1 //===- bolt/Profile/BoltAddressTranslation.cpp ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "bolt/Profile/BoltAddressTranslation.h" 10 #include "bolt/Core/BinaryFunction.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/Support/Errc.h" 13 #include "llvm/Support/Error.h" 14 #include "llvm/Support/LEB128.h" 15 16 #define DEBUG_TYPE "bolt-bat" 17 18 namespace llvm { 19 namespace bolt { 20 21 const char *BoltAddressTranslation::SECTION_NAME = ".note.bolt_bat"; 22 23 void BoltAddressTranslation::writeEntriesForBB( 24 MapTy &Map, const BinaryBasicBlock &BB, uint64_t FuncInputAddress, 25 uint64_t FuncOutputAddress) const { 26 const uint64_t BBOutputOffset = 27 BB.getOutputAddressRange().first - FuncOutputAddress; 28 const uint32_t BBInputOffset = BB.getInputOffset(); 29 30 // Every output BB must track back to an input BB for profile collection 31 // in bolted binaries. If we are missing an offset, it means this block was 32 // created by a pass. We will skip writing any entries for it, and this means 33 // any traffic happening in this block will map to the previous block in the 34 // layout. This covers the case where an input basic block is split into two, 35 // and the second one lacks any offset. 36 if (BBInputOffset == BinaryBasicBlock::INVALID_OFFSET) 37 return; 38 39 LLVM_DEBUG(dbgs() << "BB " << BB.getName() << "\n"); 40 LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(BBOutputOffset) 41 << " Val: " << Twine::utohexstr(BBInputOffset) << "\n"); 42 // NB: in `writeEntriesForBB` we use the input address because hashes are 43 // saved early in `saveMetadata` before output addresses are assigned. 44 const BBHashMapTy &BBHashMap = getBBHashMap(FuncInputAddress); 45 (void)BBHashMap; 46 LLVM_DEBUG( 47 dbgs() << formatv(" Hash: {0:x}\n", BBHashMap.getBBHash(BBInputOffset))); 48 LLVM_DEBUG( 49 dbgs() << formatv(" Index: {0}\n", BBHashMap.getBBIndex(BBInputOffset))); 50 // In case of conflicts (same Key mapping to different Vals), the last 51 // update takes precedence. Of course it is not ideal to have conflicts and 52 // those happen when we have an empty BB that either contained only 53 // NOPs or a jump to the next block (successor). Either way, the successor 54 // and this deleted block will both share the same output address (the same 55 // key), and we need to map back. We choose here to privilege the successor by 56 // allowing it to overwrite the previously inserted key in the map. 57 Map.emplace(BBOutputOffset, BBInputOffset << 1); 58 59 const auto &IOAddressMap = 60 BB.getFunction()->getBinaryContext().getIOAddressMap(); 61 62 for (const auto &[InputOffset, Sym] : BB.getLocSyms()) { 63 const auto InputAddress = BB.getFunction()->getAddress() + InputOffset; 64 const auto OutputAddress = IOAddressMap.lookup(InputAddress); 65 assert(OutputAddress && "Unknown instruction address"); 66 const auto OutputOffset = *OutputAddress - FuncOutputAddress; 67 68 // Is this the first instruction in the BB? No need to duplicate the entry. 69 if (OutputOffset == BBOutputOffset) 70 continue; 71 72 LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(OutputOffset) << " Val: " 73 << Twine::utohexstr(InputOffset) << " (branch)\n"); 74 Map.emplace(OutputOffset, (InputOffset << 1) | BRANCHENTRY); 75 } 76 } 77 78 void BoltAddressTranslation::write(const BinaryContext &BC, raw_ostream &OS) { 79 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Writing BOLT Address Translation Tables\n"); 80 for (auto &BFI : BC.getBinaryFunctions()) { 81 const BinaryFunction &Function = BFI.second; 82 const uint64_t InputAddress = Function.getAddress(); 83 const uint64_t OutputAddress = Function.getOutputAddress(); 84 // We don't need a translation table if the body of the function hasn't 85 // changed 86 if (Function.isIgnored() || (!BC.HasRelocations && !Function.isSimple())) 87 continue; 88 89 uint32_t NumSecondaryEntryPoints = 0; 90 Function.forEachEntryPoint([&](uint64_t Offset, const MCSymbol *) { 91 if (!Offset) 92 return true; 93 ++NumSecondaryEntryPoints; 94 SecondaryEntryPointsMap[OutputAddress].push_back(Offset); 95 return true; 96 }); 97 98 LLVM_DEBUG(dbgs() << "Function name: " << Function.getPrintName() << "\n"); 99 LLVM_DEBUG(dbgs() << " Address reference: 0x" 100 << Twine::utohexstr(Function.getOutputAddress()) << "\n"); 101 LLVM_DEBUG(dbgs() << formatv(" Hash: {0:x}\n", getBFHash(InputAddress))); 102 LLVM_DEBUG(dbgs() << " Secondary Entry Points: " << NumSecondaryEntryPoints 103 << '\n'); 104 105 MapTy Map; 106 for (const BinaryBasicBlock *const BB : 107 Function.getLayout().getMainFragment()) 108 writeEntriesForBB(Map, *BB, InputAddress, OutputAddress); 109 // Add entries for deleted blocks. They are still required for correct BB 110 // mapping of branches modified by SCTC. By convention, they would have the 111 // end of the function as output address. 112 const BBHashMapTy &BBHashMap = getBBHashMap(InputAddress); 113 if (BBHashMap.size() != Function.size()) { 114 const uint64_t EndOffset = Function.getOutputSize(); 115 std::unordered_set<uint32_t> MappedInputOffsets; 116 for (const BinaryBasicBlock &BB : Function) 117 MappedInputOffsets.emplace(BB.getInputOffset()); 118 for (const auto &[InputOffset, _] : BBHashMap) 119 if (!llvm::is_contained(MappedInputOffsets, InputOffset)) 120 Map.emplace(EndOffset, InputOffset << 1); 121 } 122 Maps.emplace(Function.getOutputAddress(), std::move(Map)); 123 ReverseMap.emplace(OutputAddress, InputAddress); 124 125 if (!Function.isSplit()) 126 continue; 127 128 // Split maps 129 LLVM_DEBUG(dbgs() << " Cold part\n"); 130 for (const FunctionFragment &FF : 131 Function.getLayout().getSplitFragments()) { 132 ColdPartSource.emplace(FF.getAddress(), Function.getOutputAddress()); 133 Map.clear(); 134 for (const BinaryBasicBlock *const BB : FF) 135 writeEntriesForBB(Map, *BB, InputAddress, FF.getAddress()); 136 137 Maps.emplace(FF.getAddress(), std::move(Map)); 138 } 139 } 140 141 // Output addresses are delta-encoded 142 uint64_t PrevAddress = 0; 143 writeMaps</*Cold=*/false>(Maps, PrevAddress, OS); 144 writeMaps</*Cold=*/true>(Maps, PrevAddress, OS); 145 146 BC.outs() << "BOLT-INFO: Wrote " << Maps.size() << " BAT maps\n"; 147 BC.outs() << "BOLT-INFO: Wrote " << FuncHashes.getNumFunctions() 148 << " function and " << FuncHashes.getNumBasicBlocks() 149 << " basic block hashes\n"; 150 } 151 152 APInt BoltAddressTranslation::calculateBranchEntriesBitMask( 153 MapTy &Map, size_t EqualElems) const { 154 APInt BitMask(alignTo(EqualElems, 8), 0); 155 size_t Index = 0; 156 for (std::pair<const uint32_t, uint32_t> &KeyVal : Map) { 157 if (Index == EqualElems) 158 break; 159 const uint32_t OutputOffset = KeyVal.second; 160 if (OutputOffset & BRANCHENTRY) 161 BitMask.setBit(Index); 162 ++Index; 163 } 164 return BitMask; 165 } 166 167 size_t BoltAddressTranslation::getNumEqualOffsets(const MapTy &Map, 168 uint32_t Skew) const { 169 size_t EqualOffsets = 0; 170 for (const std::pair<const uint32_t, uint32_t> &KeyVal : Map) { 171 const uint32_t OutputOffset = KeyVal.first; 172 const uint32_t InputOffset = KeyVal.second >> 1; 173 if (OutputOffset == InputOffset - Skew) 174 ++EqualOffsets; 175 else 176 break; 177 } 178 return EqualOffsets; 179 } 180 181 template <bool Cold> 182 void BoltAddressTranslation::writeMaps(std::map<uint64_t, MapTy> &Maps, 183 uint64_t &PrevAddress, raw_ostream &OS) { 184 const uint32_t NumFuncs = 185 llvm::count_if(llvm::make_first_range(Maps), [&](const uint64_t Address) { 186 return Cold == ColdPartSource.count(Address); 187 }); 188 encodeULEB128(NumFuncs, OS); 189 LLVM_DEBUG(dbgs() << "Writing " << NumFuncs << (Cold ? " cold" : "") 190 << " functions for BAT.\n"); 191 size_t PrevIndex = 0; 192 for (auto &MapEntry : Maps) { 193 const uint64_t Address = MapEntry.first; 194 // Only process cold fragments in cold mode, and vice versa. 195 if (Cold != ColdPartSource.count(Address)) 196 continue; 197 // NB: in `writeMaps` we use the input address because hashes are saved 198 // early in `saveMetadata` before output addresses are assigned. 199 const uint64_t HotInputAddress = 200 ReverseMap[Cold ? ColdPartSource[Address] : Address]; 201 MapTy &Map = MapEntry.second; 202 const uint32_t NumEntries = Map.size(); 203 LLVM_DEBUG(dbgs() << "Writing " << NumEntries << " entries for 0x" 204 << Twine::utohexstr(Address) << ".\n"); 205 encodeULEB128(Address - PrevAddress, OS); 206 PrevAddress = Address; 207 const uint32_t NumSecondaryEntryPoints = 208 SecondaryEntryPointsMap.count(Address) 209 ? SecondaryEntryPointsMap[Address].size() 210 : 0; 211 uint32_t Skew = 0; 212 if (Cold) { 213 auto HotEntryIt = Maps.find(ColdPartSource[Address]); 214 assert(HotEntryIt != Maps.end()); 215 size_t HotIndex = std::distance(Maps.begin(), HotEntryIt); 216 encodeULEB128(HotIndex - PrevIndex, OS); 217 PrevIndex = HotIndex; 218 // Skew of all input offsets for cold fragments is simply the first input 219 // offset. 220 Skew = Map.begin()->second >> 1; 221 encodeULEB128(Skew, OS); 222 } else { 223 // Function hash 224 size_t BFHash = getBFHash(HotInputAddress); 225 LLVM_DEBUG(dbgs() << "Hash: " << formatv("{0:x}\n", BFHash)); 226 OS.write(reinterpret_cast<char *>(&BFHash), 8); 227 // Number of basic blocks 228 size_t NumBasicBlocks = NumBasicBlocksMap[HotInputAddress]; 229 LLVM_DEBUG(dbgs() << "Basic blocks: " << NumBasicBlocks << '\n'); 230 encodeULEB128(NumBasicBlocks, OS); 231 // Secondary entry points 232 encodeULEB128(NumSecondaryEntryPoints, OS); 233 LLVM_DEBUG(dbgs() << "Secondary Entry Points: " << NumSecondaryEntryPoints 234 << '\n'); 235 } 236 encodeULEB128(NumEntries, OS); 237 // Encode the number of equal offsets (output = input - skew) in the 238 // beginning of the function. Only encode one offset in these cases. 239 const size_t EqualElems = getNumEqualOffsets(Map, Skew); 240 encodeULEB128(EqualElems, OS); 241 if (EqualElems) { 242 const size_t BranchEntriesBytes = alignTo(EqualElems, 8) / 8; 243 APInt BranchEntries = calculateBranchEntriesBitMask(Map, EqualElems); 244 OS.write(reinterpret_cast<const char *>(BranchEntries.getRawData()), 245 BranchEntriesBytes); 246 LLVM_DEBUG({ 247 dbgs() << "BranchEntries: "; 248 SmallString<8> BitMaskStr; 249 BranchEntries.toString(BitMaskStr, 2, false); 250 dbgs() << BitMaskStr << '\n'; 251 }); 252 } 253 const BBHashMapTy &BBHashMap = getBBHashMap(HotInputAddress); 254 size_t Index = 0; 255 uint64_t InOffset = 0; 256 size_t PrevBBIndex = 0; 257 // Output and Input addresses and delta-encoded 258 for (std::pair<const uint32_t, uint32_t> &KeyVal : Map) { 259 const uint64_t OutputAddress = KeyVal.first + Address; 260 encodeULEB128(OutputAddress - PrevAddress, OS); 261 PrevAddress = OutputAddress; 262 if (Index++ >= EqualElems) 263 encodeSLEB128(KeyVal.second - InOffset, OS); 264 InOffset = KeyVal.second; // Keeping InOffset as if BRANCHENTRY is encoded 265 if ((InOffset & BRANCHENTRY) == 0) { 266 const bool IsBlock = BBHashMap.isInputBlock(InOffset >> 1); 267 unsigned BBIndex = IsBlock ? BBHashMap.getBBIndex(InOffset >> 1) : 0; 268 size_t BBHash = IsBlock ? BBHashMap.getBBHash(InOffset >> 1) : 0; 269 OS.write(reinterpret_cast<char *>(&BBHash), 8); 270 // Basic block index in the input binary 271 encodeULEB128(BBIndex - PrevBBIndex, OS); 272 PrevBBIndex = BBIndex; 273 LLVM_DEBUG(dbgs() << formatv("{0:x} -> {1:x} {2:x} {3}\n", KeyVal.first, 274 InOffset >> 1, BBHash, BBIndex)); 275 } 276 } 277 uint32_t PrevOffset = 0; 278 if (!Cold && NumSecondaryEntryPoints) { 279 LLVM_DEBUG(dbgs() << "Secondary entry points: "); 280 // Secondary entry point offsets, delta-encoded 281 for (uint32_t Offset : SecondaryEntryPointsMap[Address]) { 282 encodeULEB128(Offset - PrevOffset, OS); 283 LLVM_DEBUG(dbgs() << formatv("{0:x} ", Offset)); 284 PrevOffset = Offset; 285 } 286 LLVM_DEBUG(dbgs() << '\n'); 287 } 288 } 289 } 290 291 std::error_code BoltAddressTranslation::parse(raw_ostream &OS, StringRef Buf) { 292 DataExtractor DE = DataExtractor(Buf, true, 8); 293 uint64_t Offset = 0; 294 if (Buf.size() < 12) 295 return make_error_code(llvm::errc::io_error); 296 297 const uint32_t NameSz = DE.getU32(&Offset); 298 const uint32_t DescSz = DE.getU32(&Offset); 299 const uint32_t Type = DE.getU32(&Offset); 300 301 if (Type != BinarySection::NT_BOLT_BAT || 302 Buf.size() + Offset < alignTo(NameSz, 4) + DescSz) 303 return make_error_code(llvm::errc::io_error); 304 305 StringRef Name = Buf.slice(Offset, Offset + NameSz); 306 Offset = alignTo(Offset + NameSz, 4); 307 if (!Name.starts_with("BOLT")) 308 return make_error_code(llvm::errc::io_error); 309 310 Error Err(Error::success()); 311 std::vector<uint64_t> HotFuncs; 312 uint64_t PrevAddress = 0; 313 parseMaps</*Cold=*/false>(HotFuncs, PrevAddress, DE, Offset, Err); 314 parseMaps</*Cold=*/true>(HotFuncs, PrevAddress, DE, Offset, Err); 315 OS << "BOLT-INFO: Parsed " << Maps.size() << " BAT entries\n"; 316 return errorToErrorCode(std::move(Err)); 317 } 318 319 template <bool Cold> 320 void BoltAddressTranslation::parseMaps(std::vector<uint64_t> &HotFuncs, 321 uint64_t &PrevAddress, DataExtractor &DE, 322 uint64_t &Offset, Error &Err) { 323 const uint32_t NumFunctions = DE.getULEB128(&Offset, &Err); 324 LLVM_DEBUG(dbgs() << "Parsing " << NumFunctions << (Cold ? " cold" : "") 325 << " functions\n"); 326 size_t HotIndex = 0; 327 for (uint32_t I = 0; I < NumFunctions; ++I) { 328 const uint64_t Address = PrevAddress + DE.getULEB128(&Offset, &Err); 329 uint64_t HotAddress = Cold ? 0 : Address; 330 PrevAddress = Address; 331 uint32_t SecondaryEntryPoints = 0; 332 uint64_t ColdInputSkew = 0; 333 if (Cold) { 334 HotIndex += DE.getULEB128(&Offset, &Err); 335 HotAddress = HotFuncs[HotIndex]; 336 ColdPartSource.emplace(Address, HotAddress); 337 ColdInputSkew = DE.getULEB128(&Offset, &Err); 338 } else { 339 HotFuncs.push_back(Address); 340 // Function hash 341 const size_t FuncHash = DE.getU64(&Offset, &Err); 342 FuncHashes.addEntry(Address, FuncHash); 343 LLVM_DEBUG(dbgs() << formatv("{0:x}: hash {1:x}\n", Address, FuncHash)); 344 // Number of basic blocks 345 const size_t NumBasicBlocks = DE.getULEB128(&Offset, &Err); 346 NumBasicBlocksMap.emplace(Address, NumBasicBlocks); 347 LLVM_DEBUG(dbgs() << formatv("{0:x}: #bbs {1}, {2} bytes\n", Address, 348 NumBasicBlocks, 349 getULEB128Size(NumBasicBlocks))); 350 // Secondary entry points 351 SecondaryEntryPoints = DE.getULEB128(&Offset, &Err); 352 LLVM_DEBUG( 353 dbgs() << formatv("{0:x}: secondary entry points {1}, {2} bytes\n", 354 Address, SecondaryEntryPoints, 355 getULEB128Size(SecondaryEntryPoints))); 356 } 357 const uint32_t NumEntries = DE.getULEB128(&Offset, &Err); 358 // Equal offsets. 359 const size_t EqualElems = DE.getULEB128(&Offset, &Err); 360 APInt BEBitMask; 361 LLVM_DEBUG(dbgs() << formatv("Equal offsets: {0}, {1} bytes\n", EqualElems, 362 getULEB128Size(EqualElems))); 363 if (EqualElems) { 364 const size_t BranchEntriesBytes = alignTo(EqualElems, 8) / 8; 365 BEBitMask = APInt(alignTo(EqualElems, 8), 0); 366 LoadIntFromMemory( 367 BEBitMask, 368 reinterpret_cast<const uint8_t *>( 369 DE.getBytes(&Offset, BranchEntriesBytes, &Err).data()), 370 BranchEntriesBytes); 371 LLVM_DEBUG({ 372 dbgs() << "BEBitMask: "; 373 SmallString<8> BitMaskStr; 374 BEBitMask.toString(BitMaskStr, 2, false); 375 dbgs() << BitMaskStr << ", " << BranchEntriesBytes << " bytes\n"; 376 }); 377 } 378 MapTy Map; 379 380 LLVM_DEBUG(dbgs() << "Parsing " << NumEntries << " entries for 0x" 381 << Twine::utohexstr(Address) << "\n"); 382 uint64_t InputOffset = 0; 383 size_t BBIndex = 0; 384 for (uint32_t J = 0; J < NumEntries; ++J) { 385 const uint64_t OutputDelta = DE.getULEB128(&Offset, &Err); 386 const uint64_t OutputAddress = PrevAddress + OutputDelta; 387 const uint64_t OutputOffset = OutputAddress - Address; 388 PrevAddress = OutputAddress; 389 int64_t InputDelta = 0; 390 if (J < EqualElems) { 391 InputOffset = ((OutputOffset + ColdInputSkew) << 1) | BEBitMask[J]; 392 } else { 393 InputDelta = DE.getSLEB128(&Offset, &Err); 394 InputOffset += InputDelta; 395 } 396 Map.insert(std::pair<uint32_t, uint32_t>(OutputOffset, InputOffset)); 397 size_t BBHash = 0; 398 size_t BBIndexDelta = 0; 399 const bool IsBranchEntry = InputOffset & BRANCHENTRY; 400 if (!IsBranchEntry) { 401 BBHash = DE.getU64(&Offset, &Err); 402 BBIndexDelta = DE.getULEB128(&Offset, &Err); 403 BBIndex += BBIndexDelta; 404 // Map basic block hash to hot fragment by input offset 405 getBBHashMap(HotAddress).addEntry(InputOffset >> 1, BBIndex, BBHash); 406 } 407 LLVM_DEBUG({ 408 dbgs() << formatv( 409 "{0:x} -> {1:x} ({2}/{3}b -> {4}/{5}b), {6:x}", OutputOffset, 410 InputOffset, OutputDelta, getULEB128Size(OutputDelta), InputDelta, 411 (J < EqualElems) ? 0 : getSLEB128Size(InputDelta), OutputAddress); 412 if (!IsBranchEntry) { 413 dbgs() << formatv(" {0:x} {1}/{2}b", BBHash, BBIndex, 414 getULEB128Size(BBIndexDelta)); 415 } 416 dbgs() << '\n'; 417 }); 418 } 419 Maps.insert(std::pair<uint64_t, MapTy>(Address, Map)); 420 if (!Cold && SecondaryEntryPoints) { 421 uint32_t EntryPointOffset = 0; 422 LLVM_DEBUG(dbgs() << "Secondary entry points: "); 423 for (uint32_t EntryPointId = 0; EntryPointId != SecondaryEntryPoints; 424 ++EntryPointId) { 425 uint32_t OffsetDelta = DE.getULEB128(&Offset, &Err); 426 EntryPointOffset += OffsetDelta; 427 SecondaryEntryPointsMap[Address].push_back(EntryPointOffset); 428 LLVM_DEBUG(dbgs() << formatv("{0:x}/{1}b ", EntryPointOffset, 429 getULEB128Size(OffsetDelta))); 430 } 431 LLVM_DEBUG(dbgs() << '\n'); 432 } 433 } 434 } 435 436 void BoltAddressTranslation::dump(raw_ostream &OS) const { 437 const size_t NumTables = Maps.size(); 438 OS << "BAT tables for " << NumTables << " functions:\n"; 439 for (const auto &MapEntry : Maps) { 440 const uint64_t Address = MapEntry.first; 441 const uint64_t HotAddress = fetchParentAddress(Address); 442 const bool IsHotFunction = HotAddress == 0; 443 OS << "Function Address: 0x" << Twine::utohexstr(Address); 444 if (IsHotFunction) 445 OS << formatv(", hash: {0:x}", getBFHash(Address)); 446 OS << "\n"; 447 OS << "BB mappings:\n"; 448 const BBHashMapTy &BBHashMap = 449 getBBHashMap(HotAddress ? HotAddress : Address); 450 for (const auto &Entry : MapEntry.second) { 451 const bool IsBranch = Entry.second & BRANCHENTRY; 452 const uint32_t Val = Entry.second >> 1; // dropping BRANCHENTRY bit 453 OS << "0x" << Twine::utohexstr(Entry.first) << " -> " 454 << "0x" << Twine::utohexstr(Val); 455 if (IsBranch) 456 OS << " (branch)"; 457 else 458 OS << formatv(" hash: {0:x}", BBHashMap.getBBHash(Val)); 459 OS << "\n"; 460 } 461 if (IsHotFunction) { 462 auto NumBasicBlocksIt = NumBasicBlocksMap.find(Address); 463 assert(NumBasicBlocksIt != NumBasicBlocksMap.end()); 464 OS << "NumBlocks: " << NumBasicBlocksIt->second << '\n'; 465 } 466 auto SecondaryEntryPointsIt = SecondaryEntryPointsMap.find(Address); 467 if (SecondaryEntryPointsIt != SecondaryEntryPointsMap.end()) { 468 const std::vector<uint32_t> &SecondaryEntryPoints = 469 SecondaryEntryPointsIt->second; 470 OS << SecondaryEntryPoints.size() << " secondary entry points:\n"; 471 for (uint32_t EntryPointOffset : SecondaryEntryPoints) 472 OS << formatv("{0:x}\n", EntryPointOffset); 473 } 474 OS << "\n"; 475 } 476 const size_t NumColdParts = ColdPartSource.size(); 477 if (!NumColdParts) 478 return; 479 480 OS << NumColdParts << " cold mappings:\n"; 481 for (const auto &Entry : ColdPartSource) { 482 OS << "0x" << Twine::utohexstr(Entry.first) << " -> " 483 << Twine::utohexstr(Entry.second) << "\n"; 484 } 485 OS << "\n"; 486 } 487 488 uint64_t BoltAddressTranslation::translate(uint64_t FuncAddress, 489 uint64_t Offset, 490 bool IsBranchSrc) const { 491 auto Iter = Maps.find(FuncAddress); 492 if (Iter == Maps.end()) 493 return Offset; 494 495 const MapTy &Map = Iter->second; 496 auto KeyVal = Map.upper_bound(Offset); 497 if (KeyVal == Map.begin()) 498 return Offset; 499 500 --KeyVal; 501 502 const uint32_t Val = KeyVal->second >> 1; // dropping BRANCHENTRY bit 503 // Branch source addresses are translated to the first instruction of the 504 // source BB to avoid accounting for modifications BOLT may have made in the 505 // BB regarding deletion/addition of instructions. 506 if (IsBranchSrc) 507 return Val; 508 return Offset - KeyVal->first + Val; 509 } 510 511 std::optional<BoltAddressTranslation::FallthroughListTy> 512 BoltAddressTranslation::getFallthroughsInTrace(uint64_t FuncAddress, 513 uint64_t From, 514 uint64_t To) const { 515 SmallVector<std::pair<uint64_t, uint64_t>, 16> Res; 516 517 // Filter out trivial case 518 if (From >= To) 519 return Res; 520 521 From -= FuncAddress; 522 To -= FuncAddress; 523 524 auto Iter = Maps.find(FuncAddress); 525 if (Iter == Maps.end()) 526 return std::nullopt; 527 528 const MapTy &Map = Iter->second; 529 auto FromIter = Map.upper_bound(From); 530 if (FromIter == Map.begin()) 531 return Res; 532 // Skip instruction entries, to create fallthroughs we are only interested in 533 // BB boundaries 534 do { 535 if (FromIter == Map.begin()) 536 return Res; 537 --FromIter; 538 } while (FromIter->second & BRANCHENTRY); 539 540 auto ToIter = Map.upper_bound(To); 541 if (ToIter == Map.begin()) 542 return Res; 543 --ToIter; 544 if (FromIter->first >= ToIter->first) 545 return Res; 546 547 for (auto Iter = FromIter; Iter != ToIter;) { 548 const uint32_t Src = Iter->first; 549 if (Iter->second & BRANCHENTRY) { 550 ++Iter; 551 continue; 552 } 553 554 ++Iter; 555 while (Iter->second & BRANCHENTRY && Iter != ToIter) 556 ++Iter; 557 if (Iter->second & BRANCHENTRY) 558 break; 559 Res.emplace_back(Src, Iter->first); 560 } 561 562 return Res; 563 } 564 565 bool BoltAddressTranslation::enabledFor( 566 llvm::object::ELFObjectFileBase *InputFile) const { 567 for (const SectionRef &Section : InputFile->sections()) { 568 Expected<StringRef> SectionNameOrErr = Section.getName(); 569 if (Error E = SectionNameOrErr.takeError()) 570 continue; 571 572 if (SectionNameOrErr.get() == SECTION_NAME) 573 return true; 574 } 575 return false; 576 } 577 578 void BoltAddressTranslation::saveMetadata(BinaryContext &BC) { 579 for (BinaryFunction &BF : llvm::make_second_range(BC.getBinaryFunctions())) { 580 // We don't need a translation table if the body of the function hasn't 581 // changed 582 if (BF.isIgnored() || (!BC.HasRelocations && !BF.isSimple())) 583 continue; 584 // Prepare function and block hashes 585 FuncHashes.addEntry(BF.getAddress(), BF.computeHash()); 586 BF.computeBlockHashes(); 587 BBHashMapTy &BBHashMap = getBBHashMap(BF.getAddress()); 588 // Set BF/BB metadata 589 for (const BinaryBasicBlock &BB : BF) 590 BBHashMap.addEntry(BB.getInputOffset(), BB.getIndex(), BB.getHash()); 591 NumBasicBlocksMap.emplace(BF.getAddress(), BF.size()); 592 } 593 } 594 595 unsigned 596 BoltAddressTranslation::getSecondaryEntryPointId(uint64_t Address, 597 uint32_t Offset) const { 598 auto FunctionIt = SecondaryEntryPointsMap.find(Address); 599 if (FunctionIt == SecondaryEntryPointsMap.end()) 600 return 0; 601 const std::vector<uint32_t> &Offsets = FunctionIt->second; 602 auto OffsetIt = std::find(Offsets.begin(), Offsets.end(), Offset); 603 if (OffsetIt == Offsets.end()) 604 return 0; 605 // Adding one here because main entry point is not stored in BAT, and 606 // enumeration for secondary entry points starts with 1. 607 return OffsetIt - Offsets.begin() + 1; 608 } 609 610 std::pair<const BinaryFunction *, unsigned> 611 BoltAddressTranslation::translateSymbol(const BinaryContext &BC, 612 const MCSymbol &Symbol, 613 uint32_t Offset) const { 614 // The symbol could be a secondary entry in a cold fragment. 615 uint64_t SymbolValue = cantFail(errorOrToExpected(BC.getSymbolValue(Symbol))); 616 617 const BinaryFunction *Callee = BC.getFunctionForSymbol(&Symbol); 618 assert(Callee); 619 620 // Containing function, not necessarily the same as symbol value. 621 const uint64_t CalleeAddress = Callee->getAddress(); 622 const uint32_t OutputOffset = SymbolValue - CalleeAddress; 623 624 const uint64_t ParentAddress = fetchParentAddress(CalleeAddress); 625 const uint64_t HotAddress = ParentAddress ? ParentAddress : CalleeAddress; 626 627 const BinaryFunction *ParentBF = BC.getBinaryFunctionAtAddress(HotAddress); 628 629 const uint32_t InputOffset = 630 translate(CalleeAddress, OutputOffset, /*IsBranchSrc*/ false) + Offset; 631 632 unsigned SecondaryEntryId{0}; 633 if (InputOffset) 634 SecondaryEntryId = getSecondaryEntryPointId(HotAddress, InputOffset); 635 636 return std::pair(ParentBF, SecondaryEntryId); 637 } 638 639 } // namespace bolt 640 } // namespace llvm 641