xref: /llvm-project/bolt/lib/Passes/ReorderAlgorithm.cpp (revision 8477bc67614a45d9bbd5caa407bb376069789c7b)
1 //===- bolt/Passes/ReorderAlgorithm.cpp - Basic block reordering ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements classes used by several basic block reordering
10 // algorithms.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "bolt/Passes/ReorderAlgorithm.h"
15 #include "bolt/Core/BinaryBasicBlock.h"
16 #include "bolt/Core/BinaryFunction.h"
17 #include "llvm/Support/CommandLine.h"
18 #include <queue>
19 #include <random>
20 #include <stack>
21 
22 #undef  DEBUG_TYPE
23 #define DEBUG_TYPE "bolt"
24 
25 using namespace llvm;
26 using namespace bolt;
27 
28 namespace opts {
29 
30 extern cl::OptionCategory BoltOptCategory;
31 extern cl::opt<bool> NoThreads;
32 
33 static cl::opt<unsigned> ColdThreshold(
34     "cold-threshold",
35     cl::desc("tenths of percents of main entry frequency to use as a "
36              "threshold when evaluating whether a basic block is cold "
37              "(0 means it is only considered cold if the block has zero "
38              "samples). Default: 0 "),
39     cl::init(0), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory));
40 
41 static cl::opt<bool> PrintClusters("print-clusters", cl::desc("print clusters"),
42                                    cl::Hidden, cl::cat(BoltOptCategory));
43 
44 cl::opt<uint32_t> RandomSeed("bolt-seed", cl::desc("seed for randomization"),
45                              cl::init(42), cl::Hidden,
46                              cl::cat(BoltOptCategory));
47 
48 } // namespace opts
49 
50 namespace {
51 
52 template <class T> inline void hashCombine(size_t &Seed, const T &Val) {
53   std::hash<T> Hasher;
54   Seed ^= Hasher(Val) + 0x9e3779b9 + (Seed << 6) + (Seed >> 2);
55 }
56 
57 template <typename A, typename B> struct HashPair {
58   size_t operator()(const std::pair<A, B> &Val) const {
59     std::hash<A> Hasher;
60     size_t Seed = Hasher(Val.first);
61     hashCombine(Seed, Val.second);
62     return Seed;
63   }
64 };
65 
66 } // namespace
67 
68 void ClusterAlgorithm::computeClusterAverageFrequency(const BinaryContext &BC) {
69   // Create a separate MCCodeEmitter to allow lock-free execution
70   BinaryContext::IndependentCodeEmitter Emitter;
71   if (!opts::NoThreads)
72     Emitter = BC.createIndependentMCCodeEmitter();
73 
74   AvgFreq.resize(Clusters.size(), 0.0);
75   for (uint32_t I = 0, E = Clusters.size(); I < E; ++I) {
76     double Freq = 0.0;
77     uint64_t ClusterSize = 0;
78     for (BinaryBasicBlock *BB : Clusters[I]) {
79       if (BB->getNumNonPseudos() > 0) {
80         Freq += BB->getExecutionCount();
81         // Estimate the size of a block in bytes at run time
82         // NOTE: This might be inaccurate
83         ClusterSize += BB->estimateSize(Emitter.MCE.get());
84       }
85     }
86     AvgFreq[I] = ClusterSize == 0 ? 0 : Freq / ClusterSize;
87   }
88 }
89 
90 void ClusterAlgorithm::printClusters() const {
91   for (uint32_t I = 0, E = Clusters.size(); I < E; ++I) {
92     errs() << "Cluster number " << I;
93     if (AvgFreq.size() == Clusters.size())
94       errs() << " (frequency: " << AvgFreq[I] << ")";
95     errs() << " : ";
96     const char *Sep = "";
97     for (BinaryBasicBlock *BB : Clusters[I]) {
98       errs() << Sep << BB->getName();
99       Sep = ", ";
100     }
101     errs() << "\n";
102   }
103 }
104 
105 void ClusterAlgorithm::reset() {
106   Clusters.clear();
107   ClusterEdges.clear();
108   AvgFreq.clear();
109 }
110 
111 void GreedyClusterAlgorithm::EdgeTy::print(raw_ostream &OS) const {
112   OS << Src->getName() << " -> " << Dst->getName() << ", count: " << Count;
113 }
114 
115 size_t GreedyClusterAlgorithm::EdgeHash::operator()(const EdgeTy &E) const {
116   HashPair<const BinaryBasicBlock *, const BinaryBasicBlock *> Hasher;
117   return Hasher(std::make_pair(E.Src, E.Dst));
118 }
119 
120 bool GreedyClusterAlgorithm::EdgeEqual::operator()(const EdgeTy &A,
121                                                    const EdgeTy &B) const {
122   return A.Src == B.Src && A.Dst == B.Dst;
123 }
124 
125 void GreedyClusterAlgorithm::clusterBasicBlocks(const BinaryFunction &BF,
126                                                 bool ComputeEdges) {
127   reset();
128 
129   // Greedy heuristic implementation for the TSP, applied to BB layout. Try to
130   // maximize weight during a path traversing all BBs. In this way, we will
131   // convert the hottest branches into fall-throughs.
132 
133   // This is the queue of edges from which we will pop edges and use them to
134   // cluster basic blocks in a greedy fashion.
135   std::vector<EdgeTy> Queue;
136 
137   // Initialize inter-cluster weights.
138   if (ComputeEdges)
139     ClusterEdges.resize(BF.getLayout().block_size());
140 
141   // Initialize clusters and edge queue.
142   for (BinaryBasicBlock *BB : BF.getLayout().blocks()) {
143     // Create a cluster for this BB.
144     uint32_t I = Clusters.size();
145     Clusters.emplace_back();
146     std::vector<BinaryBasicBlock *> &Cluster = Clusters.back();
147     Cluster.push_back(BB);
148     BBToClusterMap[BB] = I;
149     // Populate priority queue with edges.
150     auto BI = BB->branch_info_begin();
151     for (BinaryBasicBlock *&I : BB->successors()) {
152       assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
153              "attempted reordering blocks of function with no profile data");
154       Queue.emplace_back(EdgeTy(BB, I, BI->Count));
155       ++BI;
156     }
157   }
158   // Sort and adjust the edge queue.
159   initQueue(Queue, BF);
160 
161   // Grow clusters in a greedy fashion.
162   while (!Queue.empty()) {
163     EdgeTy E = Queue.back();
164     Queue.pop_back();
165 
166     const BinaryBasicBlock *SrcBB = E.Src;
167     const BinaryBasicBlock *DstBB = E.Dst;
168 
169     LLVM_DEBUG(dbgs() << "Popped edge "; E.print(dbgs()); dbgs() << "\n");
170 
171     // Case 1: BBSrc and BBDst are the same. Ignore this edge
172     if (SrcBB == DstBB || DstBB == *BF.getLayout().block_begin()) {
173       LLVM_DEBUG(dbgs() << "\tIgnored (same src, dst)\n");
174       continue;
175     }
176 
177     int I = BBToClusterMap[SrcBB];
178     int J = BBToClusterMap[DstBB];
179 
180     // Case 2: If they are already allocated at the same cluster, just increase
181     // the weight of this cluster
182     if (I == J) {
183       if (ComputeEdges)
184         ClusterEdges[I][I] += E.Count;
185       LLVM_DEBUG(dbgs() << "\tIgnored (src, dst belong to the same cluster)\n");
186       continue;
187     }
188 
189     std::vector<BinaryBasicBlock *> &ClusterA = Clusters[I];
190     std::vector<BinaryBasicBlock *> &ClusterB = Clusters[J];
191     if (areClustersCompatible(ClusterA, ClusterB, E)) {
192       // Case 3: SrcBB is at the end of a cluster and DstBB is at the start,
193       // allowing us to merge two clusters.
194       for (BinaryBasicBlock *BB : ClusterB)
195         BBToClusterMap[BB] = I;
196       ClusterA.insert(ClusterA.end(), ClusterB.begin(), ClusterB.end());
197       ClusterB.clear();
198       if (ComputeEdges) {
199         // Increase the intra-cluster edge count of cluster A with the count of
200         // this edge as well as with the total count of previously visited edges
201         // from cluster B cluster A.
202         ClusterEdges[I][I] += E.Count;
203         ClusterEdges[I][I] += ClusterEdges[J][I];
204         // Iterate through all inter-cluster edges and transfer edges targeting
205         // cluster B to cluster A.
206         for (uint32_t K = 0, E = ClusterEdges.size(); K != E; ++K)
207           ClusterEdges[K][I] += ClusterEdges[K][J];
208       }
209       // Adjust the weights of the remaining edges and re-sort the queue.
210       adjustQueue(Queue, BF);
211       LLVM_DEBUG(dbgs() << "\tMerged clusters of src, dst\n");
212     } else {
213       // Case 4: Both SrcBB and DstBB are allocated in positions we cannot
214       // merge them. Add the count of this edge to the inter-cluster edge count
215       // between clusters A and B to help us decide ordering between these
216       // clusters.
217       if (ComputeEdges)
218         ClusterEdges[I][J] += E.Count;
219       LLVM_DEBUG(
220           dbgs() << "\tIgnored (src, dst belong to incompatible clusters)\n");
221     }
222   }
223 }
224 
225 void GreedyClusterAlgorithm::reset() {
226   ClusterAlgorithm::reset();
227   BBToClusterMap.clear();
228 }
229 
230 void PHGreedyClusterAlgorithm::initQueue(std::vector<EdgeTy> &Queue,
231                                          const BinaryFunction &BF) {
232   // Define a comparison function to establish SWO between edges.
233   auto Comp = [&BF](const EdgeTy &A, const EdgeTy &B) {
234     // With equal weights, prioritize branches with lower index
235     // source/destination. This helps to keep original block order for blocks
236     // when optimal order cannot be deducted from a profile.
237     if (A.Count == B.Count) {
238       const signed SrcOrder = BF.getOriginalLayoutRelativeOrder(A.Src, B.Src);
239       return (SrcOrder != 0)
240                  ? SrcOrder > 0
241                  : BF.getOriginalLayoutRelativeOrder(A.Dst, B.Dst) > 0;
242     }
243     return A.Count < B.Count;
244   };
245 
246   // Sort edges in increasing profile count order.
247   llvm::sort(Queue, Comp);
248 }
249 
250 void PHGreedyClusterAlgorithm::adjustQueue(std::vector<EdgeTy> &Queue,
251                                            const BinaryFunction &BF) {
252   // Nothing to do.
253   return;
254 }
255 
256 bool PHGreedyClusterAlgorithm::areClustersCompatible(const ClusterTy &Front,
257                                                      const ClusterTy &Back,
258                                                      const EdgeTy &E) const {
259   return Front.back() == E.Src && Back.front() == E.Dst;
260 }
261 
262 int64_t MinBranchGreedyClusterAlgorithm::calculateWeight(
263     const EdgeTy &E, const BinaryFunction &BF) const {
264   const BinaryBasicBlock *SrcBB = E.Src;
265   const BinaryBasicBlock *DstBB = E.Dst;
266 
267   // Initial weight value.
268   int64_t W = (int64_t)E.Count;
269 
270   // Adjust the weight by taking into account other edges with the same source.
271   auto BI = SrcBB->branch_info_begin();
272   for (const BinaryBasicBlock *SuccBB : SrcBB->successors()) {
273     assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
274            "attempted reordering blocks of function with no profile data");
275     assert(BI->Count <= std::numeric_limits<int64_t>::max() &&
276            "overflow detected");
277     // Ignore edges with same source and destination, edges that target the
278     // entry block as well as the edge E itself.
279     if (SuccBB != SrcBB && SuccBB != *BF.getLayout().block_begin() &&
280         SuccBB != DstBB)
281       W -= (int64_t)BI->Count;
282     ++BI;
283   }
284 
285   // Adjust the weight by taking into account other edges with the same
286   // destination.
287   for (const BinaryBasicBlock *PredBB : DstBB->predecessors()) {
288     // Ignore edges with same source and destination as well as the edge E
289     // itself.
290     if (PredBB == DstBB || PredBB == SrcBB)
291       continue;
292     auto BI = PredBB->branch_info_begin();
293     for (const BinaryBasicBlock *SuccBB : PredBB->successors()) {
294       if (SuccBB == DstBB)
295         break;
296       ++BI;
297     }
298     assert(BI != PredBB->branch_info_end() && "invalid control flow graph");
299     assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
300            "attempted reordering blocks of function with no profile data");
301     assert(BI->Count <= std::numeric_limits<int64_t>::max() &&
302            "overflow detected");
303     W -= (int64_t)BI->Count;
304   }
305 
306   return W;
307 }
308 
309 void MinBranchGreedyClusterAlgorithm::initQueue(std::vector<EdgeTy> &Queue,
310                                                 const BinaryFunction &BF) {
311   // Initialize edge weights.
312   for (const EdgeTy &E : Queue)
313     Weight.emplace(std::make_pair(E, calculateWeight(E, BF)));
314 
315   // Sort edges in increasing weight order.
316   adjustQueue(Queue, BF);
317 }
318 
319 void MinBranchGreedyClusterAlgorithm::adjustQueue(std::vector<EdgeTy> &Queue,
320                                                   const BinaryFunction &BF) {
321   // Define a comparison function to establish SWO between edges.
322   auto Comp = [&](const EdgeTy &A, const EdgeTy &B) {
323     // With equal weights, prioritize branches with lower index
324     // source/destination. This helps to keep original block order for blocks
325     // when optimal order cannot be deduced from a profile.
326     if (Weight[A] == Weight[B]) {
327       const signed SrcOrder = BF.getOriginalLayoutRelativeOrder(A.Src, B.Src);
328       return (SrcOrder != 0)
329                  ? SrcOrder > 0
330                  : BF.getOriginalLayoutRelativeOrder(A.Dst, B.Dst) > 0;
331     }
332     return Weight[A] < Weight[B];
333   };
334 
335   // Iterate through all remaining edges to find edges that have their
336   // source and destination in the same cluster.
337   std::vector<EdgeTy> NewQueue;
338   for (const EdgeTy &E : Queue) {
339     const BinaryBasicBlock *SrcBB = E.Src;
340     const BinaryBasicBlock *DstBB = E.Dst;
341 
342     // Case 1: SrcBB and DstBB are the same or DstBB is the entry block. Ignore
343     // this edge.
344     if (SrcBB == DstBB || DstBB == *BF.getLayout().block_begin()) {
345       LLVM_DEBUG(dbgs() << "\tAdjustment: Ignored edge "; E.print(dbgs());
346                  dbgs() << " (same src, dst)\n");
347       continue;
348     }
349 
350     int I = BBToClusterMap[SrcBB];
351     int J = BBToClusterMap[DstBB];
352     std::vector<BinaryBasicBlock *> &ClusterA = Clusters[I];
353     std::vector<BinaryBasicBlock *> &ClusterB = Clusters[J];
354 
355     // Case 2: They are already allocated at the same cluster or incompatible
356     // clusters. Adjust the weights of edges with the same source or
357     // destination, so that this edge has no effect on them any more, and ignore
358     // this edge. Also increase the intra- (or inter-) cluster edge count.
359     if (I == J || !areClustersCompatible(ClusterA, ClusterB, E)) {
360       if (!ClusterEdges.empty())
361         ClusterEdges[I][J] += E.Count;
362       LLVM_DEBUG(dbgs() << "\tAdjustment: Ignored edge "; E.print(dbgs());
363                  dbgs() << " (src, dst belong to same cluster or incompatible "
364                            "clusters)\n");
365       for (const BinaryBasicBlock *SuccBB : SrcBB->successors()) {
366         if (SuccBB == DstBB)
367           continue;
368         auto WI = Weight.find(EdgeTy(SrcBB, SuccBB, 0));
369         assert(WI != Weight.end() && "CFG edge not found in Weight map");
370         WI->second += (int64_t)E.Count;
371       }
372       for (const BinaryBasicBlock *PredBB : DstBB->predecessors()) {
373         if (PredBB == SrcBB)
374           continue;
375         auto WI = Weight.find(EdgeTy(PredBB, DstBB, 0));
376         assert(WI != Weight.end() && "CFG edge not found in Weight map");
377         WI->second += (int64_t)E.Count;
378       }
379       continue;
380     }
381 
382     // Case 3: None of the previous cases is true, so just keep this edge in
383     // the queue.
384     NewQueue.emplace_back(E);
385   }
386 
387   // Sort remaining edges in increasing weight order.
388   Queue.swap(NewQueue);
389   llvm::sort(Queue, Comp);
390 }
391 
392 bool MinBranchGreedyClusterAlgorithm::areClustersCompatible(
393     const ClusterTy &Front, const ClusterTy &Back, const EdgeTy &E) const {
394   return Front.back() == E.Src && Back.front() == E.Dst;
395 }
396 
397 void MinBranchGreedyClusterAlgorithm::reset() {
398   GreedyClusterAlgorithm::reset();
399   Weight.clear();
400 }
401 
402 void TSPReorderAlgorithm::reorderBasicBlocks(const BinaryFunction &BF,
403                                              BasicBlockOrder &Order) const {
404   std::vector<std::vector<uint64_t>> Weight;
405   std::vector<BinaryBasicBlock *> IndexToBB;
406 
407   const size_t N = BF.getLayout().block_size();
408   assert(N <= std::numeric_limits<uint64_t>::digits &&
409          "cannot use TSP solution for sizes larger than bits in uint64_t");
410 
411   // Populating weight map and index map
412   for (BinaryBasicBlock *BB : BF.getLayout().blocks()) {
413     BB->setLayoutIndex(IndexToBB.size());
414     IndexToBB.push_back(BB);
415   }
416   Weight.resize(N);
417   for (BinaryBasicBlock *BB : BF.getLayout().blocks()) {
418     auto BI = BB->branch_info_begin();
419     Weight[BB->getLayoutIndex()].resize(N);
420     for (BinaryBasicBlock *SuccBB : BB->successors()) {
421       if (BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE)
422         Weight[BB->getLayoutIndex()][SuccBB->getLayoutIndex()] = BI->Count;
423       ++BI;
424     }
425   }
426 
427   std::vector<std::vector<int64_t>> DP;
428   DP.resize(1 << N);
429   for (std::vector<int64_t> &Elmt : DP)
430     Elmt.resize(N, -1);
431 
432   // Start with the entry basic block being allocated with cost zero
433   DP[1][0] = 0;
434   // Walk through TSP solutions using a bitmask to represent state (current set
435   // of BBs in the layout)
436   uint64_t BestSet = 1;
437   uint64_t BestLast = 0;
438   int64_t BestWeight = 0;
439   for (uint64_t Set = 1; Set < (1ULL << N); ++Set) {
440     // Traverse each possibility of Last BB visited in this layout
441     for (uint64_t Last = 0; Last < N; ++Last) {
442       // Case 1: There is no possible layout with this BB as Last
443       if (DP[Set][Last] == -1)
444         continue;
445 
446       // Case 2: There is a layout with this Set and this Last, and we try
447       // to expand this set with New
448       for (uint64_t New = 1; New < N; ++New) {
449         // Case 2a: BB "New" is already in this Set
450         if ((Set & (1ULL << New)) != 0)
451           continue;
452 
453         // Case 2b: BB "New" is not in this set and we add it to this Set and
454         // record total weight of this layout with "New" as the last BB.
455         uint64_t NewSet = (Set | (1ULL << New));
456         if (DP[NewSet][New] == -1)
457           DP[NewSet][New] = DP[Set][Last] + (int64_t)Weight[Last][New];
458         DP[NewSet][New] = std::max(DP[NewSet][New],
459                                    DP[Set][Last] + (int64_t)Weight[Last][New]);
460 
461         if (DP[NewSet][New] > BestWeight) {
462           BestWeight = DP[NewSet][New];
463           BestSet = NewSet;
464           BestLast = New;
465         }
466       }
467     }
468   }
469 
470   // Define final function layout based on layout that maximizes weight
471   uint64_t Last = BestLast;
472   uint64_t Set = BestSet;
473   BitVector Visited;
474   Visited.resize(N);
475   Visited[Last] = true;
476   Order.push_back(IndexToBB[Last]);
477   Set = Set & ~(1ULL << Last);
478   while (Set != 0) {
479     int64_t Best = -1;
480     uint64_t NewLast;
481     for (uint64_t I = 0; I < N; ++I) {
482       if (DP[Set][I] == -1)
483         continue;
484       int64_t AdjWeight = Weight[I][Last] > 0 ? Weight[I][Last] : 0;
485       if (DP[Set][I] + AdjWeight > Best) {
486         NewLast = I;
487         Best = DP[Set][I] + AdjWeight;
488       }
489     }
490     Last = NewLast;
491     Visited[Last] = true;
492     Order.push_back(IndexToBB[Last]);
493     Set = Set & ~(1ULL << Last);
494   }
495   std::reverse(Order.begin(), Order.end());
496 
497   // Finalize layout with BBs that weren't assigned to the layout using the
498   // input layout.
499   for (BinaryBasicBlock *BB : BF.getLayout().blocks())
500     if (Visited[BB->getLayoutIndex()] == false)
501       Order.push_back(BB);
502 }
503 
504 void OptimizeReorderAlgorithm::reorderBasicBlocks(
505     const BinaryFunction &BF, BasicBlockOrder &Order) const {
506   if (BF.getLayout().block_empty())
507     return;
508 
509   // Cluster basic blocks.
510   CAlgo->clusterBasicBlocks(BF);
511 
512   if (opts::PrintClusters)
513     CAlgo->printClusters();
514 
515   // Arrange basic blocks according to clusters.
516   for (ClusterAlgorithm::ClusterTy &Cluster : CAlgo->Clusters)
517     Order.insert(Order.end(), Cluster.begin(), Cluster.end());
518 }
519 
520 void OptimizeBranchReorderAlgorithm::reorderBasicBlocks(
521     const BinaryFunction &BF, BasicBlockOrder &Order) const {
522   if (BF.getLayout().block_empty())
523     return;
524 
525   // Cluster basic blocks.
526   CAlgo->clusterBasicBlocks(BF, /* ComputeEdges = */ true);
527   std::vector<ClusterAlgorithm::ClusterTy> &Clusters = CAlgo->Clusters;
528   std::vector<std::unordered_map<uint32_t, uint64_t>> &ClusterEdges =
529       CAlgo->ClusterEdges;
530 
531   // Compute clusters' average frequencies.
532   CAlgo->computeClusterAverageFrequency(BF.getBinaryContext());
533   std::vector<double> &AvgFreq = CAlgo->AvgFreq;
534 
535   if (opts::PrintClusters)
536     CAlgo->printClusters();
537 
538   // Cluster layout order
539   std::vector<uint32_t> ClusterOrder;
540 
541   // Do a topological sort for clusters, prioritizing frequently-executed BBs
542   // during the traversal.
543   std::stack<uint32_t> Stack;
544   std::vector<uint32_t> Status;
545   std::vector<uint32_t> Parent;
546   Status.resize(Clusters.size(), 0);
547   Parent.resize(Clusters.size(), 0);
548   constexpr uint32_t STACKED = 1;
549   constexpr uint32_t VISITED = 2;
550   Status[0] = STACKED;
551   Stack.push(0);
552   while (!Stack.empty()) {
553     uint32_t I = Stack.top();
554     if (!(Status[I] & VISITED)) {
555       Status[I] |= VISITED;
556       // Order successors by weight
557       auto ClusterComp = [&ClusterEdges, I](uint32_t A, uint32_t B) {
558         return ClusterEdges[I][A] > ClusterEdges[I][B];
559       };
560       std::priority_queue<uint32_t, std::vector<uint32_t>,
561                           decltype(ClusterComp)>
562           SuccQueue(ClusterComp);
563       for (std::pair<const uint32_t, uint64_t> &Target : ClusterEdges[I]) {
564         if (Target.second > 0 && !(Status[Target.first] & STACKED) &&
565             !Clusters[Target.first].empty()) {
566           Parent[Target.first] = I;
567           Status[Target.first] = STACKED;
568           SuccQueue.push(Target.first);
569         }
570       }
571       while (!SuccQueue.empty()) {
572         Stack.push(SuccQueue.top());
573         SuccQueue.pop();
574       }
575       continue;
576     }
577     // Already visited this node
578     Stack.pop();
579     ClusterOrder.push_back(I);
580   }
581   std::reverse(ClusterOrder.begin(), ClusterOrder.end());
582   // Put unreachable clusters at the end
583   for (uint32_t I = 0, E = Clusters.size(); I < E; ++I)
584     if (!(Status[I] & VISITED) && !Clusters[I].empty())
585       ClusterOrder.push_back(I);
586 
587   // Sort nodes with equal precedence
588   auto Beg = ClusterOrder.begin();
589   // Don't reorder the first cluster, which contains the function entry point
590   ++Beg;
591   std::stable_sort(Beg, ClusterOrder.end(),
592                    [&AvgFreq, &Parent](uint32_t A, uint32_t B) {
593                      uint32_t P = Parent[A];
594                      while (Parent[P] != 0) {
595                        if (Parent[P] == B)
596                          return false;
597                        P = Parent[P];
598                      }
599                      P = Parent[B];
600                      while (Parent[P] != 0) {
601                        if (Parent[P] == A)
602                          return true;
603                        P = Parent[P];
604                      }
605                      return AvgFreq[A] > AvgFreq[B];
606                    });
607 
608   if (opts::PrintClusters) {
609     errs() << "New cluster order: ";
610     const char *Sep = "";
611     for (uint32_t O : ClusterOrder) {
612       errs() << Sep << O;
613       Sep = ", ";
614     }
615     errs() << '\n';
616   }
617 
618   // Arrange basic blocks according to cluster order.
619   for (uint32_t ClusterIndex : ClusterOrder) {
620     ClusterAlgorithm::ClusterTy &Cluster = Clusters[ClusterIndex];
621     Order.insert(Order.end(), Cluster.begin(), Cluster.end());
622   }
623 }
624 
625 void OptimizeCacheReorderAlgorithm::reorderBasicBlocks(
626     const BinaryFunction &BF, BasicBlockOrder &Order) const {
627   if (BF.getLayout().block_empty())
628     return;
629 
630   const uint64_t ColdThreshold =
631       opts::ColdThreshold *
632       (*BF.getLayout().block_begin())->getExecutionCount() / 1000;
633 
634   // Cluster basic blocks.
635   CAlgo->clusterBasicBlocks(BF);
636   std::vector<ClusterAlgorithm::ClusterTy> &Clusters = CAlgo->Clusters;
637 
638   // Compute clusters' average frequencies.
639   CAlgo->computeClusterAverageFrequency(BF.getBinaryContext());
640   std::vector<double> &AvgFreq = CAlgo->AvgFreq;
641 
642   if (opts::PrintClusters)
643     CAlgo->printClusters();
644 
645   // Cluster layout order
646   std::vector<uint32_t> ClusterOrder;
647 
648   // Order clusters based on average instruction execution frequency
649   for (uint32_t I = 0, E = Clusters.size(); I < E; ++I)
650     if (!Clusters[I].empty())
651       ClusterOrder.push_back(I);
652   // Don't reorder the first cluster, which contains the function entry point
653   std::stable_sort(
654       std::next(ClusterOrder.begin()), ClusterOrder.end(),
655       [&AvgFreq](uint32_t A, uint32_t B) { return AvgFreq[A] > AvgFreq[B]; });
656 
657   if (opts::PrintClusters) {
658     errs() << "New cluster order: ";
659     const char *Sep = "";
660     for (uint32_t O : ClusterOrder) {
661       errs() << Sep << O;
662       Sep = ", ";
663     }
664     errs() << '\n';
665   }
666 
667   // Arrange basic blocks according to cluster order.
668   for (uint32_t ClusterIndex : ClusterOrder) {
669     ClusterAlgorithm::ClusterTy &Cluster = Clusters[ClusterIndex];
670     Order.insert(Order.end(), Cluster.begin(), Cluster.end());
671     // Force zero execution count on clusters that do not meet the cut off
672     // specified by --cold-threshold.
673     if (AvgFreq[ClusterIndex] < static_cast<double>(ColdThreshold))
674       for (BinaryBasicBlock *BBPtr : Cluster)
675         BBPtr->setExecutionCount(0);
676   }
677 }
678 
679 void ReverseReorderAlgorithm::reorderBasicBlocks(const BinaryFunction &BF,
680                                                  BasicBlockOrder &Order) const {
681   if (BF.getLayout().block_empty())
682     return;
683 
684   BinaryBasicBlock *FirstBB = *BF.getLayout().block_begin();
685   Order.push_back(FirstBB);
686   for (auto RLI = BF.getLayout().block_rbegin(); *RLI != FirstBB; ++RLI)
687     Order.push_back(*RLI);
688 }
689 
690 void RandomClusterReorderAlgorithm::reorderBasicBlocks(
691     const BinaryFunction &BF, BasicBlockOrder &Order) const {
692   if (BF.getLayout().block_empty())
693     return;
694 
695   // Cluster basic blocks.
696   CAlgo->clusterBasicBlocks(BF);
697   std::vector<ClusterAlgorithm::ClusterTy> &Clusters = CAlgo->Clusters;
698 
699   if (opts::PrintClusters)
700     CAlgo->printClusters();
701 
702   // Cluster layout order
703   std::vector<uint32_t> ClusterOrder;
704 
705   // Order clusters based on average instruction execution frequency
706   for (uint32_t I = 0, E = Clusters.size(); I < E; ++I)
707     if (!Clusters[I].empty())
708       ClusterOrder.push_back(I);
709 
710   std::shuffle(std::next(ClusterOrder.begin()), ClusterOrder.end(),
711                std::default_random_engine(opts::RandomSeed.getValue()));
712 
713   if (opts::PrintClusters) {
714     errs() << "New cluster order: ";
715     const char *Sep = "";
716     for (uint32_t O : ClusterOrder) {
717       errs() << Sep << O;
718       Sep = ", ";
719     }
720     errs() << '\n';
721   }
722 
723   // Arrange basic blocks according to cluster order.
724   for (uint32_t ClusterIndex : ClusterOrder) {
725     ClusterAlgorithm::ClusterTy &Cluster = Clusters[ClusterIndex];
726     Order.insert(Order.end(), Cluster.begin(), Cluster.end());
727   }
728 }
729