1 //===- bolt/Profile/BoltAddressTranslation.cpp ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "bolt/Profile/BoltAddressTranslation.h" 10 #include "bolt/Core/BinaryFunction.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/Support/Errc.h" 13 #include "llvm/Support/Error.h" 14 #include "llvm/Support/LEB128.h" 15 16 #define DEBUG_TYPE "bolt-bat" 17 18 namespace llvm { 19 namespace bolt { 20 21 const char *BoltAddressTranslation::SECTION_NAME = ".note.bolt_bat"; 22 23 void BoltAddressTranslation::writeEntriesForBB(MapTy &Map, 24 const BinaryBasicBlock &BB, 25 uint64_t FuncAddress) { 26 uint64_t HotFuncAddress = ColdPartSource.count(FuncAddress) 27 ? ColdPartSource[FuncAddress] 28 : FuncAddress; 29 const uint64_t BBOutputOffset = 30 BB.getOutputAddressRange().first - FuncAddress; 31 const uint32_t BBInputOffset = BB.getInputOffset(); 32 33 // Every output BB must track back to an input BB for profile collection 34 // in bolted binaries. If we are missing an offset, it means this block was 35 // created by a pass. We will skip writing any entries for it, and this means 36 // any traffic happening in this block will map to the previous block in the 37 // layout. This covers the case where an input basic block is split into two, 38 // and the second one lacks any offset. 39 if (BBInputOffset == BinaryBasicBlock::INVALID_OFFSET) 40 return; 41 42 LLVM_DEBUG(dbgs() << "BB " << BB.getName() << "\n"); 43 LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(BBOutputOffset) 44 << " Val: " << Twine::utohexstr(BBInputOffset) << "\n"); 45 LLVM_DEBUG(dbgs() << formatv(" Hash: {0:x}\n", 46 getBBHash(HotFuncAddress, BBInputOffset))); 47 // In case of conflicts (same Key mapping to different Vals), the last 48 // update takes precedence. Of course it is not ideal to have conflicts and 49 // those happen when we have an empty BB that either contained only 50 // NOPs or a jump to the next block (successor). Either way, the successor 51 // and this deleted block will both share the same output address (the same 52 // key), and we need to map back. We choose here to privilege the successor by 53 // allowing it to overwrite the previously inserted key in the map. 54 Map[BBOutputOffset] = BBInputOffset << 1; 55 56 const auto &IOAddressMap = 57 BB.getFunction()->getBinaryContext().getIOAddressMap(); 58 59 for (const auto &[InputOffset, Sym] : BB.getLocSyms()) { 60 const auto InputAddress = BB.getFunction()->getAddress() + InputOffset; 61 const auto OutputAddress = IOAddressMap.lookup(InputAddress); 62 assert(OutputAddress && "Unknown instruction address"); 63 const auto OutputOffset = *OutputAddress - FuncAddress; 64 65 // Is this the first instruction in the BB? No need to duplicate the entry. 66 if (OutputOffset == BBOutputOffset) 67 continue; 68 69 LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(OutputOffset) << " Val: " 70 << Twine::utohexstr(InputOffset) << " (branch)\n"); 71 Map.insert(std::pair<uint32_t, uint32_t>(OutputOffset, 72 (InputOffset << 1) | BRANCHENTRY)); 73 } 74 } 75 76 void BoltAddressTranslation::write(const BinaryContext &BC, raw_ostream &OS) { 77 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Writing BOLT Address Translation Tables\n"); 78 for (auto &BFI : BC.getBinaryFunctions()) { 79 const BinaryFunction &Function = BFI.second; 80 const uint64_t InputAddress = Function.getAddress(); 81 const uint64_t OutputAddress = Function.getOutputAddress(); 82 // We don't need a translation table if the body of the function hasn't 83 // changed 84 if (Function.isIgnored() || (!BC.HasRelocations && !Function.isSimple())) 85 continue; 86 87 // TBD: handle BAT functions w/multiple entry points. 88 if (Function.isMultiEntry()) 89 continue; 90 91 LLVM_DEBUG(dbgs() << "Function name: " << Function.getPrintName() << "\n"); 92 LLVM_DEBUG(dbgs() << " Address reference: 0x" 93 << Twine::utohexstr(Function.getOutputAddress()) << "\n"); 94 LLVM_DEBUG(dbgs() << formatv(" Hash: {0:x}\n", getBFHash(OutputAddress))); 95 96 MapTy Map; 97 for (const BinaryBasicBlock *const BB : 98 Function.getLayout().getMainFragment()) 99 writeEntriesForBB(Map, *BB, Function.getOutputAddress()); 100 Maps.emplace(Function.getOutputAddress(), std::move(Map)); 101 ReverseMap.emplace(OutputAddress, InputAddress); 102 103 if (!Function.isSplit()) 104 continue; 105 106 // Split maps 107 LLVM_DEBUG(dbgs() << " Cold part\n"); 108 for (const FunctionFragment &FF : 109 Function.getLayout().getSplitFragments()) { 110 ColdPartSource.emplace(FF.getAddress(), Function.getOutputAddress()); 111 Map.clear(); 112 for (const BinaryBasicBlock *const BB : FF) 113 writeEntriesForBB(Map, *BB, FF.getAddress()); 114 115 Maps.emplace(FF.getAddress(), std::move(Map)); 116 } 117 } 118 119 // Output addresses are delta-encoded 120 uint64_t PrevAddress = 0; 121 writeMaps</*Cold=*/false>(Maps, PrevAddress, OS); 122 writeMaps</*Cold=*/true>(Maps, PrevAddress, OS); 123 124 BC.outs() << "BOLT-INFO: Wrote " << Maps.size() << " BAT maps\n"; 125 const uint64_t NumBBHashes = std::accumulate( 126 FuncHashes.begin(), FuncHashes.end(), 0ull, 127 [](size_t Acc, const auto &B) { return Acc + B.second.second.size(); }); 128 BC.outs() << "BOLT-INFO: Wrote " << FuncHashes.size() << " function and " 129 << NumBBHashes << " basic block hashes\n"; 130 } 131 132 APInt BoltAddressTranslation::calculateBranchEntriesBitMask(MapTy &Map, 133 size_t EqualElems) { 134 APInt BitMask(alignTo(EqualElems, 8), 0); 135 size_t Index = 0; 136 for (std::pair<const uint32_t, uint32_t> &KeyVal : Map) { 137 if (Index == EqualElems) 138 break; 139 const uint32_t OutputOffset = KeyVal.second; 140 if (OutputOffset & BRANCHENTRY) 141 BitMask.setBit(Index); 142 ++Index; 143 } 144 return BitMask; 145 } 146 147 size_t BoltAddressTranslation::getNumEqualOffsets(const MapTy &Map) const { 148 size_t EqualOffsets = 0; 149 for (const std::pair<const uint32_t, uint32_t> &KeyVal : Map) { 150 const uint32_t OutputOffset = KeyVal.first; 151 const uint32_t InputOffset = KeyVal.second >> 1; 152 if (OutputOffset == InputOffset) 153 ++EqualOffsets; 154 else 155 break; 156 } 157 return EqualOffsets; 158 } 159 160 template <bool Cold> 161 void BoltAddressTranslation::writeMaps(std::map<uint64_t, MapTy> &Maps, 162 uint64_t &PrevAddress, raw_ostream &OS) { 163 const uint32_t NumFuncs = 164 llvm::count_if(llvm::make_first_range(Maps), [&](const uint64_t Address) { 165 return Cold == ColdPartSource.count(Address); 166 }); 167 encodeULEB128(NumFuncs, OS); 168 LLVM_DEBUG(dbgs() << "Writing " << NumFuncs << (Cold ? " cold" : "") 169 << " functions for BAT.\n"); 170 size_t PrevIndex = 0; 171 for (auto &MapEntry : Maps) { 172 const uint64_t Address = MapEntry.first; 173 // Only process cold fragments in cold mode, and vice versa. 174 if (Cold != ColdPartSource.count(Address)) 175 continue; 176 // NB: here we use the input address because hashes are saved early (in 177 // `saveMetadata`) before output addresses are assigned. 178 const uint64_t HotInputAddress = 179 ReverseMap[Cold ? ColdPartSource[Address] : Address]; 180 std::pair<size_t, BBHashMap> &FuncHashPair = FuncHashes[HotInputAddress]; 181 MapTy &Map = MapEntry.second; 182 const uint32_t NumEntries = Map.size(); 183 LLVM_DEBUG(dbgs() << "Writing " << NumEntries << " entries for 0x" 184 << Twine::utohexstr(Address) << ".\n"); 185 encodeULEB128(Address - PrevAddress, OS); 186 PrevAddress = Address; 187 if (Cold) { 188 size_t HotIndex = 189 std::distance(ColdPartSource.begin(), ColdPartSource.find(Address)); 190 encodeULEB128(HotIndex - PrevIndex, OS); 191 PrevIndex = HotIndex; 192 } else { 193 // Function hash 194 LLVM_DEBUG(dbgs() << "Hash: " << formatv("{0:x}\n", FuncHashPair.first)); 195 OS.write(reinterpret_cast<char *>(&FuncHashPair.first), 8); 196 } 197 encodeULEB128(NumEntries, OS); 198 // For hot fragments only: encode the number of equal offsets 199 // (output = input) in the beginning of the function. Only encode one offset 200 // in these cases. 201 const size_t EqualElems = Cold ? 0 : getNumEqualOffsets(Map); 202 if (!Cold) { 203 encodeULEB128(EqualElems, OS); 204 if (EqualElems) { 205 const size_t BranchEntriesBytes = alignTo(EqualElems, 8) / 8; 206 APInt BranchEntries = calculateBranchEntriesBitMask(Map, EqualElems); 207 OS.write(reinterpret_cast<const char *>(BranchEntries.getRawData()), 208 BranchEntriesBytes); 209 LLVM_DEBUG({ 210 dbgs() << "BranchEntries: "; 211 SmallString<8> BitMaskStr; 212 BranchEntries.toString(BitMaskStr, 2, false); 213 dbgs() << BitMaskStr << '\n'; 214 }); 215 } 216 } 217 size_t Index = 0; 218 uint64_t InOffset = 0; 219 // Output and Input addresses and delta-encoded 220 for (std::pair<const uint32_t, uint32_t> &KeyVal : Map) { 221 const uint64_t OutputAddress = KeyVal.first + Address; 222 encodeULEB128(OutputAddress - PrevAddress, OS); 223 PrevAddress = OutputAddress; 224 if (Index++ >= EqualElems) 225 encodeSLEB128(KeyVal.second - InOffset, OS); 226 InOffset = KeyVal.second; // Keeping InOffset as if BRANCHENTRY is encoded 227 if ((InOffset & BRANCHENTRY) == 0) { 228 // Basic block hash 229 size_t BBHash = FuncHashPair.second[InOffset >> 1]; 230 OS.write(reinterpret_cast<char *>(&BBHash), 8); 231 LLVM_DEBUG(dbgs() << formatv("{0:x} -> {1:x} {2:x}\n", KeyVal.first, 232 InOffset >> 1, BBHash)); 233 } 234 } 235 } 236 } 237 238 std::error_code BoltAddressTranslation::parse(raw_ostream &OS, StringRef Buf) { 239 DataExtractor DE = DataExtractor(Buf, true, 8); 240 uint64_t Offset = 0; 241 if (Buf.size() < 12) 242 return make_error_code(llvm::errc::io_error); 243 244 const uint32_t NameSz = DE.getU32(&Offset); 245 const uint32_t DescSz = DE.getU32(&Offset); 246 const uint32_t Type = DE.getU32(&Offset); 247 248 if (Type != BinarySection::NT_BOLT_BAT || 249 Buf.size() + Offset < alignTo(NameSz, 4) + DescSz) 250 return make_error_code(llvm::errc::io_error); 251 252 StringRef Name = Buf.slice(Offset, Offset + NameSz); 253 Offset = alignTo(Offset + NameSz, 4); 254 if (Name.substr(0, 4) != "BOLT") 255 return make_error_code(llvm::errc::io_error); 256 257 Error Err(Error::success()); 258 std::vector<uint64_t> HotFuncs; 259 uint64_t PrevAddress = 0; 260 parseMaps</*Cold=*/false>(HotFuncs, PrevAddress, DE, Offset, Err); 261 parseMaps</*Cold=*/true>(HotFuncs, PrevAddress, DE, Offset, Err); 262 OS << "BOLT-INFO: Parsed " << Maps.size() << " BAT entries\n"; 263 return errorToErrorCode(std::move(Err)); 264 } 265 266 template <bool Cold> 267 void BoltAddressTranslation::parseMaps(std::vector<uint64_t> &HotFuncs, 268 uint64_t &PrevAddress, DataExtractor &DE, 269 uint64_t &Offset, Error &Err) { 270 const uint32_t NumFunctions = DE.getULEB128(&Offset, &Err); 271 LLVM_DEBUG(dbgs() << "Parsing " << NumFunctions << (Cold ? " cold" : "") 272 << " functions\n"); 273 size_t HotIndex = 0; 274 for (uint32_t I = 0; I < NumFunctions; ++I) { 275 const uint64_t Address = PrevAddress + DE.getULEB128(&Offset, &Err); 276 uint64_t HotAddress = Cold ? 0 : Address; 277 PrevAddress = Address; 278 if (Cold) { 279 HotIndex += DE.getULEB128(&Offset, &Err); 280 HotAddress = HotFuncs[HotIndex]; 281 ColdPartSource.emplace(Address, HotAddress); 282 } else { 283 HotFuncs.push_back(Address); 284 // Function hash 285 const size_t FuncHash = DE.getU64(&Offset, &Err); 286 FuncHashes[Address].first = FuncHash; 287 LLVM_DEBUG(dbgs() << formatv("{0:x}: hash {1:x}\n", Address, FuncHash)); 288 } 289 const uint32_t NumEntries = DE.getULEB128(&Offset, &Err); 290 // Equal offsets, hot fragments only. 291 size_t EqualElems = 0; 292 APInt BEBitMask; 293 if (!Cold) { 294 EqualElems = DE.getULEB128(&Offset, &Err); 295 LLVM_DEBUG(dbgs() << formatv("Equal offsets: {0}, {1} bytes\n", 296 EqualElems, getULEB128Size(EqualElems))); 297 if (EqualElems) { 298 const size_t BranchEntriesBytes = alignTo(EqualElems, 8) / 8; 299 BEBitMask = APInt(alignTo(EqualElems, 8), 0); 300 LoadIntFromMemory( 301 BEBitMask, 302 reinterpret_cast<const uint8_t *>( 303 DE.getBytes(&Offset, BranchEntriesBytes, &Err).data()), 304 BranchEntriesBytes); 305 LLVM_DEBUG({ 306 dbgs() << "BEBitMask: "; 307 SmallString<8> BitMaskStr; 308 BEBitMask.toString(BitMaskStr, 2, false); 309 dbgs() << BitMaskStr << ", " << BranchEntriesBytes << " bytes\n"; 310 }); 311 } 312 } 313 MapTy Map; 314 315 LLVM_DEBUG(dbgs() << "Parsing " << NumEntries << " entries for 0x" 316 << Twine::utohexstr(Address) << "\n"); 317 uint64_t InputOffset = 0; 318 for (uint32_t J = 0; J < NumEntries; ++J) { 319 const uint64_t OutputDelta = DE.getULEB128(&Offset, &Err); 320 const uint64_t OutputAddress = PrevAddress + OutputDelta; 321 const uint64_t OutputOffset = OutputAddress - Address; 322 PrevAddress = OutputAddress; 323 int64_t InputDelta = 0; 324 if (J < EqualElems) { 325 InputOffset = (OutputOffset << 1) | BEBitMask[J]; 326 } else { 327 InputDelta = DE.getSLEB128(&Offset, &Err); 328 InputOffset += InputDelta; 329 } 330 Map.insert(std::pair<uint32_t, uint32_t>(OutputOffset, InputOffset)); 331 size_t BBHash = 0; 332 const bool IsBranchEntry = InputOffset & BRANCHENTRY; 333 if (!IsBranchEntry) { 334 BBHash = DE.getU64(&Offset, &Err); 335 // Map basic block hash to hot fragment by input offset 336 FuncHashes[HotAddress].second.emplace(InputOffset >> 1, BBHash); 337 } 338 LLVM_DEBUG({ 339 dbgs() << formatv( 340 "{0:x} -> {1:x} ({2}/{3}b -> {4}/{5}b), {6:x}", OutputOffset, 341 InputOffset, OutputDelta, getULEB128Size(OutputDelta), InputDelta, 342 (J < EqualElems) ? 0 : getSLEB128Size(InputDelta), OutputAddress); 343 if (BBHash) 344 dbgs() << formatv(" {0:x}", BBHash); 345 dbgs() << '\n'; 346 }); 347 } 348 Maps.insert(std::pair<uint64_t, MapTy>(Address, Map)); 349 } 350 } 351 352 void BoltAddressTranslation::dump(raw_ostream &OS) { 353 const size_t NumTables = Maps.size(); 354 OS << "BAT tables for " << NumTables << " functions:\n"; 355 for (const auto &MapEntry : Maps) { 356 const uint64_t Address = MapEntry.first; 357 const uint64_t HotAddress = fetchParentAddress(Address); 358 OS << "Function Address: 0x" << Twine::utohexstr(Address); 359 if (HotAddress == 0) 360 OS << formatv(", hash: {0:x}", getBFHash(Address)); 361 OS << "\n"; 362 OS << "BB mappings:\n"; 363 for (const auto &Entry : MapEntry.second) { 364 const bool IsBranch = Entry.second & BRANCHENTRY; 365 const uint32_t Val = Entry.second >> 1; // dropping BRANCHENTRY bit 366 OS << "0x" << Twine::utohexstr(Entry.first) << " -> " 367 << "0x" << Twine::utohexstr(Val); 368 if (IsBranch) 369 OS << " (branch)"; 370 else 371 OS << formatv(" hash: {0:x}", 372 getBBHash(HotAddress ? HotAddress : Address, Val)); 373 OS << "\n"; 374 } 375 OS << "\n"; 376 } 377 const size_t NumColdParts = ColdPartSource.size(); 378 if (!NumColdParts) 379 return; 380 381 OS << NumColdParts << " cold mappings:\n"; 382 for (const auto &Entry : ColdPartSource) { 383 OS << "0x" << Twine::utohexstr(Entry.first) << " -> " 384 << Twine::utohexstr(Entry.second) << "\n"; 385 } 386 OS << "\n"; 387 } 388 389 uint64_t BoltAddressTranslation::translate(uint64_t FuncAddress, 390 uint64_t Offset, 391 bool IsBranchSrc) const { 392 auto Iter = Maps.find(FuncAddress); 393 if (Iter == Maps.end()) 394 return Offset; 395 396 const MapTy &Map = Iter->second; 397 auto KeyVal = Map.upper_bound(Offset); 398 if (KeyVal == Map.begin()) 399 return Offset; 400 401 --KeyVal; 402 403 const uint32_t Val = KeyVal->second >> 1; // dropping BRANCHENTRY bit 404 // Branch source addresses are translated to the first instruction of the 405 // source BB to avoid accounting for modifications BOLT may have made in the 406 // BB regarding deletion/addition of instructions. 407 if (IsBranchSrc) 408 return Val; 409 return Offset - KeyVal->first + Val; 410 } 411 412 std::optional<BoltAddressTranslation::FallthroughListTy> 413 BoltAddressTranslation::getFallthroughsInTrace(uint64_t FuncAddress, 414 uint64_t From, 415 uint64_t To) const { 416 SmallVector<std::pair<uint64_t, uint64_t>, 16> Res; 417 418 // Filter out trivial case 419 if (From >= To) 420 return Res; 421 422 From -= FuncAddress; 423 To -= FuncAddress; 424 425 auto Iter = Maps.find(FuncAddress); 426 if (Iter == Maps.end()) 427 return std::nullopt; 428 429 const MapTy &Map = Iter->second; 430 auto FromIter = Map.upper_bound(From); 431 if (FromIter == Map.begin()) 432 return Res; 433 // Skip instruction entries, to create fallthroughs we are only interested in 434 // BB boundaries 435 do { 436 if (FromIter == Map.begin()) 437 return Res; 438 --FromIter; 439 } while (FromIter->second & BRANCHENTRY); 440 441 auto ToIter = Map.upper_bound(To); 442 if (ToIter == Map.begin()) 443 return Res; 444 --ToIter; 445 if (FromIter->first >= ToIter->first) 446 return Res; 447 448 for (auto Iter = FromIter; Iter != ToIter;) { 449 const uint32_t Src = Iter->first; 450 if (Iter->second & BRANCHENTRY) { 451 ++Iter; 452 continue; 453 } 454 455 ++Iter; 456 while (Iter->second & BRANCHENTRY && Iter != ToIter) 457 ++Iter; 458 if (Iter->second & BRANCHENTRY) 459 break; 460 Res.emplace_back(Src, Iter->first); 461 } 462 463 return Res; 464 } 465 466 uint64_t BoltAddressTranslation::fetchParentAddress(uint64_t Address) const { 467 auto Iter = ColdPartSource.find(Address); 468 if (Iter == ColdPartSource.end()) 469 return 0; 470 return Iter->second; 471 } 472 473 bool BoltAddressTranslation::enabledFor( 474 llvm::object::ELFObjectFileBase *InputFile) const { 475 for (const SectionRef &Section : InputFile->sections()) { 476 Expected<StringRef> SectionNameOrErr = Section.getName(); 477 if (Error E = SectionNameOrErr.takeError()) 478 continue; 479 480 if (SectionNameOrErr.get() == SECTION_NAME) 481 return true; 482 } 483 return false; 484 } 485 486 void BoltAddressTranslation::saveMetadata(BinaryContext &BC) { 487 for (BinaryFunction &BF : llvm::make_second_range(BC.getBinaryFunctions())) { 488 // We don't need a translation table if the body of the function hasn't 489 // changed 490 if (BF.isIgnored() || (!BC.HasRelocations && !BF.isSimple())) 491 continue; 492 // Prepare function and block hashes 493 FuncHashes[BF.getAddress()].first = BF.computeHash(); 494 BF.computeBlockHashes(); 495 for (const BinaryBasicBlock &BB : BF) 496 FuncHashes[BF.getAddress()].second.emplace(BB.getInputOffset(), 497 BB.getHash()); 498 } 499 } 500 501 size_t BoltAddressTranslation::getBBHash(uint64_t FuncOutputAddress, 502 uint32_t BBInputOffset) const { 503 return FuncHashes.at(FuncOutputAddress).second.at(BBInputOffset); 504 } 505 506 size_t BoltAddressTranslation::getBFHash(uint64_t OutputAddress) const { 507 return FuncHashes.at(OutputAddress).first; 508 } 509 510 } // namespace bolt 511 } // namespace llvm 512