1 //===- bolt/Passes/LongJmp.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LongJmpPass class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Passes/LongJmp.h" 14 15 #define DEBUG_TYPE "longjmp" 16 17 using namespace llvm; 18 19 namespace opts { 20 extern cl::OptionCategory BoltOptCategory; 21 extern llvm::cl::opt<unsigned> AlignText; 22 extern cl::opt<unsigned> AlignFunctions; 23 extern cl::opt<bool> UseOldText; 24 extern cl::opt<bool> HotFunctionsAtEnd; 25 26 static cl::opt<bool> GroupStubs("group-stubs", 27 cl::desc("share stubs across functions"), 28 cl::init(true), cl::cat(BoltOptCategory)); 29 } 30 31 namespace llvm { 32 namespace bolt { 33 34 namespace { 35 constexpr unsigned ColdFragAlign = 16; 36 37 void relaxStubToShortJmp(BinaryBasicBlock &StubBB, const MCSymbol *Tgt) { 38 const BinaryContext &BC = StubBB.getFunction()->getBinaryContext(); 39 InstructionListType Seq; 40 BC.MIB->createShortJmp(Seq, Tgt, BC.Ctx.get()); 41 StubBB.clear(); 42 StubBB.addInstructions(Seq.begin(), Seq.end()); 43 } 44 45 void relaxStubToLongJmp(BinaryBasicBlock &StubBB, const MCSymbol *Tgt) { 46 const BinaryContext &BC = StubBB.getFunction()->getBinaryContext(); 47 InstructionListType Seq; 48 BC.MIB->createLongJmp(Seq, Tgt, BC.Ctx.get()); 49 StubBB.clear(); 50 StubBB.addInstructions(Seq.begin(), Seq.end()); 51 } 52 53 BinaryBasicBlock *getBBAtHotColdSplitPoint(BinaryFunction &Func) { 54 if (!Func.isSplit() || Func.empty()) 55 return nullptr; 56 57 assert(!(*Func.begin()).isCold() && "Entry cannot be cold"); 58 for (auto I = Func.layout_begin(), E = Func.layout_end(); I != E; ++I) { 59 auto Next = std::next(I); 60 if (Next != E && (*Next)->isCold()) 61 return *I; 62 } 63 llvm_unreachable("No hot-colt split point found"); 64 } 65 66 bool shouldInsertStub(const BinaryContext &BC, const MCInst &Inst) { 67 return (BC.MIB->isBranch(Inst) || BC.MIB->isCall(Inst)) && 68 !BC.MIB->isIndirectBranch(Inst) && !BC.MIB->isIndirectCall(Inst); 69 } 70 71 } // end anonymous namespace 72 73 std::pair<std::unique_ptr<BinaryBasicBlock>, MCSymbol *> 74 LongJmpPass::createNewStub(BinaryBasicBlock &SourceBB, const MCSymbol *TgtSym, 75 bool TgtIsFunc, uint64_t AtAddress) { 76 BinaryFunction &Func = *SourceBB.getFunction(); 77 const BinaryContext &BC = Func.getBinaryContext(); 78 const bool IsCold = SourceBB.isCold(); 79 MCSymbol *StubSym = BC.Ctx->createNamedTempSymbol("Stub"); 80 std::unique_ptr<BinaryBasicBlock> StubBB = Func.createBasicBlock(StubSym); 81 MCInst Inst; 82 BC.MIB->createUncondBranch(Inst, TgtSym, BC.Ctx.get()); 83 if (TgtIsFunc) 84 BC.MIB->convertJmpToTailCall(Inst); 85 StubBB->addInstruction(Inst); 86 StubBB->setExecutionCount(0); 87 88 // Register this in stubs maps 89 auto registerInMap = [&](StubGroupsTy &Map) { 90 StubGroupTy &StubGroup = Map[TgtSym]; 91 StubGroup.insert( 92 llvm::lower_bound( 93 StubGroup, std::make_pair(AtAddress, nullptr), 94 [&](const std::pair<uint64_t, BinaryBasicBlock *> &LHS, 95 const std::pair<uint64_t, BinaryBasicBlock *> &RHS) { 96 return LHS.first < RHS.first; 97 }), 98 std::make_pair(AtAddress, StubBB.get())); 99 }; 100 101 Stubs[&Func].insert(StubBB.get()); 102 StubBits[StubBB.get()] = BC.MIB->getUncondBranchEncodingSize(); 103 if (IsCold) { 104 registerInMap(ColdLocalStubs[&Func]); 105 if (opts::GroupStubs && TgtIsFunc) 106 registerInMap(ColdStubGroups); 107 ++NumColdStubs; 108 } else { 109 registerInMap(HotLocalStubs[&Func]); 110 if (opts::GroupStubs && TgtIsFunc) 111 registerInMap(HotStubGroups); 112 ++NumHotStubs; 113 } 114 115 return std::make_pair(std::move(StubBB), StubSym); 116 } 117 118 BinaryBasicBlock *LongJmpPass::lookupStubFromGroup( 119 const StubGroupsTy &StubGroups, const BinaryFunction &Func, 120 const MCInst &Inst, const MCSymbol *TgtSym, uint64_t DotAddress) const { 121 const BinaryContext &BC = Func.getBinaryContext(); 122 auto CandidatesIter = StubGroups.find(TgtSym); 123 if (CandidatesIter == StubGroups.end()) 124 return nullptr; 125 const StubGroupTy &Candidates = CandidatesIter->second; 126 if (Candidates.empty()) 127 return nullptr; 128 auto Cand = llvm::lower_bound( 129 Candidates, std::make_pair(DotAddress, nullptr), 130 [&](const std::pair<uint64_t, BinaryBasicBlock *> &LHS, 131 const std::pair<uint64_t, BinaryBasicBlock *> &RHS) { 132 return LHS.first < RHS.first; 133 }); 134 if (Cand == Candidates.end()) 135 return nullptr; 136 if (Cand != Candidates.begin()) { 137 const StubTy *LeftCand = std::prev(Cand); 138 if (Cand->first - DotAddress > DotAddress - LeftCand->first) 139 Cand = LeftCand; 140 } 141 int BitsAvail = BC.MIB->getPCRelEncodingSize(Inst) - 1; 142 uint64_t Mask = ~((1ULL << BitsAvail) - 1); 143 uint64_t PCRelTgtAddress = Cand->first; 144 PCRelTgtAddress = DotAddress > PCRelTgtAddress ? DotAddress - PCRelTgtAddress 145 : PCRelTgtAddress - DotAddress; 146 LLVM_DEBUG({ 147 if (Candidates.size() > 1) 148 dbgs() << "Considering stub group with " << Candidates.size() 149 << " candidates. DotAddress is " << Twine::utohexstr(DotAddress) 150 << ", chosen candidate address is " 151 << Twine::utohexstr(Cand->first) << "\n"; 152 }); 153 return PCRelTgtAddress & Mask ? nullptr : Cand->second; 154 } 155 156 BinaryBasicBlock * 157 LongJmpPass::lookupGlobalStub(const BinaryBasicBlock &SourceBB, 158 const MCInst &Inst, const MCSymbol *TgtSym, 159 uint64_t DotAddress) const { 160 const BinaryFunction &Func = *SourceBB.getFunction(); 161 const StubGroupsTy &StubGroups = 162 SourceBB.isCold() ? ColdStubGroups : HotStubGroups; 163 return lookupStubFromGroup(StubGroups, Func, Inst, TgtSym, DotAddress); 164 } 165 166 BinaryBasicBlock *LongJmpPass::lookupLocalStub(const BinaryBasicBlock &SourceBB, 167 const MCInst &Inst, 168 const MCSymbol *TgtSym, 169 uint64_t DotAddress) const { 170 const BinaryFunction &Func = *SourceBB.getFunction(); 171 const DenseMap<const BinaryFunction *, StubGroupsTy> &StubGroups = 172 SourceBB.isCold() ? ColdLocalStubs : HotLocalStubs; 173 const auto Iter = StubGroups.find(&Func); 174 if (Iter == StubGroups.end()) 175 return nullptr; 176 return lookupStubFromGroup(Iter->second, Func, Inst, TgtSym, DotAddress); 177 } 178 179 std::unique_ptr<BinaryBasicBlock> 180 LongJmpPass::replaceTargetWithStub(BinaryBasicBlock &BB, MCInst &Inst, 181 uint64_t DotAddress, 182 uint64_t StubCreationAddress) { 183 const BinaryFunction &Func = *BB.getFunction(); 184 const BinaryContext &BC = Func.getBinaryContext(); 185 std::unique_ptr<BinaryBasicBlock> NewBB; 186 const MCSymbol *TgtSym = BC.MIB->getTargetSymbol(Inst); 187 assert(TgtSym && "getTargetSymbol failed"); 188 189 BinaryBasicBlock::BinaryBranchInfo BI{0, 0}; 190 BinaryBasicBlock *TgtBB = BB.getSuccessor(TgtSym, BI); 191 auto LocalStubsIter = Stubs.find(&Func); 192 193 // If already using stub and the stub is from another function, create a local 194 // stub, since the foreign stub is now out of range 195 if (!TgtBB) { 196 auto SSIter = SharedStubs.find(TgtSym); 197 if (SSIter != SharedStubs.end()) { 198 TgtSym = BC.MIB->getTargetSymbol(*SSIter->second->begin()); 199 --NumSharedStubs; 200 } 201 } else if (LocalStubsIter != Stubs.end() && 202 LocalStubsIter->second.count(TgtBB)) { 203 // If we are replacing a local stub (because it is now out of range), 204 // use its target instead of creating a stub to jump to another stub 205 TgtSym = BC.MIB->getTargetSymbol(*TgtBB->begin()); 206 TgtBB = BB.getSuccessor(TgtSym, BI); 207 } 208 209 BinaryBasicBlock *StubBB = lookupLocalStub(BB, Inst, TgtSym, DotAddress); 210 // If not found, look it up in globally shared stub maps if it is a function 211 // call (TgtBB is not set) 212 if (!StubBB && !TgtBB) { 213 StubBB = lookupGlobalStub(BB, Inst, TgtSym, DotAddress); 214 if (StubBB) { 215 SharedStubs[StubBB->getLabel()] = StubBB; 216 ++NumSharedStubs; 217 } 218 } 219 MCSymbol *StubSymbol = StubBB ? StubBB->getLabel() : nullptr; 220 221 if (!StubBB) { 222 std::tie(NewBB, StubSymbol) = 223 createNewStub(BB, TgtSym, /*is func?*/ !TgtBB, StubCreationAddress); 224 StubBB = NewBB.get(); 225 } 226 227 // Local branch 228 if (TgtBB) { 229 uint64_t OrigCount = BI.Count; 230 uint64_t OrigMispreds = BI.MispredictedCount; 231 BB.replaceSuccessor(TgtBB, StubBB, OrigCount, OrigMispreds); 232 StubBB->setExecutionCount(StubBB->getExecutionCount() + OrigCount); 233 if (NewBB) { 234 StubBB->addSuccessor(TgtBB, OrigCount, OrigMispreds); 235 StubBB->setIsCold(BB.isCold()); 236 } 237 // Call / tail call 238 } else { 239 StubBB->setExecutionCount(StubBB->getExecutionCount() + 240 BB.getExecutionCount()); 241 if (NewBB) { 242 assert(TgtBB == nullptr); 243 StubBB->setIsCold(BB.isCold()); 244 // Set as entry point because this block is valid but we have no preds 245 StubBB->getFunction()->addEntryPoint(*StubBB); 246 } 247 } 248 BC.MIB->replaceBranchTarget(Inst, StubSymbol, BC.Ctx.get()); 249 250 return NewBB; 251 } 252 253 void LongJmpPass::updateStubGroups() { 254 auto update = [&](StubGroupsTy &StubGroups) { 255 for (auto &KeyVal : StubGroups) { 256 for (StubTy &Elem : KeyVal.second) 257 Elem.first = BBAddresses[Elem.second]; 258 llvm::sort(KeyVal.second, llvm::less_first()); 259 } 260 }; 261 262 for (auto &KeyVal : HotLocalStubs) 263 update(KeyVal.second); 264 for (auto &KeyVal : ColdLocalStubs) 265 update(KeyVal.second); 266 update(HotStubGroups); 267 update(ColdStubGroups); 268 } 269 270 void LongJmpPass::tentativeBBLayout(const BinaryFunction &Func) { 271 const BinaryContext &BC = Func.getBinaryContext(); 272 uint64_t HotDot = HotAddresses[&Func]; 273 uint64_t ColdDot = ColdAddresses[&Func]; 274 bool Cold = false; 275 for (BinaryBasicBlock *BB : Func.layout()) { 276 if (Cold || BB->isCold()) { 277 Cold = true; 278 BBAddresses[BB] = ColdDot; 279 ColdDot += BC.computeCodeSize(BB->begin(), BB->end()); 280 } else { 281 BBAddresses[BB] = HotDot; 282 HotDot += BC.computeCodeSize(BB->begin(), BB->end()); 283 } 284 } 285 } 286 287 uint64_t LongJmpPass::tentativeLayoutRelocColdPart( 288 const BinaryContext &BC, std::vector<BinaryFunction *> &SortedFunctions, 289 uint64_t DotAddress) { 290 DotAddress = alignTo(DotAddress, llvm::Align(opts::AlignFunctions)); 291 for (BinaryFunction *Func : SortedFunctions) { 292 if (!Func->isSplit()) 293 continue; 294 DotAddress = alignTo(DotAddress, BinaryFunction::MinAlign); 295 uint64_t Pad = 296 offsetToAlignment(DotAddress, llvm::Align(Func->getAlignment())); 297 if (Pad <= Func->getMaxColdAlignmentBytes()) 298 DotAddress += Pad; 299 ColdAddresses[Func] = DotAddress; 300 LLVM_DEBUG(dbgs() << Func->getPrintName() << " cold tentative: " 301 << Twine::utohexstr(DotAddress) << "\n"); 302 DotAddress += Func->estimateColdSize(); 303 DotAddress = alignTo(DotAddress, Func->getConstantIslandAlignment()); 304 DotAddress += Func->estimateConstantIslandSize(); 305 } 306 return DotAddress; 307 } 308 309 uint64_t LongJmpPass::tentativeLayoutRelocMode( 310 const BinaryContext &BC, std::vector<BinaryFunction *> &SortedFunctions, 311 uint64_t DotAddress) { 312 313 // Compute hot cold frontier 314 uint32_t LastHotIndex = -1u; 315 uint32_t CurrentIndex = 0; 316 if (opts::HotFunctionsAtEnd) { 317 for (BinaryFunction *BF : SortedFunctions) { 318 if (BF->hasValidIndex()) { 319 LastHotIndex = CurrentIndex; 320 break; 321 } 322 323 ++CurrentIndex; 324 } 325 } else { 326 for (BinaryFunction *BF : SortedFunctions) { 327 if (!BF->hasValidIndex()) { 328 LastHotIndex = CurrentIndex; 329 break; 330 } 331 332 ++CurrentIndex; 333 } 334 } 335 336 // Hot 337 CurrentIndex = 0; 338 bool ColdLayoutDone = false; 339 for (BinaryFunction *Func : SortedFunctions) { 340 if (!BC.shouldEmit(*Func)) { 341 HotAddresses[Func] = Func->getAddress(); 342 continue; 343 } 344 345 if (!ColdLayoutDone && CurrentIndex >= LastHotIndex) { 346 DotAddress = 347 tentativeLayoutRelocColdPart(BC, SortedFunctions, DotAddress); 348 ColdLayoutDone = true; 349 if (opts::HotFunctionsAtEnd) 350 DotAddress = alignTo(DotAddress, opts::AlignText); 351 } 352 353 DotAddress = alignTo(DotAddress, BinaryFunction::MinAlign); 354 uint64_t Pad = 355 offsetToAlignment(DotAddress, llvm::Align(Func->getAlignment())); 356 if (Pad <= Func->getMaxAlignmentBytes()) 357 DotAddress += Pad; 358 HotAddresses[Func] = DotAddress; 359 LLVM_DEBUG(dbgs() << Func->getPrintName() << " tentative: " 360 << Twine::utohexstr(DotAddress) << "\n"); 361 if (!Func->isSplit()) 362 DotAddress += Func->estimateSize(); 363 else 364 DotAddress += Func->estimateHotSize(); 365 366 DotAddress = alignTo(DotAddress, Func->getConstantIslandAlignment()); 367 DotAddress += Func->estimateConstantIslandSize(); 368 ++CurrentIndex; 369 } 370 // BBs 371 for (BinaryFunction *Func : SortedFunctions) 372 tentativeBBLayout(*Func); 373 374 return DotAddress; 375 } 376 377 void LongJmpPass::tentativeLayout( 378 const BinaryContext &BC, std::vector<BinaryFunction *> &SortedFunctions) { 379 uint64_t DotAddress = BC.LayoutStartAddress; 380 381 if (!BC.HasRelocations) { 382 for (BinaryFunction *Func : SortedFunctions) { 383 HotAddresses[Func] = Func->getAddress(); 384 DotAddress = alignTo(DotAddress, ColdFragAlign); 385 ColdAddresses[Func] = DotAddress; 386 if (Func->isSplit()) 387 DotAddress += Func->estimateColdSize(); 388 tentativeBBLayout(*Func); 389 } 390 391 return; 392 } 393 394 // Relocation mode 395 uint64_t EstimatedTextSize = 0; 396 if (opts::UseOldText) { 397 EstimatedTextSize = tentativeLayoutRelocMode(BC, SortedFunctions, 0); 398 399 // Initial padding 400 if (EstimatedTextSize <= BC.OldTextSectionSize) { 401 DotAddress = BC.OldTextSectionAddress; 402 uint64_t Pad = 403 offsetToAlignment(DotAddress, llvm::Align(opts::AlignText)); 404 if (Pad + EstimatedTextSize <= BC.OldTextSectionSize) { 405 DotAddress += Pad; 406 } 407 } 408 } 409 410 if (!EstimatedTextSize || EstimatedTextSize > BC.OldTextSectionSize) 411 DotAddress = alignTo(BC.LayoutStartAddress, opts::AlignText); 412 413 tentativeLayoutRelocMode(BC, SortedFunctions, DotAddress); 414 } 415 416 bool LongJmpPass::usesStub(const BinaryFunction &Func, 417 const MCInst &Inst) const { 418 const MCSymbol *TgtSym = Func.getBinaryContext().MIB->getTargetSymbol(Inst); 419 const BinaryBasicBlock *TgtBB = Func.getBasicBlockForLabel(TgtSym); 420 auto Iter = Stubs.find(&Func); 421 if (Iter != Stubs.end()) 422 return Iter->second.count(TgtBB); 423 return false; 424 } 425 426 uint64_t LongJmpPass::getSymbolAddress(const BinaryContext &BC, 427 const MCSymbol *Target, 428 const BinaryBasicBlock *TgtBB) const { 429 if (TgtBB) { 430 auto Iter = BBAddresses.find(TgtBB); 431 assert(Iter != BBAddresses.end() && "Unrecognized BB"); 432 return Iter->second; 433 } 434 uint64_t EntryID = 0; 435 const BinaryFunction *TargetFunc = BC.getFunctionForSymbol(Target, &EntryID); 436 auto Iter = HotAddresses.find(TargetFunc); 437 if (Iter == HotAddresses.end() || (TargetFunc && EntryID)) { 438 // Look at BinaryContext's resolution for this symbol - this is a symbol not 439 // mapped to a BinaryFunction 440 ErrorOr<uint64_t> ValueOrError = BC.getSymbolValue(*Target); 441 assert(ValueOrError && "Unrecognized symbol"); 442 return *ValueOrError; 443 } 444 return Iter->second; 445 } 446 447 bool LongJmpPass::relaxStub(BinaryBasicBlock &StubBB) { 448 const BinaryFunction &Func = *StubBB.getFunction(); 449 const BinaryContext &BC = Func.getBinaryContext(); 450 const int Bits = StubBits[&StubBB]; 451 // Already working with the largest range? 452 if (Bits == static_cast<int>(BC.AsmInfo->getCodePointerSize() * 8)) 453 return false; 454 455 const static int RangeShortJmp = BC.MIB->getShortJmpEncodingSize(); 456 const static int RangeSingleInstr = BC.MIB->getUncondBranchEncodingSize(); 457 const static uint64_t ShortJmpMask = ~((1ULL << RangeShortJmp) - 1); 458 const static uint64_t SingleInstrMask = 459 ~((1ULL << (RangeSingleInstr - 1)) - 1); 460 461 const MCSymbol *RealTargetSym = BC.MIB->getTargetSymbol(*StubBB.begin()); 462 const BinaryBasicBlock *TgtBB = Func.getBasicBlockForLabel(RealTargetSym); 463 uint64_t TgtAddress = getSymbolAddress(BC, RealTargetSym, TgtBB); 464 uint64_t DotAddress = BBAddresses[&StubBB]; 465 uint64_t PCRelTgtAddress = DotAddress > TgtAddress ? DotAddress - TgtAddress 466 : TgtAddress - DotAddress; 467 // If it fits in one instruction, do not relax 468 if (!(PCRelTgtAddress & SingleInstrMask)) 469 return false; 470 471 // Fits short jmp 472 if (!(PCRelTgtAddress & ShortJmpMask)) { 473 if (Bits >= RangeShortJmp) 474 return false; 475 476 LLVM_DEBUG(dbgs() << "Relaxing stub to short jump. PCRelTgtAddress = " 477 << Twine::utohexstr(PCRelTgtAddress) 478 << " RealTargetSym = " << RealTargetSym->getName() 479 << "\n"); 480 relaxStubToShortJmp(StubBB, RealTargetSym); 481 StubBits[&StubBB] = RangeShortJmp; 482 return true; 483 } 484 485 // The long jmp uses absolute address on AArch64 486 // So we could not use it for PIC binaries 487 if (BC.isAArch64() && !BC.HasFixedLoadAddress) { 488 errs() << "BOLT-ERROR: Unable to relax stub for PIC binary\n"; 489 exit(1); 490 } 491 492 LLVM_DEBUG(dbgs() << "Relaxing stub to long jump. PCRelTgtAddress = " 493 << Twine::utohexstr(PCRelTgtAddress) 494 << " RealTargetSym = " << RealTargetSym->getName() << "\n"); 495 relaxStubToLongJmp(StubBB, RealTargetSym); 496 StubBits[&StubBB] = static_cast<int>(BC.AsmInfo->getCodePointerSize() * 8); 497 return true; 498 } 499 500 bool LongJmpPass::needsStub(const BinaryBasicBlock &BB, const MCInst &Inst, 501 uint64_t DotAddress) const { 502 const BinaryFunction &Func = *BB.getFunction(); 503 const BinaryContext &BC = Func.getBinaryContext(); 504 const MCSymbol *TgtSym = BC.MIB->getTargetSymbol(Inst); 505 assert(TgtSym && "getTargetSymbol failed"); 506 507 const BinaryBasicBlock *TgtBB = Func.getBasicBlockForLabel(TgtSym); 508 // Check for shared stubs from foreign functions 509 if (!TgtBB) { 510 auto SSIter = SharedStubs.find(TgtSym); 511 if (SSIter != SharedStubs.end()) 512 TgtBB = SSIter->second; 513 } 514 515 int BitsAvail = BC.MIB->getPCRelEncodingSize(Inst) - 1; 516 uint64_t Mask = ~((1ULL << BitsAvail) - 1); 517 518 uint64_t PCRelTgtAddress = getSymbolAddress(BC, TgtSym, TgtBB); 519 PCRelTgtAddress = DotAddress > PCRelTgtAddress ? DotAddress - PCRelTgtAddress 520 : PCRelTgtAddress - DotAddress; 521 522 return PCRelTgtAddress & Mask; 523 } 524 525 bool LongJmpPass::relax(BinaryFunction &Func) { 526 const BinaryContext &BC = Func.getBinaryContext(); 527 bool Modified = false; 528 529 assert(BC.isAArch64() && "Unsupported arch"); 530 constexpr int InsnSize = 4; // AArch64 531 std::vector<std::pair<BinaryBasicBlock *, std::unique_ptr<BinaryBasicBlock>>> 532 Insertions; 533 534 BinaryBasicBlock *Frontier = getBBAtHotColdSplitPoint(Func); 535 uint64_t FrontierAddress = Frontier ? BBAddresses[Frontier] : 0; 536 if (FrontierAddress) 537 FrontierAddress += Frontier->getNumNonPseudos() * InsnSize; 538 539 // Add necessary stubs for branch targets we know we can't fit in the 540 // instruction 541 for (BinaryBasicBlock &BB : Func) { 542 uint64_t DotAddress = BBAddresses[&BB]; 543 // Stubs themselves are relaxed on the next loop 544 if (Stubs[&Func].count(&BB)) 545 continue; 546 547 for (MCInst &Inst : BB) { 548 if (BC.MIB->isPseudo(Inst)) 549 continue; 550 551 if (!shouldInsertStub(BC, Inst)) { 552 DotAddress += InsnSize; 553 continue; 554 } 555 556 // Check and relax direct branch or call 557 if (!needsStub(BB, Inst, DotAddress)) { 558 DotAddress += InsnSize; 559 continue; 560 } 561 Modified = true; 562 563 // Insert stubs close to the patched BB if call, but far away from the 564 // hot path if a branch, since this branch target is the cold region 565 // (but first check that the far away stub will be in range). 566 BinaryBasicBlock *InsertionPoint = &BB; 567 if (Func.isSimple() && !BC.MIB->isCall(Inst) && FrontierAddress && 568 !BB.isCold()) { 569 int BitsAvail = BC.MIB->getPCRelEncodingSize(Inst) - 1; 570 uint64_t Mask = ~((1ULL << BitsAvail) - 1); 571 assert(FrontierAddress > DotAddress && 572 "Hot code should be before the frontier"); 573 uint64_t PCRelTgt = FrontierAddress - DotAddress; 574 if (!(PCRelTgt & Mask)) 575 InsertionPoint = Frontier; 576 } 577 // Always put stubs at the end of the function if non-simple. We can't 578 // change the layout of non-simple functions because it has jump tables 579 // that we do not control. 580 if (!Func.isSimple()) 581 InsertionPoint = &*std::prev(Func.end()); 582 583 // Create a stub to handle a far-away target 584 Insertions.emplace_back(InsertionPoint, 585 replaceTargetWithStub(BB, Inst, DotAddress, 586 InsertionPoint == Frontier 587 ? FrontierAddress 588 : DotAddress)); 589 590 DotAddress += InsnSize; 591 } 592 } 593 594 // Relax stubs if necessary 595 for (BinaryBasicBlock &BB : Func) { 596 if (!Stubs[&Func].count(&BB) || !BB.isValid()) 597 continue; 598 599 Modified |= relaxStub(BB); 600 } 601 602 for (std::pair<BinaryBasicBlock *, std::unique_ptr<BinaryBasicBlock>> &Elmt : 603 Insertions) { 604 if (!Elmt.second) 605 continue; 606 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 607 NewBBs.emplace_back(std::move(Elmt.second)); 608 Func.insertBasicBlocks(Elmt.first, std::move(NewBBs), true); 609 } 610 611 return Modified; 612 } 613 614 void LongJmpPass::runOnFunctions(BinaryContext &BC) { 615 outs() << "BOLT-INFO: Starting stub-insertion pass\n"; 616 std::vector<BinaryFunction *> Sorted = BC.getSortedFunctions(); 617 bool Modified; 618 uint32_t Iterations = 0; 619 do { 620 ++Iterations; 621 Modified = false; 622 tentativeLayout(BC, Sorted); 623 updateStubGroups(); 624 for (BinaryFunction *Func : Sorted) { 625 if (relax(*Func)) { 626 // Don't ruin non-simple functions, they can't afford to have the layout 627 // changed. 628 if (Func->isSimple()) 629 Func->fixBranches(); 630 Modified = true; 631 } 632 } 633 } while (Modified); 634 outs() << "BOLT-INFO: Inserted " << NumHotStubs 635 << " stubs in the hot area and " << NumColdStubs 636 << " stubs in the cold area. Shared " << NumSharedStubs 637 << " times, iterated " << Iterations << " times.\n"; 638 } 639 } // namespace bolt 640 } // namespace llvm 641