1 //===- bolt/Passes/Instrumentation.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Instrumentation class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Passes/Instrumentation.h" 14 #include "bolt/Core/ParallelUtilities.h" 15 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h" 16 #include "bolt/Utils/Utils.h" 17 #include "llvm/Support/CommandLine.h" 18 #include <stack> 19 20 #define DEBUG_TYPE "bolt-instrumentation" 21 22 using namespace llvm; 23 24 namespace opts { 25 extern cl::OptionCategory BoltInstrCategory; 26 27 cl::opt<std::string> InstrumentationFilename( 28 "instrumentation-file", 29 cl::desc("file name where instrumented profile will be saved (default: " 30 "/tmp/prof.fdata)"), 31 cl::init("/tmp/prof.fdata"), cl::Optional, cl::cat(BoltInstrCategory)); 32 33 cl::opt<std::string> InstrumentationBinpath( 34 "instrumentation-binpath", 35 cl::desc("path to instumented binary in case if /proc/self/map_files " 36 "is not accessible due to access restriction issues"), 37 cl::Optional, cl::cat(BoltInstrCategory)); 38 39 cl::opt<bool> InstrumentationFileAppendPID( 40 "instrumentation-file-append-pid", 41 cl::desc("append PID to saved profile file name (default: false)"), 42 cl::init(false), cl::Optional, cl::cat(BoltInstrCategory)); 43 44 cl::opt<bool> ConservativeInstrumentation( 45 "conservative-instrumentation", 46 cl::desc("disable instrumentation optimizations that sacrifice profile " 47 "accuracy (for debugging, default: false)"), 48 cl::init(false), cl::Optional, cl::cat(BoltInstrCategory)); 49 50 cl::opt<uint32_t> InstrumentationSleepTime( 51 "instrumentation-sleep-time", 52 cl::desc("interval between profile writes (default: 0 = write only at " 53 "program end). This is useful for service workloads when you " 54 "want to dump profile every X minutes or if you are killing the " 55 "program and the profile is not being dumped at the end."), 56 cl::init(0), cl::Optional, cl::cat(BoltInstrCategory)); 57 58 cl::opt<bool> InstrumentationNoCountersClear( 59 "instrumentation-no-counters-clear", 60 cl::desc("Don't clear counters across dumps " 61 "(use with instrumentation-sleep-time option)"), 62 cl::init(false), cl::Optional, cl::cat(BoltInstrCategory)); 63 64 cl::opt<bool> InstrumentationWaitForks( 65 "instrumentation-wait-forks", 66 cl::desc("Wait until all forks of instrumented process will finish " 67 "(use with instrumentation-sleep-time option)"), 68 cl::init(false), cl::Optional, cl::cat(BoltInstrCategory)); 69 70 cl::opt<bool> 71 InstrumentHotOnly("instrument-hot-only", 72 cl::desc("only insert instrumentation on hot functions " 73 "(needs profile, default: false)"), 74 cl::init(false), cl::Optional, 75 cl::cat(BoltInstrCategory)); 76 77 cl::opt<bool> InstrumentCalls("instrument-calls", 78 cl::desc("record profile for inter-function " 79 "control flow activity (default: true)"), 80 cl::init(true), cl::Optional, 81 cl::cat(BoltInstrCategory)); 82 } // namespace opts 83 84 namespace llvm { 85 namespace bolt { 86 87 uint32_t Instrumentation::getFunctionNameIndex(const BinaryFunction &Function) { 88 auto Iter = FuncToStringIdx.find(&Function); 89 if (Iter != FuncToStringIdx.end()) 90 return Iter->second; 91 size_t Idx = Summary->StringTable.size(); 92 FuncToStringIdx.emplace(std::make_pair(&Function, Idx)); 93 Summary->StringTable.append(getEscapedName(Function.getOneName())); 94 Summary->StringTable.append(1, '\0'); 95 return Idx; 96 } 97 98 bool Instrumentation::createCallDescription(FunctionDescription &FuncDesc, 99 const BinaryFunction &FromFunction, 100 uint32_t From, uint32_t FromNodeID, 101 const BinaryFunction &ToFunction, 102 uint32_t To, bool IsInvoke) { 103 CallDescription CD; 104 // Ordinarily, we don't augment direct calls with an explicit counter, except 105 // when forced to do so or when we know this callee could be throwing 106 // exceptions, in which case there is no other way to accurately record its 107 // frequency. 108 bool ForceInstrumentation = opts::ConservativeInstrumentation || IsInvoke; 109 CD.FromLoc.FuncString = getFunctionNameIndex(FromFunction); 110 CD.FromLoc.Offset = From; 111 CD.FromNode = FromNodeID; 112 CD.Target = &ToFunction; 113 CD.ToLoc.FuncString = getFunctionNameIndex(ToFunction); 114 CD.ToLoc.Offset = To; 115 CD.Counter = ForceInstrumentation ? Summary->Counters.size() : 0xffffffff; 116 if (ForceInstrumentation) 117 ++DirectCallCounters; 118 FuncDesc.Calls.emplace_back(CD); 119 return ForceInstrumentation; 120 } 121 122 void Instrumentation::createIndCallDescription( 123 const BinaryFunction &FromFunction, uint32_t From) { 124 IndCallDescription ICD; 125 ICD.FromLoc.FuncString = getFunctionNameIndex(FromFunction); 126 ICD.FromLoc.Offset = From; 127 Summary->IndCallDescriptions.emplace_back(ICD); 128 } 129 130 void Instrumentation::createIndCallTargetDescription( 131 const BinaryFunction &ToFunction, uint32_t To) { 132 IndCallTargetDescription ICD; 133 ICD.ToLoc.FuncString = getFunctionNameIndex(ToFunction); 134 ICD.ToLoc.Offset = To; 135 ICD.Target = &ToFunction; 136 Summary->IndCallTargetDescriptions.emplace_back(ICD); 137 } 138 139 bool Instrumentation::createEdgeDescription(FunctionDescription &FuncDesc, 140 const BinaryFunction &FromFunction, 141 uint32_t From, uint32_t FromNodeID, 142 const BinaryFunction &ToFunction, 143 uint32_t To, uint32_t ToNodeID, 144 bool Instrumented) { 145 EdgeDescription ED; 146 auto Result = FuncDesc.EdgesSet.insert(std::make_pair(FromNodeID, ToNodeID)); 147 // Avoid creating duplicated edge descriptions. This happens in CFGs where a 148 // block jumps to its fall-through. 149 if (Result.second == false) 150 return false; 151 ED.FromLoc.FuncString = getFunctionNameIndex(FromFunction); 152 ED.FromLoc.Offset = From; 153 ED.FromNode = FromNodeID; 154 ED.ToLoc.FuncString = getFunctionNameIndex(ToFunction); 155 ED.ToLoc.Offset = To; 156 ED.ToNode = ToNodeID; 157 ED.Counter = Instrumented ? Summary->Counters.size() : 0xffffffff; 158 if (Instrumented) 159 ++BranchCounters; 160 FuncDesc.Edges.emplace_back(ED); 161 return Instrumented; 162 } 163 164 void Instrumentation::createLeafNodeDescription(FunctionDescription &FuncDesc, 165 uint32_t Node) { 166 InstrumentedNode IN; 167 IN.Node = Node; 168 IN.Counter = Summary->Counters.size(); 169 ++LeafNodeCounters; 170 FuncDesc.LeafNodes.emplace_back(IN); 171 } 172 173 InstructionListType 174 Instrumentation::createInstrumentationSnippet(BinaryContext &BC, bool IsLeaf) { 175 auto L = BC.scopeLock(); 176 MCSymbol *Label; 177 Label = BC.Ctx->createNamedTempSymbol("InstrEntry"); 178 Summary->Counters.emplace_back(Label); 179 InstructionListType CounterInstrs; 180 BC.MIB->createInstrIncMemory(CounterInstrs, Label, &*BC.Ctx, IsLeaf); 181 return CounterInstrs; 182 } 183 184 namespace { 185 186 // Helper instruction sequence insertion function 187 BinaryBasicBlock::iterator insertInstructions(InstructionListType &Instrs, 188 BinaryBasicBlock &BB, 189 BinaryBasicBlock::iterator Iter) { 190 for (MCInst &NewInst : Instrs) { 191 Iter = BB.insertInstruction(Iter, NewInst); 192 ++Iter; 193 } 194 return Iter; 195 } 196 } // namespace 197 198 void Instrumentation::instrumentLeafNode(BinaryBasicBlock &BB, 199 BinaryBasicBlock::iterator Iter, 200 bool IsLeaf, 201 FunctionDescription &FuncDesc, 202 uint32_t Node) { 203 createLeafNodeDescription(FuncDesc, Node); 204 InstructionListType CounterInstrs = createInstrumentationSnippet( 205 BB.getFunction()->getBinaryContext(), IsLeaf); 206 insertInstructions(CounterInstrs, BB, Iter); 207 } 208 209 void Instrumentation::instrumentIndirectTarget(BinaryBasicBlock &BB, 210 BinaryBasicBlock::iterator &Iter, 211 BinaryFunction &FromFunction, 212 uint32_t From) { 213 auto L = FromFunction.getBinaryContext().scopeLock(); 214 const size_t IndCallSiteID = Summary->IndCallDescriptions.size(); 215 createIndCallDescription(FromFunction, From); 216 217 BinaryContext &BC = FromFunction.getBinaryContext(); 218 bool IsTailCall = BC.MIB->isTailCall(*Iter); 219 InstructionListType CounterInstrs = BC.MIB->createInstrumentedIndirectCall( 220 *Iter, IsTailCall, 221 IsTailCall ? IndTailCallHandlerExitBBFunction->getSymbol() 222 : IndCallHandlerExitBBFunction->getSymbol(), 223 IndCallSiteID, &*BC.Ctx); 224 225 Iter = BB.eraseInstruction(Iter); 226 Iter = insertInstructions(CounterInstrs, BB, Iter); 227 --Iter; 228 } 229 230 bool Instrumentation::instrumentOneTarget( 231 SplitWorklistTy &SplitWorklist, SplitInstrsTy &SplitInstrs, 232 BinaryBasicBlock::iterator &Iter, BinaryFunction &FromFunction, 233 BinaryBasicBlock &FromBB, uint32_t From, BinaryFunction &ToFunc, 234 BinaryBasicBlock *TargetBB, uint32_t ToOffset, bool IsLeaf, bool IsInvoke, 235 FunctionDescription *FuncDesc, uint32_t FromNodeID, uint32_t ToNodeID) { 236 { 237 auto L = FromFunction.getBinaryContext().scopeLock(); 238 bool Created = true; 239 if (!TargetBB) 240 Created = createCallDescription(*FuncDesc, FromFunction, From, FromNodeID, 241 ToFunc, ToOffset, IsInvoke); 242 else 243 Created = createEdgeDescription(*FuncDesc, FromFunction, From, FromNodeID, 244 ToFunc, ToOffset, ToNodeID, 245 /*Instrumented=*/true); 246 if (!Created) 247 return false; 248 } 249 250 InstructionListType CounterInstrs = 251 createInstrumentationSnippet(FromFunction.getBinaryContext(), IsLeaf); 252 253 BinaryContext &BC = FromFunction.getBinaryContext(); 254 const MCInst &Inst = *Iter; 255 if (BC.MIB->isCall(Inst)) { 256 // This code handles both 257 // - (regular) inter-function calls (cross-function control transfer), 258 // - (rare) intra-function calls (function-local control transfer) 259 Iter = insertInstructions(CounterInstrs, FromBB, Iter); 260 return true; 261 } 262 263 if (!TargetBB || !FuncDesc) 264 return false; 265 266 // Indirect branch, conditional branches or fall-throughs 267 // Regular cond branch, put counter at start of target block 268 // 269 // N.B.: (FromBB != TargetBBs) checks below handle conditional jumps where 270 // we can't put the instrumentation counter in this block because not all 271 // paths that reach it at this point will be taken and going to the target. 272 if (TargetBB->pred_size() == 1 && &FromBB != TargetBB && 273 !TargetBB->isEntryPoint()) { 274 insertInstructions(CounterInstrs, *TargetBB, TargetBB->begin()); 275 return true; 276 } 277 if (FromBB.succ_size() == 1 && &FromBB != TargetBB) { 278 Iter = insertInstructions(CounterInstrs, FromBB, Iter); 279 return true; 280 } 281 // Critical edge, create BB and put counter there 282 SplitWorklist.emplace_back(&FromBB, TargetBB); 283 SplitInstrs.emplace_back(std::move(CounterInstrs)); 284 return true; 285 } 286 287 void Instrumentation::instrumentFunction(BinaryFunction &Function, 288 MCPlusBuilder::AllocatorIdTy AllocId) { 289 if (Function.hasUnknownControlFlow()) 290 return; 291 292 BinaryContext &BC = Function.getBinaryContext(); 293 if (BC.isMachO() && Function.hasName("___GLOBAL_init_65535/1")) 294 return; 295 296 SplitWorklistTy SplitWorklist; 297 SplitInstrsTy SplitInstrs; 298 299 FunctionDescription *FuncDesc = nullptr; 300 { 301 std::unique_lock<std::shared_timed_mutex> L(FDMutex); 302 Summary->FunctionDescriptions.emplace_back(); 303 FuncDesc = &Summary->FunctionDescriptions.back(); 304 } 305 306 FuncDesc->Function = &Function; 307 Function.disambiguateJumpTables(AllocId); 308 Function.deleteConservativeEdges(); 309 310 std::unordered_map<const BinaryBasicBlock *, uint32_t> BBToID; 311 uint32_t Id = 0; 312 for (auto BBI = Function.begin(); BBI != Function.end(); ++BBI) { 313 BBToID[&*BBI] = Id++; 314 } 315 std::unordered_set<const BinaryBasicBlock *> VisitedSet; 316 // DFS to establish edges we will use for a spanning tree. Edges in the 317 // spanning tree can be instrumentation-free since their count can be 318 // inferred by solving flow equations on a bottom-up traversal of the tree. 319 // Exit basic blocks are always instrumented so we start the traversal with 320 // a minimum number of defined variables to make the equation solvable. 321 std::stack<std::pair<const BinaryBasicBlock *, BinaryBasicBlock *>> Stack; 322 std::unordered_map<const BinaryBasicBlock *, 323 std::set<const BinaryBasicBlock *>> 324 STOutSet; 325 for (auto BBI = Function.layout_rbegin(); BBI != Function.layout_rend(); 326 ++BBI) { 327 if ((*BBI)->isEntryPoint() || (*BBI)->isLandingPad()) { 328 Stack.push(std::make_pair(nullptr, *BBI)); 329 if (opts::InstrumentCalls && (*BBI)->isEntryPoint()) { 330 EntryNode E; 331 E.Node = BBToID[&**BBI]; 332 E.Address = (*BBI)->getInputOffset(); 333 FuncDesc->EntryNodes.emplace_back(E); 334 createIndCallTargetDescription(Function, (*BBI)->getInputOffset()); 335 } 336 } 337 } 338 339 // Modified version of BinaryFunction::dfs() to build a spanning tree 340 if (!opts::ConservativeInstrumentation) { 341 while (!Stack.empty()) { 342 BinaryBasicBlock *BB; 343 const BinaryBasicBlock *Pred; 344 std::tie(Pred, BB) = Stack.top(); 345 Stack.pop(); 346 if (VisitedSet.find(BB) != VisitedSet.end()) 347 continue; 348 349 VisitedSet.insert(BB); 350 if (Pred) 351 STOutSet[Pred].insert(BB); 352 353 for (BinaryBasicBlock *SuccBB : BB->successors()) 354 Stack.push(std::make_pair(BB, SuccBB)); 355 } 356 } 357 358 // Determine whether this is a leaf function, which needs special 359 // instructions to protect the red zone 360 bool IsLeafFunction = true; 361 DenseSet<const BinaryBasicBlock *> InvokeBlocks; 362 for (auto BBI = Function.begin(), BBE = Function.end(); BBI != BBE; ++BBI) { 363 for (auto I = BBI->begin(), E = BBI->end(); I != E; ++I) { 364 if (BC.MIB->isCall(*I)) { 365 if (BC.MIB->isInvoke(*I)) 366 InvokeBlocks.insert(&*BBI); 367 IsLeafFunction = false; 368 } 369 } 370 } 371 372 for (auto BBI = Function.begin(), BBE = Function.end(); BBI != BBE; ++BBI) { 373 BinaryBasicBlock &BB = *BBI; 374 bool HasUnconditionalBranch = false; 375 bool HasJumpTable = false; 376 bool IsInvokeBlock = InvokeBlocks.count(&BB) > 0; 377 378 for (auto I = BB.begin(); I != BB.end(); ++I) { 379 const MCInst &Inst = *I; 380 if (!BC.MIB->getOffset(Inst)) 381 continue; 382 383 const bool IsJumpTable = Function.getJumpTable(Inst); 384 if (IsJumpTable) 385 HasJumpTable = true; 386 else if (BC.MIB->isUnconditionalBranch(Inst)) 387 HasUnconditionalBranch = true; 388 else if ((!BC.MIB->isCall(Inst) && !BC.MIB->isConditionalBranch(Inst)) || 389 BC.MIB->isUnsupportedBranch(Inst.getOpcode())) 390 continue; 391 392 const uint32_t FromOffset = *BC.MIB->getOffset(Inst); 393 const MCSymbol *Target = BC.MIB->getTargetSymbol(Inst); 394 BinaryBasicBlock *TargetBB = Function.getBasicBlockForLabel(Target); 395 uint32_t ToOffset = TargetBB ? TargetBB->getInputOffset() : 0; 396 BinaryFunction *TargetFunc = 397 TargetBB ? &Function : BC.getFunctionForSymbol(Target); 398 if (TargetFunc && BC.MIB->isCall(Inst)) { 399 if (opts::InstrumentCalls) { 400 const BinaryBasicBlock *ForeignBB = 401 TargetFunc->getBasicBlockForLabel(Target); 402 if (ForeignBB) 403 ToOffset = ForeignBB->getInputOffset(); 404 instrumentOneTarget(SplitWorklist, SplitInstrs, I, Function, BB, 405 FromOffset, *TargetFunc, TargetBB, ToOffset, 406 IsLeafFunction, IsInvokeBlock, FuncDesc, 407 BBToID[&BB]); 408 } 409 continue; 410 } 411 if (TargetFunc) { 412 // Do not instrument edges in the spanning tree 413 if (STOutSet[&BB].find(TargetBB) != STOutSet[&BB].end()) { 414 auto L = BC.scopeLock(); 415 createEdgeDescription(*FuncDesc, Function, FromOffset, BBToID[&BB], 416 Function, ToOffset, BBToID[TargetBB], 417 /*Instrumented=*/false); 418 continue; 419 } 420 instrumentOneTarget(SplitWorklist, SplitInstrs, I, Function, BB, 421 FromOffset, *TargetFunc, TargetBB, ToOffset, 422 IsLeafFunction, IsInvokeBlock, FuncDesc, 423 BBToID[&BB], BBToID[TargetBB]); 424 continue; 425 } 426 427 if (IsJumpTable) { 428 for (BinaryBasicBlock *&Succ : BB.successors()) { 429 // Do not instrument edges in the spanning tree 430 if (STOutSet[&BB].find(&*Succ) != STOutSet[&BB].end()) { 431 auto L = BC.scopeLock(); 432 createEdgeDescription(*FuncDesc, Function, FromOffset, BBToID[&BB], 433 Function, Succ->getInputOffset(), 434 BBToID[&*Succ], /*Instrumented=*/false); 435 continue; 436 } 437 instrumentOneTarget( 438 SplitWorklist, SplitInstrs, I, Function, BB, FromOffset, Function, 439 &*Succ, Succ->getInputOffset(), IsLeafFunction, IsInvokeBlock, 440 FuncDesc, BBToID[&BB], BBToID[&*Succ]); 441 } 442 continue; 443 } 444 445 // Handle indirect calls -- could be direct calls with unknown targets 446 // or secondary entry points of known functions, so check it is indirect 447 // to be sure. 448 if (opts::InstrumentCalls && BC.MIB->isIndirectCall(*I)) 449 instrumentIndirectTarget(BB, I, Function, FromOffset); 450 451 } // End of instructions loop 452 453 // Instrument fallthroughs (when the direct jump instruction is missing) 454 if (!HasUnconditionalBranch && !HasJumpTable && BB.succ_size() > 0 && 455 BB.size() > 0) { 456 BinaryBasicBlock *FTBB = BB.getFallthrough(); 457 assert(FTBB && "expected valid fall-through basic block"); 458 auto I = BB.begin(); 459 auto LastInstr = BB.end(); 460 --LastInstr; 461 while (LastInstr != I && BC.MIB->isPseudo(*LastInstr)) 462 --LastInstr; 463 uint32_t FromOffset = 0; 464 // The last instruction in the BB should have an annotation, except 465 // if it was branching to the end of the function as a result of 466 // __builtin_unreachable(), in which case it was deleted by fixBranches. 467 // Ignore this case. FIXME: force fixBranches() to preserve the offset. 468 if (!BC.MIB->getOffset(*LastInstr)) 469 continue; 470 FromOffset = *BC.MIB->getOffset(*LastInstr); 471 472 // Do not instrument edges in the spanning tree 473 if (STOutSet[&BB].find(FTBB) != STOutSet[&BB].end()) { 474 auto L = BC.scopeLock(); 475 createEdgeDescription(*FuncDesc, Function, FromOffset, BBToID[&BB], 476 Function, FTBB->getInputOffset(), BBToID[FTBB], 477 /*Instrumented=*/false); 478 continue; 479 } 480 instrumentOneTarget(SplitWorklist, SplitInstrs, I, Function, BB, 481 FromOffset, Function, FTBB, FTBB->getInputOffset(), 482 IsLeafFunction, IsInvokeBlock, FuncDesc, BBToID[&BB], 483 BBToID[FTBB]); 484 } 485 } // End of BBs loop 486 487 // Instrument spanning tree leaves 488 if (!opts::ConservativeInstrumentation) { 489 for (auto BBI = Function.begin(), BBE = Function.end(); BBI != BBE; ++BBI) { 490 BinaryBasicBlock &BB = *BBI; 491 if (STOutSet[&BB].size() == 0) 492 instrumentLeafNode(BB, BB.begin(), IsLeafFunction, *FuncDesc, 493 BBToID[&BB]); 494 } 495 } 496 497 // Consume list of critical edges: split them and add instrumentation to the 498 // newly created BBs 499 auto Iter = SplitInstrs.begin(); 500 for (std::pair<BinaryBasicBlock *, BinaryBasicBlock *> &BBPair : 501 SplitWorklist) { 502 BinaryBasicBlock *NewBB = Function.splitEdge(BBPair.first, BBPair.second); 503 NewBB->addInstructions(Iter->begin(), Iter->end()); 504 ++Iter; 505 } 506 507 // Unused now 508 FuncDesc->EdgesSet.clear(); 509 } 510 511 void Instrumentation::runOnFunctions(BinaryContext &BC) { 512 if (!BC.isX86()) 513 return; 514 515 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/false, 516 /*IsText=*/false, 517 /*IsAllocatable=*/true); 518 BC.registerOrUpdateSection(".bolt.instr.counters", ELF::SHT_PROGBITS, Flags, 519 nullptr, 0, 1); 520 521 BC.registerOrUpdateNoteSection(".bolt.instr.tables", nullptr, 0, 522 /*Alignment=*/1, 523 /*IsReadOnly=*/true, ELF::SHT_NOTE); 524 525 Summary->IndCallCounterFuncPtr = 526 BC.Ctx->getOrCreateSymbol("__bolt_ind_call_counter_func_pointer"); 527 Summary->IndTailCallCounterFuncPtr = 528 BC.Ctx->getOrCreateSymbol("__bolt_ind_tailcall_counter_func_pointer"); 529 530 createAuxiliaryFunctions(BC); 531 532 ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) { 533 return (!BF.isSimple() || BF.isIgnored() || 534 (opts::InstrumentHotOnly && !BF.getKnownExecutionCount())); 535 }; 536 537 ParallelUtilities::WorkFuncWithAllocTy WorkFun = 538 [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocatorId) { 539 instrumentFunction(BF, AllocatorId); 540 }; 541 542 ParallelUtilities::runOnEachFunctionWithUniqueAllocId( 543 BC, ParallelUtilities::SchedulingPolicy::SP_INST_QUADRATIC, WorkFun, 544 SkipPredicate, "instrumentation", /* ForceSequential=*/true); 545 546 if (BC.isMachO()) { 547 if (BC.StartFunctionAddress) { 548 BinaryFunction *Main = 549 BC.getBinaryFunctionAtAddress(*BC.StartFunctionAddress); 550 assert(Main && "Entry point function not found"); 551 BinaryBasicBlock &BB = Main->front(); 552 553 ErrorOr<BinarySection &> SetupSection = 554 BC.getUniqueSectionByName("I__setup"); 555 if (!SetupSection) { 556 llvm::errs() << "Cannot find I__setup section\n"; 557 exit(1); 558 } 559 MCSymbol *Target = BC.registerNameAtAddress( 560 "__bolt_instr_setup", SetupSection->getAddress(), 0, 0); 561 MCInst NewInst; 562 BC.MIB->createCall(NewInst, Target, BC.Ctx.get()); 563 BB.insertInstruction(BB.begin(), std::move(NewInst)); 564 } else { 565 llvm::errs() << "BOLT-WARNING: Entry point not found\n"; 566 } 567 568 if (BinaryData *BD = BC.getBinaryDataByName("___GLOBAL_init_65535/1")) { 569 BinaryFunction *Ctor = BC.getBinaryFunctionAtAddress(BD->getAddress()); 570 assert(Ctor && "___GLOBAL_init_65535 function not found"); 571 BinaryBasicBlock &BB = Ctor->front(); 572 ErrorOr<BinarySection &> FiniSection = 573 BC.getUniqueSectionByName("I__fini"); 574 if (!FiniSection) { 575 llvm::errs() << "Cannot find I__fini section\n"; 576 exit(1); 577 } 578 MCSymbol *Target = BC.registerNameAtAddress( 579 "__bolt_instr_fini", FiniSection->getAddress(), 0, 0); 580 auto IsLEA = [&BC](const MCInst &Inst) { return BC.MIB->isLEA64r(Inst); }; 581 const auto LEA = 582 std::find_if(std::next(std::find_if(BB.rbegin(), BB.rend(), IsLEA)), 583 BB.rend(), IsLEA); 584 LEA->getOperand(4).setExpr( 585 MCSymbolRefExpr::create(Target, MCSymbolRefExpr::VK_None, *BC.Ctx)); 586 } else { 587 llvm::errs() << "BOLT-WARNING: ___GLOBAL_init_65535 not found\n"; 588 } 589 } 590 591 setupRuntimeLibrary(BC); 592 } 593 594 void Instrumentation::createAuxiliaryFunctions(BinaryContext &BC) { 595 auto createSimpleFunction = 596 [&](StringRef Title, InstructionListType Instrs) -> BinaryFunction * { 597 BinaryFunction *Func = BC.createInjectedBinaryFunction(std::string(Title)); 598 599 std::vector<std::unique_ptr<BinaryBasicBlock>> BBs; 600 BBs.emplace_back( 601 Func->createBasicBlock(BinaryBasicBlock::INVALID_OFFSET, nullptr)); 602 BBs.back()->addInstructions(Instrs.begin(), Instrs.end()); 603 BBs.back()->setCFIState(0); 604 Func->insertBasicBlocks(nullptr, std::move(BBs), 605 /*UpdateLayout=*/true, 606 /*UpdateCFIState=*/false); 607 Func->updateState(BinaryFunction::State::CFG_Finalized); 608 return Func; 609 }; 610 611 // Here we are creating a set of functions to handle BB entry/exit. 612 // IndCallHandlerExitBB contains instructions to finish handling traffic to an 613 // indirect call. We pass it to createInstrumentedIndCallHandlerEntryBB(), 614 // which will check if a pointer to runtime library traffic accounting 615 // function was initialized (it is done during initialization of runtime 616 // library). If it is so - calls it. Then this routine returns to normal 617 // execution by jumping to exit BB. 618 BinaryFunction *IndCallHandlerExitBB = 619 createSimpleFunction("__bolt_instr_ind_call_handler", 620 BC.MIB->createInstrumentedIndCallHandlerExitBB()); 621 622 IndCallHandlerExitBBFunction = 623 createSimpleFunction("__bolt_instr_ind_call_handler_func", 624 BC.MIB->createInstrumentedIndCallHandlerEntryBB( 625 Summary->IndCallCounterFuncPtr, 626 IndCallHandlerExitBB->getSymbol(), &*BC.Ctx)); 627 628 BinaryFunction *IndTailCallHandlerExitBB = createSimpleFunction( 629 "__bolt_instr_ind_tail_call_handler", 630 BC.MIB->createInstrumentedIndTailCallHandlerExitBB()); 631 632 IndTailCallHandlerExitBBFunction = createSimpleFunction( 633 "__bolt_instr_ind_tailcall_handler_func", 634 BC.MIB->createInstrumentedIndCallHandlerEntryBB( 635 Summary->IndTailCallCounterFuncPtr, 636 IndTailCallHandlerExitBB->getSymbol(), &*BC.Ctx)); 637 638 createSimpleFunction("__bolt_num_counters_getter", 639 BC.MIB->createNumCountersGetter(BC.Ctx.get())); 640 createSimpleFunction("__bolt_instr_locations_getter", 641 BC.MIB->createInstrLocationsGetter(BC.Ctx.get())); 642 createSimpleFunction("__bolt_instr_tables_getter", 643 BC.MIB->createInstrTablesGetter(BC.Ctx.get())); 644 createSimpleFunction("__bolt_instr_num_funcs_getter", 645 BC.MIB->createInstrNumFuncsGetter(BC.Ctx.get())); 646 647 if (BC.isELF()) { 648 if (BC.StartFunctionAddress) { 649 BinaryFunction *Start = 650 BC.getBinaryFunctionAtAddress(*BC.StartFunctionAddress); 651 assert(Start && "Entry point function not found"); 652 const MCSymbol *StartSym = Start->getSymbol(); 653 createSimpleFunction( 654 "__bolt_start_trampoline", 655 BC.MIB->createSymbolTrampoline(StartSym, BC.Ctx.get())); 656 } 657 if (BC.FiniFunctionAddress) { 658 BinaryFunction *Fini = 659 BC.getBinaryFunctionAtAddress(*BC.FiniFunctionAddress); 660 assert(Fini && "Finalization function not found"); 661 const MCSymbol *FiniSym = Fini->getSymbol(); 662 createSimpleFunction( 663 "__bolt_fini_trampoline", 664 BC.MIB->createSymbolTrampoline(FiniSym, BC.Ctx.get())); 665 } else { 666 // Create dummy return function for trampoline to avoid issues 667 // with unknown symbol in runtime library. E.g. for static PIE 668 // executable 669 createSimpleFunction("__bolt_fini_trampoline", 670 BC.MIB->createDummyReturnFunction(BC.Ctx.get())); 671 } 672 } 673 } 674 675 void Instrumentation::setupRuntimeLibrary(BinaryContext &BC) { 676 uint32_t FuncDescSize = Summary->getFDSize(); 677 678 outs() << "BOLT-INSTRUMENTER: Number of indirect call site descriptors: " 679 << Summary->IndCallDescriptions.size() << "\n"; 680 outs() << "BOLT-INSTRUMENTER: Number of indirect call target descriptors: " 681 << Summary->IndCallTargetDescriptions.size() << "\n"; 682 outs() << "BOLT-INSTRUMENTER: Number of function descriptors: " 683 << Summary->FunctionDescriptions.size() << "\n"; 684 outs() << "BOLT-INSTRUMENTER: Number of branch counters: " << BranchCounters 685 << "\n"; 686 outs() << "BOLT-INSTRUMENTER: Number of ST leaf node counters: " 687 << LeafNodeCounters << "\n"; 688 outs() << "BOLT-INSTRUMENTER: Number of direct call counters: " 689 << DirectCallCounters << "\n"; 690 outs() << "BOLT-INSTRUMENTER: Total number of counters: " 691 << Summary->Counters.size() << "\n"; 692 outs() << "BOLT-INSTRUMENTER: Total size of counters: " 693 << (Summary->Counters.size() * 8) << " bytes (static alloc memory)\n"; 694 outs() << "BOLT-INSTRUMENTER: Total size of string table emitted: " 695 << Summary->StringTable.size() << " bytes in file\n"; 696 outs() << "BOLT-INSTRUMENTER: Total size of descriptors: " 697 << (FuncDescSize + 698 Summary->IndCallDescriptions.size() * sizeof(IndCallDescription) + 699 Summary->IndCallTargetDescriptions.size() * 700 sizeof(IndCallTargetDescription)) 701 << " bytes in file\n"; 702 outs() << "BOLT-INSTRUMENTER: Profile will be saved to file " 703 << opts::InstrumentationFilename << "\n"; 704 705 InstrumentationRuntimeLibrary *RtLibrary = 706 static_cast<InstrumentationRuntimeLibrary *>(BC.getRuntimeLibrary()); 707 assert(RtLibrary && "instrumentation runtime library object must be set"); 708 RtLibrary->setSummary(std::move(Summary)); 709 } 710 } // namespace bolt 711 } // namespace llvm 712