xref: /llvm-project/bolt/lib/Rewrite/RewriteInstance.cpp (revision 1b8e0cf090a08b2c517eb2a3e101332d692063c2)
1 //===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "bolt/Rewrite/RewriteInstance.h"
10 #include "bolt/Core/AddressMap.h"
11 #include "bolt/Core/BinaryContext.h"
12 #include "bolt/Core/BinaryEmitter.h"
13 #include "bolt/Core/BinaryFunction.h"
14 #include "bolt/Core/DebugData.h"
15 #include "bolt/Core/Exceptions.h"
16 #include "bolt/Core/FunctionLayout.h"
17 #include "bolt/Core/MCPlusBuilder.h"
18 #include "bolt/Core/ParallelUtilities.h"
19 #include "bolt/Core/Relocation.h"
20 #include "bolt/Passes/BinaryPasses.h"
21 #include "bolt/Passes/CacheMetrics.h"
22 #include "bolt/Passes/ReorderFunctions.h"
23 #include "bolt/Profile/BoltAddressTranslation.h"
24 #include "bolt/Profile/DataAggregator.h"
25 #include "bolt/Profile/DataReader.h"
26 #include "bolt/Profile/YAMLProfileReader.h"
27 #include "bolt/Profile/YAMLProfileWriter.h"
28 #include "bolt/Rewrite/BinaryPassManager.h"
29 #include "bolt/Rewrite/DWARFRewriter.h"
30 #include "bolt/Rewrite/ExecutableFileMemoryManager.h"
31 #include "bolt/Rewrite/JITLinkLinker.h"
32 #include "bolt/Rewrite/MetadataRewriters.h"
33 #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h"
34 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h"
35 #include "bolt/Utils/CommandLineOpts.h"
36 #include "bolt/Utils/Utils.h"
37 #include "llvm/ADT/AddressRanges.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
40 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
41 #include "llvm/MC/MCAsmBackend.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
44 #include "llvm/MC/MCObjectStreamer.h"
45 #include "llvm/MC/MCStreamer.h"
46 #include "llvm/MC/MCSymbol.h"
47 #include "llvm/MC/TargetRegistry.h"
48 #include "llvm/Object/ObjectFile.h"
49 #include "llvm/Support/Alignment.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/DataExtractor.h"
53 #include "llvm/Support/Errc.h"
54 #include "llvm/Support/Error.h"
55 #include "llvm/Support/FileSystem.h"
56 #include "llvm/Support/ManagedStatic.h"
57 #include "llvm/Support/Timer.h"
58 #include "llvm/Support/ToolOutputFile.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <fstream>
62 #include <memory>
63 #include <optional>
64 #include <system_error>
65 
66 #undef  DEBUG_TYPE
67 #define DEBUG_TYPE "bolt"
68 
69 using namespace llvm;
70 using namespace object;
71 using namespace bolt;
72 
73 extern cl::opt<uint32_t> X86AlignBranchBoundary;
74 extern cl::opt<bool> X86AlignBranchWithin32BBoundaries;
75 
76 namespace opts {
77 
78 extern cl::list<std::string> HotTextMoveSections;
79 extern cl::opt<bool> Hugify;
80 extern cl::opt<bool> Instrument;
81 extern cl::opt<JumpTableSupportLevel> JumpTables;
82 extern cl::opt<bool> KeepNops;
83 extern cl::opt<bool> Lite;
84 extern cl::list<std::string> ReorderData;
85 extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions;
86 extern cl::opt<bool> TerminalTrap;
87 extern cl::opt<bool> TimeBuild;
88 extern cl::opt<bool> TimeRewrite;
89 
90 cl::opt<bool> AllowStripped("allow-stripped",
91                             cl::desc("allow processing of stripped binaries"),
92                             cl::Hidden, cl::cat(BoltCategory));
93 
94 static cl::opt<bool> ForceToDataRelocations(
95     "force-data-relocations",
96     cl::desc("force relocations to data sections to always be processed"),
97 
98     cl::Hidden, cl::cat(BoltCategory));
99 
100 cl::opt<std::string>
101     BoltID("bolt-id",
102            cl::desc("add any string to tag this execution in the "
103                     "output binary via bolt info section"),
104            cl::cat(BoltCategory));
105 
106 cl::opt<bool> DumpDotAll(
107     "dump-dot-all",
108     cl::desc("dump function CFGs to graphviz format after each stage;"
109              "enable '-print-loops' for color-coded blocks"),
110     cl::Hidden, cl::cat(BoltCategory));
111 
112 static cl::list<std::string>
113 ForceFunctionNames("funcs",
114   cl::CommaSeparated,
115   cl::desc("limit optimizations to functions from the list"),
116   cl::value_desc("func1,func2,func3,..."),
117   cl::Hidden,
118   cl::cat(BoltCategory));
119 
120 static cl::opt<std::string>
121 FunctionNamesFile("funcs-file",
122   cl::desc("file with list of functions to optimize"),
123   cl::Hidden,
124   cl::cat(BoltCategory));
125 
126 static cl::list<std::string> ForceFunctionNamesNR(
127     "funcs-no-regex", cl::CommaSeparated,
128     cl::desc("limit optimizations to functions from the list (non-regex)"),
129     cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory));
130 
131 static cl::opt<std::string> FunctionNamesFileNR(
132     "funcs-file-no-regex",
133     cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden,
134     cl::cat(BoltCategory));
135 
136 cl::opt<bool>
137 KeepTmp("keep-tmp",
138   cl::desc("preserve intermediate .o file"),
139   cl::Hidden,
140   cl::cat(BoltCategory));
141 
142 static cl::opt<unsigned>
143 LiteThresholdPct("lite-threshold-pct",
144   cl::desc("threshold (in percent) for selecting functions to process in lite "
145             "mode. Higher threshold means fewer functions to process. E.g "
146             "threshold of 90 means only top 10 percent of functions with "
147             "profile will be processed."),
148   cl::init(0),
149   cl::ZeroOrMore,
150   cl::Hidden,
151   cl::cat(BoltOptCategory));
152 
153 static cl::opt<unsigned> LiteThresholdCount(
154     "lite-threshold-count",
155     cl::desc("similar to '-lite-threshold-pct' but specify threshold using "
156              "absolute function call count. I.e. limit processing to functions "
157              "executed at least the specified number of times."),
158     cl::init(0), cl::Hidden, cl::cat(BoltOptCategory));
159 
160 static cl::opt<unsigned>
161     MaxFunctions("max-funcs",
162                  cl::desc("maximum number of functions to process"), cl::Hidden,
163                  cl::cat(BoltCategory));
164 
165 static cl::opt<unsigned> MaxDataRelocations(
166     "max-data-relocations",
167     cl::desc("maximum number of data relocations to process"), cl::Hidden,
168     cl::cat(BoltCategory));
169 
170 cl::opt<bool> PrintAll("print-all",
171                        cl::desc("print functions after each stage"), cl::Hidden,
172                        cl::cat(BoltCategory));
173 
174 cl::opt<bool> PrintProfile("print-profile",
175                            cl::desc("print functions after attaching profile"),
176                            cl::Hidden, cl::cat(BoltCategory));
177 
178 cl::opt<bool> PrintCFG("print-cfg",
179                        cl::desc("print functions after CFG construction"),
180                        cl::Hidden, cl::cat(BoltCategory));
181 
182 cl::opt<bool> PrintDisasm("print-disasm",
183                           cl::desc("print function after disassembly"),
184                           cl::Hidden, cl::cat(BoltCategory));
185 
186 static cl::opt<bool>
187     PrintGlobals("print-globals",
188                  cl::desc("print global symbols after disassembly"), cl::Hidden,
189                  cl::cat(BoltCategory));
190 
191 extern cl::opt<bool> PrintSections;
192 
193 static cl::opt<bool> PrintLoopInfo("print-loops",
194                                    cl::desc("print loop related information"),
195                                    cl::Hidden, cl::cat(BoltCategory));
196 
197 static cl::opt<cl::boolOrDefault> RelocationMode(
198     "relocs", cl::desc("use relocations in the binary (default=autodetect)"),
199     cl::cat(BoltCategory));
200 
201 extern cl::opt<std::string> SaveProfile;
202 
203 static cl::list<std::string>
204 SkipFunctionNames("skip-funcs",
205   cl::CommaSeparated,
206   cl::desc("list of functions to skip"),
207   cl::value_desc("func1,func2,func3,..."),
208   cl::Hidden,
209   cl::cat(BoltCategory));
210 
211 static cl::opt<std::string>
212 SkipFunctionNamesFile("skip-funcs-file",
213   cl::desc("file with list of functions to skip"),
214   cl::Hidden,
215   cl::cat(BoltCategory));
216 
217 cl::opt<bool>
218 TrapOldCode("trap-old-code",
219   cl::desc("insert traps in old function bodies (relocation mode)"),
220   cl::Hidden,
221   cl::cat(BoltCategory));
222 
223 static cl::opt<std::string> DWPPathName("dwp",
224                                         cl::desc("Path and name to DWP file."),
225                                         cl::Hidden, cl::init(""),
226                                         cl::cat(BoltCategory));
227 
228 static cl::opt<bool>
229 UseGnuStack("use-gnu-stack",
230   cl::desc("use GNU_STACK program header for new segment (workaround for "
231            "issues with strip/objcopy)"),
232   cl::ZeroOrMore,
233   cl::cat(BoltCategory));
234 
235 static cl::opt<bool>
236 SequentialDisassembly("sequential-disassembly",
237   cl::desc("performs disassembly sequentially"),
238   cl::init(false),
239   cl::cat(BoltOptCategory));
240 
241 static cl::opt<bool> WriteBoltInfoSection(
242     "bolt-info", cl::desc("write bolt info section in the output binary"),
243     cl::init(true), cl::Hidden, cl::cat(BoltOutputCategory));
244 
245 } // namespace opts
246 
247 // FIXME: implement a better way to mark sections for replacement.
248 constexpr const char *RewriteInstance::SectionsToOverwrite[];
249 std::vector<std::string> RewriteInstance::DebugSectionsToOverwrite = {
250     ".debug_abbrev", ".debug_aranges",  ".debug_line",   ".debug_line_str",
251     ".debug_loc",    ".debug_loclists", ".debug_ranges", ".debug_rnglists",
252     ".gdb_index",    ".debug_addr",     ".debug_abbrev", ".debug_info",
253     ".debug_types",  ".pseudo_probe"};
254 
255 const char RewriteInstance::TimerGroupName[] = "rewrite";
256 const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes";
257 
258 namespace llvm {
259 namespace bolt {
260 
261 extern const char *BoltRevision;
262 
263 // Weird location for createMCPlusBuilder, but this is here to avoid a
264 // cyclic dependency of libCore (its natural place) and libTarget. libRewrite
265 // can depend on libTarget, but not libCore. Since libRewrite is the only
266 // user of this function, we define it here.
267 MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch,
268                                    const MCInstrAnalysis *Analysis,
269                                    const MCInstrInfo *Info,
270                                    const MCRegisterInfo *RegInfo,
271                                    const MCSubtargetInfo *STI) {
272 #ifdef X86_AVAILABLE
273   if (Arch == Triple::x86_64)
274     return createX86MCPlusBuilder(Analysis, Info, RegInfo, STI);
275 #endif
276 
277 #ifdef AARCH64_AVAILABLE
278   if (Arch == Triple::aarch64)
279     return createAArch64MCPlusBuilder(Analysis, Info, RegInfo, STI);
280 #endif
281 
282 #ifdef RISCV_AVAILABLE
283   if (Arch == Triple::riscv64)
284     return createRISCVMCPlusBuilder(Analysis, Info, RegInfo, STI);
285 #endif
286 
287   llvm_unreachable("architecture unsupported by MCPlusBuilder");
288 }
289 
290 } // namespace bolt
291 } // namespace llvm
292 
293 using ELF64LEPhdrTy = ELF64LEFile::Elf_Phdr;
294 
295 namespace {
296 
297 bool refersToReorderedSection(ErrorOr<BinarySection &> Section) {
298   return llvm::any_of(opts::ReorderData, [&](const std::string &SectionName) {
299     return Section && Section->getName() == SectionName;
300   });
301 }
302 
303 } // anonymous namespace
304 
305 Expected<std::unique_ptr<RewriteInstance>>
306 RewriteInstance::create(ELFObjectFileBase *File, const int Argc,
307                         const char *const *Argv, StringRef ToolPath,
308                         raw_ostream &Stdout, raw_ostream &Stderr) {
309   Error Err = Error::success();
310   auto RI = std::make_unique<RewriteInstance>(File, Argc, Argv, ToolPath,
311                                               Stdout, Stderr, Err);
312   if (Err)
313     return std::move(Err);
314   return std::move(RI);
315 }
316 
317 RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc,
318                                  const char *const *Argv, StringRef ToolPath,
319                                  raw_ostream &Stdout, raw_ostream &Stderr,
320                                  Error &Err)
321     : InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath),
322       SHStrTab(StringTableBuilder::ELF) {
323   ErrorAsOutParameter EAO(&Err);
324   auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
325   if (!ELF64LEFile) {
326     Err = createStringError(errc::not_supported,
327                             "Only 64-bit LE ELF binaries are supported");
328     return;
329   }
330 
331   bool IsPIC = false;
332   const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
333   if (Obj.getHeader().e_type != ELF::ET_EXEC) {
334     Stdout << "BOLT-INFO: shared object or position-independent executable "
335               "detected\n";
336     IsPIC = true;
337   }
338 
339   // Make sure we don't miss any output on core dumps.
340   Stdout.SetUnbuffered();
341   Stderr.SetUnbuffered();
342   LLVM_DEBUG(dbgs().SetUnbuffered());
343 
344   // Read RISCV subtarget features from input file
345   std::unique_ptr<SubtargetFeatures> Features;
346   Triple TheTriple = File->makeTriple();
347   if (TheTriple.getArch() == llvm::Triple::riscv64) {
348     Expected<SubtargetFeatures> FeaturesOrErr = File->getFeatures();
349     if (auto E = FeaturesOrErr.takeError()) {
350       Err = std::move(E);
351       return;
352     } else {
353       Features.reset(new SubtargetFeatures(*FeaturesOrErr));
354     }
355   }
356 
357   Relocation::Arch = TheTriple.getArch();
358   auto BCOrErr = BinaryContext::createBinaryContext(
359       TheTriple, File->getFileName(), Features.get(), IsPIC,
360       DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore,
361                            nullptr, opts::DWPPathName,
362                            WithColor::defaultErrorHandler,
363                            WithColor::defaultWarningHandler),
364       JournalingStreams{Stdout, Stderr});
365   if (Error E = BCOrErr.takeError()) {
366     Err = std::move(E);
367     return;
368   }
369   BC = std::move(BCOrErr.get());
370   BC->initializeTarget(std::unique_ptr<MCPlusBuilder>(
371       createMCPlusBuilder(BC->TheTriple->getArch(), BC->MIA.get(),
372                           BC->MII.get(), BC->MRI.get(), BC->STI.get())));
373 
374   BAT = std::make_unique<BoltAddressTranslation>();
375 
376   if (opts::UpdateDebugSections)
377     DebugInfoRewriter = std::make_unique<DWARFRewriter>(*BC);
378 
379   if (opts::Instrument)
380     BC->setRuntimeLibrary(std::make_unique<InstrumentationRuntimeLibrary>());
381   else if (opts::Hugify)
382     BC->setRuntimeLibrary(std::make_unique<HugifyRuntimeLibrary>());
383 }
384 
385 RewriteInstance::~RewriteInstance() {}
386 
387 Error RewriteInstance::setProfile(StringRef Filename) {
388   if (!sys::fs::exists(Filename))
389     return errorCodeToError(make_error_code(errc::no_such_file_or_directory));
390 
391   if (ProfileReader) {
392     // Already exists
393     return make_error<StringError>(Twine("multiple profiles specified: ") +
394                                        ProfileReader->getFilename() + " and " +
395                                        Filename,
396                                    inconvertibleErrorCode());
397   }
398 
399   // Spawn a profile reader based on file contents.
400   if (DataAggregator::checkPerfDataMagic(Filename))
401     ProfileReader = std::make_unique<DataAggregator>(Filename);
402   else if (YAMLProfileReader::isYAML(Filename))
403     ProfileReader = std::make_unique<YAMLProfileReader>(Filename);
404   else
405     ProfileReader = std::make_unique<DataReader>(Filename);
406 
407   return Error::success();
408 }
409 
410 /// Return true if the function \p BF should be disassembled.
411 static bool shouldDisassemble(const BinaryFunction &BF) {
412   if (BF.isPseudo())
413     return false;
414 
415   if (opts::processAllFunctions())
416     return true;
417 
418   return !BF.isIgnored();
419 }
420 
421 // Return if a section stored in the image falls into a segment address space.
422 // If not, Set \p Overlap to true if there's a partial overlap.
423 template <class ELFT>
424 static bool checkOffsets(const typename ELFT::Phdr &Phdr,
425                          const typename ELFT::Shdr &Sec, bool &Overlap) {
426   // SHT_NOBITS sections don't need to have an offset inside the segment.
427   if (Sec.sh_type == ELF::SHT_NOBITS)
428     return true;
429 
430   // Only non-empty sections can be at the end of a segment.
431   uint64_t SectionSize = Sec.sh_size ? Sec.sh_size : 1ull;
432   AddressRange SectionAddressRange((uint64_t)Sec.sh_offset,
433                                    Sec.sh_offset + SectionSize);
434   AddressRange SegmentAddressRange(Phdr.p_offset,
435                                    Phdr.p_offset + Phdr.p_filesz);
436   if (SegmentAddressRange.contains(SectionAddressRange))
437     return true;
438 
439   Overlap = SegmentAddressRange.intersects(SectionAddressRange);
440   return false;
441 }
442 
443 // Check that an allocatable section belongs to a virtual address
444 // space of a segment.
445 template <class ELFT>
446 static bool checkVMA(const typename ELFT::Phdr &Phdr,
447                      const typename ELFT::Shdr &Sec, bool &Overlap) {
448   // Only non-empty sections can be at the end of a segment.
449   uint64_t SectionSize = Sec.sh_size ? Sec.sh_size : 1ull;
450   AddressRange SectionAddressRange((uint64_t)Sec.sh_addr,
451                                    Sec.sh_addr + SectionSize);
452   AddressRange SegmentAddressRange(Phdr.p_vaddr, Phdr.p_vaddr + Phdr.p_memsz);
453 
454   if (SegmentAddressRange.contains(SectionAddressRange))
455     return true;
456   Overlap = SegmentAddressRange.intersects(SectionAddressRange);
457   return false;
458 }
459 
460 void RewriteInstance::markGnuRelroSections() {
461   using ELFT = ELF64LE;
462   using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
463   auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile);
464   const ELFFile<ELFT> &Obj = ELF64LEFile->getELFFile();
465 
466   auto handleSection = [&](const ELFT::Phdr &Phdr, SectionRef SecRef) {
467     BinarySection *BinarySection = BC->getSectionForSectionRef(SecRef);
468     // If the section is non-allocatable, ignore it for GNU_RELRO purposes:
469     // it can't be made read-only after runtime relocations processing.
470     if (!BinarySection || !BinarySection->isAllocatable())
471       return;
472     const ELFShdrTy *Sec = cantFail(Obj.getSection(SecRef.getIndex()));
473     bool ImageOverlap{false}, VMAOverlap{false};
474     bool ImageContains = checkOffsets<ELFT>(Phdr, *Sec, ImageOverlap);
475     bool VMAContains = checkVMA<ELFT>(Phdr, *Sec, VMAOverlap);
476     if (ImageOverlap) {
477       if (opts::Verbosity >= 1)
478         BC->errs() << "BOLT-WARNING: GNU_RELRO segment has partial file offset "
479                    << "overlap with section " << BinarySection->getName()
480                    << '\n';
481       return;
482     }
483     if (VMAOverlap) {
484       if (opts::Verbosity >= 1)
485         BC->errs() << "BOLT-WARNING: GNU_RELRO segment has partial VMA overlap "
486                    << "with section " << BinarySection->getName() << '\n';
487       return;
488     }
489     if (!ImageContains || !VMAContains)
490       return;
491     BinarySection->setRelro();
492     if (opts::Verbosity >= 1)
493       BC->outs() << "BOLT-INFO: marking " << BinarySection->getName()
494                  << " as GNU_RELRO\n";
495   };
496 
497   for (const ELFT::Phdr &Phdr : cantFail(Obj.program_headers()))
498     if (Phdr.p_type == ELF::PT_GNU_RELRO)
499       for (SectionRef SecRef : InputFile->sections())
500         handleSection(Phdr, SecRef);
501 }
502 
503 Error RewriteInstance::discoverStorage() {
504   NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName,
505                      TimerGroupDesc, opts::TimeRewrite);
506 
507   auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile);
508   const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
509 
510   BC->StartFunctionAddress = Obj.getHeader().e_entry;
511 
512   NextAvailableAddress = 0;
513   uint64_t NextAvailableOffset = 0;
514   Expected<ELF64LE::PhdrRange> PHsOrErr = Obj.program_headers();
515   if (Error E = PHsOrErr.takeError())
516     return E;
517 
518   ELF64LE::PhdrRange PHs = PHsOrErr.get();
519   for (const ELF64LE::Phdr &Phdr : PHs) {
520     switch (Phdr.p_type) {
521     case ELF::PT_LOAD:
522       BC->FirstAllocAddress = std::min(BC->FirstAllocAddress,
523                                        static_cast<uint64_t>(Phdr.p_vaddr));
524       NextAvailableAddress = std::max(NextAvailableAddress,
525                                       Phdr.p_vaddr + Phdr.p_memsz);
526       NextAvailableOffset = std::max(NextAvailableOffset,
527                                      Phdr.p_offset + Phdr.p_filesz);
528 
529       BC->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{
530           Phdr.p_vaddr,  Phdr.p_memsz, Phdr.p_offset,
531           Phdr.p_filesz, Phdr.p_align, ((Phdr.p_flags & ELF::PF_X) != 0)};
532       if (BC->TheTriple->getArch() == llvm::Triple::x86_64 &&
533           Phdr.p_vaddr >= BinaryContext::KernelStartX86_64)
534         BC->IsLinuxKernel = true;
535       break;
536     case ELF::PT_INTERP:
537       BC->HasInterpHeader = true;
538       break;
539     }
540   }
541 
542   if (BC->IsLinuxKernel)
543     BC->outs() << "BOLT-INFO: Linux kernel binary detected\n";
544 
545   for (const SectionRef &Section : InputFile->sections()) {
546     Expected<StringRef> SectionNameOrErr = Section.getName();
547     if (Error E = SectionNameOrErr.takeError())
548       return E;
549     StringRef SectionName = SectionNameOrErr.get();
550     if (SectionName == BC->getMainCodeSectionName()) {
551       BC->OldTextSectionAddress = Section.getAddress();
552       BC->OldTextSectionSize = Section.getSize();
553 
554       Expected<StringRef> SectionContentsOrErr = Section.getContents();
555       if (Error E = SectionContentsOrErr.takeError())
556         return E;
557       StringRef SectionContents = SectionContentsOrErr.get();
558       BC->OldTextSectionOffset =
559           SectionContents.data() - InputFile->getData().data();
560     }
561 
562     if (!opts::HeatmapMode &&
563         !(opts::AggregateOnly && BAT->enabledFor(InputFile)) &&
564         (SectionName.starts_with(getOrgSecPrefix()) ||
565          SectionName == getBOLTTextSectionName()))
566       return createStringError(
567           errc::function_not_supported,
568           "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize");
569   }
570 
571   if (!NextAvailableAddress || !NextAvailableOffset)
572     return createStringError(errc::executable_format_error,
573                              "no PT_LOAD pheader seen");
574 
575   BC->outs() << "BOLT-INFO: first alloc address is 0x"
576              << Twine::utohexstr(BC->FirstAllocAddress) << '\n';
577 
578   FirstNonAllocatableOffset = NextAvailableOffset;
579 
580   NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign);
581   NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign);
582 
583   // Hugify: Additional huge page from left side due to
584   // weird ASLR mapping addresses (4KB aligned)
585   if (opts::Hugify && !BC->HasFixedLoadAddress)
586     NextAvailableAddress += BC->PageAlign;
587 
588   if (!opts::UseGnuStack && !BC->IsLinuxKernel) {
589     // This is where the black magic happens. Creating PHDR table in a segment
590     // other than that containing ELF header is tricky. Some loaders and/or
591     // parts of loaders will apply e_phoff from ELF header assuming both are in
592     // the same segment, while others will do the proper calculation.
593     // We create the new PHDR table in such a way that both of the methods
594     // of loading and locating the table work. There's a slight file size
595     // overhead because of that.
596     //
597     // NB: bfd's strip command cannot do the above and will corrupt the
598     //     binary during the process of stripping non-allocatable sections.
599     if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress)
600       NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress;
601     else
602       NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress;
603 
604     assert(NextAvailableOffset ==
605                NextAvailableAddress - BC->FirstAllocAddress &&
606            "PHDR table address calculation error");
607 
608     BC->outs() << "BOLT-INFO: creating new program header table at address 0x"
609                << Twine::utohexstr(NextAvailableAddress) << ", offset 0x"
610                << Twine::utohexstr(NextAvailableOffset) << '\n';
611 
612     PHDRTableAddress = NextAvailableAddress;
613     PHDRTableOffset = NextAvailableOffset;
614 
615     // Reserve space for 3 extra pheaders.
616     unsigned Phnum = Obj.getHeader().e_phnum;
617     Phnum += 3;
618 
619     NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy);
620     NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy);
621   }
622 
623   // Align at cache line.
624   NextAvailableAddress = alignTo(NextAvailableAddress, 64);
625   NextAvailableOffset = alignTo(NextAvailableOffset, 64);
626 
627   NewTextSegmentAddress = NextAvailableAddress;
628   NewTextSegmentOffset = NextAvailableOffset;
629   BC->LayoutStartAddress = NextAvailableAddress;
630 
631   // Tools such as objcopy can strip section contents but leave header
632   // entries. Check that at least .text is mapped in the file.
633   if (!getFileOffsetForAddress(BC->OldTextSectionAddress))
634     return createStringError(errc::executable_format_error,
635                              "BOLT-ERROR: input binary is not a valid ELF "
636                              "executable as its text section is not "
637                              "mapped to a valid segment");
638   return Error::success();
639 }
640 
641 Error RewriteInstance::run() {
642   assert(BC && "failed to create a binary context");
643 
644   BC->outs() << "BOLT-INFO: Target architecture: "
645              << Triple::getArchTypeName(
646                     (llvm::Triple::ArchType)InputFile->getArch())
647              << "\n";
648   BC->outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n";
649 
650   if (Error E = discoverStorage())
651     return E;
652   if (Error E = readSpecialSections())
653     return E;
654   adjustCommandLineOptions();
655   discoverFileObjects();
656 
657   if (opts::Instrument && !BC->IsStaticExecutable)
658     if (Error E = discoverRtFiniAddress())
659       return E;
660 
661   preprocessProfileData();
662 
663   // Skip disassembling if we have a translation table and we are running an
664   // aggregation job.
665   if (opts::AggregateOnly && BAT->enabledFor(InputFile)) {
666     // YAML profile in BAT mode requires CFG for .bolt.org.text functions
667     if (!opts::SaveProfile.empty() ||
668         opts::ProfileFormat == opts::ProfileFormatKind::PF_YAML) {
669       selectFunctionsToProcess();
670       disassembleFunctions();
671       processMetadataPreCFG();
672       buildFunctionsCFG();
673     }
674     processProfileData();
675     return Error::success();
676   }
677 
678   selectFunctionsToProcess();
679 
680   readDebugInfo();
681 
682   disassembleFunctions();
683 
684   processMetadataPreCFG();
685 
686   buildFunctionsCFG();
687 
688   processProfileData();
689 
690   // Save input binary metadata if BAT section needs to be emitted
691   if (opts::EnableBAT)
692     BAT->saveMetadata(*BC);
693 
694   postProcessFunctions();
695 
696   processMetadataPostCFG();
697 
698   if (opts::DiffOnly)
699     return Error::success();
700 
701   preregisterSections();
702 
703   runOptimizationPasses();
704 
705   finalizeMetadataPreEmit();
706 
707   emitAndLink();
708 
709   updateMetadata();
710 
711   if (opts::Instrument && !BC->IsStaticExecutable)
712     updateRtFiniReloc();
713 
714   if (opts::OutputFilename == "/dev/null") {
715     BC->outs() << "BOLT-INFO: skipping writing final binary to disk\n";
716     return Error::success();
717   } else if (BC->IsLinuxKernel) {
718     BC->errs() << "BOLT-WARNING: Linux kernel support is experimental\n";
719   }
720 
721   // Rewrite allocatable contents and copy non-allocatable parts with mods.
722   rewriteFile();
723   return Error::success();
724 }
725 
726 void RewriteInstance::discoverFileObjects() {
727   NamedRegionTimer T("discoverFileObjects", "discover file objects",
728                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
729 
730   // For local symbols we want to keep track of associated FILE symbol name for
731   // disambiguation by combined name.
732   StringRef FileSymbolName;
733   bool SeenFileName = false;
734   struct SymbolRefHash {
735     size_t operator()(SymbolRef const &S) const {
736       return std::hash<decltype(DataRefImpl::p)>{}(S.getRawDataRefImpl().p);
737     }
738   };
739   std::unordered_map<SymbolRef, StringRef, SymbolRefHash> SymbolToFileName;
740   for (const ELFSymbolRef &Symbol : InputFile->symbols()) {
741     Expected<StringRef> NameOrError = Symbol.getName();
742     if (NameOrError && NameOrError->starts_with("__asan_init")) {
743       BC->errs()
744           << "BOLT-ERROR: input file was compiled or linked with sanitizer "
745              "support. Cannot optimize.\n";
746       exit(1);
747     }
748     if (NameOrError && NameOrError->starts_with("__llvm_coverage_mapping")) {
749       BC->errs()
750           << "BOLT-ERROR: input file was compiled or linked with coverage "
751              "support. Cannot optimize.\n";
752       exit(1);
753     }
754 
755     if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined)
756       continue;
757 
758     if (cantFail(Symbol.getType()) == SymbolRef::ST_File) {
759       FileSymbols.emplace_back(Symbol);
760       StringRef Name =
761           cantFail(std::move(NameOrError), "cannot get symbol name for file");
762       // Ignore Clang LTO artificial FILE symbol as it is not always generated,
763       // and this uncertainty is causing havoc in function name matching.
764       if (Name == "ld-temp.o")
765         continue;
766       FileSymbolName = Name;
767       SeenFileName = true;
768       continue;
769     }
770     if (!FileSymbolName.empty() &&
771         !(cantFail(Symbol.getFlags()) & SymbolRef::SF_Global))
772       SymbolToFileName[Symbol] = FileSymbolName;
773   }
774 
775   // Sort symbols in the file by value. Ignore symbols from non-allocatable
776   // sections. We memoize getAddress(), as it has rather high overhead.
777   struct SymbolInfo {
778     uint64_t Address;
779     SymbolRef Symbol;
780   };
781   std::vector<SymbolInfo> SortedSymbols;
782   auto isSymbolInMemory = [this](const SymbolRef &Sym) {
783     if (cantFail(Sym.getType()) == SymbolRef::ST_File)
784       return false;
785     if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute)
786       return true;
787     if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined)
788       return false;
789     BinarySection Section(*BC, *cantFail(Sym.getSection()));
790     return Section.isAllocatable();
791   };
792   auto checkSymbolInSection = [this](const SymbolInfo &S) {
793     // Sometimes, we encounter symbols with addresses outside their section. If
794     // such symbols happen to fall into another section, they can interfere with
795     // disassembly. Notably, this occurs with AArch64 marker symbols ($d and $t)
796     // that belong to .eh_frame, but end up pointing into .text.
797     // As a workaround, we ignore all symbols that lie outside their sections.
798     auto Section = cantFail(S.Symbol.getSection());
799 
800     // Accept all absolute symbols.
801     if (Section == InputFile->section_end())
802       return true;
803 
804     uint64_t SecStart = Section->getAddress();
805     uint64_t SecEnd = SecStart + Section->getSize();
806     uint64_t SymEnd = S.Address + ELFSymbolRef(S.Symbol).getSize();
807     if (S.Address >= SecStart && SymEnd <= SecEnd)
808       return true;
809 
810     auto SymType = cantFail(S.Symbol.getType());
811     // Skip warnings for common benign cases.
812     if (opts::Verbosity < 1 && SymType == SymbolRef::ST_Other)
813       return false; // E.g. ELF::STT_TLS.
814 
815     auto SymName = S.Symbol.getName();
816     auto SecName = cantFail(S.Symbol.getSection())->getName();
817     BC->errs() << "BOLT-WARNING: ignoring symbol "
818                << (SymName ? *SymName : "[unnamed]") << " at 0x"
819                << Twine::utohexstr(S.Address) << ", which lies outside "
820                << (SecName ? *SecName : "[unnamed]") << "\n";
821 
822     return false;
823   };
824   for (const SymbolRef &Symbol : InputFile->symbols())
825     if (isSymbolInMemory(Symbol)) {
826       SymbolInfo SymInfo{cantFail(Symbol.getAddress()), Symbol};
827       if (checkSymbolInSection(SymInfo))
828         SortedSymbols.push_back(SymInfo);
829     }
830 
831   auto CompareSymbols = [this](const SymbolInfo &A, const SymbolInfo &B) {
832     if (A.Address != B.Address)
833       return A.Address < B.Address;
834 
835     const bool AMarker = BC->isMarker(A.Symbol);
836     const bool BMarker = BC->isMarker(B.Symbol);
837     if (AMarker || BMarker) {
838       return AMarker && !BMarker;
839     }
840 
841     const auto AType = cantFail(A.Symbol.getType());
842     const auto BType = cantFail(B.Symbol.getType());
843     if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function)
844       return true;
845     if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug)
846       return true;
847 
848     return false;
849   };
850   llvm::stable_sort(SortedSymbols, CompareSymbols);
851 
852   auto LastSymbol = SortedSymbols.end();
853   if (!SortedSymbols.empty())
854     --LastSymbol;
855 
856   // For aarch64, the ABI defines mapping symbols so we identify data in the
857   // code section (see IHI0056B). $d identifies data contents.
858   // Compilers usually merge multiple data objects in a single $d-$x interval,
859   // but we need every data object to be marked with $d. Because of that we
860   // create a vector of MarkerSyms with all locations of data objects.
861 
862   struct MarkerSym {
863     uint64_t Address;
864     MarkerSymType Type;
865   };
866 
867   std::vector<MarkerSym> SortedMarkerSymbols;
868   auto addExtraDataMarkerPerSymbol = [&]() {
869     bool IsData = false;
870     uint64_t LastAddr = 0;
871     for (const auto &SymInfo : SortedSymbols) {
872       if (LastAddr == SymInfo.Address) // don't repeat markers
873         continue;
874 
875       MarkerSymType MarkerType = BC->getMarkerType(SymInfo.Symbol);
876       if (MarkerType != MarkerSymType::NONE) {
877         SortedMarkerSymbols.push_back(MarkerSym{SymInfo.Address, MarkerType});
878         LastAddr = SymInfo.Address;
879         IsData = MarkerType == MarkerSymType::DATA;
880         continue;
881       }
882 
883       if (IsData) {
884         SortedMarkerSymbols.push_back({SymInfo.Address, MarkerSymType::DATA});
885         LastAddr = SymInfo.Address;
886       }
887     }
888   };
889 
890   if (BC->isAArch64() || BC->isRISCV()) {
891     addExtraDataMarkerPerSymbol();
892     LastSymbol = std::stable_partition(
893         SortedSymbols.begin(), SortedSymbols.end(),
894         [this](const SymbolInfo &S) { return !BC->isMarker(S.Symbol); });
895     if (!SortedSymbols.empty())
896       --LastSymbol;
897   }
898 
899   BinaryFunction *PreviousFunction = nullptr;
900   unsigned AnonymousId = 0;
901 
902   const auto SortedSymbolsEnd =
903       LastSymbol == SortedSymbols.end() ? LastSymbol : std::next(LastSymbol);
904   for (auto Iter = SortedSymbols.begin(); Iter != SortedSymbolsEnd; ++Iter) {
905     const SymbolRef &Symbol = Iter->Symbol;
906     const uint64_t SymbolAddress = Iter->Address;
907     const auto SymbolFlags = cantFail(Symbol.getFlags());
908     const SymbolRef::Type SymbolType = cantFail(Symbol.getType());
909 
910     if (SymbolType == SymbolRef::ST_File)
911       continue;
912 
913     StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name");
914     if (SymbolAddress == 0) {
915       if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function)
916         BC->errs() << "BOLT-WARNING: function with 0 address seen\n";
917       continue;
918     }
919 
920     // Ignore input hot markers
921     if (SymName == "__hot_start" || SymName == "__hot_end")
922       continue;
923 
924     FileSymRefs.emplace(SymbolAddress, Symbol);
925 
926     // Skip section symbols that will be registered by disassemblePLT().
927     if (SymbolType == SymbolRef::ST_Debug) {
928       ErrorOr<BinarySection &> BSection =
929           BC->getSectionForAddress(SymbolAddress);
930       if (BSection && getPLTSectionInfo(BSection->getName()))
931         continue;
932     }
933 
934     /// It is possible we are seeing a globalized local. LLVM might treat it as
935     /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to
936     /// change the prefix to enforce global scope of the symbol.
937     std::string Name =
938         SymName.starts_with(BC->AsmInfo->getPrivateGlobalPrefix())
939             ? "PG" + std::string(SymName)
940             : std::string(SymName);
941 
942     // Disambiguate all local symbols before adding to symbol table.
943     // Since we don't know if we will see a global with the same name,
944     // always modify the local name.
945     //
946     // NOTE: the naming convention for local symbols should match
947     //       the one we use for profile data.
948     std::string UniqueName;
949     std::string AlternativeName;
950     if (Name.empty()) {
951       UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++);
952     } else if (SymbolFlags & SymbolRef::SF_Global) {
953       if (const BinaryData *BD = BC->getBinaryDataByName(Name)) {
954         if (BD->getSize() == ELFSymbolRef(Symbol).getSize() &&
955             BD->getAddress() == SymbolAddress) {
956           if (opts::Verbosity > 1)
957             BC->errs() << "BOLT-WARNING: ignoring duplicate global symbol "
958                        << Name << "\n";
959           // Ignore duplicate entry - possibly a bug in the linker
960           continue;
961         }
962         BC->errs() << "BOLT-ERROR: bad input binary, global symbol \"" << Name
963                    << "\" is not unique\n";
964         exit(1);
965       }
966       UniqueName = Name;
967     } else {
968       // If we have a local file name, we should create 2 variants for the
969       // function name. The reason is that perf profile might have been
970       // collected on a binary that did not have the local file name (e.g. as
971       // a side effect of stripping debug info from the binary):
972       //
973       //   primary:     <function>/<id>
974       //   alternative: <function>/<file>/<id2>
975       //
976       // The <id> field is used for disambiguation of local symbols since there
977       // could be identical function names coming from identical file names
978       // (e.g. from different directories).
979       std::string AltPrefix;
980       auto SFI = SymbolToFileName.find(Symbol);
981       if (SymbolType == SymbolRef::ST_Function && SFI != SymbolToFileName.end())
982         AltPrefix = Name + "/" + std::string(SFI->second);
983 
984       UniqueName = NR.uniquify(Name);
985       if (!AltPrefix.empty())
986         AlternativeName = NR.uniquify(AltPrefix);
987     }
988 
989     uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize();
990     uint64_t SymbolAlignment = Symbol.getAlignment();
991 
992     auto registerName = [&](uint64_t FinalSize) {
993       // Register names even if it's not a function, e.g. for an entry point.
994       BC->registerNameAtAddress(UniqueName, SymbolAddress, FinalSize,
995                                 SymbolAlignment, SymbolFlags);
996       if (!AlternativeName.empty())
997         BC->registerNameAtAddress(AlternativeName, SymbolAddress, FinalSize,
998                                   SymbolAlignment, SymbolFlags);
999     };
1000 
1001     section_iterator Section =
1002         cantFail(Symbol.getSection(), "cannot get symbol section");
1003     if (Section == InputFile->section_end()) {
1004       // Could be an absolute symbol. Used on RISC-V for __global_pointer$ so we
1005       // need to record it to handle relocations against it. For other instances
1006       // of absolute symbols, we record for pretty printing.
1007       LLVM_DEBUG(if (opts::Verbosity > 1) {
1008         dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n";
1009       });
1010       registerName(SymbolSize);
1011       continue;
1012     }
1013 
1014     if (SymName == getBOLTReservedStart() || SymName == getBOLTReservedEnd()) {
1015       registerName(SymbolSize);
1016       continue;
1017     }
1018 
1019     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName
1020                       << " for function\n");
1021 
1022     if (SymbolAddress == Section->getAddress() + Section->getSize()) {
1023       assert(SymbolSize == 0 &&
1024              "unexpect non-zero sized symbol at end of section");
1025       LLVM_DEBUG(
1026           dbgs()
1027           << "BOLT-DEBUG: rejecting as symbol points to end of its section\n");
1028       registerName(SymbolSize);
1029       continue;
1030     }
1031 
1032     if (!Section->isText()) {
1033       assert(SymbolType != SymbolRef::ST_Function &&
1034              "unexpected function inside non-code section");
1035       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n");
1036       registerName(SymbolSize);
1037       continue;
1038     }
1039 
1040     // Assembly functions could be ST_NONE with 0 size. Check that the
1041     // corresponding section is a code section and they are not inside any
1042     // other known function to consider them.
1043     //
1044     // Sometimes assembly functions are not marked as functions and neither are
1045     // their local labels. The only way to tell them apart is to look at
1046     // symbol scope - global vs local.
1047     if (PreviousFunction && SymbolType != SymbolRef::ST_Function) {
1048       if (PreviousFunction->containsAddress(SymbolAddress)) {
1049         if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
1050           LLVM_DEBUG(dbgs()
1051                      << "BOLT-DEBUG: symbol is a function local symbol\n");
1052         } else if (SymbolAddress == PreviousFunction->getAddress() &&
1053                    !SymbolSize) {
1054           LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n");
1055         } else if (opts::Verbosity > 1) {
1056           BC->errs() << "BOLT-WARNING: symbol " << UniqueName
1057                      << " seen in the middle of function " << *PreviousFunction
1058                      << ". Could be a new entry.\n";
1059         }
1060         registerName(SymbolSize);
1061         continue;
1062       } else if (PreviousFunction->getSize() == 0 &&
1063                  PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
1064         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n");
1065         registerName(SymbolSize);
1066         continue;
1067       }
1068     }
1069 
1070     if (PreviousFunction && PreviousFunction->containsAddress(SymbolAddress) &&
1071         PreviousFunction->getAddress() != SymbolAddress) {
1072       if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
1073         if (opts::Verbosity >= 1)
1074           BC->outs()
1075               << "BOLT-INFO: skipping possibly another entry for function "
1076               << *PreviousFunction << " : " << UniqueName << '\n';
1077         registerName(SymbolSize);
1078       } else {
1079         BC->outs() << "BOLT-INFO: using " << UniqueName
1080                    << " as another entry to "
1081                    << "function " << *PreviousFunction << '\n';
1082 
1083         registerName(0);
1084 
1085         PreviousFunction->addEntryPointAtOffset(SymbolAddress -
1086                                                 PreviousFunction->getAddress());
1087 
1088         // Remove the symbol from FileSymRefs so that we can skip it from
1089         // in the future.
1090         auto SI = llvm::find_if(
1091             llvm::make_range(FileSymRefs.equal_range(SymbolAddress)),
1092             [&](auto SymIt) { return SymIt.second == Symbol; });
1093         assert(SI != FileSymRefs.end() && "symbol expected to be present");
1094         assert(SI->second == Symbol && "wrong symbol found");
1095         FileSymRefs.erase(SI);
1096       }
1097       continue;
1098     }
1099 
1100     // Checkout for conflicts with function data from FDEs.
1101     bool IsSimple = true;
1102     auto FDEI = CFIRdWrt->getFDEs().lower_bound(SymbolAddress);
1103     if (FDEI != CFIRdWrt->getFDEs().end()) {
1104       const dwarf::FDE &FDE = *FDEI->second;
1105       if (FDEI->first != SymbolAddress) {
1106         // There's no matching starting address in FDE. Make sure the previous
1107         // FDE does not contain this address.
1108         if (FDEI != CFIRdWrt->getFDEs().begin()) {
1109           --FDEI;
1110           const dwarf::FDE &PrevFDE = *FDEI->second;
1111           uint64_t PrevStart = PrevFDE.getInitialLocation();
1112           uint64_t PrevLength = PrevFDE.getAddressRange();
1113           if (SymbolAddress > PrevStart &&
1114               SymbolAddress < PrevStart + PrevLength) {
1115             BC->errs() << "BOLT-ERROR: function " << UniqueName
1116                        << " is in conflict with FDE ["
1117                        << Twine::utohexstr(PrevStart) << ", "
1118                        << Twine::utohexstr(PrevStart + PrevLength)
1119                        << "). Skipping.\n";
1120             IsSimple = false;
1121           }
1122         }
1123       } else if (FDE.getAddressRange() != SymbolSize) {
1124         if (SymbolSize) {
1125           // Function addresses match but sizes differ.
1126           BC->errs() << "BOLT-WARNING: sizes differ for function " << UniqueName
1127                      << ". FDE : " << FDE.getAddressRange()
1128                      << "; symbol table : " << SymbolSize
1129                      << ". Using max size.\n";
1130         }
1131         SymbolSize = std::max(SymbolSize, FDE.getAddressRange());
1132         if (BC->getBinaryDataAtAddress(SymbolAddress)) {
1133           BC->setBinaryDataSize(SymbolAddress, SymbolSize);
1134         } else {
1135           LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x"
1136                             << Twine::utohexstr(SymbolAddress) << "\n");
1137         }
1138       }
1139     }
1140 
1141     BinaryFunction *BF = nullptr;
1142     // Since function may not have yet obtained its real size, do a search
1143     // using the list of registered functions instead of calling
1144     // getBinaryFunctionAtAddress().
1145     auto BFI = BC->getBinaryFunctions().find(SymbolAddress);
1146     if (BFI != BC->getBinaryFunctions().end()) {
1147       BF = &BFI->second;
1148       // Duplicate the function name. Make sure everything matches before we add
1149       // an alternative name.
1150       if (SymbolSize != BF->getSize()) {
1151         if (opts::Verbosity >= 1) {
1152           if (SymbolSize && BF->getSize())
1153             BC->errs() << "BOLT-WARNING: size mismatch for duplicate entries "
1154                        << *BF << " and " << UniqueName << '\n';
1155           BC->outs() << "BOLT-INFO: adjusting size of function " << *BF
1156                      << " old " << BF->getSize() << " new " << SymbolSize
1157                      << "\n";
1158         }
1159         BF->setSize(std::max(SymbolSize, BF->getSize()));
1160         BC->setBinaryDataSize(SymbolAddress, BF->getSize());
1161       }
1162       BF->addAlternativeName(UniqueName);
1163     } else {
1164       ErrorOr<BinarySection &> Section =
1165           BC->getSectionForAddress(SymbolAddress);
1166       // Skip symbols from invalid sections
1167       if (!Section) {
1168         BC->errs() << "BOLT-WARNING: " << UniqueName << " (0x"
1169                    << Twine::utohexstr(SymbolAddress)
1170                    << ") does not have any section\n";
1171         continue;
1172       }
1173 
1174       // Skip symbols from zero-sized sections.
1175       if (!Section->getSize())
1176         continue;
1177 
1178       BF = BC->createBinaryFunction(UniqueName, *Section, SymbolAddress,
1179                                     SymbolSize);
1180       if (!IsSimple)
1181         BF->setSimple(false);
1182     }
1183 
1184     // Check if it's a cold function fragment.
1185     if (FunctionFragmentTemplate.match(SymName)) {
1186       static bool PrintedWarning = false;
1187       if (!PrintedWarning) {
1188         PrintedWarning = true;
1189         BC->errs() << "BOLT-WARNING: split function detected on input : "
1190                    << SymName;
1191         if (BC->HasRelocations)
1192           BC->errs() << ". The support is limited in relocation mode\n";
1193         else
1194           BC->errs() << '\n';
1195       }
1196       BC->HasSplitFunctions = true;
1197       BF->IsFragment = true;
1198     }
1199 
1200     if (!AlternativeName.empty())
1201       BF->addAlternativeName(AlternativeName);
1202 
1203     registerName(SymbolSize);
1204     PreviousFunction = BF;
1205   }
1206 
1207   // Read dynamic relocation first as their presence affects the way we process
1208   // static relocations. E.g. we will ignore a static relocation at an address
1209   // that is a subject to dynamic relocation processing.
1210   processDynamicRelocations();
1211 
1212   // Process PLT section.
1213   disassemblePLT();
1214 
1215   // See if we missed any functions marked by FDE.
1216   for (const auto &FDEI : CFIRdWrt->getFDEs()) {
1217     const uint64_t Address = FDEI.first;
1218     const dwarf::FDE *FDE = FDEI.second;
1219     const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address);
1220     if (BF)
1221       continue;
1222 
1223     BF = BC->getBinaryFunctionContainingAddress(Address);
1224     if (BF) {
1225       BC->errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address)
1226                  << ", 0x" << Twine::utohexstr(Address + FDE->getAddressRange())
1227                  << ") conflicts with function " << *BF << '\n';
1228       continue;
1229     }
1230 
1231     if (opts::Verbosity >= 1)
1232       BC->errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address)
1233                  << ", 0x" << Twine::utohexstr(Address + FDE->getAddressRange())
1234                  << ") has no corresponding symbol table entry\n";
1235 
1236     ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
1237     assert(Section && "cannot get section for address from FDE");
1238     std::string FunctionName =
1239         "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str();
1240     BC->createBinaryFunction(FunctionName, *Section, Address,
1241                              FDE->getAddressRange());
1242   }
1243 
1244   BC->setHasSymbolsWithFileName(SeenFileName);
1245 
1246   // Now that all the functions were created - adjust their boundaries.
1247   adjustFunctionBoundaries();
1248 
1249   // Annotate functions with code/data markers in AArch64
1250   for (auto ISym = SortedMarkerSymbols.begin();
1251        ISym != SortedMarkerSymbols.end(); ++ISym) {
1252 
1253     auto *BF =
1254         BC->getBinaryFunctionContainingAddress(ISym->Address, true, true);
1255 
1256     if (!BF) {
1257       // Stray marker
1258       continue;
1259     }
1260     const auto EntryOffset = ISym->Address - BF->getAddress();
1261     if (ISym->Type == MarkerSymType::CODE) {
1262       BF->markCodeAtOffset(EntryOffset);
1263       continue;
1264     }
1265     if (ISym->Type == MarkerSymType::DATA) {
1266       BF->markDataAtOffset(EntryOffset);
1267       BC->AddressToConstantIslandMap[ISym->Address] = BF;
1268       continue;
1269     }
1270     llvm_unreachable("Unknown marker");
1271   }
1272 
1273   if (BC->isAArch64()) {
1274     // Check for dynamic relocations that might be contained in
1275     // constant islands.
1276     for (const BinarySection &Section : BC->allocatableSections()) {
1277       const uint64_t SectionAddress = Section.getAddress();
1278       for (const Relocation &Rel : Section.dynamicRelocations()) {
1279         const uint64_t RelAddress = SectionAddress + Rel.Offset;
1280         BinaryFunction *BF =
1281             BC->getBinaryFunctionContainingAddress(RelAddress,
1282                                                    /*CheckPastEnd*/ false,
1283                                                    /*UseMaxSize*/ true);
1284         if (BF) {
1285           assert(Rel.isRelative() && "Expected relative relocation for island");
1286           BC->logBOLTErrorsAndQuitOnFatal(
1287               BF->markIslandDynamicRelocationAtAddress(RelAddress));
1288         }
1289       }
1290     }
1291   }
1292 
1293   if (!BC->IsLinuxKernel) {
1294     // Read all relocations now that we have binary functions mapped.
1295     processRelocations();
1296   }
1297 
1298   registerFragments();
1299   FileSymbols.clear();
1300   FileSymRefs.clear();
1301 
1302   discoverBOLTReserved();
1303 }
1304 
1305 void RewriteInstance::discoverBOLTReserved() {
1306   BinaryData *StartBD = BC->getBinaryDataByName(getBOLTReservedStart());
1307   BinaryData *EndBD = BC->getBinaryDataByName(getBOLTReservedEnd());
1308   if (!StartBD != !EndBD) {
1309     BC->errs() << "BOLT-ERROR: one of the symbols is missing from the binary: "
1310                << getBOLTReservedStart() << ", " << getBOLTReservedEnd()
1311                << '\n';
1312     exit(1);
1313   }
1314 
1315   if (!StartBD)
1316     return;
1317 
1318   if (StartBD->getAddress() >= EndBD->getAddress()) {
1319     BC->errs() << "BOLT-ERROR: invalid reserved space boundaries\n";
1320     exit(1);
1321   }
1322   BC->BOLTReserved = AddressRange(StartBD->getAddress(), EndBD->getAddress());
1323   BC->outs() << "BOLT-INFO: using reserved space for allocating new sections\n";
1324 
1325   PHDRTableOffset = 0;
1326   PHDRTableAddress = 0;
1327   NewTextSegmentAddress = 0;
1328   NewTextSegmentOffset = 0;
1329   NextAvailableAddress = BC->BOLTReserved.start();
1330 }
1331 
1332 Error RewriteInstance::discoverRtFiniAddress() {
1333   // Use DT_FINI if it's available.
1334   if (BC->FiniAddress) {
1335     BC->FiniFunctionAddress = BC->FiniAddress;
1336     return Error::success();
1337   }
1338 
1339   if (!BC->FiniArrayAddress || !BC->FiniArraySize) {
1340     return createStringError(
1341         std::errc::not_supported,
1342         "Instrumentation needs either DT_FINI or DT_FINI_ARRAY");
1343   }
1344 
1345   if (*BC->FiniArraySize < BC->AsmInfo->getCodePointerSize()) {
1346     return createStringError(std::errc::not_supported,
1347                              "Need at least 1 DT_FINI_ARRAY slot");
1348   }
1349 
1350   ErrorOr<BinarySection &> FiniArraySection =
1351       BC->getSectionForAddress(*BC->FiniArrayAddress);
1352   if (auto EC = FiniArraySection.getError())
1353     return errorCodeToError(EC);
1354 
1355   if (const Relocation *Reloc = FiniArraySection->getDynamicRelocationAt(0)) {
1356     BC->FiniFunctionAddress = Reloc->Addend;
1357     return Error::success();
1358   }
1359 
1360   if (const Relocation *Reloc = FiniArraySection->getRelocationAt(0)) {
1361     BC->FiniFunctionAddress = Reloc->Value;
1362     return Error::success();
1363   }
1364 
1365   return createStringError(std::errc::not_supported,
1366                            "No relocation for first DT_FINI_ARRAY slot");
1367 }
1368 
1369 void RewriteInstance::updateRtFiniReloc() {
1370   // Updating DT_FINI is handled by patchELFDynamic.
1371   if (BC->FiniAddress)
1372     return;
1373 
1374   const RuntimeLibrary *RT = BC->getRuntimeLibrary();
1375   if (!RT || !RT->getRuntimeFiniAddress())
1376     return;
1377 
1378   assert(BC->FiniArrayAddress && BC->FiniArraySize &&
1379          "inconsistent .fini_array state");
1380 
1381   ErrorOr<BinarySection &> FiniArraySection =
1382       BC->getSectionForAddress(*BC->FiniArrayAddress);
1383   assert(FiniArraySection && ".fini_array removed");
1384 
1385   if (std::optional<Relocation> Reloc =
1386           FiniArraySection->takeDynamicRelocationAt(0)) {
1387     assert(Reloc->Addend == BC->FiniFunctionAddress &&
1388            "inconsistent .fini_array dynamic relocation");
1389     Reloc->Addend = RT->getRuntimeFiniAddress();
1390     FiniArraySection->addDynamicRelocation(*Reloc);
1391   }
1392 
1393   // Update the static relocation by adding a pending relocation which will get
1394   // patched when flushPendingRelocations is called in rewriteFile. Note that
1395   // flushPendingRelocations will calculate the value to patch as
1396   // "Symbol + Addend". Since we don't have a symbol, just set the addend to the
1397   // desired value.
1398   FiniArraySection->addPendingRelocation(Relocation{
1399       /*Offset*/ 0, /*Symbol*/ nullptr, /*Type*/ Relocation::getAbs64(),
1400       /*Addend*/ RT->getRuntimeFiniAddress(), /*Value*/ 0});
1401 }
1402 
1403 void RewriteInstance::registerFragments() {
1404   if (!BC->HasSplitFunctions)
1405     return;
1406 
1407   // Process fragments with ambiguous parents separately as they are typically a
1408   // vanishing minority of cases and require expensive symbol table lookups.
1409   std::vector<std::pair<StringRef, BinaryFunction *>> AmbiguousFragments;
1410   for (auto &BFI : BC->getBinaryFunctions()) {
1411     BinaryFunction &Function = BFI.second;
1412     if (!Function.isFragment())
1413       continue;
1414     for (StringRef Name : Function.getNames()) {
1415       StringRef BaseName = NR.restore(Name);
1416       const bool IsGlobal = BaseName == Name;
1417       SmallVector<StringRef> Matches;
1418       if (!FunctionFragmentTemplate.match(BaseName, &Matches))
1419         continue;
1420       StringRef ParentName = Matches[1];
1421       const BinaryData *BD = BC->getBinaryDataByName(ParentName);
1422       const uint64_t NumPossibleLocalParents =
1423           NR.getUniquifiedNameCount(ParentName);
1424       // The most common case: single local parent fragment.
1425       if (!BD && NumPossibleLocalParents == 1) {
1426         BD = BC->getBinaryDataByName(NR.getUniqueName(ParentName, 1));
1427       } else if (BD && (!NumPossibleLocalParents || IsGlobal)) {
1428         // Global parent and either no local candidates (second most common), or
1429         // the fragment is global as well (uncommon).
1430       } else {
1431         // Any other case: need to disambiguate using FILE symbols.
1432         AmbiguousFragments.emplace_back(ParentName, &Function);
1433         continue;
1434       }
1435       if (BD) {
1436         BinaryFunction *BF = BC->getFunctionForSymbol(BD->getSymbol());
1437         if (BF) {
1438           BC->registerFragment(Function, *BF);
1439           continue;
1440         }
1441       }
1442       BC->errs() << "BOLT-ERROR: parent function not found for " << Function
1443                  << '\n';
1444       exit(1);
1445     }
1446   }
1447 
1448   if (AmbiguousFragments.empty())
1449     return;
1450 
1451   if (!BC->hasSymbolsWithFileName()) {
1452     BC->errs() << "BOLT-ERROR: input file has split functions but does not "
1453                   "have FILE symbols. If the binary was stripped, preserve "
1454                   "FILE symbols with --keep-file-symbols strip option\n";
1455     exit(1);
1456   }
1457 
1458   // The first global symbol is identified by the symbol table sh_info value.
1459   // Used as local symbol search stopping point.
1460   auto *ELF64LEFile = cast<ELF64LEObjectFile>(InputFile);
1461   const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
1462   auto *SymTab = llvm::find_if(cantFail(Obj.sections()), [](const auto &Sec) {
1463     return Sec.sh_type == ELF::SHT_SYMTAB;
1464   });
1465   assert(SymTab);
1466   // Symtab sh_info contains the value one greater than the symbol table index
1467   // of the last local symbol.
1468   ELFSymbolRef LocalSymEnd = ELF64LEFile->toSymbolRef(SymTab, SymTab->sh_info);
1469 
1470   for (auto &Fragment : AmbiguousFragments) {
1471     const StringRef &ParentName = Fragment.first;
1472     BinaryFunction *BF = Fragment.second;
1473     const uint64_t Address = BF->getAddress();
1474 
1475     // Get fragment's own symbol
1476     const auto SymIt = llvm::find_if(
1477         llvm::make_range(FileSymRefs.equal_range(Address)), [&](auto SI) {
1478           StringRef Name = cantFail(SI.second.getName());
1479           return Name.contains(ParentName);
1480         });
1481     if (SymIt == FileSymRefs.end()) {
1482       BC->errs()
1483           << "BOLT-ERROR: symbol lookup failed for function at address 0x"
1484           << Twine::utohexstr(Address) << '\n';
1485       exit(1);
1486     }
1487 
1488     // Find containing FILE symbol
1489     ELFSymbolRef Symbol = SymIt->second;
1490     auto FSI = llvm::upper_bound(FileSymbols, Symbol);
1491     if (FSI == FileSymbols.begin()) {
1492       BC->errs() << "BOLT-ERROR: owning FILE symbol not found for symbol "
1493                  << cantFail(Symbol.getName()) << '\n';
1494       exit(1);
1495     }
1496 
1497     ELFSymbolRef StopSymbol = LocalSymEnd;
1498     if (FSI != FileSymbols.end())
1499       StopSymbol = *FSI;
1500 
1501     uint64_t ParentAddress{0};
1502 
1503     // BOLT split fragment symbols are emitted just before the main function
1504     // symbol.
1505     for (ELFSymbolRef NextSymbol = Symbol; NextSymbol < StopSymbol;
1506          NextSymbol.moveNext()) {
1507       StringRef Name = cantFail(NextSymbol.getName());
1508       if (Name == ParentName) {
1509         ParentAddress = cantFail(NextSymbol.getValue());
1510         goto registerParent;
1511       }
1512       if (Name.starts_with(ParentName))
1513         // With multi-way splitting, there are multiple fragments with different
1514         // suffixes. Parent follows the last fragment.
1515         continue;
1516       break;
1517     }
1518 
1519     // Iterate over local file symbols and check symbol names to match parent.
1520     for (ELFSymbolRef Symbol(FSI[-1]); Symbol < StopSymbol; Symbol.moveNext()) {
1521       if (cantFail(Symbol.getName()) == ParentName) {
1522         ParentAddress = cantFail(Symbol.getAddress());
1523         break;
1524       }
1525     }
1526 
1527 registerParent:
1528     // No local parent is found, use global parent function.
1529     if (!ParentAddress)
1530       if (BinaryData *ParentBD = BC->getBinaryDataByName(ParentName))
1531         ParentAddress = ParentBD->getAddress();
1532 
1533     if (BinaryFunction *ParentBF =
1534             BC->getBinaryFunctionAtAddress(ParentAddress)) {
1535       BC->registerFragment(*BF, *ParentBF);
1536       continue;
1537     }
1538     BC->errs() << "BOLT-ERROR: parent function not found for " << *BF << '\n';
1539     exit(1);
1540   }
1541 }
1542 
1543 void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress,
1544                                               uint64_t EntryAddress,
1545                                               uint64_t EntrySize) {
1546   if (!TargetAddress)
1547     return;
1548 
1549   auto setPLTSymbol = [&](BinaryFunction *BF, StringRef Name) {
1550     const unsigned PtrSize = BC->AsmInfo->getCodePointerSize();
1551     MCSymbol *TargetSymbol = BC->registerNameAtAddress(
1552         Name.str() + "@GOT", TargetAddress, PtrSize, PtrSize);
1553     BF->setPLTSymbol(TargetSymbol);
1554   };
1555 
1556   BinaryFunction *BF = BC->getBinaryFunctionAtAddress(EntryAddress);
1557   if (BF && BC->isAArch64()) {
1558     // Handle IFUNC trampoline with symbol
1559     setPLTSymbol(BF, BF->getOneName());
1560     return;
1561   }
1562 
1563   const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress);
1564   if (!Rel)
1565     return;
1566 
1567   MCSymbol *Symbol = Rel->Symbol;
1568   if (!Symbol) {
1569     if (BC->isRISCV() || !Rel->Addend || !Rel->isIRelative())
1570       return;
1571 
1572     // IFUNC trampoline without symbol
1573     BinaryFunction *TargetBF = BC->getBinaryFunctionAtAddress(Rel->Addend);
1574     if (!TargetBF) {
1575       BC->errs()
1576           << "BOLT-WARNING: Expected BF to be presented as IFUNC resolver at "
1577           << Twine::utohexstr(Rel->Addend) << ", skipping\n";
1578       return;
1579     }
1580 
1581     Symbol = TargetBF->getSymbol();
1582   }
1583 
1584   ErrorOr<BinarySection &> Section = BC->getSectionForAddress(EntryAddress);
1585   assert(Section && "cannot get section for address");
1586   if (!BF)
1587     BF = BC->createBinaryFunction(Symbol->getName().str() + "@PLT", *Section,
1588                                   EntryAddress, 0, EntrySize,
1589                                   Section->getAlignment());
1590   else
1591     BF->addAlternativeName(Symbol->getName().str() + "@PLT");
1592   setPLTSymbol(BF, Symbol->getName());
1593 }
1594 
1595 void RewriteInstance::disassemblePLTInstruction(const BinarySection &Section,
1596                                                 uint64_t InstrOffset,
1597                                                 MCInst &Instruction,
1598                                                 uint64_t &InstrSize) {
1599   const uint64_t SectionAddress = Section.getAddress();
1600   const uint64_t SectionSize = Section.getSize();
1601   StringRef PLTContents = Section.getContents();
1602   ArrayRef<uint8_t> PLTData(
1603       reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize);
1604 
1605   const uint64_t InstrAddr = SectionAddress + InstrOffset;
1606   if (!BC->DisAsm->getInstruction(Instruction, InstrSize,
1607                                   PLTData.slice(InstrOffset), InstrAddr,
1608                                   nulls())) {
1609     BC->errs()
1610         << "BOLT-ERROR: unable to disassemble instruction in PLT section "
1611         << Section.getName() << formatv(" at offset {0:x}\n", InstrOffset);
1612     exit(1);
1613   }
1614 }
1615 
1616 void RewriteInstance::disassemblePLTSectionAArch64(BinarySection &Section) {
1617   const uint64_t SectionAddress = Section.getAddress();
1618   const uint64_t SectionSize = Section.getSize();
1619 
1620   uint64_t InstrOffset = 0;
1621   // Locate new plt entry
1622   while (InstrOffset < SectionSize) {
1623     InstructionListType Instructions;
1624     MCInst Instruction;
1625     uint64_t EntryOffset = InstrOffset;
1626     uint64_t EntrySize = 0;
1627     uint64_t InstrSize;
1628     // Loop through entry instructions
1629     while (InstrOffset < SectionSize) {
1630       disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize);
1631       EntrySize += InstrSize;
1632       if (!BC->MIB->isIndirectBranch(Instruction)) {
1633         Instructions.emplace_back(Instruction);
1634         InstrOffset += InstrSize;
1635         continue;
1636       }
1637 
1638       const uint64_t EntryAddress = SectionAddress + EntryOffset;
1639       const uint64_t TargetAddress = BC->MIB->analyzePLTEntry(
1640           Instruction, Instructions.begin(), Instructions.end(), EntryAddress);
1641 
1642       createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize);
1643       break;
1644     }
1645 
1646     // Branch instruction
1647     InstrOffset += InstrSize;
1648 
1649     // Skip nops if any
1650     while (InstrOffset < SectionSize) {
1651       disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize);
1652       if (!BC->MIB->isNoop(Instruction))
1653         break;
1654 
1655       InstrOffset += InstrSize;
1656     }
1657   }
1658 }
1659 
1660 void RewriteInstance::disassemblePLTSectionRISCV(BinarySection &Section) {
1661   const uint64_t SectionAddress = Section.getAddress();
1662   const uint64_t SectionSize = Section.getSize();
1663   StringRef PLTContents = Section.getContents();
1664   ArrayRef<uint8_t> PLTData(
1665       reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize);
1666 
1667   auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction,
1668                                     uint64_t &InstrSize) {
1669     const uint64_t InstrAddr = SectionAddress + InstrOffset;
1670     if (!BC->DisAsm->getInstruction(Instruction, InstrSize,
1671                                     PLTData.slice(InstrOffset), InstrAddr,
1672                                     nulls())) {
1673       BC->errs()
1674           << "BOLT-ERROR: unable to disassemble instruction in PLT section "
1675           << Section.getName() << " at offset 0x"
1676           << Twine::utohexstr(InstrOffset) << '\n';
1677       exit(1);
1678     }
1679   };
1680 
1681   // Skip the first special entry since no relocation points to it.
1682   uint64_t InstrOffset = 32;
1683 
1684   while (InstrOffset < SectionSize) {
1685     InstructionListType Instructions;
1686     MCInst Instruction;
1687     const uint64_t EntryOffset = InstrOffset;
1688     const uint64_t EntrySize = 16;
1689     uint64_t InstrSize;
1690 
1691     while (InstrOffset < EntryOffset + EntrySize) {
1692       disassembleInstruction(InstrOffset, Instruction, InstrSize);
1693       Instructions.emplace_back(Instruction);
1694       InstrOffset += InstrSize;
1695     }
1696 
1697     const uint64_t EntryAddress = SectionAddress + EntryOffset;
1698     const uint64_t TargetAddress = BC->MIB->analyzePLTEntry(
1699         Instruction, Instructions.begin(), Instructions.end(), EntryAddress);
1700 
1701     createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize);
1702   }
1703 }
1704 
1705 void RewriteInstance::disassemblePLTSectionX86(BinarySection &Section,
1706                                                uint64_t EntrySize) {
1707   const uint64_t SectionAddress = Section.getAddress();
1708   const uint64_t SectionSize = Section.getSize();
1709 
1710   for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= SectionSize;
1711        EntryOffset += EntrySize) {
1712     MCInst Instruction;
1713     uint64_t InstrSize, InstrOffset = EntryOffset;
1714     while (InstrOffset < EntryOffset + EntrySize) {
1715       disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize);
1716       // Check if the entry size needs adjustment.
1717       if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) &&
1718           EntrySize == 8)
1719         EntrySize = 16;
1720 
1721       if (BC->MIB->isIndirectBranch(Instruction))
1722         break;
1723 
1724       InstrOffset += InstrSize;
1725     }
1726 
1727     if (InstrOffset + InstrSize > EntryOffset + EntrySize)
1728       continue;
1729 
1730     uint64_t TargetAddress;
1731     if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress,
1732                                            SectionAddress + InstrOffset,
1733                                            InstrSize)) {
1734       BC->errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x"
1735                  << Twine::utohexstr(SectionAddress + InstrOffset) << '\n';
1736       exit(1);
1737     }
1738 
1739     createPLTBinaryFunction(TargetAddress, SectionAddress + EntryOffset,
1740                             EntrySize);
1741   }
1742 }
1743 
1744 void RewriteInstance::disassemblePLT() {
1745   auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) {
1746     if (BC->isAArch64())
1747       return disassemblePLTSectionAArch64(Section);
1748     if (BC->isRISCV())
1749       return disassemblePLTSectionRISCV(Section);
1750     if (BC->isX86())
1751       return disassemblePLTSectionX86(Section, EntrySize);
1752     llvm_unreachable("Unmplemented PLT");
1753   };
1754 
1755   for (BinarySection &Section : BC->allocatableSections()) {
1756     const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName());
1757     if (!PLTSI)
1758       continue;
1759 
1760     analyzeOnePLTSection(Section, PLTSI->EntrySize);
1761 
1762     BinaryFunction *PltBF;
1763     auto BFIter = BC->getBinaryFunctions().find(Section.getAddress());
1764     if (BFIter != BC->getBinaryFunctions().end()) {
1765       PltBF = &BFIter->second;
1766     } else {
1767       // If we did not register any function at the start of the section,
1768       // then it must be a general PLT entry. Add a function at the location.
1769       PltBF = BC->createBinaryFunction(
1770           "__BOLT_PSEUDO_" + Section.getName().str(), Section,
1771           Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment());
1772     }
1773     PltBF->setPseudo(true);
1774   }
1775 }
1776 
1777 void RewriteInstance::adjustFunctionBoundaries() {
1778   for (auto BFI = BC->getBinaryFunctions().begin(),
1779             BFE = BC->getBinaryFunctions().end();
1780        BFI != BFE; ++BFI) {
1781     BinaryFunction &Function = BFI->second;
1782     const BinaryFunction *NextFunction = nullptr;
1783     if (std::next(BFI) != BFE)
1784       NextFunction = &std::next(BFI)->second;
1785 
1786     // Check if there's a symbol or a function with a larger address in the
1787     // same section. If there is - it determines the maximum size for the
1788     // current function. Otherwise, it is the size of a containing section
1789     // the defines it.
1790     //
1791     // NOTE: ignore some symbols that could be tolerated inside the body
1792     //       of a function.
1793     auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress());
1794     while (NextSymRefI != FileSymRefs.end()) {
1795       SymbolRef &Symbol = NextSymRefI->second;
1796       const uint64_t SymbolAddress = NextSymRefI->first;
1797       const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize();
1798 
1799       if (NextFunction && SymbolAddress >= NextFunction->getAddress())
1800         break;
1801 
1802       if (!Function.isSymbolValidInScope(Symbol, SymbolSize))
1803         break;
1804 
1805       // Skip basic block labels. This happens on RISC-V with linker relaxation
1806       // enabled because every branch needs a relocation and corresponding
1807       // symbol. We don't want to add such symbols as entry points.
1808       const auto PrivateLabelPrefix = BC->AsmInfo->getPrivateLabelPrefix();
1809       if (!PrivateLabelPrefix.empty() &&
1810           cantFail(Symbol.getName()).starts_with(PrivateLabelPrefix)) {
1811         ++NextSymRefI;
1812         continue;
1813       }
1814 
1815       // This is potentially another entry point into the function.
1816       uint64_t EntryOffset = NextSymRefI->first - Function.getAddress();
1817       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function "
1818                         << Function << " at offset 0x"
1819                         << Twine::utohexstr(EntryOffset) << '\n');
1820       Function.addEntryPointAtOffset(EntryOffset);
1821 
1822       ++NextSymRefI;
1823     }
1824 
1825     // Function runs at most till the end of the containing section.
1826     uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress();
1827     // Or till the next object marked by a symbol.
1828     if (NextSymRefI != FileSymRefs.end())
1829       NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress);
1830 
1831     // Or till the next function not marked by a symbol.
1832     if (NextFunction)
1833       NextObjectAddress =
1834           std::min(NextFunction->getAddress(), NextObjectAddress);
1835 
1836     const uint64_t MaxSize = NextObjectAddress - Function.getAddress();
1837     if (MaxSize < Function.getSize()) {
1838       BC->errs() << "BOLT-ERROR: symbol seen in the middle of the function "
1839                  << Function << ". Skipping.\n";
1840       Function.setSimple(false);
1841       Function.setMaxSize(Function.getSize());
1842       continue;
1843     }
1844     Function.setMaxSize(MaxSize);
1845     if (!Function.getSize() && Function.isSimple()) {
1846       // Some assembly functions have their size set to 0, use the max
1847       // size as their real size.
1848       if (opts::Verbosity >= 1)
1849         BC->outs() << "BOLT-INFO: setting size of function " << Function
1850                    << " to " << Function.getMaxSize() << " (was 0)\n";
1851       Function.setSize(Function.getMaxSize());
1852     }
1853   }
1854 }
1855 
1856 void RewriteInstance::relocateEHFrameSection() {
1857   assert(EHFrameSection && "Non-empty .eh_frame section expected.");
1858 
1859   BinarySection *RelocatedEHFrameSection =
1860       getSection(".relocated" + getEHFrameSectionName());
1861   assert(RelocatedEHFrameSection &&
1862          "Relocated eh_frame section should be preregistered.");
1863   DWARFDataExtractor DE(EHFrameSection->getContents(),
1864                         BC->AsmInfo->isLittleEndian(),
1865                         BC->AsmInfo->getCodePointerSize());
1866   auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) {
1867     if (DwarfType == dwarf::DW_EH_PE_omit)
1868       return;
1869 
1870     // Only fix references that are relative to other locations.
1871     if (!(DwarfType & dwarf::DW_EH_PE_pcrel) &&
1872         !(DwarfType & dwarf::DW_EH_PE_textrel) &&
1873         !(DwarfType & dwarf::DW_EH_PE_funcrel) &&
1874         !(DwarfType & dwarf::DW_EH_PE_datarel))
1875       return;
1876 
1877     if (!(DwarfType & dwarf::DW_EH_PE_sdata4))
1878       return;
1879 
1880     uint64_t RelType;
1881     switch (DwarfType & 0x0f) {
1882     default:
1883       llvm_unreachable("unsupported DWARF encoding type");
1884     case dwarf::DW_EH_PE_sdata4:
1885     case dwarf::DW_EH_PE_udata4:
1886       RelType = Relocation::getPC32();
1887       Offset -= 4;
1888       break;
1889     case dwarf::DW_EH_PE_sdata8:
1890     case dwarf::DW_EH_PE_udata8:
1891       RelType = Relocation::getPC64();
1892       Offset -= 8;
1893       break;
1894     }
1895 
1896     // Create a relocation against an absolute value since the goal is to
1897     // preserve the contents of the section independent of the new values
1898     // of referenced symbols.
1899     RelocatedEHFrameSection->addRelocation(Offset, nullptr, RelType, Value);
1900   };
1901 
1902   Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc);
1903   check_error(std::move(E), "failed to patch EH frame");
1904 }
1905 
1906 Error RewriteInstance::readSpecialSections() {
1907   NamedRegionTimer T("readSpecialSections", "read special sections",
1908                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
1909 
1910   bool HasTextRelocations = false;
1911   bool HasSymbolTable = false;
1912   bool HasDebugInfo = false;
1913 
1914   // Process special sections.
1915   for (const SectionRef &Section : InputFile->sections()) {
1916     Expected<StringRef> SectionNameOrErr = Section.getName();
1917     check_error(SectionNameOrErr.takeError(), "cannot get section name");
1918     StringRef SectionName = *SectionNameOrErr;
1919 
1920     if (Error E = Section.getContents().takeError())
1921       return E;
1922     BC->registerSection(Section);
1923     LLVM_DEBUG(
1924         dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x"
1925                << Twine::utohexstr(Section.getAddress()) << ":0x"
1926                << Twine::utohexstr(Section.getAddress() + Section.getSize())
1927                << "\n");
1928     if (isDebugSection(SectionName))
1929       HasDebugInfo = true;
1930   }
1931 
1932   // Set IsRelro section attribute based on PT_GNU_RELRO segment.
1933   markGnuRelroSections();
1934 
1935   if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) {
1936     BC->errs() << "BOLT-WARNING: debug info will be stripped from the binary. "
1937                   "Use -update-debug-sections to keep it.\n";
1938   }
1939 
1940   HasTextRelocations = (bool)BC->getUniqueSectionByName(
1941       ".rela" + std::string(BC->getMainCodeSectionName()));
1942   HasSymbolTable = (bool)BC->getUniqueSectionByName(".symtab");
1943   EHFrameSection = BC->getUniqueSectionByName(".eh_frame");
1944 
1945   if (ErrorOr<BinarySection &> BATSec =
1946           BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) {
1947     BC->HasBATSection = true;
1948     // Do not read BAT when plotting a heatmap
1949     if (!opts::HeatmapMode) {
1950       if (std::error_code EC = BAT->parse(BC->outs(), BATSec->getContents())) {
1951         BC->errs() << "BOLT-ERROR: failed to parse BOLT address translation "
1952                       "table.\n";
1953         exit(1);
1954       }
1955     }
1956   }
1957 
1958   if (opts::PrintSections) {
1959     BC->outs() << "BOLT-INFO: Sections from original binary:\n";
1960     BC->printSections(BC->outs());
1961   }
1962 
1963   if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) {
1964     BC->errs()
1965         << "BOLT-ERROR: relocations against code are missing from the input "
1966            "file. Cannot proceed in relocations mode (-relocs).\n";
1967     exit(1);
1968   }
1969 
1970   BC->HasRelocations =
1971       HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE);
1972 
1973   if (BC->IsLinuxKernel && BC->HasRelocations) {
1974     BC->outs() << "BOLT-INFO: disabling relocation mode for Linux kernel\n";
1975     BC->HasRelocations = false;
1976   }
1977 
1978   BC->IsStripped = !HasSymbolTable;
1979 
1980   if (BC->IsStripped && !opts::AllowStripped) {
1981     BC->errs()
1982         << "BOLT-ERROR: stripped binaries are not supported. If you know "
1983            "what you're doing, use --allow-stripped to proceed";
1984     exit(1);
1985   }
1986 
1987   // Force non-relocation mode for heatmap generation
1988   if (opts::HeatmapMode)
1989     BC->HasRelocations = false;
1990 
1991   if (BC->HasRelocations)
1992     BC->outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "")
1993                << "relocation mode\n";
1994 
1995   // Read EH frame for function boundaries info.
1996   Expected<const DWARFDebugFrame *> EHFrameOrError = BC->DwCtx->getEHFrame();
1997   if (!EHFrameOrError)
1998     report_error("expected valid eh_frame section", EHFrameOrError.takeError());
1999   CFIRdWrt.reset(new CFIReaderWriter(*BC, *EHFrameOrError.get()));
2000 
2001   processSectionMetadata();
2002 
2003   // Read .dynamic/PT_DYNAMIC.
2004   return readELFDynamic();
2005 }
2006 
2007 void RewriteInstance::adjustCommandLineOptions() {
2008   if (BC->isAArch64() && !BC->HasRelocations)
2009     BC->errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully "
2010                   "supported\n";
2011 
2012   if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
2013     RtLibrary->adjustCommandLineOptions(*BC);
2014 
2015   if (BC->isX86() && BC->MAB->allowAutoPadding()) {
2016     if (!BC->HasRelocations) {
2017       BC->errs()
2018           << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in "
2019              "non-relocation mode\n";
2020       exit(1);
2021     }
2022     BC->outs()
2023         << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout "
2024            "may take several minutes\n";
2025   }
2026 
2027   if (opts::SplitEH && !BC->HasRelocations) {
2028     BC->errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n";
2029     opts::SplitEH = false;
2030   }
2031 
2032   if (opts::StrictMode && !BC->HasRelocations) {
2033     BC->errs()
2034         << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation "
2035            "mode\n";
2036     opts::StrictMode = false;
2037   }
2038 
2039   if (BC->HasRelocations && opts::AggregateOnly &&
2040       !opts::StrictMode.getNumOccurrences()) {
2041     BC->outs() << "BOLT-INFO: enabling strict relocation mode for aggregation "
2042                   "purposes\n";
2043     opts::StrictMode = true;
2044   }
2045 
2046   if (!BC->HasRelocations &&
2047       opts::ReorderFunctions != ReorderFunctions::RT_NONE) {
2048     BC->errs() << "BOLT-ERROR: function reordering only works when "
2049                << "relocations are enabled\n";
2050     exit(1);
2051   }
2052 
2053   if (opts::Instrument ||
2054       (opts::ReorderFunctions != ReorderFunctions::RT_NONE &&
2055        !opts::HotText.getNumOccurrences())) {
2056     opts::HotText = true;
2057   } else if (opts::HotText && !BC->HasRelocations) {
2058     BC->errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n";
2059     opts::HotText = false;
2060   }
2061 
2062   if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) {
2063     opts::HotTextMoveSections.addValue(".stub");
2064     opts::HotTextMoveSections.addValue(".mover");
2065     opts::HotTextMoveSections.addValue(".never_hugify");
2066   }
2067 
2068   if (opts::UseOldText && !BC->OldTextSectionAddress) {
2069     BC->errs()
2070         << "BOLT-WARNING: cannot use old .text as the section was not found"
2071            "\n";
2072     opts::UseOldText = false;
2073   }
2074   if (opts::UseOldText && !BC->HasRelocations) {
2075     BC->errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n";
2076     opts::UseOldText = false;
2077   }
2078 
2079   if (!opts::AlignText.getNumOccurrences())
2080     opts::AlignText = BC->PageAlign;
2081 
2082   if (opts::AlignText < opts::AlignFunctions)
2083     opts::AlignText = (unsigned)opts::AlignFunctions;
2084 
2085   if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode &&
2086       !opts::UseOldText)
2087     opts::Lite = true;
2088 
2089   if (opts::Lite && opts::UseOldText) {
2090     BC->errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. "
2091                   "Disabling -use-old-text.\n";
2092     opts::UseOldText = false;
2093   }
2094 
2095   if (opts::Lite && opts::StrictMode) {
2096     BC->errs()
2097         << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n";
2098     exit(1);
2099   }
2100 
2101   if (opts::Lite)
2102     BC->outs() << "BOLT-INFO: enabling lite mode\n";
2103 
2104   if (BC->IsLinuxKernel) {
2105     if (!opts::KeepNops.getNumOccurrences())
2106       opts::KeepNops = true;
2107 
2108     // Linux kernel may resume execution after a trap instruction in some cases.
2109     if (!opts::TerminalTrap.getNumOccurrences())
2110       opts::TerminalTrap = false;
2111   }
2112 }
2113 
2114 namespace {
2115 template <typename ELFT>
2116 int64_t getRelocationAddend(const ELFObjectFile<ELFT> *Obj,
2117                             const RelocationRef &RelRef) {
2118   using ELFShdrTy = typename ELFT::Shdr;
2119   using Elf_Rela = typename ELFT::Rela;
2120   int64_t Addend = 0;
2121   const ELFFile<ELFT> &EF = Obj->getELFFile();
2122   DataRefImpl Rel = RelRef.getRawDataRefImpl();
2123   const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a));
2124   switch (RelocationSection->sh_type) {
2125   default:
2126     llvm_unreachable("unexpected relocation section type");
2127   case ELF::SHT_REL:
2128     break;
2129   case ELF::SHT_RELA: {
2130     const Elf_Rela *RelA = Obj->getRela(Rel);
2131     Addend = RelA->r_addend;
2132     break;
2133   }
2134   }
2135 
2136   return Addend;
2137 }
2138 
2139 int64_t getRelocationAddend(const ELFObjectFileBase *Obj,
2140                             const RelocationRef &Rel) {
2141   return getRelocationAddend(cast<ELF64LEObjectFile>(Obj), Rel);
2142 }
2143 
2144 template <typename ELFT>
2145 uint32_t getRelocationSymbol(const ELFObjectFile<ELFT> *Obj,
2146                              const RelocationRef &RelRef) {
2147   using ELFShdrTy = typename ELFT::Shdr;
2148   uint32_t Symbol = 0;
2149   const ELFFile<ELFT> &EF = Obj->getELFFile();
2150   DataRefImpl Rel = RelRef.getRawDataRefImpl();
2151   const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a));
2152   switch (RelocationSection->sh_type) {
2153   default:
2154     llvm_unreachable("unexpected relocation section type");
2155   case ELF::SHT_REL:
2156     Symbol = Obj->getRel(Rel)->getSymbol(EF.isMips64EL());
2157     break;
2158   case ELF::SHT_RELA:
2159     Symbol = Obj->getRela(Rel)->getSymbol(EF.isMips64EL());
2160     break;
2161   }
2162 
2163   return Symbol;
2164 }
2165 
2166 uint32_t getRelocationSymbol(const ELFObjectFileBase *Obj,
2167                              const RelocationRef &Rel) {
2168   return getRelocationSymbol(cast<ELF64LEObjectFile>(Obj), Rel);
2169 }
2170 } // anonymous namespace
2171 
2172 bool RewriteInstance::analyzeRelocation(
2173     const RelocationRef &Rel, uint64_t &RType, std::string &SymbolName,
2174     bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend,
2175     uint64_t &ExtractedValue, bool &Skip) const {
2176   Skip = false;
2177   if (!Relocation::isSupported(RType))
2178     return false;
2179 
2180   auto IsWeakReference = [](const SymbolRef &Symbol) {
2181     Expected<uint32_t> SymFlagsOrErr = Symbol.getFlags();
2182     if (!SymFlagsOrErr)
2183       return false;
2184     return (*SymFlagsOrErr & SymbolRef::SF_Undefined) &&
2185            (*SymFlagsOrErr & SymbolRef::SF_Weak);
2186   };
2187 
2188   const bool IsAArch64 = BC->isAArch64();
2189 
2190   const size_t RelSize = Relocation::getSizeForType(RType);
2191 
2192   ErrorOr<uint64_t> Value =
2193       BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize);
2194   assert(Value && "failed to extract relocated value");
2195   if ((Skip = Relocation::skipRelocationProcess(RType, *Value)))
2196     return true;
2197 
2198   ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset());
2199   Addend = getRelocationAddend(InputFile, Rel);
2200 
2201   const bool IsPCRelative = Relocation::isPCRelative(RType);
2202   const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0;
2203   bool SkipVerification = false;
2204   auto SymbolIter = Rel.getSymbol();
2205   if (SymbolIter == InputFile->symbol_end()) {
2206     SymbolAddress = ExtractedValue - Addend + PCRelOffset;
2207     MCSymbol *RelSymbol =
2208         BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat");
2209     SymbolName = std::string(RelSymbol->getName());
2210     IsSectionRelocation = false;
2211   } else {
2212     const SymbolRef &Symbol = *SymbolIter;
2213     SymbolName = std::string(cantFail(Symbol.getName()));
2214     SymbolAddress = cantFail(Symbol.getAddress());
2215     SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other);
2216     // Section symbols are marked as ST_Debug.
2217     IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug);
2218     // Check for PLT entry registered with symbol name
2219     if (!SymbolAddress && !IsWeakReference(Symbol) &&
2220         (IsAArch64 || BC->isRISCV())) {
2221       const BinaryData *BD = BC->getPLTBinaryDataByName(SymbolName);
2222       SymbolAddress = BD ? BD->getAddress() : 0;
2223     }
2224   }
2225   // For PIE or dynamic libs, the linker may choose not to put the relocation
2226   // result at the address if it is a X86_64_64 one because it will emit a
2227   // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to
2228   // resolve it at run time. The static relocation result goes as the addend
2229   // of the dynamic relocation in this case. We can't verify these cases.
2230   // FIXME: perhaps we can try to find if it really emitted a corresponding
2231   // RELATIVE relocation at this offset with the correct value as the addend.
2232   if (!BC->HasFixedLoadAddress && RelSize == 8)
2233     SkipVerification = true;
2234 
2235   if (IsSectionRelocation && !IsAArch64) {
2236     ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress);
2237     assert(Section && "section expected for section relocation");
2238     SymbolName = "section " + std::string(Section->getName());
2239     // Convert section symbol relocations to regular relocations inside
2240     // non-section symbols.
2241     if (Section->containsAddress(ExtractedValue) && !IsPCRelative) {
2242       SymbolAddress = ExtractedValue;
2243       Addend = 0;
2244     } else {
2245       Addend = ExtractedValue - (SymbolAddress - PCRelOffset);
2246     }
2247   }
2248 
2249   // If no symbol has been found or if it is a relocation requiring the
2250   // creation of a GOT entry, do not link against the symbol but against
2251   // whatever address was extracted from the instruction itself. We are
2252   // not creating a GOT entry as this was already processed by the linker.
2253   // For GOT relocs, do not subtract addend as the addend does not refer
2254   // to this instruction's target, but it refers to the target in the GOT
2255   // entry.
2256   if (Relocation::isGOT(RType)) {
2257     Addend = 0;
2258     SymbolAddress = ExtractedValue + PCRelOffset;
2259   } else if (Relocation::isTLS(RType)) {
2260     SkipVerification = true;
2261   } else if (!SymbolAddress) {
2262     assert(!IsSectionRelocation);
2263     if (ExtractedValue || Addend == 0 || IsPCRelative) {
2264       SymbolAddress =
2265           truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize);
2266     } else {
2267       // This is weird case.  The extracted value is zero but the addend is
2268       // non-zero and the relocation is not pc-rel.  Using the previous logic,
2269       // the SymbolAddress would end up as a huge number.  Seen in
2270       // exceptions_pic.test.
2271       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x"
2272                         << Twine::utohexstr(Rel.getOffset())
2273                         << " value does not match addend for "
2274                         << "relocation to undefined symbol.\n");
2275       return true;
2276     }
2277   }
2278 
2279   auto verifyExtractedValue = [&]() {
2280     if (SkipVerification)
2281       return true;
2282 
2283     if (IsAArch64 || BC->isRISCV())
2284       return true;
2285 
2286     if (SymbolName == "__hot_start" || SymbolName == "__hot_end")
2287       return true;
2288 
2289     if (RType == ELF::R_X86_64_PLT32)
2290       return true;
2291 
2292     return truncateToSize(ExtractedValue, RelSize) ==
2293            truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize);
2294   };
2295 
2296   (void)verifyExtractedValue;
2297   assert(verifyExtractedValue() && "mismatched extracted relocation value");
2298 
2299   return true;
2300 }
2301 
2302 void RewriteInstance::processDynamicRelocations() {
2303   // Read .relr.dyn section containing compressed R_*_RELATIVE relocations.
2304   if (DynamicRelrSize > 0) {
2305     ErrorOr<BinarySection &> DynamicRelrSectionOrErr =
2306         BC->getSectionForAddress(*DynamicRelrAddress);
2307     if (!DynamicRelrSectionOrErr)
2308       report_error("unable to find section corresponding to DT_RELR",
2309                    DynamicRelrSectionOrErr.getError());
2310     if (DynamicRelrSectionOrErr->getSize() != DynamicRelrSize)
2311       report_error("section size mismatch for DT_RELRSZ",
2312                    errc::executable_format_error);
2313     readDynamicRelrRelocations(*DynamicRelrSectionOrErr);
2314   }
2315 
2316   // Read relocations for PLT - DT_JMPREL.
2317   if (PLTRelocationsSize > 0) {
2318     ErrorOr<BinarySection &> PLTRelSectionOrErr =
2319         BC->getSectionForAddress(*PLTRelocationsAddress);
2320     if (!PLTRelSectionOrErr)
2321       report_error("unable to find section corresponding to DT_JMPREL",
2322                    PLTRelSectionOrErr.getError());
2323     if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize)
2324       report_error("section size mismatch for DT_PLTRELSZ",
2325                    errc::executable_format_error);
2326     readDynamicRelocations(PLTRelSectionOrErr->getSectionRef(),
2327                            /*IsJmpRel*/ true);
2328   }
2329 
2330   // The rest of dynamic relocations - DT_RELA.
2331   // The static executable might have .rela.dyn secion and not have PT_DYNAMIC
2332   if (!DynamicRelocationsSize && BC->IsStaticExecutable) {
2333     ErrorOr<BinarySection &> DynamicRelSectionOrErr =
2334         BC->getUniqueSectionByName(getRelaDynSectionName());
2335     if (DynamicRelSectionOrErr) {
2336       DynamicRelocationsAddress = DynamicRelSectionOrErr->getAddress();
2337       DynamicRelocationsSize = DynamicRelSectionOrErr->getSize();
2338       const SectionRef &SectionRef = DynamicRelSectionOrErr->getSectionRef();
2339       DynamicRelativeRelocationsCount = std::distance(
2340           SectionRef.relocation_begin(), SectionRef.relocation_end());
2341     }
2342   }
2343 
2344   if (DynamicRelocationsSize > 0) {
2345     ErrorOr<BinarySection &> DynamicRelSectionOrErr =
2346         BC->getSectionForAddress(*DynamicRelocationsAddress);
2347     if (!DynamicRelSectionOrErr)
2348       report_error("unable to find section corresponding to DT_RELA",
2349                    DynamicRelSectionOrErr.getError());
2350     auto DynamicRelSectionSize = DynamicRelSectionOrErr->getSize();
2351     // On RISC-V DT_RELASZ seems to include both .rela.dyn and .rela.plt
2352     if (DynamicRelocationsSize == DynamicRelSectionSize + PLTRelocationsSize)
2353       DynamicRelocationsSize = DynamicRelSectionSize;
2354     if (DynamicRelSectionSize != DynamicRelocationsSize)
2355       report_error("section size mismatch for DT_RELASZ",
2356                    errc::executable_format_error);
2357     readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef(),
2358                            /*IsJmpRel*/ false);
2359   }
2360 }
2361 
2362 void RewriteInstance::processRelocations() {
2363   if (!BC->HasRelocations)
2364     return;
2365 
2366   for (const SectionRef &Section : InputFile->sections()) {
2367     section_iterator SecIter = cantFail(Section.getRelocatedSection());
2368     if (SecIter == InputFile->section_end())
2369       continue;
2370     if (BinarySection(*BC, Section).isAllocatable())
2371       continue;
2372 
2373     readRelocations(Section);
2374   }
2375 
2376   if (NumFailedRelocations)
2377     BC->errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations
2378                << " relocations\n";
2379 }
2380 
2381 void RewriteInstance::readDynamicRelocations(const SectionRef &Section,
2382                                              bool IsJmpRel) {
2383   assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected");
2384 
2385   LLVM_DEBUG({
2386     StringRef SectionName = cantFail(Section.getName());
2387     dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
2388            << ":\n";
2389   });
2390 
2391   for (const RelocationRef &Rel : Section.relocations()) {
2392     const uint64_t RType = Rel.getType();
2393     if (Relocation::isNone(RType))
2394       continue;
2395 
2396     StringRef SymbolName = "<none>";
2397     MCSymbol *Symbol = nullptr;
2398     uint64_t SymbolAddress = 0;
2399     const uint64_t Addend = getRelocationAddend(InputFile, Rel);
2400 
2401     symbol_iterator SymbolIter = Rel.getSymbol();
2402     if (SymbolIter != InputFile->symbol_end()) {
2403       SymbolName = cantFail(SymbolIter->getName());
2404       BinaryData *BD = BC->getBinaryDataByName(SymbolName);
2405       Symbol = BD ? BD->getSymbol()
2406                   : BC->getOrCreateUndefinedGlobalSymbol(SymbolName);
2407       SymbolAddress = cantFail(SymbolIter->getAddress());
2408       (void)SymbolAddress;
2409     }
2410 
2411     LLVM_DEBUG(
2412       SmallString<16> TypeName;
2413       Rel.getTypeName(TypeName);
2414       dbgs() << "BOLT-DEBUG: dynamic relocation at 0x"
2415              << Twine::utohexstr(Rel.getOffset()) << " : " << TypeName
2416              << " : " << SymbolName << " : " <<  Twine::utohexstr(SymbolAddress)
2417              << " : + 0x" << Twine::utohexstr(Addend) << '\n'
2418     );
2419 
2420     if (IsJmpRel)
2421       IsJmpRelocation[RType] = true;
2422 
2423     if (Symbol)
2424       SymbolIndex[Symbol] = getRelocationSymbol(InputFile, Rel);
2425 
2426     BC->addDynamicRelocation(Rel.getOffset(), Symbol, RType, Addend);
2427   }
2428 }
2429 
2430 void RewriteInstance::readDynamicRelrRelocations(BinarySection &Section) {
2431   assert(Section.isAllocatable() && "allocatable expected");
2432 
2433   LLVM_DEBUG({
2434     StringRef SectionName = Section.getName();
2435     dbgs() << "BOLT-DEBUG: reading relocations in section " << SectionName
2436            << ":\n";
2437   });
2438 
2439   const uint64_t RType = Relocation::getRelative();
2440   const uint8_t PSize = BC->AsmInfo->getCodePointerSize();
2441   const uint64_t MaxDelta = ((CHAR_BIT * DynamicRelrEntrySize) - 1) * PSize;
2442 
2443   auto ExtractAddendValue = [&](uint64_t Address) -> uint64_t {
2444     ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
2445     assert(Section && "cannot get section for data address from RELR");
2446     DataExtractor DE = DataExtractor(Section->getContents(),
2447                                      BC->AsmInfo->isLittleEndian(), PSize);
2448     uint64_t Offset = Address - Section->getAddress();
2449     return DE.getUnsigned(&Offset, PSize);
2450   };
2451 
2452   auto AddRelocation = [&](uint64_t Address) {
2453     uint64_t Addend = ExtractAddendValue(Address);
2454     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: R_*_RELATIVE relocation at 0x"
2455                       << Twine::utohexstr(Address) << " to 0x"
2456                       << Twine::utohexstr(Addend) << '\n';);
2457     BC->addDynamicRelocation(Address, nullptr, RType, Addend);
2458   };
2459 
2460   DataExtractor DE = DataExtractor(Section.getContents(),
2461                                    BC->AsmInfo->isLittleEndian(), PSize);
2462   uint64_t Offset = 0, Address = 0;
2463   uint64_t RelrCount = DynamicRelrSize / DynamicRelrEntrySize;
2464   while (RelrCount--) {
2465     assert(DE.isValidOffset(Offset));
2466     uint64_t Entry = DE.getUnsigned(&Offset, DynamicRelrEntrySize);
2467     if ((Entry & 1) == 0) {
2468       AddRelocation(Entry);
2469       Address = Entry + PSize;
2470     } else {
2471       const uint64_t StartAddress = Address;
2472       while (Entry >>= 1) {
2473         if (Entry & 1)
2474           AddRelocation(Address);
2475 
2476         Address += PSize;
2477       }
2478 
2479       Address = StartAddress + MaxDelta;
2480     }
2481   }
2482 }
2483 
2484 void RewriteInstance::printRelocationInfo(const RelocationRef &Rel,
2485                                           StringRef SymbolName,
2486                                           uint64_t SymbolAddress,
2487                                           uint64_t Addend,
2488                                           uint64_t ExtractedValue) const {
2489   SmallString<16> TypeName;
2490   Rel.getTypeName(TypeName);
2491   const uint64_t Address = SymbolAddress + Addend;
2492   const uint64_t Offset = Rel.getOffset();
2493   ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress);
2494   BinaryFunction *Func =
2495       BC->getBinaryFunctionContainingAddress(Offset, false, BC->isAArch64());
2496   dbgs() << formatv("Relocation: offset = {0:x}; type = {1}; value = {2:x}; ",
2497                     Offset, TypeName, ExtractedValue)
2498          << formatv("symbol = {0} ({1}); symbol address = {2:x}; ", SymbolName,
2499                     Section ? Section->getName() : "", SymbolAddress)
2500          << formatv("addend = {0:x}; address = {1:x}; in = ", Addend, Address);
2501   if (Func)
2502     dbgs() << Func->getPrintName();
2503   else
2504     dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName();
2505   dbgs() << '\n';
2506 }
2507 
2508 void RewriteInstance::readRelocations(const SectionRef &Section) {
2509   LLVM_DEBUG({
2510     StringRef SectionName = cantFail(Section.getName());
2511     dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
2512            << ":\n";
2513   });
2514   if (BinarySection(*BC, Section).isAllocatable()) {
2515     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n");
2516     return;
2517   }
2518   section_iterator SecIter = cantFail(Section.getRelocatedSection());
2519   assert(SecIter != InputFile->section_end() && "relocated section expected");
2520   SectionRef RelocatedSection = *SecIter;
2521 
2522   StringRef RelocatedSectionName = cantFail(RelocatedSection.getName());
2523   LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is "
2524                     << RelocatedSectionName << '\n');
2525 
2526   if (!BinarySection(*BC, RelocatedSection).isAllocatable()) {
2527     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against "
2528                       << "non-allocatable section\n");
2529     return;
2530   }
2531   const bool SkipRelocs = StringSwitch<bool>(RelocatedSectionName)
2532                               .Cases(".plt", ".rela.plt", ".got.plt",
2533                                      ".eh_frame", ".gcc_except_table", true)
2534                               .Default(false);
2535   if (SkipRelocs) {
2536     LLVM_DEBUG(
2537         dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n");
2538     return;
2539   }
2540 
2541   for (const RelocationRef &Rel : Section.relocations())
2542     handleRelocation(RelocatedSection, Rel);
2543 }
2544 
2545 void RewriteInstance::handleRelocation(const SectionRef &RelocatedSection,
2546                                        const RelocationRef &Rel) {
2547   const bool IsAArch64 = BC->isAArch64();
2548   const bool IsFromCode = RelocatedSection.isText();
2549 
2550   SmallString<16> TypeName;
2551   Rel.getTypeName(TypeName);
2552   uint64_t RType = Rel.getType();
2553   if (Relocation::skipRelocationType(RType))
2554     return;
2555 
2556   // Adjust the relocation type as the linker might have skewed it.
2557   if (BC->isX86() && (RType & ELF::R_X86_64_converted_reloc_bit)) {
2558     if (opts::Verbosity >= 1)
2559       dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n";
2560     RType &= ~ELF::R_X86_64_converted_reloc_bit;
2561   }
2562 
2563   if (Relocation::isTLS(RType)) {
2564     // No special handling required for TLS relocations on X86.
2565     if (BC->isX86())
2566       return;
2567 
2568     // The non-got related TLS relocations on AArch64 and RISC-V also could be
2569     // skipped.
2570     if (!Relocation::isGOT(RType))
2571       return;
2572   }
2573 
2574   if (!IsAArch64 && BC->getDynamicRelocationAt(Rel.getOffset())) {
2575     LLVM_DEBUG({
2576       dbgs() << formatv("BOLT-DEBUG: address {0:x} has a ", Rel.getOffset())
2577              << "dynamic relocation against it. Ignoring static relocation.\n";
2578     });
2579     return;
2580   }
2581 
2582   std::string SymbolName;
2583   uint64_t SymbolAddress;
2584   int64_t Addend;
2585   uint64_t ExtractedValue;
2586   bool IsSectionRelocation;
2587   bool Skip;
2588   if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation,
2589                          SymbolAddress, Addend, ExtractedValue, Skip)) {
2590     LLVM_DEBUG({
2591       dbgs() << "BOLT-WARNING: failed to analyze relocation @ offset = "
2592              << formatv("{0:x}; type name = {1}\n", Rel.getOffset(), TypeName);
2593     });
2594     ++NumFailedRelocations;
2595     return;
2596   }
2597 
2598   if (Skip) {
2599     LLVM_DEBUG({
2600       dbgs() << "BOLT-DEBUG: skipping relocation @ offset = "
2601              << formatv("{0:x}; type name = {1}\n", Rel.getOffset(), TypeName);
2602     });
2603     return;
2604   }
2605 
2606   const uint64_t Address = SymbolAddress + Addend;
2607 
2608   LLVM_DEBUG({
2609     dbgs() << "BOLT-DEBUG: ";
2610     printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, ExtractedValue);
2611   });
2612 
2613   BinaryFunction *ContainingBF = nullptr;
2614   if (IsFromCode) {
2615     ContainingBF =
2616         BC->getBinaryFunctionContainingAddress(Rel.getOffset(),
2617                                                /*CheckPastEnd*/ false,
2618                                                /*UseMaxSize*/ true);
2619     assert(ContainingBF && "cannot find function for address in code");
2620     if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) {
2621       if (opts::Verbosity >= 1)
2622         BC->outs() << formatv(
2623             "BOLT-INFO: {0} has relocations in padding area\n", *ContainingBF);
2624       ContainingBF->setSize(ContainingBF->getMaxSize());
2625       ContainingBF->setSimple(false);
2626       return;
2627     }
2628   }
2629 
2630   MCSymbol *ReferencedSymbol = nullptr;
2631   if (!IsSectionRelocation) {
2632     if (BinaryData *BD = BC->getBinaryDataByName(SymbolName))
2633       ReferencedSymbol = BD->getSymbol();
2634     else if (BC->isGOTSymbol(SymbolName))
2635       if (BinaryData *BD = BC->getGOTSymbol())
2636         ReferencedSymbol = BD->getSymbol();
2637   }
2638 
2639   ErrorOr<BinarySection &> ReferencedSection{std::errc::bad_address};
2640   symbol_iterator SymbolIter = Rel.getSymbol();
2641   if (SymbolIter != InputFile->symbol_end()) {
2642     SymbolRef Symbol = *SymbolIter;
2643     section_iterator Section =
2644         cantFail(Symbol.getSection(), "cannot get symbol section");
2645     if (Section != InputFile->section_end()) {
2646       Expected<StringRef> SectionName = Section->getName();
2647       if (SectionName && !SectionName->empty())
2648         ReferencedSection = BC->getUniqueSectionByName(*SectionName);
2649     } else if (BC->isRISCV() && ReferencedSymbol && ContainingBF &&
2650                (cantFail(Symbol.getFlags()) & SymbolRef::SF_Absolute)) {
2651       // This might be a relocation for an ABS symbols like __global_pointer$ on
2652       // RISC-V
2653       ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol,
2654                                   Rel.getType(), 0,
2655                                   cantFail(Symbol.getValue()));
2656       return;
2657     }
2658   }
2659 
2660   if (!ReferencedSection)
2661     ReferencedSection = BC->getSectionForAddress(SymbolAddress);
2662 
2663   const bool IsToCode = ReferencedSection && ReferencedSection->isText();
2664 
2665   // Special handling of PC-relative relocations.
2666   if (BC->isX86() && Relocation::isPCRelative(RType)) {
2667     if (!IsFromCode && IsToCode) {
2668       // PC-relative relocations from data to code are tricky since the
2669       // original information is typically lost after linking, even with
2670       // '--emit-relocs'. Such relocations are normally used by PIC-style
2671       // jump tables and they reference both the jump table and jump
2672       // targets by computing the difference between the two. If we blindly
2673       // apply the relocation, it will appear that it references an arbitrary
2674       // location in the code, possibly in a different function from the one
2675       // containing the jump table.
2676       //
2677       // For that reason, we only register the fact that there is a
2678       // PC-relative relocation at a given address against the code.
2679       // The actual referenced label/address will be determined during jump
2680       // table analysis.
2681       BC->addPCRelativeDataRelocation(Rel.getOffset());
2682     } else if (ContainingBF && !IsSectionRelocation && ReferencedSymbol) {
2683       // If we know the referenced symbol, register the relocation from
2684       // the code. It's required  to properly handle cases where
2685       // "symbol + addend" references an object different from "symbol".
2686       ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType,
2687                                   Addend, ExtractedValue);
2688     } else {
2689       LLVM_DEBUG({
2690         dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at"
2691                << formatv("{0:x} for {1}\n", Rel.getOffset(), SymbolName);
2692       });
2693     }
2694 
2695     return;
2696   }
2697 
2698   bool ForceRelocation = BC->forceSymbolRelocations(SymbolName);
2699   if ((BC->isAArch64() || BC->isRISCV()) && Relocation::isGOT(RType))
2700     ForceRelocation = true;
2701 
2702   if (!ReferencedSection && !ForceRelocation) {
2703     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n");
2704     return;
2705   }
2706 
2707   // Occasionally we may see a reference past the last byte of the function
2708   // typically as a result of __builtin_unreachable(). Check it here.
2709   BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress(
2710       Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64);
2711 
2712   if (!IsSectionRelocation) {
2713     if (BinaryFunction *BF =
2714             BC->getBinaryFunctionContainingAddress(SymbolAddress)) {
2715       if (BF != ReferencedBF) {
2716         // It's possible we are referencing a function without referencing any
2717         // code, e.g. when taking a bitmask action on a function address.
2718         BC->errs()
2719             << "BOLT-WARNING: non-standard function reference (e.g. bitmask)"
2720             << formatv(" detected against function {0} from ", *BF);
2721         if (IsFromCode)
2722           BC->errs() << formatv("function {0}\n", *ContainingBF);
2723         else
2724           BC->errs() << formatv("data section at {0:x}\n", Rel.getOffset());
2725         LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend,
2726                                        ExtractedValue));
2727         ReferencedBF = BF;
2728       }
2729     }
2730   } else if (ReferencedBF) {
2731     assert(ReferencedSection && "section expected for section relocation");
2732     if (*ReferencedBF->getOriginSection() != *ReferencedSection) {
2733       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n");
2734       ReferencedBF = nullptr;
2735     }
2736   }
2737 
2738   // Workaround for a member function pointer de-virtualization bug. We check
2739   // if a non-pc-relative relocation in the code is pointing to (fptr - 1).
2740   if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) &&
2741       (!ReferencedBF || (ReferencedBF->getAddress() != Address))) {
2742     if (const BinaryFunction *RogueBF =
2743             BC->getBinaryFunctionAtAddress(Address + 1)) {
2744       // Do an extra check that the function was referenced previously.
2745       // It's a linear search, but it should rarely happen.
2746       auto CheckReloc = [&](const Relocation &Rel) {
2747         return Rel.Symbol == RogueBF->getSymbol() &&
2748                !Relocation::isPCRelative(Rel.Type);
2749       };
2750       bool Found = llvm::any_of(
2751           llvm::make_second_range(ContainingBF->Relocations), CheckReloc);
2752 
2753       if (Found) {
2754         BC->errs()
2755             << "BOLT-WARNING: detected possible compiler de-virtualization "
2756                "bug: -1 addend used with non-pc-relative relocation against "
2757             << formatv("function {0} in function {1}\n", *RogueBF,
2758                        *ContainingBF);
2759         return;
2760       }
2761     }
2762   }
2763 
2764   if (ForceRelocation) {
2765     std::string Name =
2766         Relocation::isGOT(RType) ? "__BOLT_got_zero" : SymbolName;
2767     ReferencedSymbol = BC->registerNameAtAddress(Name, 0, 0, 0);
2768     SymbolAddress = 0;
2769     if (Relocation::isGOT(RType))
2770       Addend = Address;
2771     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol "
2772                       << SymbolName << " with addend " << Addend << '\n');
2773   } else if (ReferencedBF) {
2774     ReferencedSymbol = ReferencedBF->getSymbol();
2775     uint64_t RefFunctionOffset = 0;
2776 
2777     // Adjust the point of reference to a code location inside a function.
2778     if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */ true)) {
2779       RefFunctionOffset = Address - ReferencedBF->getAddress();
2780       if (Relocation::isInstructionReference(RType)) {
2781         // Instruction labels are created while disassembling so we just leave
2782         // the symbol empty for now. Since the extracted value is typically
2783         // unrelated to the referenced symbol (e.g., %pcrel_lo in RISC-V
2784         // references an instruction but the patched value references the low
2785         // bits of a data address), we set the extracted value to the symbol
2786         // address in order to be able to correctly reconstruct the reference
2787         // later.
2788         ReferencedSymbol = nullptr;
2789         ExtractedValue = Address;
2790       } else if (RefFunctionOffset) {
2791         if (ContainingBF && ContainingBF != ReferencedBF) {
2792           ReferencedSymbol =
2793               ReferencedBF->addEntryPointAtOffset(RefFunctionOffset);
2794         } else {
2795           ReferencedSymbol =
2796               ReferencedBF->getOrCreateLocalLabel(Address,
2797                                                   /*CreatePastEnd =*/true);
2798 
2799           // If ContainingBF != nullptr, it equals ReferencedBF (see
2800           // if-condition above) so we're handling a relocation from a function
2801           // to itself. RISC-V uses such relocations for branches, for example.
2802           // These should not be registered as externally references offsets.
2803           if (!ContainingBF)
2804             ReferencedBF->registerReferencedOffset(RefFunctionOffset);
2805         }
2806         if (opts::Verbosity > 1 &&
2807             BinarySection(*BC, RelocatedSection).isWritable())
2808           BC->errs()
2809               << "BOLT-WARNING: writable reference into the middle of the "
2810               << formatv("function {0} detected at address {1:x}\n",
2811                          *ReferencedBF, Rel.getOffset());
2812       }
2813       SymbolAddress = Address;
2814       Addend = 0;
2815     }
2816     LLVM_DEBUG({
2817       dbgs() << "  referenced function " << *ReferencedBF;
2818       if (Address != ReferencedBF->getAddress())
2819         dbgs() << formatv(" at offset {0:x}", RefFunctionOffset);
2820       dbgs() << '\n';
2821     });
2822   } else {
2823     if (IsToCode && SymbolAddress) {
2824       // This can happen e.g. with PIC-style jump tables.
2825       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for "
2826                            "relocation against code\n");
2827     }
2828 
2829     // In AArch64 there are zero reasons to keep a reference to the
2830     // "original" symbol plus addend. The original symbol is probably just a
2831     // section symbol. If we are here, this means we are probably accessing
2832     // data, so it is imperative to keep the original address.
2833     if (IsAArch64) {
2834       SymbolName = formatv("SYMBOLat{0:x}", Address);
2835       SymbolAddress = Address;
2836       Addend = 0;
2837     }
2838 
2839     if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) {
2840       // Note: this assertion is trying to check sanity of BinaryData objects
2841       // but AArch64 has inferred and incomplete object locations coming from
2842       // GOT/TLS or any other non-trivial relocation (that requires creation
2843       // of sections and whose symbol address is not really what should be
2844       // encoded in the instruction). So we essentially disabled this check
2845       // for AArch64 and live with bogus names for objects.
2846       assert((IsAArch64 || IsSectionRelocation ||
2847               BD->nameStartsWith(SymbolName) ||
2848               BD->nameStartsWith("PG" + SymbolName) ||
2849               (BD->nameStartsWith("ANONYMOUS") &&
2850                (BD->getSectionName().starts_with(".plt") ||
2851                 BD->getSectionName().ends_with(".plt")))) &&
2852              "BOLT symbol names of all non-section relocations must match up "
2853              "with symbol names referenced in the relocation");
2854 
2855       if (IsSectionRelocation)
2856         BC->markAmbiguousRelocations(*BD, Address);
2857 
2858       ReferencedSymbol = BD->getSymbol();
2859       Addend += (SymbolAddress - BD->getAddress());
2860       SymbolAddress = BD->getAddress();
2861       assert(Address == SymbolAddress + Addend);
2862     } else {
2863       // These are mostly local data symbols but undefined symbols
2864       // in relocation sections can get through here too, from .plt.
2865       assert(
2866           (IsAArch64 || BC->isRISCV() || IsSectionRelocation ||
2867            BC->getSectionNameForAddress(SymbolAddress)->starts_with(".plt")) &&
2868           "known symbols should not resolve to anonymous locals");
2869 
2870       if (IsSectionRelocation) {
2871         ReferencedSymbol =
2872             BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat");
2873       } else {
2874         SymbolRef Symbol = *Rel.getSymbol();
2875         const uint64_t SymbolSize =
2876             IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize();
2877         const uint64_t SymbolAlignment = IsAArch64 ? 1 : Symbol.getAlignment();
2878         const uint32_t SymbolFlags = cantFail(Symbol.getFlags());
2879         std::string Name;
2880         if (SymbolFlags & SymbolRef::SF_Global) {
2881           Name = SymbolName;
2882         } else {
2883           if (StringRef(SymbolName)
2884                   .starts_with(BC->AsmInfo->getPrivateGlobalPrefix()))
2885             Name = NR.uniquify("PG" + SymbolName);
2886           else
2887             Name = NR.uniquify(SymbolName);
2888         }
2889         ReferencedSymbol = BC->registerNameAtAddress(
2890             Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags);
2891       }
2892 
2893       if (IsSectionRelocation) {
2894         BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName());
2895         BC->markAmbiguousRelocations(*BD, Address);
2896       }
2897     }
2898   }
2899 
2900   auto checkMaxDataRelocations = [&]() {
2901     ++NumDataRelocations;
2902     LLVM_DEBUG(if (opts::MaxDataRelocations &&
2903                    NumDataRelocations + 1 == opts::MaxDataRelocations) {
2904       dbgs() << "BOLT-DEBUG: processing ending on data relocation "
2905              << NumDataRelocations << ": ";
2906       printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress,
2907                           Addend, ExtractedValue);
2908     });
2909 
2910     return (!opts::MaxDataRelocations ||
2911             NumDataRelocations < opts::MaxDataRelocations);
2912   };
2913 
2914   if ((ReferencedSection && refersToReorderedSection(ReferencedSection)) ||
2915       (opts::ForceToDataRelocations && checkMaxDataRelocations()) ||
2916       // RISC-V has ADD/SUB data-to-data relocations
2917       BC->isRISCV())
2918     ForceRelocation = true;
2919 
2920   if (IsFromCode)
2921     ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType,
2922                                 Addend, ExtractedValue);
2923   else if (IsToCode || ForceRelocation)
2924     BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend,
2925                       ExtractedValue);
2926   else
2927     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n");
2928 }
2929 
2930 void RewriteInstance::selectFunctionsToProcess() {
2931   // Extend the list of functions to process or skip from a file.
2932   auto populateFunctionNames = [](cl::opt<std::string> &FunctionNamesFile,
2933                                   cl::list<std::string> &FunctionNames) {
2934     if (FunctionNamesFile.empty())
2935       return;
2936     std::ifstream FuncsFile(FunctionNamesFile, std::ios::in);
2937     std::string FuncName;
2938     while (std::getline(FuncsFile, FuncName))
2939       FunctionNames.push_back(FuncName);
2940   };
2941   populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames);
2942   populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames);
2943   populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR);
2944 
2945   // Make a set of functions to process to speed up lookups.
2946   std::unordered_set<std::string> ForceFunctionsNR(
2947       opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end());
2948 
2949   if ((!opts::ForceFunctionNames.empty() ||
2950        !opts::ForceFunctionNamesNR.empty()) &&
2951       !opts::SkipFunctionNames.empty()) {
2952     BC->errs()
2953         << "BOLT-ERROR: cannot select functions to process and skip at the "
2954            "same time. Please use only one type of selection.\n";
2955     exit(1);
2956   }
2957 
2958   uint64_t LiteThresholdExecCount = 0;
2959   if (opts::LiteThresholdPct) {
2960     if (opts::LiteThresholdPct > 100)
2961       opts::LiteThresholdPct = 100;
2962 
2963     std::vector<const BinaryFunction *> TopFunctions;
2964     for (auto &BFI : BC->getBinaryFunctions()) {
2965       const BinaryFunction &Function = BFI.second;
2966       if (ProfileReader->mayHaveProfileData(Function))
2967         TopFunctions.push_back(&Function);
2968     }
2969     llvm::sort(
2970         TopFunctions, [](const BinaryFunction *A, const BinaryFunction *B) {
2971           return A->getKnownExecutionCount() < B->getKnownExecutionCount();
2972         });
2973 
2974     size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100;
2975     if (Index)
2976       --Index;
2977     LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount();
2978     BC->outs() << "BOLT-INFO: limiting processing to functions with at least "
2979                << LiteThresholdExecCount << " invocations\n";
2980   }
2981   LiteThresholdExecCount = std::max(
2982       LiteThresholdExecCount, static_cast<uint64_t>(opts::LiteThresholdCount));
2983 
2984   StringSet<> ReorderFunctionsUserSet;
2985   StringSet<> ReorderFunctionsLTOCommonSet;
2986   if (opts::ReorderFunctions == ReorderFunctions::RT_USER) {
2987     std::vector<std::string> FunctionNames;
2988     BC->logBOLTErrorsAndQuitOnFatal(
2989         ReorderFunctions::readFunctionOrderFile(FunctionNames));
2990     for (const std::string &Function : FunctionNames) {
2991       ReorderFunctionsUserSet.insert(Function);
2992       if (std::optional<StringRef> LTOCommonName = getLTOCommonName(Function))
2993         ReorderFunctionsLTOCommonSet.insert(*LTOCommonName);
2994     }
2995   }
2996 
2997   uint64_t NumFunctionsToProcess = 0;
2998   auto mustSkip = [&](const BinaryFunction &Function) {
2999     if (opts::MaxFunctions.getNumOccurrences() &&
3000         NumFunctionsToProcess >= opts::MaxFunctions)
3001       return true;
3002     for (std::string &Name : opts::SkipFunctionNames)
3003       if (Function.hasNameRegex(Name))
3004         return true;
3005 
3006     return false;
3007   };
3008 
3009   auto shouldProcess = [&](const BinaryFunction &Function) {
3010     if (mustSkip(Function))
3011       return false;
3012 
3013     // If the list is not empty, only process functions from the list.
3014     if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) {
3015       // Regex check (-funcs and -funcs-file options).
3016       for (std::string &Name : opts::ForceFunctionNames)
3017         if (Function.hasNameRegex(Name))
3018           return true;
3019 
3020       // Non-regex check (-funcs-no-regex and -funcs-file-no-regex).
3021       for (const StringRef Name : Function.getNames())
3022         if (ForceFunctionsNR.count(Name.str()))
3023           return true;
3024 
3025       return false;
3026     }
3027 
3028     if (opts::Lite) {
3029       // Forcibly include functions specified in the -function-order file.
3030       if (opts::ReorderFunctions == ReorderFunctions::RT_USER) {
3031         for (const StringRef Name : Function.getNames())
3032           if (ReorderFunctionsUserSet.contains(Name))
3033             return true;
3034         for (const StringRef Name : Function.getNames())
3035           if (std::optional<StringRef> LTOCommonName = getLTOCommonName(Name))
3036             if (ReorderFunctionsLTOCommonSet.contains(*LTOCommonName))
3037               return true;
3038       }
3039 
3040       if (ProfileReader && !ProfileReader->mayHaveProfileData(Function))
3041         return false;
3042 
3043       if (Function.getKnownExecutionCount() < LiteThresholdExecCount)
3044         return false;
3045     }
3046 
3047     return true;
3048   };
3049 
3050   for (auto &BFI : BC->getBinaryFunctions()) {
3051     BinaryFunction &Function = BFI.second;
3052 
3053     // Pseudo functions are explicitly marked by us not to be processed.
3054     if (Function.isPseudo()) {
3055       Function.IsIgnored = true;
3056       Function.HasExternalRefRelocations = true;
3057       continue;
3058     }
3059 
3060     // Decide what to do with fragments after parent functions are processed.
3061     if (Function.isFragment())
3062       continue;
3063 
3064     if (!shouldProcess(Function)) {
3065       if (opts::Verbosity >= 1) {
3066         BC->outs() << "BOLT-INFO: skipping processing " << Function
3067                    << " per user request\n";
3068       }
3069       Function.setIgnored();
3070     } else {
3071       ++NumFunctionsToProcess;
3072       if (opts::MaxFunctions.getNumOccurrences() &&
3073           NumFunctionsToProcess == opts::MaxFunctions)
3074         BC->outs() << "BOLT-INFO: processing ending on " << Function << '\n';
3075     }
3076   }
3077 
3078   if (!BC->HasSplitFunctions)
3079     return;
3080 
3081   // Fragment overrides:
3082   // - If the fragment must be skipped, then the parent must be skipped as well.
3083   // Otherwise, fragment should follow the parent function:
3084   // - if the parent is skipped, skip fragment,
3085   // - if the parent is processed, process the fragment(s) as well.
3086   for (auto &BFI : BC->getBinaryFunctions()) {
3087     BinaryFunction &Function = BFI.second;
3088     if (!Function.isFragment())
3089       continue;
3090     if (mustSkip(Function)) {
3091       for (BinaryFunction *Parent : Function.ParentFragments) {
3092         if (opts::Verbosity >= 1) {
3093           BC->outs() << "BOLT-INFO: skipping processing " << *Parent
3094                      << " together with fragment function\n";
3095         }
3096         Parent->setIgnored();
3097         --NumFunctionsToProcess;
3098       }
3099       Function.setIgnored();
3100       continue;
3101     }
3102 
3103     bool IgnoredParent =
3104         llvm::any_of(Function.ParentFragments, [&](BinaryFunction *Parent) {
3105           return Parent->isIgnored();
3106         });
3107     if (IgnoredParent) {
3108       if (opts::Verbosity >= 1) {
3109         BC->outs() << "BOLT-INFO: skipping processing " << Function
3110                    << " together with parent function\n";
3111       }
3112       Function.setIgnored();
3113     } else {
3114       ++NumFunctionsToProcess;
3115       if (opts::Verbosity >= 1) {
3116         BC->outs() << "BOLT-INFO: processing " << Function
3117                    << " as a sibling of non-ignored function\n";
3118       }
3119       if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions)
3120         BC->outs() << "BOLT-INFO: processing ending on " << Function << '\n';
3121     }
3122   }
3123 }
3124 
3125 void RewriteInstance::readDebugInfo() {
3126   NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName,
3127                      TimerGroupDesc, opts::TimeRewrite);
3128   if (!opts::UpdateDebugSections)
3129     return;
3130 
3131   BC->preprocessDebugInfo();
3132 }
3133 
3134 void RewriteInstance::preprocessProfileData() {
3135   if (!ProfileReader)
3136     return;
3137 
3138   NamedRegionTimer T("preprocessprofile", "pre-process profile data",
3139                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3140 
3141   BC->outs() << "BOLT-INFO: pre-processing profile using "
3142              << ProfileReader->getReaderName() << '\n';
3143 
3144   if (BAT->enabledFor(InputFile)) {
3145     BC->outs() << "BOLT-INFO: profile collection done on a binary already "
3146                   "processed by BOLT\n";
3147     ProfileReader->setBAT(&*BAT);
3148   }
3149 
3150   if (Error E = ProfileReader->preprocessProfile(*BC.get()))
3151     report_error("cannot pre-process profile", std::move(E));
3152 
3153   if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName() &&
3154       !opts::AllowStripped) {
3155     BC->errs()
3156         << "BOLT-ERROR: input binary does not have local file symbols "
3157            "but profile data includes function names with embedded file "
3158            "names. It appears that the input binary was stripped while a "
3159            "profiled binary was not. If you know what you are doing and "
3160            "wish to proceed, use -allow-stripped option.\n";
3161     exit(1);
3162   }
3163 }
3164 
3165 void RewriteInstance::initializeMetadataManager() {
3166   if (BC->IsLinuxKernel)
3167     MetadataManager.registerRewriter(createLinuxKernelRewriter(*BC));
3168 
3169   MetadataManager.registerRewriter(createBuildIDRewriter(*BC));
3170 
3171   MetadataManager.registerRewriter(createPseudoProbeRewriter(*BC));
3172 
3173   MetadataManager.registerRewriter(createSDTRewriter(*BC));
3174 }
3175 
3176 void RewriteInstance::processSectionMetadata() {
3177   NamedRegionTimer T("processmetadata-section", "process section metadata",
3178                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3179   initializeMetadataManager();
3180 
3181   MetadataManager.runSectionInitializers();
3182 }
3183 
3184 void RewriteInstance::processMetadataPreCFG() {
3185   NamedRegionTimer T("processmetadata-precfg", "process metadata pre-CFG",
3186                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3187   MetadataManager.runInitializersPreCFG();
3188 
3189   processProfileDataPreCFG();
3190 }
3191 
3192 void RewriteInstance::processMetadataPostCFG() {
3193   NamedRegionTimer T("processmetadata-postcfg", "process metadata post-CFG",
3194                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3195   MetadataManager.runInitializersPostCFG();
3196 }
3197 
3198 void RewriteInstance::processProfileDataPreCFG() {
3199   if (!ProfileReader)
3200     return;
3201 
3202   NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG",
3203                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3204 
3205   if (Error E = ProfileReader->readProfilePreCFG(*BC.get()))
3206     report_error("cannot read profile pre-CFG", std::move(E));
3207 }
3208 
3209 void RewriteInstance::processProfileData() {
3210   if (!ProfileReader)
3211     return;
3212 
3213   NamedRegionTimer T("processprofile", "process profile data", TimerGroupName,
3214                      TimerGroupDesc, opts::TimeRewrite);
3215 
3216   if (Error E = ProfileReader->readProfile(*BC.get()))
3217     report_error("cannot read profile", std::move(E));
3218 
3219   if (opts::PrintProfile || opts::PrintAll) {
3220     for (auto &BFI : BC->getBinaryFunctions()) {
3221       BinaryFunction &Function = BFI.second;
3222       if (Function.empty())
3223         continue;
3224 
3225       Function.print(BC->outs(), "after attaching profile");
3226     }
3227   }
3228 
3229   if (!opts::SaveProfile.empty() && !BAT->enabledFor(InputFile)) {
3230     YAMLProfileWriter PW(opts::SaveProfile);
3231     PW.writeProfile(*this);
3232   }
3233   if (opts::AggregateOnly &&
3234       opts::ProfileFormat == opts::ProfileFormatKind::PF_YAML &&
3235       !BAT->enabledFor(InputFile)) {
3236     YAMLProfileWriter PW(opts::OutputFilename);
3237     PW.writeProfile(*this);
3238   }
3239 
3240   // Release memory used by profile reader.
3241   ProfileReader.reset();
3242 
3243   if (opts::AggregateOnly) {
3244     PrintProgramStats PPS(&*BAT);
3245     BC->logBOLTErrorsAndQuitOnFatal(PPS.runOnFunctions(*BC));
3246     TimerGroup::printAll(outs());
3247     exit(0);
3248   }
3249 }
3250 
3251 void RewriteInstance::disassembleFunctions() {
3252   NamedRegionTimer T("disassembleFunctions", "disassemble functions",
3253                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3254   for (auto &BFI : BC->getBinaryFunctions()) {
3255     BinaryFunction &Function = BFI.second;
3256 
3257     ErrorOr<ArrayRef<uint8_t>> FunctionData = Function.getData();
3258     if (!FunctionData) {
3259       BC->errs() << "BOLT-ERROR: corresponding section is non-executable or "
3260                  << "empty for function " << Function << '\n';
3261       exit(1);
3262     }
3263 
3264     // Treat zero-sized functions as non-simple ones.
3265     if (Function.getSize() == 0) {
3266       Function.setSimple(false);
3267       continue;
3268     }
3269 
3270     // Offset of the function in the file.
3271     const auto *FileBegin =
3272         reinterpret_cast<const uint8_t *>(InputFile->getData().data());
3273     Function.setFileOffset(FunctionData->begin() - FileBegin);
3274 
3275     if (!shouldDisassemble(Function)) {
3276       NamedRegionTimer T("scan", "scan functions", "buildfuncs",
3277                          "Scan Binary Functions", opts::TimeBuild);
3278       Function.scanExternalRefs();
3279       Function.setSimple(false);
3280       continue;
3281     }
3282 
3283     bool DisasmFailed{false};
3284     handleAllErrors(Function.disassemble(), [&](const BOLTError &E) {
3285       DisasmFailed = true;
3286       if (E.isFatal()) {
3287         E.log(BC->errs());
3288         exit(1);
3289       }
3290       if (opts::processAllFunctions()) {
3291         BC->errs() << BC->generateBugReportMessage(
3292             "function cannot be properly disassembled. "
3293             "Unable to continue in relocation mode.",
3294             Function);
3295         exit(1);
3296       }
3297       if (opts::Verbosity >= 1)
3298         BC->outs() << "BOLT-INFO: could not disassemble function " << Function
3299                    << ". Will ignore.\n";
3300       // Forcefully ignore the function.
3301       Function.setIgnored();
3302     });
3303 
3304     if (DisasmFailed)
3305       continue;
3306 
3307     if (opts::PrintAll || opts::PrintDisasm)
3308       Function.print(BC->outs(), "after disassembly");
3309   }
3310 
3311   BC->processInterproceduralReferences();
3312   BC->populateJumpTables();
3313 
3314   for (auto &BFI : BC->getBinaryFunctions()) {
3315     BinaryFunction &Function = BFI.second;
3316 
3317     if (!shouldDisassemble(Function))
3318       continue;
3319 
3320     Function.postProcessEntryPoints();
3321     Function.postProcessJumpTables();
3322   }
3323 
3324   BC->clearJumpTableTempData();
3325   BC->adjustCodePadding();
3326 
3327   for (auto &BFI : BC->getBinaryFunctions()) {
3328     BinaryFunction &Function = BFI.second;
3329 
3330     if (!shouldDisassemble(Function))
3331       continue;
3332 
3333     if (!Function.isSimple()) {
3334       assert((!BC->HasRelocations || Function.getSize() == 0 ||
3335               Function.hasIndirectTargetToSplitFragment()) &&
3336              "unexpected non-simple function in relocation mode");
3337       continue;
3338     }
3339 
3340     // Fill in CFI information for this function
3341     if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) {
3342       if (BC->HasRelocations) {
3343         BC->errs() << BC->generateBugReportMessage("unable to fill CFI.",
3344                                                    Function);
3345         exit(1);
3346       } else {
3347         BC->errs() << "BOLT-WARNING: unable to fill CFI for function "
3348                    << Function << ". Skipping.\n";
3349         Function.setSimple(false);
3350         continue;
3351       }
3352     }
3353 
3354     // Parse LSDA.
3355     if (Function.getLSDAAddress() != 0 &&
3356         !BC->getFragmentsToSkip().count(&Function)) {
3357       ErrorOr<BinarySection &> LSDASection =
3358           BC->getSectionForAddress(Function.getLSDAAddress());
3359       check_error(LSDASection.getError(), "failed to get LSDA section");
3360       ArrayRef<uint8_t> LSDAData = ArrayRef<uint8_t>(
3361           LSDASection->getData(), LSDASection->getContents().size());
3362       BC->logBOLTErrorsAndQuitOnFatal(
3363           Function.parseLSDA(LSDAData, LSDASection->getAddress()));
3364     }
3365   }
3366 }
3367 
3368 void RewriteInstance::buildFunctionsCFG() {
3369   NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs",
3370                      "Build Binary Functions", opts::TimeBuild);
3371 
3372   // Create annotation indices to allow lock-free execution
3373   BC->MIB->getOrCreateAnnotationIndex("JTIndexReg");
3374   BC->MIB->getOrCreateAnnotationIndex("NOP");
3375 
3376   ParallelUtilities::WorkFuncWithAllocTy WorkFun =
3377       [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) {
3378         bool HadErrors{false};
3379         handleAllErrors(BF.buildCFG(AllocId), [&](const BOLTError &E) {
3380           if (!E.getMessage().empty())
3381             E.log(BC->errs());
3382           if (E.isFatal())
3383             exit(1);
3384           HadErrors = true;
3385         });
3386 
3387         if (HadErrors)
3388           return;
3389 
3390         if (opts::PrintAll) {
3391           auto L = BC->scopeLock();
3392           BF.print(BC->outs(), "while building cfg");
3393         }
3394       };
3395 
3396   ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) {
3397     return !shouldDisassemble(BF) || !BF.isSimple();
3398   };
3399 
3400   ParallelUtilities::runOnEachFunctionWithUniqueAllocId(
3401       *BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun,
3402       SkipPredicate, "disassembleFunctions-buildCFG",
3403       /*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll);
3404 
3405   BC->postProcessSymbolTable();
3406 }
3407 
3408 void RewriteInstance::postProcessFunctions() {
3409   // We mark fragments as non-simple here, not during disassembly,
3410   // So we can build their CFGs.
3411   BC->skipMarkedFragments();
3412   BC->clearFragmentsToSkip();
3413 
3414   BC->TotalScore = 0;
3415   BC->SumExecutionCount = 0;
3416   for (auto &BFI : BC->getBinaryFunctions()) {
3417     BinaryFunction &Function = BFI.second;
3418 
3419     // Set function as non-simple if it has dynamic relocations
3420     // in constant island, we don't want this function to be optimized
3421     // e.g. function splitting is unsupported.
3422     if (Function.hasDynamicRelocationAtIsland())
3423       Function.setSimple(false);
3424 
3425     if (Function.empty())
3426       continue;
3427 
3428     Function.postProcessCFG();
3429 
3430     if (opts::PrintAll || opts::PrintCFG)
3431       Function.print(BC->outs(), "after building cfg");
3432 
3433     if (opts::DumpDotAll)
3434       Function.dumpGraphForPass("00_build-cfg");
3435 
3436     if (opts::PrintLoopInfo) {
3437       Function.calculateLoopInfo();
3438       Function.printLoopInfo(BC->outs());
3439     }
3440 
3441     BC->TotalScore += Function.getFunctionScore();
3442     BC->SumExecutionCount += Function.getKnownExecutionCount();
3443   }
3444 
3445   if (opts::PrintGlobals) {
3446     BC->outs() << "BOLT-INFO: Global symbols:\n";
3447     BC->printGlobalSymbols(BC->outs());
3448   }
3449 }
3450 
3451 void RewriteInstance::runOptimizationPasses() {
3452   NamedRegionTimer T("runOptimizationPasses", "run optimization passes",
3453                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3454   BC->logBOLTErrorsAndQuitOnFatal(BinaryFunctionPassManager::runAllPasses(*BC));
3455 }
3456 
3457 void RewriteInstance::preregisterSections() {
3458   // Preregister sections before emission to set their order in the output.
3459   const unsigned ROFlags = BinarySection::getFlags(/*IsReadOnly*/ true,
3460                                                    /*IsText*/ false,
3461                                                    /*IsAllocatable*/ true);
3462   if (BinarySection *EHFrameSection = getSection(getEHFrameSectionName())) {
3463     // New .eh_frame.
3464     BC->registerOrUpdateSection(getNewSecPrefix() + getEHFrameSectionName(),
3465                                 ELF::SHT_PROGBITS, ROFlags);
3466     // Fully register a relocatable copy of the original .eh_frame.
3467     BC->registerSection(".relocated.eh_frame", *EHFrameSection);
3468   }
3469   BC->registerOrUpdateSection(getNewSecPrefix() + ".gcc_except_table",
3470                               ELF::SHT_PROGBITS, ROFlags);
3471   BC->registerOrUpdateSection(getNewSecPrefix() + ".rodata", ELF::SHT_PROGBITS,
3472                               ROFlags);
3473   BC->registerOrUpdateSection(getNewSecPrefix() + ".rodata.cold",
3474                               ELF::SHT_PROGBITS, ROFlags);
3475 }
3476 
3477 void RewriteInstance::emitAndLink() {
3478   NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName,
3479                      TimerGroupDesc, opts::TimeRewrite);
3480 
3481   SmallString<0> ObjectBuffer;
3482   raw_svector_ostream OS(ObjectBuffer);
3483 
3484   // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB)
3485   // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these
3486   // two instances.
3487   std::unique_ptr<MCStreamer> Streamer = BC->createStreamer(OS);
3488 
3489   if (EHFrameSection) {
3490     if (opts::UseOldText || opts::StrictMode) {
3491       // The section is going to be regenerated from scratch.
3492       // Empty the contents, but keep the section reference.
3493       EHFrameSection->clearContents();
3494     } else {
3495       // Make .eh_frame relocatable.
3496       relocateEHFrameSection();
3497     }
3498   }
3499 
3500   emitBinaryContext(*Streamer, *BC, getOrgSecPrefix());
3501 
3502   Streamer->finish();
3503   if (Streamer->getContext().hadError()) {
3504     BC->errs() << "BOLT-ERROR: Emission failed.\n";
3505     exit(1);
3506   }
3507 
3508   if (opts::KeepTmp) {
3509     SmallString<128> OutObjectPath;
3510     sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath);
3511     std::error_code EC;
3512     raw_fd_ostream FOS(OutObjectPath, EC);
3513     check_error(EC, "cannot create output object file");
3514     FOS << ObjectBuffer;
3515     BC->outs()
3516         << "BOLT-INFO: intermediary output object file saved for debugging "
3517            "purposes: "
3518         << OutObjectPath << "\n";
3519   }
3520 
3521   ErrorOr<BinarySection &> TextSection =
3522       BC->getUniqueSectionByName(BC->getMainCodeSectionName());
3523   if (BC->HasRelocations && TextSection)
3524     BC->renameSection(*TextSection,
3525                       getOrgSecPrefix() + BC->getMainCodeSectionName());
3526 
3527   //////////////////////////////////////////////////////////////////////////////
3528   // Assign addresses to new sections.
3529   //////////////////////////////////////////////////////////////////////////////
3530 
3531   // Get output object as ObjectFile.
3532   std::unique_ptr<MemoryBuffer> ObjectMemBuffer =
3533       MemoryBuffer::getMemBuffer(ObjectBuffer, "in-memory object file", false);
3534 
3535   auto EFMM = std::make_unique<ExecutableFileMemoryManager>(*BC);
3536   EFMM->setNewSecPrefix(getNewSecPrefix());
3537   EFMM->setOrgSecPrefix(getOrgSecPrefix());
3538 
3539   Linker = std::make_unique<JITLinkLinker>(*BC, std::move(EFMM));
3540   Linker->loadObject(ObjectMemBuffer->getMemBufferRef(),
3541                      [this](auto MapSection) { mapFileSections(MapSection); });
3542 
3543   // Update output addresses based on the new section map and
3544   // layout. Only do this for the object created by ourselves.
3545   updateOutputValues(*Linker);
3546 
3547   if (opts::UpdateDebugSections) {
3548     DebugInfoRewriter->updateLineTableOffsets(
3549         static_cast<MCObjectStreamer &>(*Streamer).getAssembler());
3550   }
3551 
3552   if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
3553     RtLibrary->link(*BC, ToolPath, *Linker, [this](auto MapSection) {
3554       // Map newly registered sections.
3555       this->mapAllocatableSections(MapSection);
3556     });
3557 
3558   // Once the code is emitted, we can rename function sections to actual
3559   // output sections and de-register sections used for emission.
3560   for (BinaryFunction *Function : BC->getAllBinaryFunctions()) {
3561     ErrorOr<BinarySection &> Section = Function->getCodeSection();
3562     if (Section &&
3563         (Function->getImageAddress() == 0 || Function->getImageSize() == 0))
3564       continue;
3565 
3566     // Restore origin section for functions that were emitted or supposed to
3567     // be emitted to patch sections.
3568     if (Section)
3569       BC->deregisterSection(*Section);
3570     assert(Function->getOriginSectionName() && "expected origin section");
3571     Function->CodeSectionName = Function->getOriginSectionName()->str();
3572     for (const FunctionFragment &FF :
3573          Function->getLayout().getSplitFragments()) {
3574       if (ErrorOr<BinarySection &> ColdSection =
3575               Function->getCodeSection(FF.getFragmentNum()))
3576         BC->deregisterSection(*ColdSection);
3577     }
3578     if (Function->getLayout().isSplit())
3579       Function->setColdCodeSectionName(getBOLTTextSectionName());
3580   }
3581 
3582   if (opts::PrintCacheMetrics) {
3583     BC->outs() << "BOLT-INFO: cache metrics after emitting functions:\n";
3584     CacheMetrics::printAll(BC->outs(), BC->getSortedFunctions());
3585   }
3586 }
3587 
3588 void RewriteInstance::finalizeMetadataPreEmit() {
3589   NamedRegionTimer T("finalizemetadata-preemit", "finalize metadata pre-emit",
3590                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3591   MetadataManager.runFinalizersPreEmit();
3592 }
3593 
3594 void RewriteInstance::updateMetadata() {
3595   NamedRegionTimer T("updatemetadata-postemit", "update metadata post-emit",
3596                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3597   MetadataManager.runFinalizersAfterEmit();
3598 
3599   if (opts::UpdateDebugSections) {
3600     NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName,
3601                        TimerGroupDesc, opts::TimeRewrite);
3602     DebugInfoRewriter->updateDebugInfo();
3603   }
3604 
3605   if (opts::WriteBoltInfoSection)
3606     addBoltInfoSection();
3607 }
3608 
3609 void RewriteInstance::mapFileSections(BOLTLinker::SectionMapper MapSection) {
3610   BC->deregisterUnusedSections();
3611 
3612   // If no new .eh_frame was written, remove relocated original .eh_frame.
3613   BinarySection *RelocatedEHFrameSection =
3614       getSection(".relocated" + getEHFrameSectionName());
3615   if (RelocatedEHFrameSection && RelocatedEHFrameSection->hasValidSectionID()) {
3616     BinarySection *NewEHFrameSection =
3617         getSection(getNewSecPrefix() + getEHFrameSectionName());
3618     if (!NewEHFrameSection || !NewEHFrameSection->isFinalized()) {
3619       // JITLink will still have to process relocations for the section, hence
3620       // we need to assign it the address that wouldn't result in relocation
3621       // processing failure.
3622       MapSection(*RelocatedEHFrameSection, NextAvailableAddress);
3623       BC->deregisterSection(*RelocatedEHFrameSection);
3624     }
3625   }
3626 
3627   mapCodeSections(MapSection);
3628 
3629   // Map the rest of the sections.
3630   mapAllocatableSections(MapSection);
3631 
3632   if (!BC->BOLTReserved.empty()) {
3633     const uint64_t AllocatedSize =
3634         NextAvailableAddress - BC->BOLTReserved.start();
3635     if (BC->BOLTReserved.size() < AllocatedSize) {
3636       BC->errs() << "BOLT-ERROR: reserved space (" << BC->BOLTReserved.size()
3637                  << " byte" << (BC->BOLTReserved.size() == 1 ? "" : "s")
3638                  << ") is smaller than required for new allocations ("
3639                  << AllocatedSize << " bytes)\n";
3640       exit(1);
3641     }
3642   }
3643 }
3644 
3645 std::vector<BinarySection *> RewriteInstance::getCodeSections() {
3646   std::vector<BinarySection *> CodeSections;
3647   for (BinarySection &Section : BC->textSections())
3648     if (Section.hasValidSectionID())
3649       CodeSections.emplace_back(&Section);
3650 
3651   auto compareSections = [&](const BinarySection *A, const BinarySection *B) {
3652     // If both A and B have names starting with ".text.cold", then
3653     // - if opts::HotFunctionsAtEnd is true, we want order
3654     //   ".text.cold.T", ".text.cold.T-1", ... ".text.cold.1", ".text.cold"
3655     // - if opts::HotFunctionsAtEnd is false, we want order
3656     //   ".text.cold", ".text.cold.1", ... ".text.cold.T-1", ".text.cold.T"
3657     if (A->getName().starts_with(BC->getColdCodeSectionName()) &&
3658         B->getName().starts_with(BC->getColdCodeSectionName())) {
3659       if (A->getName().size() != B->getName().size())
3660         return (opts::HotFunctionsAtEnd)
3661                    ? (A->getName().size() > B->getName().size())
3662                    : (A->getName().size() < B->getName().size());
3663       return (opts::HotFunctionsAtEnd) ? (A->getName() > B->getName())
3664                                        : (A->getName() < B->getName());
3665     }
3666 
3667     // Place movers before anything else.
3668     if (A->getName() == BC->getHotTextMoverSectionName())
3669       return true;
3670     if (B->getName() == BC->getHotTextMoverSectionName())
3671       return false;
3672 
3673     // Depending on opts::HotFunctionsAtEnd, place main and warm sections in
3674     // order.
3675     if (opts::HotFunctionsAtEnd) {
3676       if (B->getName() == BC->getMainCodeSectionName())
3677         return true;
3678       if (A->getName() == BC->getMainCodeSectionName())
3679         return false;
3680       return (B->getName() == BC->getWarmCodeSectionName());
3681     } else {
3682       if (A->getName() == BC->getMainCodeSectionName())
3683         return true;
3684       if (B->getName() == BC->getMainCodeSectionName())
3685         return false;
3686       return (A->getName() == BC->getWarmCodeSectionName());
3687     }
3688   };
3689 
3690   // Determine the order of sections.
3691   llvm::stable_sort(CodeSections, compareSections);
3692 
3693   return CodeSections;
3694 }
3695 
3696 void RewriteInstance::mapCodeSections(BOLTLinker::SectionMapper MapSection) {
3697   if (BC->HasRelocations) {
3698     // Map sections for functions with pre-assigned addresses.
3699     for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) {
3700       const uint64_t OutputAddress = InjectedFunction->getOutputAddress();
3701       if (!OutputAddress)
3702         continue;
3703 
3704       ErrorOr<BinarySection &> FunctionSection =
3705           InjectedFunction->getCodeSection();
3706       assert(FunctionSection && "function should have section");
3707       FunctionSection->setOutputAddress(OutputAddress);
3708       MapSection(*FunctionSection, OutputAddress);
3709       InjectedFunction->setImageAddress(FunctionSection->getAllocAddress());
3710       InjectedFunction->setImageSize(FunctionSection->getOutputSize());
3711     }
3712 
3713     // Populate the list of sections to be allocated.
3714     std::vector<BinarySection *> CodeSections = getCodeSections();
3715 
3716     // Remove sections that were pre-allocated (patch sections).
3717     llvm::erase_if(CodeSections, [](BinarySection *Section) {
3718       return Section->getOutputAddress();
3719     });
3720     LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n";
3721       for (const BinarySection *Section : CodeSections)
3722         dbgs() << Section->getName() << '\n';
3723     );
3724 
3725     uint64_t PaddingSize = 0; // size of padding required at the end
3726 
3727     // Allocate sections starting at a given Address.
3728     auto allocateAt = [&](uint64_t Address) {
3729       const char *LastNonColdSectionName = BC->HasWarmSection
3730                                                ? BC->getWarmCodeSectionName()
3731                                                : BC->getMainCodeSectionName();
3732       for (BinarySection *Section : CodeSections) {
3733         Address = alignTo(Address, Section->getAlignment());
3734         Section->setOutputAddress(Address);
3735         Address += Section->getOutputSize();
3736 
3737         // Hugify: Additional huge page from right side due to
3738         // weird ASLR mapping addresses (4KB aligned)
3739         if (opts::Hugify && !BC->HasFixedLoadAddress &&
3740             Section->getName() == LastNonColdSectionName)
3741           Address = alignTo(Address, Section->getAlignment());
3742       }
3743 
3744       // Make sure we allocate enough space for huge pages.
3745       ErrorOr<BinarySection &> TextSection =
3746           BC->getUniqueSectionByName(LastNonColdSectionName);
3747       if (opts::HotText && TextSection && TextSection->hasValidSectionID()) {
3748         uint64_t HotTextEnd =
3749             TextSection->getOutputAddress() + TextSection->getOutputSize();
3750         HotTextEnd = alignTo(HotTextEnd, BC->PageAlign);
3751         if (HotTextEnd > Address) {
3752           PaddingSize = HotTextEnd - Address;
3753           Address = HotTextEnd;
3754         }
3755       }
3756       return Address;
3757     };
3758 
3759     // Check if we can fit code in the original .text
3760     bool AllocationDone = false;
3761     if (opts::UseOldText) {
3762       const uint64_t CodeSize =
3763           allocateAt(BC->OldTextSectionAddress) - BC->OldTextSectionAddress;
3764 
3765       if (CodeSize <= BC->OldTextSectionSize) {
3766         BC->outs() << "BOLT-INFO: using original .text for new code with 0x"
3767                    << Twine::utohexstr(opts::AlignText) << " alignment\n";
3768         AllocationDone = true;
3769       } else {
3770         BC->errs()
3771             << "BOLT-WARNING: original .text too small to fit the new code"
3772             << " using 0x" << Twine::utohexstr(opts::AlignText)
3773             << " alignment. " << CodeSize << " bytes needed, have "
3774             << BC->OldTextSectionSize << " bytes available.\n";
3775         opts::UseOldText = false;
3776       }
3777     }
3778 
3779     if (!AllocationDone)
3780       NextAvailableAddress = allocateAt(NextAvailableAddress);
3781 
3782     // Do the mapping for ORC layer based on the allocation.
3783     for (BinarySection *Section : CodeSections) {
3784       LLVM_DEBUG(
3785           dbgs() << "BOLT: mapping " << Section->getName() << " at 0x"
3786                  << Twine::utohexstr(Section->getAllocAddress()) << " to 0x"
3787                  << Twine::utohexstr(Section->getOutputAddress()) << '\n');
3788       MapSection(*Section, Section->getOutputAddress());
3789       Section->setOutputFileOffset(
3790           getFileOffsetForAddress(Section->getOutputAddress()));
3791     }
3792 
3793     // Check if we need to insert a padding section for hot text.
3794     if (PaddingSize && !opts::UseOldText)
3795       BC->outs() << "BOLT-INFO: padding code to 0x"
3796                  << Twine::utohexstr(NextAvailableAddress)
3797                  << " to accommodate hot text\n";
3798 
3799     return;
3800   }
3801 
3802   // Processing in non-relocation mode.
3803   uint64_t NewTextSectionStartAddress = NextAvailableAddress;
3804 
3805   for (auto &BFI : BC->getBinaryFunctions()) {
3806     BinaryFunction &Function = BFI.second;
3807     if (!Function.isEmitted())
3808       continue;
3809 
3810     ErrorOr<BinarySection &> FuncSection = Function.getCodeSection();
3811     assert(FuncSection && "cannot find section for function");
3812     FuncSection->setOutputAddress(Function.getAddress());
3813     LLVM_DEBUG(dbgs() << "BOLT: mapping 0x"
3814                       << Twine::utohexstr(FuncSection->getAllocAddress())
3815                       << " to 0x" << Twine::utohexstr(Function.getAddress())
3816                       << '\n');
3817     MapSection(*FuncSection, Function.getAddress());
3818     Function.setImageAddress(FuncSection->getAllocAddress());
3819     Function.setImageSize(FuncSection->getOutputSize());
3820     assert(Function.getImageSize() <= Function.getMaxSize() &&
3821            "Unexpected large function");
3822 
3823     // Map jump tables if updating in-place.
3824     if (opts::JumpTables == JTS_BASIC) {
3825       for (auto &JTI : Function.JumpTables) {
3826         JumpTable *JT = JTI.second;
3827         BinarySection &Section = JT->getOutputSection();
3828         Section.setOutputAddress(JT->getAddress());
3829         Section.setOutputFileOffset(getFileOffsetForAddress(JT->getAddress()));
3830         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping JT " << Section.getName()
3831                           << " to 0x" << Twine::utohexstr(JT->getAddress())
3832                           << '\n');
3833         MapSection(Section, JT->getAddress());
3834       }
3835     }
3836 
3837     if (!Function.isSplit())
3838       continue;
3839 
3840     assert(Function.getLayout().isHotColdSplit() &&
3841            "Cannot allocate more than two fragments per function in "
3842            "non-relocation mode.");
3843 
3844     FunctionFragment &FF =
3845         Function.getLayout().getFragment(FragmentNum::cold());
3846     ErrorOr<BinarySection &> ColdSection =
3847         Function.getCodeSection(FF.getFragmentNum());
3848     assert(ColdSection && "cannot find section for cold part");
3849     // Cold fragments are aligned at 16 bytes.
3850     NextAvailableAddress = alignTo(NextAvailableAddress, 16);
3851     FF.setAddress(NextAvailableAddress);
3852     FF.setImageAddress(ColdSection->getAllocAddress());
3853     FF.setImageSize(ColdSection->getOutputSize());
3854     FF.setFileOffset(getFileOffsetForAddress(NextAvailableAddress));
3855     ColdSection->setOutputAddress(FF.getAddress());
3856 
3857     LLVM_DEBUG(
3858         dbgs() << formatv(
3859             "BOLT: mapping cold fragment {0:x+} to {1:x+} with size {2:x+}\n",
3860             FF.getImageAddress(), FF.getAddress(), FF.getImageSize()));
3861     MapSection(*ColdSection, FF.getAddress());
3862 
3863     NextAvailableAddress += FF.getImageSize();
3864   }
3865 
3866   // Add the new text section aggregating all existing code sections.
3867   // This is pseudo-section that serves a purpose of creating a corresponding
3868   // entry in section header table.
3869   const uint64_t NewTextSectionSize =
3870       NextAvailableAddress - NewTextSectionStartAddress;
3871   if (NewTextSectionSize) {
3872     const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true,
3873                                                    /*IsText=*/true,
3874                                                    /*IsAllocatable=*/true);
3875     BinarySection &Section =
3876       BC->registerOrUpdateSection(getBOLTTextSectionName(),
3877                                   ELF::SHT_PROGBITS,
3878                                   Flags,
3879                                   /*Data=*/nullptr,
3880                                   NewTextSectionSize,
3881                                   16);
3882     Section.setOutputAddress(NewTextSectionStartAddress);
3883     Section.setOutputFileOffset(
3884         getFileOffsetForAddress(NewTextSectionStartAddress));
3885   }
3886 }
3887 
3888 void RewriteInstance::mapAllocatableSections(
3889     BOLTLinker::SectionMapper MapSection) {
3890   // Allocate read-only sections first, then writable sections.
3891   enum : uint8_t { ST_READONLY, ST_READWRITE };
3892   for (uint8_t SType = ST_READONLY; SType <= ST_READWRITE; ++SType) {
3893     const uint64_t LastNextAvailableAddress = NextAvailableAddress;
3894     if (SType == ST_READWRITE) {
3895       // Align R+W segment to regular page size
3896       NextAvailableAddress = alignTo(NextAvailableAddress, BC->RegularPageSize);
3897       NewWritableSegmentAddress = NextAvailableAddress;
3898     }
3899 
3900     for (BinarySection &Section : BC->allocatableSections()) {
3901       if (Section.isLinkOnly())
3902         continue;
3903 
3904       if (!Section.hasValidSectionID())
3905         continue;
3906 
3907       if (Section.isWritable() == (SType == ST_READONLY))
3908         continue;
3909 
3910       if (Section.getOutputAddress()) {
3911         LLVM_DEBUG({
3912           dbgs() << "BOLT-DEBUG: section " << Section.getName()
3913                  << " is already mapped at 0x"
3914                  << Twine::utohexstr(Section.getOutputAddress()) << '\n';
3915         });
3916         continue;
3917       }
3918 
3919       if (Section.hasSectionRef()) {
3920         LLVM_DEBUG({
3921           dbgs() << "BOLT-DEBUG: mapping original section " << Section.getName()
3922                  << " to 0x" << Twine::utohexstr(Section.getAddress()) << '\n';
3923         });
3924         Section.setOutputAddress(Section.getAddress());
3925         Section.setOutputFileOffset(Section.getInputFileOffset());
3926         MapSection(Section, Section.getAddress());
3927       } else {
3928         NextAvailableAddress =
3929             alignTo(NextAvailableAddress, Section.getAlignment());
3930         LLVM_DEBUG({
3931           dbgs() << "BOLT: mapping section " << Section.getName() << " (0x"
3932                  << Twine::utohexstr(Section.getAllocAddress()) << ") to 0x"
3933                  << Twine::utohexstr(NextAvailableAddress) << ":0x"
3934                  << Twine::utohexstr(NextAvailableAddress +
3935                                      Section.getOutputSize())
3936                  << '\n';
3937         });
3938 
3939         MapSection(Section, NextAvailableAddress);
3940         Section.setOutputAddress(NextAvailableAddress);
3941         Section.setOutputFileOffset(
3942             getFileOffsetForAddress(NextAvailableAddress));
3943 
3944         NextAvailableAddress += Section.getOutputSize();
3945       }
3946     }
3947 
3948     if (SType == ST_READONLY) {
3949       if (PHDRTableAddress) {
3950         // Segment size includes the size of the PHDR area.
3951         NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress;
3952       } else if (NewTextSegmentAddress) {
3953         // Existing PHDR table would be updated.
3954         NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress;
3955       }
3956     } else if (SType == ST_READWRITE) {
3957       NewWritableSegmentSize = NextAvailableAddress - NewWritableSegmentAddress;
3958       // Restore NextAvailableAddress if no new writable sections
3959       if (!NewWritableSegmentSize)
3960         NextAvailableAddress = LastNextAvailableAddress;
3961     }
3962   }
3963 }
3964 
3965 void RewriteInstance::updateOutputValues(const BOLTLinker &Linker) {
3966   if (std::optional<AddressMap> Map = AddressMap::parse(*BC))
3967     BC->setIOAddressMap(std::move(*Map));
3968 
3969   for (BinaryFunction *Function : BC->getAllBinaryFunctions())
3970     Function->updateOutputValues(Linker);
3971 }
3972 
3973 void RewriteInstance::patchELFPHDRTable() {
3974   auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile);
3975   const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
3976   raw_fd_ostream &OS = Out->os();
3977 
3978   // Write/re-write program headers.
3979   Phnum = Obj.getHeader().e_phnum;
3980   if (PHDRTableOffset) {
3981     // Writing new pheader table and adding one new entry for R+X segment.
3982     Phnum += 1;
3983     if (NewWritableSegmentSize) {
3984       // Adding one more entry for R+W segment.
3985       Phnum += 1;
3986     }
3987   } else {
3988     assert(!PHDRTableAddress && "unexpected address for program header table");
3989     PHDRTableOffset = Obj.getHeader().e_phoff;
3990     if (NewWritableSegmentSize) {
3991       BC->errs() << "BOLT-ERROR: unable to add writable segment\n";
3992       exit(1);
3993     }
3994   }
3995 
3996   // NOTE Currently .eh_frame_hdr appends to the last segment, recalculate
3997   // last segments size based on the NextAvailableAddress variable.
3998   if (!NewWritableSegmentSize) {
3999     if (PHDRTableAddress)
4000       NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress;
4001     else if (NewTextSegmentAddress)
4002       NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress;
4003   } else {
4004     NewWritableSegmentSize = NextAvailableAddress - NewWritableSegmentAddress;
4005   }
4006 
4007   const uint64_t SavedPos = OS.tell();
4008   OS.seek(PHDRTableOffset);
4009 
4010   auto createNewTextPhdr = [&]() {
4011     ELF64LEPhdrTy NewPhdr;
4012     NewPhdr.p_type = ELF::PT_LOAD;
4013     if (PHDRTableAddress) {
4014       NewPhdr.p_offset = PHDRTableOffset;
4015       NewPhdr.p_vaddr = PHDRTableAddress;
4016       NewPhdr.p_paddr = PHDRTableAddress;
4017     } else {
4018       NewPhdr.p_offset = NewTextSegmentOffset;
4019       NewPhdr.p_vaddr = NewTextSegmentAddress;
4020       NewPhdr.p_paddr = NewTextSegmentAddress;
4021     }
4022     NewPhdr.p_filesz = NewTextSegmentSize;
4023     NewPhdr.p_memsz = NewTextSegmentSize;
4024     NewPhdr.p_flags = ELF::PF_X | ELF::PF_R;
4025     if (opts::Instrument) {
4026       // FIXME: Currently instrumentation is experimental and the runtime data
4027       // is emitted with code, thus everything needs to be writable.
4028       NewPhdr.p_flags |= ELF::PF_W;
4029     }
4030     NewPhdr.p_align = BC->PageAlign;
4031 
4032     return NewPhdr;
4033   };
4034 
4035   auto writeNewSegmentPhdrs = [&]() {
4036     if (PHDRTableAddress || NewTextSegmentSize) {
4037       ELF64LE::Phdr NewPhdr = createNewTextPhdr();
4038       OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr));
4039     }
4040 
4041     if (NewWritableSegmentSize) {
4042       ELF64LEPhdrTy NewPhdr;
4043       NewPhdr.p_type = ELF::PT_LOAD;
4044       NewPhdr.p_offset = getFileOffsetForAddress(NewWritableSegmentAddress);
4045       NewPhdr.p_vaddr = NewWritableSegmentAddress;
4046       NewPhdr.p_paddr = NewWritableSegmentAddress;
4047       NewPhdr.p_filesz = NewWritableSegmentSize;
4048       NewPhdr.p_memsz = NewWritableSegmentSize;
4049       NewPhdr.p_align = BC->RegularPageSize;
4050       NewPhdr.p_flags = ELF::PF_R | ELF::PF_W;
4051       OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr));
4052     }
4053   };
4054 
4055   bool ModdedGnuStack = false;
4056   bool AddedSegment = false;
4057 
4058   // Copy existing program headers with modifications.
4059   for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) {
4060     ELF64LE::Phdr NewPhdr = Phdr;
4061     switch (Phdr.p_type) {
4062     case ELF::PT_PHDR:
4063       if (PHDRTableAddress) {
4064         NewPhdr.p_offset = PHDRTableOffset;
4065         NewPhdr.p_vaddr = PHDRTableAddress;
4066         NewPhdr.p_paddr = PHDRTableAddress;
4067         NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum;
4068         NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum;
4069       }
4070       break;
4071     case ELF::PT_GNU_EH_FRAME: {
4072       ErrorOr<BinarySection &> EHFrameHdrSec = BC->getUniqueSectionByName(
4073           getNewSecPrefix() + getEHFrameHdrSectionName());
4074       if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() &&
4075           EHFrameHdrSec->isFinalized()) {
4076         NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset();
4077         NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress();
4078         NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress();
4079         NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize();
4080         NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize();
4081       }
4082       break;
4083     }
4084     case ELF::PT_GNU_STACK:
4085       if (opts::UseGnuStack) {
4086         // Overwrite the header with the new text segment header.
4087         NewPhdr = createNewTextPhdr();
4088         ModdedGnuStack = true;
4089       }
4090       break;
4091     case ELF::PT_DYNAMIC:
4092       if (!opts::UseGnuStack) {
4093         // Insert new headers before DYNAMIC.
4094         writeNewSegmentPhdrs();
4095         AddedSegment = true;
4096       }
4097       break;
4098     }
4099     OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr));
4100   }
4101 
4102   if (!opts::UseGnuStack && !AddedSegment) {
4103     // Append new headers to the end of the table.
4104     writeNewSegmentPhdrs();
4105   }
4106 
4107   if (opts::UseGnuStack && !ModdedGnuStack) {
4108     BC->errs()
4109         << "BOLT-ERROR: could not find PT_GNU_STACK program header to modify\n";
4110     exit(1);
4111   }
4112 
4113   OS.seek(SavedPos);
4114 }
4115 
4116 namespace {
4117 
4118 /// Write padding to \p OS such that its current \p Offset becomes aligned
4119 /// at \p Alignment. Return new (aligned) offset.
4120 uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset,
4121                        uint64_t Alignment) {
4122   if (!Alignment)
4123     return Offset;
4124 
4125   const uint64_t PaddingSize =
4126       offsetToAlignment(Offset, llvm::Align(Alignment));
4127   for (unsigned I = 0; I < PaddingSize; ++I)
4128     OS.write((unsigned char)0);
4129   return Offset + PaddingSize;
4130 }
4131 
4132 }
4133 
4134 void RewriteInstance::rewriteNoteSections() {
4135   auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile);
4136   const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
4137   raw_fd_ostream &OS = Out->os();
4138 
4139   uint64_t NextAvailableOffset = std::max(
4140       getFileOffsetForAddress(NextAvailableAddress), FirstNonAllocatableOffset);
4141   OS.seek(NextAvailableOffset);
4142 
4143   // Copy over non-allocatable section contents and update file offsets.
4144   for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) {
4145     if (Section.sh_type == ELF::SHT_NULL)
4146       continue;
4147     if (Section.sh_flags & ELF::SHF_ALLOC)
4148       continue;
4149 
4150     SectionRef SecRef = ELF64LEFile->toSectionRef(&Section);
4151     BinarySection *BSec = BC->getSectionForSectionRef(SecRef);
4152     assert(BSec && !BSec->isAllocatable() &&
4153            "Matching non-allocatable BinarySection should exist.");
4154 
4155     StringRef SectionName =
4156         cantFail(Obj.getSectionName(Section), "cannot get section name");
4157     if (shouldStrip(Section, SectionName))
4158       continue;
4159 
4160     // Insert padding as needed.
4161     NextAvailableOffset =
4162         appendPadding(OS, NextAvailableOffset, Section.sh_addralign);
4163 
4164     // New section size.
4165     uint64_t Size = 0;
4166     bool DataWritten = false;
4167     uint8_t *SectionData = nullptr;
4168     // Copy over section contents unless it's one of the sections we overwrite.
4169     if (!willOverwriteSection(SectionName)) {
4170       Size = Section.sh_size;
4171       StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size);
4172       std::string Data;
4173       if (BSec->getPatcher()) {
4174         Data = BSec->getPatcher()->patchBinary(Dataref);
4175         Dataref = StringRef(Data);
4176       }
4177 
4178       // Section was expanded, so need to treat it as overwrite.
4179       if (Size != Dataref.size()) {
4180         BSec = &BC->registerOrUpdateNoteSection(
4181             SectionName, copyByteArray(Dataref), Dataref.size());
4182         Size = 0;
4183       } else {
4184         OS << Dataref;
4185         DataWritten = true;
4186 
4187         // Add padding as the section extension might rely on the alignment.
4188         Size = appendPadding(OS, Size, Section.sh_addralign);
4189       }
4190     }
4191 
4192     // Perform section post-processing.
4193     assert(BSec->getAlignment() <= Section.sh_addralign &&
4194            "alignment exceeds value in file");
4195 
4196     if (BSec->getAllocAddress()) {
4197       assert(!DataWritten && "Writing section twice.");
4198       (void)DataWritten;
4199       SectionData = BSec->getOutputData();
4200 
4201       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing")
4202                         << " contents to section " << SectionName << '\n');
4203       OS.write(reinterpret_cast<char *>(SectionData), BSec->getOutputSize());
4204       Size += BSec->getOutputSize();
4205     }
4206 
4207     BSec->setOutputFileOffset(NextAvailableOffset);
4208     BSec->flushPendingRelocations(OS, [this](const MCSymbol *S) {
4209       return getNewValueForSymbol(S->getName());
4210     });
4211 
4212     // Section contents are no longer needed, but we need to update the size so
4213     // that it will be reflected in the section header table.
4214     BSec->updateContents(nullptr, Size);
4215 
4216     NextAvailableOffset += Size;
4217   }
4218 
4219   // Write new note sections.
4220   for (BinarySection &Section : BC->nonAllocatableSections()) {
4221     if (Section.getOutputFileOffset() || !Section.getAllocAddress())
4222       continue;
4223 
4224     assert(!Section.hasPendingRelocations() && "cannot have pending relocs");
4225 
4226     NextAvailableOffset =
4227         appendPadding(OS, NextAvailableOffset, Section.getAlignment());
4228     Section.setOutputFileOffset(NextAvailableOffset);
4229 
4230     LLVM_DEBUG(
4231         dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName()
4232                << " of size " << Section.getOutputSize() << " at offset 0x"
4233                << Twine::utohexstr(Section.getOutputFileOffset()) << '\n');
4234 
4235     OS.write(Section.getOutputContents().data(), Section.getOutputSize());
4236     NextAvailableOffset += Section.getOutputSize();
4237   }
4238 }
4239 
4240 template <typename ELFT>
4241 void RewriteInstance::finalizeSectionStringTable(ELFObjectFile<ELFT> *File) {
4242   // Pre-populate section header string table.
4243   for (const BinarySection &Section : BC->sections())
4244     if (!Section.isAnonymous())
4245       SHStrTab.add(Section.getOutputName());
4246   SHStrTab.finalize();
4247 
4248   const size_t SHStrTabSize = SHStrTab.getSize();
4249   uint8_t *DataCopy = new uint8_t[SHStrTabSize];
4250   memset(DataCopy, 0, SHStrTabSize);
4251   SHStrTab.write(DataCopy);
4252   BC->registerOrUpdateNoteSection(".shstrtab",
4253                                   DataCopy,
4254                                   SHStrTabSize,
4255                                   /*Alignment=*/1,
4256                                   /*IsReadOnly=*/true,
4257                                   ELF::SHT_STRTAB);
4258 }
4259 
4260 void RewriteInstance::addBoltInfoSection() {
4261   std::string DescStr;
4262   raw_string_ostream DescOS(DescStr);
4263 
4264   DescOS << "BOLT revision: " << BoltRevision << ", "
4265          << "command line:";
4266   for (int I = 0; I < Argc; ++I)
4267     DescOS << " " << Argv[I];
4268 
4269   // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n'
4270   const std::string BoltInfo =
4271       BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/);
4272   BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo),
4273                                   BoltInfo.size(),
4274                                   /*Alignment=*/1,
4275                                   /*IsReadOnly=*/true, ELF::SHT_NOTE);
4276 }
4277 
4278 void RewriteInstance::addBATSection() {
4279   BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr,
4280                                   0,
4281                                   /*Alignment=*/1,
4282                                   /*IsReadOnly=*/true, ELF::SHT_NOTE);
4283 }
4284 
4285 void RewriteInstance::encodeBATSection() {
4286   std::string DescStr;
4287   raw_string_ostream DescOS(DescStr);
4288 
4289   BAT->write(*BC, DescOS);
4290 
4291   const std::string BoltInfo =
4292       BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT);
4293   BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME,
4294                                   copyByteArray(BoltInfo), BoltInfo.size(),
4295                                   /*Alignment=*/1,
4296                                   /*IsReadOnly=*/true, ELF::SHT_NOTE);
4297   BC->outs() << "BOLT-INFO: BAT section size (bytes): " << BoltInfo.size()
4298              << '\n';
4299 }
4300 
4301 template <typename ELFShdrTy>
4302 bool RewriteInstance::shouldStrip(const ELFShdrTy &Section,
4303                                   StringRef SectionName) {
4304   // Strip non-allocatable relocation sections.
4305   if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA)
4306     return true;
4307 
4308   // Strip debug sections if not updating them.
4309   if (isDebugSection(SectionName) && !opts::UpdateDebugSections)
4310     return true;
4311 
4312   // Strip symtab section if needed
4313   if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB)
4314     return true;
4315 
4316   return false;
4317 }
4318 
4319 template <typename ELFT>
4320 std::vector<typename object::ELFObjectFile<ELFT>::Elf_Shdr>
4321 RewriteInstance::getOutputSections(ELFObjectFile<ELFT> *File,
4322                                    std::vector<uint32_t> &NewSectionIndex) {
4323   using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
4324   const ELFFile<ELFT> &Obj = File->getELFFile();
4325   typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
4326 
4327   // Keep track of section header entries attached to the corresponding section.
4328   std::vector<std::pair<BinarySection *, ELFShdrTy>> OutputSections;
4329   auto addSection = [&](const ELFShdrTy &Section, BinarySection &BinSec) {
4330     ELFShdrTy NewSection = Section;
4331     NewSection.sh_name = SHStrTab.getOffset(BinSec.getOutputName());
4332     OutputSections.emplace_back(&BinSec, std::move(NewSection));
4333   };
4334 
4335   // Copy over entries for original allocatable sections using modified name.
4336   for (const ELFShdrTy &Section : Sections) {
4337     // Always ignore this section.
4338     if (Section.sh_type == ELF::SHT_NULL) {
4339       OutputSections.emplace_back(nullptr, Section);
4340       continue;
4341     }
4342 
4343     if (!(Section.sh_flags & ELF::SHF_ALLOC))
4344       continue;
4345 
4346     SectionRef SecRef = File->toSectionRef(&Section);
4347     BinarySection *BinSec = BC->getSectionForSectionRef(SecRef);
4348     assert(BinSec && "Matching BinarySection should exist.");
4349 
4350     addSection(Section, *BinSec);
4351   }
4352 
4353   for (BinarySection &Section : BC->allocatableSections()) {
4354     if (!Section.isFinalized())
4355       continue;
4356 
4357     if (Section.hasSectionRef() || Section.isAnonymous()) {
4358       if (opts::Verbosity)
4359         BC->outs() << "BOLT-INFO: not writing section header for section "
4360                    << Section.getOutputName() << '\n';
4361       continue;
4362     }
4363 
4364     if (opts::Verbosity >= 1)
4365       BC->outs() << "BOLT-INFO: writing section header for "
4366                  << Section.getOutputName() << '\n';
4367     ELFShdrTy NewSection;
4368     NewSection.sh_type = ELF::SHT_PROGBITS;
4369     NewSection.sh_addr = Section.getOutputAddress();
4370     NewSection.sh_offset = Section.getOutputFileOffset();
4371     NewSection.sh_size = Section.getOutputSize();
4372     NewSection.sh_entsize = 0;
4373     NewSection.sh_flags = Section.getELFFlags();
4374     NewSection.sh_link = 0;
4375     NewSection.sh_info = 0;
4376     NewSection.sh_addralign = Section.getAlignment();
4377     addSection(NewSection, Section);
4378   }
4379 
4380   // Sort all allocatable sections by their offset.
4381   llvm::stable_sort(OutputSections, [](const auto &A, const auto &B) {
4382     return A.second.sh_offset < B.second.sh_offset;
4383   });
4384 
4385   // Fix section sizes to prevent overlapping.
4386   ELFShdrTy *PrevSection = nullptr;
4387   BinarySection *PrevBinSec = nullptr;
4388   for (auto &SectionKV : OutputSections) {
4389     ELFShdrTy &Section = SectionKV.second;
4390 
4391     // Ignore NOBITS sections as they don't take any space in the file.
4392     if (Section.sh_type == ELF::SHT_NOBITS)
4393       continue;
4394 
4395     // Note that address continuity is not guaranteed as sections could be
4396     // placed in different loadable segments.
4397     if (PrevSection &&
4398         PrevSection->sh_offset + PrevSection->sh_size > Section.sh_offset) {
4399       if (opts::Verbosity > 1)
4400         BC->outs() << "BOLT-INFO: adjusting size for section "
4401                    << PrevBinSec->getOutputName() << '\n';
4402       PrevSection->sh_size = Section.sh_offset - PrevSection->sh_offset;
4403     }
4404 
4405     PrevSection = &Section;
4406     PrevBinSec = SectionKV.first;
4407   }
4408 
4409   uint64_t LastFileOffset = 0;
4410 
4411   // Copy over entries for non-allocatable sections performing necessary
4412   // adjustments.
4413   for (const ELFShdrTy &Section : Sections) {
4414     if (Section.sh_type == ELF::SHT_NULL)
4415       continue;
4416     if (Section.sh_flags & ELF::SHF_ALLOC)
4417       continue;
4418 
4419     StringRef SectionName =
4420         cantFail(Obj.getSectionName(Section), "cannot get section name");
4421 
4422     if (shouldStrip(Section, SectionName))
4423       continue;
4424 
4425     SectionRef SecRef = File->toSectionRef(&Section);
4426     BinarySection *BinSec = BC->getSectionForSectionRef(SecRef);
4427     assert(BinSec && "Matching BinarySection should exist.");
4428 
4429     ELFShdrTy NewSection = Section;
4430     NewSection.sh_offset = BinSec->getOutputFileOffset();
4431     NewSection.sh_size = BinSec->getOutputSize();
4432 
4433     if (NewSection.sh_type == ELF::SHT_SYMTAB)
4434       NewSection.sh_info = NumLocalSymbols;
4435 
4436     addSection(NewSection, *BinSec);
4437 
4438     LastFileOffset = BinSec->getOutputFileOffset();
4439   }
4440 
4441   // Create entries for new non-allocatable sections.
4442   for (BinarySection &Section : BC->nonAllocatableSections()) {
4443     if (Section.getOutputFileOffset() <= LastFileOffset)
4444       continue;
4445 
4446     if (opts::Verbosity >= 1)
4447       BC->outs() << "BOLT-INFO: writing section header for "
4448                  << Section.getOutputName() << '\n';
4449 
4450     ELFShdrTy NewSection;
4451     NewSection.sh_type = Section.getELFType();
4452     NewSection.sh_addr = 0;
4453     NewSection.sh_offset = Section.getOutputFileOffset();
4454     NewSection.sh_size = Section.getOutputSize();
4455     NewSection.sh_entsize = 0;
4456     NewSection.sh_flags = Section.getELFFlags();
4457     NewSection.sh_link = 0;
4458     NewSection.sh_info = 0;
4459     NewSection.sh_addralign = Section.getAlignment();
4460 
4461     addSection(NewSection, Section);
4462   }
4463 
4464   // Assign indices to sections.
4465   std::unordered_map<std::string, uint64_t> NameToIndex;
4466   for (uint32_t Index = 1; Index < OutputSections.size(); ++Index)
4467     OutputSections[Index].first->setIndex(Index);
4468 
4469   // Update section index mapping
4470   NewSectionIndex.clear();
4471   NewSectionIndex.resize(Sections.size(), 0);
4472   for (const ELFShdrTy &Section : Sections) {
4473     if (Section.sh_type == ELF::SHT_NULL)
4474       continue;
4475 
4476     size_t OrgIndex = std::distance(Sections.begin(), &Section);
4477 
4478     SectionRef SecRef = File->toSectionRef(&Section);
4479     BinarySection *BinSec = BC->getSectionForSectionRef(SecRef);
4480     assert(BinSec && "BinarySection should exist for an input section.");
4481 
4482     // Some sections are stripped
4483     if (!BinSec->hasValidIndex())
4484       continue;
4485 
4486     NewSectionIndex[OrgIndex] = BinSec->getIndex();
4487   }
4488 
4489   std::vector<ELFShdrTy> SectionsOnly(OutputSections.size());
4490   llvm::copy(llvm::make_second_range(OutputSections), SectionsOnly.begin());
4491 
4492   return SectionsOnly;
4493 }
4494 
4495 // Rewrite section header table inserting new entries as needed. The sections
4496 // header table size itself may affect the offsets of other sections,
4497 // so we are placing it at the end of the binary.
4498 //
4499 // As we rewrite entries we need to track how many sections were inserted
4500 // as it changes the sh_link value. We map old indices to new ones for
4501 // existing sections.
4502 template <typename ELFT>
4503 void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile<ELFT> *File) {
4504   using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
4505   using ELFEhdrTy = typename ELFObjectFile<ELFT>::Elf_Ehdr;
4506   raw_fd_ostream &OS = Out->os();
4507   const ELFFile<ELFT> &Obj = File->getELFFile();
4508 
4509   // Mapping from old section indices to new ones
4510   std::vector<uint32_t> NewSectionIndex;
4511   std::vector<ELFShdrTy> OutputSections =
4512       getOutputSections(File, NewSectionIndex);
4513   LLVM_DEBUG(
4514     dbgs() << "BOLT-DEBUG: old to new section index mapping:\n";
4515     for (uint64_t I = 0; I < NewSectionIndex.size(); ++I)
4516       dbgs() << "  " << I << " -> " << NewSectionIndex[I] << '\n';
4517   );
4518 
4519   // Align starting address for section header table. There's no architecutal
4520   // need to align this, it is just for pleasant human readability.
4521   uint64_t SHTOffset = OS.tell();
4522   SHTOffset = appendPadding(OS, SHTOffset, 16);
4523 
4524   // Write all section header entries while patching section references.
4525   for (ELFShdrTy &Section : OutputSections) {
4526     Section.sh_link = NewSectionIndex[Section.sh_link];
4527     if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA)
4528       Section.sh_info = NewSectionIndex[Section.sh_info];
4529     OS.write(reinterpret_cast<const char *>(&Section), sizeof(Section));
4530   }
4531 
4532   // Fix ELF header.
4533   ELFEhdrTy NewEhdr = Obj.getHeader();
4534 
4535   if (BC->HasRelocations) {
4536     if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
4537       NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress();
4538     else
4539       NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry);
4540     assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) &&
4541            "cannot find new address for entry point");
4542   }
4543   if (PHDRTableOffset) {
4544     NewEhdr.e_phoff = PHDRTableOffset;
4545     NewEhdr.e_phnum = Phnum;
4546   }
4547   NewEhdr.e_shoff = SHTOffset;
4548   NewEhdr.e_shnum = OutputSections.size();
4549   NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx];
4550   OS.pwrite(reinterpret_cast<const char *>(&NewEhdr), sizeof(NewEhdr), 0);
4551 }
4552 
4553 template <typename ELFT, typename WriteFuncTy, typename StrTabFuncTy>
4554 void RewriteInstance::updateELFSymbolTable(
4555     ELFObjectFile<ELFT> *File, bool IsDynSym,
4556     const typename object::ELFObjectFile<ELFT>::Elf_Shdr &SymTabSection,
4557     const std::vector<uint32_t> &NewSectionIndex, WriteFuncTy Write,
4558     StrTabFuncTy AddToStrTab) {
4559   const ELFFile<ELFT> &Obj = File->getELFFile();
4560   using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym;
4561 
4562   StringRef StringSection =
4563       cantFail(Obj.getStringTableForSymtab(SymTabSection));
4564 
4565   unsigned NumHotTextSymsUpdated = 0;
4566   unsigned NumHotDataSymsUpdated = 0;
4567 
4568   std::map<const BinaryFunction *, uint64_t> IslandSizes;
4569   auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) {
4570     auto Itr = IslandSizes.find(&BF);
4571     if (Itr != IslandSizes.end())
4572       return Itr->second;
4573     return IslandSizes[&BF] = BF.estimateConstantIslandSize();
4574   };
4575 
4576   // Symbols for the new symbol table.
4577   std::vector<ELFSymTy> Symbols;
4578 
4579   bool EmittedColdFileSymbol = false;
4580 
4581   auto getNewSectionIndex = [&](uint32_t OldIndex) {
4582     // For dynamic symbol table, the section index could be wrong on the input,
4583     // and its value is ignored by the runtime if it's different from
4584     // SHN_UNDEF and SHN_ABS.
4585     // However, we still need to update dynamic symbol table, so return a
4586     // section index, even though the index is broken.
4587     if (IsDynSym && OldIndex >= NewSectionIndex.size())
4588       return OldIndex;
4589 
4590     assert(OldIndex < NewSectionIndex.size() && "section index out of bounds");
4591     const uint32_t NewIndex = NewSectionIndex[OldIndex];
4592 
4593     // We may have stripped the section that dynsym was referencing due to
4594     // the linker bug. In that case return the old index avoiding marking
4595     // the symbol as undefined.
4596     if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF)
4597       return OldIndex;
4598     return NewIndex;
4599   };
4600 
4601   // Get the extra symbol name of a split fragment; used in addExtraSymbols.
4602   auto getSplitSymbolName = [&](const FunctionFragment &FF,
4603                                 const ELFSymTy &FunctionSymbol) {
4604     SmallString<256> SymbolName;
4605     if (BC->HasWarmSection)
4606       SymbolName =
4607           formatv("{0}.{1}", cantFail(FunctionSymbol.getName(StringSection)),
4608                   FF.getFragmentNum() == FragmentNum::warm() ? "warm" : "cold");
4609     else
4610       SymbolName = formatv("{0}.cold.{1}",
4611                            cantFail(FunctionSymbol.getName(StringSection)),
4612                            FF.getFragmentNum().get() - 1);
4613     return SymbolName;
4614   };
4615 
4616   // Add extra symbols for the function.
4617   //
4618   // Note that addExtraSymbols() could be called multiple times for the same
4619   // function with different FunctionSymbol matching the main function entry
4620   // point.
4621   auto addExtraSymbols = [&](const BinaryFunction &Function,
4622                              const ELFSymTy &FunctionSymbol) {
4623     if (Function.isFolded()) {
4624       BinaryFunction *ICFParent = Function.getFoldedIntoFunction();
4625       while (ICFParent->isFolded())
4626         ICFParent = ICFParent->getFoldedIntoFunction();
4627       ELFSymTy ICFSymbol = FunctionSymbol;
4628       SmallVector<char, 256> Buf;
4629       ICFSymbol.st_name =
4630           AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection)))
4631                           .concat(".icf.0")
4632                           .toStringRef(Buf));
4633       ICFSymbol.st_value = ICFParent->getOutputAddress();
4634       ICFSymbol.st_size = ICFParent->getOutputSize();
4635       ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex();
4636       Symbols.emplace_back(ICFSymbol);
4637     }
4638     if (Function.isSplit()) {
4639       // Prepend synthetic FILE symbol to prevent local cold fragments from
4640       // colliding with existing symbols with the same name.
4641       if (!EmittedColdFileSymbol &&
4642           FunctionSymbol.getBinding() == ELF::STB_GLOBAL) {
4643         ELFSymTy FileSymbol;
4644         FileSymbol.st_shndx = ELF::SHN_ABS;
4645         FileSymbol.st_name = AddToStrTab(getBOLTFileSymbolName());
4646         FileSymbol.st_value = 0;
4647         FileSymbol.st_size = 0;
4648         FileSymbol.st_other = 0;
4649         FileSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FILE);
4650         Symbols.emplace_back(FileSymbol);
4651         EmittedColdFileSymbol = true;
4652       }
4653       for (const FunctionFragment &FF :
4654            Function.getLayout().getSplitFragments()) {
4655         if (FF.getAddress()) {
4656           ELFSymTy NewColdSym = FunctionSymbol;
4657           const SmallString<256> SymbolName =
4658               getSplitSymbolName(FF, FunctionSymbol);
4659           NewColdSym.st_name = AddToStrTab(SymbolName);
4660           NewColdSym.st_shndx =
4661               Function.getCodeSection(FF.getFragmentNum())->getIndex();
4662           NewColdSym.st_value = FF.getAddress();
4663           NewColdSym.st_size = FF.getImageSize();
4664           NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC);
4665           Symbols.emplace_back(NewColdSym);
4666         }
4667       }
4668     }
4669     if (Function.hasConstantIsland()) {
4670       uint64_t DataMark = Function.getOutputDataAddress();
4671       uint64_t CISize = getConstantIslandSize(Function);
4672       uint64_t CodeMark = DataMark + CISize;
4673       ELFSymTy DataMarkSym = FunctionSymbol;
4674       DataMarkSym.st_name = AddToStrTab("$d");
4675       DataMarkSym.st_value = DataMark;
4676       DataMarkSym.st_size = 0;
4677       DataMarkSym.setType(ELF::STT_NOTYPE);
4678       DataMarkSym.setBinding(ELF::STB_LOCAL);
4679       ELFSymTy CodeMarkSym = DataMarkSym;
4680       CodeMarkSym.st_name = AddToStrTab("$x");
4681       CodeMarkSym.st_value = CodeMark;
4682       Symbols.emplace_back(DataMarkSym);
4683       Symbols.emplace_back(CodeMarkSym);
4684     }
4685     if (Function.hasConstantIsland() && Function.isSplit()) {
4686       uint64_t DataMark = Function.getOutputColdDataAddress();
4687       uint64_t CISize = getConstantIslandSize(Function);
4688       uint64_t CodeMark = DataMark + CISize;
4689       ELFSymTy DataMarkSym = FunctionSymbol;
4690       DataMarkSym.st_name = AddToStrTab("$d");
4691       DataMarkSym.st_value = DataMark;
4692       DataMarkSym.st_size = 0;
4693       DataMarkSym.setType(ELF::STT_NOTYPE);
4694       DataMarkSym.setBinding(ELF::STB_LOCAL);
4695       ELFSymTy CodeMarkSym = DataMarkSym;
4696       CodeMarkSym.st_name = AddToStrTab("$x");
4697       CodeMarkSym.st_value = CodeMark;
4698       Symbols.emplace_back(DataMarkSym);
4699       Symbols.emplace_back(CodeMarkSym);
4700     }
4701   };
4702 
4703   // For regular (non-dynamic) symbol table, exclude symbols referring
4704   // to non-allocatable sections.
4705   auto shouldStrip = [&](const ELFSymTy &Symbol) {
4706     if (Symbol.isAbsolute() || !Symbol.isDefined())
4707       return false;
4708 
4709     // If we cannot link the symbol to a section, leave it as is.
4710     Expected<const typename ELFT::Shdr *> Section =
4711         Obj.getSection(Symbol.st_shndx);
4712     if (!Section)
4713       return false;
4714 
4715     // Remove the section symbol iif the corresponding section was stripped.
4716     if (Symbol.getType() == ELF::STT_SECTION) {
4717       if (!getNewSectionIndex(Symbol.st_shndx))
4718         return true;
4719       return false;
4720     }
4721 
4722     // Symbols in non-allocatable sections are typically remnants of relocations
4723     // emitted under "-emit-relocs" linker option. Delete those as we delete
4724     // relocations against non-allocatable sections.
4725     if (!((*Section)->sh_flags & ELF::SHF_ALLOC))
4726       return true;
4727 
4728     return false;
4729   };
4730 
4731   for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) {
4732     // For regular (non-dynamic) symbol table strip unneeded symbols.
4733     if (!IsDynSym && shouldStrip(Symbol))
4734       continue;
4735 
4736     const BinaryFunction *Function =
4737         BC->getBinaryFunctionAtAddress(Symbol.st_value);
4738     // Ignore false function references, e.g. when the section address matches
4739     // the address of the function.
4740     if (Function && Symbol.getType() == ELF::STT_SECTION)
4741       Function = nullptr;
4742 
4743     // For non-dynamic symtab, make sure the symbol section matches that of
4744     // the function. It can mismatch e.g. if the symbol is a section marker
4745     // in which case we treat the symbol separately from the function.
4746     // For dynamic symbol table, the section index could be wrong on the input,
4747     // and its value is ignored by the runtime if it's different from
4748     // SHN_UNDEF and SHN_ABS.
4749     if (!IsDynSym && Function &&
4750         Symbol.st_shndx !=
4751             Function->getOriginSection()->getSectionRef().getIndex())
4752       Function = nullptr;
4753 
4754     // Create a new symbol based on the existing symbol.
4755     ELFSymTy NewSymbol = Symbol;
4756 
4757     // Handle special symbols based on their name.
4758     Expected<StringRef> SymbolName = Symbol.getName(StringSection);
4759     assert(SymbolName && "cannot get symbol name");
4760 
4761     auto updateSymbolValue = [&](const StringRef Name,
4762                                  std::optional<uint64_t> Value = std::nullopt) {
4763       NewSymbol.st_value = Value ? *Value : getNewValueForSymbol(Name);
4764       NewSymbol.st_shndx = ELF::SHN_ABS;
4765       BC->outs() << "BOLT-INFO: setting " << Name << " to 0x"
4766                  << Twine::utohexstr(NewSymbol.st_value) << '\n';
4767     };
4768 
4769     if (*SymbolName == "__hot_start" || *SymbolName == "__hot_end") {
4770       if (opts::HotText) {
4771         updateSymbolValue(*SymbolName);
4772         ++NumHotTextSymsUpdated;
4773       }
4774       goto registerSymbol;
4775     }
4776 
4777     if (*SymbolName == "__hot_data_start" || *SymbolName == "__hot_data_end") {
4778       if (opts::HotData) {
4779         updateSymbolValue(*SymbolName);
4780         ++NumHotDataSymsUpdated;
4781       }
4782       goto registerSymbol;
4783     }
4784 
4785     if (*SymbolName == "_end") {
4786       if (NextAvailableAddress > Symbol.st_value)
4787         updateSymbolValue(*SymbolName, NextAvailableAddress);
4788       goto registerSymbol;
4789     }
4790 
4791     if (Function) {
4792       // If the symbol matched a function that was not emitted, update the
4793       // corresponding section index but otherwise leave it unchanged.
4794       if (Function->isEmitted()) {
4795         NewSymbol.st_value = Function->getOutputAddress();
4796         NewSymbol.st_size = Function->getOutputSize();
4797         NewSymbol.st_shndx = Function->getCodeSection()->getIndex();
4798       } else if (Symbol.st_shndx < ELF::SHN_LORESERVE) {
4799         NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx);
4800       }
4801 
4802       // Add new symbols to the symbol table if necessary.
4803       if (!IsDynSym)
4804         addExtraSymbols(*Function, NewSymbol);
4805     } else {
4806       // Check if the function symbol matches address inside a function, i.e.
4807       // it marks a secondary entry point.
4808       Function =
4809           (Symbol.getType() == ELF::STT_FUNC)
4810               ? BC->getBinaryFunctionContainingAddress(Symbol.st_value,
4811                                                        /*CheckPastEnd=*/false,
4812                                                        /*UseMaxSize=*/true)
4813               : nullptr;
4814 
4815       if (Function && Function->isEmitted()) {
4816         assert(Function->getLayout().isHotColdSplit() &&
4817                "Adding symbols based on cold fragment when there are more than "
4818                "2 fragments");
4819         const uint64_t OutputAddress =
4820             Function->translateInputToOutputAddress(Symbol.st_value);
4821 
4822         NewSymbol.st_value = OutputAddress;
4823         // Force secondary entry points to have zero size.
4824         NewSymbol.st_size = 0;
4825 
4826         // Find fragment containing entrypoint
4827         FunctionLayout::fragment_const_iterator FF = llvm::find_if(
4828             Function->getLayout().fragments(), [&](const FunctionFragment &FF) {
4829               uint64_t Lo = FF.getAddress();
4830               uint64_t Hi = Lo + FF.getImageSize();
4831               return Lo <= OutputAddress && OutputAddress < Hi;
4832             });
4833 
4834         if (FF == Function->getLayout().fragment_end()) {
4835           assert(
4836               OutputAddress >= Function->getCodeSection()->getOutputAddress() &&
4837               OutputAddress < (Function->getCodeSection()->getOutputAddress() +
4838                                Function->getCodeSection()->getOutputSize()) &&
4839               "Cannot locate fragment containing secondary entrypoint");
4840           FF = Function->getLayout().fragment_begin();
4841         }
4842 
4843         NewSymbol.st_shndx =
4844             Function->getCodeSection(FF->getFragmentNum())->getIndex();
4845       } else {
4846         // Check if the symbol belongs to moved data object and update it.
4847         BinaryData *BD = opts::ReorderData.empty()
4848                              ? nullptr
4849                              : BC->getBinaryDataAtAddress(Symbol.st_value);
4850         if (BD && BD->isMoved() && !BD->isJumpTable()) {
4851           assert((!BD->getSize() || !Symbol.st_size ||
4852                   Symbol.st_size == BD->getSize()) &&
4853                  "sizes must match");
4854 
4855           BinarySection &OutputSection = BD->getOutputSection();
4856           assert(OutputSection.getIndex());
4857           LLVM_DEBUG(dbgs()
4858                      << "BOLT-DEBUG: moving " << BD->getName() << " from "
4859                      << *BC->getSectionNameForAddress(Symbol.st_value) << " ("
4860                      << Symbol.st_shndx << ") to " << OutputSection.getName()
4861                      << " (" << OutputSection.getIndex() << ")\n");
4862           NewSymbol.st_shndx = OutputSection.getIndex();
4863           NewSymbol.st_value = BD->getOutputAddress();
4864         } else {
4865           // Otherwise just update the section for the symbol.
4866           if (Symbol.st_shndx < ELF::SHN_LORESERVE)
4867             NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx);
4868         }
4869 
4870         // Detect local syms in the text section that we didn't update
4871         // and that were preserved by the linker to support relocations against
4872         // .text. Remove them from the symtab.
4873         if (Symbol.getType() == ELF::STT_NOTYPE &&
4874             Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) {
4875           if (BC->getBinaryFunctionContainingAddress(Symbol.st_value,
4876                                                      /*CheckPastEnd=*/false,
4877                                                      /*UseMaxSize=*/true)) {
4878             // Can only delete the symbol if not patching. Such symbols should
4879             // not exist in the dynamic symbol table.
4880             assert(!IsDynSym && "cannot delete symbol");
4881             continue;
4882           }
4883         }
4884       }
4885     }
4886 
4887   registerSymbol:
4888     if (IsDynSym)
4889       Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) *
4890                 sizeof(ELFSymTy),
4891             NewSymbol);
4892     else
4893       Symbols.emplace_back(NewSymbol);
4894   }
4895 
4896   if (IsDynSym) {
4897     assert(Symbols.empty());
4898     return;
4899   }
4900 
4901   // Add symbols of injected functions
4902   for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) {
4903     ELFSymTy NewSymbol;
4904     BinarySection *OriginSection = Function->getOriginSection();
4905     NewSymbol.st_shndx =
4906         OriginSection
4907             ? getNewSectionIndex(OriginSection->getSectionRef().getIndex())
4908             : Function->getCodeSection()->getIndex();
4909     NewSymbol.st_value = Function->getOutputAddress();
4910     NewSymbol.st_name = AddToStrTab(Function->getOneName());
4911     NewSymbol.st_size = Function->getOutputSize();
4912     NewSymbol.st_other = 0;
4913     NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC);
4914     Symbols.emplace_back(NewSymbol);
4915 
4916     if (Function->isSplit()) {
4917       assert(Function->getLayout().isHotColdSplit() &&
4918              "Adding symbols based on cold fragment when there are more than "
4919              "2 fragments");
4920       ELFSymTy NewColdSym = NewSymbol;
4921       NewColdSym.setType(ELF::STT_NOTYPE);
4922       SmallVector<char, 256> Buf;
4923       NewColdSym.st_name = AddToStrTab(
4924           Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf));
4925       const FunctionFragment &ColdFF =
4926           Function->getLayout().getFragment(FragmentNum::cold());
4927       NewColdSym.st_value = ColdFF.getAddress();
4928       NewColdSym.st_size = ColdFF.getImageSize();
4929       Symbols.emplace_back(NewColdSym);
4930     }
4931   }
4932 
4933   auto AddSymbol = [&](const StringRef &Name, uint64_t Address) {
4934     if (!Address)
4935       return;
4936 
4937     ELFSymTy Symbol;
4938     Symbol.st_value = Address;
4939     Symbol.st_shndx = ELF::SHN_ABS;
4940     Symbol.st_name = AddToStrTab(Name);
4941     Symbol.st_size = 0;
4942     Symbol.st_other = 0;
4943     Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE);
4944 
4945     BC->outs() << "BOLT-INFO: setting " << Name << " to 0x"
4946                << Twine::utohexstr(Symbol.st_value) << '\n';
4947 
4948     Symbols.emplace_back(Symbol);
4949   };
4950 
4951   // Add runtime library start and fini address symbols
4952   if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) {
4953     AddSymbol("__bolt_runtime_start", RtLibrary->getRuntimeStartAddress());
4954     AddSymbol("__bolt_runtime_fini", RtLibrary->getRuntimeFiniAddress());
4955   }
4956 
4957   assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) &&
4958          "either none or both __hot_start/__hot_end symbols were expected");
4959   assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) &&
4960          "either none or both __hot_data_start/__hot_data_end symbols were "
4961          "expected");
4962 
4963   auto AddEmittedSymbol = [&](const StringRef &Name) {
4964     AddSymbol(Name, getNewValueForSymbol(Name));
4965   };
4966 
4967   if (opts::HotText && !NumHotTextSymsUpdated) {
4968     AddEmittedSymbol("__hot_start");
4969     AddEmittedSymbol("__hot_end");
4970   }
4971 
4972   if (opts::HotData && !NumHotDataSymsUpdated) {
4973     AddEmittedSymbol("__hot_data_start");
4974     AddEmittedSymbol("__hot_data_end");
4975   }
4976 
4977   // Put local symbols at the beginning.
4978   llvm::stable_sort(Symbols, [](const ELFSymTy &A, const ELFSymTy &B) {
4979     if (A.getBinding() == ELF::STB_LOCAL && B.getBinding() != ELF::STB_LOCAL)
4980       return true;
4981     return false;
4982   });
4983 
4984   for (const ELFSymTy &Symbol : Symbols)
4985     Write(0, Symbol);
4986 }
4987 
4988 template <typename ELFT>
4989 void RewriteInstance::patchELFSymTabs(ELFObjectFile<ELFT> *File) {
4990   const ELFFile<ELFT> &Obj = File->getELFFile();
4991   using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
4992   using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym;
4993 
4994   // Compute a preview of how section indices will change after rewriting, so
4995   // we can properly update the symbol table based on new section indices.
4996   std::vector<uint32_t> NewSectionIndex;
4997   getOutputSections(File, NewSectionIndex);
4998 
4999   // Update dynamic symbol table.
5000   const ELFShdrTy *DynSymSection = nullptr;
5001   for (const ELFShdrTy &Section : cantFail(Obj.sections())) {
5002     if (Section.sh_type == ELF::SHT_DYNSYM) {
5003       DynSymSection = &Section;
5004       break;
5005     }
5006   }
5007   assert((DynSymSection || BC->IsStaticExecutable) &&
5008          "dynamic symbol table expected");
5009   if (DynSymSection) {
5010     updateELFSymbolTable(
5011         File,
5012         /*IsDynSym=*/true,
5013         *DynSymSection,
5014         NewSectionIndex,
5015         [&](size_t Offset, const ELFSymTy &Sym) {
5016           Out->os().pwrite(reinterpret_cast<const char *>(&Sym),
5017                            sizeof(ELFSymTy),
5018                            DynSymSection->sh_offset + Offset);
5019         },
5020         [](StringRef) -> size_t { return 0; });
5021   }
5022 
5023   if (opts::RemoveSymtab)
5024     return;
5025 
5026   // (re)create regular symbol table.
5027   const ELFShdrTy *SymTabSection = nullptr;
5028   for (const ELFShdrTy &Section : cantFail(Obj.sections())) {
5029     if (Section.sh_type == ELF::SHT_SYMTAB) {
5030       SymTabSection = &Section;
5031       break;
5032     }
5033   }
5034   if (!SymTabSection) {
5035     BC->errs() << "BOLT-WARNING: no symbol table found\n";
5036     return;
5037   }
5038 
5039   const ELFShdrTy *StrTabSection =
5040       cantFail(Obj.getSection(SymTabSection->sh_link));
5041   std::string NewContents;
5042   std::string NewStrTab = std::string(
5043       File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size));
5044   StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection));
5045   StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection));
5046 
5047   NumLocalSymbols = 0;
5048   updateELFSymbolTable(
5049       File,
5050       /*IsDynSym=*/false,
5051       *SymTabSection,
5052       NewSectionIndex,
5053       [&](size_t Offset, const ELFSymTy &Sym) {
5054         if (Sym.getBinding() == ELF::STB_LOCAL)
5055           ++NumLocalSymbols;
5056         NewContents.append(reinterpret_cast<const char *>(&Sym),
5057                            sizeof(ELFSymTy));
5058       },
5059       [&](StringRef Str) {
5060         size_t Idx = NewStrTab.size();
5061         NewStrTab.append(NameResolver::restore(Str).str());
5062         NewStrTab.append(1, '\0');
5063         return Idx;
5064       });
5065 
5066   BC->registerOrUpdateNoteSection(SecName,
5067                                   copyByteArray(NewContents),
5068                                   NewContents.size(),
5069                                   /*Alignment=*/1,
5070                                   /*IsReadOnly=*/true,
5071                                   ELF::SHT_SYMTAB);
5072 
5073   BC->registerOrUpdateNoteSection(StrSecName,
5074                                   copyByteArray(NewStrTab),
5075                                   NewStrTab.size(),
5076                                   /*Alignment=*/1,
5077                                   /*IsReadOnly=*/true,
5078                                   ELF::SHT_STRTAB);
5079 }
5080 
5081 template <typename ELFT>
5082 void RewriteInstance::patchELFAllocatableRelrSection(
5083     ELFObjectFile<ELFT> *File) {
5084   if (!DynamicRelrAddress)
5085     return;
5086 
5087   raw_fd_ostream &OS = Out->os();
5088   const uint8_t PSize = BC->AsmInfo->getCodePointerSize();
5089   const uint64_t MaxDelta = ((CHAR_BIT * DynamicRelrEntrySize) - 1) * PSize;
5090 
5091   auto FixAddend = [&](const BinarySection &Section, const Relocation &Rel,
5092                        uint64_t FileOffset) {
5093     // Fix relocation symbol value in place if no static relocation found
5094     // on the same address. We won't check the BF relocations here since it
5095     // is rare case and no optimization is required.
5096     if (Section.getRelocationAt(Rel.Offset))
5097       return;
5098 
5099     // No fixup needed if symbol address was not changed
5100     const uint64_t Addend = getNewFunctionOrDataAddress(Rel.Addend);
5101     if (!Addend)
5102       return;
5103 
5104     OS.pwrite(reinterpret_cast<const char *>(&Addend), PSize, FileOffset);
5105   };
5106 
5107   // Fill new relative relocation offsets set
5108   std::set<uint64_t> RelOffsets;
5109   for (const BinarySection &Section : BC->allocatableSections()) {
5110     const uint64_t SectionInputAddress = Section.getAddress();
5111     uint64_t SectionAddress = Section.getOutputAddress();
5112     if (!SectionAddress)
5113       SectionAddress = SectionInputAddress;
5114 
5115     for (const Relocation &Rel : Section.dynamicRelocations()) {
5116       if (!Rel.isRelative())
5117         continue;
5118 
5119       uint64_t RelOffset =
5120           getNewFunctionOrDataAddress(SectionInputAddress + Rel.Offset);
5121 
5122       RelOffset = RelOffset == 0 ? SectionAddress + Rel.Offset : RelOffset;
5123       assert((RelOffset & 1) == 0 && "Wrong relocation offset");
5124       RelOffsets.emplace(RelOffset);
5125       FixAddend(Section, Rel, RelOffset);
5126     }
5127   }
5128 
5129   ErrorOr<BinarySection &> Section =
5130       BC->getSectionForAddress(*DynamicRelrAddress);
5131   assert(Section && "cannot get .relr.dyn section");
5132   assert(Section->isRelr() && "Expected section to be SHT_RELR type");
5133   uint64_t RelrDynOffset = Section->getInputFileOffset();
5134   const uint64_t RelrDynEndOffset = RelrDynOffset + Section->getSize();
5135 
5136   auto WriteRelr = [&](uint64_t Value) {
5137     if (RelrDynOffset + DynamicRelrEntrySize > RelrDynEndOffset) {
5138       BC->errs() << "BOLT-ERROR: Offset overflow for relr.dyn section\n";
5139       exit(1);
5140     }
5141 
5142     OS.pwrite(reinterpret_cast<const char *>(&Value), DynamicRelrEntrySize,
5143               RelrDynOffset);
5144     RelrDynOffset += DynamicRelrEntrySize;
5145   };
5146 
5147   for (auto RelIt = RelOffsets.begin(); RelIt != RelOffsets.end();) {
5148     WriteRelr(*RelIt);
5149     uint64_t Base = *RelIt++ + PSize;
5150     while (1) {
5151       uint64_t Bitmap = 0;
5152       for (; RelIt != RelOffsets.end(); ++RelIt) {
5153         const uint64_t Delta = *RelIt - Base;
5154         if (Delta >= MaxDelta || Delta % PSize)
5155           break;
5156 
5157         Bitmap |= (1ULL << (Delta / PSize));
5158       }
5159 
5160       if (!Bitmap)
5161         break;
5162 
5163       WriteRelr((Bitmap << 1) | 1);
5164       Base += MaxDelta;
5165     }
5166   }
5167 
5168   // Fill the rest of the section with empty bitmap value
5169   while (RelrDynOffset != RelrDynEndOffset)
5170     WriteRelr(1);
5171 }
5172 
5173 template <typename ELFT>
5174 void
5175 RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile<ELFT> *File) {
5176   using Elf_Rela = typename ELFT::Rela;
5177   raw_fd_ostream &OS = Out->os();
5178   const ELFFile<ELFT> &EF = File->getELFFile();
5179 
5180   uint64_t RelDynOffset = 0, RelDynEndOffset = 0;
5181   uint64_t RelPltOffset = 0, RelPltEndOffset = 0;
5182 
5183   auto setSectionFileOffsets = [&](uint64_t Address, uint64_t &Start,
5184                                    uint64_t &End) {
5185     ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
5186     assert(Section && "cannot get relocation section");
5187     Start = Section->getInputFileOffset();
5188     End = Start + Section->getSize();
5189   };
5190 
5191   if (!DynamicRelocationsAddress && !PLTRelocationsAddress)
5192     return;
5193 
5194   if (DynamicRelocationsAddress)
5195     setSectionFileOffsets(*DynamicRelocationsAddress, RelDynOffset,
5196                           RelDynEndOffset);
5197 
5198   if (PLTRelocationsAddress)
5199     setSectionFileOffsets(*PLTRelocationsAddress, RelPltOffset,
5200                           RelPltEndOffset);
5201 
5202   DynamicRelativeRelocationsCount = 0;
5203 
5204   auto writeRela = [&OS](const Elf_Rela *RelA, uint64_t &Offset) {
5205     OS.pwrite(reinterpret_cast<const char *>(RelA), sizeof(*RelA), Offset);
5206     Offset += sizeof(*RelA);
5207   };
5208 
5209   auto writeRelocations = [&](bool PatchRelative) {
5210     for (BinarySection &Section : BC->allocatableSections()) {
5211       const uint64_t SectionInputAddress = Section.getAddress();
5212       uint64_t SectionAddress = Section.getOutputAddress();
5213       if (!SectionAddress)
5214         SectionAddress = SectionInputAddress;
5215 
5216       for (const Relocation &Rel : Section.dynamicRelocations()) {
5217         const bool IsRelative = Rel.isRelative();
5218         if (PatchRelative != IsRelative)
5219           continue;
5220 
5221         if (IsRelative)
5222           ++DynamicRelativeRelocationsCount;
5223 
5224         Elf_Rela NewRelA;
5225         MCSymbol *Symbol = Rel.Symbol;
5226         uint32_t SymbolIdx = 0;
5227         uint64_t Addend = Rel.Addend;
5228         uint64_t RelOffset =
5229             getNewFunctionOrDataAddress(SectionInputAddress + Rel.Offset);
5230 
5231         RelOffset = RelOffset == 0 ? SectionAddress + Rel.Offset : RelOffset;
5232         if (Rel.Symbol) {
5233           SymbolIdx = getOutputDynamicSymbolIndex(Symbol);
5234         } else {
5235           // Usually this case is used for R_*_(I)RELATIVE relocations
5236           const uint64_t Address = getNewFunctionOrDataAddress(Addend);
5237           if (Address)
5238             Addend = Address;
5239         }
5240 
5241         NewRelA.setSymbolAndType(SymbolIdx, Rel.Type, EF.isMips64EL());
5242         NewRelA.r_offset = RelOffset;
5243         NewRelA.r_addend = Addend;
5244 
5245         const bool IsJmpRel = IsJmpRelocation.contains(Rel.Type);
5246         uint64_t &Offset = IsJmpRel ? RelPltOffset : RelDynOffset;
5247         const uint64_t &EndOffset =
5248             IsJmpRel ? RelPltEndOffset : RelDynEndOffset;
5249         if (!Offset || !EndOffset) {
5250           BC->errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n";
5251           exit(1);
5252         }
5253 
5254         if (Offset + sizeof(NewRelA) > EndOffset) {
5255           BC->errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n";
5256           exit(1);
5257         }
5258 
5259         writeRela(&NewRelA, Offset);
5260       }
5261     }
5262   };
5263 
5264   // Place R_*_RELATIVE relocations in RELA section if RELR is not presented.
5265   // The dynamic linker expects all R_*_RELATIVE relocations in RELA
5266   // to be emitted first.
5267   if (!DynamicRelrAddress)
5268     writeRelocations(/* PatchRelative */ true);
5269   writeRelocations(/* PatchRelative */ false);
5270 
5271   auto fillNone = [&](uint64_t &Offset, uint64_t EndOffset) {
5272     if (!Offset)
5273       return;
5274 
5275     typename ELFObjectFile<ELFT>::Elf_Rela RelA;
5276     RelA.setSymbolAndType(0, Relocation::getNone(), EF.isMips64EL());
5277     RelA.r_offset = 0;
5278     RelA.r_addend = 0;
5279     while (Offset < EndOffset)
5280       writeRela(&RelA, Offset);
5281 
5282     assert(Offset == EndOffset && "Unexpected section overflow");
5283   };
5284 
5285   // Fill the rest of the sections with R_*_NONE relocations
5286   fillNone(RelDynOffset, RelDynEndOffset);
5287   fillNone(RelPltOffset, RelPltEndOffset);
5288 }
5289 
5290 template <typename ELFT>
5291 void RewriteInstance::patchELFGOT(ELFObjectFile<ELFT> *File) {
5292   raw_fd_ostream &OS = Out->os();
5293 
5294   SectionRef GOTSection;
5295   for (const SectionRef &Section : File->sections()) {
5296     StringRef SectionName = cantFail(Section.getName());
5297     if (SectionName == ".got") {
5298       GOTSection = Section;
5299       break;
5300     }
5301   }
5302   if (!GOTSection.getObject()) {
5303     if (!BC->IsStaticExecutable)
5304       BC->errs() << "BOLT-INFO: no .got section found\n";
5305     return;
5306   }
5307 
5308   StringRef GOTContents = cantFail(GOTSection.getContents());
5309   for (const uint64_t *GOTEntry =
5310            reinterpret_cast<const uint64_t *>(GOTContents.data());
5311        GOTEntry < reinterpret_cast<const uint64_t *>(GOTContents.data() +
5312                                                      GOTContents.size());
5313        ++GOTEntry) {
5314     if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) {
5315       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x"
5316                         << Twine::utohexstr(*GOTEntry) << " with 0x"
5317                         << Twine::utohexstr(NewAddress) << '\n');
5318       OS.pwrite(reinterpret_cast<const char *>(&NewAddress), sizeof(NewAddress),
5319                 reinterpret_cast<const char *>(GOTEntry) -
5320                     File->getData().data());
5321     }
5322   }
5323 }
5324 
5325 template <typename ELFT>
5326 void RewriteInstance::patchELFDynamic(ELFObjectFile<ELFT> *File) {
5327   if (BC->IsStaticExecutable)
5328     return;
5329 
5330   const ELFFile<ELFT> &Obj = File->getELFFile();
5331   raw_fd_ostream &OS = Out->os();
5332 
5333   using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr;
5334   using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn;
5335 
5336   // Locate DYNAMIC by looking through program headers.
5337   uint64_t DynamicOffset = 0;
5338   const Elf_Phdr *DynamicPhdr = nullptr;
5339   for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) {
5340     if (Phdr.p_type == ELF::PT_DYNAMIC) {
5341       DynamicOffset = Phdr.p_offset;
5342       DynamicPhdr = &Phdr;
5343       assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match");
5344       break;
5345     }
5346   }
5347   assert(DynamicPhdr && "missing dynamic in ELF binary");
5348 
5349   bool ZNowSet = false;
5350 
5351   // Go through all dynamic entries and patch functions addresses with
5352   // new ones.
5353   typename ELFT::DynRange DynamicEntries =
5354       cantFail(Obj.dynamicEntries(), "error accessing dynamic table");
5355   auto DTB = DynamicEntries.begin();
5356   for (const Elf_Dyn &Dyn : DynamicEntries) {
5357     Elf_Dyn NewDE = Dyn;
5358     bool ShouldPatch = true;
5359     switch (Dyn.d_tag) {
5360     default:
5361       ShouldPatch = false;
5362       break;
5363     case ELF::DT_RELACOUNT:
5364       NewDE.d_un.d_val = DynamicRelativeRelocationsCount;
5365       break;
5366     case ELF::DT_INIT:
5367     case ELF::DT_FINI: {
5368       if (BC->HasRelocations) {
5369         if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) {
5370           LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type "
5371                             << Dyn.getTag() << '\n');
5372           NewDE.d_un.d_ptr = NewAddress;
5373         }
5374       }
5375       RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary();
5376       if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) {
5377         if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress())
5378           NewDE.d_un.d_ptr = Addr;
5379       }
5380       if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) {
5381         if (auto Addr = RtLibrary->getRuntimeStartAddress()) {
5382           LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x"
5383                             << Twine::utohexstr(Addr) << '\n');
5384           NewDE.d_un.d_ptr = Addr;
5385         }
5386       }
5387       break;
5388     }
5389     case ELF::DT_FLAGS:
5390       if (BC->RequiresZNow) {
5391         NewDE.d_un.d_val |= ELF::DF_BIND_NOW;
5392         ZNowSet = true;
5393       }
5394       break;
5395     case ELF::DT_FLAGS_1:
5396       if (BC->RequiresZNow) {
5397         NewDE.d_un.d_val |= ELF::DF_1_NOW;
5398         ZNowSet = true;
5399       }
5400       break;
5401     }
5402     if (ShouldPatch)
5403       OS.pwrite(reinterpret_cast<const char *>(&NewDE), sizeof(NewDE),
5404                 DynamicOffset + (&Dyn - DTB) * sizeof(Dyn));
5405   }
5406 
5407   if (BC->RequiresZNow && !ZNowSet) {
5408     BC->errs()
5409         << "BOLT-ERROR: output binary requires immediate relocation "
5410            "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in "
5411            ".dynamic. Please re-link the binary with -znow.\n";
5412     exit(1);
5413   }
5414 }
5415 
5416 template <typename ELFT>
5417 Error RewriteInstance::readELFDynamic(ELFObjectFile<ELFT> *File) {
5418   const ELFFile<ELFT> &Obj = File->getELFFile();
5419 
5420   using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr;
5421   using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn;
5422 
5423   // Locate DYNAMIC by looking through program headers.
5424   const Elf_Phdr *DynamicPhdr = nullptr;
5425   for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) {
5426     if (Phdr.p_type == ELF::PT_DYNAMIC) {
5427       DynamicPhdr = &Phdr;
5428       break;
5429     }
5430   }
5431 
5432   if (!DynamicPhdr) {
5433     BC->outs() << "BOLT-INFO: static input executable detected\n";
5434     // TODO: static PIE executable might have dynamic header
5435     BC->IsStaticExecutable = true;
5436     return Error::success();
5437   }
5438 
5439   if (DynamicPhdr->p_memsz != DynamicPhdr->p_filesz)
5440     return createStringError(errc::executable_format_error,
5441                              "dynamic section sizes should match");
5442 
5443   // Go through all dynamic entries to locate entries of interest.
5444   auto DynamicEntriesOrErr = Obj.dynamicEntries();
5445   if (!DynamicEntriesOrErr)
5446     return DynamicEntriesOrErr.takeError();
5447   typename ELFT::DynRange DynamicEntries = DynamicEntriesOrErr.get();
5448 
5449   for (const Elf_Dyn &Dyn : DynamicEntries) {
5450     switch (Dyn.d_tag) {
5451     case ELF::DT_INIT:
5452       if (!BC->HasInterpHeader) {
5453         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n");
5454         BC->StartFunctionAddress = Dyn.getPtr();
5455       }
5456       break;
5457     case ELF::DT_FINI:
5458       BC->FiniAddress = Dyn.getPtr();
5459       break;
5460     case ELF::DT_FINI_ARRAY:
5461       BC->FiniArrayAddress = Dyn.getPtr();
5462       break;
5463     case ELF::DT_FINI_ARRAYSZ:
5464       BC->FiniArraySize = Dyn.getPtr();
5465       break;
5466     case ELF::DT_RELA:
5467       DynamicRelocationsAddress = Dyn.getPtr();
5468       break;
5469     case ELF::DT_RELASZ:
5470       DynamicRelocationsSize = Dyn.getVal();
5471       break;
5472     case ELF::DT_JMPREL:
5473       PLTRelocationsAddress = Dyn.getPtr();
5474       break;
5475     case ELF::DT_PLTRELSZ:
5476       PLTRelocationsSize = Dyn.getVal();
5477       break;
5478     case ELF::DT_RELACOUNT:
5479       DynamicRelativeRelocationsCount = Dyn.getVal();
5480       break;
5481     case ELF::DT_RELR:
5482       DynamicRelrAddress = Dyn.getPtr();
5483       break;
5484     case ELF::DT_RELRSZ:
5485       DynamicRelrSize = Dyn.getVal();
5486       break;
5487     case ELF::DT_RELRENT:
5488       DynamicRelrEntrySize = Dyn.getVal();
5489       break;
5490     }
5491   }
5492 
5493   if (!DynamicRelocationsAddress || !DynamicRelocationsSize) {
5494     DynamicRelocationsAddress.reset();
5495     DynamicRelocationsSize = 0;
5496   }
5497 
5498   if (!PLTRelocationsAddress || !PLTRelocationsSize) {
5499     PLTRelocationsAddress.reset();
5500     PLTRelocationsSize = 0;
5501   }
5502 
5503   if (!DynamicRelrAddress || !DynamicRelrSize) {
5504     DynamicRelrAddress.reset();
5505     DynamicRelrSize = 0;
5506   } else if (!DynamicRelrEntrySize) {
5507     BC->errs() << "BOLT-ERROR: expected DT_RELRENT to be presented "
5508                << "in DYNAMIC section\n";
5509     exit(1);
5510   } else if (DynamicRelrSize % DynamicRelrEntrySize) {
5511     BC->errs() << "BOLT-ERROR: expected RELR table size to be divisible "
5512                << "by RELR entry size\n";
5513     exit(1);
5514   }
5515 
5516   return Error::success();
5517 }
5518 
5519 uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) {
5520   const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress);
5521   if (!Function)
5522     return 0;
5523 
5524   return Function->getOutputAddress();
5525 }
5526 
5527 uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress) {
5528   if (uint64_t Function = getNewFunctionAddress(OldAddress))
5529     return Function;
5530 
5531   const BinaryData *BD = BC->getBinaryDataAtAddress(OldAddress);
5532   if (BD && BD->isMoved())
5533     return BD->getOutputAddress();
5534 
5535   if (const BinaryFunction *BF =
5536           BC->getBinaryFunctionContainingAddress(OldAddress)) {
5537     if (BF->isEmitted()) {
5538       // If OldAddress is the another entry point of
5539       // the function, then BOLT could get the new address.
5540       if (BF->isMultiEntry()) {
5541         for (const BinaryBasicBlock &BB : *BF)
5542           if (BB.isEntryPoint() &&
5543               (BF->getAddress() + BB.getOffset()) == OldAddress)
5544             return BF->getOutputAddress() + BB.getOffset();
5545       }
5546       BC->errs() << "BOLT-ERROR: unable to get new address corresponding to "
5547                     "input address 0x"
5548                  << Twine::utohexstr(OldAddress) << " in function " << *BF
5549                  << ". Consider adding this function to --skip-funcs=...\n";
5550       exit(1);
5551     }
5552   }
5553 
5554   return 0;
5555 }
5556 
5557 void RewriteInstance::rewriteFile() {
5558   std::error_code EC;
5559   Out = std::make_unique<ToolOutputFile>(opts::OutputFilename, EC,
5560                                          sys::fs::OF_None);
5561   check_error(EC, "cannot create output executable file");
5562 
5563   raw_fd_ostream &OS = Out->os();
5564 
5565   // Copy allocatable part of the input.
5566   OS << InputFile->getData().substr(0, FirstNonAllocatableOffset);
5567 
5568   auto Streamer = BC->createStreamer(OS);
5569   // Make sure output stream has enough reserved space, otherwise
5570   // pwrite() will fail.
5571   uint64_t Offset = std::max(getFileOffsetForAddress(NextAvailableAddress),
5572                              FirstNonAllocatableOffset);
5573   Offset = OS.seek(Offset);
5574   assert((Offset != (uint64_t)-1) && "Error resizing output file");
5575 
5576   // Overwrite functions with fixed output address. This is mostly used by
5577   // non-relocation mode, with one exception: injected functions are covered
5578   // here in both modes.
5579   uint64_t CountOverwrittenFunctions = 0;
5580   uint64_t OverwrittenScore = 0;
5581   for (BinaryFunction *Function : BC->getAllBinaryFunctions()) {
5582     if (Function->getImageAddress() == 0 || Function->getImageSize() == 0)
5583       continue;
5584 
5585     if (Function->getImageSize() > Function->getMaxSize()) {
5586       assert(!BC->isX86() && "Unexpected large function.");
5587       if (opts::Verbosity >= 1)
5588         BC->errs() << "BOLT-WARNING: new function size (0x"
5589                    << Twine::utohexstr(Function->getImageSize())
5590                    << ") is larger than maximum allowed size (0x"
5591                    << Twine::utohexstr(Function->getMaxSize())
5592                    << ") for function " << *Function << '\n';
5593 
5594       // Remove jump table sections that this function owns in non-reloc mode
5595       // because we don't want to write them anymore.
5596       if (!BC->HasRelocations && opts::JumpTables == JTS_BASIC) {
5597         for (auto &JTI : Function->JumpTables) {
5598           JumpTable *JT = JTI.second;
5599           BinarySection &Section = JT->getOutputSection();
5600           BC->deregisterSection(Section);
5601         }
5602       }
5603       continue;
5604     }
5605 
5606     const auto HasAddress = [](const FunctionFragment &FF) {
5607       return FF.empty() ||
5608              (FF.getImageAddress() != 0 && FF.getImageSize() != 0);
5609     };
5610     const bool SplitFragmentsHaveAddress =
5611         llvm::all_of(Function->getLayout().getSplitFragments(), HasAddress);
5612     if (Function->isSplit() && !SplitFragmentsHaveAddress) {
5613       const auto HasNoAddress = [](const FunctionFragment &FF) {
5614         return FF.getImageAddress() == 0 && FF.getImageSize() == 0;
5615       };
5616       assert(llvm::all_of(Function->getLayout().getSplitFragments(),
5617                           HasNoAddress) &&
5618              "Some split fragments have an address while others do not");
5619       (void)HasNoAddress;
5620       continue;
5621     }
5622 
5623     OverwrittenScore += Function->getFunctionScore();
5624     ++CountOverwrittenFunctions;
5625 
5626     // Overwrite function in the output file.
5627     if (opts::Verbosity >= 2)
5628       BC->outs() << "BOLT: rewriting function \"" << *Function << "\"\n";
5629 
5630     OS.pwrite(reinterpret_cast<char *>(Function->getImageAddress()),
5631               Function->getImageSize(), Function->getFileOffset());
5632 
5633     // Write nops at the end of the function.
5634     if (Function->getMaxSize() != std::numeric_limits<uint64_t>::max()) {
5635       uint64_t Pos = OS.tell();
5636       OS.seek(Function->getFileOffset() + Function->getImageSize());
5637       BC->MAB->writeNopData(
5638           OS, Function->getMaxSize() - Function->getImageSize(), &*BC->STI);
5639 
5640       OS.seek(Pos);
5641     }
5642 
5643     if (!Function->isSplit())
5644       continue;
5645 
5646     // Write cold part
5647     if (opts::Verbosity >= 2) {
5648       BC->outs() << formatv("BOLT: rewriting function \"{0}\" (split parts)\n",
5649                             *Function);
5650     }
5651 
5652     for (const FunctionFragment &FF :
5653          Function->getLayout().getSplitFragments()) {
5654       OS.pwrite(reinterpret_cast<char *>(FF.getImageAddress()),
5655                 FF.getImageSize(), FF.getFileOffset());
5656     }
5657   }
5658 
5659   // Print function statistics for non-relocation mode.
5660   if (!BC->HasRelocations) {
5661     BC->outs() << "BOLT: " << CountOverwrittenFunctions << " out of "
5662                << BC->getBinaryFunctions().size()
5663                << " functions were overwritten.\n";
5664     if (BC->TotalScore != 0) {
5665       double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0;
5666       BC->outs() << format("BOLT-INFO: rewritten functions cover %.2lf",
5667                            Coverage)
5668                  << "% of the execution count of simple functions of "
5669                     "this binary\n";
5670     }
5671   }
5672 
5673   if (BC->HasRelocations && opts::TrapOldCode) {
5674     uint64_t SavedPos = OS.tell();
5675     // Overwrite function body to make sure we never execute these instructions.
5676     for (auto &BFI : BC->getBinaryFunctions()) {
5677       BinaryFunction &BF = BFI.second;
5678       if (!BF.getFileOffset() || !BF.isEmitted())
5679         continue;
5680       OS.seek(BF.getFileOffset());
5681       StringRef TrapInstr = BC->MIB->getTrapFillValue();
5682       unsigned NInstr = BF.getMaxSize() / TrapInstr.size();
5683       for (unsigned I = 0; I < NInstr; ++I)
5684         OS.write(TrapInstr.data(), TrapInstr.size());
5685     }
5686     OS.seek(SavedPos);
5687   }
5688 
5689   // Write all allocatable sections - reloc-mode text is written here as well
5690   for (BinarySection &Section : BC->allocatableSections()) {
5691     if (!Section.isFinalized() || !Section.getOutputData())
5692       continue;
5693     if (Section.isLinkOnly())
5694       continue;
5695 
5696     if (opts::Verbosity >= 1)
5697       BC->outs() << "BOLT: writing new section " << Section.getName()
5698                  << "\n data at 0x"
5699                  << Twine::utohexstr(Section.getAllocAddress()) << "\n of size "
5700                  << Section.getOutputSize() << "\n at offset "
5701                  << Section.getOutputFileOffset() << '\n';
5702     OS.pwrite(reinterpret_cast<const char *>(Section.getOutputData()),
5703               Section.getOutputSize(), Section.getOutputFileOffset());
5704   }
5705 
5706   for (BinarySection &Section : BC->allocatableSections())
5707     Section.flushPendingRelocations(OS, [this](const MCSymbol *S) {
5708       return getNewValueForSymbol(S->getName());
5709     });
5710 
5711   // If .eh_frame is present create .eh_frame_hdr.
5712   if (EHFrameSection)
5713     writeEHFrameHeader();
5714 
5715   // Add BOLT Addresses Translation maps to allow profile collection to
5716   // happen in the output binary
5717   if (opts::EnableBAT)
5718     addBATSection();
5719 
5720   // Patch program header table.
5721   if (!BC->IsLinuxKernel)
5722     patchELFPHDRTable();
5723 
5724   // Finalize memory image of section string table.
5725   finalizeSectionStringTable();
5726 
5727   // Update symbol tables.
5728   patchELFSymTabs();
5729 
5730   if (opts::EnableBAT)
5731     encodeBATSection();
5732 
5733   // Copy non-allocatable sections once allocatable part is finished.
5734   rewriteNoteSections();
5735 
5736   if (BC->HasRelocations) {
5737     patchELFAllocatableRelaSections();
5738     patchELFAllocatableRelrSection();
5739     patchELFGOT();
5740   }
5741 
5742   // Patch dynamic section/segment.
5743   patchELFDynamic();
5744 
5745   // Update ELF book-keeping info.
5746   patchELFSectionHeaderTable();
5747 
5748   if (opts::PrintSections) {
5749     BC->outs() << "BOLT-INFO: Sections after processing:\n";
5750     BC->printSections(BC->outs());
5751   }
5752 
5753   Out->keep();
5754   EC = sys::fs::setPermissions(
5755       opts::OutputFilename,
5756       static_cast<sys::fs::perms>(sys::fs::perms::all_all &
5757                                   ~sys::fs::getUmask()));
5758   check_error(EC, "cannot set permissions of output file");
5759 }
5760 
5761 void RewriteInstance::writeEHFrameHeader() {
5762   BinarySection *NewEHFrameSection =
5763       getSection(getNewSecPrefix() + getEHFrameSectionName());
5764 
5765   // No need to update the header if no new .eh_frame was created.
5766   if (!NewEHFrameSection)
5767     return;
5768 
5769   DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true,
5770                              NewEHFrameSection->getOutputAddress());
5771   Error E = NewEHFrame.parse(DWARFDataExtractor(
5772       NewEHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(),
5773       BC->AsmInfo->getCodePointerSize()));
5774   check_error(std::move(E), "failed to parse EH frame");
5775 
5776   uint64_t RelocatedEHFrameAddress = 0;
5777   StringRef RelocatedEHFrameContents;
5778   BinarySection *RelocatedEHFrameSection =
5779       getSection(".relocated" + getEHFrameSectionName());
5780   if (RelocatedEHFrameSection) {
5781     RelocatedEHFrameAddress = RelocatedEHFrameSection->getOutputAddress();
5782     RelocatedEHFrameContents = RelocatedEHFrameSection->getOutputContents();
5783   }
5784   DWARFDebugFrame RelocatedEHFrame(BC->TheTriple->getArch(), true,
5785                                    RelocatedEHFrameAddress);
5786   Error Er = RelocatedEHFrame.parse(DWARFDataExtractor(
5787       RelocatedEHFrameContents, BC->AsmInfo->isLittleEndian(),
5788       BC->AsmInfo->getCodePointerSize()));
5789   check_error(std::move(Er), "failed to parse EH frame");
5790 
5791   LLVM_DEBUG(dbgs() << "BOLT: writing a new " << getEHFrameHdrSectionName()
5792                     << '\n');
5793 
5794   NextAvailableAddress =
5795       appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign);
5796 
5797   const uint64_t EHFrameHdrOutputAddress = NextAvailableAddress;
5798   const uint64_t EHFrameHdrFileOffset =
5799       getFileOffsetForAddress(NextAvailableAddress);
5800 
5801   std::vector<char> NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader(
5802       RelocatedEHFrame, NewEHFrame, EHFrameHdrOutputAddress);
5803 
5804   Out->os().seek(EHFrameHdrFileOffset);
5805   Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size());
5806 
5807   const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true,
5808                                                  /*IsText=*/false,
5809                                                  /*IsAllocatable=*/true);
5810   BinarySection *OldEHFrameHdrSection = getSection(getEHFrameHdrSectionName());
5811   if (OldEHFrameHdrSection)
5812     OldEHFrameHdrSection->setOutputName(getOrgSecPrefix() +
5813                                         getEHFrameHdrSectionName());
5814 
5815   BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection(
5816       getNewSecPrefix() + getEHFrameHdrSectionName(), ELF::SHT_PROGBITS, Flags,
5817       nullptr, NewEHFrameHdr.size(), /*Alignment=*/1);
5818   EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset);
5819   EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress);
5820   EHFrameHdrSec.setOutputName(getEHFrameHdrSectionName());
5821 
5822   NextAvailableAddress += EHFrameHdrSec.getOutputSize();
5823 
5824   if (!BC->BOLTReserved.empty() &&
5825       (NextAvailableAddress > BC->BOLTReserved.end())) {
5826     BC->errs() << "BOLT-ERROR: unable to fit " << getEHFrameHdrSectionName()
5827                << " into reserved space\n";
5828     exit(1);
5829   }
5830 
5831   // Merge new .eh_frame with the relocated original so that gdb can locate all
5832   // FDEs.
5833   if (RelocatedEHFrameSection) {
5834     const uint64_t NewEHFrameSectionSize =
5835         RelocatedEHFrameSection->getOutputAddress() +
5836         RelocatedEHFrameSection->getOutputSize() -
5837         NewEHFrameSection->getOutputAddress();
5838     NewEHFrameSection->updateContents(NewEHFrameSection->getOutputData(),
5839                                       NewEHFrameSectionSize);
5840     BC->deregisterSection(*RelocatedEHFrameSection);
5841   }
5842 
5843   LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is "
5844                     << NewEHFrameSection->getOutputSize() << '\n');
5845 }
5846 
5847 uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) {
5848   auto Value = Linker->lookupSymbol(Name);
5849   if (Value)
5850     return *Value;
5851 
5852   // Return the original value if we haven't emitted the symbol.
5853   BinaryData *BD = BC->getBinaryDataByName(Name);
5854   if (!BD)
5855     return 0;
5856 
5857   return BD->getAddress();
5858 }
5859 
5860 uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const {
5861   // Check if it's possibly part of the new segment.
5862   if (NewTextSegmentAddress && Address >= NewTextSegmentAddress)
5863     return Address - NewTextSegmentAddress + NewTextSegmentOffset;
5864 
5865   // Find an existing segment that matches the address.
5866   const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address);
5867   if (SegmentInfoI == BC->SegmentMapInfo.begin())
5868     return 0;
5869 
5870   const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second;
5871   if (Address < SegmentInfo.Address ||
5872       Address >= SegmentInfo.Address + SegmentInfo.FileSize)
5873     return 0;
5874 
5875   return SegmentInfo.FileOffset + Address - SegmentInfo.Address;
5876 }
5877 
5878 bool RewriteInstance::willOverwriteSection(StringRef SectionName) {
5879   if (llvm::is_contained(SectionsToOverwrite, SectionName))
5880     return true;
5881   if (llvm::is_contained(DebugSectionsToOverwrite, SectionName))
5882     return true;
5883 
5884   ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName);
5885   return Section && Section->isAllocatable() && Section->isFinalized();
5886 }
5887 
5888 bool RewriteInstance::isDebugSection(StringRef SectionName) {
5889   if (SectionName.starts_with(".debug_") ||
5890       SectionName.starts_with(".zdebug_") || SectionName == ".gdb_index" ||
5891       SectionName == ".stab" || SectionName == ".stabstr")
5892     return true;
5893 
5894   return false;
5895 }
5896