xref: /llvm-project/bolt/lib/Profile/BoltAddressTranslation.cpp (revision a91cd53de34fcde469d5d02e84554a06798ad2b1)
1 //===- bolt/Profile/BoltAddressTranslation.cpp ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "bolt/Profile/BoltAddressTranslation.h"
10 #include "bolt/Core/BinaryFunction.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/Support/Errc.h"
13 #include "llvm/Support/Error.h"
14 #include "llvm/Support/LEB128.h"
15 
16 #define DEBUG_TYPE "bolt-bat"
17 
18 namespace llvm {
19 namespace bolt {
20 
21 const char *BoltAddressTranslation::SECTION_NAME = ".note.bolt_bat";
22 
23 void BoltAddressTranslation::writeEntriesForBB(MapTy &Map,
24                                                const BinaryBasicBlock &BB,
25                                                uint64_t FuncInputAddress,
26                                                uint64_t FuncOutputAddress) {
27   const uint64_t BBOutputOffset =
28       BB.getOutputAddressRange().first - FuncOutputAddress;
29   const uint32_t BBInputOffset = BB.getInputOffset();
30 
31   // Every output BB must track back to an input BB for profile collection
32   // in bolted binaries. If we are missing an offset, it means this block was
33   // created by a pass. We will skip writing any entries for it, and this means
34   // any traffic happening in this block will map to the previous block in the
35   // layout. This covers the case where an input basic block is split into two,
36   // and the second one lacks any offset.
37   if (BBInputOffset == BinaryBasicBlock::INVALID_OFFSET)
38     return;
39 
40   LLVM_DEBUG(dbgs() << "BB " << BB.getName() << "\n");
41   LLVM_DEBUG(dbgs() << "  Key: " << Twine::utohexstr(BBOutputOffset)
42                     << " Val: " << Twine::utohexstr(BBInputOffset) << "\n");
43   // NB: in `writeEntriesForBB` we use the input address because hashes are
44   // saved early in `saveMetadata` before output addresses are assigned.
45   const BBHashMapTy &BBHashMap = getBBHashMap(FuncInputAddress);
46   (void)BBHashMap;
47   LLVM_DEBUG(
48       dbgs() << formatv(" Hash: {0:x}\n", BBHashMap.getBBHash(BBInputOffset)));
49   LLVM_DEBUG(
50       dbgs() << formatv(" Index: {0}\n", BBHashMap.getBBIndex(BBInputOffset)));
51   // In case of conflicts (same Key mapping to different Vals), the last
52   // update takes precedence. Of course it is not ideal to have conflicts and
53   // those happen when we have an empty BB that either contained only
54   // NOPs or a jump to the next block (successor). Either way, the successor
55   // and this deleted block will both share the same output address (the same
56   // key), and we need to map back. We choose here to privilege the successor by
57   // allowing it to overwrite the previously inserted key in the map.
58   Map[BBOutputOffset] = BBInputOffset << 1;
59 
60   const auto &IOAddressMap =
61       BB.getFunction()->getBinaryContext().getIOAddressMap();
62 
63   for (const auto &[InputOffset, Sym] : BB.getLocSyms()) {
64     const auto InputAddress = BB.getFunction()->getAddress() + InputOffset;
65     const auto OutputAddress = IOAddressMap.lookup(InputAddress);
66     assert(OutputAddress && "Unknown instruction address");
67     const auto OutputOffset = *OutputAddress - FuncOutputAddress;
68 
69     // Is this the first instruction in the BB? No need to duplicate the entry.
70     if (OutputOffset == BBOutputOffset)
71       continue;
72 
73     LLVM_DEBUG(dbgs() << "  Key: " << Twine::utohexstr(OutputOffset) << " Val: "
74                       << Twine::utohexstr(InputOffset) << " (branch)\n");
75     Map.insert(std::pair<uint32_t, uint32_t>(OutputOffset,
76                                              (InputOffset << 1) | BRANCHENTRY));
77   }
78 }
79 
80 void BoltAddressTranslation::write(const BinaryContext &BC, raw_ostream &OS) {
81   LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Writing BOLT Address Translation Tables\n");
82   for (auto &BFI : BC.getBinaryFunctions()) {
83     const BinaryFunction &Function = BFI.second;
84     const uint64_t InputAddress = Function.getAddress();
85     const uint64_t OutputAddress = Function.getOutputAddress();
86     // We don't need a translation table if the body of the function hasn't
87     // changed
88     if (Function.isIgnored() || (!BC.HasRelocations && !Function.isSimple()))
89       continue;
90 
91     // TBD: handle BAT functions w/multiple entry points.
92     if (Function.isMultiEntry())
93       continue;
94 
95     LLVM_DEBUG(dbgs() << "Function name: " << Function.getPrintName() << "\n");
96     LLVM_DEBUG(dbgs() << " Address reference: 0x"
97                       << Twine::utohexstr(Function.getOutputAddress()) << "\n");
98     LLVM_DEBUG(dbgs() << formatv(" Hash: {0:x}\n", getBFHash(OutputAddress)));
99 
100     MapTy Map;
101     for (const BinaryBasicBlock *const BB :
102          Function.getLayout().getMainFragment())
103       writeEntriesForBB(Map, *BB, InputAddress, OutputAddress);
104     Maps.emplace(Function.getOutputAddress(), std::move(Map));
105     ReverseMap.emplace(OutputAddress, InputAddress);
106 
107     if (!Function.isSplit())
108       continue;
109 
110     // Split maps
111     LLVM_DEBUG(dbgs() << " Cold part\n");
112     for (const FunctionFragment &FF :
113          Function.getLayout().getSplitFragments()) {
114       ColdPartSource.emplace(FF.getAddress(), Function.getOutputAddress());
115       Map.clear();
116       for (const BinaryBasicBlock *const BB : FF)
117         writeEntriesForBB(Map, *BB, InputAddress, FF.getAddress());
118 
119       Maps.emplace(FF.getAddress(), std::move(Map));
120     }
121   }
122 
123   // Output addresses are delta-encoded
124   uint64_t PrevAddress = 0;
125   writeMaps</*Cold=*/false>(Maps, PrevAddress, OS);
126   writeMaps</*Cold=*/true>(Maps, PrevAddress, OS);
127 
128   BC.outs() << "BOLT-INFO: Wrote " << Maps.size() << " BAT maps\n";
129   BC.outs() << "BOLT-INFO: Wrote " << FuncHashes.getNumFunctions()
130             << " function and " << FuncHashes.getNumBasicBlocks()
131             << " basic block hashes\n";
132 }
133 
134 APInt BoltAddressTranslation::calculateBranchEntriesBitMask(MapTy &Map,
135                                                             size_t EqualElems) {
136   APInt BitMask(alignTo(EqualElems, 8), 0);
137   size_t Index = 0;
138   for (std::pair<const uint32_t, uint32_t> &KeyVal : Map) {
139     if (Index == EqualElems)
140       break;
141     const uint32_t OutputOffset = KeyVal.second;
142     if (OutputOffset & BRANCHENTRY)
143       BitMask.setBit(Index);
144     ++Index;
145   }
146   return BitMask;
147 }
148 
149 size_t BoltAddressTranslation::getNumEqualOffsets(const MapTy &Map) const {
150   size_t EqualOffsets = 0;
151   for (const std::pair<const uint32_t, uint32_t> &KeyVal : Map) {
152     const uint32_t OutputOffset = KeyVal.first;
153     const uint32_t InputOffset = KeyVal.second >> 1;
154     if (OutputOffset == InputOffset)
155       ++EqualOffsets;
156     else
157       break;
158   }
159   return EqualOffsets;
160 }
161 
162 template <bool Cold>
163 void BoltAddressTranslation::writeMaps(std::map<uint64_t, MapTy> &Maps,
164                                        uint64_t &PrevAddress, raw_ostream &OS) {
165   const uint32_t NumFuncs =
166       llvm::count_if(llvm::make_first_range(Maps), [&](const uint64_t Address) {
167         return Cold == ColdPartSource.count(Address);
168       });
169   encodeULEB128(NumFuncs, OS);
170   LLVM_DEBUG(dbgs() << "Writing " << NumFuncs << (Cold ? " cold" : "")
171                     << " functions for BAT.\n");
172   size_t PrevIndex = 0;
173   for (auto &MapEntry : Maps) {
174     const uint64_t Address = MapEntry.first;
175     // Only process cold fragments in cold mode, and vice versa.
176     if (Cold != ColdPartSource.count(Address))
177       continue;
178     // NB: in `writeMaps` we use the input address because hashes are saved
179     // early in `saveMetadata` before output addresses are assigned.
180     const uint64_t HotInputAddress =
181         ReverseMap[Cold ? ColdPartSource[Address] : Address];
182     MapTy &Map = MapEntry.second;
183     const uint32_t NumEntries = Map.size();
184     LLVM_DEBUG(dbgs() << "Writing " << NumEntries << " entries for 0x"
185                       << Twine::utohexstr(Address) << ".\n");
186     encodeULEB128(Address - PrevAddress, OS);
187     PrevAddress = Address;
188     if (Cold) {
189       size_t HotIndex =
190           std::distance(ColdPartSource.begin(), ColdPartSource.find(Address));
191       encodeULEB128(HotIndex - PrevIndex, OS);
192       PrevIndex = HotIndex;
193     } else {
194       // Function hash
195       size_t BFHash = getBFHash(HotInputAddress);
196       LLVM_DEBUG(dbgs() << "Hash: " << formatv("{0:x}\n", BFHash));
197       OS.write(reinterpret_cast<char *>(&BFHash), 8);
198       // Number of basic blocks
199       size_t NumBasicBlocks = getBBHashMap(HotInputAddress).getNumBasicBlocks();
200       LLVM_DEBUG(dbgs() << "Basic blocks: " << NumBasicBlocks << '\n');
201       encodeULEB128(NumBasicBlocks, OS);
202     }
203     encodeULEB128(NumEntries, OS);
204     // For hot fragments only: encode the number of equal offsets
205     // (output = input) in the beginning of the function. Only encode one offset
206     // in these cases.
207     const size_t EqualElems = Cold ? 0 : getNumEqualOffsets(Map);
208     if (!Cold) {
209       encodeULEB128(EqualElems, OS);
210       if (EqualElems) {
211         const size_t BranchEntriesBytes = alignTo(EqualElems, 8) / 8;
212         APInt BranchEntries = calculateBranchEntriesBitMask(Map, EqualElems);
213         OS.write(reinterpret_cast<const char *>(BranchEntries.getRawData()),
214                  BranchEntriesBytes);
215         LLVM_DEBUG({
216           dbgs() << "BranchEntries: ";
217           SmallString<8> BitMaskStr;
218           BranchEntries.toString(BitMaskStr, 2, false);
219           dbgs() << BitMaskStr << '\n';
220         });
221       }
222     }
223     const BBHashMapTy &BBHashMap = getBBHashMap(HotInputAddress);
224     size_t Index = 0;
225     uint64_t InOffset = 0;
226     size_t PrevBBIndex = 0;
227     // Output and Input addresses and delta-encoded
228     for (std::pair<const uint32_t, uint32_t> &KeyVal : Map) {
229       const uint64_t OutputAddress = KeyVal.first + Address;
230       encodeULEB128(OutputAddress - PrevAddress, OS);
231       PrevAddress = OutputAddress;
232       if (Index++ >= EqualElems)
233         encodeSLEB128(KeyVal.second - InOffset, OS);
234       InOffset = KeyVal.second; // Keeping InOffset as if BRANCHENTRY is encoded
235       if ((InOffset & BRANCHENTRY) == 0) {
236         const bool IsBlock = BBHashMap.isInputBlock(InOffset >> 1);
237         unsigned BBIndex = IsBlock ? BBHashMap.getBBIndex(InOffset >> 1) : 0;
238         size_t BBHash = IsBlock ? BBHashMap.getBBHash(InOffset >> 1) : 0;
239         OS.write(reinterpret_cast<char *>(&BBHash), 8);
240         // Basic block index in the input binary
241         encodeULEB128(BBIndex - PrevBBIndex, OS);
242         PrevBBIndex = BBIndex;
243         LLVM_DEBUG(dbgs() << formatv("{0:x} -> {1:x} {2:x} {3}\n", KeyVal.first,
244                                      InOffset >> 1, BBHash, BBIndex));
245       }
246     }
247   }
248 }
249 
250 std::error_code BoltAddressTranslation::parse(raw_ostream &OS, StringRef Buf) {
251   DataExtractor DE = DataExtractor(Buf, true, 8);
252   uint64_t Offset = 0;
253   if (Buf.size() < 12)
254     return make_error_code(llvm::errc::io_error);
255 
256   const uint32_t NameSz = DE.getU32(&Offset);
257   const uint32_t DescSz = DE.getU32(&Offset);
258   const uint32_t Type = DE.getU32(&Offset);
259 
260   if (Type != BinarySection::NT_BOLT_BAT ||
261       Buf.size() + Offset < alignTo(NameSz, 4) + DescSz)
262     return make_error_code(llvm::errc::io_error);
263 
264   StringRef Name = Buf.slice(Offset, Offset + NameSz);
265   Offset = alignTo(Offset + NameSz, 4);
266   if (Name.substr(0, 4) != "BOLT")
267     return make_error_code(llvm::errc::io_error);
268 
269   Error Err(Error::success());
270   std::vector<uint64_t> HotFuncs;
271   uint64_t PrevAddress = 0;
272   parseMaps</*Cold=*/false>(HotFuncs, PrevAddress, DE, Offset, Err);
273   parseMaps</*Cold=*/true>(HotFuncs, PrevAddress, DE, Offset, Err);
274   OS << "BOLT-INFO: Parsed " << Maps.size() << " BAT entries\n";
275   return errorToErrorCode(std::move(Err));
276 }
277 
278 template <bool Cold>
279 void BoltAddressTranslation::parseMaps(std::vector<uint64_t> &HotFuncs,
280                                        uint64_t &PrevAddress, DataExtractor &DE,
281                                        uint64_t &Offset, Error &Err) {
282   const uint32_t NumFunctions = DE.getULEB128(&Offset, &Err);
283   LLVM_DEBUG(dbgs() << "Parsing " << NumFunctions << (Cold ? " cold" : "")
284                     << " functions\n");
285   size_t HotIndex = 0;
286   for (uint32_t I = 0; I < NumFunctions; ++I) {
287     const uint64_t Address = PrevAddress + DE.getULEB128(&Offset, &Err);
288     uint64_t HotAddress = Cold ? 0 : Address;
289     PrevAddress = Address;
290     if (Cold) {
291       HotIndex += DE.getULEB128(&Offset, &Err);
292       HotAddress = HotFuncs[HotIndex];
293       ColdPartSource.emplace(Address, HotAddress);
294     } else {
295       HotFuncs.push_back(Address);
296       // Function hash
297       const size_t FuncHash = DE.getU64(&Offset, &Err);
298       FuncHashes.addEntry(Address, FuncHash);
299       LLVM_DEBUG(dbgs() << formatv("{0:x}: hash {1:x}\n", Address, FuncHash));
300       // Number of basic blocks
301       const size_t NumBasicBlocks = DE.getULEB128(&Offset, &Err);
302       NumBasicBlocksMap.emplace(Address, NumBasicBlocks);
303       LLVM_DEBUG(dbgs() << formatv("{0:x}: #bbs {1}, {2} bytes\n", Address,
304                                    NumBasicBlocks,
305                                    getULEB128Size(NumBasicBlocks)));
306     }
307     const uint32_t NumEntries = DE.getULEB128(&Offset, &Err);
308     // Equal offsets, hot fragments only.
309     size_t EqualElems = 0;
310     APInt BEBitMask;
311     if (!Cold) {
312       EqualElems = DE.getULEB128(&Offset, &Err);
313       LLVM_DEBUG(dbgs() << formatv("Equal offsets: {0}, {1} bytes\n",
314                                    EqualElems, getULEB128Size(EqualElems)));
315       if (EqualElems) {
316         const size_t BranchEntriesBytes = alignTo(EqualElems, 8) / 8;
317         BEBitMask = APInt(alignTo(EqualElems, 8), 0);
318         LoadIntFromMemory(
319             BEBitMask,
320             reinterpret_cast<const uint8_t *>(
321                 DE.getBytes(&Offset, BranchEntriesBytes, &Err).data()),
322             BranchEntriesBytes);
323         LLVM_DEBUG({
324           dbgs() << "BEBitMask: ";
325           SmallString<8> BitMaskStr;
326           BEBitMask.toString(BitMaskStr, 2, false);
327           dbgs() << BitMaskStr << ", " << BranchEntriesBytes << " bytes\n";
328         });
329       }
330     }
331     MapTy Map;
332 
333     LLVM_DEBUG(dbgs() << "Parsing " << NumEntries << " entries for 0x"
334                       << Twine::utohexstr(Address) << "\n");
335     uint64_t InputOffset = 0;
336     size_t BBIndex = 0;
337     for (uint32_t J = 0; J < NumEntries; ++J) {
338       const uint64_t OutputDelta = DE.getULEB128(&Offset, &Err);
339       const uint64_t OutputAddress = PrevAddress + OutputDelta;
340       const uint64_t OutputOffset = OutputAddress - Address;
341       PrevAddress = OutputAddress;
342       int64_t InputDelta = 0;
343       if (J < EqualElems) {
344         InputOffset = (OutputOffset << 1) | BEBitMask[J];
345       } else {
346         InputDelta = DE.getSLEB128(&Offset, &Err);
347         InputOffset += InputDelta;
348       }
349       Map.insert(std::pair<uint32_t, uint32_t>(OutputOffset, InputOffset));
350       size_t BBHash = 0;
351       size_t BBIndexDelta = 0;
352       const bool IsBranchEntry = InputOffset & BRANCHENTRY;
353       if (!IsBranchEntry) {
354         BBHash = DE.getU64(&Offset, &Err);
355         BBIndexDelta = DE.getULEB128(&Offset, &Err);
356         BBIndex += BBIndexDelta;
357         // Map basic block hash to hot fragment by input offset
358         getBBHashMap(HotAddress).addEntry(InputOffset >> 1, BBIndex, BBHash);
359       }
360       LLVM_DEBUG({
361         dbgs() << formatv(
362             "{0:x} -> {1:x} ({2}/{3}b -> {4}/{5}b), {6:x}", OutputOffset,
363             InputOffset, OutputDelta, getULEB128Size(OutputDelta), InputDelta,
364             (J < EqualElems) ? 0 : getSLEB128Size(InputDelta), OutputAddress);
365         if (!IsBranchEntry) {
366           dbgs() << formatv(" {0:x} {1}/{2}b", BBHash, BBIndex,
367                             getULEB128Size(BBIndexDelta));
368         }
369         dbgs() << '\n';
370       });
371     }
372     Maps.insert(std::pair<uint64_t, MapTy>(Address, Map));
373   }
374 }
375 
376 void BoltAddressTranslation::dump(raw_ostream &OS) {
377   const size_t NumTables = Maps.size();
378   OS << "BAT tables for " << NumTables << " functions:\n";
379   for (const auto &MapEntry : Maps) {
380     const uint64_t Address = MapEntry.first;
381     const uint64_t HotAddress = fetchParentAddress(Address);
382     OS << "Function Address: 0x" << Twine::utohexstr(Address);
383     if (HotAddress == 0)
384       OS << formatv(", hash: {0:x}", getBFHash(Address));
385     OS << "\n";
386     OS << "BB mappings:\n";
387     const BBHashMapTy &BBHashMap =
388         getBBHashMap(HotAddress ? HotAddress : Address);
389     for (const auto &Entry : MapEntry.second) {
390       const bool IsBranch = Entry.second & BRANCHENTRY;
391       const uint32_t Val = Entry.second >> 1; // dropping BRANCHENTRY bit
392       OS << "0x" << Twine::utohexstr(Entry.first) << " -> "
393          << "0x" << Twine::utohexstr(Val);
394       if (IsBranch)
395         OS << " (branch)";
396       else
397         OS << formatv(" hash: {0:x}", BBHashMap.getBBHash(Val));
398       OS << "\n";
399     }
400     OS << "\n";
401   }
402   const size_t NumColdParts = ColdPartSource.size();
403   if (!NumColdParts)
404     return;
405 
406   OS << NumColdParts << " cold mappings:\n";
407   for (const auto &Entry : ColdPartSource) {
408     OS << "0x" << Twine::utohexstr(Entry.first) << " -> "
409        << Twine::utohexstr(Entry.second) << "\n";
410   }
411   OS << "\n";
412 }
413 
414 uint64_t BoltAddressTranslation::translate(uint64_t FuncAddress,
415                                            uint64_t Offset,
416                                            bool IsBranchSrc) const {
417   auto Iter = Maps.find(FuncAddress);
418   if (Iter == Maps.end())
419     return Offset;
420 
421   const MapTy &Map = Iter->second;
422   auto KeyVal = Map.upper_bound(Offset);
423   if (KeyVal == Map.begin())
424     return Offset;
425 
426   --KeyVal;
427 
428   const uint32_t Val = KeyVal->second >> 1; // dropping BRANCHENTRY bit
429   // Branch source addresses are translated to the first instruction of the
430   // source BB to avoid accounting for modifications BOLT may have made in the
431   // BB regarding deletion/addition of instructions.
432   if (IsBranchSrc)
433     return Val;
434   return Offset - KeyVal->first + Val;
435 }
436 
437 std::optional<BoltAddressTranslation::FallthroughListTy>
438 BoltAddressTranslation::getFallthroughsInTrace(uint64_t FuncAddress,
439                                                uint64_t From,
440                                                uint64_t To) const {
441   SmallVector<std::pair<uint64_t, uint64_t>, 16> Res;
442 
443   // Filter out trivial case
444   if (From >= To)
445     return Res;
446 
447   From -= FuncAddress;
448   To -= FuncAddress;
449 
450   auto Iter = Maps.find(FuncAddress);
451   if (Iter == Maps.end())
452     return std::nullopt;
453 
454   const MapTy &Map = Iter->second;
455   auto FromIter = Map.upper_bound(From);
456   if (FromIter == Map.begin())
457     return Res;
458   // Skip instruction entries, to create fallthroughs we are only interested in
459   // BB boundaries
460   do {
461     if (FromIter == Map.begin())
462       return Res;
463     --FromIter;
464   } while (FromIter->second & BRANCHENTRY);
465 
466   auto ToIter = Map.upper_bound(To);
467   if (ToIter == Map.begin())
468     return Res;
469   --ToIter;
470   if (FromIter->first >= ToIter->first)
471     return Res;
472 
473   for (auto Iter = FromIter; Iter != ToIter;) {
474     const uint32_t Src = Iter->first;
475     if (Iter->second & BRANCHENTRY) {
476       ++Iter;
477       continue;
478     }
479 
480     ++Iter;
481     while (Iter->second & BRANCHENTRY && Iter != ToIter)
482       ++Iter;
483     if (Iter->second & BRANCHENTRY)
484       break;
485     Res.emplace_back(Src, Iter->first);
486   }
487 
488   return Res;
489 }
490 
491 uint64_t BoltAddressTranslation::fetchParentAddress(uint64_t Address) const {
492   auto Iter = ColdPartSource.find(Address);
493   if (Iter == ColdPartSource.end())
494     return 0;
495   return Iter->second;
496 }
497 
498 bool BoltAddressTranslation::enabledFor(
499     llvm::object::ELFObjectFileBase *InputFile) const {
500   for (const SectionRef &Section : InputFile->sections()) {
501     Expected<StringRef> SectionNameOrErr = Section.getName();
502     if (Error E = SectionNameOrErr.takeError())
503       continue;
504 
505     if (SectionNameOrErr.get() == SECTION_NAME)
506       return true;
507   }
508   return false;
509 }
510 
511 void BoltAddressTranslation::saveMetadata(BinaryContext &BC) {
512   for (BinaryFunction &BF : llvm::make_second_range(BC.getBinaryFunctions())) {
513     // We don't need a translation table if the body of the function hasn't
514     // changed
515     if (BF.isIgnored() || (!BC.HasRelocations && !BF.isSimple()))
516       continue;
517     // Prepare function and block hashes
518     FuncHashes.addEntry(BF.getAddress(), BF.computeHash());
519     BF.computeBlockHashes();
520     BBHashMapTy &BBHashMap = getBBHashMap(BF.getAddress());
521     // Set BF/BB metadata
522     for (const BinaryBasicBlock &BB : BF)
523       BBHashMap.addEntry(BB.getInputOffset(), BB.getIndex(), BB.getHash());
524   }
525 }
526 
527 } // namespace bolt
528 } // namespace llvm
529