xref: /llvm-project/bolt/lib/Profile/BoltAddressTranslation.cpp (revision dcba077146b92634f6a6b6e86970d59aaf7baf28)
1 //===- bolt/Profile/BoltAddressTranslation.cpp ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "bolt/Profile/BoltAddressTranslation.h"
10 #include "bolt/Core/BinaryFunction.h"
11 #include "llvm/Support/Errc.h"
12 #include "llvm/Support/Error.h"
13 #include "llvm/Support/LEB128.h"
14 
15 #define DEBUG_TYPE "bolt-bat"
16 
17 namespace llvm {
18 namespace bolt {
19 
20 const char *BoltAddressTranslation::SECTION_NAME = ".note.bolt_bat";
21 
22 void BoltAddressTranslation::writeEntriesForBB(MapTy &Map,
23                                                const BinaryBasicBlock &BB,
24                                                uint64_t FuncAddress) {
25   const uint64_t BBOutputOffset =
26       BB.getOutputAddressRange().first - FuncAddress;
27   const uint32_t BBInputOffset = BB.getInputOffset();
28 
29   // Every output BB must track back to an input BB for profile collection
30   // in bolted binaries. If we are missing an offset, it means this block was
31   // created by a pass. We will skip writing any entries for it, and this means
32   // any traffic happening in this block will map to the previous block in the
33   // layout. This covers the case where an input basic block is split into two,
34   // and the second one lacks any offset.
35   if (BBInputOffset == BinaryBasicBlock::INVALID_OFFSET)
36     return;
37 
38   LLVM_DEBUG(dbgs() << "BB " << BB.getName() << "\n");
39   LLVM_DEBUG(dbgs() << "  Key: " << Twine::utohexstr(BBOutputOffset)
40                     << " Val: " << Twine::utohexstr(BBInputOffset) << "\n");
41   // In case of conflicts (same Key mapping to different Vals), the last
42   // update takes precedence. Of course it is not ideal to have conflicts and
43   // those happen when we have an empty BB that either contained only
44   // NOPs or a jump to the next block (successor). Either way, the successor
45   // and this deleted block will both share the same output address (the same
46   // key), and we need to map back. We choose here to privilege the successor by
47   // allowing it to overwrite the previously inserted key in the map.
48   Map[BBOutputOffset] = BBInputOffset << 1;
49 
50   const auto &IOAddressMap =
51       BB.getFunction()->getBinaryContext().getIOAddressMap();
52 
53   for (const auto &[InputOffset, Sym] : BB.getLocSyms()) {
54     const auto InputAddress = BB.getFunction()->getAddress() + InputOffset;
55     const auto OutputAddress = IOAddressMap.lookup(InputAddress);
56     assert(OutputAddress && "Unknown instruction address");
57     const auto OutputOffset = *OutputAddress - FuncAddress;
58 
59     // Is this the first instruction in the BB? No need to duplicate the entry.
60     if (OutputOffset == BBOutputOffset)
61       continue;
62 
63     LLVM_DEBUG(dbgs() << "  Key: " << Twine::utohexstr(OutputOffset) << " Val: "
64                       << Twine::utohexstr(InputOffset) << " (branch)\n");
65     Map.insert(std::pair<uint32_t, uint32_t>(OutputOffset,
66                                              (InputOffset << 1) | BRANCHENTRY));
67   }
68 }
69 
70 void BoltAddressTranslation::write(const BinaryContext &BC, raw_ostream &OS) {
71   LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Writing BOLT Address Translation Tables\n");
72   for (auto &BFI : BC.getBinaryFunctions()) {
73     const BinaryFunction &Function = BFI.second;
74     // We don't need a translation table if the body of the function hasn't
75     // changed
76     if (Function.isIgnored() || (!BC.HasRelocations && !Function.isSimple()))
77       continue;
78 
79     LLVM_DEBUG(dbgs() << "Function name: " << Function.getPrintName() << "\n");
80     LLVM_DEBUG(dbgs() << " Address reference: 0x"
81                       << Twine::utohexstr(Function.getOutputAddress()) << "\n");
82 
83     MapTy Map;
84     for (const BinaryBasicBlock *const BB :
85          Function.getLayout().getMainFragment())
86       writeEntriesForBB(Map, *BB, Function.getOutputAddress());
87     Maps.emplace(Function.getOutputAddress(), std::move(Map));
88 
89     if (!Function.isSplit())
90       continue;
91 
92     // Split maps
93     LLVM_DEBUG(dbgs() << " Cold part\n");
94     for (const FunctionFragment &FF :
95          Function.getLayout().getSplitFragments()) {
96       Map.clear();
97       for (const BinaryBasicBlock *const BB : FF)
98         writeEntriesForBB(Map, *BB, FF.getAddress());
99 
100       Maps.emplace(FF.getAddress(), std::move(Map));
101       ColdPartSource.emplace(FF.getAddress(), Function.getOutputAddress());
102     }
103   }
104 
105   writeMaps</*Cold=*/false>(Maps, OS);
106   writeMaps</*Cold=*/true>(Maps, OS);
107 
108   outs() << "BOLT-INFO: Wrote " << Maps.size() << " BAT maps\n";
109 }
110 
111 template <bool Cold>
112 void BoltAddressTranslation::writeMaps(std::map<uint64_t, MapTy> &Maps,
113                                        raw_ostream &OS) {
114   const uint32_t NumFuncs =
115       llvm::count_if(llvm::make_first_range(Maps), [&](const uint64_t Address) {
116         return Cold == ColdPartSource.count(Address);
117       });
118   encodeULEB128(NumFuncs, OS);
119   LLVM_DEBUG(dbgs() << "Writing " << NumFuncs << (Cold ? " cold" : "")
120                     << " functions for BAT.\n");
121   size_t PrevIndex = 0;
122   // Output addresses are delta-encoded
123   uint64_t PrevAddress = 0;
124   for (auto &MapEntry : Maps) {
125     const uint64_t Address = MapEntry.first;
126     // Only process cold fragments in cold mode, and vice versa.
127     if (Cold != ColdPartSource.count(Address))
128       continue;
129     MapTy &Map = MapEntry.second;
130     const uint32_t NumEntries = Map.size();
131     LLVM_DEBUG(dbgs() << "Writing " << NumEntries << " entries for 0x"
132                       << Twine::utohexstr(Address) << ".\n");
133     encodeULEB128(Address - PrevAddress, OS);
134     PrevAddress = Address;
135     if (Cold) {
136       size_t HotIndex =
137           std::distance(ColdPartSource.begin(), ColdPartSource.find(Address));
138       encodeULEB128(HotIndex - PrevIndex, OS);
139       PrevIndex = HotIndex;
140     }
141     encodeULEB128(NumEntries, OS);
142     uint64_t InOffset = 0, OutOffset = 0;
143     // Output and Input addresses and delta-encoded
144     for (std::pair<const uint32_t, uint32_t> &KeyVal : Map) {
145       encodeULEB128(KeyVal.first - OutOffset, OS);
146       encodeSLEB128(KeyVal.second - InOffset, OS);
147       std::tie(OutOffset, InOffset) = KeyVal;
148     }
149   }
150 }
151 
152 std::error_code BoltAddressTranslation::parse(StringRef Buf) {
153   DataExtractor DE = DataExtractor(Buf, true, 8);
154   uint64_t Offset = 0;
155   if (Buf.size() < 12)
156     return make_error_code(llvm::errc::io_error);
157 
158   const uint32_t NameSz = DE.getU32(&Offset);
159   const uint32_t DescSz = DE.getU32(&Offset);
160   const uint32_t Type = DE.getU32(&Offset);
161 
162   if (Type != BinarySection::NT_BOLT_BAT ||
163       Buf.size() + Offset < alignTo(NameSz, 4) + DescSz)
164     return make_error_code(llvm::errc::io_error);
165 
166   StringRef Name = Buf.slice(Offset, Offset + NameSz);
167   Offset = alignTo(Offset + NameSz, 4);
168   if (Name.substr(0, 4) != "BOLT")
169     return make_error_code(llvm::errc::io_error);
170 
171   Error Err(Error::success());
172   std::vector<uint64_t> HotFuncs;
173   parseMaps</*Cold=*/false>(HotFuncs, DE, Offset, Err);
174   parseMaps</*Cold=*/true>(HotFuncs, DE, Offset, Err);
175   outs() << "BOLT-INFO: Parsed " << Maps.size() << " BAT entries\n";
176   return errorToErrorCode(std::move(Err));
177 }
178 
179 template <bool Cold>
180 void BoltAddressTranslation::parseMaps(std::vector<uint64_t> &HotFuncs,
181                                        DataExtractor &DE, uint64_t &Offset,
182                                        Error &Err) {
183   const uint32_t NumFunctions = DE.getULEB128(&Offset, &Err);
184   LLVM_DEBUG(dbgs() << "Parsing " << NumFunctions << (Cold ? " cold" : "")
185                     << " functions\n");
186   size_t HotIndex = 0;
187   uint64_t PrevAddress = 0;
188   for (uint32_t I = 0; I < NumFunctions; ++I) {
189     const uint64_t Address = PrevAddress + DE.getULEB128(&Offset, &Err);
190     PrevAddress = Address;
191     if (Cold) {
192       HotIndex += DE.getULEB128(&Offset, &Err);
193       ColdPartSource.emplace(Address, HotFuncs[HotIndex]);
194     } else {
195       HotFuncs.push_back(Address);
196     }
197     const uint32_t NumEntries = DE.getULEB128(&Offset, &Err);
198     MapTy Map;
199 
200     LLVM_DEBUG(dbgs() << "Parsing " << NumEntries << " entries for 0x"
201                       << Twine::utohexstr(Address) << "\n");
202     uint64_t InputOffset = 0, OutputOffset = 0;
203     for (uint32_t J = 0; J < NumEntries; ++J) {
204       const uint64_t OutputDelta = DE.getULEB128(&Offset, &Err);
205       const int64_t InputDelta = DE.getSLEB128(&Offset, &Err);
206       OutputOffset += OutputDelta;
207       InputOffset += InputDelta;
208       Map.insert(std::pair<uint32_t, uint32_t>(OutputOffset, InputOffset));
209       LLVM_DEBUG(dbgs() << formatv("{0:x} -> {1:x} ({2}/{3}b -> {4}/{5}b)\n",
210                                    OutputOffset, InputOffset, OutputDelta,
211                                    encodeULEB128(OutputDelta, nulls()),
212                                    InputDelta,
213                                    encodeSLEB128(InputDelta, nulls())));
214     }
215     Maps.insert(std::pair<uint64_t, MapTy>(Address, Map));
216   }
217 }
218 
219 void BoltAddressTranslation::dump(raw_ostream &OS) {
220   const size_t NumTables = Maps.size();
221   OS << "BAT tables for " << NumTables << " functions:\n";
222   for (const auto &MapEntry : Maps) {
223     OS << "Function Address: 0x" << Twine::utohexstr(MapEntry.first) << "\n";
224     OS << "BB mappings:\n";
225     for (const auto &Entry : MapEntry.second) {
226       const bool IsBranch = Entry.second & BRANCHENTRY;
227       const uint32_t Val = Entry.second >> 1; // dropping BRANCHENTRY bit
228       OS << "0x" << Twine::utohexstr(Entry.first) << " -> "
229          << "0x" << Twine::utohexstr(Val);
230       if (IsBranch)
231         OS << " (branch)";
232       OS << "\n";
233     }
234     OS << "\n";
235   }
236   const size_t NumColdParts = ColdPartSource.size();
237   if (!NumColdParts)
238     return;
239 
240   OS << NumColdParts << " cold mappings:\n";
241   for (const auto &Entry : ColdPartSource) {
242     OS << "0x" << Twine::utohexstr(Entry.first) << " -> "
243        << Twine::utohexstr(Entry.second) << "\n";
244   }
245   OS << "\n";
246 }
247 
248 uint64_t BoltAddressTranslation::translate(uint64_t FuncAddress,
249                                            uint64_t Offset,
250                                            bool IsBranchSrc) const {
251   auto Iter = Maps.find(FuncAddress);
252   if (Iter == Maps.end())
253     return Offset;
254 
255   const MapTy &Map = Iter->second;
256   auto KeyVal = Map.upper_bound(Offset);
257   if (KeyVal == Map.begin())
258     return Offset;
259 
260   --KeyVal;
261 
262   const uint32_t Val = KeyVal->second >> 1; // dropping BRANCHENTRY bit
263   // Branch source addresses are translated to the first instruction of the
264   // source BB to avoid accounting for modifications BOLT may have made in the
265   // BB regarding deletion/addition of instructions.
266   if (IsBranchSrc)
267     return Val;
268   return Offset - KeyVal->first + Val;
269 }
270 
271 std::optional<BoltAddressTranslation::FallthroughListTy>
272 BoltAddressTranslation::getFallthroughsInTrace(uint64_t FuncAddress,
273                                                uint64_t From,
274                                                uint64_t To) const {
275   SmallVector<std::pair<uint64_t, uint64_t>, 16> Res;
276 
277   // Filter out trivial case
278   if (From >= To)
279     return Res;
280 
281   From -= FuncAddress;
282   To -= FuncAddress;
283 
284   auto Iter = Maps.find(FuncAddress);
285   if (Iter == Maps.end())
286     return std::nullopt;
287 
288   const MapTy &Map = Iter->second;
289   auto FromIter = Map.upper_bound(From);
290   if (FromIter == Map.begin())
291     return Res;
292   // Skip instruction entries, to create fallthroughs we are only interested in
293   // BB boundaries
294   do {
295     if (FromIter == Map.begin())
296       return Res;
297     --FromIter;
298   } while (FromIter->second & BRANCHENTRY);
299 
300   auto ToIter = Map.upper_bound(To);
301   if (ToIter == Map.begin())
302     return Res;
303   --ToIter;
304   if (FromIter->first >= ToIter->first)
305     return Res;
306 
307   for (auto Iter = FromIter; Iter != ToIter;) {
308     const uint32_t Src = Iter->first;
309     if (Iter->second & BRANCHENTRY) {
310       ++Iter;
311       continue;
312     }
313 
314     ++Iter;
315     while (Iter->second & BRANCHENTRY && Iter != ToIter)
316       ++Iter;
317     if (Iter->second & BRANCHENTRY)
318       break;
319     Res.emplace_back(Src, Iter->first);
320   }
321 
322   return Res;
323 }
324 
325 uint64_t BoltAddressTranslation::fetchParentAddress(uint64_t Address) const {
326   auto Iter = ColdPartSource.find(Address);
327   if (Iter == ColdPartSource.end())
328     return 0;
329   return Iter->second;
330 }
331 
332 bool BoltAddressTranslation::enabledFor(
333     llvm::object::ELFObjectFileBase *InputFile) const {
334   for (const SectionRef &Section : InputFile->sections()) {
335     Expected<StringRef> SectionNameOrErr = Section.getName();
336     if (Error E = SectionNameOrErr.takeError())
337       continue;
338 
339     if (SectionNameOrErr.get() == SECTION_NAME)
340       return true;
341   }
342   return false;
343 }
344 } // namespace bolt
345 } // namespace llvm
346