1 //===- bolt/Passes/Instrumentation.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Instrumentation class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Passes/Instrumentation.h" 14 #include "bolt/Core/ParallelUtilities.h" 15 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h" 16 #include "bolt/Utils/Utils.h" 17 #include "llvm/Support/CommandLine.h" 18 #include "llvm/Support/RWMutex.h" 19 #include <stack> 20 21 #define DEBUG_TYPE "bolt-instrumentation" 22 23 using namespace llvm; 24 25 namespace opts { 26 extern cl::OptionCategory BoltInstrCategory; 27 28 cl::opt<std::string> InstrumentationFilename( 29 "instrumentation-file", 30 cl::desc("file name where instrumented profile will be saved (default: " 31 "/tmp/prof.fdata)"), 32 cl::init("/tmp/prof.fdata"), cl::Optional, cl::cat(BoltInstrCategory)); 33 34 cl::opt<std::string> InstrumentationBinpath( 35 "instrumentation-binpath", 36 cl::desc("path to instumented binary in case if /proc/self/map_files " 37 "is not accessible due to access restriction issues"), 38 cl::Optional, cl::cat(BoltInstrCategory)); 39 40 cl::opt<bool> InstrumentationFileAppendPID( 41 "instrumentation-file-append-pid", 42 cl::desc("append PID to saved profile file name (default: false)"), 43 cl::init(false), cl::Optional, cl::cat(BoltInstrCategory)); 44 45 cl::opt<bool> ConservativeInstrumentation( 46 "conservative-instrumentation", 47 cl::desc("disable instrumentation optimizations that sacrifice profile " 48 "accuracy (for debugging, default: false)"), 49 cl::init(false), cl::Optional, cl::cat(BoltInstrCategory)); 50 51 cl::opt<uint32_t> InstrumentationSleepTime( 52 "instrumentation-sleep-time", 53 cl::desc("interval between profile writes (default: 0 = write only at " 54 "program end). This is useful for service workloads when you " 55 "want to dump profile every X minutes or if you are killing the " 56 "program and the profile is not being dumped at the end."), 57 cl::init(0), cl::Optional, cl::cat(BoltInstrCategory)); 58 59 cl::opt<bool> InstrumentationNoCountersClear( 60 "instrumentation-no-counters-clear", 61 cl::desc("Don't clear counters across dumps " 62 "(use with instrumentation-sleep-time option)"), 63 cl::init(false), cl::Optional, cl::cat(BoltInstrCategory)); 64 65 cl::opt<bool> InstrumentationWaitForks( 66 "instrumentation-wait-forks", 67 cl::desc("Wait until all forks of instrumented process will finish " 68 "(use with instrumentation-sleep-time option)"), 69 cl::init(false), cl::Optional, cl::cat(BoltInstrCategory)); 70 71 cl::opt<bool> 72 InstrumentHotOnly("instrument-hot-only", 73 cl::desc("only insert instrumentation on hot functions " 74 "(needs profile, default: false)"), 75 cl::init(false), cl::Optional, 76 cl::cat(BoltInstrCategory)); 77 78 cl::opt<bool> InstrumentCalls("instrument-calls", 79 cl::desc("record profile for inter-function " 80 "control flow activity (default: true)"), 81 cl::init(true), cl::Optional, 82 cl::cat(BoltInstrCategory)); 83 } // namespace opts 84 85 namespace llvm { 86 namespace bolt { 87 88 uint32_t Instrumentation::getFunctionNameIndex(const BinaryFunction &Function) { 89 auto Iter = FuncToStringIdx.find(&Function); 90 if (Iter != FuncToStringIdx.end()) 91 return Iter->second; 92 size_t Idx = Summary->StringTable.size(); 93 FuncToStringIdx.emplace(std::make_pair(&Function, Idx)); 94 Summary->StringTable.append(getEscapedName(Function.getOneName())); 95 Summary->StringTable.append(1, '\0'); 96 return Idx; 97 } 98 99 bool Instrumentation::createCallDescription(FunctionDescription &FuncDesc, 100 const BinaryFunction &FromFunction, 101 uint32_t From, uint32_t FromNodeID, 102 const BinaryFunction &ToFunction, 103 uint32_t To, bool IsInvoke) { 104 CallDescription CD; 105 // Ordinarily, we don't augment direct calls with an explicit counter, except 106 // when forced to do so or when we know this callee could be throwing 107 // exceptions, in which case there is no other way to accurately record its 108 // frequency. 109 bool ForceInstrumentation = opts::ConservativeInstrumentation || IsInvoke; 110 CD.FromLoc.FuncString = getFunctionNameIndex(FromFunction); 111 CD.FromLoc.Offset = From; 112 CD.FromNode = FromNodeID; 113 CD.Target = &ToFunction; 114 CD.ToLoc.FuncString = getFunctionNameIndex(ToFunction); 115 CD.ToLoc.Offset = To; 116 CD.Counter = ForceInstrumentation ? Summary->Counters.size() : 0xffffffff; 117 if (ForceInstrumentation) 118 ++DirectCallCounters; 119 FuncDesc.Calls.emplace_back(CD); 120 return ForceInstrumentation; 121 } 122 123 void Instrumentation::createIndCallDescription( 124 const BinaryFunction &FromFunction, uint32_t From) { 125 IndCallDescription ICD; 126 ICD.FromLoc.FuncString = getFunctionNameIndex(FromFunction); 127 ICD.FromLoc.Offset = From; 128 Summary->IndCallDescriptions.emplace_back(ICD); 129 } 130 131 void Instrumentation::createIndCallTargetDescription( 132 const BinaryFunction &ToFunction, uint32_t To) { 133 IndCallTargetDescription ICD; 134 ICD.ToLoc.FuncString = getFunctionNameIndex(ToFunction); 135 ICD.ToLoc.Offset = To; 136 ICD.Target = &ToFunction; 137 Summary->IndCallTargetDescriptions.emplace_back(ICD); 138 } 139 140 bool Instrumentation::createEdgeDescription(FunctionDescription &FuncDesc, 141 const BinaryFunction &FromFunction, 142 uint32_t From, uint32_t FromNodeID, 143 const BinaryFunction &ToFunction, 144 uint32_t To, uint32_t ToNodeID, 145 bool Instrumented) { 146 EdgeDescription ED; 147 auto Result = FuncDesc.EdgesSet.insert(std::make_pair(FromNodeID, ToNodeID)); 148 // Avoid creating duplicated edge descriptions. This happens in CFGs where a 149 // block jumps to its fall-through. 150 if (Result.second == false) 151 return false; 152 ED.FromLoc.FuncString = getFunctionNameIndex(FromFunction); 153 ED.FromLoc.Offset = From; 154 ED.FromNode = FromNodeID; 155 ED.ToLoc.FuncString = getFunctionNameIndex(ToFunction); 156 ED.ToLoc.Offset = To; 157 ED.ToNode = ToNodeID; 158 ED.Counter = Instrumented ? Summary->Counters.size() : 0xffffffff; 159 if (Instrumented) 160 ++BranchCounters; 161 FuncDesc.Edges.emplace_back(ED); 162 return Instrumented; 163 } 164 165 void Instrumentation::createLeafNodeDescription(FunctionDescription &FuncDesc, 166 uint32_t Node) { 167 InstrumentedNode IN; 168 IN.Node = Node; 169 IN.Counter = Summary->Counters.size(); 170 ++LeafNodeCounters; 171 FuncDesc.LeafNodes.emplace_back(IN); 172 } 173 174 InstructionListType 175 Instrumentation::createInstrumentationSnippet(BinaryContext &BC, bool IsLeaf) { 176 auto L = BC.scopeLock(); 177 MCSymbol *Label = BC.Ctx->createNamedTempSymbol("InstrEntry"); 178 Summary->Counters.emplace_back(Label); 179 return BC.MIB->createInstrIncMemory(Label, BC.Ctx.get(), IsLeaf); 180 } 181 182 // Helper instruction sequence insertion function 183 static BinaryBasicBlock::iterator 184 insertInstructions(InstructionListType &Instrs, BinaryBasicBlock &BB, 185 BinaryBasicBlock::iterator Iter) { 186 for (MCInst &NewInst : Instrs) { 187 Iter = BB.insertInstruction(Iter, NewInst); 188 ++Iter; 189 } 190 return Iter; 191 } 192 193 void Instrumentation::instrumentLeafNode(BinaryBasicBlock &BB, 194 BinaryBasicBlock::iterator Iter, 195 bool IsLeaf, 196 FunctionDescription &FuncDesc, 197 uint32_t Node) { 198 createLeafNodeDescription(FuncDesc, Node); 199 InstructionListType CounterInstrs = createInstrumentationSnippet( 200 BB.getFunction()->getBinaryContext(), IsLeaf); 201 insertInstructions(CounterInstrs, BB, Iter); 202 } 203 204 void Instrumentation::instrumentIndirectTarget(BinaryBasicBlock &BB, 205 BinaryBasicBlock::iterator &Iter, 206 BinaryFunction &FromFunction, 207 uint32_t From) { 208 auto L = FromFunction.getBinaryContext().scopeLock(); 209 const size_t IndCallSiteID = Summary->IndCallDescriptions.size(); 210 createIndCallDescription(FromFunction, From); 211 212 BinaryContext &BC = FromFunction.getBinaryContext(); 213 bool IsTailCall = BC.MIB->isTailCall(*Iter); 214 InstructionListType CounterInstrs = BC.MIB->createInstrumentedIndirectCall( 215 std::move(*Iter), 216 IsTailCall ? IndTailCallHandlerExitBBFunction->getSymbol() 217 : IndCallHandlerExitBBFunction->getSymbol(), 218 IndCallSiteID, &*BC.Ctx); 219 220 Iter = BB.eraseInstruction(Iter); 221 Iter = insertInstructions(CounterInstrs, BB, Iter); 222 --Iter; 223 } 224 225 bool Instrumentation::instrumentOneTarget( 226 SplitWorklistTy &SplitWorklist, SplitInstrsTy &SplitInstrs, 227 BinaryBasicBlock::iterator &Iter, BinaryFunction &FromFunction, 228 BinaryBasicBlock &FromBB, uint32_t From, BinaryFunction &ToFunc, 229 BinaryBasicBlock *TargetBB, uint32_t ToOffset, bool IsLeaf, bool IsInvoke, 230 FunctionDescription *FuncDesc, uint32_t FromNodeID, uint32_t ToNodeID) { 231 BinaryContext &BC = FromFunction.getBinaryContext(); 232 { 233 auto L = BC.scopeLock(); 234 bool Created = true; 235 if (!TargetBB) 236 Created = createCallDescription(*FuncDesc, FromFunction, From, FromNodeID, 237 ToFunc, ToOffset, IsInvoke); 238 else 239 Created = createEdgeDescription(*FuncDesc, FromFunction, From, FromNodeID, 240 ToFunc, ToOffset, ToNodeID, 241 /*Instrumented=*/true); 242 if (!Created) 243 return false; 244 } 245 246 InstructionListType CounterInstrs = createInstrumentationSnippet(BC, IsLeaf); 247 248 const MCInst &Inst = *Iter; 249 if (BC.MIB->isCall(Inst)) { 250 // This code handles both 251 // - (regular) inter-function calls (cross-function control transfer), 252 // - (rare) intra-function calls (function-local control transfer) 253 Iter = insertInstructions(CounterInstrs, FromBB, Iter); 254 return true; 255 } 256 257 if (!TargetBB || !FuncDesc) 258 return false; 259 260 // Indirect branch, conditional branches or fall-throughs 261 // Regular cond branch, put counter at start of target block 262 // 263 // N.B.: (FromBB != TargetBBs) checks below handle conditional jumps where 264 // we can't put the instrumentation counter in this block because not all 265 // paths that reach it at this point will be taken and going to the target. 266 if (TargetBB->pred_size() == 1 && &FromBB != TargetBB && 267 !TargetBB->isEntryPoint()) { 268 insertInstructions(CounterInstrs, *TargetBB, TargetBB->begin()); 269 return true; 270 } 271 if (FromBB.succ_size() == 1 && &FromBB != TargetBB) { 272 Iter = insertInstructions(CounterInstrs, FromBB, Iter); 273 return true; 274 } 275 // Critical edge, create BB and put counter there 276 SplitWorklist.emplace_back(&FromBB, TargetBB); 277 SplitInstrs.emplace_back(std::move(CounterInstrs)); 278 return true; 279 } 280 281 void Instrumentation::instrumentFunction(BinaryFunction &Function, 282 MCPlusBuilder::AllocatorIdTy AllocId) { 283 if (Function.hasUnknownControlFlow()) 284 return; 285 286 BinaryContext &BC = Function.getBinaryContext(); 287 if (BC.isMachO() && Function.hasName("___GLOBAL_init_65535/1")) 288 return; 289 290 SplitWorklistTy SplitWorklist; 291 SplitInstrsTy SplitInstrs; 292 293 FunctionDescription *FuncDesc = nullptr; 294 { 295 std::unique_lock<llvm::sys::RWMutex> L(FDMutex); 296 Summary->FunctionDescriptions.emplace_back(); 297 FuncDesc = &Summary->FunctionDescriptions.back(); 298 } 299 300 FuncDesc->Function = &Function; 301 Function.disambiguateJumpTables(AllocId); 302 Function.deleteConservativeEdges(); 303 304 std::unordered_map<const BinaryBasicBlock *, uint32_t> BBToID; 305 uint32_t Id = 0; 306 for (auto BBI = Function.begin(); BBI != Function.end(); ++BBI) { 307 BBToID[&*BBI] = Id++; 308 } 309 std::unordered_set<const BinaryBasicBlock *> VisitedSet; 310 // DFS to establish edges we will use for a spanning tree. Edges in the 311 // spanning tree can be instrumentation-free since their count can be 312 // inferred by solving flow equations on a bottom-up traversal of the tree. 313 // Exit basic blocks are always instrumented so we start the traversal with 314 // a minimum number of defined variables to make the equation solvable. 315 std::stack<std::pair<const BinaryBasicBlock *, BinaryBasicBlock *>> Stack; 316 std::unordered_map<const BinaryBasicBlock *, 317 std::set<const BinaryBasicBlock *>> 318 STOutSet; 319 for (auto BBI = Function.getLayout().block_rbegin(); 320 BBI != Function.getLayout().block_rend(); ++BBI) { 321 if ((*BBI)->isEntryPoint() || (*BBI)->isLandingPad()) { 322 Stack.push(std::make_pair(nullptr, *BBI)); 323 if (opts::InstrumentCalls && (*BBI)->isEntryPoint()) { 324 EntryNode E; 325 E.Node = BBToID[&**BBI]; 326 E.Address = (*BBI)->getInputOffset(); 327 FuncDesc->EntryNodes.emplace_back(E); 328 createIndCallTargetDescription(Function, (*BBI)->getInputOffset()); 329 } 330 } 331 } 332 333 // Modified version of BinaryFunction::dfs() to build a spanning tree 334 if (!opts::ConservativeInstrumentation) { 335 while (!Stack.empty()) { 336 BinaryBasicBlock *BB; 337 const BinaryBasicBlock *Pred; 338 std::tie(Pred, BB) = Stack.top(); 339 Stack.pop(); 340 if (llvm::is_contained(VisitedSet, BB)) 341 continue; 342 343 VisitedSet.insert(BB); 344 if (Pred) 345 STOutSet[Pred].insert(BB); 346 347 for (BinaryBasicBlock *SuccBB : BB->successors()) 348 Stack.push(std::make_pair(BB, SuccBB)); 349 } 350 } 351 352 // Determine whether this is a leaf function, which needs special 353 // instructions to protect the red zone 354 bool IsLeafFunction = true; 355 DenseSet<const BinaryBasicBlock *> InvokeBlocks; 356 for (const BinaryBasicBlock &BB : Function) { 357 for (const MCInst &Inst : BB) { 358 if (BC.MIB->isCall(Inst)) { 359 if (BC.MIB->isInvoke(Inst)) 360 InvokeBlocks.insert(&BB); 361 if (!BC.MIB->isTailCall(Inst)) 362 IsLeafFunction = false; 363 } 364 } 365 } 366 367 for (auto BBI = Function.begin(), BBE = Function.end(); BBI != BBE; ++BBI) { 368 BinaryBasicBlock &BB = *BBI; 369 bool HasUnconditionalBranch = false; 370 bool HasJumpTable = false; 371 bool IsInvokeBlock = InvokeBlocks.count(&BB) > 0; 372 373 for (auto I = BB.begin(); I != BB.end(); ++I) { 374 const MCInst &Inst = *I; 375 if (!BC.MIB->getOffset(Inst)) 376 continue; 377 378 const bool IsJumpTable = Function.getJumpTable(Inst); 379 if (IsJumpTable) 380 HasJumpTable = true; 381 else if (BC.MIB->isUnconditionalBranch(Inst)) 382 HasUnconditionalBranch = true; 383 else if ((!BC.MIB->isCall(Inst) && !BC.MIB->isConditionalBranch(Inst)) || 384 BC.MIB->isUnsupportedBranch(Inst)) 385 continue; 386 387 const uint32_t FromOffset = *BC.MIB->getOffset(Inst); 388 const MCSymbol *Target = BC.MIB->getTargetSymbol(Inst); 389 BinaryBasicBlock *TargetBB = Function.getBasicBlockForLabel(Target); 390 uint32_t ToOffset = TargetBB ? TargetBB->getInputOffset() : 0; 391 BinaryFunction *TargetFunc = 392 TargetBB ? &Function : BC.getFunctionForSymbol(Target); 393 if (TargetFunc && BC.MIB->isCall(Inst)) { 394 if (opts::InstrumentCalls) { 395 const BinaryBasicBlock *ForeignBB = 396 TargetFunc->getBasicBlockForLabel(Target); 397 if (ForeignBB) 398 ToOffset = ForeignBB->getInputOffset(); 399 instrumentOneTarget(SplitWorklist, SplitInstrs, I, Function, BB, 400 FromOffset, *TargetFunc, TargetBB, ToOffset, 401 IsLeafFunction, IsInvokeBlock, FuncDesc, 402 BBToID[&BB]); 403 } 404 continue; 405 } 406 if (TargetFunc) { 407 // Do not instrument edges in the spanning tree 408 if (llvm::is_contained(STOutSet[&BB], TargetBB)) { 409 auto L = BC.scopeLock(); 410 createEdgeDescription(*FuncDesc, Function, FromOffset, BBToID[&BB], 411 Function, ToOffset, BBToID[TargetBB], 412 /*Instrumented=*/false); 413 continue; 414 } 415 instrumentOneTarget(SplitWorklist, SplitInstrs, I, Function, BB, 416 FromOffset, *TargetFunc, TargetBB, ToOffset, 417 IsLeafFunction, IsInvokeBlock, FuncDesc, 418 BBToID[&BB], BBToID[TargetBB]); 419 continue; 420 } 421 422 if (IsJumpTable) { 423 for (BinaryBasicBlock *&Succ : BB.successors()) { 424 // Do not instrument edges in the spanning tree 425 if (llvm::is_contained(STOutSet[&BB], &*Succ)) { 426 auto L = BC.scopeLock(); 427 createEdgeDescription(*FuncDesc, Function, FromOffset, BBToID[&BB], 428 Function, Succ->getInputOffset(), 429 BBToID[&*Succ], /*Instrumented=*/false); 430 continue; 431 } 432 instrumentOneTarget( 433 SplitWorklist, SplitInstrs, I, Function, BB, FromOffset, Function, 434 &*Succ, Succ->getInputOffset(), IsLeafFunction, IsInvokeBlock, 435 FuncDesc, BBToID[&BB], BBToID[&*Succ]); 436 } 437 continue; 438 } 439 440 // Handle indirect calls -- could be direct calls with unknown targets 441 // or secondary entry points of known functions, so check it is indirect 442 // to be sure. 443 if (opts::InstrumentCalls && BC.MIB->isIndirectCall(*I)) 444 instrumentIndirectTarget(BB, I, Function, FromOffset); 445 446 } // End of instructions loop 447 448 // Instrument fallthroughs (when the direct jump instruction is missing) 449 if (!HasUnconditionalBranch && !HasJumpTable && BB.succ_size() > 0 && 450 BB.size() > 0) { 451 BinaryBasicBlock *FTBB = BB.getFallthrough(); 452 assert(FTBB && "expected valid fall-through basic block"); 453 auto I = BB.begin(); 454 auto LastInstr = BB.end(); 455 --LastInstr; 456 while (LastInstr != I && BC.MIB->isPseudo(*LastInstr)) 457 --LastInstr; 458 uint32_t FromOffset = 0; 459 // The last instruction in the BB should have an annotation, except 460 // if it was branching to the end of the function as a result of 461 // __builtin_unreachable(), in which case it was deleted by fixBranches. 462 // Ignore this case. FIXME: force fixBranches() to preserve the offset. 463 if (!BC.MIB->getOffset(*LastInstr)) 464 continue; 465 FromOffset = *BC.MIB->getOffset(*LastInstr); 466 467 // Do not instrument edges in the spanning tree 468 if (llvm::is_contained(STOutSet[&BB], FTBB)) { 469 auto L = BC.scopeLock(); 470 createEdgeDescription(*FuncDesc, Function, FromOffset, BBToID[&BB], 471 Function, FTBB->getInputOffset(), BBToID[FTBB], 472 /*Instrumented=*/false); 473 continue; 474 } 475 instrumentOneTarget(SplitWorklist, SplitInstrs, I, Function, BB, 476 FromOffset, Function, FTBB, FTBB->getInputOffset(), 477 IsLeafFunction, IsInvokeBlock, FuncDesc, BBToID[&BB], 478 BBToID[FTBB]); 479 } 480 } // End of BBs loop 481 482 // Instrument spanning tree leaves 483 if (!opts::ConservativeInstrumentation) { 484 for (auto BBI = Function.begin(), BBE = Function.end(); BBI != BBE; ++BBI) { 485 BinaryBasicBlock &BB = *BBI; 486 if (STOutSet[&BB].size() == 0) 487 instrumentLeafNode(BB, BB.begin(), IsLeafFunction, *FuncDesc, 488 BBToID[&BB]); 489 } 490 } 491 492 // Consume list of critical edges: split them and add instrumentation to the 493 // newly created BBs 494 auto Iter = SplitInstrs.begin(); 495 for (std::pair<BinaryBasicBlock *, BinaryBasicBlock *> &BBPair : 496 SplitWorklist) { 497 BinaryBasicBlock *NewBB = Function.splitEdge(BBPair.first, BBPair.second); 498 NewBB->addInstructions(Iter->begin(), Iter->end()); 499 ++Iter; 500 } 501 502 // Unused now 503 FuncDesc->EdgesSet.clear(); 504 } 505 506 void Instrumentation::runOnFunctions(BinaryContext &BC) { 507 if (!BC.isX86()) 508 return; 509 510 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/false, 511 /*IsText=*/false, 512 /*IsAllocatable=*/true); 513 BC.registerOrUpdateSection(".bolt.instr.counters", ELF::SHT_PROGBITS, Flags, 514 nullptr, 0, 1); 515 516 BC.registerOrUpdateNoteSection(".bolt.instr.tables", nullptr, 0, 517 /*Alignment=*/1, 518 /*IsReadOnly=*/true, ELF::SHT_NOTE); 519 520 Summary->IndCallCounterFuncPtr = 521 BC.Ctx->getOrCreateSymbol("__bolt_ind_call_counter_func_pointer"); 522 Summary->IndTailCallCounterFuncPtr = 523 BC.Ctx->getOrCreateSymbol("__bolt_ind_tailcall_counter_func_pointer"); 524 525 createAuxiliaryFunctions(BC); 526 527 ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) { 528 return (!BF.isSimple() || BF.isIgnored() || 529 (opts::InstrumentHotOnly && !BF.getKnownExecutionCount())); 530 }; 531 532 ParallelUtilities::WorkFuncWithAllocTy WorkFun = 533 [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocatorId) { 534 instrumentFunction(BF, AllocatorId); 535 }; 536 537 ParallelUtilities::runOnEachFunctionWithUniqueAllocId( 538 BC, ParallelUtilities::SchedulingPolicy::SP_INST_QUADRATIC, WorkFun, 539 SkipPredicate, "instrumentation", /* ForceSequential=*/true); 540 541 if (BC.isMachO()) { 542 if (BC.StartFunctionAddress) { 543 BinaryFunction *Main = 544 BC.getBinaryFunctionAtAddress(*BC.StartFunctionAddress); 545 assert(Main && "Entry point function not found"); 546 BinaryBasicBlock &BB = Main->front(); 547 548 ErrorOr<BinarySection &> SetupSection = 549 BC.getUniqueSectionByName("I__setup"); 550 if (!SetupSection) { 551 llvm::errs() << "Cannot find I__setup section\n"; 552 exit(1); 553 } 554 MCSymbol *Target = BC.registerNameAtAddress( 555 "__bolt_instr_setup", SetupSection->getAddress(), 0, 0); 556 MCInst NewInst; 557 BC.MIB->createCall(NewInst, Target, BC.Ctx.get()); 558 BB.insertInstruction(BB.begin(), std::move(NewInst)); 559 } else { 560 llvm::errs() << "BOLT-WARNING: Entry point not found\n"; 561 } 562 563 if (BinaryData *BD = BC.getBinaryDataByName("___GLOBAL_init_65535/1")) { 564 BinaryFunction *Ctor = BC.getBinaryFunctionAtAddress(BD->getAddress()); 565 assert(Ctor && "___GLOBAL_init_65535 function not found"); 566 BinaryBasicBlock &BB = Ctor->front(); 567 ErrorOr<BinarySection &> FiniSection = 568 BC.getUniqueSectionByName("I__fini"); 569 if (!FiniSection) { 570 llvm::errs() << "Cannot find I__fini section\n"; 571 exit(1); 572 } 573 MCSymbol *Target = BC.registerNameAtAddress( 574 "__bolt_instr_fini", FiniSection->getAddress(), 0, 0); 575 auto IsLEA = [&BC](const MCInst &Inst) { return BC.MIB->isLEA64r(Inst); }; 576 const auto LEA = std::find_if( 577 std::next(llvm::find_if(reverse(BB), IsLEA)), BB.rend(), IsLEA); 578 LEA->getOperand(4).setExpr( 579 MCSymbolRefExpr::create(Target, MCSymbolRefExpr::VK_None, *BC.Ctx)); 580 } else { 581 llvm::errs() << "BOLT-WARNING: ___GLOBAL_init_65535 not found\n"; 582 } 583 } 584 585 setupRuntimeLibrary(BC); 586 } 587 588 void Instrumentation::createAuxiliaryFunctions(BinaryContext &BC) { 589 auto createSimpleFunction = 590 [&](StringRef Title, InstructionListType Instrs) -> BinaryFunction * { 591 BinaryFunction *Func = BC.createInjectedBinaryFunction(std::string(Title)); 592 593 std::vector<std::unique_ptr<BinaryBasicBlock>> BBs; 594 BBs.emplace_back(Func->createBasicBlock()); 595 BBs.back()->addInstructions(Instrs.begin(), Instrs.end()); 596 BBs.back()->setCFIState(0); 597 Func->insertBasicBlocks(nullptr, std::move(BBs), 598 /*UpdateLayout=*/true, 599 /*UpdateCFIState=*/false); 600 Func->updateState(BinaryFunction::State::CFG_Finalized); 601 return Func; 602 }; 603 604 // Here we are creating a set of functions to handle BB entry/exit. 605 // IndCallHandlerExitBB contains instructions to finish handling traffic to an 606 // indirect call. We pass it to createInstrumentedIndCallHandlerEntryBB(), 607 // which will check if a pointer to runtime library traffic accounting 608 // function was initialized (it is done during initialization of runtime 609 // library). If it is so - calls it. Then this routine returns to normal 610 // execution by jumping to exit BB. 611 BinaryFunction *IndCallHandlerExitBB = 612 createSimpleFunction("__bolt_instr_ind_call_handler", 613 BC.MIB->createInstrumentedIndCallHandlerExitBB()); 614 615 IndCallHandlerExitBBFunction = 616 createSimpleFunction("__bolt_instr_ind_call_handler_func", 617 BC.MIB->createInstrumentedIndCallHandlerEntryBB( 618 Summary->IndCallCounterFuncPtr, 619 IndCallHandlerExitBB->getSymbol(), &*BC.Ctx)); 620 621 BinaryFunction *IndTailCallHandlerExitBB = createSimpleFunction( 622 "__bolt_instr_ind_tail_call_handler", 623 BC.MIB->createInstrumentedIndTailCallHandlerExitBB()); 624 625 IndTailCallHandlerExitBBFunction = createSimpleFunction( 626 "__bolt_instr_ind_tailcall_handler_func", 627 BC.MIB->createInstrumentedIndCallHandlerEntryBB( 628 Summary->IndTailCallCounterFuncPtr, 629 IndTailCallHandlerExitBB->getSymbol(), &*BC.Ctx)); 630 631 createSimpleFunction("__bolt_num_counters_getter", 632 BC.MIB->createNumCountersGetter(BC.Ctx.get())); 633 createSimpleFunction("__bolt_instr_locations_getter", 634 BC.MIB->createInstrLocationsGetter(BC.Ctx.get())); 635 createSimpleFunction("__bolt_instr_tables_getter", 636 BC.MIB->createInstrTablesGetter(BC.Ctx.get())); 637 createSimpleFunction("__bolt_instr_num_funcs_getter", 638 BC.MIB->createInstrNumFuncsGetter(BC.Ctx.get())); 639 640 if (BC.isELF()) { 641 if (BC.StartFunctionAddress) { 642 BinaryFunction *Start = 643 BC.getBinaryFunctionAtAddress(*BC.StartFunctionAddress); 644 assert(Start && "Entry point function not found"); 645 const MCSymbol *StartSym = Start->getSymbol(); 646 createSimpleFunction( 647 "__bolt_start_trampoline", 648 BC.MIB->createSymbolTrampoline(StartSym, BC.Ctx.get())); 649 } 650 if (BC.FiniFunctionAddress) { 651 BinaryFunction *Fini = 652 BC.getBinaryFunctionAtAddress(*BC.FiniFunctionAddress); 653 assert(Fini && "Finalization function not found"); 654 const MCSymbol *FiniSym = Fini->getSymbol(); 655 createSimpleFunction( 656 "__bolt_fini_trampoline", 657 BC.MIB->createSymbolTrampoline(FiniSym, BC.Ctx.get())); 658 } else { 659 // Create dummy return function for trampoline to avoid issues 660 // with unknown symbol in runtime library. E.g. for static PIE 661 // executable 662 createSimpleFunction("__bolt_fini_trampoline", 663 BC.MIB->createDummyReturnFunction(BC.Ctx.get())); 664 } 665 } 666 } 667 668 void Instrumentation::setupRuntimeLibrary(BinaryContext &BC) { 669 uint32_t FuncDescSize = Summary->getFDSize(); 670 671 outs() << "BOLT-INSTRUMENTER: Number of indirect call site descriptors: " 672 << Summary->IndCallDescriptions.size() << "\n"; 673 outs() << "BOLT-INSTRUMENTER: Number of indirect call target descriptors: " 674 << Summary->IndCallTargetDescriptions.size() << "\n"; 675 outs() << "BOLT-INSTRUMENTER: Number of function descriptors: " 676 << Summary->FunctionDescriptions.size() << "\n"; 677 outs() << "BOLT-INSTRUMENTER: Number of branch counters: " << BranchCounters 678 << "\n"; 679 outs() << "BOLT-INSTRUMENTER: Number of ST leaf node counters: " 680 << LeafNodeCounters << "\n"; 681 outs() << "BOLT-INSTRUMENTER: Number of direct call counters: " 682 << DirectCallCounters << "\n"; 683 outs() << "BOLT-INSTRUMENTER: Total number of counters: " 684 << Summary->Counters.size() << "\n"; 685 outs() << "BOLT-INSTRUMENTER: Total size of counters: " 686 << (Summary->Counters.size() * 8) << " bytes (static alloc memory)\n"; 687 outs() << "BOLT-INSTRUMENTER: Total size of string table emitted: " 688 << Summary->StringTable.size() << " bytes in file\n"; 689 outs() << "BOLT-INSTRUMENTER: Total size of descriptors: " 690 << (FuncDescSize + 691 Summary->IndCallDescriptions.size() * sizeof(IndCallDescription) + 692 Summary->IndCallTargetDescriptions.size() * 693 sizeof(IndCallTargetDescription)) 694 << " bytes in file\n"; 695 outs() << "BOLT-INSTRUMENTER: Profile will be saved to file " 696 << opts::InstrumentationFilename << "\n"; 697 698 InstrumentationRuntimeLibrary *RtLibrary = 699 static_cast<InstrumentationRuntimeLibrary *>(BC.getRuntimeLibrary()); 700 assert(RtLibrary && "instrumentation runtime library object must be set"); 701 RtLibrary->setSummary(std::move(Summary)); 702 } 703 } // namespace bolt 704 } // namespace llvm 705