint64_t TargetAddress; 1694 if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1695 SectionAddress + InstrOffset, 1696 InstrSize)) { 1697 BC->errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x" 1698 << Twine::utohexstr(SectionAddress + InstrOffset) << '\n'; 1699 exit(1); 1700 } 1701 1702 createPLTBinaryFunction(TargetAddress, SectionAddress + EntryOffset, 1703 EntrySize); 1704 } 1705 } 1706 1707 void RewriteInstance::disassemblePLT() { 1708 auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) { 1709 if (BC->isAArch64()) 1710 return disassemblePLTSectionAArch64(Section); 1711 if (BC->isRISCV()) 1712 return disassemblePLTSectionRISCV(Section); 1713 if (BC->isX86()) 1714 return disassemblePLTSectionX86(Section, EntrySize); 1715 llvm_unreachable("Unmplemented PLT"); 1716 }; 1717 1718 for (BinarySection &Section : BC->allocatableSections()) { 1719 const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName()); 1720 if (!PLTSI) 1721 continue; 1722 1723 analyzeOnePLTSection(Section, PLTSI->EntrySize); 1724 1725 BinaryFunction *PltBF; 1726 auto BFIter = BC->getBinaryFunctions().find(Section.getAddress()); 1727 if (BFIter != BC->getBinaryFunctions().end()) { 1728 PltBF = &BFIter->second; 1729 } else { 1730 // If we did not register any function at the start of the section, 1731 // then it must be a general PLT entry. Add a function at the location. 1732 PltBF = BC->createBinaryFunction( 1733 "__BOLT_PSEUDO_" + Section.getName().str(), Section, 1734 Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment()); 1735 } 1736 PltBF->setPseudo(true); 1737 } 1738 } 1739 1740 void RewriteInstance::adjustFunctionBoundaries() { 1741 for (auto BFI = BC->getBinaryFunctions().begin(), 1742 BFE = BC->getBinaryFunctions().end(); 1743 BFI != BFE; ++BFI) { 1744 BinaryFunction &Function = BFI->second; 1745 const BinaryFunction *NextFunction = nullptr; 1746 if (std::next(BFI) != BFE) 1747 NextFunction = &std::next(BFI)->second; 1748 1749 // Check if there's a symbol or a function with a larger address in the 1750 // same section. If there is - it determines the maximum size for the 1751 // current function. Otherwise, it is the size of a containing section 1752 // the defines it. 1753 // 1754 // NOTE: ignore some symbols that could be tolerated inside the body 1755 // of a function. 1756 auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress()); 1757 while (NextSymRefI != FileSymRefs.end()) { 1758 SymbolRef &Symbol = NextSymRefI->second; 1759 const uint64_t SymbolAddress = NextSymRefI->first; 1760 const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 1761 1762 if (NextFunction && SymbolAddress >= NextFunction->getAddress()) 1763 break; 1764 1765 if (!Function.isSymbolValidInScope(Symbol, SymbolSize)) 1766 break; 1767 1768 // Skip basic block labels. This happens on RISC-V with linker relaxation 1769 // enabled because every branch needs a relocation and corresponding 1770 // symbol. We don't want to add such symbols as entry points. 1771 const auto PrivateLabelPrefix = BC->AsmInfo->getPrivateLabelPrefix(); 1772 if (!PrivateLabelPrefix.empty() && 1773 cantFail(Symbol.getName()).starts_with(PrivateLabelPrefix)) { 1774 ++NextSymRefI; 1775 continue; 1776 } 1777 1778 // This is potentially another entry point into the function. 1779 uint64_t EntryOffset = NextSymRefI->first - Function.getAddress(); 1780 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function " 1781 << Function << " at offset 0x" 1782 << Twine::utohexstr(EntryOffset) << '\n'); 1783 Function.addEntryPointAtOffset(EntryOffset); 1784 1785 ++NextSymRefI; 1786 } 1787 1788 // Function runs at most till the end of the containing section. 1789 uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress(); 1790 // Or till the next object marked by a symbol. 1791 if (NextSymRefI != FileSymRefs.end()) 1792 NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress); 1793 1794 // Or till the next function not marked by a symbol. 1795 if (NextFunction) 1796 NextObjectAddress = 1797 std::min(NextFunction->getAddress(), NextObjectAddress); 1798 1799 const uint64_t MaxSize = NextObjectAddress - Function.getAddress(); 1800 if (MaxSize < Function.getSize()) { 1801 BC->errs() << "BOLT-ERROR: symbol seen in the middle of the function " 1802 << Function << ". Skipping.\n"; 1803 Function.setSimple(false); 1804 Function.setMaxSize(Function.getSize()); 1805 continue; 1806 } 1807 Function.setMaxSize(MaxSize); 1808 if (!Function.getSize() && Function.isSimple()) { 1809 // Some assembly functions have their size set to 0, use the max 1810 // size as their real size. 1811 if (opts::Verbosity >= 1) 1812 BC->outs() << "BOLT-INFO: setting size of function " << Function 1813 << " to " << Function.getMaxSize() << " (was 0)\n"; 1814 Function.setSize(Function.getMaxSize()); 1815 } 1816 } 1817 } 1818 1819 void RewriteInstance::relocateEHFrameSection() { 1820 assert(EHFrameSection && "Non-empty .eh_frame section expected."); 1821 1822 BinarySection *RelocatedEHFrameSection = 1823 getSection(".relocated" + getEHFrameSectionName()); 1824 assert(RelocatedEHFrameSection && 1825 "Relocated eh_frame section should be preregistered."); 1826 DWARFDataExtractor DE(EHFrameSection->getContents(), 1827 BC->AsmInfo->isLittleEndian(), 1828 BC->AsmInfo->getCodePointerSize()); 1829 auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) { 1830 if (DwarfType == dwarf::DW_EH_PE_omit) 1831 return; 1832 1833 // Only fix references that are relative to other locations. 1834 if (!(DwarfType & dwarf::DW_EH_PE_pcrel) && 1835 !(DwarfType & dwarf::DW_EH_PE_textrel) && 1836 !(DwarfType & dwarf::DW_EH_PE_funcrel) && 1837 !(DwarfType & dwarf::DW_EH_PE_datarel)) 1838 return; 1839 1840 if (!(DwarfType & dwarf::DW_EH_PE_sdata4)) 1841 return; 1842 1843 uint64_t RelType; 1844 switch (DwarfType & 0x0f) { 1845 default: 1846 llvm_unreachable("unsupported DWARF encoding type"); 1847 case dwarf::DW_EH_PE_sdata4: 1848 case dwarf::DW_EH_PE_udata4: 1849 RelType = Relocation::getPC32(); 1850 Offset -= 4; 1851 break; 1852 case dwarf::DW_EH_PE_sdata8: 1853 case dwarf::DW_EH_PE_udata8: 1854 RelType = Relocation::getPC64(); 1855 Offset -= 8; 1856 break; 1857 } 1858 1859 // Create a relocation against an absolute value since the goal is to 1860 // preserve the contents of the section independent of the new values 1861 // of referenced symbols. 1862 RelocatedEHFrameSection->addRelocation(Offset, nullptr, RelType, Value); 1863 }; 1864 1865 Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc); 1866 check_error(std::move(E), "failed to patch EH frame"); 1867 } 1868 1869 Error RewriteInstance::readSpecialSections() { 1870 NamedRegionTimer T("readSpecialSections", "read special sections", 1871 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 1872 1873 bool HasTextRelocations = false; 1874 bool HasSymbolTable = false; 1875 bool HasDebugInfo = false; 1876 1877 // Process special sections. 1878 for (const SectionRef &Section : InputFile->sections()) { 1879 Expected<StringRef> SectionNameOrErr = Section.getName(); 1880 check_error(SectionNameOrErr.takeError(), "cannot get section name"); 1881 StringRef SectionName = *SectionNameOrErr; 1882 1883 if (Error E = Section.getContents().takeError()) 1884 return E; 1885 BC->registerSection(Section); 1886 LLVM_DEBUG( 1887 dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x" 1888 << Twine::utohexstr(Section.getAddress()) << ":0x" 1889 << Twine::utohexstr(Section.getAddress() + Section.getSize()) 1890 << "\n"); 1891 if (isDebugSection(SectionName)) 1892 HasDebugInfo = true; 1893 } 1894 1895 // Set IsRelro section attribute based on PT_GNU_RELRO segment. 1896 markGnuRelroSections(); 1897 1898 if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) { 1899 BC->errs() << "BOLT-WARNING: debug info will be stripped from the binary. " 1900 "Use -update-debug-sections to keep it.\n"; 1901 } 1902 1903 HasTextRelocations = (bool)BC->getUniqueSectionByName( 1904 ".rela" + std::string(BC->getMainCodeSectionName())); 1905 HasSymbolTable = (bool)BC->getUniqueSectionByName(".symtab"); 1906 EHFrameSection = BC->getUniqueSectionByName(".eh_frame"); 1907 1908 if (ErrorOr<BinarySection &> BATSec = 1909 BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) { 1910 BC->HasBATSection = true; 1911 // Do not read BAT when plotting a heatmap 1912 if (!opts::HeatmapMode) { 1913 if (std::error_code EC = BAT->parse(BC->outs(), BATSec->getContents())) { 1914 BC->errs() << "BOLT-ERROR: failed to parse BOLT address translation " 1915 "table.\n"; 1916 exit(1); 1917 } 1918 } 1919 } 1920 1921 if (opts::PrintSections) { 1922 BC->outs() << "BOLT-INFO: Sections from original binary:\n"; 1923 BC->printSections(BC->outs()); 1924 } 1925 1926 if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) { 1927 BC->errs() 1928 << "BOLT-ERROR: relocations against code are missing from the input " 1929 "file. Cannot proceed in relocations mode (-relocs).\n"; 1930 exit(1); 1931 } 1932 1933 BC->HasRelocations = 1934 HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE); 1935 1936 if (BC->IsLinuxKernel && BC->HasRelocations) { 1937 BC->outs() << "BOLT-INFO: disabling relocation mode for Linux kernel\n"; 1938 BC->HasRelocations = false; 1939 } 1940 1941 BC->IsStripped = !HasSymbolTable; 1942 1943 if (BC->IsStripped && !opts::AllowStripped) { 1944 BC->errs() 1945 << "BOLT-ERROR: stripped binaries are not supported. If you know " 1946 "what you're doing, use --allow-stripped to proceed"; 1947 exit(1); 1948 } 1949 1950 // Force non-relocation mode for heatmap generation 1951 if (opts::HeatmapMode) 1952 BC->HasRelocations = false; 1953 1954 if (BC->HasRelocations) 1955 BC->outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "") 1956 << "relocation mode\n"; 1957 1958 // Read EH frame for function boundaries info. 1959 Expected<const DWARFDebugFrame *> EHFrameOrError = BC->DwCtx->getEHFrame(); 1960 if (!EHFrameOrError) 1961 report_error("expected valid eh_frame section", EHFrameOrError.takeError()); 1962 CFIRdWrt.reset(new CFIReaderWriter(*BC, *EHFrameOrError.get())); 1963 1964 processSectionMetadata(); 1965 1966 // Read .dynamic/PT_DYNAMIC. 1967 return readELFDynamic(); 1968 } 1969 1970 void RewriteInstance::adjustCommandLineOptions() { 1971 if (BC->isAArch64() && !BC->HasRelocations) 1972 BC->errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully " 1973 "supported\n"; 1974 1975 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 1976 RtLibrary->adjustCommandLineOptions(*BC); 1977 1978 if (BC->isX86() && BC->MAB->allowAutoPadding()) { 1979 if (!BC->HasRelocations) { 1980 BC->errs() 1981 << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in " 1982 "non-relocation mode\n"; 1983 exit(1); 1984 } 1985 BC->outs() 1986 << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout " 1987 "may take several minutes\n"; 1988 } 1989 1990 if (opts::SplitEH && !BC->HasRelocations) { 1991 BC->errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n"; 1992 opts::SplitEH = false; 1993 } 1994 1995 if (opts::StrictMode && !BC->HasRelocations) { 1996 BC->errs() 1997 << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation " 1998 "mode\n"; 1999 opts::StrictMode = false; 2000 } 2001 2002 if (BC->HasRelocations && opts::AggregateOnly && 2003 !opts::StrictMode.getNumOccurrences()) { 2004 BC->outs() << "BOLT-INFO: enabling strict relocation mode for aggregation " 2005 "purposes\n"; 2006 opts::StrictMode = true; 2007 } 2008 2009 if (!BC->HasRelocations && 2010 opts::ReorderFunctions != ReorderFunctions::RT_NONE) { 2011 BC->errs() << "BOLT-ERROR: function reordering only works when " 2012 << "relocations are enabled\n"; 2013 exit(1); 2014 } 2015 2016 if (opts::Instrument || 2017 (opts::ReorderFunctions != ReorderFunctions::RT_NONE && 2018 !opts::HotText.getNumOccurrences())) { 2019 opts::HotText = true; 2020 } else if (opts::HotText && !BC->HasRelocations) { 2021 BC->errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n"; 2022 opts::HotText = false; 2023 } 2024 2025 if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) { 2026 opts::HotTextMoveSections.addValue(".stub"); 2027 opts::HotTextMoveSections.addValue(".mover"); 2028 opts::HotTextMoveSections.addValue(".never_hugify"); 2029 } 2030 2031 if (opts::UseOldText && !BC->OldTextSectionAddress) { 2032 BC->errs() 2033 << "BOLT-WARNING: cannot use old .text as the section was not found" 2034 "\n"; 2035 opts::UseOldText = false; 2036 } 2037 if (opts::UseOldText && !BC->HasRelocations) { 2038 BC->errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n"; 2039 opts::UseOldText = false; 2040 } 2041 2042 if (!opts::AlignText.getNumOccurrences()) 2043 opts::AlignText = BC->PageAlign; 2044 2045 if (opts::AlignText < opts::AlignFunctions) 2046 opts::AlignText = (unsigned)opts::AlignFunctions; 2047 2048 if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode && 2049 !opts::UseOldText) 2050 opts::Lite = true; 2051 2052 if (opts::Lite && opts::UseOldText) { 2053 BC->errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. " 2054 "Disabling -use-old-text.\n"; 2055 opts::UseOldText = false; 2056 } 2057 2058 if (opts::Lite && opts::StrictMode) { 2059 BC->errs() 2060 << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n"; 2061 exit(1); 2062 } 2063 2064 if (opts::Lite) 2065 BC->outs() << "BOLT-INFO: enabling lite mode\n"; 2066 2067 if (BC->IsLinuxKernel) { 2068 if (!opts::KeepNops.getNumOccurrences()) 2069 opts::KeepNops = true; 2070 2071 // Linux kernel may resume execution after a trap instruction in some cases. 2072 if (!opts::TerminalTrap.getNumOccurrences()) 2073 opts::TerminalTrap = false; 2074 } 2075 } 2076 2077 namespace { 2078 template <typename ELFT> 2079 int64_t getRelocationAddend(const ELFObjectFile<ELFT> *Obj, 2080 const RelocationRef &RelRef) { 2081 using ELFShdrTy = typename ELFT::Shdr; 2082 using Elf_Rela = typename ELFT::Rela; 2083 int64_t Addend = 0; 2084 const ELFFile<ELFT> &EF = Obj->getELFFile(); 2085 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 2086 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); 2087 switch (RelocationSection->sh_type) { 2088 default: 2089 llvm_unreachable("unexpected relocation section type"); 2090 case ELF::SHT_REL: 2091 break; 2092 case ELF::SHT_RELA: { 2093 const Elf_Rela *RelA = Obj->getRela(Rel); 2094 Addend = RelA->r_addend; 2095 break; 2096 } 2097 } 2098 2099 return Addend; 2100 } 2101 2102 int64_t getRelocationAddend(const ELFObjectFileBase *Obj, 2103 const RelocationRef &Rel) { 2104 return getRelocationAddend(cast<ELF64LEObjectFile>(Obj), Rel); 2105 } 2106 2107 template <typename ELFT> 2108 uint32_t getRelocationSymbol(const ELFObjectFile<ELFT> *Obj, 2109 const RelocationRef &RelRef) { 2110 using ELFShdrTy = typename ELFT::Shdr; 2111 uint32_t Symbol = 0; 2112 const ELFFile<ELFT> &EF = Obj->getELFFile(); 2113 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 2114 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); 2115 switch (RelocationSection->sh_type) { 2116 default: 2117 llvm_unreachable("unexpected relocation section type"); 2118 case ELF::SHT_REL: 2119 Symbol = Obj->getRel(Rel)->getSymbol(EF.isMips64EL()); 2120 break; 2121 case ELF::SHT_RELA: 2122 Symbol = Obj->getRela(Rel)->getSymbol(EF.isMips64EL()); 2123 break; 2124 } 2125 2126 return Symbol; 2127 } 2128 2129 uint32_t getRelocationSymbol(const ELFObjectFileBase *Obj, 2130 const RelocationRef &Rel) { 2131 return getRelocationSymbol(cast<ELF64LEObjectFile>(Obj), Rel); 2132 } 2133 } // anonymous namespace 2134 2135 bool RewriteInstance::analyzeRelocation( 2136 const RelocationRef &Rel, uint64_t &RType, std::string &SymbolName, 2137 bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend, 2138 uint64_t &ExtractedValue, bool &Skip) const { 2139 Skip = false; 2140 if (!Relocation::isSupported(RType)) 2141 return false; 2142 2143 const bool IsAArch64 = BC->isAArch64(); 2144 2145 const size_t RelSize = Relocation::getSizeForType(RType); 2146 2147 ErrorOr<uint64_t> Value = 2148 BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize); 2149 assert(Value && "failed to extract relocated value"); 2150 if ((Skip = Relocation::skipRelocationProcess(RType, *Value))) 2151 return true; 2152 2153 ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset()); 2154 Addend = getRelocationAddend(InputFile, Rel); 2155 2156 const bool IsPCRelative = Relocation::isPCRelative(RType); 2157 const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0; 2158 bool SkipVerification = false; 2159 auto SymbolIter = Rel.getSymbol(); 2160 if (SymbolIter == InputFile->symbol_end()) { 2161 SymbolAddress = ExtractedValue - Addend + PCRelOffset; 2162 MCSymbol *RelSymbol = 2163 BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat"); 2164 SymbolName = std::string(RelSymbol->getName()); 2165 IsSectionRelocation = false; 2166 } else { 2167 const SymbolRef &Symbol = *SymbolIter; 2168 SymbolName = std::string(cantFail(Symbol.getName())); 2169 SymbolAddress = cantFail(Symbol.getAddress()); 2170 SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other); 2171 // Section symbols are marked as ST_Debug. 2172 IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug); 2173 // Check for PLT entry registered with symbol name 2174 if (!SymbolAddress && (IsAArch64 || BC->isRISCV())) { 2175 const BinaryData *BD = BC->getPLTBinaryDataByName(SymbolName); 2176 SymbolAddress = BD ? BD->getAddress() : 0; 2177 } 2178 } 2179 // For PIE or dynamic libs, the linker may choose not to put the relocation 2180 // result at the address if it is a X86_64_64 one because it will emit a 2181 // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to 2182 // resolve it at run time. The static relocation result goes as the addend 2183 // of the dynamic relocation in this case. We can't verify these cases. 2184 // FIXME: perhaps we can try to find if it really emitted a corresponding 2185 // RELATIVE relocation at this offset with the correct value as the addend. 2186 if (!BC->HasFixedLoadAddress && RelSize == 8) 2187 SkipVerification = true; 2188 2189 if (IsSectionRelocation && !IsAArch64) { 2190 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); 2191 assert(Section && "section expected for section relocation"); 2192 SymbolName = "section " + std::string(Section->getName()); 2193 // Convert section symbol relocations to regular relocations inside 2194 // non-section symbols. 2195 if (Section->containsAddress(ExtractedValue) && !IsPCRelative) { 2196 SymbolAddress = ExtractedValue; 2197 Addend = 0; 2198 } else { 2199 Addend = ExtractedValue - (SymbolAddress - PCRelOffset); 2200 } 2201 } 2202 2203 // If no symbol has been found or if it is a relocation requiring the 2204 // creation of a GOT entry, do not link against the symbol but against 2205 // whatever address was extracted from the instruction itself. We are 2206 // not creating a GOT entry as this was already processed by the linker. 2207 // For GOT relocs, do not subtract addend as the addend does not refer 2208 // to this instruction's target, but it refers to the target in the GOT 2209 // entry. 2210 if (Relocation::isGOT(RType)) { 2211 Addend = 0; 2212 SymbolAddress = ExtractedValue + PCRelOffset; 2213 } else if (Relocation::isTLS(RType)) { 2214 SkipVerification = true; 2215 } else if (!SymbolAddress) { 2216 assert(!IsSectionRelocation); 2217 if (ExtractedValue || Addend == 0 || IsPCRelative) { 2218 SymbolAddress = 2219 truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize); 2220 } else { 2221 // This is weird case. The extracted value is zero but the addend is 2222 // non-zero and the relocation is not pc-rel. Using the previous logic, 2223 // the SymbolAddress would end up as a huge number. Seen in 2224 // exceptions_pic.test. 2225 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x" 2226 << Twine::utohexstr(Rel.getOffset()) 2227 << " value does not match addend for " 2228 << "relocation to undefined symbol.\n"); 2229 return true; 2230 } 2231 } 2232 2233 auto verifyExtractedValue = [&]() { 2234 if (SkipVerification) 2235 return true; 2236 2237 if (IsAArch64 || BC->isRISCV()) 2238 return true; 2239 2240 if (SymbolName == "__hot_start" || SymbolName == "__hot_end") 2241 return true; 2242 2243 if (RType == ELF::R_X86_64_PLT32) 2244 return true; 2245 2246 return truncateToSize(ExtractedValue, RelSize) == 2247 truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize); 2248 }; 2249 2250 (void)verifyExtractedValue; 2251 assert(verifyExtractedValue() && "mismatched extracted relocation value"); 2252 2253 return true; 2254 } 2255 2256 void RewriteInstance::processDynamicRelocations() { 2257 // Read .relr.dyn section containing compressed R_*_RELATIVE relocations. 2258 if (DynamicRelrSize > 0) { 2259 ErrorOr<BinarySection &> DynamicRelrSectionOrErr = 2260 BC->getSectionForAddress(*DynamicRelrAddress); 2261 if (!DynamicRelrSectionOrErr) 2262 report_error("unable to find section corresponding to DT_RELR", 2263 DynamicRelrSectionOrErr.getError()); 2264 if (DynamicRelrSectionOrErr->getSize() != DynamicRelrSize) 2265 report_error("section size mismatch for DT_RELRSZ", 2266 errc::executable_format_error); 2267 readDynamicRelrRelocations(*DynamicRelrSectionOrErr); 2268 } 2269 2270 // Read relocations for PLT - DT_JMPREL. 2271 if (PLTRelocationsSize > 0) { 2272 ErrorOr<BinarySection &> PLTRelSectionOrErr = 2273 BC->getSectionForAddress(*PLTRelocationsAddress); 2274 if (!PLTRelSectionOrErr) 2275 report_error("unable to find section corresponding to DT_JMPREL", 2276 PLTRelSectionOrErr.getError()); 2277 if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize) 2278 report_error("section size mismatch for DT_PLTRELSZ", 2279 errc::executable_format_error); 2280 readDynamicRelocations(PLTRelSectionOrErr->getSectionRef(), 2281 /*IsJmpRel*/ true); 2282 } 2283 2284 // The rest of dynamic relocations - DT_RELA. 2285 // The static executable might have .rela.dyn secion and not have PT_DYNAMIC 2286 if (!DynamicRelocationsSize && BC->IsStaticExecutable) { 2287 ErrorOr<BinarySection &> DynamicRelSectionOrErr = 2288 BC->getUniqueSectionByName(getRelaDynSectionName()); 2289 if (DynamicRelSectionOrErr) { 2290 DynamicRelocationsAddress = DynamicRelSectionOrErr->getAddress(); 2291 DynamicRelocationsSize = DynamicRelSectionOrErr->getSize(); 2292 const SectionRef &SectionRef = DynamicRelSectionOrErr->getSectionRef(); 2293 DynamicRelativeRelocationsCount = std::distance( 2294 SectionRef.relocation_begin(), SectionRef.relocation_end()); 2295 } 2296 } 2297 2298 if (DynamicRelocationsSize > 0) { 2299 ErrorOr<BinarySection &> DynamicRelSectionOrErr = 2300 BC->getSectionForAddress(*DynamicRelocationsAddress); 2301 if (!DynamicRelSectionOrErr) 2302 report_error("unable to find section corresponding to DT_RELA", 2303 DynamicRelSectionOrErr.getError()); 2304 auto DynamicRelSectionSize = DynamicRelSectionOrErr->getSize(); 2305 // On RISC-V DT_RELASZ seems to include both .rela.dyn and .rela.plt 2306 if (DynamicRelocationsSize == DynamicRelSectionSize + PLTRelocationsSize) 2307 DynamicRelocationsSize = DynamicRelSectionSize; 2308 if (DynamicRelSectionSize != DynamicRelocationsSize) 2309 report_error("section size mismatch for DT_RELASZ", 2310 errc::executable_format_error); 2311 readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef(), 2312 /*IsJmpRel*/ false); 2313 } 2314 } 2315 2316 void RewriteInstance::processRelocations() { 2317 if (!BC->HasRelocations) 2318 return; 2319 2320 for (const SectionRef &Section : InputFile->sections()) { 2321 section_iterator SecIter = cantFail(Section.getRelocatedSection()); 2322 if (SecIter == InputFile->section_end()) 2323 continue; 2324 if (BinarySection(*BC, Section).isAllocatable()) 2325 continue; 2326 2327 readRelocations(Section); 2328 } 2329 2330 if (NumFailedRelocations) 2331 BC->errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations 2332 << " relocations\n"; 2333 } 2334 2335 void RewriteInstance::readDynamicRelocations(const SectionRef &Section, 2336 bool IsJmpRel) { 2337 assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected"); 2338 2339 LLVM_DEBUG({ 2340 StringRef SectionName = cantFail(Section.getName()); 2341 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName 2342 << ":\n"; 2343 }); 2344 2345 for (const RelocationRef &Rel : Section.relocations()) { 2346 const uint64_t RType = Rel.getType(); 2347 if (Relocation::isNone(RType)) 2348 continue; 2349 2350 StringRef SymbolName = "<none>"; 2351 MCSymbol *Symbol = nullptr; 2352 uint64_t SymbolAddress = 0; 2353 const uint64_t Addend = getRelocationAddend(InputFile, Rel); 2354 2355 symbol_iterator SymbolIter = Rel.getSymbol(); 2356 if (SymbolIter != InputFile->symbol_end()) { 2357 SymbolName = cantFail(SymbolIter->getName()); 2358 BinaryData *BD = BC->getBinaryDataByName(SymbolName); 2359 Symbol = BD ? BD->getSymbol() 2360 : BC->getOrCreateUndefinedGlobalSymbol(SymbolName); 2361 SymbolAddress = cantFail(SymbolIter->getAddress()); 2362 (void)SymbolAddress; 2363 } 2364 2365 LLVM_DEBUG( 2366 SmallString<16> TypeName; 2367 Rel.getTypeName(TypeName); 2368 dbgs() << "BOLT-DEBUG: dynamic relocation at 0x" 2369 << Twine::utohexstr(Rel.getOffset()) << " : " << TypeName 2370 << " : " << SymbolName << " : " << Twine::utohexstr(SymbolAddress) 2371 << " : + 0x" << Twine::utohexstr(Addend) << '\n' 2372 ); 2373 2374 if (IsJmpRel) 2375 IsJmpRelocation[RType] = true; 2376 2377 if (Symbol) 2378 SymbolIndex[Symbol] = getRelocationSymbol(InputFile, Rel); 2379 2380 BC->addDynamicRelocation(Rel.getOffset(), Symbol, RType, Addend); 2381 } 2382 } 2383 2384 void RewriteInstance::readDynamicRelrRelocations(BinarySection &Section) { 2385 assert(Section.isAllocatable() && "allocatable expected"); 2386 2387 LLVM_DEBUG({ 2388 StringRef SectionName = Section.getName(); 2389 dbgs() << "BOLT-DEBUG: reading relocations in section " << SectionName 2390 << ":\n"; 2391 }); 2392 2393 const uint64_t RType = Relocation::getRelative(); 2394 const uint8_t PSize = BC->AsmInfo->getCodePointerSize(); 2395 const uint64_t MaxDelta = ((CHAR_BIT * DynamicRelrEntrySize) - 1) * PSize; 2396 2397 auto ExtractAddendValue = [&](uint64_t Address) -> uint64_t { 2398 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 2399 assert(Section && "cannot get section for data address from RELR"); 2400 DataExtractor DE = DataExtractor(Section->getContents(), 2401 BC->AsmInfo->isLittleEndian(), PSize); 2402 uint64_t Offset = Address - Section->getAddress(); 2403 return DE.getUnsigned(&Offset, PSize); 2404 }; 2405 2406 auto AddRelocation = [&](uint64_t Address) { 2407 uint64_t Addend = ExtractAddendValue(Address); 2408 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: R_*_RELATIVE relocation at 0x" 2409 << Twine::utohexstr(Address) << " to 0x" 2410 << Twine::utohexstr(Addend) << '\n';); 2411 BC->addDynamicRelocation(Address, nullptr, RType, Addend); 2412 }; 2413 2414 DataExtractor DE = DataExtractor(Section.getContents(), 2415 BC->AsmInfo->isLittleEndian(), PSize); 2416 uint64_t Offset = 0, Address = 0; 2417 uint64_t RelrCount = DynamicRelrSize / DynamicRelrEntrySize; 2418 while (RelrCount--) { 2419 assert(DE.isValidOffset(Offset)); 2420 uint64_t Entry = DE.getUnsigned(&Offset, DynamicRelrEntrySize); 2421 if ((Entry & 1) == 0) { 2422 AddRelocation(Entry); 2423 Address = Entry + PSize; 2424 } else { 2425 const uint64_t StartAddress = Address; 2426 while (Entry >>= 1) { 2427 if (Entry & 1) 2428 AddRelocation(Address); 2429 2430 Address += PSize; 2431 } 2432 2433 Address = StartAddress + MaxDelta; 2434 } 2435 } 2436 } 2437 2438 void RewriteInstance::printRelocationInfo(const RelocationRef &Rel, 2439 StringRef SymbolName, 2440 uint64_t SymbolAddress, 2441 uint64_t Addend, 2442 uint64_t ExtractedValue) const { 2443 SmallString<16> TypeName; 2444 Rel.getTypeName(TypeName); 2445 const uint64_t Address = SymbolAddress + Addend; 2446 const uint64_t Offset = Rel.getOffset(); 2447 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); 2448 BinaryFunction *Func = 2449 BC->getBinaryFunctionContainingAddress(Offset, false, BC->isAArch64()); 2450 dbgs() << formatv("Relocation: offset = {0:x}; type = {1}; value = {2:x}; ", 2451 Offset, TypeName, ExtractedValue) 2452 << formatv("symbol = {0} ({1}); symbol address = {2:x}; ", SymbolName, 2453 Section ? Section->getName() : "", SymbolAddress) 2454 << formatv("addend = {0:x}; address = {1:x}; in = ", Addend, Address); 2455 if (Func) 2456 dbgs() << Func->getPrintName(); 2457 else 2458 dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName(); 2459 dbgs() << '\n'; 2460 } 2461 2462 void RewriteInstance::readRelocations(const SectionRef &Section) { 2463 LLVM_DEBUG({ 2464 StringRef SectionName = cantFail(Section.getName()); 2465 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName 2466 << ":\n"; 2467 }); 2468 if (BinarySection(*BC, Section).isAllocatable()) { 2469 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n"); 2470 return; 2471 } 2472 section_iterator SecIter = cantFail(Section.getRelocatedSection()); 2473 assert(SecIter != InputFile->section_end() && "relocated section expected"); 2474 SectionRef RelocatedSection = *SecIter; 2475 2476 StringRef RelocatedSectionName = cantFail(RelocatedSection.getName()); 2477 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is " 2478 << RelocatedSectionName << '\n'); 2479 2480 if (!BinarySection(*BC, RelocatedSection).isAllocatable()) { 2481 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against " 2482 << "non-allocatable section\n"); 2483 return; 2484 } 2485 const bool SkipRelocs = StringSwitch<bool>(RelocatedSectionName) 2486 .Cases(".plt", ".rela.plt", ".got.plt", 2487 ".eh_frame", ".gcc_except_table", true) 2488 .Default(false); 2489 if (SkipRelocs) { 2490 LLVM_DEBUG( 2491 dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n"); 2492 return; 2493 } 2494 2495 for (const RelocationRef &Rel : Section.relocations()) 2496 handleRelocation(RelocatedSection, Rel); 2497 } 2498 2499 void RewriteInstance::handleRelocation(const SectionRef &RelocatedSection, 2500 const RelocationRef &Rel) { 2501 const bool IsAArch64 = BC->isAArch64(); 2502 const bool IsFromCode = RelocatedSection.isText(); 2503 2504 SmallString<16> TypeName; 2505 Rel.getTypeName(TypeName); 2506 uint64_t RType = Rel.getType(); 2507 if (Relocation::skipRelocationType(RType)) 2508 return; 2509 2510 // Adjust the relocation type as the linker might have skewed it. 2511 if (BC->isX86() && (RType & ELF::R_X86_64_converted_reloc_bit)) { 2512 if (opts::Verbosity >= 1) 2513 dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n"; 2514 RType &= ~ELF::R_X86_64_converted_reloc_bit; 2515 } 2516 2517 if (Relocation::isTLS(RType)) { 2518 // No special handling required for TLS relocations on X86. 2519 if (BC->isX86()) 2520 return; 2521 2522 // The non-got related TLS relocations on AArch64 and RISC-V also could be 2523 // skipped. 2524 if (!Relocation::isGOT(RType)) 2525 return; 2526 } 2527 2528 if (!IsAArch64 && BC->getDynamicRelocationAt(Rel.getOffset())) { 2529 LLVM_DEBUG({ 2530 dbgs() << formatv("BOLT-DEBUG: address {0:x} has a ", Rel.getOffset()) 2531 << "dynamic relocation against it. Ignoring static relocation.\n"; 2532 }); 2533 return; 2534 } 2535 2536 std::string SymbolName; 2537 uint64_t SymbolAddress; 2538 int64_t Addend; 2539 uint64_t ExtractedValue; 2540 bool IsSectionRelocation; 2541 bool Skip; 2542 if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation, 2543 SymbolAddress, Addend, ExtractedValue, Skip)) { 2544 LLVM_DEBUG({ 2545 dbgs() << "BOLT-WARNING: failed to analyze relocation @ offset = " 2546 << formatv("{0:x}; type name = {1}\n", Rel.getOffset(), TypeName); 2547 }); 2548 ++NumFailedRelocations; 2549 return; 2550 } 2551 2552 if (Skip) { 2553 LLVM_DEBUG({ 2554 dbgs() << "BOLT-DEBUG: skipping relocation @ offset = " 2555 << formatv("{0:x}; type name = {1}\n", Rel.getOffset(), TypeName); 2556 }); 2557 return; 2558 } 2559 2560 const uint64_t Address = SymbolAddress + Addend; 2561 2562 LLVM_DEBUG({ 2563 dbgs() << "BOLT-DEBUG: "; 2564 printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, ExtractedValue); 2565 }); 2566 2567 BinaryFunction *ContainingBF = nullptr; 2568 if (IsFromCode) { 2569 ContainingBF = 2570 BC->getBinaryFunctionContainingAddress(Rel.getOffset(), 2571 /*CheckPastEnd*/ false, 2572 /*UseMaxSize*/ true); 2573 assert(ContainingBF && "cannot find function for address in code"); 2574 if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) { 2575 if (opts::Verbosity >= 1) 2576 BC->outs() << formatv( 2577 "BOLT-INFO: {0} has relocations in padding area\n", *ContainingBF); 2578 ContainingBF->setSize(ContainingBF->getMaxSize()); 2579 ContainingBF->setSimple(false); 2580 return; 2581 } 2582 } 2583 2584 MCSymbol *ReferencedSymbol = nullptr; 2585 if (!IsSectionRelocation) { 2586 if (BinaryData *BD = BC->getBinaryDataByName(SymbolName)) 2587 ReferencedSymbol = BD->getSymbol(); 2588 else if (BC->isGOTSymbol(SymbolName)) 2589 if (BinaryData *BD = BC->getGOTSymbol()) 2590 ReferencedSymbol = BD->getSymbol(); 2591 } 2592 2593 ErrorOr<BinarySection &> ReferencedSection{std::errc::bad_address}; 2594 symbol_iterator SymbolIter = Rel.getSymbol(); 2595 if (SymbolIter != InputFile->symbol_end()) { 2596 SymbolRef Symbol = *SymbolIter; 2597 section_iterator Section = 2598 cantFail(Symbol.getSection(), "cannot get symbol section"); 2599 if (Section != InputFile->section_end()) { 2600 Expected<StringRef> SectionName = Section->getName(); 2601 if (SectionName && !SectionName->empty()) 2602 ReferencedSection = BC->getUniqueSectionByName(*SectionName); 2603 } else if (ReferencedSymbol && ContainingBF && 2604 (cantFail(Symbol.getFlags()) & SymbolRef::SF_Absolute)) { 2605 // This might be a relocation for an ABS symbols like __global_pointer$ on 2606 // RISC-V 2607 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, 2608 Rel.getType(), 0, 2609 cantFail(Symbol.getValue())); 2610 return; 2611 } 2612 } 2613 2614 if (!ReferencedSection) 2615 ReferencedSection = BC->getSectionForAddress(SymbolAddress); 2616 2617 const bool IsToCode = ReferencedSection && ReferencedSection->isText(); 2618 2619 // Special handling of PC-relative relocations. 2620 if (BC->isX86() && Relocation::isPCRelative(RType)) { 2621 if (!IsFromCode && IsToCode) { 2622 // PC-relative relocations from data to code are tricky since the 2623 // original information is typically lost after linking, even with 2624 // '--emit-relocs'. Such relocations are normally used by PIC-style 2625 // jump tables and they reference both the jump table and jump 2626 // targets by computing the difference between the two. If we blindly 2627 // apply the relocation, it will appear that it references an arbitrary 2628 // location in the code, possibly in a different function from the one 2629 // containing the jump table. 2630 // 2631 // For that reason, we only register the fact that there is a 2632 // PC-relative relocation at a given address against the code. 2633 // The actual referenced label/address will be determined during jump 2634 // table analysis. 2635 BC->addPCRelativeDataRelocation(Rel.getOffset()); 2636 } else if (ContainingBF && !IsSectionRelocation && ReferencedSymbol) { 2637 // If we know the referenced symbol, register the relocation from 2638 // the code. It's required to properly handle cases where 2639 // "symbol + addend" references an object different from "symbol". 2640 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, 2641 Addend, ExtractedValue); 2642 } else { 2643 LLVM_DEBUG({ 2644 dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at" 2645 << formatv("{0:x} for {1}\n", Rel.getOffset(), SymbolName); 2646 }); 2647 } 2648 2649 return; 2650 } 2651 2652 bool ForceRelocation = BC->forceSymbolRelocations(SymbolName); 2653 if ((BC->isAArch64() || BC->isRISCV()) && Relocation::isGOT(RType)) 2654 ForceRelocation = true; 2655 2656 if (!ReferencedSection && !ForceRelocation) { 2657 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n"); 2658 return; 2659 } 2660 2661 // Occasionally we may see a reference past the last byte of the function 2662 // typically as a result of __builtin_unreachable(). Check it here. 2663 BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress( 2664 Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64); 2665 2666 if (!IsSectionRelocation) { 2667 if (BinaryFunction *BF = 2668 BC->getBinaryFunctionContainingAddress(SymbolAddress)) { 2669 if (BF != ReferencedBF) { 2670 // It's possible we are referencing a function without referencing any 2671 // code, e.g. when taking a bitmask action on a function address. 2672 BC->errs() 2673 << "BOLT-WARNING: non-standard function reference (e.g. bitmask)" 2674 << formatv(" detected against function {0} from ", *BF); 2675 if (IsFromCode) 2676 BC->errs() << formatv("function {0}\n", *ContainingBF); 2677 else 2678 BC->errs() << formatv("data section at {0:x}\n", Rel.getOffset()); 2679 LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, 2680 ExtractedValue)); 2681 ReferencedBF = BF; 2682 } 2683 } 2684 } else if (ReferencedBF) { 2685 assert(ReferencedSection && "section expected for section relocation"); 2686 if (*ReferencedBF->getOriginSection() != *ReferencedSection) { 2687 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n"); 2688 ReferencedBF = nullptr; 2689 } 2690 } 2691 2692 // Workaround for a member function pointer de-virtualization bug. We check 2693 // if a non-pc-relative relocation in the code is pointing to (fptr - 1). 2694 if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) && 2695 (!ReferencedBF || (ReferencedBF->getAddress() != Address))) { 2696 if (const BinaryFunction *RogueBF = 2697 BC->getBinaryFunctionAtAddress(Address + 1)) { 2698 // Do an extra check that the function was referenced previously. 2699 // It's a linear search, but it should rarely happen. 2700 auto CheckReloc = [&](const Relocation &Rel) { 2701 return Rel.Symbol == RogueBF->getSymbol() && 2702 !Relocation::isPCRelative(Rel.Type); 2703 }; 2704 bool Found = llvm::any_of( 2705 llvm::make_second_range(ContainingBF->Relocations), CheckReloc); 2706 2707 if (Found) { 2708 BC->errs() 2709 << "BOLT-WARNING: detected possible compiler de-virtualization " 2710 "bug: -1 addend used with non-pc-relative relocation against " 2711 << formatv("function {0} in function {1}\n", *RogueBF, 2712 *ContainingBF); 2713 return; 2714 } 2715 } 2716 } 2717 2718 if (ForceRelocation) { 2719 std::string Name = 2720 Relocation::isGOT(RType) ? "__BOLT_got_zero" : SymbolName; 2721 ReferencedSymbol = BC->registerNameAtAddress(Name, 0, 0, 0); 2722 SymbolAddress = 0; 2723 if (Relocation::isGOT(RType)) 2724 Addend = Address; 2725 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol " 2726 << SymbolName << " with addend " << Addend << '\n'); 2727 } else if (ReferencedBF) { 2728 ReferencedSymbol = ReferencedBF->getSymbol(); 2729 uint64_t RefFunctionOffset = 0; 2730 2731 // Adjust the point of reference to a code location inside a function. 2732 if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */ true)) { 2733 RefFunctionOffset = Address - ReferencedBF->getAddress(); 2734 if (Relocation::isInstructionReference(RType)) { 2735 // Instruction labels are created while disassembling so we just leave 2736 // the symbol empty for now. Since the extracted value is typically 2737 // unrelated to the referenced symbol (e.g., %pcrel_lo in RISC-V 2738 // references an instruction but the patched value references the low 2739 // bits of a data address), we set the extracted value to the symbol 2740 // address in order to be able to correctly reconstruct the reference 2741 // later. 2742 ReferencedSymbol = nullptr; 2743 ExtractedValue = Address; 2744 } else if (RefFunctionOffset) { 2745 if (ContainingBF && ContainingBF != ReferencedBF) { 2746 ReferencedSymbol = 2747 ReferencedBF->addEntryPointAtOffset(RefFunctionOffset); 2748 } else { 2749 ReferencedSymbol = 2750 ReferencedBF->getOrCreateLocalLabel(Address, 2751 /*CreatePastEnd =*/true); 2752 2753 // If ContainingBF != nullptr, it equals ReferencedBF (see 2754 // if-condition above) so we're handling a relocation from a function 2755 // to itself. RISC-V uses such relocations for branches, for example. 2756 // These should not be registered as externally references offsets. 2757 if (!ContainingBF) 2758 ReferencedBF->registerReferencedOffset(RefFunctionOffset); 2759 } 2760 if (opts::Verbosity > 1 && 2761 BinarySection(*BC, RelocatedSection).isWritable()) 2762 BC->errs() 2763 << "BOLT-WARNING: writable reference into the middle of the " 2764 << formatv("function {0} detected at address {1:x}\n", 2765 *ReferencedBF, Rel.getOffset()); 2766 } 2767 SymbolAddress = Address; 2768 Addend = 0; 2769 } 2770 LLVM_DEBUG({ 2771 dbgs() << " referenced function " << *ReferencedBF; 2772 if (Address != ReferencedBF->getAddress()) 2773 dbgs() << formatv(" at offset {0:x}", RefFunctionOffset); 2774 dbgs() << '\n'; 2775 }); 2776 } else { 2777 if (IsToCode && SymbolAddress) { 2778 // This can happen e.g. with PIC-style jump tables. 2779 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for " 2780 "relocation against code\n"); 2781 } 2782 2783 // In AArch64 there are zero reasons to keep a reference to the 2784 // "original" symbol plus addend. The original symbol is probably just a 2785 // section symbol. If we are here, this means we are probably accessing 2786 // data, so it is imperative to keep the original address. 2787 if (IsAArch64) { 2788 SymbolName = formatv("SYMBOLat{0:x}", Address); 2789 SymbolAddress = Address; 2790 Addend = 0; 2791 } 2792 2793 if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) { 2794 // Note: this assertion is trying to check sanity of BinaryData objects 2795 // but AArch64 has inferred and incomplete object locations coming from 2796 // GOT/TLS or any other non-trivial relocation (that requires creation 2797 // of sections and whose symbol address is not really what should be 2798 // encoded in the instruction). So we essentially disabled this check 2799 // for AArch64 and live with bogus names for objects. 2800 assert((IsAArch64 || IsSectionRelocation || 2801 BD->nameStartsWith(SymbolName) || 2802 BD->nameStartsWith("PG" + SymbolName) || 2803 (BD->nameStartsWith("ANONYMOUS") && 2804 (BD->getSectionName().starts_with(".plt") || 2805 BD->getSectionName().ends_with(".plt")))) && 2806 "BOLT symbol names of all non-section relocations must match up " 2807 "with symbol names referenced in the relocation"); 2808 2809 if (IsSectionRelocation) 2810 BC->markAmbiguousRelocations(*BD, Address); 2811 2812 ReferencedSymbol = BD->getSymbol(); 2813 Addend += (SymbolAddress - BD->getAddress()); 2814 SymbolAddress = BD->getAddress(); 2815 assert(Address == SymbolAddress + Addend); 2816 } else { 2817 // These are mostly local data symbols but undefined symbols 2818 // in relocation sections can get through here too, from .plt. 2819 assert( 2820 (IsAArch64 || BC->isRISCV() || IsSectionRelocation || 2821 BC->getSectionNameForAddress(SymbolAddress)->starts_with(".plt")) && 2822 "known symbols should not resolve to anonymous locals"); 2823 2824 if (IsSectionRelocation) { 2825 ReferencedSymbol = 2826 BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat"); 2827 } else { 2828 SymbolRef Symbol = *Rel.getSymbol(); 2829 const uint64_t SymbolSize = 2830 IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize(); 2831 const uint64_t SymbolAlignment = IsAArch64 ? 1 : Symbol.getAlignment(); 2832 const uint32_t SymbolFlags = cantFail(Symbol.getFlags()); 2833 std::string Name; 2834 if (SymbolFlags & SymbolRef::SF_Global) { 2835 Name = SymbolName; 2836 } else { 2837 if (StringRef(SymbolName) 2838 .starts_with(BC->AsmInfo->getPrivateGlobalPrefix())) 2839 Name = NR.uniquify("PG" + SymbolName); 2840 else 2841 Name = NR.uniquify(SymbolName); 2842 } 2843 ReferencedSymbol = BC->registerNameAtAddress( 2844 Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags); 2845 } 2846 2847 if (IsSectionRelocation) { 2848 BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName()); 2849 BC->markAmbiguousRelocations(*BD, Address); 2850 } 2851 } 2852 } 2853 2854 auto checkMaxDataRelocations = [&]() { 2855 ++NumDataRelocations; 2856 LLVM_DEBUG(if (opts::MaxDataRelocations && 2857 NumDataRelocations + 1 == opts::MaxDataRelocations) { 2858 dbgs() << "BOLT-DEBUG: processing ending on data relocation " 2859 << NumDataRelocations << ": "; 2860 printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress, 2861 Addend, ExtractedValue); 2862 }); 2863 2864 return (!opts::MaxDataRelocations || 2865 NumDataRelocations < opts::MaxDataRelocations); 2866 }; 2867 2868 if ((ReferencedSection && refersToReorderedSection(ReferencedSection)) || 2869 (opts::ForceToDataRelocations && checkMaxDataRelocations()) || 2870 // RISC-V has ADD/SUB data-to-data relocations 2871 BC->isRISCV()) 2872 ForceRelocation = true; 2873 2874 if (IsFromCode) 2875 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, 2876 Addend, ExtractedValue); 2877 else if (IsToCode || ForceRelocation) 2878 BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend, 2879 ExtractedValue); 2880 else 2881 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n"); 2882 } 2883 2884 void RewriteInstance::selectFunctionsToProcess() { 2885 // Extend the list of functions to process or skip from a file. 2886 auto populateFunctionNames = [](cl::opt<std::string> &FunctionNamesFile, 2887 cl::list<std::string> &FunctionNames) { 2888 if (FunctionNamesFile.empty()) 2889 return; 2890 std::ifstream FuncsFile(FunctionNamesFile, std::ios::in); 2891 std::string FuncName; 2892 while (std::getline(FuncsFile, FuncName)) 2893 FunctionNames.push_back(FuncName); 2894 }; 2895 populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames); 2896 populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames); 2897 populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR); 2898 2899 // Make a set of functions to process to speed up lookups. 2900 std::unordered_set<std::string> ForceFunctionsNR( 2901 opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end()); 2902 2903 if ((!opts::ForceFunctionNames.empty() || 2904 !opts::ForceFunctionNamesNR.empty()) && 2905 !opts::SkipFunctionNames.empty()) { 2906 BC->errs() 2907 << "BOLT-ERROR: cannot select functions to process and skip at the " 2908 "same time. Please use only one type of selection.\n"; 2909 exit(1); 2910 } 2911 2912 uint64_t LiteThresholdExecCount = 0; 2913 if (opts::LiteThresholdPct) { 2914 if (opts::LiteThresholdPct > 100) 2915 opts::LiteThresholdPct = 100; 2916 2917 std::vector<const BinaryFunction *> TopFunctions; 2918 for (auto &BFI : BC->getBinaryFunctions()) { 2919 const BinaryFunction &Function = BFI.second; 2920 if (ProfileReader->mayHaveProfileData(Function)) 2921 TopFunctions.push_back(&Function); 2922 } 2923 llvm::sort( 2924 TopFunctions, [](const BinaryFunction *A, const BinaryFunction *B) { 2925 return A->getKnownExecutionCount() < B->getKnownExecutionCount(); 2926 }); 2927 2928 size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100; 2929 if (Index) 2930 --Index; 2931 LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount(); 2932 BC->outs() << "BOLT-INFO: limiting processing to functions with at least " 2933 << LiteThresholdExecCount << " invocations\n"; 2934 } 2935 LiteThresholdExecCount = std::max( 2936 LiteThresholdExecCount, static_cast<uint64_t>(opts::LiteThresholdCount)); 2937 2938 StringSet<> ReorderFunctionsUserSet; 2939 StringSet<> ReorderFunctionsLTOCommonSet; 2940 if (opts::ReorderFunctions == ReorderFunctions::RT_USER) { 2941 std::vector<std::string> FunctionNames; 2942 BC->logBOLTErrorsAndQuitOnFatal( 2943 ReorderFunctions::readFunctionOrderFile(FunctionNames)); 2944 for (const std::string &Function : FunctionNames) { 2945 ReorderFunctionsUserSet.insert(Function); 2946 if (std::optional<StringRef> LTOCommonName = getLTOCommonName(Function)) 2947 ReorderFunctionsLTOCommonSet.insert(*LTOCommonName); 2948 } 2949 } 2950 2951 uint64_t NumFunctionsToProcess = 0; 2952 auto mustSkip = [&](const BinaryFunction &Function) { 2953 if (opts::MaxFunctions.getNumOccurrences() && 2954 NumFunctionsToProcess >= opts::MaxFunctions) 2955 return true; 2956 for (std::string &Name : opts::SkipFunctionNames) 2957 if (Function.hasNameRegex(Name)) 2958 return true; 2959 2960 return false; 2961 }; 2962 2963 auto shouldProcess = [&](const BinaryFunction &Function) { 2964 if (mustSkip(Function)) 2965 return false; 2966 2967 // If the list is not empty, only process functions from the list. 2968 if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) { 2969 // Regex check (-funcs and -funcs-file options). 2970 for (std::string &Name : opts::ForceFunctionNames) 2971 if (Function.hasNameRegex(Name)) 2972 return true; 2973 2974 // Non-regex check (-funcs-no-regex and -funcs-file-no-regex). 2975 for (const StringRef Name : Function.getNames()) 2976 if (ForceFunctionsNR.count(Name.str())) 2977 return true; 2978 2979 return false; 2980 } 2981 2982 if (opts::Lite) { 2983 // Forcibly include functions specified in the -function-order file. 2984 if (opts::ReorderFunctions == ReorderFunctions::RT_USER) { 2985 for (const StringRef Name : Function.getNames()) 2986 if (ReorderFunctionsUserSet.contains(Name)) 2987 return true; 2988 for (const StringRef Name : Function.getNames()) 2989 if (std::optional<StringRef> LTOCommonName = getLTOCommonName(Name)) 2990 if (ReorderFunctionsLTOCommonSet.contains(*LTOCommonName)) 2991 return true; 2992 } 2993 2994 if (ProfileReader && !ProfileReader->mayHaveProfileData(Function)) 2995 return false; 2996 2997 if (Function.getKnownExecutionCount() < LiteThresholdExecCount) 2998 return false; 2999 } 3000 3001 return true; 3002 }; 3003 3004 for (auto &BFI : BC->getBinaryFunctions()) { 3005 BinaryFunction &Function = BFI.second; 3006 3007 // Pseudo functions are explicitly marked by us not to be processed. 3008 if (Function.isPseudo()) { 3009 Function.IsIgnored = true; 3010 Function.HasExternalRefRelocations = true; 3011 continue; 3012 } 3013 3014 // Decide what to do with fragments after parent functions are processed. 3015 if (Function.isFragment()) 3016 continue; 3017 3018 if (!shouldProcess(Function)) { 3019 if (opts::Verbosity >= 1) { 3020 BC->outs() << "BOLT-INFO: skipping processing " << Function 3021 << " per user request\n"; 3022 } 3023 Function.setIgnored(); 3024 } else { 3025 ++NumFunctionsToProcess; 3026 if (opts::MaxFunctions.getNumOccurrences() && 3027 NumFunctionsToProcess == opts::MaxFunctions) 3028 BC->outs() << "BOLT-INFO: processing ending on " << Function << '\n'; 3029 } 3030 } 3031 3032 if (!BC->HasSplitFunctions) 3033 return; 3034 3035 // Fragment overrides: 3036 // - If the fragment must be skipped, then the parent must be skipped as well. 3037 // Otherwise, fragment should follow the parent function: 3038 // - if the parent is skipped, skip fragment, 3039 // - if the parent is processed, process the fragment(s) as well. 3040 for (auto &BFI : BC->getBinaryFunctions()) { 3041 BinaryFunction &Function = BFI.second; 3042 if (!Function.isFragment()) 3043 continue; 3044 if (mustSkip(Function)) { 3045 for (BinaryFunction *Parent : Function.ParentFragments) { 3046 if (opts::Verbosity >= 1) { 3047 BC->outs() << "BOLT-INFO: skipping processing " << *Parent 3048 << " together with fragment function\n"; 3049 } 3050 Parent->setIgnored(); 3051 --NumFunctionsToProcess; 3052 } 3053 Function.setIgnored(); 3054 continue; 3055 } 3056 3057 bool IgnoredParent = 3058 llvm::any_of(Function.ParentFragments, [&](BinaryFunction *Parent) { 3059 return Parent->isIgnored(); 3060 }); 3061 if (IgnoredParent) { 3062 if (opts::Verbosity >= 1) { 3063 BC->outs() << "BOLT-INFO: skipping processing " << Function 3064 << " together with parent function\n"; 3065 } 3066 Function.setIgnored(); 3067 } else { 3068 ++NumFunctionsToProcess; 3069 if (opts::Verbosity >= 1) { 3070 BC->outs() << "BOLT-INFO: processing " << Function 3071 << " as a sibling of non-ignored function\n"; 3072 } 3073 if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions) 3074 BC->outs() << "BOLT-INFO: processing ending on " << Function << '\n'; 3075 } 3076 } 3077 } 3078 3079 void RewriteInstance::readDebugInfo() { 3080 NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName, 3081 TimerGroupDesc, opts::TimeRewrite); 3082 if (!opts::UpdateDebugSections) 3083 return; 3084 3085 BC->preprocessDebugInfo(); 3086 } 3087 3088 void RewriteInstance::preprocessProfileData() { 3089 if (!ProfileReader) 3090 return; 3091 3092 NamedRegionTimer T("preprocessprofile", "pre-process profile data", 3093 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3094 3095 BC->outs() << "BOLT-INFO: pre-processing profile using " 3096 << ProfileReader->getReaderName() << '\n'; 3097 3098 if (BAT->enabledFor(InputFile)) { 3099 BC->outs() << "BOLT-INFO: profile collection done on a binary already " 3100 "processed by BOLT\n"; 3101 ProfileReader->setBAT(&*BAT); 3102 } 3103 3104 if (Error E = ProfileReader->preprocessProfile(*BC.get())) 3105 report_error("cannot pre-process profile", std::move(E)); 3106 3107 if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName() && 3108 !opts::AllowStripped) { 3109 BC->errs() 3110 << "BOLT-ERROR: input binary does not have local file symbols " 3111 "but profile data includes function names with embedded file " 3112 "names. It appears that the input binary was stripped while a " 3113 "profiled binary was not. If you know what you are doing and " 3114 "wish to proceed, use -allow-stripped option.\n"; 3115 exit(1); 3116 } 3117 } 3118 3119 void RewriteInstance::initializeMetadataManager() { 3120 if (BC->IsLinuxKernel) 3121 MetadataManager.registerRewriter(createLinuxKernelRewriter(*BC)); 3122 3123 MetadataManager.registerRewriter(createBuildIDRewriter(*BC)); 3124 3125 MetadataManager.registerRewriter(createPseudoProbeRewriter(*BC)); 3126 3127 MetadataManager.registerRewriter(createSDTRewriter(*BC)); 3128 } 3129 3130 void RewriteInstance::processSectionMetadata() { 3131 initializeMetadataManager(); 3132 3133 MetadataManager.runSectionInitializers(); 3134 } 3135 3136 void RewriteInstance::processMetadataPreCFG() { 3137 MetadataManager.runInitializersPreCFG(); 3138 3139 processProfileDataPreCFG(); 3140 } 3141 3142 void RewriteInstance::processMetadataPostCFG() { 3143 MetadataManager.runInitializersPostCFG(); 3144 } 3145 3146 void RewriteInstance::processProfileDataPreCFG() { 3147 if (!ProfileReader) 3148 return; 3149 3150 NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG", 3151 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3152 3153 if (Error E = ProfileReader->readProfilePreCFG(*BC.get())) 3154 report_error("cannot read profile pre-CFG", std::move(E)); 3155 } 3156 3157 void RewriteInstance::processProfileData() { 3158 if (!ProfileReader) 3159 return; 3160 3161 NamedRegionTimer T("processprofile", "process profile data", TimerGroupName, 3162 TimerGroupDesc, opts::TimeRewrite); 3163 3164 if (Error E = ProfileReader->readProfile(*BC.get())) 3165 report_error("cannot read profile", std::move(E)); 3166 3167 if (opts::PrintProfile || opts::PrintAll) { 3168 for (auto &BFI : BC->getBinaryFunctions()) { 3169 BinaryFunction &Function = BFI.second; 3170 if (Function.empty()) 3171 continue; 3172 3173 Function.print(BC->outs(), "after attaching profile"); 3174 } 3175 } 3176 3177 if (!opts::SaveProfile.empty() && !BAT->enabledFor(InputFile)) { 3178 YAMLProfileWriter PW(opts::SaveProfile); 3179 PW.writeProfile(*this); 3180 } 3181 if (opts::AggregateOnly && 3182 opts::ProfileFormat == opts::ProfileFormatKind::PF_YAML && 3183 !BAT->enabledFor(InputFile)) { 3184 YAMLProfileWriter PW(opts::OutputFilename); 3185 PW.writeProfile(*this); 3186 } 3187 3188 // Release memory used by profile reader. 3189 ProfileReader.reset(); 3190 3191 if (opts::AggregateOnly) { 3192 PrintProgramStats PPS(&*BAT); 3193 BC->logBOLTErrorsAndQuitOnFatal(PPS.runOnFunctions(*BC)); 3194 exit(0); 3195 } 3196 } 3197 3198 void RewriteInstance::disassembleFunctions() { 3199 NamedRegionTimer T("disassembleFunctions", "disassemble functions", 3200 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3201 for (auto &BFI : BC->getBinaryFunctions()) { 3202 BinaryFunction &Function = BFI.second; 3203 3204 ErrorOr<ArrayRef<uint8_t>> FunctionData = Function.getData(); 3205 if (!FunctionData) { 3206 BC->errs() << "BOLT-ERROR: corresponding section is non-executable or " 3207 << "empty for function " << Function << '\n'; 3208 exit(1); 3209 } 3210 3211 // Treat zero-sized functions as non-simple ones. 3212 if (Function.getSize() == 0) { 3213 Function.setSimple(false); 3214 continue; 3215 } 3216 3217 // Offset of the function in the file. 3218 const auto *FileBegin = 3219 reinterpret_cast<const uint8_t *>(InputFile->getData().data()); 3220 Function.setFileOffset(FunctionData->begin() - FileBegin); 3221 3222 if (!shouldDisassemble(Function)) { 3223 NamedRegionTimer T("scan", "scan functions", "buildfuncs", 3224 "Scan Binary Functions", opts::TimeBuild); 3225 Function.scanExternalRefs(); 3226 Function.setSimple(false); 3227 continue; 3228 } 3229 3230 bool DisasmFailed{false}; 3231 handleAllErrors(Function.disassemble(), [&](const BOLTError &E) { 3232 DisasmFailed = true; 3233 if (E.isFatal()) { 3234 E.log(BC->errs()); 3235 exit(1); 3236 } 3237 if (opts::processAllFunctions()) { 3238 BC->errs() << BC->generateBugReportMessage( 3239 "function cannot be properly disassembled. " 3240 "Unable to continue in relocation mode.", 3241 Function); 3242 exit(1); 3243 } 3244 if (opts::Verbosity >= 1) 3245 BC->outs() << "BOLT-INFO: could not disassemble function " << Function 3246 << ". Will ignore.\n"; 3247 // Forcefully ignore the function. 3248 Function.setIgnored(); 3249 }); 3250 3251 if (DisasmFailed) 3252 continue; 3253 3254 if (opts::PrintAll || opts::PrintDisasm) 3255 Function.print(BC->outs(), "after disassembly"); 3256 } 3257 3258 BC->processInterproceduralReferences(); 3259 BC->populateJumpTables(); 3260 3261 for (auto &BFI : BC->getBinaryFunctions()) { 3262 BinaryFunction &Function = BFI.second; 3263 3264 if (!shouldDisassemble(Function)) 3265 continue; 3266 3267 Function.postProcessEntryPoints(); 3268 Function.postProcessJumpTables(); 3269 } 3270 3271 BC->clearJumpTableTempData(); 3272 BC->adjustCodePadding(); 3273 3274 for (auto &BFI : BC->getBinaryFunctions()) { 3275 BinaryFunction &Function = BFI.second; 3276 3277 if (!shouldDisassemble(Function)) 3278 continue; 3279 3280 if (!Function.isSimple()) { 3281 assert((!BC->HasRelocations || Function.getSize() == 0 || 3282 Function.hasIndirectTargetToSplitFragment()) && 3283 "unexpected non-simple function in relocation mode"); 3284 continue; 3285 } 3286 3287 // Fill in CFI information for this function 3288 if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) { 3289 if (BC->HasRelocations) { 3290 BC->errs() << BC->generateBugReportMessage("unable to fill CFI.", 3291 Function); 3292 exit(1); 3293 } else { 3294 BC->errs() << "BOLT-WARNING: unable to fill CFI for function " 3295 << Function << ". Skipping.\n"; 3296 Function.setSimple(false); 3297 continue; 3298 } 3299 } 3300 3301 // Parse LSDA. 3302 if (Function.getLSDAAddress() != 0 && 3303 !BC->getFragmentsToSkip().count(&Function)) { 3304 ErrorOr<BinarySection &> LSDASection = 3305 BC->getSectionForAddress(Function.getLSDAAddress()); 3306 check_error(LSDASection.getError(), "failed to get LSDA section"); 3307 ArrayRef<uint8_t> LSDAData = ArrayRef<uint8_t>( 3308 LSDASection->getData(), LSDASection->getContents().size()); 3309 BC->logBOLTErrorsAndQuitOnFatal( 3310 Function.parseLSDA(LSDAData, LSDASection->getAddress())); 3311 } 3312 } 3313 } 3314 3315 void RewriteInstance::buildFunctionsCFG() { 3316 NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs", 3317 "Build Binary Functions", opts::TimeBuild); 3318 3319 // Create annotation indices to allow lock-free execution 3320 BC->MIB->getOrCreateAnnotationIndex("JTIndexReg"); 3321 BC->MIB->getOrCreateAnnotationIndex("NOP"); 3322 3323 ParallelUtilities::WorkFuncWithAllocTy WorkFun = 3324 [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) { 3325 bool HadErrors{false}; 3326 handleAllErrors(BF.buildCFG(AllocId), [&](const BOLTError &E) { 3327 if (!E.getMessage().empty()) 3328 E.log(BC->errs()); 3329 if (E.isFatal()) 3330 exit(1); 3331 HadErrors = true; 3332 }); 3333 3334 if (HadErrors) 3335 return; 3336 3337 if (opts::PrintAll) { 3338 auto L = BC->scopeLock(); 3339 BF.print(BC->outs(), "while building cfg"); 3340 } 3341 }; 3342 3343 ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) { 3344 return !shouldDisassemble(BF) || !BF.isSimple(); 3345 }; 3346 3347 ParallelUtilities::runOnEachFunctionWithUniqueAllocId( 3348 *BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun, 3349 SkipPredicate, "disassembleFunctions-buildCFG", 3350 /*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll); 3351 3352 BC->postProcessSymbolTable(); 3353 } 3354 3355 void RewriteInstance::postProcessFunctions() { 3356 // We mark fragments as non-simple here, not during disassembly, 3357 // So we can build their CFGs. 3358 BC->skipMarkedFragments(); 3359 BC->clearFragmentsToSkip(); 3360 3361 BC->TotalScore = 0; 3362 BC->SumExecutionCount = 0; 3363 for (auto &BFI : BC->getBinaryFunctions()) { 3364 BinaryFunction &Function = BFI.second; 3365 3366 // Set function as non-simple if it has dynamic relocations 3367 // in constant island, we don't want this function to be optimized 3368 // e.g. function splitting is unsupported. 3369 if (Function.hasDynamicRelocationAtIsland()) 3370 Function.setSimple(false); 3371 3372 if (Function.empty()) 3373 continue; 3374 3375 Function.postProcessCFG(); 3376 3377 if (opts::PrintAll || opts::PrintCFG) 3378 Function.print(BC->outs(), "after building cfg"); 3379 3380 if (opts::DumpDotAll) 3381 Function.dumpGraphForPass("00_build-cfg"); 3382 3383 if (opts::PrintLoopInfo) { 3384 Function.calculateLoopInfo(); 3385 Function.printLoopInfo(BC->outs()); 3386 } 3387 3388 BC->TotalScore += Function.getFunctionScore(); 3389 BC->SumExecutionCount += Function.getKnownExecutionCount(); 3390 } 3391 3392 if (opts::PrintGlobals) { 3393 BC->outs() << "BOLT-INFO: Global symbols:\n"; 3394 BC->printGlobalSymbols(BC->outs()); 3395 } 3396 } 3397 3398 void RewriteInstance::runOptimizationPasses() { 3399 NamedRegionTimer T("runOptimizationPasses", "run optimization passes", 3400 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3401 BC->logBOLTErrorsAndQuitOnFatal(BinaryFunctionPassManager::runAllPasses(*BC)); 3402 } 3403 3404 void RewriteInstance::preregisterSections() { 3405 // Preregister sections before emission to set their order in the output. 3406 const unsigned ROFlags = BinarySection::getFlags(/*IsReadOnly*/ true, 3407 /*IsText*/ false, 3408 /*IsAllocatable*/ true); 3409 if (BinarySection *EHFrameSection = getSection(getEHFrameSectionName())) { 3410 // New .eh_frame. 3411 BC->registerOrUpdateSection(getNewSecPrefix() + getEHFrameSectionName(), 3412 ELF::SHT_PROGBITS, ROFlags); 3413 // Fully register a relocatable copy of the original .eh_frame. 3414 BC->registerSection(".relocated.eh_frame", *EHFrameSection); 3415 } 3416 BC->registerOrUpdateSection(getNewSecPrefix() + ".gcc_except_table", 3417 ELF::SHT_PROGBITS, ROFlags); 3418 BC->registerOrUpdateSection(getNewSecPrefix() + ".rodata", ELF::SHT_PROGBITS, 3419 ROFlags); 3420 BC->registerOrUpdateSection(getNewSecPrefix() + ".rodata.cold", 3421 ELF::SHT_PROGBITS, ROFlags); 3422 } 3423 3424 void RewriteInstance::emitAndLink() { 3425 NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName, 3426 TimerGroupDesc, opts::TimeRewrite); 3427 3428 SmallString<0> ObjectBuffer; 3429 raw_svector_ostream OS(ObjectBuffer); 3430 3431 // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB) 3432 // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these 3433 // two instances. 3434 std::unique_ptr<MCStreamer> Streamer = BC->createStreamer(OS); 3435 3436 if (EHFrameSection) { 3437 if (opts::UseOldText || opts::StrictMode) { 3438 // The section is going to be regenerated from scratch. 3439 // Empty the contents, but keep the section reference. 3440 EHFrameSection->clearContents(); 3441 } else { 3442 // Make .eh_frame relocatable. 3443 relocateEHFrameSection(); 3444 } 3445 } 3446 3447 emitBinaryContext(*Streamer, *BC, getOrgSecPrefix()); 3448 3449 Streamer->finish(); 3450 if (Streamer->getContext().hadError()) { 3451 BC->errs() << "BOLT-ERROR: Emission failed.\n"; 3452 exit(1); 3453 } 3454 3455 if (opts::KeepTmp) { 3456 SmallString<128> OutObjectPath; 3457 sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath); 3458 std::error_code EC; 3459 raw_fd_ostream FOS(OutObjectPath, EC); 3460 check_error(EC, "cannot create output object file"); 3461 FOS << ObjectBuffer; 3462 BC->outs() 3463 << "BOLT-INFO: intermediary output object file saved for debugging " 3464 "purposes: " 3465 << OutObjectPath << "\n"; 3466 } 3467 3468 ErrorOr<BinarySection &> TextSection = 3469 BC->getUniqueSectionByName(BC->getMainCodeSectionName()); 3470 if (BC->HasRelocations && TextSection) 3471 BC->renameSection(*TextSection, 3472 getOrgSecPrefix() + BC->getMainCodeSectionName()); 3473 3474 ////////////////////////////////////////////////////////////////////////////// 3475 // Assign addresses to new sections. 3476 ////////////////////////////////////////////////////////////////////////////// 3477 3478 // Get output object as ObjectFile. 3479 std::unique_ptr<MemoryBuffer> ObjectMemBuffer = 3480 MemoryBuffer::getMemBuffer(ObjectBuffer, "in-memory object file", false); 3481 3482 auto EFMM = std::make_unique<ExecutableFileMemoryManager>(*BC); 3483 EFMM->setNewSecPrefix(getNewSecPrefix()); 3484 EFMM->setOrgSecPrefix(getOrgSecPrefix()); 3485 3486 Linker = std::make_unique<JITLinkLinker>(*BC, std::move(EFMM)); 3487 Linker->loadObject(ObjectMemBuffer->getMemBufferRef(), 3488 [this](auto MapSection) { mapFileSections(MapSection); }); 3489 3490 // Update output addresses based on the new section map and 3491 // layout. Only do this for the object created by ourselves. 3492 updateOutputValues(*Linker); 3493 3494 if (opts::UpdateDebugSections) { 3495 DebugInfoRewriter->updateLineTableOffsets( 3496 static_cast<MCObjectStreamer &>(*Streamer).getAssembler()); 3497 } 3498 3499 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 3500 RtLibrary->link(*BC, ToolPath, *Linker, [this](auto MapSection) { 3501 // Map newly registered sections. 3502 this->mapAllocatableSections(MapSection); 3503 }); 3504 3505 // Once the code is emitted, we can rename function sections to actual 3506 // output sections and de-register sections used for emission. 3507 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { 3508 ErrorOr<BinarySection &> Section = Function->getCodeSection(); 3509 if (Section && 3510 (Function->getImageAddress() == 0 || Function->getImageSize() == 0)) 3511 continue; 3512 3513 // Restore origin section for functions that were emitted or supposed to 3514 // be emitted to patch sections. 3515 if (Section) 3516 BC->deregisterSection(*Section); 3517 assert(Function->getOriginSectionName() && "expected origin section"); 3518 Function->CodeSectionName = Function->getOriginSectionName()->str(); 3519 for (const FunctionFragment &FF : 3520 Function->getLayout().getSplitFragments()) { 3521 if (ErrorOr<BinarySection &> ColdSection = 3522 Function->getCodeSection(FF.getFragmentNum())) 3523 BC->deregisterSection(*ColdSection); 3524 } 3525 if (Function->getLayout().isSplit()) 3526 Function->setColdCodeSectionName(getBOLTTextSectionName()); 3527 } 3528 3529 if (opts::PrintCacheMetrics) { 3530 BC->outs() << "BOLT-INFO: cache metrics after emitting functions:\n"; 3531 CacheMetrics::printAll(BC->outs(), BC->getSortedFunctions()); 3532 } 3533 } 3534 3535 void RewriteInstance::finalizeMetadataPreEmit() { 3536 MetadataManager.runFinalizersPreEmit(); 3537 } 3538 3539 void RewriteInstance::updateMetadata() { 3540 MetadataManager.runFinalizersAfterEmit(); 3541 3542 if (opts::UpdateDebugSections) { 3543 NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName, 3544 TimerGroupDesc, opts::TimeRewrite); 3545 DebugInfoRewriter->updateDebugInfo(); 3546 } 3547 3548 if (opts::WriteBoltInfoSection) 3549 addBoltInfoSection(); 3550 } 3551 3552 void RewriteInstance::mapFileSections(BOLTLinker::SectionMapper MapSection) { 3553 BC->deregisterUnusedSections(); 3554 3555 // If no new .eh_frame was written, remove relocated original .eh_frame. 3556 BinarySection *RelocatedEHFrameSection = 3557 getSection(".relocated" + getEHFrameSectionName()); 3558 if (RelocatedEHFrameSection && RelocatedEHFrameSection->hasValidSectionID()) { 3559 BinarySection *NewEHFrameSection = 3560 getSection(getNewSecPrefix() + getEHFrameSectionName()); 3561 if (!NewEHFrameSection || !NewEHFrameSection->isFinalized()) { 3562 // JITLink will still have to process relocations for the section, hence 3563 // we need to assign it the address that wouldn't result in relocation 3564 // processing failure. 3565 MapSection(*RelocatedEHFrameSection, NextAvailableAddress); 3566 BC->deregisterSection(*RelocatedEHFrameSection); 3567 } 3568 } 3569 3570 mapCodeSections(MapSection); 3571 3572 // Map the rest of the sections. 3573 mapAllocatableSections(MapSection); 3574 3575 if (!BC->BOLTReserved.empty()) { 3576 const uint64_t AllocatedSize = 3577 NextAvailableAddress - BC->BOLTReserved.start(); 3578 if (BC->BOLTReserved.size() < AllocatedSize) { 3579 BC->errs() << "BOLT-ERROR: reserved space (" << BC->BOLTReserved.size() 3580 << " byte" << (BC->BOLTReserved.size() == 1 ? "" : "s") 3581 << ") is smaller than required for new allocations (" 3582 << AllocatedSize << " bytes)\n"; 3583 exit(1); 3584 } 3585 } 3586 } 3587 3588 std::vector<BinarySection *> RewriteInstance::getCodeSections() { 3589 std::vector<BinarySection *> CodeSections; 3590 for (BinarySection &Section : BC->textSections()) 3591 if (Section.hasValidSectionID()) 3592 CodeSections.emplace_back(&Section); 3593 3594 auto compareSections = [&](const BinarySection *A, const BinarySection *B) { 3595 // If both A and B have names starting with ".text.cold", then 3596 // - if opts::HotFunctionsAtEnd is true, we want order 3597 // ".text.cold.T", ".text.cold.T-1", ... ".text.cold.1", ".text.cold" 3598 // - if opts::HotFunctionsAtEnd is false, we want order 3599 // ".text.cold", ".text.cold.1", ... ".text.cold.T-1", ".text.cold.T" 3600 if (A->getName().starts_with(BC->getColdCodeSectionName()) && 3601 B->getName().starts_with(BC->getColdCodeSectionName())) { 3602 if (A->getName().size() != B->getName().size()) 3603 return (opts::HotFunctionsAtEnd) 3604 ? (A->getName().size() > B->getName().size()) 3605 : (A->getName().size() < B->getName().size()); 3606 return (opts::HotFunctionsAtEnd) ? (A->getName() > B->getName()) 3607 : (A->getName() < B->getName()); 3608 } 3609 3610 // Place movers before anything else. 3611 if (A->getName() == BC->getHotTextMoverSectionName()) 3612 return true; 3613 if (B->getName() == BC->getHotTextMoverSectionName()) 3614 return false; 3615 3616 // Depending on opts::HotFunctionsAtEnd, place main and warm sections in 3617 // order. 3618 if (opts::HotFunctionsAtEnd) { 3619 if (B->getName() == BC->getMainCodeSectionName()) 3620 return true; 3621 if (A->getName() == BC->getMainCodeSectionName()) 3622 return false; 3623 return (B->getName() == BC->getWarmCodeSectionName()); 3624 } else { 3625 if (A->getName() == BC->getMainCodeSectionName()) 3626 return true; 3627 if (B->getName() == BC->getMainCodeSectionName()) 3628 return false; 3629 return (A->getName() == BC->getWarmCodeSectionName()); 3630 } 3631 }; 3632 3633 // Determine the order of sections. 3634 llvm::stable_sort(CodeSections, compareSections); 3635 3636 return CodeSections; 3637 } 3638 3639 void RewriteInstance::mapCodeSections(BOLTLinker::SectionMapper MapSection) { 3640 if (BC->HasRelocations) { 3641 // Map sections for functions with pre-assigned addresses. 3642 for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) { 3643 const uint64_t OutputAddress = InjectedFunction->getOutputAddress(); 3644 if (!OutputAddress) 3645 continue; 3646 3647 ErrorOr<BinarySection &> FunctionSection = 3648 InjectedFunction->getCodeSection(); 3649 assert(FunctionSection && "function should have section"); 3650 FunctionSection->setOutputAddress(OutputAddress); 3651 MapSection(*FunctionSection, OutputAddress); 3652 InjectedFunction->setImageAddress(FunctionSection->getAllocAddress()); 3653 InjectedFunction->setImageSize(FunctionSection->getOutputSize()); 3654 } 3655 3656 // Populate the list of sections to be allocated. 3657 std::vector<BinarySection *> CodeSections = getCodeSections(); 3658 3659 // Remove sections that were pre-allocated (patch sections). 3660 llvm::erase_if(CodeSections, [](BinarySection *Section) { 3661 return Section->getOutputAddress(); 3662 }); 3663 LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n"; 3664 for (const BinarySection *Section : CodeSections) 3665 dbgs() << Section->getName() << '\n'; 3666 ); 3667 3668 uint64_t PaddingSize = 0; // size of padding required at the end 3669 3670 // Allocate sections starting at a given Address. 3671 auto allocateAt = [&](uint64_t Address) { 3672 const char *LastNonColdSectionName = BC->HasWarmSection 3673 ? BC->getWarmCodeSectionName() 3674 : BC->getMainCodeSectionName(); 3675 for (BinarySection *Section : CodeSections) { 3676 Address = alignTo(Address, Section->getAlignment()); 3677 Section->setOutputAddress(Address); 3678 Address += Section->getOutputSize(); 3679 3680 // Hugify: Additional huge page from right side due to 3681 // weird ASLR mapping addresses (4KB aligned) 3682 if (opts::Hugify && !BC->HasFixedLoadAddress && 3683 Section->getName() == LastNonColdSectionName) 3684 Address = alignTo(Address, Section->getAlignment()); 3685 } 3686 3687 // Make sure we allocate enough space for huge pages. 3688 ErrorOr<BinarySection &> TextSection = 3689 BC->getUniqueSectionByName(LastNonColdSectionName); 3690 if (opts::HotText && TextSection && TextSection->hasValidSectionID()) { 3691 uint64_t HotTextEnd = 3692 TextSection->getOutputAddress() + TextSection->getOutputSize(); 3693 HotTextEnd = alignTo(HotTextEnd, BC->PageAlign); 3694 if (HotTextEnd > Address) { 3695 PaddingSize = HotTextEnd - Address; 3696 Address = HotTextEnd; 3697 } 3698 } 3699 return Address; 3700 }; 3701 3702 // Check if we can fit code in the original .text 3703 bool AllocationDone = false; 3704 if (opts::UseOldText) { 3705 const uint64_t CodeSize = 3706 allocateAt(BC->OldTextSectionAddress) - BC->OldTextSectionAddress; 3707 3708 if (CodeSize <= BC->OldTextSectionSize) { 3709 BC->outs() << "BOLT-INFO: using original .text for new code with 0x" 3710 << Twine::utohexstr(opts::AlignText) << " alignment\n"; 3711 AllocationDone = true; 3712 } else { 3713 BC->errs() 3714 << "BOLT-WARNING: original .text too small to fit the new code" 3715 << " using 0x" << Twine::utohexstr(opts::AlignText) 3716 << " alignment. " << CodeSize << " bytes needed, have " 3717 << BC->OldTextSectionSize << " bytes available.\n"; 3718 opts::UseOldText = false; 3719 } 3720 } 3721 3722 if (!AllocationDone) 3723 NextAvailableAddress = allocateAt(NextAvailableAddress); 3724 3725 // Do the mapping for ORC layer based on the allocation. 3726 for (BinarySection *Section : CodeSections) { 3727 LLVM_DEBUG( 3728 dbgs() << "BOLT: mapping " << Section->getName() << " at 0x" 3729 << Twine::utohexstr(Section->getAllocAddress()) << " to 0x" 3730 << Twine::utohexstr(Section->getOutputAddress()) << '\n'); 3731 MapSection(*Section, Section->getOutputAddress()); 3732 Section->setOutputFileOffset( 3733 getFileOffsetForAddress(Section->getOutputAddress())); 3734 } 3735 3736 // Check if we need to insert a padding section for hot text. 3737 if (PaddingSize && !opts::UseOldText) 3738 BC->outs() << "BOLT-INFO: padding code to 0x" 3739 << Twine::utohexstr(NextAvailableAddress) 3740 << " to accommodate hot text\n"; 3741 3742 return; 3743 } 3744 3745 // Processing in non-relocation mode. 3746 uint64_t NewTextSectionStartAddress = NextAvailableAddress; 3747 3748 for (auto &BFI : BC->getBinaryFunctions()) { 3749 BinaryFunction &Function = BFI.second; 3750 if (!Function.isEmitted()) 3751 continue; 3752 3753 bool TooLarge = false; 3754 ErrorOr<BinarySection &> FuncSection = Function.getCodeSection(); 3755 assert(FuncSection && "cannot find section for function"); 3756 FuncSection->setOutputAddress(Function.getAddress()); 3757 LLVM_DEBUG(dbgs() << "BOLT: mapping 0x" 3758 << Twine::utohexstr(FuncSection->getAllocAddress()) 3759 << " to 0x" << Twine::utohexstr(Function.getAddress()) 3760 << '\n'); 3761 MapSection(*FuncSection, Function.getAddress()); 3762 Function.setImageAddress(FuncSection->getAllocAddress()); 3763 Function.setImageSize(FuncSection->getOutputSize()); 3764 if (Function.getImageSize() > Function.getMaxSize()) { 3765 assert(!BC->isX86() && "Unexpected large function."); 3766 TooLarge = true; 3767 FailedAddresses.emplace_back(Function.getAddress()); 3768 } 3769 3770 // Map jump tables if updating in-place. 3771 if (opts::JumpTables == JTS_BASIC) { 3772 for (auto &JTI : Function.JumpTables) { 3773 JumpTable *JT = JTI.second; 3774 BinarySection &Section = JT->getOutputSection(); 3775 Section.setOutputAddress(JT->getAddress()); 3776 Section.setOutputFileOffset(getFileOffsetForAddress(JT->getAddress())); 3777 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping JT " << Section.getName() 3778 << " to 0x" << Twine::utohexstr(JT->getAddress()) 3779 << '\n'); 3780 MapSection(Section, JT->getAddress()); 3781 } 3782 } 3783 3784 if (!Function.isSplit()) 3785 continue; 3786 3787 assert(Function.getLayout().isHotColdSplit() && 3788 "Cannot allocate more than two fragments per function in " 3789 "non-relocation mode."); 3790 3791 FunctionFragment &FF = 3792 Function.getLayout().getFragment(FragmentNum::cold()); 3793 ErrorOr<BinarySection &> ColdSection = 3794 Function.getCodeSection(FF.getFragmentNum()); 3795 assert(ColdSection && "cannot find section for cold part"); 3796 // Cold fragments are aligned at 16 bytes. 3797 NextAvailableAddress = alignTo(NextAvailableAddress, 16); 3798 if (TooLarge) { 3799 // The corresponding FDE will refer to address 0. 3800 FF.setAddress(0); 3801 FF.setImageAddress(0); 3802 FF.setImageSize(0); 3803 FF.setFileOffset(0); 3804 } else { 3805 FF.setAddress(NextAvailableAddress); 3806 FF.setImageAddress(ColdSection->getAllocAddress()); 3807 FF.setImageSize(ColdSection->getOutputSize()); 3808 FF.setFileOffset(getFileOffsetForAddress(NextAvailableAddress)); 3809 ColdSection->setOutputAddress(FF.getAddress()); 3810 } 3811 3812 LLVM_DEBUG( 3813 dbgs() << formatv( 3814 "BOLT: mapping cold fragment {0:x+} to {1:x+} with size {2:x+}\n", 3815 FF.getImageAddress(), FF.getAddress(), FF.getImageSize())); 3816 MapSection(*ColdSection, FF.getAddress()); 3817 3818 if (TooLarge) 3819 BC->deregisterSection(*ColdSection); 3820 3821 NextAvailableAddress += FF.getImageSize(); 3822 } 3823 3824 // Add the new text section aggregating all existing code sections. 3825 // This is pseudo-section that serves a purpose of creating a corresponding 3826 // entry in section header table. 3827 const uint64_t NewTextSectionSize = 3828 NextAvailableAddress - NewTextSectionStartAddress; 3829 if (NewTextSectionSize) { 3830 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, 3831 /*IsText=*/true, 3832 /*IsAllocatable=*/true); 3833 BinarySection &Section = 3834 BC->registerOrUpdateSection(getBOLTTextSectionName(), 3835 ELF::SHT_PROGBITS, 3836 Flags, 3837 /*Data=*/nullptr, 3838 NewTextSectionSize, 3839 16); 3840 Section.setOutputAddress(NewTextSectionStartAddress); 3841 Section.setOutputFileOffset( 3842 getFileOffsetForAddress(NewTextSectionStartAddress)); 3843 } 3844 } 3845 3846 void RewriteInstance::mapAllocatableSections( 3847 BOLTLinker::SectionMapper MapSection) { 3848 // Allocate read-only sections first, then writable sections. 3849 enum : uint8_t { ST_READONLY, ST_READWRITE }; 3850 for (uint8_t SType = ST_READONLY; SType <= ST_READWRITE; ++SType) { 3851 const uint64_t LastNextAvailableAddress = NextAvailableAddress; 3852 if (SType == ST_READWRITE) { 3853 // Align R+W segment to regular page size 3854 NextAvailableAddress = alignTo(NextAvailableAddress, BC->RegularPageSize); 3855 NewWritableSegmentAddress = NextAvailableAddress; 3856 } 3857 3858 for (BinarySection &Section : BC->allocatableSections()) { 3859 if (Section.isLinkOnly()) 3860 continue; 3861 3862 if (!Section.hasValidSectionID()) 3863 continue; 3864 3865 if (Section.isWritable() == (SType == ST_READONLY)) 3866 continue; 3867 3868 if (Section.getOutputAddress()) { 3869 LLVM_DEBUG({ 3870 dbgs() << "BOLT-DEBUG: section " << Section.getName() 3871 << " is already mapped at 0x" 3872 << Twine::utohexstr(Section.getOutputAddress()) << '\n'; 3873 }); 3874 continue; 3875 } 3876 3877 if (Section.hasSectionRef()) { 3878 LLVM_DEBUG({ 3879 dbgs() << "BOLT-DEBUG: mapping original section " << Section.getName() 3880 << " to 0x" << Twine::utohexstr(Section.getAddress()) << '\n'; 3881 }); 3882 Section.setOutputAddress(Section.getAddress()); 3883 Section.setOutputFileOffset(Section.getInputFileOffset()); 3884 MapSection(Section, Section.getAddress()); 3885 } else { 3886 NextAvailableAddress = 3887 alignTo(NextAvailableAddress, Section.getAlignment()); 3888 LLVM_DEBUG({ 3889 dbgs() << "BOLT: mapping section " << Section.getName() << " (0x" 3890 << Twine::utohexstr(Section.getAllocAddress()) << ") to 0x" 3891 << Twine::utohexstr(NextAvailableAddress) << ":0x" 3892 << Twine::utohexstr(NextAvailableAddress + 3893 Section.getOutputSize()) 3894 << '\n'; 3895 }); 3896 3897 MapSection(Section, NextAvailableAddress); 3898 Section.setOutputAddress(NextAvailableAddress); 3899 Section.setOutputFileOffset( 3900 getFileOffsetForAddress(NextAvailableAddress)); 3901 3902 NextAvailableAddress += Section.getOutputSize(); 3903 } 3904 } 3905 3906 if (SType == ST_READONLY) { 3907 if (PHDRTableAddress) { 3908 // Segment size includes the size of the PHDR area. 3909 NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress; 3910 } else if (NewTextSegmentAddress) { 3911 // Existing PHDR table would be updated. 3912 NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress; 3913 } 3914 } else if (SType == ST_READWRITE) { 3915 NewWritableSegmentSize = NextAvailableAddress - NewWritableSegmentAddress; 3916 // Restore NextAvailableAddress if no new writable sections 3917 if (!NewWritableSegmentSize) 3918 NextAvailableAddress = LastNextAvailableAddress; 3919 } 3920 } 3921 } 3922 3923 void RewriteInstance::updateOutputValues(const BOLTLinker &Linker) { 3924 if (std::optional<AddressMap> Map = AddressMap::parse(*BC)) 3925 BC->setIOAddressMap(std::move(*Map)); 3926 3927 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) 3928 Function->updateOutputValues(Linker); 3929 } 3930 3931 void RewriteInstance::patchELFPHDRTable() { 3932 auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile); 3933 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 3934 raw_fd_ostream &OS = Out->os(); 3935 3936 // Write/re-write program headers. 3937 Phnum = Obj.getHeader().e_phnum; 3938 if (PHDRTableOffset) { 3939 // Writing new pheader table and adding one new entry for R+X segment. 3940 Phnum += 1; 3941 if (NewWritableSegmentSize) { 3942 // Adding one more entry for R+W segment. 3943 Phnum += 1; 3944 } 3945 } else { 3946 assert(!PHDRTableAddress && "unexpected address for program header table"); 3947 PHDRTableOffset = Obj.getHeader().e_phoff; 3948 if (NewWritableSegmentSize) { 3949 BC->errs() << "BOLT-ERROR: unable to add writable segment\n"; 3950 exit(1); 3951 } 3952 } 3953 3954 // NOTE Currently .eh_frame_hdr appends to the last segment, recalculate 3955 // last segments size based on the NextAvailableAddress variable. 3956 if (!NewWritableSegmentSize) { 3957 if (PHDRTableAddress) 3958 NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress; 3959 else if (NewTextSegmentAddress) 3960 NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress; 3961 } else { 3962 NewWritableSegmentSize = NextAvailableAddress - NewWritableSegmentAddress; 3963 } 3964 3965 const uint64_t SavedPos = OS.tell(); 3966 OS.seek(PHDRTableOffset); 3967 3968 auto createNewTextPhdr = [&]() { 3969 ELF64LEPhdrTy NewPhdr; 3970 NewPhdr.p_type = ELF::PT_LOAD; 3971 if (PHDRTableAddress) { 3972 NewPhdr.p_offset = PHDRTableOffset; 3973 NewPhdr.p_vaddr = PHDRTableAddress; 3974 NewPhdr.p_paddr = PHDRTableAddress; 3975 } else { 3976 NewPhdr.p_offset = NewTextSegmentOffset; 3977 NewPhdr.p_vaddr = NewTextSegmentAddress; 3978 NewPhdr.p_paddr = NewTextSegmentAddress; 3979 } 3980 NewPhdr.p_filesz = NewTextSegmentSize; 3981 NewPhdr.p_memsz = NewTextSegmentSize; 3982 NewPhdr.p_flags = ELF::PF_X | ELF::PF_R; 3983 if (opts::Instrument) { 3984 // FIXME: Currently instrumentation is experimental and the runtime data 3985 // is emitted with code, thus everything needs to be writable. 3986 NewPhdr.p_flags |= ELF::PF_W; 3987 } 3988 NewPhdr.p_align = BC->PageAlign; 3989 3990 return NewPhdr; 3991 }; 3992 3993 auto writeNewSegmentPhdrs = [&]() { 3994 if (PHDRTableAddress || NewTextSegmentSize) { 3995 ELF64LE::Phdr NewPhdr = createNewTextPhdr(); 3996 OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr)); 3997 } 3998 3999 if (NewWritableSegmentSize) { 4000 ELF64LEPhdrTy NewPhdr; 4001 NewPhdr.p_type = ELF::PT_LOAD; 4002 NewPhdr.p_offset = getFileOffsetForAddress(NewWritableSegmentAddress); 4003 NewPhdr.p_vaddr = NewWritableSegmentAddress; 4004 NewPhdr.p_paddr = NewWritableSegmentAddress; 4005 NewPhdr.p_filesz = NewWritableSegmentSize; 4006 NewPhdr.p_memsz = NewWritableSegmentSize; 4007 NewPhdr.p_align = BC->RegularPageSize; 4008 NewPhdr.p_flags = ELF::PF_R | ELF::PF_W; 4009 OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr)); 4010 } 4011 }; 4012 4013 bool ModdedGnuStack = false; 4014 bool AddedSegment = false; 4015 4016 // Copy existing program headers with modifications. 4017 for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) { 4018 ELF64LE::Phdr NewPhdr = Phdr; 4019 switch (Phdr.p_type) { 4020 case ELF::PT_PHDR: 4021 if (PHDRTableAddress) { 4022 NewPhdr.p_offset = PHDRTableOffset; 4023 NewPhdr.p_vaddr = PHDRTableAddress; 4024 NewPhdr.p_paddr = PHDRTableAddress; 4025 NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum; 4026 NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum; 4027 } 4028 break; 4029 case ELF::PT_GNU_EH_FRAME: { 4030 ErrorOr<BinarySection &> EHFrameHdrSec = BC->getUniqueSectionByName( 4031 getNewSecPrefix() + getEHFrameHdrSectionName()); 4032 if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() && 4033 EHFrameHdrSec->isFinalized()) { 4034 NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset(); 4035 NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress(); 4036 NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress(); 4037 NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize(); 4038 NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize(); 4039 } 4040 break; 4041 } 4042 case ELF::PT_GNU_STACK: 4043 if (opts::UseGnuStack) { 4044 // Overwrite the header with the new text segment header. 4045 NewPhdr = createNewTextPhdr(); 4046 ModdedGnuStack = true; 4047 } 4048 break; 4049 case ELF::PT_DYNAMIC: 4050 if (!opts::UseGnuStack) { 4051 // Insert new headers before DYNAMIC. 4052 writeNewSegmentPhdrs(); 4053 AddedSegment = true; 4054 } 4055 break; 4056 } 4057 OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr)); 4058 } 4059 4060 if (!opts::UseGnuStack && !AddedSegment) { 4061 // Append new headers to the end of the table. 4062 writeNewSegmentPhdrs(); 4063 } 4064 4065 if (opts::UseGnuStack && !ModdedGnuStack) { 4066 BC->errs() 4067 << "BOLT-ERROR: could not find PT_GNU_STACK program header to modify\n"; 4068 exit(1); 4069 } 4070 4071 OS.seek(SavedPos); 4072 } 4073 4074 namespace { 4075 4076 /// Write padding to \p OS such that its current \p Offset becomes aligned 4077 /// at \p Alignment. Return new (aligned) offset. 4078 uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset, 4079 uint64_t Alignment) { 4080 if (!Alignment) 4081 return Offset; 4082 4083 const uint64_t PaddingSize = 4084 offsetToAlignment(Offset, llvm::Align(Alignment)); 4085 for (unsigned I = 0; I < PaddingSize; ++I) 4086 OS.write((unsigned char)0); 4087 return Offset + PaddingSize; 4088 } 4089 4090 } 4091 4092 void RewriteInstance::rewriteNoteSections() { 4093 auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile); 4094 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 4095 raw_fd_ostream &OS = Out->os(); 4096 4097 uint64_t NextAvailableOffset = std::max( 4098 getFileOffsetForAddress(NextAvailableAddress), FirstNonAllocatableOffset); 4099 OS.seek(NextAvailableOffset); 4100 4101 // Copy over non-allocatable section contents and update file offsets. 4102 for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) { 4103 if (Section.sh_type == ELF::SHT_NULL) 4104 continue; 4105 if (Section.sh_flags & ELF::SHF_ALLOC) 4106 continue; 4107 4108 SectionRef SecRef = ELF64LEFile->toSectionRef(&Section); 4109 BinarySection *BSec = BC->getSectionForSectionRef(SecRef); 4110 assert(BSec && !BSec->isAllocatable() && 4111 "Matching non-allocatable BinarySection should exist."); 4112 4113 StringRef SectionName = 4114 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4115 if (shouldStrip(Section, SectionName)) 4116 continue; 4117 4118 // Insert padding as needed. 4119 NextAvailableOffset = 4120 appendPadding(OS, NextAvailableOffset, Section.sh_addralign); 4121 4122 // New section size. 4123 uint64_t Size = 0; 4124 bool DataWritten = false; 4125 uint8_t *SectionData = nullptr; 4126 // Copy over section contents unless it's one of the sections we overwrite. 4127 if (!willOverwriteSection(SectionName)) { 4128 Size = Section.sh_size; 4129 StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size); 4130 std::string Data; 4131 if (BSec->getPatcher()) { 4132 Data = BSec->getPatcher()->patchBinary(Dataref); 4133 Dataref = StringRef(Data); 4134 } 4135 4136 // Section was expanded, so need to treat it as overwrite. 4137 if (Size != Dataref.size()) { 4138 BSec = &BC->registerOrUpdateNoteSection( 4139 SectionName, copyByteArray(Dataref), Dataref.size()); 4140 Size = 0; 4141 } else { 4142 OS << Dataref; 4143 DataWritten = true; 4144 4145 // Add padding as the section extension might rely on the alignment. 4146 Size = appendPadding(OS, Size, Section.sh_addralign); 4147 } 4148 } 4149 4150 // Perform section post-processing. 4151 assert(BSec->getAlignment() <= Section.sh_addralign && 4152 "alignment exceeds value in file"); 4153 4154 if (BSec->getAllocAddress()) { 4155 assert(!DataWritten && "Writing section twice."); 4156 (void)DataWritten; 4157 SectionData = BSec->getOutputData(); 4158 4159 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing") 4160 << " contents to section " << SectionName << '\n'); 4161 OS.write(reinterpret_cast<char *>(SectionData), BSec->getOutputSize()); 4162 Size += BSec->getOutputSize(); 4163 } 4164 4165 BSec->setOutputFileOffset(NextAvailableOffset); 4166 BSec->flushPendingRelocations(OS, [this](const MCSymbol *S) { 4167 return getNewValueForSymbol(S->getName()); 4168 }); 4169 4170 // Section contents are no longer needed, but we need to update the size so 4171 // that it will be reflected in the section header table. 4172 BSec->updateContents(nullptr, Size); 4173 4174 NextAvailableOffset += Size; 4175 } 4176 4177 // Write new note sections. 4178 for (BinarySection &Section : BC->nonAllocatableSections()) { 4179 if (Section.getOutputFileOffset() || !Section.getAllocAddress()) 4180 continue; 4181 4182 assert(!Section.hasPendingRelocations() && "cannot have pending relocs"); 4183 4184 NextAvailableOffset = 4185 appendPadding(OS, NextAvailableOffset, Section.getAlignment()); 4186 Section.setOutputFileOffset(NextAvailableOffset); 4187 4188 LLVM_DEBUG( 4189 dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName() 4190 << " of size " << Section.getOutputSize() << " at offset 0x" 4191 << Twine::utohexstr(Section.getOutputFileOffset()) << '\n'); 4192 4193 OS.write(Section.getOutputContents().data(), Section.getOutputSize()); 4194 NextAvailableOffset += Section.getOutputSize(); 4195 } 4196 } 4197 4198 template <typename ELFT> 4199 void RewriteInstance::finalizeSectionStringTable(ELFObjectFile<ELFT> *File) { 4200 // Pre-populate section header string table. 4201 for (const BinarySection &Section : BC->sections()) 4202 if (!Section.isAnonymous()) 4203 SHStrTab.add(Section.getOutputName()); 4204 SHStrTab.finalize(); 4205 4206 const size_t SHStrTabSize = SHStrTab.getSize(); 4207 uint8_t *DataCopy = new uint8_t[SHStrTabSize]; 4208 memset(DataCopy, 0, SHStrTabSize); 4209 SHStrTab.write(DataCopy); 4210 BC->registerOrUpdateNoteSection(".shstrtab", 4211 DataCopy, 4212 SHStrTabSize, 4213 /*Alignment=*/1, 4214 /*IsReadOnly=*/true, 4215 ELF::SHT_STRTAB); 4216 } 4217 4218 void RewriteInstance::addBoltInfoSection() { 4219 std::string DescStr; 4220 raw_string_ostream DescOS(DescStr); 4221 4222 DescOS << "BOLT revision: " << BoltRevision << ", " 4223 << "command line:"; 4224 for (int I = 0; I < Argc; ++I) 4225 DescOS << " " << Argv[I]; 4226 DescOS.flush(); 4227 4228 // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n' 4229 const std::string BoltInfo = 4230 BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/); 4231 BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo), 4232 BoltInfo.size(), 4233 /*Alignment=*/1, 4234 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4235 } 4236 4237 void RewriteInstance::addBATSection() { 4238 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr, 4239 0, 4240 /*Alignment=*/1, 4241 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4242 } 4243 4244 void RewriteInstance::encodeBATSection() { 4245 std::string DescStr; 4246 raw_string_ostream DescOS(DescStr); 4247 4248 BAT->write(*BC, DescOS); 4249 DescOS.flush(); 4250 4251 const std::string BoltInfo = 4252 BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT); 4253 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, 4254 copyByteArray(BoltInfo), BoltInfo.size(), 4255 /*Alignment=*/1, 4256 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4257 BC->outs() << "BOLT-INFO: BAT section size (bytes): " << BoltInfo.size() 4258 << '\n'; 4259 } 4260 4261 template <typename ELFShdrTy> 4262 bool RewriteInstance::shouldStrip(const ELFShdrTy &Section, 4263 StringRef SectionName) { 4264 // Strip non-allocatable relocation sections. 4265 if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA) 4266 return true; 4267 4268 // Strip debug sections if not updating them. 4269 if (isDebugSection(SectionName) && !opts::UpdateDebugSections) 4270 return true; 4271 4272 // Strip symtab section if needed 4273 if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB) 4274 return true; 4275 4276 return false; 4277 } 4278 4279 template <typename ELFT> 4280 std::vector<typename object::ELFObjectFile<ELFT>::Elf_Shdr> 4281 RewriteInstance::getOutputSections(ELFObjectFile<ELFT> *File, 4282 std::vector<uint32_t> &NewSectionIndex) { 4283 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4284 const ELFFile<ELFT> &Obj = File->getELFFile(); 4285 typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); 4286 4287 // Keep track of section header entries attached to the corresponding section. 4288 std::vector<std::pair<BinarySection *, ELFShdrTy>> OutputSections; 4289 auto addSection = [&](const ELFShdrTy &Section, BinarySection &BinSec) { 4290 ELFShdrTy NewSection = Section; 4291 NewSection.sh_name = SHStrTab.getOffset(BinSec.getOutputName()); 4292 OutputSections.emplace_back(&BinSec, std::move(NewSection)); 4293 }; 4294 4295 // Copy over entries for original allocatable sections using modified name. 4296 for (const ELFShdrTy &Section : Sections) { 4297 // Always ignore this section. 4298 if (Section.sh_type == ELF::SHT_NULL) { 4299 OutputSections.emplace_back(nullptr, Section); 4300 continue; 4301 } 4302 4303 if (!(Section.sh_flags & ELF::SHF_ALLOC)) 4304 continue; 4305 4306 SectionRef SecRef = File->toSectionRef(&Section); 4307 BinarySection *BinSec = BC->getSectionForSectionRef(SecRef); 4308 assert(BinSec && "Matching BinarySection should exist."); 4309 4310 addSection(Section, *BinSec); 4311 } 4312 4313 for (BinarySection &Section : BC->allocatableSections()) { 4314 if (!Section.isFinalized()) 4315 continue; 4316 4317 if (Section.hasSectionRef() || Section.isAnonymous()) { 4318 if (opts::Verbosity) 4319 BC->outs() << "BOLT-INFO: not writing section header for section " 4320 << Section.getOutputName() << '\n'; 4321 continue; 4322 } 4323 4324 if (opts::Verbosity >= 1) 4325 BC->outs() << "BOLT-INFO: writing section header for " 4326 << Section.getOutputName() << '\n'; 4327 ELFShdrTy NewSection; 4328 NewSection.sh_type = ELF::SHT_PROGBITS; 4329 NewSection.sh_addr = Section.getOutputAddress(); 4330 NewSection.sh_offset = Section.getOutputFileOffset(); 4331 NewSection.sh_size = Section.getOutputSize(); 4332 NewSection.sh_entsize = 0; 4333 NewSection.sh_flags = Section.getELFFlags(); 4334 NewSection.sh_link = 0; 4335 NewSection.sh_info = 0; 4336 NewSection.sh_addralign = Section.getAlignment(); 4337 addSection(NewSection, Section); 4338 } 4339 4340 // Sort all allocatable sections by their offset. 4341 llvm::stable_sort(OutputSections, [](const auto &A, const auto &B) { 4342 return A.second.sh_offset < B.second.sh_offset; 4343 }); 4344 4345 // Fix section sizes to prevent overlapping. 4346 ELFShdrTy *PrevSection = nullptr; 4347 BinarySection *PrevBinSec = nullptr; 4348 for (auto &SectionKV : OutputSections) { 4349 ELFShdrTy &Section = SectionKV.second; 4350 4351 // Ignore NOBITS sections as they don't take any space in the file. 4352 if (Section.sh_type == ELF::SHT_NOBITS) 4353 continue; 4354 4355 // Note that address continuity is not guaranteed as sections could be 4356 // placed in different loadable segments. 4357 if (PrevSection && 4358 PrevSection->sh_offset + PrevSection->sh_size > Section.sh_offset) { 4359 if (opts::Verbosity > 1) 4360 BC->outs() << "BOLT-INFO: adjusting size for section " 4361 << PrevBinSec->getOutputName() << '\n'; 4362 PrevSection->sh_size = Section.sh_offset - PrevSection->sh_offset; 4363 } 4364 4365 PrevSection = &Section; 4366 PrevBinSec = SectionKV.first; 4367 } 4368 4369 uint64_t LastFileOffset = 0; 4370 4371 // Copy over entries for non-allocatable sections performing necessary 4372 // adjustments. 4373 for (const ELFShdrTy &Section : Sections) { 4374 if (Section.sh_type == ELF::SHT_NULL) 4375 continue; 4376 if (Section.sh_flags & ELF::SHF_ALLOC) 4377 continue; 4378 4379 StringRef SectionName = 4380 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4381 4382 if (shouldStrip(Section, SectionName)) 4383 continue; 4384 4385 SectionRef SecRef = File->toSectionRef(&Section); 4386 BinarySection *BinSec = BC->getSectionForSectionRef(SecRef); 4387 assert(BinSec && "Matching BinarySection should exist."); 4388 4389 ELFShdrTy NewSection = Section; 4390 NewSection.sh_offset = BinSec->getOutputFileOffset(); 4391 NewSection.sh_size = BinSec->getOutputSize(); 4392 4393 if (NewSection.sh_type == ELF::SHT_SYMTAB) 4394 NewSection.sh_info = NumLocalSymbols; 4395 4396 addSection(NewSection, *BinSec); 4397 4398 LastFileOffset = BinSec->getOutputFileOffset(); 4399 } 4400 4401 // Create entries for new non-allocatable sections. 4402 for (BinarySection &Section : BC->nonAllocatableSections()) { 4403 if (Section.getOutputFileOffset() <= LastFileOffset) 4404 continue; 4405 4406 if (opts::Verbosity >= 1) 4407 BC->outs() << "BOLT-INFO: writing section header for " 4408 << Section.getOutputName() << '\n'; 4409 4410 ELFShdrTy NewSection; 4411 NewSection.sh_type = Section.getELFType(); 4412 NewSection.sh_addr = 0; 4413 NewSection.sh_offset = Section.getOutputFileOffset(); 4414 NewSection.sh_size = Section.getOutputSize(); 4415 NewSection.sh_entsize = 0; 4416 NewSection.sh_flags = Section.getELFFlags(); 4417 NewSection.sh_link = 0; 4418 NewSection.sh_info = 0; 4419 NewSection.sh_addralign = Section.getAlignment(); 4420 4421 addSection(NewSection, Section); 4422 } 4423 4424 // Assign indices to sections. 4425 std::unordered_map<std::string, uint64_t> NameToIndex; 4426 for (uint32_t Index = 1; Index < OutputSections.size(); ++Index) 4427 OutputSections[Index].first->setIndex(Index); 4428 4429 // Update section index mapping 4430 NewSectionIndex.clear(); 4431 NewSectionIndex.resize(Sections.size(), 0); 4432 for (const ELFShdrTy &Section : Sections) { 4433 if (Section.sh_type == ELF::SHT_NULL) 4434 continue; 4435 4436 size_t OrgIndex = std::distance(Sections.begin(), &Section); 4437 4438 SectionRef SecRef = File->toSectionRef(&Section); 4439 BinarySection *BinSec = BC->getSectionForSectionRef(SecRef); 4440 assert(BinSec && "BinarySection should exist for an input section."); 4441 4442 // Some sections are stripped 4443 if (!BinSec->hasValidIndex()) 4444 continue; 4445 4446 NewSectionIndex[OrgIndex] = BinSec->getIndex(); 4447 } 4448 4449 std::vector<ELFShdrTy> SectionsOnly(OutputSections.size()); 4450 llvm::copy(llvm::make_second_range(OutputSections), SectionsOnly.begin()); 4451 4452 return SectionsOnly; 4453 } 4454 4455 // Rewrite section header table inserting new entries as needed. The sections 4456 // header table size itself may affect the offsets of other sections, 4457 // so we are placing it at the end of the binary. 4458 // 4459 // As we rewrite entries we need to track how many sections were inserted 4460 // as it changes the sh_link value. We map old indices to new ones for 4461 // existing sections. 4462 template <typename ELFT> 4463 void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile<ELFT> *File) { 4464 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4465 using ELFEhdrTy = typename ELFObjectFile<ELFT>::Elf_Ehdr; 4466 raw_fd_ostream &OS = Out->os(); 4467 const ELFFile<ELFT> &Obj = File->getELFFile(); 4468 4469 // Mapping from old section indices to new ones 4470 std::vector<uint32_t> NewSectionIndex; 4471 std::vector<ELFShdrTy> OutputSections = 4472 getOutputSections(File, NewSectionIndex); 4473 LLVM_DEBUG( 4474 dbgs() << "BOLT-DEBUG: old to new section index mapping:\n"; 4475 for (uint64_t I = 0; I < NewSectionIndex.size(); ++I) 4476 dbgs() << " " << I << " -> " << NewSectionIndex[I] << '\n'; 4477 ); 4478 4479 // Align starting address for section header table. There's no architecutal 4480 // need to align this, it is just for pleasant human readability. 4481 uint64_t SHTOffset = OS.tell(); 4482 SHTOffset = appendPadding(OS, SHTOffset, 16); 4483 4484 // Write all section header entries while patching section references. 4485 for (ELFShdrTy &Section : OutputSections) { 4486 Section.sh_link = NewSectionIndex[Section.sh_link]; 4487 if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA) 4488 Section.sh_info = NewSectionIndex[Section.sh_info]; 4489 OS.write(reinterpret_cast<const char *>(&Section), sizeof(Section)); 4490 } 4491 4492 // Fix ELF header. 4493 ELFEhdrTy NewEhdr = Obj.getHeader(); 4494 4495 if (BC->HasRelocations) { 4496 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 4497 NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress(); 4498 else 4499 NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry); 4500 assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) && 4501 "cannot find new address for entry point"); 4502 } 4503 if (PHDRTableOffset) { 4504 NewEhdr.e_phoff = PHDRTableOffset; 4505 NewEhdr.e_phnum = Phnum; 4506 } 4507 NewEhdr.e_shoff = SHTOffset; 4508 NewEhdr.e_shnum = OutputSections.size(); 4509 NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx]; 4510 OS.pwrite(reinterpret_cast<const char *>(&NewEhdr), sizeof(NewEhdr), 0); 4511 } 4512 4513 template <typename ELFT, typename WriteFuncTy, typename StrTabFuncTy> 4514 void RewriteInstance::updateELFSymbolTable( 4515 ELFObjectFile<ELFT> *File, bool IsDynSym, 4516 const typename object::ELFObjectFile<ELFT>::Elf_Shdr &SymTabSection, 4517 const std::vector<uint32_t> &NewSectionIndex, WriteFuncTy Write, 4518 StrTabFuncTy AddToStrTab) { 4519 const ELFFile<ELFT> &Obj = File->getELFFile(); 4520 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; 4521 4522 StringRef StringSection = 4523 cantFail(Obj.getStringTableForSymtab(SymTabSection)); 4524 4525 unsigned NumHotTextSymsUpdated = 0; 4526 unsigned NumHotDataSymsUpdated = 0; 4527 4528 std::map<const BinaryFunction *, uint64_t> IslandSizes; 4529 auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) { 4530 auto Itr = IslandSizes.find(&BF); 4531 if (Itr != IslandSizes.end()) 4532 return Itr->second; 4533 return IslandSizes[&BF] = BF.estimateConstantIslandSize(); 4534 }; 4535 4536 // Symbols for the new symbol table. 4537 std::vector<ELFSymTy> Symbols; 4538 4539 bool EmittedColdFileSymbol = false; 4540 4541 auto getNewSectionIndex = [&](uint32_t OldIndex) { 4542 // For dynamic symbol table, the section index could be wrong on the input, 4543 // and its value is ignored by the runtime if it's different from 4544 // SHN_UNDEF and SHN_ABS. 4545 // However, we still need to update dynamic symbol table, so return a 4546 // section index, even though the index is broken. 4547 if (IsDynSym && OldIndex >= NewSectionIndex.size()) 4548 return OldIndex; 4549 4550 assert(OldIndex < NewSectionIndex.size() && "section index out of bounds"); 4551 const uint32_t NewIndex = NewSectionIndex[OldIndex]; 4552 4553 // We may have stripped the section that dynsym was referencing due to 4554 // the linker bug. In that case return the old index avoiding marking 4555 // the symbol as undefined. 4556 if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF) 4557 return OldIndex; 4558 return NewIndex; 4559 }; 4560 4561 // Get the extra symbol name of a split fragment; used in addExtraSymbols. 4562 auto getSplitSymbolName = [&](const FunctionFragment &FF, 4563 const ELFSymTy &FunctionSymbol) { 4564 SmallString<256> SymbolName; 4565 if (BC->HasWarmSection) 4566 SymbolName = 4567 formatv("{0}.{1}", cantFail(FunctionSymbol.getName(StringSection)), 4568 FF.getFragmentNum() == FragmentNum::warm() ? "warm" : "cold"); 4569 else 4570 SymbolName = formatv("{0}.cold.{1}", 4571 cantFail(FunctionSymbol.getName(StringSection)), 4572 FF.getFragmentNum().get() - 1); 4573 return SymbolName; 4574 }; 4575 4576 // Add extra symbols for the function. 4577 // 4578 // Note that addExtraSymbols() could be called multiple times for the same 4579 // function with different FunctionSymbol matching the main function entry 4580 // point. 4581 auto addExtraSymbols = [&](const BinaryFunction &Function, 4582 const ELFSymTy &FunctionSymbol) { 4583 if (Function.isFolded()) { 4584 BinaryFunction *ICFParent = Function.getFoldedIntoFunction(); 4585 while (ICFParent->isFolded()) 4586 ICFParent = ICFParent->getFoldedIntoFunction(); 4587 ELFSymTy ICFSymbol = FunctionSymbol; 4588 SmallVector<char, 256> Buf; 4589 ICFSymbol.st_name = 4590 AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) 4591 .concat(".icf.0") 4592 .toStringRef(Buf)); 4593 ICFSymbol.st_value = ICFParent->getOutputAddress(); 4594 ICFSymbol.st_size = ICFParent->getOutputSize(); 4595 ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex(); 4596 Symbols.emplace_back(ICFSymbol); 4597 } 4598 if (Function.isSplit()) { 4599 // Prepend synthetic FILE symbol to prevent local cold fragments from 4600 // colliding with existing symbols with the same name. 4601 if (!EmittedColdFileSymbol && 4602 FunctionSymbol.getBinding() == ELF::STB_GLOBAL) { 4603 ELFSymTy FileSymbol; 4604 FileSymbol.st_shndx = ELF::SHN_ABS; 4605 FileSymbol.st_name = AddToStrTab(getBOLTFileSymbolName()); 4606 FileSymbol.st_value = 0; 4607 FileSymbol.st_size = 0; 4608 FileSymbol.st_other = 0; 4609 FileSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FILE); 4610 Symbols.emplace_back(FileSymbol); 4611 EmittedColdFileSymbol = true; 4612 } 4613 for (const FunctionFragment &FF : 4614 Function.getLayout().getSplitFragments()) { 4615 if (FF.getAddress()) { 4616 ELFSymTy NewColdSym = FunctionSymbol; 4617 const SmallString<256> SymbolName = 4618 getSplitSymbolName(FF, FunctionSymbol); 4619 NewColdSym.st_name = AddToStrTab(SymbolName); 4620 NewColdSym.st_shndx = 4621 Function.getCodeSection(FF.getFragmentNum())->getIndex(); 4622 NewColdSym.st_value = FF.getAddress(); 4623 NewColdSym.st_size = FF.getImageSize(); 4624 NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); 4625 Symbols.emplace_back(NewColdSym); 4626 } 4627 } 4628 } 4629 if (Function.hasConstantIsland()) { 4630 uint64_t DataMark = Function.getOutputDataAddress(); 4631 uint64_t CISize = getConstantIslandSize(Function); 4632 uint64_t CodeMark = DataMark + CISize; 4633 ELFSymTy DataMarkSym = FunctionSymbol; 4634 DataMarkSym.st_name = AddToStrTab("$d"); 4635 DataMarkSym.st_value = DataMark; 4636 DataMarkSym.st_size = 0; 4637 DataMarkSym.setType(ELF::STT_NOTYPE); 4638 DataMarkSym.setBinding(ELF::STB_LOCAL); 4639 ELFSymTy CodeMarkSym = DataMarkSym; 4640 CodeMarkSym.st_name = AddToStrTab("$x"); 4641 CodeMarkSym.st_value = CodeMark; 4642 Symbols.emplace_back(DataMarkSym); 4643 Symbols.emplace_back(CodeMarkSym); 4644 } 4645 if (Function.hasConstantIsland() && Function.isSplit()) { 4646 uint64_t DataMark = Function.getOutputColdDataAddress(); 4647 uint64_t CISize = getConstantIslandSize(Function); 4648 uint64_t CodeMark = DataMark + CISize; 4649 ELFSymTy DataMarkSym = FunctionSymbol; 4650 DataMarkSym.st_name = AddToStrTab("$d"); 4651 DataMarkSym.st_value = DataMark; 4652 DataMarkSym.st_size = 0; 4653 DataMarkSym.setType(ELF::STT_NOTYPE); 4654 DataMarkSym.setBinding(ELF::STB_LOCAL); 4655 ELFSymTy CodeMarkSym = DataMarkSym; 4656 CodeMarkSym.st_name = AddToStrTab("$x"); 4657 CodeMarkSym.st_value = CodeMark; 4658 Symbols.emplace_back(DataMarkSym); 4659 Symbols.emplace_back(CodeMarkSym); 4660 } 4661 }; 4662 4663 // For regular (non-dynamic) symbol table, exclude symbols referring 4664 // to non-allocatable sections. 4665 auto shouldStrip = [&](const ELFSymTy &Symbol) { 4666 if (Symbol.isAbsolute() || !Symbol.isDefined()) 4667 return false; 4668 4669 // If we cannot link the symbol to a section, leave it as is. 4670 Expected<const typename ELFT::Shdr *> Section = 4671 Obj.getSection(Symbol.st_shndx); 4672 if (!Section) 4673 return false; 4674 4675 // Remove the section symbol iif the corresponding section was stripped. 4676 if (Symbol.getType() == ELF::STT_SECTION) { 4677 if (!getNewSectionIndex(Symbol.st_shndx)) 4678 return true; 4679 return false; 4680 } 4681 4682 // Symbols in non-allocatable sections are typically remnants of relocations 4683 // emitted under "-emit-relocs" linker option. Delete those as we delete 4684 // relocations against non-allocatable sections. 4685 if (!((*Section)->sh_flags & ELF::SHF_ALLOC)) 4686 return true; 4687 4688 return false; 4689 }; 4690 4691 for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) { 4692 // For regular (non-dynamic) symbol table strip unneeded symbols. 4693 if (!IsDynSym && shouldStrip(Symbol)) 4694 continue; 4695 4696 const BinaryFunction *Function = 4697 BC->getBinaryFunctionAtAddress(Symbol.st_value); 4698 // Ignore false function references, e.g. when the section address matches 4699 // the address of the function. 4700 if (Function && Symbol.getType() == ELF::STT_SECTION) 4701 Function = nullptr; 4702 4703 // For non-dynamic symtab, make sure the symbol section matches that of 4704 // the function. It can mismatch e.g. if the symbol is a section marker 4705 // in which case we treat the symbol separately from the function. 4706 // For dynamic symbol table, the section index could be wrong on the input, 4707 // and its value is ignored by the runtime if it's different from 4708 // SHN_UNDEF and SHN_ABS. 4709 if (!IsDynSym && Function && 4710 Symbol.st_shndx != 4711 Function->getOriginSection()->getSectionRef().getIndex()) 4712 Function = nullptr; 4713 4714 // Create a new symbol based on the existing symbol. 4715 ELFSymTy NewSymbol = Symbol; 4716 4717 // Handle special symbols based on their name. 4718 Expected<StringRef> SymbolName = Symbol.getName(StringSection); 4719 assert(SymbolName && "cannot get symbol name"); 4720 4721 auto updateSymbolValue = [&](const StringRef Name, 4722 std::optional<uint64_t> Value = std::nullopt) { 4723 NewSymbol.st_value = Value ? *Value : getNewValueForSymbol(Name); 4724 NewSymbol.st_shndx = ELF::SHN_ABS; 4725 BC->outs() << "BOLT-INFO: setting " << Name << " to 0x" 4726 << Twine::utohexstr(NewSymbol.st_value) << '\n'; 4727 }; 4728 4729 if (*SymbolName == "__hot_start" || *SymbolName == "__hot_end") { 4730 if (opts::HotText) { 4731 updateSymbolValue(*SymbolName); 4732 ++NumHotTextSymsUpdated; 4733 } 4734 goto registerSymbol; 4735 } 4736 4737 if (*SymbolName == "__hot_data_start" || *SymbolName == "__hot_data_end") { 4738 if (opts::HotData) { 4739 updateSymbolValue(*SymbolName); 4740 ++NumHotDataSymsUpdated; 4741 } 4742 goto registerSymbol; 4743 } 4744 4745 if (*SymbolName == "_end") { 4746 if (NextAvailableAddress > Symbol.st_value) 4747 updateSymbolValue(*SymbolName, NextAvailableAddress); 4748 goto registerSymbol; 4749 } 4750 4751 if (Function) { 4752 // If the symbol matched a function that was not emitted, update the 4753 // corresponding section index but otherwise leave it unchanged. 4754 if (Function->isEmitted()) { 4755 NewSymbol.st_value = Function->getOutputAddress(); 4756 NewSymbol.st_size = Function->getOutputSize(); 4757 NewSymbol.st_shndx = Function->getCodeSection()->getIndex(); 4758 } else if (Symbol.st_shndx < ELF::SHN_LORESERVE) { 4759 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); 4760 } 4761 4762 // Add new symbols to the symbol table if necessary. 4763 if (!IsDynSym) 4764 addExtraSymbols(*Function, NewSymbol); 4765 } else { 4766 // Check if the function symbol matches address inside a function, i.e. 4767 // it marks a secondary entry point. 4768 Function = 4769 (Symbol.getType() == ELF::STT_FUNC) 4770 ? BC->getBinaryFunctionContainingAddress(Symbol.st_value, 4771 /*CheckPastEnd=*/false, 4772 /*UseMaxSize=*/true) 4773 : nullptr; 4774 4775 if (Function && Function->isEmitted()) { 4776 assert(Function->getLayout().isHotColdSplit() && 4777 "Adding symbols based on cold fragment when there are more than " 4778 "2 fragments"); 4779 const uint64_t OutputAddress = 4780 Function->translateInputToOutputAddress(Symbol.st_value); 4781 4782 NewSymbol.st_value = OutputAddress; 4783 // Force secondary entry points to have zero size. 4784 NewSymbol.st_size = 0; 4785 4786 // Find fragment containing entrypoint 4787 FunctionLayout::fragment_const_iterator FF = llvm::find_if( 4788 Function->getLayout().fragments(), [&](const FunctionFragment &FF) { 4789 uint64_t Lo = FF.getAddress(); 4790 uint64_t Hi = Lo + FF.getImageSize(); 4791 return Lo <= OutputAddress && OutputAddress < Hi; 4792 }); 4793 4794 if (FF == Function->getLayout().fragment_end()) { 4795 assert( 4796 OutputAddress >= Function->getCodeSection()->getOutputAddress() && 4797 OutputAddress < (Function->getCodeSection()->getOutputAddress() + 4798 Function->getCodeSection()->getOutputSize()) && 4799 "Cannot locate fragment containing secondary entrypoint"); 4800 FF = Function->getLayout().fragment_begin(); 4801 } 4802 4803 NewSymbol.st_shndx = 4804 Function->getCodeSection(FF->getFragmentNum())->getIndex(); 4805 } else { 4806 // Check if the symbol belongs to moved data object and update it. 4807 BinaryData *BD = opts::ReorderData.empty() 4808 ? nullptr 4809 : BC->getBinaryDataAtAddress(Symbol.st_value); 4810 if (BD && BD->isMoved() && !BD->isJumpTable()) { 4811 assert((!BD->getSize() || !Symbol.st_size || 4812 Symbol.st_size == BD->getSize()) && 4813 "sizes must match"); 4814 4815 BinarySection &OutputSection = BD->getOutputSection(); 4816 assert(OutputSection.getIndex()); 4817 LLVM_DEBUG(dbgs() 4818 << "BOLT-DEBUG: moving " << BD->getName() << " from " 4819 << *BC->getSectionNameForAddress(Symbol.st_value) << " (" 4820 << Symbol.st_shndx << ") to " << OutputSection.getName() 4821 << " (" << OutputSection.getIndex() << ")\n"); 4822 NewSymbol.st_shndx = OutputSection.getIndex(); 4823 NewSymbol.st_value = BD->getOutputAddress(); 4824 } else { 4825 // Otherwise just update the section for the symbol. 4826 if (Symbol.st_shndx < ELF::SHN_LORESERVE) 4827 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); 4828 } 4829 4830 // Detect local syms in the text section that we didn't update 4831 // and that were preserved by the linker to support relocations against 4832 // .text. Remove them from the symtab. 4833 if (Symbol.getType() == ELF::STT_NOTYPE && 4834 Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) { 4835 if (BC->getBinaryFunctionContainingAddress(Symbol.st_value, 4836 /*CheckPastEnd=*/false, 4837 /*UseMaxSize=*/true)) { 4838 // Can only delete the symbol if not patching. Such symbols should 4839 // not exist in the dynamic symbol table. 4840 assert(!IsDynSym && "cannot delete symbol"); 4841 continue; 4842 } 4843 } 4844 } 4845 } 4846 4847 registerSymbol: 4848 if (IsDynSym) 4849 Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) * 4850 sizeof(ELFSymTy), 4851 NewSymbol); 4852 else 4853 Symbols.emplace_back(NewSymbol); 4854 } 4855 4856 if (IsDynSym) { 4857 assert(Symbols.empty()); 4858 return; 4859 } 4860 4861 // Add symbols of injected functions 4862 for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) { 4863 ELFSymTy NewSymbol; 4864 BinarySection *OriginSection = Function->getOriginSection(); 4865 NewSymbol.st_shndx = 4866 OriginSection 4867 ? getNewSectionIndex(OriginSection->getSectionRef().getIndex()) 4868 : Function->getCodeSection()->getIndex(); 4869 NewSymbol.st_value = Function->getOutputAddress(); 4870 NewSymbol.st_name = AddToStrTab(Function->getOneName()); 4871 NewSymbol.st_size = Function->getOutputSize(); 4872 NewSymbol.st_other = 0; 4873 NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); 4874 Symbols.emplace_back(NewSymbol); 4875 4876 if (Function->isSplit()) { 4877 assert(Function->getLayout().isHotColdSplit() && 4878 "Adding symbols based on cold fragment when there are more than " 4879 "2 fragments"); 4880 ELFSymTy NewColdSym = NewSymbol; 4881 NewColdSym.setType(ELF::STT_NOTYPE); 4882 SmallVector<char, 256> Buf; 4883 NewColdSym.st_name = AddToStrTab( 4884 Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf)); 4885 const FunctionFragment &ColdFF = 4886 Function->getLayout().getFragment(FragmentNum::cold()); 4887 NewColdSym.st_value = ColdFF.getAddress(); 4888 NewColdSym.st_size = ColdFF.getImageSize(); 4889 Symbols.emplace_back(NewColdSym); 4890 } 4891 } 4892 4893 auto AddSymbol = [&](const StringRef &Name, uint64_t Address) { 4894 if (!Address) 4895 return; 4896 4897 ELFSymTy Symbol; 4898 Symbol.st_value = Address; 4899 Symbol.st_shndx = ELF::SHN_ABS; 4900 Symbol.st_name = AddToStrTab(Name); 4901 Symbol.st_size = 0; 4902 Symbol.st_other = 0; 4903 Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE); 4904 4905 BC->outs() << "BOLT-INFO: setting " << Name << " to 0x" 4906 << Twine::utohexstr(Symbol.st_value) << '\n'; 4907 4908 Symbols.emplace_back(Symbol); 4909 }; 4910 4911 // Add runtime library start and fini address symbols 4912 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) { 4913 AddSymbol("__bolt_runtime_start", RtLibrary->getRuntimeStartAddress()); 4914 AddSymbol("__bolt_runtime_fini", RtLibrary->getRuntimeFiniAddress()); 4915 } 4916 4917 assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) && 4918 "either none or both __hot_start/__hot_end symbols were expected"); 4919 assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) && 4920 "either none or both __hot_data_start/__hot_data_end symbols were " 4921 "expected"); 4922 4923 auto AddEmittedSymbol = [&](const StringRef &Name) { 4924 AddSymbol(Name, getNewValueForSymbol(Name)); 4925 }; 4926 4927 if (opts::HotText && !NumHotTextSymsUpdated) { 4928 AddEmittedSymbol("__hot_start"); 4929 AddEmittedSymbol("__hot_end"); 4930 } 4931 4932 if (opts::HotData && !NumHotDataSymsUpdated) { 4933 AddEmittedSymbol("__hot_data_start"); 4934 AddEmittedSymbol("__hot_data_end"); 4935 } 4936 4937 // Put local symbols at the beginning. 4938 llvm::stable_sort(Symbols, [](const ELFSymTy &A, const ELFSymTy &B) { 4939 if (A.getBinding() == ELF::STB_LOCAL && B.getBinding() != ELF::STB_LOCAL) 4940 return true; 4941 return false; 4942 }); 4943 4944 for (const ELFSymTy &Symbol : Symbols) 4945 Write(0, Symbol); 4946 } 4947 4948 template <typename ELFT> 4949 void RewriteInstance::patchELFSymTabs(ELFObjectFile<ELFT> *File) { 4950 const ELFFile<ELFT> &Obj = File->getELFFile(); 4951 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4952 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; 4953 4954 // Compute a preview of how section indices will change after rewriting, so 4955 // we can properly update the symbol table based on new section indices. 4956 std::vector<uint32_t> NewSectionIndex; 4957 getOutputSections(File, NewSectionIndex); 4958 4959 // Update dynamic symbol table. 4960 const ELFShdrTy *DynSymSection = nullptr; 4961 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4962 if (Section.sh_type == ELF::SHT_DYNSYM) { 4963 DynSymSection = &Section; 4964 break; 4965 } 4966 } 4967 assert((DynSymSection || BC->IsStaticExecutable) && 4968 "dynamic symbol table expected"); 4969 if (DynSymSection) { 4970 updateELFSymbolTable( 4971 File, 4972 /*IsDynSym=*/true, 4973 *DynSymSection, 4974 NewSectionIndex, 4975 [&](size_t Offset, const ELFSymTy &Sym) { 4976 Out->os().pwrite(reinterpret_cast<const char *>(&Sym), 4977 sizeof(ELFSymTy), 4978 DynSymSection->sh_offset + Offset); 4979 }, 4980 [](StringRef) -> size_t { return 0; }); 4981 } 4982 4983 if (opts::RemoveSymtab) 4984 return; 4985 4986 // (re)create regular symbol table. 4987 const ELFShdrTy *SymTabSection = nullptr; 4988 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4989 if (Section.sh_type == ELF::SHT_SYMTAB) { 4990 SymTabSection = &Section; 4991 break; 4992 } 4993 } 4994 if (!SymTabSection) { 4995 BC->errs() << "BOLT-WARNING: no symbol table found\n"; 4996 return; 4997 } 4998 4999 const ELFShdrTy *StrTabSection = 5000 cantFail(Obj.getSection(SymTabSection->sh_link)); 5001 std::string NewContents; 5002 std::string NewStrTab = std::string( 5003 File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size)); 5004 StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection)); 5005 StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection)); 5006 5007 NumLocalSymbols = 0; 5008 updateELFSymbolTable( 5009 File, 5010 /*IsDynSym=*/false, 5011 *SymTabSection, 5012 NewSectionIndex, 5013 [&](size_t Offset, const ELFSymTy &Sym) { 5014 if (Sym.getBinding() == ELF::STB_LOCAL) 5015 ++NumLocalSymbols; 5016 NewContents.append(reinterpret_cast<const char *>(&Sym), 5017 sizeof(ELFSymTy)); 5018 }, 5019 [&](StringRef Str) { 5020 size_t Idx = NewStrTab.size(); 5021 NewStrTab.append(NameResolver::restore(Str).str()); 5022 NewStrTab.append(1, '\0'); 5023 return Idx; 5024 }); 5025 5026 BC->registerOrUpdateNoteSection(SecName, 5027 copyByteArray(NewContents), 5028 NewContents.size(), 5029 /*Alignment=*/1, 5030 /*IsReadOnly=*/true, 5031 ELF::SHT_SYMTAB); 5032 5033 BC->registerOrUpdateNoteSection(StrSecName, 5034 copyByteArray(NewStrTab), 5035 NewStrTab.size(), 5036 /*Alignment=*/1, 5037 /*IsReadOnly=*/true, 5038 ELF::SHT_STRTAB); 5039 } 5040 5041 template <typename ELFT> 5042 void RewriteInstance::patchELFAllocatableRelrSection( 5043 ELFObjectFile<ELFT> *File) { 5044 if (!DynamicRelrAddress) 5045 return; 5046 5047 raw_fd_ostream &OS = Out->os(); 5048 const uint8_t PSize = BC->AsmInfo->getCodePointerSize(); 5049 const uint64_t MaxDelta = ((CHAR_BIT * DynamicRelrEntrySize) - 1) * PSize; 5050 5051 auto FixAddend = [&](const BinarySection &Section, const Relocation &Rel, 5052 uint64_t FileOffset) { 5053 // Fix relocation symbol value in place if no static relocation found 5054 // on the same address. We won't check the BF relocations here since it 5055 // is rare case and no optimization is required. 5056 if (Section.getRelocationAt(Rel.Offset)) 5057 return; 5058 5059 // No fixup needed if symbol address was not changed 5060 const uint64_t Addend = getNewFunctionOrDataAddress(Rel.Addend); 5061 if (!Addend) 5062 return; 5063 5064 OS.pwrite(reinterpret_cast<const char *>(&Addend), PSize, FileOffset); 5065 }; 5066 5067 // Fill new relative relocation offsets set 5068 std::set<uint64_t> RelOffsets; 5069 for (const BinarySection &Section : BC->allocatableSections()) { 5070 const uint64_t SectionInputAddress = Section.getAddress(); 5071 uint64_t SectionAddress = Section.getOutputAddress(); 5072 if (!SectionAddress) 5073 SectionAddress = SectionInputAddress; 5074 5075 for (const Relocation &Rel : Section.dynamicRelocations()) { 5076 if (!Rel.isRelative()) 5077 continue; 5078 5079 uint64_t RelOffset = 5080 getNewFunctionOrDataAddress(SectionInputAddress + Rel.Offset); 5081 5082 RelOffset = RelOffset == 0 ? SectionAddress + Rel.Offset : RelOffset; 5083 assert((RelOffset & 1) == 0 && "Wrong relocation offset"); 5084 RelOffsets.emplace(RelOffset); 5085 FixAddend(Section, Rel, RelOffset); 5086 } 5087 } 5088 5089 ErrorOr<BinarySection &> Section = 5090 BC->getSectionForAddress(*DynamicRelrAddress); 5091 assert(Section && "cannot get .relr.dyn section"); 5092 assert(Section->isRelr() && "Expected section to be SHT_RELR type"); 5093 uint64_t RelrDynOffset = Section->getInputFileOffset(); 5094 const uint64_t RelrDynEndOffset = RelrDynOffset + Section->getSize(); 5095 5096 auto WriteRelr = [&](uint64_t Value) { 5097 if (RelrDynOffset + DynamicRelrEntrySize > RelrDynEndOffset) { 5098 BC->errs() << "BOLT-ERROR: Offset overflow for relr.dyn section\n"; 5099 exit(1); 5100 } 5101 5102 OS.pwrite(reinterpret_cast<const char *>(&Value), DynamicRelrEntrySize, 5103 RelrDynOffset); 5104 RelrDynOffset += DynamicRelrEntrySize; 5105 }; 5106 5107 for (auto RelIt = RelOffsets.begin(); RelIt != RelOffsets.end();) { 5108 WriteRelr(*RelIt); 5109 uint64_t Base = *RelIt++ + PSize; 5110 while (1) { 5111 uint64_t Bitmap = 0; 5112 for (; RelIt != RelOffsets.end(); ++RelIt) { 5113 const uint64_t Delta = *RelIt - Base; 5114 if (Delta >= MaxDelta || Delta % PSize) 5115 break; 5116 5117 Bitmap |= (1ULL << (Delta / PSize)); 5118 } 5119 5120 if (!Bitmap) 5121 break; 5122 5123 WriteRelr((Bitmap << 1) | 1); 5124 Base += MaxDelta; 5125 } 5126 } 5127 5128 // Fill the rest of the section with empty bitmap value 5129 while (RelrDynOffset != RelrDynEndOffset) 5130 WriteRelr(1); 5131 } 5132 5133 template <typename ELFT> 5134 void 5135 RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile<ELFT> *File) { 5136 using Elf_Rela = typename ELFT::Rela; 5137 raw_fd_ostream &OS = Out->os(); 5138 const ELFFile<ELFT> &EF = File->getELFFile(); 5139 5140 uint64_t RelDynOffset = 0, RelDynEndOffset = 0; 5141 uint64_t RelPltOffset = 0, RelPltEndOffset = 0; 5142 5143 auto setSectionFileOffsets = [&](uint64_t Address, uint64_t &Start, 5144 uint64_t &End) { 5145 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 5146 assert(Section && "cannot get relocation section"); 5147 Start = Section->getInputFileOffset(); 5148 End = Start + Section->getSize(); 5149 }; 5150 5151 if (!DynamicRelocationsAddress && !PLTRelocationsAddress) 5152 return; 5153 5154 if (DynamicRelocationsAddress) 5155 setSectionFileOffsets(*DynamicRelocationsAddress, RelDynOffset, 5156 RelDynEndOffset); 5157 5158 if (PLTRelocationsAddress) 5159 setSectionFileOffsets(*PLTRelocationsAddress, RelPltOffset, 5160 RelPltEndOffset); 5161 5162 DynamicRelativeRelocationsCount = 0; 5163 5164 auto writeRela = [&OS](const Elf_Rela *RelA, uint64_t &Offset) { 5165 OS.pwrite(reinterpret_cast<const char *>(RelA), sizeof(*RelA), Offset); 5166 Offset += sizeof(*RelA); 5167 }; 5168 5169 auto writeRelocations = [&](bool PatchRelative) { 5170 for (BinarySection &Section : BC->allocatableSections()) { 5171 const uint64_t SectionInputAddress = Section.getAddress(); 5172 uint64_t SectionAddress = Section.getOutputAddress(); 5173 if (!SectionAddress) 5174 SectionAddress = SectionInputAddress; 5175 5176 for (const Relocation &Rel : Section.dynamicRelocations()) { 5177 const bool IsRelative = Rel.isRelative(); 5178 if (PatchRelative != IsRelative) 5179 continue; 5180 5181 if (IsRelative) 5182 ++DynamicRelativeRelocationsCount; 5183 5184 Elf_Rela NewRelA; 5185 MCSymbol *Symbol = Rel.Symbol; 5186 uint32_t SymbolIdx = 0; 5187 uint64_t Addend = Rel.Addend; 5188 uint64_t RelOffset = 5189 getNewFunctionOrDataAddress(SectionInputAddress + Rel.Offset); 5190 5191 RelOffset = RelOffset == 0 ? SectionAddress + Rel.Offset : RelOffset; 5192 if (Rel.Symbol) { 5193 SymbolIdx = getOutputDynamicSymbolIndex(Symbol); 5194 } else { 5195 // Usually this case is used for R_*_(I)RELATIVE relocations 5196 const uint64_t Address = getNewFunctionOrDataAddress(Addend); 5197 if (Address) 5198 Addend = Address; 5199 } 5200 5201 NewRelA.setSymbolAndType(SymbolIdx, Rel.Type, EF.isMips64EL()); 5202 NewRelA.r_offset = RelOffset; 5203 NewRelA.r_addend = Addend; 5204 5205 const bool IsJmpRel = IsJmpRelocation.contains(Rel.Type); 5206 uint64_t &Offset = IsJmpRel ? RelPltOffset : RelDynOffset; 5207 const uint64_t &EndOffset = 5208 IsJmpRel ? RelPltEndOffset : RelDynEndOffset; 5209 if (!Offset || !EndOffset) { 5210 BC->errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n"; 5211 exit(1); 5212 } 5213 5214 if (Offset + sizeof(NewRelA) > EndOffset) { 5215 BC->errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n"; 5216 exit(1); 5217 } 5218 5219 writeRela(&NewRelA, Offset); 5220 } 5221 } 5222 }; 5223 5224 // Place R_*_RELATIVE relocations in RELA section if RELR is not presented. 5225 // The dynamic linker expects all R_*_RELATIVE relocations in RELA 5226 // to be emitted first. 5227 if (!DynamicRelrAddress) 5228 writeRelocations(/* PatchRelative */ true); 5229 writeRelocations(/* PatchRelative */ false); 5230 5231 auto fillNone = [&](uint64_t &Offset, uint64_t EndOffset) { 5232 if (!Offset) 5233 return; 5234 5235 typename ELFObjectFile<ELFT>::Elf_Rela RelA; 5236 RelA.setSymbolAndType(0, Relocation::getNone(), EF.isMips64EL()); 5237 RelA.r_offset = 0; 5238 RelA.r_addend = 0; 5239 while (Offset < EndOffset) 5240 writeRela(&RelA, Offset); 5241 5242 assert(Offset == EndOffset && "Unexpected section overflow"); 5243 }; 5244 5245 // Fill the rest of the sections with R_*_NONE relocations 5246 fillNone(RelDynOffset, RelDynEndOffset); 5247 fillNone(RelPltOffset, RelPltEndOffset); 5248 } 5249 5250 template <typename ELFT> 5251 void RewriteInstance::patchELFGOT(ELFObjectFile<ELFT> *File) { 5252 raw_fd_ostream &OS = Out->os(); 5253 5254 SectionRef GOTSection; 5255 for (const SectionRef &Section : File->sections()) { 5256 StringRef SectionName = cantFail(Section.getName()); 5257 if (SectionName == ".got") { 5258 GOTSection = Section; 5259 break; 5260 } 5261 } 5262 if (!GOTSection.getObject()) { 5263 if (!BC->IsStaticExecutable) 5264 BC->errs() << "BOLT-INFO: no .got section found\n"; 5265 return; 5266 } 5267 5268 StringRef GOTContents = cantFail(GOTSection.getContents()); 5269 for (const uint64_t *GOTEntry = 5270 reinterpret_cast<const uint64_t *>(GOTContents.data()); 5271 GOTEntry < reinterpret_cast<const uint64_t *>(GOTContents.data() + 5272 GOTContents.size()); 5273 ++GOTEntry) { 5274 if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) { 5275 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x" 5276 << Twine::utohexstr(*GOTEntry) << " with 0x" 5277 << Twine::utohexstr(NewAddress) << '\n'); 5278 OS.pwrite(reinterpret_cast<const char *>(&NewAddress), sizeof(NewAddress), 5279 reinterpret_cast<const char *>(GOTEntry) - 5280 File->getData().data()); 5281 } 5282 } 5283 } 5284 5285 template <typename ELFT> 5286 void RewriteInstance::patchELFDynamic(ELFObjectFile<ELFT> *File) { 5287 if (BC->IsStaticExecutable) 5288 return; 5289 5290 const ELFFile<ELFT> &Obj = File->getELFFile(); 5291 raw_fd_ostream &OS = Out->os(); 5292 5293 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; 5294 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; 5295 5296 // Locate DYNAMIC by looking through program headers. 5297 uint64_t DynamicOffset = 0; 5298 const Elf_Phdr *DynamicPhdr = nullptr; 5299 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { 5300 if (Phdr.p_type == ELF::PT_DYNAMIC) { 5301 DynamicOffset = Phdr.p_offset; 5302 DynamicPhdr = &Phdr; 5303 assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match"); 5304 break; 5305 } 5306 } 5307 assert(DynamicPhdr && "missing dynamic in ELF binary"); 5308 5309 bool ZNowSet = false; 5310 5311 // Go through all dynamic entries and patch functions addresses with 5312 // new ones. 5313 typename ELFT::DynRange DynamicEntries = 5314 cantFail(Obj.dynamicEntries(), "error accessing dynamic table"); 5315 auto DTB = DynamicEntries.begin(); 5316 for (const Elf_Dyn &Dyn : DynamicEntries) { 5317 Elf_Dyn NewDE = Dyn; 5318 bool ShouldPatch = true; 5319 switch (Dyn.d_tag) { 5320 default: 5321 ShouldPatch = false; 5322 break; 5323 case ELF::DT_RELACOUNT: 5324 NewDE.d_un.d_val = DynamicRelativeRelocationsCount; 5325 break; 5326 case ELF::DT_INIT: 5327 case ELF::DT_FINI: { 5328 if (BC->HasRelocations) { 5329 if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) { 5330 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type " 5331 << Dyn.getTag() << '\n'); 5332 NewDE.d_un.d_ptr = NewAddress; 5333 } 5334 } 5335 RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary(); 5336 if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) { 5337 if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress()) 5338 NewDE.d_un.d_ptr = Addr; 5339 } 5340 if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) { 5341 if (auto Addr = RtLibrary->getRuntimeStartAddress()) { 5342 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x" 5343 << Twine::utohexstr(Addr) << '\n'); 5344 NewDE.d_un.d_ptr = Addr; 5345 } 5346 } 5347 break; 5348 } 5349 case ELF::DT_FLAGS: 5350 if (BC->RequiresZNow) { 5351 NewDE.d_un.d_val |= ELF::DF_BIND_NOW; 5352 ZNowSet = true; 5353 } 5354 break; 5355 case ELF::DT_FLAGS_1: 5356 if (BC->RequiresZNow) { 5357 NewDE.d_un.d_val |= ELF::DF_1_NOW; 5358 ZNowSet = true; 5359 } 5360 break; 5361 } 5362 if (ShouldPatch) 5363 OS.pwrite(reinterpret_cast<const char *>(&NewDE), sizeof(NewDE), 5364 DynamicOffset + (&Dyn - DTB) * sizeof(Dyn)); 5365 } 5366 5367 if (BC->RequiresZNow && !ZNowSet) { 5368 BC->errs() 5369 << "BOLT-ERROR: output binary requires immediate relocation " 5370 "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in " 5371 ".dynamic. Please re-link the binary with -znow.\n"; 5372 exit(1); 5373 } 5374 } 5375 5376 template <typename ELFT> 5377 Error RewriteInstance::readELFDynamic(ELFObjectFile<ELFT> *File) { 5378 const ELFFile<ELFT> &Obj = File->getELFFile(); 5379 5380 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; 5381 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; 5382 5383 // Locate DYNAMIC by looking through program headers. 5384 const Elf_Phdr *DynamicPhdr = nullptr; 5385 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { 5386 if (Phdr.p_type == ELF::PT_DYNAMIC) { 5387 DynamicPhdr = &Phdr; 5388 break; 5389 } 5390 } 5391 5392 if (!DynamicPhdr) { 5393 BC->outs() << "BOLT-INFO: static input executable detected\n"; 5394 // TODO: static PIE executable might have dynamic header 5395 BC->IsStaticExecutable = true; 5396 return Error::success(); 5397 } 5398 5399 if (DynamicPhdr->p_memsz != DynamicPhdr->p_filesz) 5400 return createStringError(errc::executable_format_error, 5401 "dynamic section sizes should match"); 5402 5403 // Go through all dynamic entries to locate entries of interest. 5404 auto DynamicEntriesOrErr = Obj.dynamicEntries(); 5405 if (!DynamicEntriesOrErr) 5406 return DynamicEntriesOrErr.takeError(); 5407 typename ELFT::DynRange DynamicEntries = DynamicEntriesOrErr.get(); 5408 5409 for (const Elf_Dyn &Dyn : DynamicEntries) { 5410 switch (Dyn.d_tag) { 5411 case ELF::DT_INIT: 5412 if (!BC->HasInterpHeader) { 5413 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n"); 5414 BC->StartFunctionAddress = Dyn.getPtr(); 5415 } 5416 break; 5417 case ELF::DT_FINI: 5418 BC->FiniAddress = Dyn.getPtr(); 5419 break; 5420 case ELF::DT_FINI_ARRAY: 5421 BC->FiniArrayAddress = Dyn.getPtr(); 5422 break; 5423 case ELF::DT_FINI_ARRAYSZ: 5424 BC->FiniArraySize = Dyn.getPtr(); 5425 break; 5426 case ELF::DT_RELA: 5427 DynamicRelocationsAddress = Dyn.getPtr(); 5428 break; 5429 case ELF::DT_RELASZ: 5430 DynamicRelocationsSize = Dyn.getVal(); 5431 break; 5432 case ELF::DT_JMPREL: 5433 PLTRelocationsAddress = Dyn.getPtr(); 5434 break; 5435 case ELF::DT_PLTRELSZ: 5436 PLTRelocationsSize = Dyn.getVal(); 5437 break; 5438 case ELF::DT_RELACOUNT: 5439 DynamicRelativeRelocationsCount = Dyn.getVal(); 5440 break; 5441 case ELF::DT_RELR: 5442 DynamicRelrAddress = Dyn.getPtr(); 5443 break; 5444 case ELF::DT_RELRSZ: 5445 DynamicRelrSize = Dyn.getVal(); 5446 break; 5447 case ELF::DT_RELRENT: 5448 DynamicRelrEntrySize = Dyn.getVal(); 5449 break; 5450 } 5451 } 5452 5453 if (!DynamicRelocationsAddress || !DynamicRelocationsSize) { 5454 DynamicRelocationsAddress.reset(); 5455 DynamicRelocationsSize = 0; 5456 } 5457 5458 if (!PLTRelocationsAddress || !PLTRelocationsSize) { 5459 PLTRelocationsAddress.reset(); 5460 PLTRelocationsSize = 0; 5461 } 5462 5463 if (!DynamicRelrAddress || !DynamicRelrSize) { 5464 DynamicRelrAddress.reset(); 5465 DynamicRelrSize = 0; 5466 } else if (!DynamicRelrEntrySize) { 5467 BC->errs() << "BOLT-ERROR: expected DT_RELRENT to be presented " 5468 << "in DYNAMIC section\n"; 5469 exit(1); 5470 } else if (DynamicRelrSize % DynamicRelrEntrySize) { 5471 BC->errs() << "BOLT-ERROR: expected RELR table size to be divisible " 5472 << "by RELR entry size\n"; 5473 exit(1); 5474 } 5475 5476 return Error::success(); 5477 } 5478 5479 uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) { 5480 const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress); 5481 if (!Function) 5482 return 0; 5483 5484 return Function->getOutputAddress(); 5485 } 5486 5487 uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress) { 5488 if (uint64_t Function = getNewFunctionAddress(OldAddress)) 5489 return Function; 5490 5491 const BinaryData *BD = BC->getBinaryDataAtAddress(OldAddress); 5492 if (BD && BD->isMoved()) 5493 return BD->getOutputAddress(); 5494 5495 if (const BinaryFunction *BF = 5496 BC->getBinaryFunctionContainingAddress(OldAddress)) { 5497 if (BF->isEmitted()) { 5498 BC->errs() << "BOLT-ERROR: unable to get new address corresponding to " 5499 "input address 0x" 5500 << Twine::utohexstr(OldAddress) << " in function " << *BF 5501 << ". Consider adding this function to --skip-funcs=...\n"; 5502 exit(1); 5503 } 5504 } 5505 5506 return 0; 5507 } 5508 5509 void RewriteInstance::rewriteFile() { 5510 std::error_code EC; 5511 Out = std::make_unique<ToolOutputFile>(opts::OutputFilename, EC, 5512 sys::fs::OF_None); 5513 check_error(EC, "cannot create output executable file"); 5514 5515 raw_fd_ostream &OS = Out->os(); 5516 5517 // Copy allocatable part of the input. 5518 OS << InputFile->getData().substr(0, FirstNonAllocatableOffset); 5519 5520 auto Streamer = BC->createStreamer(OS); 5521 // Make sure output stream has enough reserved space, otherwise 5522 // pwrite() will fail. 5523 uint64_t Offset = std::max(getFileOffsetForAddress(NextAvailableAddress), 5524 FirstNonAllocatableOffset); 5525 Offset = OS.seek(Offset); 5526 assert((Offset != (uint64_t)-1) && "Error resizing output file"); 5527 5528 // Overwrite functions with fixed output address. This is mostly used by 5529 // non-relocation mode, with one exception: injected functions are covered 5530 // here in both modes. 5531 uint64_t CountOverwrittenFunctions = 0; 5532 uint64_t OverwrittenScore = 0; 5533 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { 5534 if (Function->getImageAddress() == 0 || Function->getImageSize() == 0) 5535 continue; 5536 5537 if (Function->getImageSize() > Function->getMaxSize()) { 5538 assert(!BC->isX86() && "Unexpected large function."); 5539 if (opts::Verbosity >= 1) 5540 BC->errs() << "BOLT-WARNING: new function size (0x" 5541 << Twine::utohexstr(Function->getImageSize()) 5542 << ") is larger than maximum allowed size (0x" 5543 << Twine::utohexstr(Function->getMaxSize()) 5544 << ") for function " << *Function << '\n'; 5545 5546 // Remove jump table sections that this function owns in non-reloc mode 5547 // because we don't want to write them anymore. 5548 if (!BC->HasRelocations && opts::JumpTables == JTS_BASIC) { 5549 for (auto &JTI : Function->JumpTables) { 5550 JumpTable *JT = JTI.second; 5551 BinarySection &Section = JT->getOutputSection(); 5552 BC->deregisterSection(Section); 5553 } 5554 } 5555 continue; 5556 } 5557 5558 const auto HasAddress = [](const FunctionFragment &FF) { 5559 return FF.empty() || 5560 (FF.getImageAddress() != 0 && FF.getImageSize() != 0); 5561 }; 5562 const bool SplitFragmentsHaveAddress = 5563 llvm::all_of(Function->getLayout().getSplitFragments(), HasAddress); 5564 if (Function->isSplit() && !SplitFragmentsHaveAddress) { 5565 const auto HasNoAddress = [](const FunctionFragment &FF) { 5566 return FF.getImageAddress() == 0 && FF.getImageSize() == 0; 5567 }; 5568 assert(llvm::all_of(Function->getLayout().getSplitFragments(), 5569 HasNoAddress) && 5570 "Some split fragments have an address while others do not"); 5571 (void)HasNoAddress; 5572 continue; 5573 } 5574 5575 OverwrittenScore += Function->getFunctionScore(); 5576 ++CountOverwrittenFunctions; 5577 5578 // Overwrite function in the output file. 5579 if (opts::Verbosity >= 2) 5580 BC->outs() << "BOLT: rewriting function \"" << *Function << "\"\n"; 5581 5582 OS.pwrite(reinterpret_cast<char *>(Function->getImageAddress()), 5583 Function->getImageSize(), Function->getFileOffset()); 5584 5585 // Write nops at the end of the function. 5586 if (Function->getMaxSize() != std::numeric_limits<uint64_t>::max()) { 5587 uint64_t Pos = OS.tell(); 5588 OS.seek(Function->getFileOffset() + Function->getImageSize()); 5589 BC->MAB->writeNopData( 5590 OS, Function->getMaxSize() - Function->getImageSize(), &*BC->STI); 5591 5592 OS.seek(Pos); 5593 } 5594 5595 if (!Function->isSplit()) 5596 continue; 5597 5598 // Write cold part 5599 if (opts::Verbosity >= 2) { 5600 BC->outs() << formatv("BOLT: rewriting function \"{0}\" (split parts)\n", 5601 *Function); 5602 } 5603 5604 for (const FunctionFragment &FF : 5605 Function->getLayout().getSplitFragments()) { 5606 OS.pwrite(reinterpret_cast<char *>(FF.getImageAddress()), 5607 FF.getImageSize(), FF.getFileOffset()); 5608 } 5609 } 5610 5611 // Print function statistics for non-relocation mode. 5612 if (!BC->HasRelocations) { 5613 BC->outs() << "BOLT: " << CountOverwrittenFunctions << " out of " 5614 << BC->getBinaryFunctions().size() 5615 << " functions were overwritten.\n"; 5616 if (BC->TotalScore != 0) { 5617 double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0; 5618 BC->outs() << format("BOLT-INFO: rewritten functions cover %.2lf", 5619 Coverage) 5620 << "% of the execution count of simple functions of " 5621 "this binary\n"; 5622 } 5623 } 5624 5625 if (BC->HasRelocations && opts::TrapOldCode) { 5626 uint64_t SavedPos = OS.tell(); 5627 // Overwrite function body to make sure we never execute these instructions. 5628 for (auto &BFI : BC->getBinaryFunctions()) { 5629 BinaryFunction &BF = BFI.second; 5630 if (!BF.getFileOffset() || !BF.isEmitted()) 5631 continue; 5632 OS.seek(BF.getFileOffset()); 5633 StringRef TrapInstr = BC->MIB->getTrapFillValue(); 5634 unsigned NInstr = BF.getMaxSize() / TrapInstr.size(); 5635 for (unsigned I = 0; I < NInstr; ++I) 5636 OS.write(TrapInstr.data(), TrapInstr.size()); 5637 } 5638 OS.seek(SavedPos); 5639 } 5640 5641 // Write all allocatable sections - reloc-mode text is written here as well 5642 for (BinarySection &Section : BC->allocatableSections()) { 5643 if (!Section.isFinalized() || !Section.getOutputData()) 5644 continue; 5645 if (Section.isLinkOnly()) 5646 continue; 5647 5648 if (opts::Verbosity >= 1) 5649 BC->outs() << "BOLT: writing new section " << Section.getName() 5650 << "\n data at 0x" 5651 << Twine::utohexstr(Section.getAllocAddress()) << "\n of size " 5652 << Section.getOutputSize() << "\n at offset " 5653 << Section.getOutputFileOffset() << '\n'; 5654 OS.pwrite(reinterpret_cast<const char *>(Section.getOutputData()), 5655 Section.getOutputSize(), Section.getOutputFileOffset()); 5656 } 5657 5658 for (BinarySection &Section : BC->allocatableSections()) 5659 Section.flushPendingRelocations(OS, [this](const MCSymbol *S) { 5660 return getNewValueForSymbol(S->getName()); 5661 }); 5662 5663 // If .eh_frame is present create .eh_frame_hdr. 5664 if (EHFrameSection) 5665 writeEHFrameHeader(); 5666 5667 // Add BOLT Addresses Translation maps to allow profile collection to 5668 // happen in the output binary 5669 if (opts::EnableBAT) 5670 addBATSection(); 5671 5672 // Patch program header table. 5673 if (!BC->IsLinuxKernel) 5674 patchELFPHDRTable(); 5675 5676 // Finalize memory image of section string table. 5677 finalizeSectionStringTable(); 5678 5679 // Update symbol tables. 5680 patchELFSymTabs(); 5681 5682 if (opts::EnableBAT) 5683 encodeBATSection(); 5684 5685 // Copy non-allocatable sections once allocatable part is finished. 5686 rewriteNoteSections(); 5687 5688 if (BC->HasRelocations) { 5689 patchELFAllocatableRelaSections(); 5690 patchELFAllocatableRelrSection(); 5691 patchELFGOT(); 5692 } 5693 5694 // Patch dynamic section/segment. 5695 patchELFDynamic(); 5696 5697 // Update ELF book-keeping info. 5698 patchELFSectionHeaderTable(); 5699 5700 if (opts::PrintSections) { 5701 BC->outs() << "BOLT-INFO: Sections after processing:\n"; 5702 BC->printSections(BC->outs()); 5703 } 5704 5705 Out->keep(); 5706 EC = sys::fs::setPermissions( 5707 opts::OutputFilename, 5708 static_cast<sys::fs::perms>(sys::fs::perms::all_all & 5709 ~sys::fs::getUmask())); 5710 check_error(EC, "cannot set permissions of output file"); 5711 } 5712 5713 void RewriteInstance::writeEHFrameHeader() { 5714 BinarySection *NewEHFrameSection = 5715 getSection(getNewSecPrefix() + getEHFrameSectionName()); 5716 5717 // No need to update the header if no new .eh_frame was created. 5718 if (!NewEHFrameSection) 5719 return; 5720 5721 DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true, 5722 NewEHFrameSection->getOutputAddress()); 5723 Error E = NewEHFrame.parse(DWARFDataExtractor( 5724 NewEHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(), 5725 BC->AsmInfo->getCodePointerSize())); 5726 check_error(std::move(E), "failed to parse EH frame"); 5727 5728 uint64_t RelocatedEHFrameAddress = 0; 5729 StringRef RelocatedEHFrameContents; 5730 BinarySection *RelocatedEHFrameSection = 5731 getSection(".relocated" + getEHFrameSectionName()); 5732 if (RelocatedEHFrameSection) { 5733 RelocatedEHFrameAddress = RelocatedEHFrameSection->getOutputAddress(); 5734 RelocatedEHFrameContents = RelocatedEHFrameSection->getOutputContents(); 5735 } 5736 DWARFDebugFrame RelocatedEHFrame(BC->TheTriple->getArch(), true, 5737 RelocatedEHFrameAddress); 5738 Error Er = RelocatedEHFrame.parse(DWARFDataExtractor( 5739 RelocatedEHFrameContents, BC->AsmInfo->isLittleEndian(), 5740 BC->AsmInfo->getCodePointerSize())); 5741 check_error(std::move(Er), "failed to parse EH frame"); 5742 5743 LLVM_DEBUG(dbgs() << "BOLT: writing a new " << getEHFrameHdrSectionName() 5744 << '\n'); 5745 5746 NextAvailableAddress = 5747 appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign); 5748 5749 const uint64_t EHFrameHdrOutputAddress = NextAvailableAddress; 5750 const uint64_t EHFrameHdrFileOffset = 5751 getFileOffsetForAddress(NextAvailableAddress); 5752 5753 std::vector<char> NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader( 5754 RelocatedEHFrame, NewEHFrame, EHFrameHdrOutputAddress, FailedAddresses); 5755 5756 Out->os().seek(EHFrameHdrFileOffset); 5757 Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size()); 5758 5759 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, 5760 /*IsText=*/false, 5761 /*IsAllocatable=*/true); 5762 BinarySection *OldEHFrameHdrSection = getSection(getEHFrameHdrSectionName()); 5763 if (OldEHFrameHdrSection) 5764 OldEHFrameHdrSection->setOutputName(getOrgSecPrefix() + 5765 getEHFrameHdrSectionName()); 5766 5767 BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection( 5768 getNewSecPrefix() + getEHFrameHdrSectionName(), ELF::SHT_PROGBITS, Flags, 5769 nullptr, NewEHFrameHdr.size(), /*Alignment=*/1); 5770 EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset); 5771 EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress); 5772 EHFrameHdrSec.setOutputName(getEHFrameHdrSectionName()); 5773 5774 NextAvailableAddress += EHFrameHdrSec.getOutputSize(); 5775 5776 if (!BC->BOLTReserved.empty() && 5777 (NextAvailableAddress > BC->BOLTReserved.end())) { 5778 BC->errs() << "BOLT-ERROR: unable to fit " << getEHFrameHdrSectionName() 5779 << " into reserved space\n"; 5780 exit(1); 5781 } 5782 5783 // Merge new .eh_frame with the relocated original so that gdb can locate all 5784 // FDEs. 5785 if (RelocatedEHFrameSection) { 5786 const uint64_t NewEHFrameSectionSize = 5787 RelocatedEHFrameSection->getOutputAddress() + 5788 RelocatedEHFrameSection->getOutputSize() - 5789 NewEHFrameSection->getOutputAddress(); 5790 NewEHFrameSection->updateContents(NewEHFrameSection->getOutputData(), 5791 NewEHFrameSectionSize); 5792 BC->deregisterSection(*RelocatedEHFrameSection); 5793 } 5794 5795 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is " 5796 << NewEHFrameSection->getOutputSize() << '\n'); 5797 } 5798 5799 uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) { 5800 auto Value = Linker->lookupSymbol(Name); 5801 if (Value) 5802 return *Value; 5803 5804 // Return the original value if we haven't emitted the symbol. 5805 BinaryData *BD = BC->getBinaryDataByName(Name); 5806 if (!BD) 5807 return 0; 5808 5809 return BD->getAddress(); 5810 } 5811 5812 uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const { 5813 // Check if it's possibly part of the new segment. 5814 if (NewTextSegmentAddress && Address >= NewTextSegmentAddress) 5815 return Address - NewTextSegmentAddress + NewTextSegmentOffset; 5816 5817 // Find an existing segment that matches the address. 5818 const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address); 5819 if (SegmentInfoI == BC->SegmentMapInfo.begin()) 5820 return 0; 5821 5822 const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second; 5823 if (Address < SegmentInfo.Address || 5824 Address >= SegmentInfo.Address + SegmentInfo.FileSize) 5825 return 0; 5826 5827 return SegmentInfo.FileOffset + Address - SegmentInfo.Address; 5828 } 5829 5830 bool RewriteInstance::willOverwriteSection(StringRef SectionName) { 5831 if (llvm::is_contained(SectionsToOverwrite, SectionName)) 5832 return true; 5833 if (llvm::is_contained(DebugSectionsToOverwrite, SectionName)) 5834 return true; 5835 5836 ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName); 5837 return Section && Section->isAllocatable() && Section->isFinalized(); 5838 } 5839 5840 bool RewriteInstance::isDebugSection(StringRef SectionName) { 5841 if (SectionName.starts_with(".debug_") || 5842 SectionName.starts_with(".zdebug_") || SectionName == ".gdb_index" || 5843 SectionName == ".stab" || SectionName == ".stabstr") 5844 return true; 5845 5846 return false; 5847 } 5848