xref: /llvm-project/bolt/lib/Passes/IdenticalCodeFolding.cpp (revision 2f09f445b2d6b3ef197aecd8d1e06d08140380f3)
1 //===- bolt/Passes/IdenticalCodeFolding.cpp -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the IdenticalCodeFolding class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "bolt/Passes/IdenticalCodeFolding.h"
14 #include "bolt/Core/ParallelUtilities.h"
15 #include "llvm/Support/CommandLine.h"
16 #include "llvm/Support/ThreadPool.h"
17 #include "llvm/Support/Timer.h"
18 #include <atomic>
19 #include <map>
20 #include <set>
21 #include <unordered_map>
22 
23 #define DEBUG_TYPE "bolt-icf"
24 
25 using namespace llvm;
26 using namespace bolt;
27 
28 namespace opts {
29 
30 extern cl::OptionCategory BoltOptCategory;
31 
32 static cl::opt<bool>
33 UseDFS("icf-dfs",
34   cl::desc("use DFS ordering when using -icf option"),
35   cl::ReallyHidden,
36   cl::ZeroOrMore,
37   cl::cat(BoltOptCategory));
38 
39 static cl::opt<bool>
40 TimeICF("time-icf",
41   cl::desc("time icf steps"),
42   cl::ReallyHidden,
43   cl::ZeroOrMore,
44   cl::cat(BoltOptCategory));
45 } // namespace opts
46 
47 namespace {
48 using JumpTable = bolt::JumpTable;
49 
50 /// Compare two jump tables in 2 functions. The function relies on consistent
51 /// ordering of basic blocks in both binary functions (e.g. DFS).
52 bool equalJumpTables(const JumpTable &JumpTableA, const JumpTable &JumpTableB,
53                      const BinaryFunction &FunctionA,
54                      const BinaryFunction &FunctionB) {
55   if (JumpTableA.EntrySize != JumpTableB.EntrySize)
56     return false;
57 
58   if (JumpTableA.Type != JumpTableB.Type)
59     return false;
60 
61   if (JumpTableA.getSize() != JumpTableB.getSize())
62     return false;
63 
64   for (uint64_t Index = 0; Index < JumpTableA.Entries.size(); ++Index) {
65     const MCSymbol *LabelA = JumpTableA.Entries[Index];
66     const MCSymbol *LabelB = JumpTableB.Entries[Index];
67 
68     const BinaryBasicBlock *TargetA = FunctionA.getBasicBlockForLabel(LabelA);
69     const BinaryBasicBlock *TargetB = FunctionB.getBasicBlockForLabel(LabelB);
70 
71     if (!TargetA || !TargetB) {
72       assert((TargetA || LabelA == FunctionA.getFunctionEndLabel()) &&
73              "no target basic block found");
74       assert((TargetB || LabelB == FunctionB.getFunctionEndLabel()) &&
75              "no target basic block found");
76 
77       if (TargetA != TargetB)
78         return false;
79 
80       continue;
81     }
82 
83     assert(TargetA && TargetB && "cannot locate target block(s)");
84 
85     if (TargetA->getLayoutIndex() != TargetB->getLayoutIndex())
86       return false;
87   }
88 
89   return true;
90 }
91 
92 /// Helper function that compares an instruction of this function to the
93 /// given instruction of the given function. The functions should have
94 /// identical CFG.
95 template <class Compare>
96 bool isInstrEquivalentWith(const MCInst &InstA, const BinaryBasicBlock &BBA,
97                            const MCInst &InstB, const BinaryBasicBlock &BBB,
98                            Compare Comp) {
99   if (InstA.getOpcode() != InstB.getOpcode()) {
100     return false;
101   }
102 
103   const BinaryContext &BC = BBA.getFunction()->getBinaryContext();
104 
105   // In this function we check for special conditions:
106   //
107   //    * instructions with landing pads
108   //
109   // Most of the common cases should be handled by MCPlus::equals()
110   // that compares regular instruction operands.
111   //
112   // NB: there's no need to compare jump table indirect jump instructions
113   //     separately as jump tables are handled by comparing corresponding
114   //     symbols.
115   const Optional<MCPlus::MCLandingPad> EHInfoA = BC.MIB->getEHInfo(InstA);
116   const Optional<MCPlus::MCLandingPad> EHInfoB = BC.MIB->getEHInfo(InstB);
117 
118   if (EHInfoA || EHInfoB) {
119     if (!EHInfoA && (EHInfoB->first || EHInfoB->second))
120       return false;
121 
122     if (!EHInfoB && (EHInfoA->first || EHInfoA->second))
123       return false;
124 
125     if (EHInfoA && EHInfoB) {
126       // Action indices should match.
127       if (EHInfoA->second != EHInfoB->second)
128         return false;
129 
130       if (!EHInfoA->first != !EHInfoB->first)
131         return false;
132 
133       if (EHInfoA->first && EHInfoB->first) {
134         const BinaryBasicBlock *LPA = BBA.getLandingPad(EHInfoA->first);
135         const BinaryBasicBlock *LPB = BBB.getLandingPad(EHInfoB->first);
136         assert(LPA && LPB && "cannot locate landing pad(s)");
137 
138         if (LPA->getLayoutIndex() != LPB->getLayoutIndex())
139           return false;
140       }
141     }
142   }
143 
144   return BC.MIB->equals(InstA, InstB, Comp);
145 }
146 
147 /// Returns true if this function has identical code and CFG with
148 /// the given function \p BF.
149 ///
150 /// If \p CongruentSymbols is set to true, then symbolic operands that reference
151 /// potentially identical but different functions are ignored during the
152 /// comparison.
153 bool isIdenticalWith(const BinaryFunction &A, const BinaryFunction &B,
154                      bool CongruentSymbols) {
155   assert(A.hasCFG() && B.hasCFG() && "both functions should have CFG");
156 
157   // Compare the two functions, one basic block at a time.
158   // Currently we require two identical basic blocks to have identical
159   // instruction sequences and the same index in their corresponding
160   // functions. The latter is important for CFG equality.
161 
162   if (A.layout_size() != B.layout_size())
163     return false;
164 
165   // Comparing multi-entry functions could be non-trivial.
166   if (A.isMultiEntry() || B.isMultiEntry())
167     return false;
168 
169   // Process both functions in either DFS or existing order.
170   const BinaryFunction::BasicBlockOrderType &OrderA =
171       opts::UseDFS ? A.dfs() : A.getLayout();
172   const BinaryFunction::BasicBlockOrderType &OrderB =
173       opts::UseDFS ? B.dfs() : B.getLayout();
174 
175   const BinaryContext &BC = A.getBinaryContext();
176 
177   auto BBI = OrderB.begin();
178   for (const BinaryBasicBlock *BB : OrderA) {
179     const BinaryBasicBlock *OtherBB = *BBI;
180 
181     if (BB->getLayoutIndex() != OtherBB->getLayoutIndex())
182       return false;
183 
184     // Compare successor basic blocks.
185     // NOTE: the comparison for jump tables is only partially verified here.
186     if (BB->succ_size() != OtherBB->succ_size())
187       return false;
188 
189     auto SuccBBI = OtherBB->succ_begin();
190     for (const BinaryBasicBlock *SuccBB : BB->successors()) {
191       const BinaryBasicBlock *SuccOtherBB = *SuccBBI;
192       if (SuccBB->getLayoutIndex() != SuccOtherBB->getLayoutIndex())
193         return false;
194       ++SuccBBI;
195     }
196 
197     // Compare all instructions including pseudos.
198     auto I = BB->begin(), E = BB->end();
199     auto OtherI = OtherBB->begin(), OtherE = OtherBB->end();
200     while (I != E && OtherI != OtherE) {
201       // Compare symbols.
202       auto AreSymbolsIdentical = [&](const MCSymbol *SymbolA,
203                                      const MCSymbol *SymbolB) {
204         if (SymbolA == SymbolB)
205           return true;
206 
207         // All local symbols are considered identical since they affect a
208         // control flow and we check the control flow separately.
209         // If a local symbol is escaped, then the function (potentially) has
210         // multiple entry points and we exclude such functions from
211         // comparison.
212         if (SymbolA->isTemporary() && SymbolB->isTemporary())
213           return true;
214 
215         // Compare symbols as functions.
216         uint64_t EntryIDA = 0;
217         uint64_t EntryIDB = 0;
218         const BinaryFunction *FunctionA =
219             BC.getFunctionForSymbol(SymbolA, &EntryIDA);
220         const BinaryFunction *FunctionB =
221             BC.getFunctionForSymbol(SymbolB, &EntryIDB);
222         if (FunctionA && EntryIDA)
223           FunctionA = nullptr;
224         if (FunctionB && EntryIDB)
225           FunctionB = nullptr;
226         if (FunctionA && FunctionB) {
227           // Self-referencing functions and recursive calls.
228           if (FunctionA == &A && FunctionB == &B)
229             return true;
230 
231           // Functions with different hash values can never become identical,
232           // hence A and B are different.
233           if (CongruentSymbols)
234             return FunctionA->getHash() == FunctionB->getHash();
235 
236           return FunctionA == FunctionB;
237         }
238 
239         // One of the symbols represents a function, the other one does not.
240         if (FunctionA != FunctionB) {
241           return false;
242         }
243 
244         // Check if symbols are jump tables.
245         const BinaryData *SIA = BC.getBinaryDataByName(SymbolA->getName());
246         if (!SIA)
247           return false;
248         const BinaryData *SIB = BC.getBinaryDataByName(SymbolB->getName());
249         if (!SIB)
250           return false;
251 
252         assert((SIA->getAddress() != SIB->getAddress()) &&
253                "different symbols should not have the same value");
254 
255         const JumpTable *JumpTableA =
256             A.getJumpTableContainingAddress(SIA->getAddress());
257         if (!JumpTableA)
258           return false;
259 
260         const JumpTable *JumpTableB =
261             B.getJumpTableContainingAddress(SIB->getAddress());
262         if (!JumpTableB)
263           return false;
264 
265         if ((SIA->getAddress() - JumpTableA->getAddress()) !=
266             (SIB->getAddress() - JumpTableB->getAddress()))
267           return false;
268 
269         return equalJumpTables(*JumpTableA, *JumpTableB, A, B);
270       };
271 
272       if (!isInstrEquivalentWith(*I, *BB, *OtherI, *OtherBB,
273                                  AreSymbolsIdentical)) {
274         return false;
275       }
276 
277       ++I;
278       ++OtherI;
279     }
280 
281     // One of the identical blocks may have a trailing unconditional jump that
282     // is ignored for CFG purposes.
283     const MCInst *TrailingInstr =
284         (I != E ? &(*I) : (OtherI != OtherE ? &(*OtherI) : 0));
285     if (TrailingInstr && !BC.MIB->isUnconditionalBranch(*TrailingInstr)) {
286       return false;
287     }
288 
289     ++BBI;
290   }
291 
292   // Compare exceptions action tables.
293   if (A.getLSDAActionTable() != B.getLSDAActionTable() ||
294       A.getLSDATypeTable() != B.getLSDATypeTable() ||
295       A.getLSDATypeIndexTable() != B.getLSDATypeIndexTable()) {
296     return false;
297   }
298 
299   return true;
300 }
301 
302 // This hash table is used to identify identical functions. It maps
303 // a function to a bucket of functions identical to it.
304 struct KeyHash {
305   size_t operator()(const BinaryFunction *F) const { return F->getHash(); }
306 };
307 
308 /// Identify two congruent functions. Two functions are considered congruent,
309 /// if they are identical/equal except for some of their instruction operands
310 /// that reference potentially identical functions, i.e. functions that could
311 /// be folded later. Congruent functions are candidates for folding in our
312 /// iterative ICF algorithm.
313 ///
314 /// Congruent functions are required to have identical hash.
315 struct KeyCongruent {
316   bool operator()(const BinaryFunction *A, const BinaryFunction *B) const {
317     if (A == B)
318       return true;
319     return isIdenticalWith(*A, *B, /*CongruentSymbols=*/true);
320   }
321 };
322 
323 struct KeyEqual {
324   bool operator()(const BinaryFunction *A, const BinaryFunction *B) const {
325     if (A == B)
326       return true;
327     return isIdenticalWith(*A, *B, /*CongruentSymbols=*/false);
328   }
329 };
330 
331 typedef std::unordered_map<BinaryFunction *, std::set<BinaryFunction *>,
332                            KeyHash, KeyCongruent>
333     CongruentBucketsMap;
334 
335 typedef std::unordered_map<BinaryFunction *, std::vector<BinaryFunction *>,
336                            KeyHash, KeyEqual>
337     IdenticalBucketsMap;
338 
339 std::string hashInteger(uint64_t Value) {
340   std::string HashString;
341   if (Value == 0) {
342     HashString.push_back(0);
343   }
344   while (Value) {
345     uint8_t LSB = Value & 0xff;
346     HashString.push_back(LSB);
347     Value >>= 8;
348   }
349 
350   return HashString;
351 }
352 
353 std::string hashSymbol(BinaryContext &BC, const MCSymbol &Symbol) {
354   std::string HashString;
355 
356   // Ignore function references.
357   if (BC.getFunctionForSymbol(&Symbol))
358     return HashString;
359 
360   llvm::ErrorOr<uint64_t> ErrorOrValue = BC.getSymbolValue(Symbol);
361   if (!ErrorOrValue)
362     return HashString;
363 
364   // Ignore jump table references.
365   if (BC.getJumpTableContainingAddress(*ErrorOrValue))
366     return HashString;
367 
368   return HashString.append(hashInteger(*ErrorOrValue));
369 }
370 
371 std::string hashExpr(BinaryContext &BC, const MCExpr &Expr) {
372   switch (Expr.getKind()) {
373   case MCExpr::Constant:
374     return hashInteger(cast<MCConstantExpr>(Expr).getValue());
375   case MCExpr::SymbolRef:
376     return hashSymbol(BC, cast<MCSymbolRefExpr>(Expr).getSymbol());
377   case MCExpr::Unary: {
378     const auto &UnaryExpr = cast<MCUnaryExpr>(Expr);
379     return hashInteger(UnaryExpr.getOpcode())
380         .append(hashExpr(BC, *UnaryExpr.getSubExpr()));
381   }
382   case MCExpr::Binary: {
383     const auto &BinaryExpr = cast<MCBinaryExpr>(Expr);
384     return hashExpr(BC, *BinaryExpr.getLHS())
385         .append(hashInteger(BinaryExpr.getOpcode()))
386         .append(hashExpr(BC, *BinaryExpr.getRHS()));
387   }
388   case MCExpr::Target:
389     return std::string();
390   }
391 
392   llvm_unreachable("invalid expression kind");
393 }
394 
395 std::string hashInstOperand(BinaryContext &BC, const MCOperand &Operand) {
396   if (Operand.isImm()) {
397     return hashInteger(Operand.getImm());
398   } else if (Operand.isReg()) {
399     return hashInteger(Operand.getReg());
400   } else if (Operand.isExpr()) {
401     return hashExpr(BC, *Operand.getExpr());
402   }
403 
404   return std::string();
405 }
406 
407 } // namespace
408 
409 namespace llvm {
410 namespace bolt {
411 
412 void IdenticalCodeFolding::runOnFunctions(BinaryContext &BC) {
413   const size_t OriginalFunctionCount = BC.getBinaryFunctions().size();
414   uint64_t NumFunctionsFolded = 0;
415   std::atomic<uint64_t> NumJTFunctionsFolded{0};
416   std::atomic<uint64_t> BytesSavedEstimate{0};
417   std::atomic<uint64_t> CallsSavedEstimate{0};
418   std::atomic<uint64_t> NumFoldedLastIteration{0};
419   CongruentBucketsMap CongruentBuckets;
420 
421   // Hash all the functions
422   auto hashFunctions = [&]() {
423     NamedRegionTimer HashFunctionsTimer("hashing", "hashing", "ICF breakdown",
424                                         "ICF breakdown", opts::TimeICF);
425     ParallelUtilities::WorkFuncTy WorkFun = [&](BinaryFunction &BF) {
426       // Make sure indices are in-order.
427       BF.updateLayoutIndices();
428 
429       // Pre-compute hash before pushing into hashtable.
430       // Hash instruction operands to minimize hash collisions.
431       BF.computeHash(opts::UseDFS, [&BC](const MCOperand &Op) {
432         return hashInstOperand(BC, Op);
433       });
434     };
435 
436     ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) {
437       return !shouldOptimize(BF);
438     };
439 
440     ParallelUtilities::runOnEachFunction(
441         BC, ParallelUtilities::SchedulingPolicy::SP_TRIVIAL, WorkFun, SkipFunc,
442         "hashFunctions", /*ForceSequential*/ false, 2);
443   };
444 
445   // Creates buckets with congruent functions - functions that potentially
446   // could  be folded.
447   auto createCongruentBuckets = [&]() {
448     NamedRegionTimer CongruentBucketsTimer("congruent buckets",
449                                            "congruent buckets", "ICF breakdown",
450                                            "ICF breakdown", opts::TimeICF);
451     for (auto &BFI : BC.getBinaryFunctions()) {
452       BinaryFunction &BF = BFI.second;
453       if (!this->shouldOptimize(BF))
454         continue;
455       CongruentBuckets[&BF].emplace(&BF);
456     }
457   };
458 
459   // Partition each set of congruent functions into sets of identical functions
460   // and fold them
461   auto performFoldingPass = [&]() {
462     NamedRegionTimer FoldingPassesTimer("folding passes", "folding passes",
463                                         "ICF breakdown", "ICF breakdown",
464                                         opts::TimeICF);
465     Timer SinglePass("single fold pass", "single fold pass");
466     LLVM_DEBUG(SinglePass.startTimer());
467 
468     ThreadPool *ThPool;
469     if (!opts::NoThreads)
470       ThPool = &ParallelUtilities::getThreadPool();
471 
472     // Fold identical functions within a single congruent bucket
473     auto processSingleBucket = [&](std::set<BinaryFunction *> &Candidates) {
474       Timer T("folding single congruent list", "folding single congruent list");
475       LLVM_DEBUG(T.startTimer());
476 
477       // Identical functions go into the same bucket.
478       IdenticalBucketsMap IdenticalBuckets;
479       for (BinaryFunction *BF : Candidates) {
480         IdenticalBuckets[BF].emplace_back(BF);
481       }
482 
483       for (auto &IBI : IdenticalBuckets) {
484         // Functions identified as identical.
485         std::vector<BinaryFunction *> &Twins = IBI.second;
486         if (Twins.size() < 2)
487           continue;
488 
489         // Fold functions. Keep the order consistent across invocations with
490         // different options.
491         std::stable_sort(Twins.begin(), Twins.end(),
492                          [](const BinaryFunction *A, const BinaryFunction *B) {
493                            return A->getFunctionNumber() <
494                                   B->getFunctionNumber();
495                          });
496 
497         BinaryFunction *ParentBF = Twins[0];
498         for (unsigned I = 1; I < Twins.size(); ++I) {
499           BinaryFunction *ChildBF = Twins[I];
500           LLVM_DEBUG(dbgs() << "BOLT-DEBUG: folding " << *ChildBF << " into "
501                             << *ParentBF << '\n');
502 
503           // Remove child function from the list of candidates.
504           auto FI = Candidates.find(ChildBF);
505           assert(FI != Candidates.end() &&
506                  "function expected to be in the set");
507           Candidates.erase(FI);
508 
509           // Fold the function and remove from the list of processed functions.
510           BytesSavedEstimate += ChildBF->getSize();
511           CallsSavedEstimate += std::min(ChildBF->getKnownExecutionCount(),
512                                          ParentBF->getKnownExecutionCount());
513           BC.foldFunction(*ChildBF, *ParentBF);
514 
515           ++NumFoldedLastIteration;
516 
517           if (ParentBF->hasJumpTables())
518             ++NumJTFunctionsFolded;
519         }
520       }
521 
522       LLVM_DEBUG(T.stopTimer());
523     };
524 
525     // Create a task for each congruent bucket
526     for (auto &Entry : CongruentBuckets) {
527       std::set<BinaryFunction *> &Bucket = Entry.second;
528       if (Bucket.size() < 2)
529         continue;
530 
531       if (opts::NoThreads)
532         processSingleBucket(Bucket);
533       else
534         ThPool->async(processSingleBucket, std::ref(Bucket));
535     }
536 
537     if (!opts::NoThreads)
538       ThPool->wait();
539 
540     LLVM_DEBUG(SinglePass.stopTimer());
541   };
542 
543   hashFunctions();
544   createCongruentBuckets();
545 
546   unsigned Iteration = 1;
547   // We repeat the pass until no new modifications happen.
548   do {
549     NumFoldedLastIteration = 0;
550     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ICF iteration " << Iteration << "...\n");
551 
552     performFoldingPass();
553 
554     NumFunctionsFolded += NumFoldedLastIteration;
555     ++Iteration;
556 
557   } while (NumFoldedLastIteration > 0);
558 
559   LLVM_DEBUG({
560     // Print functions that are congruent but not identical.
561     for (auto &CBI : CongruentBuckets) {
562       std::set<BinaryFunction *> &Candidates = CBI.second;
563       if (Candidates.size() < 2)
564         continue;
565       dbgs() << "BOLT-DEBUG: the following " << Candidates.size()
566              << " functions (each of size " << (*Candidates.begin())->getSize()
567              << " bytes) are congruent but not identical:\n";
568       for (BinaryFunction *BF : Candidates) {
569         dbgs() << "  " << *BF;
570         if (BF->getKnownExecutionCount()) {
571           dbgs() << " (executed " << BF->getKnownExecutionCount() << " times)";
572         }
573         dbgs() << '\n';
574       }
575     }
576   });
577 
578   if (NumFunctionsFolded) {
579     outs() << "BOLT-INFO: ICF folded " << NumFunctionsFolded << " out of "
580            << OriginalFunctionCount << " functions in " << Iteration
581            << " passes. " << NumJTFunctionsFolded
582            << " functions had jump tables.\n"
583            << "BOLT-INFO: Removing all identical functions will save "
584            << format("%.2lf", (double)BytesSavedEstimate / 1024)
585            << " KB of code space. Folded functions were called "
586            << CallsSavedEstimate << " times based on profile.\n";
587   }
588 }
589 
590 } // namespace bolt
591 } // namespace llvm
592