1 //===- bolt/Passes/Instrumentation.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Instrumentation class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Passes/Instrumentation.h" 14 #include "bolt/Core/ParallelUtilities.h" 15 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h" 16 #include "bolt/Utils/Utils.h" 17 #include "llvm/Support/CommandLine.h" 18 #include "llvm/Support/RWMutex.h" 19 #include <stack> 20 21 #define DEBUG_TYPE "bolt-instrumentation" 22 23 using namespace llvm; 24 25 namespace opts { 26 extern cl::OptionCategory BoltInstrCategory; 27 28 cl::opt<std::string> InstrumentationFilename( 29 "instrumentation-file", 30 cl::desc("file name where instrumented profile will be saved (default: " 31 "/tmp/prof.fdata)"), 32 cl::init("/tmp/prof.fdata"), cl::Optional, cl::cat(BoltInstrCategory)); 33 34 cl::opt<std::string> InstrumentationBinpath( 35 "instrumentation-binpath", 36 cl::desc("path to instumented binary in case if /proc/self/map_files " 37 "is not accessible due to access restriction issues"), 38 cl::Optional, cl::cat(BoltInstrCategory)); 39 40 cl::opt<bool> InstrumentationFileAppendPID( 41 "instrumentation-file-append-pid", 42 cl::desc("append PID to saved profile file name (default: false)"), 43 cl::init(false), cl::Optional, cl::cat(BoltInstrCategory)); 44 45 cl::opt<bool> ConservativeInstrumentation( 46 "conservative-instrumentation", 47 cl::desc("disable instrumentation optimizations that sacrifice profile " 48 "accuracy (for debugging, default: false)"), 49 cl::init(false), cl::Optional, cl::cat(BoltInstrCategory)); 50 51 cl::opt<uint32_t> InstrumentationSleepTime( 52 "instrumentation-sleep-time", 53 cl::desc("interval between profile writes (default: 0 = write only at " 54 "program end). This is useful for service workloads when you " 55 "want to dump profile every X minutes or if you are killing the " 56 "program and the profile is not being dumped at the end."), 57 cl::init(0), cl::Optional, cl::cat(BoltInstrCategory)); 58 59 cl::opt<bool> InstrumentationNoCountersClear( 60 "instrumentation-no-counters-clear", 61 cl::desc("Don't clear counters across dumps " 62 "(use with instrumentation-sleep-time option)"), 63 cl::init(false), cl::Optional, cl::cat(BoltInstrCategory)); 64 65 cl::opt<bool> InstrumentationWaitForks( 66 "instrumentation-wait-forks", 67 cl::desc("Wait until all forks of instrumented process will finish " 68 "(use with instrumentation-sleep-time option)"), 69 cl::init(false), cl::Optional, cl::cat(BoltInstrCategory)); 70 71 cl::opt<bool> 72 InstrumentHotOnly("instrument-hot-only", 73 cl::desc("only insert instrumentation on hot functions " 74 "(needs profile, default: false)"), 75 cl::init(false), cl::Optional, 76 cl::cat(BoltInstrCategory)); 77 78 cl::opt<bool> InstrumentCalls("instrument-calls", 79 cl::desc("record profile for inter-function " 80 "control flow activity (default: true)"), 81 cl::init(true), cl::Optional, 82 cl::cat(BoltInstrCategory)); 83 } // namespace opts 84 85 namespace llvm { 86 namespace bolt { 87 88 uint32_t Instrumentation::getFunctionNameIndex(const BinaryFunction &Function) { 89 auto Iter = FuncToStringIdx.find(&Function); 90 if (Iter != FuncToStringIdx.end()) 91 return Iter->second; 92 size_t Idx = Summary->StringTable.size(); 93 FuncToStringIdx.emplace(std::make_pair(&Function, Idx)); 94 Summary->StringTable.append(getEscapedName(Function.getOneName())); 95 Summary->StringTable.append(1, '\0'); 96 return Idx; 97 } 98 99 bool Instrumentation::createCallDescription(FunctionDescription &FuncDesc, 100 const BinaryFunction &FromFunction, 101 uint32_t From, uint32_t FromNodeID, 102 const BinaryFunction &ToFunction, 103 uint32_t To, bool IsInvoke) { 104 CallDescription CD; 105 // Ordinarily, we don't augment direct calls with an explicit counter, except 106 // when forced to do so or when we know this callee could be throwing 107 // exceptions, in which case there is no other way to accurately record its 108 // frequency. 109 bool ForceInstrumentation = opts::ConservativeInstrumentation || IsInvoke; 110 CD.FromLoc.FuncString = getFunctionNameIndex(FromFunction); 111 CD.FromLoc.Offset = From; 112 CD.FromNode = FromNodeID; 113 CD.Target = &ToFunction; 114 CD.ToLoc.FuncString = getFunctionNameIndex(ToFunction); 115 CD.ToLoc.Offset = To; 116 CD.Counter = ForceInstrumentation ? Summary->Counters.size() : 0xffffffff; 117 if (ForceInstrumentation) 118 ++DirectCallCounters; 119 FuncDesc.Calls.emplace_back(CD); 120 return ForceInstrumentation; 121 } 122 123 void Instrumentation::createIndCallDescription( 124 const BinaryFunction &FromFunction, uint32_t From) { 125 IndCallDescription ICD; 126 ICD.FromLoc.FuncString = getFunctionNameIndex(FromFunction); 127 ICD.FromLoc.Offset = From; 128 Summary->IndCallDescriptions.emplace_back(ICD); 129 } 130 131 void Instrumentation::createIndCallTargetDescription( 132 const BinaryFunction &ToFunction, uint32_t To) { 133 IndCallTargetDescription ICD; 134 ICD.ToLoc.FuncString = getFunctionNameIndex(ToFunction); 135 ICD.ToLoc.Offset = To; 136 ICD.Target = &ToFunction; 137 Summary->IndCallTargetDescriptions.emplace_back(ICD); 138 } 139 140 bool Instrumentation::createEdgeDescription(FunctionDescription &FuncDesc, 141 const BinaryFunction &FromFunction, 142 uint32_t From, uint32_t FromNodeID, 143 const BinaryFunction &ToFunction, 144 uint32_t To, uint32_t ToNodeID, 145 bool Instrumented) { 146 EdgeDescription ED; 147 auto Result = FuncDesc.EdgesSet.insert(std::make_pair(FromNodeID, ToNodeID)); 148 // Avoid creating duplicated edge descriptions. This happens in CFGs where a 149 // block jumps to its fall-through. 150 if (Result.second == false) 151 return false; 152 ED.FromLoc.FuncString = getFunctionNameIndex(FromFunction); 153 ED.FromLoc.Offset = From; 154 ED.FromNode = FromNodeID; 155 ED.ToLoc.FuncString = getFunctionNameIndex(ToFunction); 156 ED.ToLoc.Offset = To; 157 ED.ToNode = ToNodeID; 158 ED.Counter = Instrumented ? Summary->Counters.size() : 0xffffffff; 159 if (Instrumented) 160 ++BranchCounters; 161 FuncDesc.Edges.emplace_back(ED); 162 return Instrumented; 163 } 164 165 void Instrumentation::createLeafNodeDescription(FunctionDescription &FuncDesc, 166 uint32_t Node) { 167 InstrumentedNode IN; 168 IN.Node = Node; 169 IN.Counter = Summary->Counters.size(); 170 ++LeafNodeCounters; 171 FuncDesc.LeafNodes.emplace_back(IN); 172 } 173 174 InstructionListType 175 Instrumentation::createInstrumentationSnippet(BinaryContext &BC, bool IsLeaf) { 176 auto L = BC.scopeLock(); 177 MCSymbol *Label; 178 Label = BC.Ctx->createNamedTempSymbol("InstrEntry"); 179 Summary->Counters.emplace_back(Label); 180 InstructionListType CounterInstrs; 181 BC.MIB->createInstrIncMemory(CounterInstrs, Label, &*BC.Ctx, IsLeaf); 182 return CounterInstrs; 183 } 184 185 // Helper instruction sequence insertion function 186 static BinaryBasicBlock::iterator 187 insertInstructions(InstructionListType &Instrs, BinaryBasicBlock &BB, 188 BinaryBasicBlock::iterator Iter) { 189 for (MCInst &NewInst : Instrs) { 190 Iter = BB.insertInstruction(Iter, NewInst); 191 ++Iter; 192 } 193 return Iter; 194 } 195 196 void Instrumentation::instrumentLeafNode(BinaryBasicBlock &BB, 197 BinaryBasicBlock::iterator Iter, 198 bool IsLeaf, 199 FunctionDescription &FuncDesc, 200 uint32_t Node) { 201 createLeafNodeDescription(FuncDesc, Node); 202 InstructionListType CounterInstrs = createInstrumentationSnippet( 203 BB.getFunction()->getBinaryContext(), IsLeaf); 204 insertInstructions(CounterInstrs, BB, Iter); 205 } 206 207 void Instrumentation::instrumentIndirectTarget(BinaryBasicBlock &BB, 208 BinaryBasicBlock::iterator &Iter, 209 BinaryFunction &FromFunction, 210 uint32_t From) { 211 auto L = FromFunction.getBinaryContext().scopeLock(); 212 const size_t IndCallSiteID = Summary->IndCallDescriptions.size(); 213 createIndCallDescription(FromFunction, From); 214 215 BinaryContext &BC = FromFunction.getBinaryContext(); 216 bool IsTailCall = BC.MIB->isTailCall(*Iter); 217 InstructionListType CounterInstrs = BC.MIB->createInstrumentedIndirectCall( 218 std::move(*Iter), 219 IsTailCall ? IndTailCallHandlerExitBBFunction->getSymbol() 220 : IndCallHandlerExitBBFunction->getSymbol(), 221 IndCallSiteID, &*BC.Ctx); 222 223 Iter = BB.eraseInstruction(Iter); 224 Iter = insertInstructions(CounterInstrs, BB, Iter); 225 --Iter; 226 } 227 228 bool Instrumentation::instrumentOneTarget( 229 SplitWorklistTy &SplitWorklist, SplitInstrsTy &SplitInstrs, 230 BinaryBasicBlock::iterator &Iter, BinaryFunction &FromFunction, 231 BinaryBasicBlock &FromBB, uint32_t From, BinaryFunction &ToFunc, 232 BinaryBasicBlock *TargetBB, uint32_t ToOffset, bool IsLeaf, bool IsInvoke, 233 FunctionDescription *FuncDesc, uint32_t FromNodeID, uint32_t ToNodeID) { 234 { 235 auto L = FromFunction.getBinaryContext().scopeLock(); 236 bool Created = true; 237 if (!TargetBB) 238 Created = createCallDescription(*FuncDesc, FromFunction, From, FromNodeID, 239 ToFunc, ToOffset, IsInvoke); 240 else 241 Created = createEdgeDescription(*FuncDesc, FromFunction, From, FromNodeID, 242 ToFunc, ToOffset, ToNodeID, 243 /*Instrumented=*/true); 244 if (!Created) 245 return false; 246 } 247 248 InstructionListType CounterInstrs = 249 createInstrumentationSnippet(FromFunction.getBinaryContext(), IsLeaf); 250 251 BinaryContext &BC = FromFunction.getBinaryContext(); 252 const MCInst &Inst = *Iter; 253 if (BC.MIB->isCall(Inst)) { 254 // This code handles both 255 // - (regular) inter-function calls (cross-function control transfer), 256 // - (rare) intra-function calls (function-local control transfer) 257 Iter = insertInstructions(CounterInstrs, FromBB, Iter); 258 return true; 259 } 260 261 if (!TargetBB || !FuncDesc) 262 return false; 263 264 // Indirect branch, conditional branches or fall-throughs 265 // Regular cond branch, put counter at start of target block 266 // 267 // N.B.: (FromBB != TargetBBs) checks below handle conditional jumps where 268 // we can't put the instrumentation counter in this block because not all 269 // paths that reach it at this point will be taken and going to the target. 270 if (TargetBB->pred_size() == 1 && &FromBB != TargetBB && 271 !TargetBB->isEntryPoint()) { 272 insertInstructions(CounterInstrs, *TargetBB, TargetBB->begin()); 273 return true; 274 } 275 if (FromBB.succ_size() == 1 && &FromBB != TargetBB) { 276 Iter = insertInstructions(CounterInstrs, FromBB, Iter); 277 return true; 278 } 279 // Critical edge, create BB and put counter there 280 SplitWorklist.emplace_back(&FromBB, TargetBB); 281 SplitInstrs.emplace_back(std::move(CounterInstrs)); 282 return true; 283 } 284 285 void Instrumentation::instrumentFunction(BinaryFunction &Function, 286 MCPlusBuilder::AllocatorIdTy AllocId) { 287 if (Function.hasUnknownControlFlow()) 288 return; 289 290 BinaryContext &BC = Function.getBinaryContext(); 291 if (BC.isMachO() && Function.hasName("___GLOBAL_init_65535/1")) 292 return; 293 294 SplitWorklistTy SplitWorklist; 295 SplitInstrsTy SplitInstrs; 296 297 FunctionDescription *FuncDesc = nullptr; 298 { 299 std::unique_lock<llvm::sys::RWMutex> L(FDMutex); 300 Summary->FunctionDescriptions.emplace_back(); 301 FuncDesc = &Summary->FunctionDescriptions.back(); 302 } 303 304 FuncDesc->Function = &Function; 305 Function.disambiguateJumpTables(AllocId); 306 Function.deleteConservativeEdges(); 307 308 std::unordered_map<const BinaryBasicBlock *, uint32_t> BBToID; 309 uint32_t Id = 0; 310 for (auto BBI = Function.begin(); BBI != Function.end(); ++BBI) { 311 BBToID[&*BBI] = Id++; 312 } 313 std::unordered_set<const BinaryBasicBlock *> VisitedSet; 314 // DFS to establish edges we will use for a spanning tree. Edges in the 315 // spanning tree can be instrumentation-free since their count can be 316 // inferred by solving flow equations on a bottom-up traversal of the tree. 317 // Exit basic blocks are always instrumented so we start the traversal with 318 // a minimum number of defined variables to make the equation solvable. 319 std::stack<std::pair<const BinaryBasicBlock *, BinaryBasicBlock *>> Stack; 320 std::unordered_map<const BinaryBasicBlock *, 321 std::set<const BinaryBasicBlock *>> 322 STOutSet; 323 for (auto BBI = Function.getLayout().block_rbegin(); 324 BBI != Function.getLayout().block_rend(); ++BBI) { 325 if ((*BBI)->isEntryPoint() || (*BBI)->isLandingPad()) { 326 Stack.push(std::make_pair(nullptr, *BBI)); 327 if (opts::InstrumentCalls && (*BBI)->isEntryPoint()) { 328 EntryNode E; 329 E.Node = BBToID[&**BBI]; 330 E.Address = (*BBI)->getInputOffset(); 331 FuncDesc->EntryNodes.emplace_back(E); 332 createIndCallTargetDescription(Function, (*BBI)->getInputOffset()); 333 } 334 } 335 } 336 337 // Modified version of BinaryFunction::dfs() to build a spanning tree 338 if (!opts::ConservativeInstrumentation) { 339 while (!Stack.empty()) { 340 BinaryBasicBlock *BB; 341 const BinaryBasicBlock *Pred; 342 std::tie(Pred, BB) = Stack.top(); 343 Stack.pop(); 344 if (VisitedSet.find(BB) != VisitedSet.end()) 345 continue; 346 347 VisitedSet.insert(BB); 348 if (Pred) 349 STOutSet[Pred].insert(BB); 350 351 for (BinaryBasicBlock *SuccBB : BB->successors()) 352 Stack.push(std::make_pair(BB, SuccBB)); 353 } 354 } 355 356 // Determine whether this is a leaf function, which needs special 357 // instructions to protect the red zone 358 bool IsLeafFunction = true; 359 DenseSet<const BinaryBasicBlock *> InvokeBlocks; 360 for (const BinaryBasicBlock &BB : Function) { 361 for (const MCInst &Inst : BB) { 362 if (BC.MIB->isCall(Inst)) { 363 if (BC.MIB->isInvoke(Inst)) 364 InvokeBlocks.insert(&BB); 365 if (!BC.MIB->isTailCall(Inst)) 366 IsLeafFunction = false; 367 } 368 } 369 } 370 371 for (auto BBI = Function.begin(), BBE = Function.end(); BBI != BBE; ++BBI) { 372 BinaryBasicBlock &BB = *BBI; 373 bool HasUnconditionalBranch = false; 374 bool HasJumpTable = false; 375 bool IsInvokeBlock = InvokeBlocks.count(&BB) > 0; 376 377 for (auto I = BB.begin(); I != BB.end(); ++I) { 378 const MCInst &Inst = *I; 379 if (!BC.MIB->getOffset(Inst)) 380 continue; 381 382 const bool IsJumpTable = Function.getJumpTable(Inst); 383 if (IsJumpTable) 384 HasJumpTable = true; 385 else if (BC.MIB->isUnconditionalBranch(Inst)) 386 HasUnconditionalBranch = true; 387 else if ((!BC.MIB->isCall(Inst) && !BC.MIB->isConditionalBranch(Inst)) || 388 BC.MIB->isUnsupportedBranch(Inst.getOpcode())) 389 continue; 390 391 const uint32_t FromOffset = *BC.MIB->getOffset(Inst); 392 const MCSymbol *Target = BC.MIB->getTargetSymbol(Inst); 393 BinaryBasicBlock *TargetBB = Function.getBasicBlockForLabel(Target); 394 uint32_t ToOffset = TargetBB ? TargetBB->getInputOffset() : 0; 395 BinaryFunction *TargetFunc = 396 TargetBB ? &Function : BC.getFunctionForSymbol(Target); 397 if (TargetFunc && BC.MIB->isCall(Inst)) { 398 if (opts::InstrumentCalls) { 399 const BinaryBasicBlock *ForeignBB = 400 TargetFunc->getBasicBlockForLabel(Target); 401 if (ForeignBB) 402 ToOffset = ForeignBB->getInputOffset(); 403 instrumentOneTarget(SplitWorklist, SplitInstrs, I, Function, BB, 404 FromOffset, *TargetFunc, TargetBB, ToOffset, 405 IsLeafFunction, IsInvokeBlock, FuncDesc, 406 BBToID[&BB]); 407 } 408 continue; 409 } 410 if (TargetFunc) { 411 // Do not instrument edges in the spanning tree 412 if (STOutSet[&BB].find(TargetBB) != STOutSet[&BB].end()) { 413 auto L = BC.scopeLock(); 414 createEdgeDescription(*FuncDesc, Function, FromOffset, BBToID[&BB], 415 Function, ToOffset, BBToID[TargetBB], 416 /*Instrumented=*/false); 417 continue; 418 } 419 instrumentOneTarget(SplitWorklist, SplitInstrs, I, Function, BB, 420 FromOffset, *TargetFunc, TargetBB, ToOffset, 421 IsLeafFunction, IsInvokeBlock, FuncDesc, 422 BBToID[&BB], BBToID[TargetBB]); 423 continue; 424 } 425 426 if (IsJumpTable) { 427 for (BinaryBasicBlock *&Succ : BB.successors()) { 428 // Do not instrument edges in the spanning tree 429 if (STOutSet[&BB].find(&*Succ) != STOutSet[&BB].end()) { 430 auto L = BC.scopeLock(); 431 createEdgeDescription(*FuncDesc, Function, FromOffset, BBToID[&BB], 432 Function, Succ->getInputOffset(), 433 BBToID[&*Succ], /*Instrumented=*/false); 434 continue; 435 } 436 instrumentOneTarget( 437 SplitWorklist, SplitInstrs, I, Function, BB, FromOffset, Function, 438 &*Succ, Succ->getInputOffset(), IsLeafFunction, IsInvokeBlock, 439 FuncDesc, BBToID[&BB], BBToID[&*Succ]); 440 } 441 continue; 442 } 443 444 // Handle indirect calls -- could be direct calls with unknown targets 445 // or secondary entry points of known functions, so check it is indirect 446 // to be sure. 447 if (opts::InstrumentCalls && BC.MIB->isIndirectCall(*I)) 448 instrumentIndirectTarget(BB, I, Function, FromOffset); 449 450 } // End of instructions loop 451 452 // Instrument fallthroughs (when the direct jump instruction is missing) 453 if (!HasUnconditionalBranch && !HasJumpTable && BB.succ_size() > 0 && 454 BB.size() > 0) { 455 BinaryBasicBlock *FTBB = BB.getFallthrough(); 456 assert(FTBB && "expected valid fall-through basic block"); 457 auto I = BB.begin(); 458 auto LastInstr = BB.end(); 459 --LastInstr; 460 while (LastInstr != I && BC.MIB->isPseudo(*LastInstr)) 461 --LastInstr; 462 uint32_t FromOffset = 0; 463 // The last instruction in the BB should have an annotation, except 464 // if it was branching to the end of the function as a result of 465 // __builtin_unreachable(), in which case it was deleted by fixBranches. 466 // Ignore this case. FIXME: force fixBranches() to preserve the offset. 467 if (!BC.MIB->getOffset(*LastInstr)) 468 continue; 469 FromOffset = *BC.MIB->getOffset(*LastInstr); 470 471 // Do not instrument edges in the spanning tree 472 if (STOutSet[&BB].find(FTBB) != STOutSet[&BB].end()) { 473 auto L = BC.scopeLock(); 474 createEdgeDescription(*FuncDesc, Function, FromOffset, BBToID[&BB], 475 Function, FTBB->getInputOffset(), BBToID[FTBB], 476 /*Instrumented=*/false); 477 continue; 478 } 479 instrumentOneTarget(SplitWorklist, SplitInstrs, I, Function, BB, 480 FromOffset, Function, FTBB, FTBB->getInputOffset(), 481 IsLeafFunction, IsInvokeBlock, FuncDesc, BBToID[&BB], 482 BBToID[FTBB]); 483 } 484 } // End of BBs loop 485 486 // Instrument spanning tree leaves 487 if (!opts::ConservativeInstrumentation) { 488 for (auto BBI = Function.begin(), BBE = Function.end(); BBI != BBE; ++BBI) { 489 BinaryBasicBlock &BB = *BBI; 490 if (STOutSet[&BB].size() == 0) 491 instrumentLeafNode(BB, BB.begin(), IsLeafFunction, *FuncDesc, 492 BBToID[&BB]); 493 } 494 } 495 496 // Consume list of critical edges: split them and add instrumentation to the 497 // newly created BBs 498 auto Iter = SplitInstrs.begin(); 499 for (std::pair<BinaryBasicBlock *, BinaryBasicBlock *> &BBPair : 500 SplitWorklist) { 501 BinaryBasicBlock *NewBB = Function.splitEdge(BBPair.first, BBPair.second); 502 NewBB->addInstructions(Iter->begin(), Iter->end()); 503 ++Iter; 504 } 505 506 // Unused now 507 FuncDesc->EdgesSet.clear(); 508 } 509 510 void Instrumentation::runOnFunctions(BinaryContext &BC) { 511 if (!BC.isX86()) 512 return; 513 514 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/false, 515 /*IsText=*/false, 516 /*IsAllocatable=*/true); 517 BC.registerOrUpdateSection(".bolt.instr.counters", ELF::SHT_PROGBITS, Flags, 518 nullptr, 0, 1); 519 520 BC.registerOrUpdateNoteSection(".bolt.instr.tables", nullptr, 0, 521 /*Alignment=*/1, 522 /*IsReadOnly=*/true, ELF::SHT_NOTE); 523 524 Summary->IndCallCounterFuncPtr = 525 BC.Ctx->getOrCreateSymbol("__bolt_ind_call_counter_func_pointer"); 526 Summary->IndTailCallCounterFuncPtr = 527 BC.Ctx->getOrCreateSymbol("__bolt_ind_tailcall_counter_func_pointer"); 528 529 createAuxiliaryFunctions(BC); 530 531 ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) { 532 return (!BF.isSimple() || BF.isIgnored() || 533 (opts::InstrumentHotOnly && !BF.getKnownExecutionCount())); 534 }; 535 536 ParallelUtilities::WorkFuncWithAllocTy WorkFun = 537 [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocatorId) { 538 instrumentFunction(BF, AllocatorId); 539 }; 540 541 ParallelUtilities::runOnEachFunctionWithUniqueAllocId( 542 BC, ParallelUtilities::SchedulingPolicy::SP_INST_QUADRATIC, WorkFun, 543 SkipPredicate, "instrumentation", /* ForceSequential=*/true); 544 545 if (BC.isMachO()) { 546 if (BC.StartFunctionAddress) { 547 BinaryFunction *Main = 548 BC.getBinaryFunctionAtAddress(*BC.StartFunctionAddress); 549 assert(Main && "Entry point function not found"); 550 BinaryBasicBlock &BB = Main->front(); 551 552 ErrorOr<BinarySection &> SetupSection = 553 BC.getUniqueSectionByName("I__setup"); 554 if (!SetupSection) { 555 llvm::errs() << "Cannot find I__setup section\n"; 556 exit(1); 557 } 558 MCSymbol *Target = BC.registerNameAtAddress( 559 "__bolt_instr_setup", SetupSection->getAddress(), 0, 0); 560 MCInst NewInst; 561 BC.MIB->createCall(NewInst, Target, BC.Ctx.get()); 562 BB.insertInstruction(BB.begin(), std::move(NewInst)); 563 } else { 564 llvm::errs() << "BOLT-WARNING: Entry point not found\n"; 565 } 566 567 if (BinaryData *BD = BC.getBinaryDataByName("___GLOBAL_init_65535/1")) { 568 BinaryFunction *Ctor = BC.getBinaryFunctionAtAddress(BD->getAddress()); 569 assert(Ctor && "___GLOBAL_init_65535 function not found"); 570 BinaryBasicBlock &BB = Ctor->front(); 571 ErrorOr<BinarySection &> FiniSection = 572 BC.getUniqueSectionByName("I__fini"); 573 if (!FiniSection) { 574 llvm::errs() << "Cannot find I__fini section\n"; 575 exit(1); 576 } 577 MCSymbol *Target = BC.registerNameAtAddress( 578 "__bolt_instr_fini", FiniSection->getAddress(), 0, 0); 579 auto IsLEA = [&BC](const MCInst &Inst) { return BC.MIB->isLEA64r(Inst); }; 580 const auto LEA = std::find_if( 581 std::next(llvm::find_if(reverse(BB), IsLEA)), BB.rend(), IsLEA); 582 LEA->getOperand(4).setExpr( 583 MCSymbolRefExpr::create(Target, MCSymbolRefExpr::VK_None, *BC.Ctx)); 584 } else { 585 llvm::errs() << "BOLT-WARNING: ___GLOBAL_init_65535 not found\n"; 586 } 587 } 588 589 setupRuntimeLibrary(BC); 590 } 591 592 void Instrumentation::createAuxiliaryFunctions(BinaryContext &BC) { 593 auto createSimpleFunction = 594 [&](StringRef Title, InstructionListType Instrs) -> BinaryFunction * { 595 BinaryFunction *Func = BC.createInjectedBinaryFunction(std::string(Title)); 596 597 std::vector<std::unique_ptr<BinaryBasicBlock>> BBs; 598 BBs.emplace_back(Func->createBasicBlock()); 599 BBs.back()->addInstructions(Instrs.begin(), Instrs.end()); 600 BBs.back()->setCFIState(0); 601 Func->insertBasicBlocks(nullptr, std::move(BBs), 602 /*UpdateLayout=*/true, 603 /*UpdateCFIState=*/false); 604 Func->updateState(BinaryFunction::State::CFG_Finalized); 605 return Func; 606 }; 607 608 // Here we are creating a set of functions to handle BB entry/exit. 609 // IndCallHandlerExitBB contains instructions to finish handling traffic to an 610 // indirect call. We pass it to createInstrumentedIndCallHandlerEntryBB(), 611 // which will check if a pointer to runtime library traffic accounting 612 // function was initialized (it is done during initialization of runtime 613 // library). If it is so - calls it. Then this routine returns to normal 614 // execution by jumping to exit BB. 615 BinaryFunction *IndCallHandlerExitBB = 616 createSimpleFunction("__bolt_instr_ind_call_handler", 617 BC.MIB->createInstrumentedIndCallHandlerExitBB()); 618 619 IndCallHandlerExitBBFunction = 620 createSimpleFunction("__bolt_instr_ind_call_handler_func", 621 BC.MIB->createInstrumentedIndCallHandlerEntryBB( 622 Summary->IndCallCounterFuncPtr, 623 IndCallHandlerExitBB->getSymbol(), &*BC.Ctx)); 624 625 BinaryFunction *IndTailCallHandlerExitBB = createSimpleFunction( 626 "__bolt_instr_ind_tail_call_handler", 627 BC.MIB->createInstrumentedIndTailCallHandlerExitBB()); 628 629 IndTailCallHandlerExitBBFunction = createSimpleFunction( 630 "__bolt_instr_ind_tailcall_handler_func", 631 BC.MIB->createInstrumentedIndCallHandlerEntryBB( 632 Summary->IndTailCallCounterFuncPtr, 633 IndTailCallHandlerExitBB->getSymbol(), &*BC.Ctx)); 634 635 createSimpleFunction("__bolt_num_counters_getter", 636 BC.MIB->createNumCountersGetter(BC.Ctx.get())); 637 createSimpleFunction("__bolt_instr_locations_getter", 638 BC.MIB->createInstrLocationsGetter(BC.Ctx.get())); 639 createSimpleFunction("__bolt_instr_tables_getter", 640 BC.MIB->createInstrTablesGetter(BC.Ctx.get())); 641 createSimpleFunction("__bolt_instr_num_funcs_getter", 642 BC.MIB->createInstrNumFuncsGetter(BC.Ctx.get())); 643 644 if (BC.isELF()) { 645 if (BC.StartFunctionAddress) { 646 BinaryFunction *Start = 647 BC.getBinaryFunctionAtAddress(*BC.StartFunctionAddress); 648 assert(Start && "Entry point function not found"); 649 const MCSymbol *StartSym = Start->getSymbol(); 650 createSimpleFunction( 651 "__bolt_start_trampoline", 652 BC.MIB->createSymbolTrampoline(StartSym, BC.Ctx.get())); 653 } 654 if (BC.FiniFunctionAddress) { 655 BinaryFunction *Fini = 656 BC.getBinaryFunctionAtAddress(*BC.FiniFunctionAddress); 657 assert(Fini && "Finalization function not found"); 658 const MCSymbol *FiniSym = Fini->getSymbol(); 659 createSimpleFunction( 660 "__bolt_fini_trampoline", 661 BC.MIB->createSymbolTrampoline(FiniSym, BC.Ctx.get())); 662 } else { 663 // Create dummy return function for trampoline to avoid issues 664 // with unknown symbol in runtime library. E.g. for static PIE 665 // executable 666 createSimpleFunction("__bolt_fini_trampoline", 667 BC.MIB->createDummyReturnFunction(BC.Ctx.get())); 668 } 669 } 670 } 671 672 void Instrumentation::setupRuntimeLibrary(BinaryContext &BC) { 673 uint32_t FuncDescSize = Summary->getFDSize(); 674 675 outs() << "BOLT-INSTRUMENTER: Number of indirect call site descriptors: " 676 << Summary->IndCallDescriptions.size() << "\n"; 677 outs() << "BOLT-INSTRUMENTER: Number of indirect call target descriptors: " 678 << Summary->IndCallTargetDescriptions.size() << "\n"; 679 outs() << "BOLT-INSTRUMENTER: Number of function descriptors: " 680 << Summary->FunctionDescriptions.size() << "\n"; 681 outs() << "BOLT-INSTRUMENTER: Number of branch counters: " << BranchCounters 682 << "\n"; 683 outs() << "BOLT-INSTRUMENTER: Number of ST leaf node counters: " 684 << LeafNodeCounters << "\n"; 685 outs() << "BOLT-INSTRUMENTER: Number of direct call counters: " 686 << DirectCallCounters << "\n"; 687 outs() << "BOLT-INSTRUMENTER: Total number of counters: " 688 << Summary->Counters.size() << "\n"; 689 outs() << "BOLT-INSTRUMENTER: Total size of counters: " 690 << (Summary->Counters.size() * 8) << " bytes (static alloc memory)\n"; 691 outs() << "BOLT-INSTRUMENTER: Total size of string table emitted: " 692 << Summary->StringTable.size() << " bytes in file\n"; 693 outs() << "BOLT-INSTRUMENTER: Total size of descriptors: " 694 << (FuncDescSize + 695 Summary->IndCallDescriptions.size() * sizeof(IndCallDescription) + 696 Summary->IndCallTargetDescriptions.size() * 697 sizeof(IndCallTargetDescription)) 698 << " bytes in file\n"; 699 outs() << "BOLT-INSTRUMENTER: Profile will be saved to file " 700 << opts::InstrumentationFilename << "\n"; 701 702 InstrumentationRuntimeLibrary *RtLibrary = 703 static_cast<InstrumentationRuntimeLibrary *>(BC.getRuntimeLibrary()); 704 assert(RtLibrary && "instrumentation runtime library object must be set"); 705 RtLibrary->setSummary(std::move(Summary)); 706 } 707 } // namespace bolt 708 } // namespace llvm 709