1 //===- bolt/Profile/BoltAddressTranslation.cpp ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "bolt/Profile/BoltAddressTranslation.h" 10 #include "bolt/Core/BinaryFunction.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/Support/Errc.h" 13 #include "llvm/Support/Error.h" 14 #include "llvm/Support/LEB128.h" 15 16 #define DEBUG_TYPE "bolt-bat" 17 18 namespace llvm { 19 namespace bolt { 20 21 const char *BoltAddressTranslation::SECTION_NAME = ".note.bolt_bat"; 22 23 void BoltAddressTranslation::writeEntriesForBB(MapTy &Map, 24 const BinaryBasicBlock &BB, 25 uint64_t FuncInputAddress, 26 uint64_t FuncOutputAddress) { 27 const uint64_t BBOutputOffset = 28 BB.getOutputAddressRange().first - FuncOutputAddress; 29 const uint32_t BBInputOffset = BB.getInputOffset(); 30 31 // Every output BB must track back to an input BB for profile collection 32 // in bolted binaries. If we are missing an offset, it means this block was 33 // created by a pass. We will skip writing any entries for it, and this means 34 // any traffic happening in this block will map to the previous block in the 35 // layout. This covers the case where an input basic block is split into two, 36 // and the second one lacks any offset. 37 if (BBInputOffset == BinaryBasicBlock::INVALID_OFFSET) 38 return; 39 40 LLVM_DEBUG(dbgs() << "BB " << BB.getName() << "\n"); 41 LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(BBOutputOffset) 42 << " Val: " << Twine::utohexstr(BBInputOffset) << "\n"); 43 // NB: in `writeEntriesForBB` we use the input address because hashes are 44 // saved early in `saveMetadata` before output addresses are assigned. 45 const BBHashMapTy &BBHashMap = getBBHashMap(FuncInputAddress); 46 (void)BBHashMap; 47 LLVM_DEBUG( 48 dbgs() << formatv(" Hash: {0:x}\n", BBHashMap.getBBHash(BBInputOffset))); 49 LLVM_DEBUG( 50 dbgs() << formatv(" Index: {0}\n", BBHashMap.getBBIndex(BBInputOffset))); 51 // In case of conflicts (same Key mapping to different Vals), the last 52 // update takes precedence. Of course it is not ideal to have conflicts and 53 // those happen when we have an empty BB that either contained only 54 // NOPs or a jump to the next block (successor). Either way, the successor 55 // and this deleted block will both share the same output address (the same 56 // key), and we need to map back. We choose here to privilege the successor by 57 // allowing it to overwrite the previously inserted key in the map. 58 Map[BBOutputOffset] = BBInputOffset << 1; 59 60 const auto &IOAddressMap = 61 BB.getFunction()->getBinaryContext().getIOAddressMap(); 62 63 for (const auto &[InputOffset, Sym] : BB.getLocSyms()) { 64 const auto InputAddress = BB.getFunction()->getAddress() + InputOffset; 65 const auto OutputAddress = IOAddressMap.lookup(InputAddress); 66 assert(OutputAddress && "Unknown instruction address"); 67 const auto OutputOffset = *OutputAddress - FuncOutputAddress; 68 69 // Is this the first instruction in the BB? No need to duplicate the entry. 70 if (OutputOffset == BBOutputOffset) 71 continue; 72 73 LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(OutputOffset) << " Val: " 74 << Twine::utohexstr(InputOffset) << " (branch)\n"); 75 Map.insert(std::pair<uint32_t, uint32_t>(OutputOffset, 76 (InputOffset << 1) | BRANCHENTRY)); 77 } 78 } 79 80 void BoltAddressTranslation::write(const BinaryContext &BC, raw_ostream &OS) { 81 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Writing BOLT Address Translation Tables\n"); 82 for (auto &BFI : BC.getBinaryFunctions()) { 83 const BinaryFunction &Function = BFI.second; 84 const uint64_t InputAddress = Function.getAddress(); 85 const uint64_t OutputAddress = Function.getOutputAddress(); 86 // We don't need a translation table if the body of the function hasn't 87 // changed 88 if (Function.isIgnored() || (!BC.HasRelocations && !Function.isSimple())) 89 continue; 90 91 uint32_t NumSecondaryEntryPoints = 0; 92 Function.forEachEntryPoint([&](uint64_t Offset, const MCSymbol *) { 93 if (!Offset) 94 return true; 95 ++NumSecondaryEntryPoints; 96 SecondaryEntryPointsMap[OutputAddress].push_back(Offset); 97 return true; 98 }); 99 100 LLVM_DEBUG(dbgs() << "Function name: " << Function.getPrintName() << "\n"); 101 LLVM_DEBUG(dbgs() << " Address reference: 0x" 102 << Twine::utohexstr(Function.getOutputAddress()) << "\n"); 103 LLVM_DEBUG(dbgs() << formatv(" Hash: {0:x}\n", getBFHash(InputAddress))); 104 LLVM_DEBUG(dbgs() << " Secondary Entry Points: " << NumSecondaryEntryPoints 105 << '\n'); 106 107 MapTy Map; 108 for (const BinaryBasicBlock *const BB : 109 Function.getLayout().getMainFragment()) 110 writeEntriesForBB(Map, *BB, InputAddress, OutputAddress); 111 Maps.emplace(Function.getOutputAddress(), std::move(Map)); 112 ReverseMap.emplace(OutputAddress, InputAddress); 113 114 if (!Function.isSplit()) 115 continue; 116 117 // Split maps 118 LLVM_DEBUG(dbgs() << " Cold part\n"); 119 for (const FunctionFragment &FF : 120 Function.getLayout().getSplitFragments()) { 121 ColdPartSource.emplace(FF.getAddress(), Function.getOutputAddress()); 122 Map.clear(); 123 for (const BinaryBasicBlock *const BB : FF) 124 writeEntriesForBB(Map, *BB, InputAddress, FF.getAddress()); 125 126 Maps.emplace(FF.getAddress(), std::move(Map)); 127 } 128 } 129 130 // Output addresses are delta-encoded 131 uint64_t PrevAddress = 0; 132 writeMaps</*Cold=*/false>(Maps, PrevAddress, OS); 133 writeMaps</*Cold=*/true>(Maps, PrevAddress, OS); 134 135 BC.outs() << "BOLT-INFO: Wrote " << Maps.size() << " BAT maps\n"; 136 BC.outs() << "BOLT-INFO: Wrote " << FuncHashes.getNumFunctions() 137 << " function and " << FuncHashes.getNumBasicBlocks() 138 << " basic block hashes\n"; 139 } 140 141 APInt BoltAddressTranslation::calculateBranchEntriesBitMask(MapTy &Map, 142 size_t EqualElems) { 143 APInt BitMask(alignTo(EqualElems, 8), 0); 144 size_t Index = 0; 145 for (std::pair<const uint32_t, uint32_t> &KeyVal : Map) { 146 if (Index == EqualElems) 147 break; 148 const uint32_t OutputOffset = KeyVal.second; 149 if (OutputOffset & BRANCHENTRY) 150 BitMask.setBit(Index); 151 ++Index; 152 } 153 return BitMask; 154 } 155 156 size_t BoltAddressTranslation::getNumEqualOffsets(const MapTy &Map, 157 uint32_t Skew) const { 158 size_t EqualOffsets = 0; 159 for (const std::pair<const uint32_t, uint32_t> &KeyVal : Map) { 160 const uint32_t OutputOffset = KeyVal.first; 161 const uint32_t InputOffset = KeyVal.second >> 1; 162 if (OutputOffset == InputOffset - Skew) 163 ++EqualOffsets; 164 else 165 break; 166 } 167 return EqualOffsets; 168 } 169 170 template <bool Cold> 171 void BoltAddressTranslation::writeMaps(std::map<uint64_t, MapTy> &Maps, 172 uint64_t &PrevAddress, raw_ostream &OS) { 173 const uint32_t NumFuncs = 174 llvm::count_if(llvm::make_first_range(Maps), [&](const uint64_t Address) { 175 return Cold == ColdPartSource.count(Address); 176 }); 177 encodeULEB128(NumFuncs, OS); 178 LLVM_DEBUG(dbgs() << "Writing " << NumFuncs << (Cold ? " cold" : "") 179 << " functions for BAT.\n"); 180 size_t PrevIndex = 0; 181 for (auto &MapEntry : Maps) { 182 const uint64_t Address = MapEntry.first; 183 // Only process cold fragments in cold mode, and vice versa. 184 if (Cold != ColdPartSource.count(Address)) 185 continue; 186 // NB: in `writeMaps` we use the input address because hashes are saved 187 // early in `saveMetadata` before output addresses are assigned. 188 const uint64_t HotInputAddress = 189 ReverseMap[Cold ? ColdPartSource[Address] : Address]; 190 MapTy &Map = MapEntry.second; 191 const uint32_t NumEntries = Map.size(); 192 LLVM_DEBUG(dbgs() << "Writing " << NumEntries << " entries for 0x" 193 << Twine::utohexstr(Address) << ".\n"); 194 encodeULEB128(Address - PrevAddress, OS); 195 PrevAddress = Address; 196 const uint32_t NumSecondaryEntryPoints = 197 SecondaryEntryPointsMap.count(Address) 198 ? SecondaryEntryPointsMap[Address].size() 199 : 0; 200 uint32_t Skew = 0; 201 if (Cold) { 202 auto HotEntryIt = Maps.find(ColdPartSource[Address]); 203 assert(HotEntryIt != Maps.end()); 204 size_t HotIndex = std::distance(Maps.begin(), HotEntryIt); 205 encodeULEB128(HotIndex - PrevIndex, OS); 206 PrevIndex = HotIndex; 207 // Skew of all input offsets for cold fragments is simply the first input 208 // offset. 209 Skew = Map.begin()->second >> 1; 210 encodeULEB128(Skew, OS); 211 } else { 212 // Function hash 213 size_t BFHash = getBFHash(HotInputAddress); 214 LLVM_DEBUG(dbgs() << "Hash: " << formatv("{0:x}\n", BFHash)); 215 OS.write(reinterpret_cast<char *>(&BFHash), 8); 216 // Number of basic blocks 217 size_t NumBasicBlocks = NumBasicBlocksMap[HotInputAddress]; 218 LLVM_DEBUG(dbgs() << "Basic blocks: " << NumBasicBlocks << '\n'); 219 encodeULEB128(NumBasicBlocks, OS); 220 // Secondary entry points 221 encodeULEB128(NumSecondaryEntryPoints, OS); 222 LLVM_DEBUG(dbgs() << "Secondary Entry Points: " << NumSecondaryEntryPoints 223 << '\n'); 224 } 225 encodeULEB128(NumEntries, OS); 226 // Encode the number of equal offsets (output = input - skew) in the 227 // beginning of the function. Only encode one offset in these cases. 228 const size_t EqualElems = getNumEqualOffsets(Map, Skew); 229 encodeULEB128(EqualElems, OS); 230 if (EqualElems) { 231 const size_t BranchEntriesBytes = alignTo(EqualElems, 8) / 8; 232 APInt BranchEntries = calculateBranchEntriesBitMask(Map, EqualElems); 233 OS.write(reinterpret_cast<const char *>(BranchEntries.getRawData()), 234 BranchEntriesBytes); 235 LLVM_DEBUG({ 236 dbgs() << "BranchEntries: "; 237 SmallString<8> BitMaskStr; 238 BranchEntries.toString(BitMaskStr, 2, false); 239 dbgs() << BitMaskStr << '\n'; 240 }); 241 } 242 const BBHashMapTy &BBHashMap = getBBHashMap(HotInputAddress); 243 size_t Index = 0; 244 uint64_t InOffset = 0; 245 size_t PrevBBIndex = 0; 246 // Output and Input addresses and delta-encoded 247 for (std::pair<const uint32_t, uint32_t> &KeyVal : Map) { 248 const uint64_t OutputAddress = KeyVal.first + Address; 249 encodeULEB128(OutputAddress - PrevAddress, OS); 250 PrevAddress = OutputAddress; 251 if (Index++ >= EqualElems) 252 encodeSLEB128(KeyVal.second - InOffset, OS); 253 InOffset = KeyVal.second; // Keeping InOffset as if BRANCHENTRY is encoded 254 if ((InOffset & BRANCHENTRY) == 0) { 255 const bool IsBlock = BBHashMap.isInputBlock(InOffset >> 1); 256 unsigned BBIndex = IsBlock ? BBHashMap.getBBIndex(InOffset >> 1) : 0; 257 size_t BBHash = IsBlock ? BBHashMap.getBBHash(InOffset >> 1) : 0; 258 OS.write(reinterpret_cast<char *>(&BBHash), 8); 259 // Basic block index in the input binary 260 encodeULEB128(BBIndex - PrevBBIndex, OS); 261 PrevBBIndex = BBIndex; 262 LLVM_DEBUG(dbgs() << formatv("{0:x} -> {1:x} {2:x} {3}\n", KeyVal.first, 263 InOffset >> 1, BBHash, BBIndex)); 264 } 265 } 266 uint32_t PrevOffset = 0; 267 if (!Cold && NumSecondaryEntryPoints) { 268 LLVM_DEBUG(dbgs() << "Secondary entry points: "); 269 // Secondary entry point offsets, delta-encoded 270 for (uint32_t Offset : SecondaryEntryPointsMap[Address]) { 271 encodeULEB128(Offset - PrevOffset, OS); 272 LLVM_DEBUG(dbgs() << formatv("{0:x} ", Offset)); 273 PrevOffset = Offset; 274 } 275 LLVM_DEBUG(dbgs() << '\n'); 276 } 277 } 278 } 279 280 std::error_code BoltAddressTranslation::parse(raw_ostream &OS, StringRef Buf) { 281 DataExtractor DE = DataExtractor(Buf, true, 8); 282 uint64_t Offset = 0; 283 if (Buf.size() < 12) 284 return make_error_code(llvm::errc::io_error); 285 286 const uint32_t NameSz = DE.getU32(&Offset); 287 const uint32_t DescSz = DE.getU32(&Offset); 288 const uint32_t Type = DE.getU32(&Offset); 289 290 if (Type != BinarySection::NT_BOLT_BAT || 291 Buf.size() + Offset < alignTo(NameSz, 4) + DescSz) 292 return make_error_code(llvm::errc::io_error); 293 294 StringRef Name = Buf.slice(Offset, Offset + NameSz); 295 Offset = alignTo(Offset + NameSz, 4); 296 if (Name.substr(0, 4) != "BOLT") 297 return make_error_code(llvm::errc::io_error); 298 299 Error Err(Error::success()); 300 std::vector<uint64_t> HotFuncs; 301 uint64_t PrevAddress = 0; 302 parseMaps</*Cold=*/false>(HotFuncs, PrevAddress, DE, Offset, Err); 303 parseMaps</*Cold=*/true>(HotFuncs, PrevAddress, DE, Offset, Err); 304 OS << "BOLT-INFO: Parsed " << Maps.size() << " BAT entries\n"; 305 return errorToErrorCode(std::move(Err)); 306 } 307 308 template <bool Cold> 309 void BoltAddressTranslation::parseMaps(std::vector<uint64_t> &HotFuncs, 310 uint64_t &PrevAddress, DataExtractor &DE, 311 uint64_t &Offset, Error &Err) { 312 const uint32_t NumFunctions = DE.getULEB128(&Offset, &Err); 313 LLVM_DEBUG(dbgs() << "Parsing " << NumFunctions << (Cold ? " cold" : "") 314 << " functions\n"); 315 size_t HotIndex = 0; 316 for (uint32_t I = 0; I < NumFunctions; ++I) { 317 const uint64_t Address = PrevAddress + DE.getULEB128(&Offset, &Err); 318 uint64_t HotAddress = Cold ? 0 : Address; 319 PrevAddress = Address; 320 uint32_t SecondaryEntryPoints = 0; 321 uint64_t ColdInputSkew = 0; 322 if (Cold) { 323 HotIndex += DE.getULEB128(&Offset, &Err); 324 HotAddress = HotFuncs[HotIndex]; 325 ColdPartSource.emplace(Address, HotAddress); 326 ColdInputSkew = DE.getULEB128(&Offset, &Err); 327 } else { 328 HotFuncs.push_back(Address); 329 // Function hash 330 const size_t FuncHash = DE.getU64(&Offset, &Err); 331 FuncHashes.addEntry(Address, FuncHash); 332 LLVM_DEBUG(dbgs() << formatv("{0:x}: hash {1:x}\n", Address, FuncHash)); 333 // Number of basic blocks 334 const size_t NumBasicBlocks = DE.getULEB128(&Offset, &Err); 335 NumBasicBlocksMap.emplace(Address, NumBasicBlocks); 336 LLVM_DEBUG(dbgs() << formatv("{0:x}: #bbs {1}, {2} bytes\n", Address, 337 NumBasicBlocks, 338 getULEB128Size(NumBasicBlocks))); 339 // Secondary entry points 340 SecondaryEntryPoints = DE.getULEB128(&Offset, &Err); 341 LLVM_DEBUG( 342 dbgs() << formatv("{0:x}: secondary entry points {1}, {2} bytes\n", 343 Address, SecondaryEntryPoints, 344 getULEB128Size(SecondaryEntryPoints))); 345 } 346 const uint32_t NumEntries = DE.getULEB128(&Offset, &Err); 347 // Equal offsets. 348 const size_t EqualElems = DE.getULEB128(&Offset, &Err); 349 APInt BEBitMask; 350 LLVM_DEBUG(dbgs() << formatv("Equal offsets: {0}, {1} bytes\n", EqualElems, 351 getULEB128Size(EqualElems))); 352 if (EqualElems) { 353 const size_t BranchEntriesBytes = alignTo(EqualElems, 8) / 8; 354 BEBitMask = APInt(alignTo(EqualElems, 8), 0); 355 LoadIntFromMemory( 356 BEBitMask, 357 reinterpret_cast<const uint8_t *>( 358 DE.getBytes(&Offset, BranchEntriesBytes, &Err).data()), 359 BranchEntriesBytes); 360 LLVM_DEBUG({ 361 dbgs() << "BEBitMask: "; 362 SmallString<8> BitMaskStr; 363 BEBitMask.toString(BitMaskStr, 2, false); 364 dbgs() << BitMaskStr << ", " << BranchEntriesBytes << " bytes\n"; 365 }); 366 } 367 MapTy Map; 368 369 LLVM_DEBUG(dbgs() << "Parsing " << NumEntries << " entries for 0x" 370 << Twine::utohexstr(Address) << "\n"); 371 uint64_t InputOffset = 0; 372 size_t BBIndex = 0; 373 for (uint32_t J = 0; J < NumEntries; ++J) { 374 const uint64_t OutputDelta = DE.getULEB128(&Offset, &Err); 375 const uint64_t OutputAddress = PrevAddress + OutputDelta; 376 const uint64_t OutputOffset = OutputAddress - Address; 377 PrevAddress = OutputAddress; 378 int64_t InputDelta = 0; 379 if (J < EqualElems) { 380 InputOffset = (OutputOffset + ColdInputSkew << 1) | BEBitMask[J]; 381 } else { 382 InputDelta = DE.getSLEB128(&Offset, &Err); 383 InputOffset += InputDelta; 384 } 385 Map.insert(std::pair<uint32_t, uint32_t>(OutputOffset, InputOffset)); 386 size_t BBHash = 0; 387 size_t BBIndexDelta = 0; 388 const bool IsBranchEntry = InputOffset & BRANCHENTRY; 389 if (!IsBranchEntry) { 390 BBHash = DE.getU64(&Offset, &Err); 391 BBIndexDelta = DE.getULEB128(&Offset, &Err); 392 BBIndex += BBIndexDelta; 393 // Map basic block hash to hot fragment by input offset 394 getBBHashMap(HotAddress).addEntry(InputOffset >> 1, BBIndex, BBHash); 395 } 396 LLVM_DEBUG({ 397 dbgs() << formatv( 398 "{0:x} -> {1:x} ({2}/{3}b -> {4}/{5}b), {6:x}", OutputOffset, 399 InputOffset, OutputDelta, getULEB128Size(OutputDelta), InputDelta, 400 (J < EqualElems) ? 0 : getSLEB128Size(InputDelta), OutputAddress); 401 if (!IsBranchEntry) { 402 dbgs() << formatv(" {0:x} {1}/{2}b", BBHash, BBIndex, 403 getULEB128Size(BBIndexDelta)); 404 } 405 dbgs() << '\n'; 406 }); 407 } 408 Maps.insert(std::pair<uint64_t, MapTy>(Address, Map)); 409 if (!Cold && SecondaryEntryPoints) { 410 uint32_t EntryPointOffset = 0; 411 LLVM_DEBUG(dbgs() << "Secondary entry points: "); 412 for (uint32_t EntryPointId = 0; EntryPointId != SecondaryEntryPoints; 413 ++EntryPointId) { 414 uint32_t OffsetDelta = DE.getULEB128(&Offset, &Err); 415 EntryPointOffset += OffsetDelta; 416 SecondaryEntryPointsMap[Address].push_back(EntryPointOffset); 417 LLVM_DEBUG(dbgs() << formatv("{0:x}/{1}b ", EntryPointOffset, 418 getULEB128Size(OffsetDelta))); 419 } 420 LLVM_DEBUG(dbgs() << '\n'); 421 } 422 } 423 } 424 425 void BoltAddressTranslation::dump(raw_ostream &OS) { 426 const size_t NumTables = Maps.size(); 427 OS << "BAT tables for " << NumTables << " functions:\n"; 428 for (const auto &MapEntry : Maps) { 429 const uint64_t Address = MapEntry.first; 430 const uint64_t HotAddress = fetchParentAddress(Address); 431 const bool IsHotFunction = HotAddress == 0; 432 OS << "Function Address: 0x" << Twine::utohexstr(Address); 433 if (IsHotFunction) 434 OS << formatv(", hash: {0:x}", getBFHash(Address)); 435 OS << "\n"; 436 OS << "BB mappings:\n"; 437 const BBHashMapTy &BBHashMap = 438 getBBHashMap(HotAddress ? HotAddress : Address); 439 for (const auto &Entry : MapEntry.second) { 440 const bool IsBranch = Entry.second & BRANCHENTRY; 441 const uint32_t Val = Entry.second >> 1; // dropping BRANCHENTRY bit 442 OS << "0x" << Twine::utohexstr(Entry.first) << " -> " 443 << "0x" << Twine::utohexstr(Val); 444 if (IsBranch) 445 OS << " (branch)"; 446 else 447 OS << formatv(" hash: {0:x}", BBHashMap.getBBHash(Val)); 448 OS << "\n"; 449 } 450 if (IsHotFunction) 451 OS << "NumBlocks: " << NumBasicBlocksMap[Address] << '\n'; 452 if (SecondaryEntryPointsMap.count(Address)) { 453 const std::vector<uint32_t> &SecondaryEntryPoints = 454 SecondaryEntryPointsMap[Address]; 455 OS << SecondaryEntryPoints.size() << " secondary entry points:\n"; 456 for (uint32_t EntryPointOffset : SecondaryEntryPoints) 457 OS << formatv("{0:x}\n", EntryPointOffset); 458 } 459 OS << "\n"; 460 } 461 const size_t NumColdParts = ColdPartSource.size(); 462 if (!NumColdParts) 463 return; 464 465 OS << NumColdParts << " cold mappings:\n"; 466 for (const auto &Entry : ColdPartSource) { 467 OS << "0x" << Twine::utohexstr(Entry.first) << " -> " 468 << Twine::utohexstr(Entry.second) << "\n"; 469 } 470 OS << "\n"; 471 } 472 473 uint64_t BoltAddressTranslation::translate(uint64_t FuncAddress, 474 uint64_t Offset, 475 bool IsBranchSrc) const { 476 auto Iter = Maps.find(FuncAddress); 477 if (Iter == Maps.end()) 478 return Offset; 479 480 const MapTy &Map = Iter->second; 481 auto KeyVal = Map.upper_bound(Offset); 482 if (KeyVal == Map.begin()) 483 return Offset; 484 485 --KeyVal; 486 487 const uint32_t Val = KeyVal->second >> 1; // dropping BRANCHENTRY bit 488 // Branch source addresses are translated to the first instruction of the 489 // source BB to avoid accounting for modifications BOLT may have made in the 490 // BB regarding deletion/addition of instructions. 491 if (IsBranchSrc) 492 return Val; 493 return Offset - KeyVal->first + Val; 494 } 495 496 std::optional<BoltAddressTranslation::FallthroughListTy> 497 BoltAddressTranslation::getFallthroughsInTrace(uint64_t FuncAddress, 498 uint64_t From, 499 uint64_t To) const { 500 SmallVector<std::pair<uint64_t, uint64_t>, 16> Res; 501 502 // Filter out trivial case 503 if (From >= To) 504 return Res; 505 506 From -= FuncAddress; 507 To -= FuncAddress; 508 509 auto Iter = Maps.find(FuncAddress); 510 if (Iter == Maps.end()) 511 return std::nullopt; 512 513 const MapTy &Map = Iter->second; 514 auto FromIter = Map.upper_bound(From); 515 if (FromIter == Map.begin()) 516 return Res; 517 // Skip instruction entries, to create fallthroughs we are only interested in 518 // BB boundaries 519 do { 520 if (FromIter == Map.begin()) 521 return Res; 522 --FromIter; 523 } while (FromIter->second & BRANCHENTRY); 524 525 auto ToIter = Map.upper_bound(To); 526 if (ToIter == Map.begin()) 527 return Res; 528 --ToIter; 529 if (FromIter->first >= ToIter->first) 530 return Res; 531 532 for (auto Iter = FromIter; Iter != ToIter;) { 533 const uint32_t Src = Iter->first; 534 if (Iter->second & BRANCHENTRY) { 535 ++Iter; 536 continue; 537 } 538 539 ++Iter; 540 while (Iter->second & BRANCHENTRY && Iter != ToIter) 541 ++Iter; 542 if (Iter->second & BRANCHENTRY) 543 break; 544 Res.emplace_back(Src, Iter->first); 545 } 546 547 return Res; 548 } 549 550 uint64_t BoltAddressTranslation::fetchParentAddress(uint64_t Address) const { 551 auto Iter = ColdPartSource.find(Address); 552 if (Iter == ColdPartSource.end()) 553 return 0; 554 return Iter->second; 555 } 556 557 bool BoltAddressTranslation::enabledFor( 558 llvm::object::ELFObjectFileBase *InputFile) const { 559 for (const SectionRef &Section : InputFile->sections()) { 560 Expected<StringRef> SectionNameOrErr = Section.getName(); 561 if (Error E = SectionNameOrErr.takeError()) 562 continue; 563 564 if (SectionNameOrErr.get() == SECTION_NAME) 565 return true; 566 } 567 return false; 568 } 569 570 void BoltAddressTranslation::saveMetadata(BinaryContext &BC) { 571 for (BinaryFunction &BF : llvm::make_second_range(BC.getBinaryFunctions())) { 572 // We don't need a translation table if the body of the function hasn't 573 // changed 574 if (BF.isIgnored() || (!BC.HasRelocations && !BF.isSimple())) 575 continue; 576 // Prepare function and block hashes 577 FuncHashes.addEntry(BF.getAddress(), BF.computeHash()); 578 BF.computeBlockHashes(); 579 BBHashMapTy &BBHashMap = getBBHashMap(BF.getAddress()); 580 // Set BF/BB metadata 581 for (const BinaryBasicBlock &BB : BF) 582 BBHashMap.addEntry(BB.getInputOffset(), BB.getIndex(), BB.getHash()); 583 NumBasicBlocksMap.emplace(BF.getAddress(), BF.size()); 584 } 585 } 586 587 unsigned 588 BoltAddressTranslation::getSecondaryEntryPointId(uint64_t Address, 589 uint32_t Offset) const { 590 auto FunctionIt = SecondaryEntryPointsMap.find(Address); 591 if (FunctionIt == SecondaryEntryPointsMap.end()) 592 return 0; 593 const std::vector<uint32_t> &Offsets = FunctionIt->second; 594 auto OffsetIt = std::find(Offsets.begin(), Offsets.end(), Offset); 595 if (OffsetIt == Offsets.end()) 596 return 0; 597 // Adding one here because main entry point is not stored in BAT, and 598 // enumeration for secondary entry points starts with 1. 599 return OffsetIt - Offsets.begin() + 1; 600 } 601 602 std::pair<const BinaryFunction *, unsigned> 603 BoltAddressTranslation::translateSymbol(const BinaryContext &BC, 604 const MCSymbol &Symbol, 605 uint32_t Offset) const { 606 // The symbol could be a secondary entry in a cold fragment. 607 uint64_t SymbolValue = cantFail(errorOrToExpected(BC.getSymbolValue(Symbol))); 608 609 const BinaryFunction *Callee = BC.getFunctionForSymbol(&Symbol); 610 assert(Callee); 611 612 // Containing function, not necessarily the same as symbol value. 613 const uint64_t CalleeAddress = Callee->getAddress(); 614 const uint32_t OutputOffset = SymbolValue - CalleeAddress; 615 616 const uint64_t ParentAddress = fetchParentAddress(CalleeAddress); 617 const uint64_t HotAddress = ParentAddress ? ParentAddress : CalleeAddress; 618 619 const BinaryFunction *ParentBF = BC.getBinaryFunctionAtAddress(HotAddress); 620 621 const uint32_t InputOffset = 622 translate(CalleeAddress, OutputOffset, /*IsBranchSrc*/ false) + Offset; 623 624 unsigned SecondaryEntryId{0}; 625 if (InputOffset) 626 SecondaryEntryId = getSecondaryEntryPointId(HotAddress, InputOffset); 627 628 return std::pair(ParentBF, SecondaryEntryId); 629 } 630 631 } // namespace bolt 632 } // namespace llvm 633