xref: /llvm-project/bolt/lib/Passes/IdenticalCodeFolding.cpp (revision 599e0da32f851401607206ef950a49cf2e67aa2d)
1 //===- bolt/Passes/IdenticalCodeFolding.cpp -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the IdenticalCodeFolding class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "bolt/Passes/IdenticalCodeFolding.h"
14 #include "bolt/Core/HashUtilities.h"
15 #include "bolt/Core/ParallelUtilities.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Support/CommandLine.h"
18 #include "llvm/Support/ThreadPool.h"
19 #include "llvm/Support/Timer.h"
20 #include <atomic>
21 #include <iterator>
22 #include <map>
23 #include <set>
24 #include <unordered_map>
25 
26 #define DEBUG_TYPE "bolt-icf"
27 
28 using namespace llvm;
29 using namespace bolt;
30 
31 namespace opts {
32 
33 extern cl::OptionCategory BoltOptCategory;
34 
35 static cl::opt<bool>
36     ICFUseDFS("icf-dfs", cl::desc("use DFS ordering when using -icf option"),
37               cl::ReallyHidden, cl::cat(BoltOptCategory));
38 
39 static cl::opt<bool>
40 TimeICF("time-icf",
41   cl::desc("time icf steps"),
42   cl::ReallyHidden,
43   cl::ZeroOrMore,
44   cl::cat(BoltOptCategory));
45 } // namespace opts
46 
47 /// Compare two jump tables in 2 functions. The function relies on consistent
48 /// ordering of basic blocks in both binary functions (e.g. DFS).
49 static bool equalJumpTables(const JumpTable &JumpTableA,
50                             const JumpTable &JumpTableB,
51                             const BinaryFunction &FunctionA,
52                             const BinaryFunction &FunctionB) {
53   if (JumpTableA.EntrySize != JumpTableB.EntrySize)
54     return false;
55 
56   if (JumpTableA.Type != JumpTableB.Type)
57     return false;
58 
59   if (JumpTableA.getSize() != JumpTableB.getSize())
60     return false;
61 
62   for (uint64_t Index = 0; Index < JumpTableA.Entries.size(); ++Index) {
63     const MCSymbol *LabelA = JumpTableA.Entries[Index];
64     const MCSymbol *LabelB = JumpTableB.Entries[Index];
65 
66     const BinaryBasicBlock *TargetA = FunctionA.getBasicBlockForLabel(LabelA);
67     const BinaryBasicBlock *TargetB = FunctionB.getBasicBlockForLabel(LabelB);
68 
69     if (!TargetA || !TargetB) {
70       assert((TargetA || LabelA == FunctionA.getFunctionEndLabel()) &&
71              "no target basic block found");
72       assert((TargetB || LabelB == FunctionB.getFunctionEndLabel()) &&
73              "no target basic block found");
74 
75       if (TargetA != TargetB)
76         return false;
77 
78       continue;
79     }
80 
81     assert(TargetA && TargetB && "cannot locate target block(s)");
82 
83     if (TargetA->getLayoutIndex() != TargetB->getLayoutIndex())
84       return false;
85   }
86 
87   return true;
88 }
89 
90 /// Helper function that compares an instruction of this function to the
91 /// given instruction of the given function. The functions should have
92 /// identical CFG.
93 template <class Compare>
94 static bool isInstrEquivalentWith(const MCInst &InstA,
95                                   const BinaryBasicBlock &BBA,
96                                   const MCInst &InstB,
97                                   const BinaryBasicBlock &BBB, Compare Comp) {
98   if (InstA.getOpcode() != InstB.getOpcode())
99     return false;
100 
101   const BinaryContext &BC = BBA.getFunction()->getBinaryContext();
102 
103   // In this function we check for special conditions:
104   //
105   //    * instructions with landing pads
106   //
107   // Most of the common cases should be handled by MCPlus::equals()
108   // that compares regular instruction operands.
109   //
110   // NB: there's no need to compare jump table indirect jump instructions
111   //     separately as jump tables are handled by comparing corresponding
112   //     symbols.
113   const std::optional<MCPlus::MCLandingPad> EHInfoA = BC.MIB->getEHInfo(InstA);
114   const std::optional<MCPlus::MCLandingPad> EHInfoB = BC.MIB->getEHInfo(InstB);
115 
116   if (EHInfoA || EHInfoB) {
117     if (!EHInfoA && (EHInfoB->first || EHInfoB->second))
118       return false;
119 
120     if (!EHInfoB && (EHInfoA->first || EHInfoA->second))
121       return false;
122 
123     if (EHInfoA && EHInfoB) {
124       // Action indices should match.
125       if (EHInfoA->second != EHInfoB->second)
126         return false;
127 
128       if (!EHInfoA->first != !EHInfoB->first)
129         return false;
130 
131       if (EHInfoA->first && EHInfoB->first) {
132         const BinaryBasicBlock *LPA = BBA.getLandingPad(EHInfoA->first);
133         const BinaryBasicBlock *LPB = BBB.getLandingPad(EHInfoB->first);
134         assert(LPA && LPB && "cannot locate landing pad(s)");
135 
136         if (LPA->getLayoutIndex() != LPB->getLayoutIndex())
137           return false;
138       }
139     }
140   }
141 
142   return BC.MIB->equals(InstA, InstB, Comp);
143 }
144 
145 /// Returns true if this function has identical code and CFG with
146 /// the given function \p BF.
147 ///
148 /// If \p CongruentSymbols is set to true, then symbolic operands that reference
149 /// potentially identical but different functions are ignored during the
150 /// comparison.
151 static bool isIdenticalWith(const BinaryFunction &A, const BinaryFunction &B,
152                             bool CongruentSymbols) {
153   assert(A.hasCFG() && B.hasCFG() && "both functions should have CFG");
154 
155   // Compare the two functions, one basic block at a time.
156   // Currently we require two identical basic blocks to have identical
157   // instruction sequences and the same index in their corresponding
158   // functions. The latter is important for CFG equality.
159 
160   if (A.getLayout().block_size() != B.getLayout().block_size())
161     return false;
162 
163   // Comparing multi-entry functions could be non-trivial.
164   if (A.isMultiEntry() || B.isMultiEntry())
165     return false;
166 
167   if (A.hasIslandsInfo() || B.hasIslandsInfo())
168     return false;
169 
170   // Process both functions in either DFS or existing order.
171   SmallVector<const BinaryBasicBlock *, 0> OrderA;
172   SmallVector<const BinaryBasicBlock *, 0> OrderB;
173   if (opts::ICFUseDFS) {
174     copy(A.dfs(), std::back_inserter(OrderA));
175     copy(B.dfs(), std::back_inserter(OrderB));
176   } else {
177     copy(A.getLayout().blocks(), std::back_inserter(OrderA));
178     copy(B.getLayout().blocks(), std::back_inserter(OrderB));
179   }
180 
181   const BinaryContext &BC = A.getBinaryContext();
182 
183   auto BBI = OrderB.begin();
184   for (const BinaryBasicBlock *BB : OrderA) {
185     const BinaryBasicBlock *OtherBB = *BBI;
186 
187     if (BB->getLayoutIndex() != OtherBB->getLayoutIndex())
188       return false;
189 
190     // Compare successor basic blocks.
191     // NOTE: the comparison for jump tables is only partially verified here.
192     if (BB->succ_size() != OtherBB->succ_size())
193       return false;
194 
195     auto SuccBBI = OtherBB->succ_begin();
196     for (const BinaryBasicBlock *SuccBB : BB->successors()) {
197       const BinaryBasicBlock *SuccOtherBB = *SuccBBI;
198       if (SuccBB->getLayoutIndex() != SuccOtherBB->getLayoutIndex())
199         return false;
200       ++SuccBBI;
201     }
202 
203     // Compare all instructions including pseudos.
204     auto I = BB->begin(), E = BB->end();
205     auto OtherI = OtherBB->begin(), OtherE = OtherBB->end();
206     while (I != E && OtherI != OtherE) {
207       // Compare symbols.
208       auto AreSymbolsIdentical = [&](const MCSymbol *SymbolA,
209                                      const MCSymbol *SymbolB) {
210         if (SymbolA == SymbolB)
211           return true;
212 
213         // All local symbols are considered identical since they affect a
214         // control flow and we check the control flow separately.
215         // If a local symbol is escaped, then the function (potentially) has
216         // multiple entry points and we exclude such functions from
217         // comparison.
218         if (SymbolA->isTemporary() && SymbolB->isTemporary())
219           return true;
220 
221         // Compare symbols as functions.
222         uint64_t EntryIDA = 0;
223         uint64_t EntryIDB = 0;
224         const BinaryFunction *FunctionA =
225             BC.getFunctionForSymbol(SymbolA, &EntryIDA);
226         const BinaryFunction *FunctionB =
227             BC.getFunctionForSymbol(SymbolB, &EntryIDB);
228         if (FunctionA && EntryIDA)
229           FunctionA = nullptr;
230         if (FunctionB && EntryIDB)
231           FunctionB = nullptr;
232         if (FunctionA && FunctionB) {
233           // Self-referencing functions and recursive calls.
234           if (FunctionA == &A && FunctionB == &B)
235             return true;
236 
237           // Functions with different hash values can never become identical,
238           // hence A and B are different.
239           if (CongruentSymbols)
240             return FunctionA->getHash() == FunctionB->getHash();
241 
242           return FunctionA == FunctionB;
243         }
244 
245         // One of the symbols represents a function, the other one does not.
246         if (FunctionA != FunctionB)
247           return false;
248 
249         // Check if symbols are jump tables.
250         const BinaryData *SIA = BC.getBinaryDataByName(SymbolA->getName());
251         if (!SIA)
252           return false;
253         const BinaryData *SIB = BC.getBinaryDataByName(SymbolB->getName());
254         if (!SIB)
255           return false;
256 
257         assert((SIA->getAddress() != SIB->getAddress()) &&
258                "different symbols should not have the same value");
259 
260         const JumpTable *JumpTableA =
261             A.getJumpTableContainingAddress(SIA->getAddress());
262         if (!JumpTableA)
263           return false;
264 
265         const JumpTable *JumpTableB =
266             B.getJumpTableContainingAddress(SIB->getAddress());
267         if (!JumpTableB)
268           return false;
269 
270         if ((SIA->getAddress() - JumpTableA->getAddress()) !=
271             (SIB->getAddress() - JumpTableB->getAddress()))
272           return false;
273 
274         return equalJumpTables(*JumpTableA, *JumpTableB, A, B);
275       };
276 
277       if (!isInstrEquivalentWith(*I, *BB, *OtherI, *OtherBB,
278                                  AreSymbolsIdentical))
279         return false;
280 
281       ++I;
282       ++OtherI;
283     }
284 
285     // One of the identical blocks may have a trailing unconditional jump that
286     // is ignored for CFG purposes.
287     const MCInst *TrailingInstr =
288         (I != E ? &(*I) : (OtherI != OtherE ? &(*OtherI) : nullptr));
289     if (TrailingInstr && !BC.MIB->isUnconditionalBranch(*TrailingInstr))
290       return false;
291 
292     ++BBI;
293   }
294 
295   // Compare exceptions action tables.
296   if (A.getLSDAActionTable() != B.getLSDAActionTable() ||
297       A.getLSDATypeTable() != B.getLSDATypeTable() ||
298       A.getLSDATypeIndexTable() != B.getLSDATypeIndexTable())
299     return false;
300 
301   return true;
302 }
303 
304 // This hash table is used to identify identical functions. It maps
305 // a function to a bucket of functions identical to it.
306 struct KeyHash {
307   size_t operator()(const BinaryFunction *F) const { return F->getHash(); }
308 };
309 
310 /// Identify two congruent functions. Two functions are considered congruent,
311 /// if they are identical/equal except for some of their instruction operands
312 /// that reference potentially identical functions, i.e. functions that could
313 /// be folded later. Congruent functions are candidates for folding in our
314 /// iterative ICF algorithm.
315 ///
316 /// Congruent functions are required to have identical hash.
317 struct KeyCongruent {
318   bool operator()(const BinaryFunction *A, const BinaryFunction *B) const {
319     if (A == B)
320       return true;
321     return isIdenticalWith(*A, *B, /*CongruentSymbols=*/true);
322   }
323 };
324 
325 struct KeyEqual {
326   bool operator()(const BinaryFunction *A, const BinaryFunction *B) const {
327     if (A == B)
328       return true;
329     return isIdenticalWith(*A, *B, /*CongruentSymbols=*/false);
330   }
331 };
332 
333 typedef std::unordered_map<BinaryFunction *, std::set<BinaryFunction *>,
334                            KeyHash, KeyCongruent>
335     CongruentBucketsMap;
336 
337 typedef std::unordered_map<BinaryFunction *, std::vector<BinaryFunction *>,
338                            KeyHash, KeyEqual>
339     IdenticalBucketsMap;
340 
341 namespace llvm {
342 namespace bolt {
343 
344 void IdenticalCodeFolding::runOnFunctions(BinaryContext &BC) {
345   const size_t OriginalFunctionCount = BC.getBinaryFunctions().size();
346   uint64_t NumFunctionsFolded = 0;
347   std::atomic<uint64_t> NumJTFunctionsFolded{0};
348   std::atomic<uint64_t> BytesSavedEstimate{0};
349   std::atomic<uint64_t> NumCalled{0};
350   std::atomic<uint64_t> NumFoldedLastIteration{0};
351   CongruentBucketsMap CongruentBuckets;
352 
353   // Hash all the functions
354   auto hashFunctions = [&]() {
355     NamedRegionTimer HashFunctionsTimer("hashing", "hashing", "ICF breakdown",
356                                         "ICF breakdown", opts::TimeICF);
357     ParallelUtilities::WorkFuncTy WorkFun = [&](BinaryFunction &BF) {
358       // Make sure indices are in-order.
359       BF.getLayout().updateLayoutIndices();
360 
361       // Pre-compute hash before pushing into hashtable.
362       // Hash instruction operands to minimize hash collisions.
363       BF.computeHash(opts::ICFUseDFS, [&BC](const MCOperand &Op) {
364         return hashInstOperand(BC, Op);
365       });
366     };
367 
368     ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) {
369       return !shouldOptimize(BF);
370     };
371 
372     ParallelUtilities::runOnEachFunction(
373         BC, ParallelUtilities::SchedulingPolicy::SP_TRIVIAL, WorkFun, SkipFunc,
374         "hashFunctions", /*ForceSequential*/ false, 2);
375   };
376 
377   // Creates buckets with congruent functions - functions that potentially
378   // could  be folded.
379   auto createCongruentBuckets = [&]() {
380     NamedRegionTimer CongruentBucketsTimer("congruent buckets",
381                                            "congruent buckets", "ICF breakdown",
382                                            "ICF breakdown", opts::TimeICF);
383     for (auto &BFI : BC.getBinaryFunctions()) {
384       BinaryFunction &BF = BFI.second;
385       if (!this->shouldOptimize(BF))
386         continue;
387       CongruentBuckets[&BF].emplace(&BF);
388     }
389   };
390 
391   // Partition each set of congruent functions into sets of identical functions
392   // and fold them
393   auto performFoldingPass = [&]() {
394     NamedRegionTimer FoldingPassesTimer("folding passes", "folding passes",
395                                         "ICF breakdown", "ICF breakdown",
396                                         opts::TimeICF);
397     Timer SinglePass("single fold pass", "single fold pass");
398     LLVM_DEBUG(SinglePass.startTimer());
399 
400     ThreadPool *ThPool;
401     if (!opts::NoThreads)
402       ThPool = &ParallelUtilities::getThreadPool();
403 
404     // Fold identical functions within a single congruent bucket
405     auto processSingleBucket = [&](std::set<BinaryFunction *> &Candidates) {
406       Timer T("folding single congruent list", "folding single congruent list");
407       LLVM_DEBUG(T.startTimer());
408 
409       // Identical functions go into the same bucket.
410       IdenticalBucketsMap IdenticalBuckets;
411       for (BinaryFunction *BF : Candidates) {
412         IdenticalBuckets[BF].emplace_back(BF);
413       }
414 
415       for (auto &IBI : IdenticalBuckets) {
416         // Functions identified as identical.
417         std::vector<BinaryFunction *> &Twins = IBI.second;
418         if (Twins.size() < 2)
419           continue;
420 
421         // Fold functions. Keep the order consistent across invocations with
422         // different options.
423         llvm::stable_sort(
424             Twins, [](const BinaryFunction *A, const BinaryFunction *B) {
425               return A->getFunctionNumber() < B->getFunctionNumber();
426             });
427 
428         BinaryFunction *ParentBF = Twins[0];
429         if (!ParentBF->hasFunctionsFoldedInto())
430           NumCalled += ParentBF->getKnownExecutionCount();
431         for (unsigned I = 1; I < Twins.size(); ++I) {
432           BinaryFunction *ChildBF = Twins[I];
433           LLVM_DEBUG(dbgs() << "BOLT-DEBUG: folding " << *ChildBF << " into "
434                             << *ParentBF << '\n');
435 
436           // Remove child function from the list of candidates.
437           auto FI = Candidates.find(ChildBF);
438           assert(FI != Candidates.end() &&
439                  "function expected to be in the set");
440           Candidates.erase(FI);
441 
442           // Fold the function and remove from the list of processed functions.
443           BytesSavedEstimate += ChildBF->getSize();
444           if (!ChildBF->hasFunctionsFoldedInto())
445             NumCalled += ChildBF->getKnownExecutionCount();
446           BC.foldFunction(*ChildBF, *ParentBF);
447 
448           ++NumFoldedLastIteration;
449 
450           if (ParentBF->hasJumpTables())
451             ++NumJTFunctionsFolded;
452         }
453       }
454 
455       LLVM_DEBUG(T.stopTimer());
456     };
457 
458     // Create a task for each congruent bucket
459     for (auto &Entry : CongruentBuckets) {
460       std::set<BinaryFunction *> &Bucket = Entry.second;
461       if (Bucket.size() < 2)
462         continue;
463 
464       if (opts::NoThreads)
465         processSingleBucket(Bucket);
466       else
467         ThPool->async(processSingleBucket, std::ref(Bucket));
468     }
469 
470     if (!opts::NoThreads)
471       ThPool->wait();
472 
473     LLVM_DEBUG(SinglePass.stopTimer());
474   };
475 
476   hashFunctions();
477   createCongruentBuckets();
478 
479   unsigned Iteration = 1;
480   // We repeat the pass until no new modifications happen.
481   do {
482     NumFoldedLastIteration = 0;
483     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ICF iteration " << Iteration << "...\n");
484 
485     performFoldingPass();
486 
487     NumFunctionsFolded += NumFoldedLastIteration;
488     ++Iteration;
489 
490   } while (NumFoldedLastIteration > 0);
491 
492   LLVM_DEBUG({
493     // Print functions that are congruent but not identical.
494     for (auto &CBI : CongruentBuckets) {
495       std::set<BinaryFunction *> &Candidates = CBI.second;
496       if (Candidates.size() < 2)
497         continue;
498       dbgs() << "BOLT-DEBUG: the following " << Candidates.size()
499              << " functions (each of size " << (*Candidates.begin())->getSize()
500              << " bytes) are congruent but not identical:\n";
501       for (BinaryFunction *BF : Candidates) {
502         dbgs() << "  " << *BF;
503         if (BF->getKnownExecutionCount())
504           dbgs() << " (executed " << BF->getKnownExecutionCount() << " times)";
505         dbgs() << '\n';
506       }
507     }
508   });
509 
510   if (NumFunctionsFolded)
511     outs() << "BOLT-INFO: ICF folded " << NumFunctionsFolded << " out of "
512            << OriginalFunctionCount << " functions in " << Iteration
513            << " passes. " << NumJTFunctionsFolded
514            << " functions had jump tables.\n"
515            << "BOLT-INFO: Removing all identical functions will save "
516            << format("%.2lf", (double)BytesSavedEstimate / 1024)
517            << " KB of code space. Folded functions were called " << NumCalled
518            << " times based on profile.\n";
519 }
520 
521 } // namespace bolt
522 } // namespace llvm
523