1 //===- bolt/Passes/BinaryPasses.cpp - Binary-level passes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements multiple passes for binary optimization and analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Passes/BinaryPasses.h" 14 #include "bolt/Core/FunctionLayout.h" 15 #include "bolt/Core/ParallelUtilities.h" 16 #include "bolt/Passes/ReorderAlgorithm.h" 17 #include "bolt/Passes/ReorderFunctions.h" 18 #include "llvm/Support/CommandLine.h" 19 #include <atomic> 20 #include <mutex> 21 #include <numeric> 22 #include <vector> 23 24 #define DEBUG_TYPE "bolt-opts" 25 26 using namespace llvm; 27 using namespace bolt; 28 29 static const char *dynoStatsOptName(const bolt::DynoStats::Category C) { 30 assert(C > bolt::DynoStats::FIRST_DYNO_STAT && 31 C < DynoStats::LAST_DYNO_STAT && "Unexpected dyno stat category."); 32 33 static std::string OptNames[bolt::DynoStats::LAST_DYNO_STAT + 1]; 34 35 OptNames[C] = bolt::DynoStats::Description(C); 36 37 std::replace(OptNames[C].begin(), OptNames[C].end(), ' ', '-'); 38 39 return OptNames[C].c_str(); 40 } 41 42 namespace opts { 43 44 extern cl::OptionCategory BoltCategory; 45 extern cl::OptionCategory BoltOptCategory; 46 47 extern cl::opt<bolt::MacroFusionType> AlignMacroOpFusion; 48 extern cl::opt<unsigned> Verbosity; 49 extern cl::opt<bool> EnableBAT; 50 extern cl::opt<unsigned> ExecutionCountThreshold; 51 extern cl::opt<bool> UpdateDebugSections; 52 extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions; 53 54 enum DynoStatsSortOrder : char { 55 Ascending, 56 Descending 57 }; 58 59 static cl::opt<DynoStatsSortOrder> DynoStatsSortOrderOpt( 60 "print-sorted-by-order", 61 cl::desc("use ascending or descending order when printing functions " 62 "ordered by dyno stats"), 63 cl::init(DynoStatsSortOrder::Descending), cl::cat(BoltOptCategory)); 64 65 cl::list<std::string> 66 HotTextMoveSections("hot-text-move-sections", 67 cl::desc("list of sections containing functions used for hugifying hot text. " 68 "BOLT makes sure these functions are not placed on the same page as " 69 "the hot text. (default=\'.stub,.mover\')."), 70 cl::value_desc("sec1,sec2,sec3,..."), 71 cl::CommaSeparated, 72 cl::ZeroOrMore, 73 cl::cat(BoltCategory)); 74 75 bool isHotTextMover(const BinaryFunction &Function) { 76 for (std::string &SectionName : opts::HotTextMoveSections) { 77 if (Function.getOriginSectionName() && 78 *Function.getOriginSectionName() == SectionName) 79 return true; 80 } 81 82 return false; 83 } 84 85 static cl::opt<bool> MinBranchClusters( 86 "min-branch-clusters", 87 cl::desc("use a modified clustering algorithm geared towards minimizing " 88 "branches"), 89 cl::Hidden, cl::cat(BoltOptCategory)); 90 91 static cl::list<Peepholes::PeepholeOpts> Peepholes( 92 "peepholes", cl::CommaSeparated, cl::desc("enable peephole optimizations"), 93 cl::value_desc("opt1,opt2,opt3,..."), 94 cl::values(clEnumValN(Peepholes::PEEP_NONE, "none", "disable peepholes"), 95 clEnumValN(Peepholes::PEEP_DOUBLE_JUMPS, "double-jumps", 96 "remove double jumps when able"), 97 clEnumValN(Peepholes::PEEP_TAILCALL_TRAPS, "tailcall-traps", 98 "insert tail call traps"), 99 clEnumValN(Peepholes::PEEP_USELESS_BRANCHES, "useless-branches", 100 "remove useless conditional branches"), 101 clEnumValN(Peepholes::PEEP_ALL, "all", 102 "enable all peephole optimizations")), 103 cl::ZeroOrMore, cl::cat(BoltOptCategory)); 104 105 static cl::opt<unsigned> 106 PrintFuncStat("print-function-statistics", 107 cl::desc("print statistics about basic block ordering"), 108 cl::init(0), cl::cat(BoltOptCategory)); 109 110 static cl::list<bolt::DynoStats::Category> 111 PrintSortedBy("print-sorted-by", cl::CommaSeparated, 112 cl::desc("print functions sorted by order of dyno stats"), 113 cl::value_desc("key1,key2,key3,..."), 114 cl::values( 115 #define D(name, description, ...) \ 116 clEnumValN(bolt::DynoStats::name, dynoStatsOptName(bolt::DynoStats::name), \ 117 description), 118 REAL_DYNO_STATS 119 #undef D 120 clEnumValN(bolt::DynoStats::LAST_DYNO_STAT, "all", 121 "sorted by all names")), 122 cl::ZeroOrMore, cl::cat(BoltOptCategory)); 123 124 static cl::opt<bool> 125 PrintUnknown("print-unknown", 126 cl::desc("print names of functions with unknown control flow"), 127 cl::cat(BoltCategory), cl::Hidden); 128 129 static cl::opt<bool> 130 PrintUnknownCFG("print-unknown-cfg", 131 cl::desc("dump CFG of functions with unknown control flow"), 132 cl::cat(BoltCategory), cl::ReallyHidden); 133 134 // Please MSVC19 with a forward declaration: otherwise it reports an error about 135 // an undeclared variable inside a callback. 136 extern cl::opt<bolt::ReorderBasicBlocks::LayoutType> ReorderBlocks; 137 cl::opt<bolt::ReorderBasicBlocks::LayoutType> ReorderBlocks( 138 "reorder-blocks", cl::desc("change layout of basic blocks in a function"), 139 cl::init(bolt::ReorderBasicBlocks::LT_NONE), 140 cl::values( 141 clEnumValN(bolt::ReorderBasicBlocks::LT_NONE, "none", 142 "do not reorder basic blocks"), 143 clEnumValN(bolt::ReorderBasicBlocks::LT_REVERSE, "reverse", 144 "layout blocks in reverse order"), 145 clEnumValN(bolt::ReorderBasicBlocks::LT_OPTIMIZE, "normal", 146 "perform optimal layout based on profile"), 147 clEnumValN(bolt::ReorderBasicBlocks::LT_OPTIMIZE_BRANCH, 148 "branch-predictor", 149 "perform optimal layout prioritizing branch " 150 "predictions"), 151 clEnumValN(bolt::ReorderBasicBlocks::LT_OPTIMIZE_CACHE, "cache", 152 "perform optimal layout prioritizing I-cache " 153 "behavior"), 154 clEnumValN(bolt::ReorderBasicBlocks::LT_OPTIMIZE_CACHE_PLUS, "cache+", 155 "perform layout optimizing I-cache behavior"), 156 clEnumValN(bolt::ReorderBasicBlocks::LT_OPTIMIZE_EXT_TSP, "ext-tsp", 157 "perform layout optimizing I-cache behavior"), 158 clEnumValN(bolt::ReorderBasicBlocks::LT_OPTIMIZE_SHUFFLE, 159 "cluster-shuffle", "perform random layout of clusters")), 160 cl::ZeroOrMore, cl::cat(BoltOptCategory), 161 cl::callback([](const bolt::ReorderBasicBlocks::LayoutType &option) { 162 if (option == bolt::ReorderBasicBlocks::LT_OPTIMIZE_CACHE_PLUS) { 163 errs() << "BOLT-WARNING: '-reorder-blocks=cache+' is deprecated, please" 164 << " use '-reorder-blocks=ext-tsp' instead\n"; 165 ReorderBlocks = bolt::ReorderBasicBlocks::LT_OPTIMIZE_EXT_TSP; 166 } 167 })); 168 169 static cl::opt<unsigned> ReportBadLayout( 170 "report-bad-layout", 171 cl::desc("print top <uint> functions with suboptimal code layout on input"), 172 cl::init(0), cl::Hidden, cl::cat(BoltOptCategory)); 173 174 static cl::opt<bool> 175 ReportStaleFuncs("report-stale", 176 cl::desc("print the list of functions with stale profile"), 177 cl::Hidden, cl::cat(BoltOptCategory)); 178 179 enum SctcModes : char { 180 SctcAlways, 181 SctcPreserveDirection, 182 SctcHeuristic 183 }; 184 185 static cl::opt<SctcModes> 186 SctcMode("sctc-mode", 187 cl::desc("mode for simplify conditional tail calls"), 188 cl::init(SctcAlways), 189 cl::values(clEnumValN(SctcAlways, "always", "always perform sctc"), 190 clEnumValN(SctcPreserveDirection, 191 "preserve", 192 "only perform sctc when branch direction is " 193 "preserved"), 194 clEnumValN(SctcHeuristic, 195 "heuristic", 196 "use branch prediction data to control sctc")), 197 cl::ZeroOrMore, 198 cl::cat(BoltOptCategory)); 199 200 static cl::opt<unsigned> 201 StaleThreshold("stale-threshold", 202 cl::desc( 203 "maximum percentage of stale functions to tolerate (default: 100)"), 204 cl::init(100), 205 cl::Hidden, 206 cl::cat(BoltOptCategory)); 207 208 static cl::opt<unsigned> TSPThreshold( 209 "tsp-threshold", 210 cl::desc( 211 "maximum number of hot basic blocks in a function for which to use " 212 "a precise TSP solution while re-ordering basic blocks"), 213 cl::init(10), cl::Hidden, cl::cat(BoltOptCategory)); 214 215 static cl::opt<unsigned> TopCalledLimit( 216 "top-called-limit", 217 cl::desc("maximum number of functions to print in top called " 218 "functions section"), 219 cl::init(100), cl::Hidden, cl::cat(BoltCategory)); 220 221 } // namespace opts 222 223 namespace llvm { 224 namespace bolt { 225 226 bool BinaryFunctionPass::shouldOptimize(const BinaryFunction &BF) const { 227 return BF.isSimple() && BF.getState() == BinaryFunction::State::CFG && 228 !BF.isIgnored(); 229 } 230 231 bool BinaryFunctionPass::shouldPrint(const BinaryFunction &BF) const { 232 return BF.isSimple() && !BF.isIgnored(); 233 } 234 235 void NormalizeCFG::runOnFunction(BinaryFunction &BF) { 236 uint64_t NumRemoved = 0; 237 uint64_t NumDuplicateEdges = 0; 238 uint64_t NeedsFixBranches = 0; 239 for (BinaryBasicBlock &BB : BF) { 240 if (!BB.empty()) 241 continue; 242 243 if (BB.isEntryPoint() || BB.isLandingPad()) 244 continue; 245 246 // Handle a dangling empty block. 247 if (BB.succ_size() == 0) { 248 // If an empty dangling basic block has a predecessor, it could be a 249 // result of codegen for __builtin_unreachable. In such case, do not 250 // remove the block. 251 if (BB.pred_size() == 0) { 252 BB.markValid(false); 253 ++NumRemoved; 254 } 255 continue; 256 } 257 258 // The block should have just one successor. 259 BinaryBasicBlock *Successor = BB.getSuccessor(); 260 assert(Successor && "invalid CFG encountered"); 261 262 // Redirect all predecessors to the successor block. 263 while (!BB.pred_empty()) { 264 BinaryBasicBlock *Predecessor = *BB.pred_begin(); 265 if (Predecessor->hasJumpTable()) 266 break; 267 268 if (Predecessor == Successor) 269 break; 270 271 BinaryBasicBlock::BinaryBranchInfo &BI = Predecessor->getBranchInfo(BB); 272 Predecessor->replaceSuccessor(&BB, Successor, BI.Count, 273 BI.MispredictedCount); 274 // We need to fix branches even if we failed to replace all successors 275 // and remove the block. 276 NeedsFixBranches = true; 277 } 278 279 if (BB.pred_empty()) { 280 BB.removeAllSuccessors(); 281 BB.markValid(false); 282 ++NumRemoved; 283 } 284 } 285 286 if (NumRemoved) 287 BF.eraseInvalidBBs(); 288 289 // Check for duplicate successors. Do it after the empty block elimination as 290 // we can get more duplicate successors. 291 for (BinaryBasicBlock &BB : BF) 292 if (!BB.hasJumpTable() && BB.succ_size() == 2 && 293 BB.getConditionalSuccessor(false) == BB.getConditionalSuccessor(true)) 294 ++NumDuplicateEdges; 295 296 // fixBranches() will get rid of duplicate edges and update jump instructions. 297 if (NumDuplicateEdges || NeedsFixBranches) 298 BF.fixBranches(); 299 300 NumDuplicateEdgesMerged += NumDuplicateEdges; 301 NumBlocksRemoved += NumRemoved; 302 } 303 304 void NormalizeCFG::runOnFunctions(BinaryContext &BC) { 305 ParallelUtilities::runOnEachFunction( 306 BC, ParallelUtilities::SchedulingPolicy::SP_BB_LINEAR, 307 [&](BinaryFunction &BF) { runOnFunction(BF); }, 308 [&](const BinaryFunction &BF) { return !shouldOptimize(BF); }, 309 "NormalizeCFG"); 310 if (NumBlocksRemoved) 311 outs() << "BOLT-INFO: removed " << NumBlocksRemoved << " empty block" 312 << (NumBlocksRemoved == 1 ? "" : "s") << '\n'; 313 if (NumDuplicateEdgesMerged) 314 outs() << "BOLT-INFO: merged " << NumDuplicateEdgesMerged 315 << " duplicate CFG edge" << (NumDuplicateEdgesMerged == 1 ? "" : "s") 316 << '\n'; 317 } 318 319 void EliminateUnreachableBlocks::runOnFunction(BinaryFunction &Function) { 320 BinaryContext &BC = Function.getBinaryContext(); 321 unsigned Count; 322 uint64_t Bytes; 323 Function.markUnreachableBlocks(); 324 LLVM_DEBUG({ 325 for (BinaryBasicBlock &BB : Function) { 326 if (!BB.isValid()) { 327 dbgs() << "BOLT-INFO: UCE found unreachable block " << BB.getName() 328 << " in function " << Function << "\n"; 329 Function.dump(); 330 } 331 } 332 }); 333 BinaryContext::IndependentCodeEmitter Emitter = 334 BC.createIndependentMCCodeEmitter(); 335 std::tie(Count, Bytes) = Function.eraseInvalidBBs(Emitter.MCE.get()); 336 DeletedBlocks += Count; 337 DeletedBytes += Bytes; 338 if (Count) { 339 auto L = BC.scopeLock(); 340 Modified.insert(&Function); 341 if (opts::Verbosity > 0) 342 outs() << "BOLT-INFO: removed " << Count 343 << " dead basic block(s) accounting for " << Bytes 344 << " bytes in function " << Function << '\n'; 345 } 346 } 347 348 void EliminateUnreachableBlocks::runOnFunctions(BinaryContext &BC) { 349 ParallelUtilities::WorkFuncTy WorkFun = [&](BinaryFunction &BF) { 350 runOnFunction(BF); 351 }; 352 353 ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) { 354 return !shouldOptimize(BF) || BF.getLayout().block_empty(); 355 }; 356 357 ParallelUtilities::runOnEachFunction( 358 BC, ParallelUtilities::SchedulingPolicy::SP_CONSTANT, WorkFun, 359 SkipPredicate, "elimininate-unreachable"); 360 361 if (DeletedBlocks) 362 outs() << "BOLT-INFO: UCE removed " << DeletedBlocks << " blocks and " 363 << DeletedBytes << " bytes of code\n"; 364 } 365 366 bool ReorderBasicBlocks::shouldPrint(const BinaryFunction &BF) const { 367 return (BinaryFunctionPass::shouldPrint(BF) && 368 opts::ReorderBlocks != ReorderBasicBlocks::LT_NONE); 369 } 370 371 bool ReorderBasicBlocks::shouldOptimize(const BinaryFunction &BF) const { 372 // Apply execution count threshold 373 if (BF.getKnownExecutionCount() < opts::ExecutionCountThreshold) 374 return false; 375 376 return BinaryFunctionPass::shouldOptimize(BF); 377 } 378 379 void ReorderBasicBlocks::runOnFunctions(BinaryContext &BC) { 380 if (opts::ReorderBlocks == ReorderBasicBlocks::LT_NONE) 381 return; 382 383 std::atomic_uint64_t ModifiedFuncCount(0); 384 std::mutex FunctionEditDistanceMutex; 385 DenseMap<const BinaryFunction *, uint64_t> FunctionEditDistance; 386 387 ParallelUtilities::WorkFuncTy WorkFun = [&](BinaryFunction &BF) { 388 SmallVector<const BinaryBasicBlock *, 0> OldBlockOrder; 389 if (opts::PrintFuncStat > 0) 390 llvm::copy(BF.getLayout().blocks(), std::back_inserter(OldBlockOrder)); 391 392 const bool LayoutChanged = 393 modifyFunctionLayout(BF, opts::ReorderBlocks, opts::MinBranchClusters); 394 if (LayoutChanged) { 395 ModifiedFuncCount.fetch_add(1, std::memory_order_relaxed); 396 if (opts::PrintFuncStat > 0) { 397 const uint64_t Distance = BF.getLayout().getEditDistance(OldBlockOrder); 398 std::lock_guard<std::mutex> Lock(FunctionEditDistanceMutex); 399 FunctionEditDistance[&BF] = Distance; 400 } 401 } 402 }; 403 404 ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) { 405 return !shouldOptimize(BF); 406 }; 407 408 ParallelUtilities::runOnEachFunction( 409 BC, ParallelUtilities::SchedulingPolicy::SP_BB_LINEAR, WorkFun, SkipFunc, 410 "ReorderBasicBlocks"); 411 const size_t NumAllProfiledFunctions = 412 BC.NumProfiledFuncs + BC.NumStaleProfileFuncs; 413 414 outs() << "BOLT-INFO: basic block reordering modified layout of " 415 << format("%zu functions (%.2lf%% of profiled, %.2lf%% of total)\n", 416 ModifiedFuncCount.load(std::memory_order_relaxed), 417 100.0 * ModifiedFuncCount.load(std::memory_order_relaxed) / 418 NumAllProfiledFunctions, 419 100.0 * ModifiedFuncCount.load(std::memory_order_relaxed) / 420 BC.getBinaryFunctions().size()); 421 422 if (opts::PrintFuncStat > 0) { 423 raw_ostream &OS = outs(); 424 // Copy all the values into vector in order to sort them 425 std::map<uint64_t, BinaryFunction &> ScoreMap; 426 auto &BFs = BC.getBinaryFunctions(); 427 for (auto It = BFs.begin(); It != BFs.end(); ++It) 428 ScoreMap.insert(std::pair<uint64_t, BinaryFunction &>( 429 It->second.getFunctionScore(), It->second)); 430 431 OS << "\nBOLT-INFO: Printing Function Statistics:\n\n"; 432 OS << " There are " << BFs.size() << " functions in total. \n"; 433 OS << " Number of functions being modified: " 434 << ModifiedFuncCount.load(std::memory_order_relaxed) << "\n"; 435 OS << " User asks for detailed information on top " 436 << opts::PrintFuncStat << " functions. (Ranked by function score)" 437 << "\n\n"; 438 uint64_t I = 0; 439 for (std::map<uint64_t, BinaryFunction &>::reverse_iterator Rit = 440 ScoreMap.rbegin(); 441 Rit != ScoreMap.rend() && I < opts::PrintFuncStat; ++Rit, ++I) { 442 BinaryFunction &Function = Rit->second; 443 444 OS << " Information for function of top: " << (I + 1) << ": \n"; 445 OS << " Function Score is: " << Function.getFunctionScore() 446 << "\n"; 447 OS << " There are " << Function.size() 448 << " number of blocks in this function.\n"; 449 OS << " There are " << Function.getInstructionCount() 450 << " number of instructions in this function.\n"; 451 OS << " The edit distance for this function is: " 452 << FunctionEditDistance.lookup(&Function) << "\n\n"; 453 } 454 } 455 } 456 457 bool ReorderBasicBlocks::modifyFunctionLayout(BinaryFunction &BF, 458 LayoutType Type, 459 bool MinBranchClusters) const { 460 if (BF.size() == 0 || Type == LT_NONE) 461 return false; 462 463 BinaryFunction::BasicBlockOrderType NewLayout; 464 std::unique_ptr<ReorderAlgorithm> Algo; 465 466 // Cannot do optimal layout without profile. 467 if (Type != LT_REVERSE && !BF.hasValidProfile()) 468 return false; 469 470 if (Type == LT_REVERSE) { 471 Algo.reset(new ReverseReorderAlgorithm()); 472 } else if (BF.size() <= opts::TSPThreshold && Type != LT_OPTIMIZE_SHUFFLE) { 473 // Work on optimal solution if problem is small enough 474 LLVM_DEBUG(dbgs() << "finding optimal block layout for " << BF << "\n"); 475 Algo.reset(new TSPReorderAlgorithm()); 476 } else { 477 LLVM_DEBUG(dbgs() << "running block layout heuristics on " << BF << "\n"); 478 479 std::unique_ptr<ClusterAlgorithm> CAlgo; 480 if (MinBranchClusters) 481 CAlgo.reset(new MinBranchGreedyClusterAlgorithm()); 482 else 483 CAlgo.reset(new PHGreedyClusterAlgorithm()); 484 485 switch (Type) { 486 case LT_OPTIMIZE: 487 Algo.reset(new OptimizeReorderAlgorithm(std::move(CAlgo))); 488 break; 489 490 case LT_OPTIMIZE_BRANCH: 491 Algo.reset(new OptimizeBranchReorderAlgorithm(std::move(CAlgo))); 492 break; 493 494 case LT_OPTIMIZE_CACHE: 495 Algo.reset(new OptimizeCacheReorderAlgorithm(std::move(CAlgo))); 496 break; 497 498 case LT_OPTIMIZE_EXT_TSP: 499 Algo.reset(new ExtTSPReorderAlgorithm()); 500 break; 501 502 case LT_OPTIMIZE_SHUFFLE: 503 Algo.reset(new RandomClusterReorderAlgorithm(std::move(CAlgo))); 504 break; 505 506 default: 507 llvm_unreachable("unexpected layout type"); 508 } 509 } 510 511 Algo->reorderBasicBlocks(BF, NewLayout); 512 513 return BF.getLayout().update(NewLayout); 514 } 515 516 void FixupBranches::runOnFunctions(BinaryContext &BC) { 517 for (auto &It : BC.getBinaryFunctions()) { 518 BinaryFunction &Function = It.second; 519 if (!BC.shouldEmit(Function) || !Function.isSimple()) 520 continue; 521 522 Function.fixBranches(); 523 } 524 } 525 526 void FinalizeFunctions::runOnFunctions(BinaryContext &BC) { 527 ParallelUtilities::WorkFuncTy WorkFun = [&](BinaryFunction &BF) { 528 if (!BF.finalizeCFIState()) { 529 if (BC.HasRelocations) { 530 errs() << "BOLT-ERROR: unable to fix CFI state for function " << BF 531 << ". Exiting.\n"; 532 exit(1); 533 } 534 BF.setSimple(false); 535 return; 536 } 537 538 BF.setFinalized(); 539 540 // Update exception handling information. 541 BF.updateEHRanges(); 542 }; 543 544 ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) { 545 return !BC.shouldEmit(BF); 546 }; 547 548 ParallelUtilities::runOnEachFunction( 549 BC, ParallelUtilities::SchedulingPolicy::SP_CONSTANT, WorkFun, 550 SkipPredicate, "FinalizeFunctions"); 551 } 552 553 void CheckLargeFunctions::runOnFunctions(BinaryContext &BC) { 554 if (BC.HasRelocations) 555 return; 556 557 if (!opts::UpdateDebugSections) 558 return; 559 560 // If the function wouldn't fit, mark it as non-simple. Otherwise, we may emit 561 // incorrect debug info. 562 ParallelUtilities::WorkFuncTy WorkFun = [&](BinaryFunction &BF) { 563 uint64_t HotSize, ColdSize; 564 std::tie(HotSize, ColdSize) = 565 BC.calculateEmittedSize(BF, /*FixBranches=*/false); 566 if (HotSize > BF.getMaxSize()) 567 BF.setSimple(false); 568 }; 569 570 ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) { 571 return !shouldOptimize(BF); 572 }; 573 574 ParallelUtilities::runOnEachFunction( 575 BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun, 576 SkipFunc, "CheckLargeFunctions"); 577 } 578 579 bool CheckLargeFunctions::shouldOptimize(const BinaryFunction &BF) const { 580 // Unlike other passes, allow functions in non-CFG state. 581 return BF.isSimple() && !BF.isIgnored(); 582 } 583 584 void LowerAnnotations::runOnFunctions(BinaryContext &BC) { 585 for (BinaryFunction *BF : BC.getAllBinaryFunctions()) { 586 for (FunctionFragment &FF : BF->getLayout().fragments()) { 587 // Reset at the start of the new fragment. 588 int64_t CurrentGnuArgsSize = 0; 589 590 for (BinaryBasicBlock *const BB : FF) { 591 for (auto II = BB->begin(); II != BB->end(); ++II) { 592 593 // Convert GnuArgsSize annotations into CFIs. 594 if (BF->usesGnuArgsSize() && BC.MIB->isInvoke(*II)) { 595 const int64_t NewGnuArgsSize = BC.MIB->getGnuArgsSize(*II); 596 assert(NewGnuArgsSize >= 0 && 597 "Expected non-negative GNU_args_size."); 598 if (NewGnuArgsSize != CurrentGnuArgsSize) { 599 auto InsertII = BF->addCFIInstruction( 600 BB, II, 601 MCCFIInstruction::createGnuArgsSize(nullptr, NewGnuArgsSize)); 602 CurrentGnuArgsSize = NewGnuArgsSize; 603 II = std::next(InsertII); 604 } 605 } 606 607 // Preserve selected annotations and strip the rest. 608 std::optional<uint32_t> Offset = BF->requiresAddressTranslation() 609 ? BC.MIB->getOffset(*II) 610 : std::nullopt; 611 std::optional<uint32_t> Size = BC.MIB->getSize(*II); 612 MCSymbol *Label = BC.MIB->getLabel(*II); 613 614 BC.MIB->stripAnnotations(*II); 615 616 if (Offset) 617 BC.MIB->setOffset(*II, *Offset); 618 if (Size) 619 BC.MIB->setSize(*II, *Size); 620 if (Label) 621 BC.MIB->setLabel(*II, Label); 622 } 623 } 624 } 625 } 626 627 // Release all memory taken by annotations 628 BC.MIB->freeAnnotations(); 629 } 630 631 // Check for dirty state in MCSymbol objects that might be a consequence 632 // of running calculateEmittedSize() in parallel, during split functions 633 // pass. If an inconsistent state is found (symbol already registered or 634 // already defined), clean it. 635 void CleanMCState::runOnFunctions(BinaryContext &BC) { 636 MCContext &Ctx = *BC.Ctx; 637 for (const auto &SymMapEntry : Ctx.getSymbols()) { 638 const MCSymbol *S = SymMapEntry.second; 639 if (S->isDefined()) { 640 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Symbol \"" << S->getName() 641 << "\" is already defined\n"); 642 const_cast<MCSymbol *>(S)->setUndefined(); 643 } 644 if (S->isRegistered()) { 645 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Symbol \"" << S->getName() 646 << "\" is already registered\n"); 647 const_cast<MCSymbol *>(S)->setIsRegistered(false); 648 } 649 LLVM_DEBUG(if (S->isVariable()) { 650 dbgs() << "BOLT-DEBUG: Symbol \"" << S->getName() << "\" is variable\n"; 651 }); 652 } 653 } 654 655 // This peephole fixes jump instructions that jump to another basic 656 // block with a single jump instruction, e.g. 657 // 658 // B0: ... 659 // jmp B1 (or jcc B1) 660 // 661 // B1: jmp B2 662 // 663 // -> 664 // 665 // B0: ... 666 // jmp B2 (or jcc B2) 667 // 668 static uint64_t fixDoubleJumps(BinaryFunction &Function, bool MarkInvalid) { 669 uint64_t NumDoubleJumps = 0; 670 671 MCContext *Ctx = Function.getBinaryContext().Ctx.get(); 672 MCPlusBuilder *MIB = Function.getBinaryContext().MIB.get(); 673 for (BinaryBasicBlock &BB : Function) { 674 auto checkAndPatch = [&](BinaryBasicBlock *Pred, BinaryBasicBlock *Succ, 675 const MCSymbol *SuccSym) { 676 // Ignore infinite loop jumps or fallthrough tail jumps. 677 if (Pred == Succ || Succ == &BB) 678 return false; 679 680 if (Succ) { 681 const MCSymbol *TBB = nullptr; 682 const MCSymbol *FBB = nullptr; 683 MCInst *CondBranch = nullptr; 684 MCInst *UncondBranch = nullptr; 685 bool Res = Pred->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 686 if (!Res) { 687 LLVM_DEBUG(dbgs() << "analyzeBranch failed in peepholes in block:\n"; 688 Pred->dump()); 689 return false; 690 } 691 Pred->replaceSuccessor(&BB, Succ); 692 693 // We must patch up any existing branch instructions to match up 694 // with the new successor. 695 assert((CondBranch || (!CondBranch && Pred->succ_size() == 1)) && 696 "Predecessor block has inconsistent number of successors"); 697 if (CondBranch && MIB->getTargetSymbol(*CondBranch) == BB.getLabel()) { 698 MIB->replaceBranchTarget(*CondBranch, Succ->getLabel(), Ctx); 699 } else if (UncondBranch && 700 MIB->getTargetSymbol(*UncondBranch) == BB.getLabel()) { 701 MIB->replaceBranchTarget(*UncondBranch, Succ->getLabel(), Ctx); 702 } else if (!UncondBranch) { 703 assert(Function.getLayout().getBasicBlockAfter(Pred, false) != Succ && 704 "Don't add an explicit jump to a fallthrough block."); 705 Pred->addBranchInstruction(Succ); 706 } 707 } else { 708 // Succ will be null in the tail call case. In this case we 709 // need to explicitly add a tail call instruction. 710 MCInst *Branch = Pred->getLastNonPseudoInstr(); 711 if (Branch && MIB->isUnconditionalBranch(*Branch)) { 712 assert(MIB->getTargetSymbol(*Branch) == BB.getLabel()); 713 Pred->removeSuccessor(&BB); 714 Pred->eraseInstruction(Pred->findInstruction(Branch)); 715 Pred->addTailCallInstruction(SuccSym); 716 } else { 717 return false; 718 } 719 } 720 721 ++NumDoubleJumps; 722 LLVM_DEBUG(dbgs() << "Removed double jump in " << Function << " from " 723 << Pred->getName() << " -> " << BB.getName() << " to " 724 << Pred->getName() << " -> " << SuccSym->getName() 725 << (!Succ ? " (tail)\n" : "\n")); 726 727 return true; 728 }; 729 730 if (BB.getNumNonPseudos() != 1 || BB.isLandingPad()) 731 continue; 732 733 MCInst *Inst = BB.getFirstNonPseudoInstr(); 734 const bool IsTailCall = MIB->isTailCall(*Inst); 735 736 if (!MIB->isUnconditionalBranch(*Inst) && !IsTailCall) 737 continue; 738 739 // If we operate after SCTC make sure it's not a conditional tail call. 740 if (IsTailCall && MIB->isConditionalBranch(*Inst)) 741 continue; 742 743 const MCSymbol *SuccSym = MIB->getTargetSymbol(*Inst); 744 BinaryBasicBlock *Succ = BB.getSuccessor(); 745 746 if (((!Succ || &BB == Succ) && !IsTailCall) || (IsTailCall && !SuccSym)) 747 continue; 748 749 std::vector<BinaryBasicBlock *> Preds = {BB.pred_begin(), BB.pred_end()}; 750 751 for (BinaryBasicBlock *Pred : Preds) { 752 if (Pred->isLandingPad()) 753 continue; 754 755 if (Pred->getSuccessor() == &BB || 756 (Pred->getConditionalSuccessor(true) == &BB && !IsTailCall) || 757 Pred->getConditionalSuccessor(false) == &BB) 758 if (checkAndPatch(Pred, Succ, SuccSym) && MarkInvalid) 759 BB.markValid(BB.pred_size() != 0 || BB.isLandingPad() || 760 BB.isEntryPoint()); 761 } 762 } 763 764 return NumDoubleJumps; 765 } 766 767 bool SimplifyConditionalTailCalls::shouldRewriteBranch( 768 const BinaryBasicBlock *PredBB, const MCInst &CondBranch, 769 const BinaryBasicBlock *BB, const bool DirectionFlag) { 770 if (BeenOptimized.count(PredBB)) 771 return false; 772 773 const bool IsForward = BinaryFunction::isForwardBranch(PredBB, BB); 774 775 if (IsForward) 776 ++NumOrigForwardBranches; 777 else 778 ++NumOrigBackwardBranches; 779 780 if (opts::SctcMode == opts::SctcAlways) 781 return true; 782 783 if (opts::SctcMode == opts::SctcPreserveDirection) 784 return IsForward == DirectionFlag; 785 786 const ErrorOr<std::pair<double, double>> Frequency = 787 PredBB->getBranchStats(BB); 788 789 // It's ok to rewrite the conditional branch if the new target will be 790 // a backward branch. 791 792 // If no data available for these branches, then it should be ok to 793 // do the optimization since it will reduce code size. 794 if (Frequency.getError()) 795 return true; 796 797 // TODO: should this use misprediction frequency instead? 798 const bool Result = (IsForward && Frequency.get().first >= 0.5) || 799 (!IsForward && Frequency.get().first <= 0.5); 800 801 return Result == DirectionFlag; 802 } 803 804 uint64_t SimplifyConditionalTailCalls::fixTailCalls(BinaryFunction &BF) { 805 // Need updated indices to correctly detect branch' direction. 806 BF.getLayout().updateLayoutIndices(); 807 BF.markUnreachableBlocks(); 808 809 MCPlusBuilder *MIB = BF.getBinaryContext().MIB.get(); 810 MCContext *Ctx = BF.getBinaryContext().Ctx.get(); 811 uint64_t NumLocalCTCCandidates = 0; 812 uint64_t NumLocalCTCs = 0; 813 uint64_t LocalCTCTakenCount = 0; 814 uint64_t LocalCTCExecCount = 0; 815 std::vector<std::pair<BinaryBasicBlock *, const BinaryBasicBlock *>> 816 NeedsUncondBranch; 817 818 // Will block be deleted by UCE? 819 auto isValid = [](const BinaryBasicBlock *BB) { 820 return (BB->pred_size() != 0 || BB->isLandingPad() || BB->isEntryPoint()); 821 }; 822 823 for (BinaryBasicBlock *BB : BF.getLayout().blocks()) { 824 // Locate BB with a single direct tail-call instruction. 825 if (BB->getNumNonPseudos() != 1) 826 continue; 827 828 MCInst *Instr = BB->getFirstNonPseudoInstr(); 829 if (!MIB->isTailCall(*Instr) || MIB->isConditionalBranch(*Instr)) 830 continue; 831 832 const MCSymbol *CalleeSymbol = MIB->getTargetSymbol(*Instr); 833 if (!CalleeSymbol) 834 continue; 835 836 // Detect direction of the possible conditional tail call. 837 const bool IsForwardCTC = BF.isForwardCall(CalleeSymbol); 838 839 // Iterate through all predecessors. 840 for (BinaryBasicBlock *PredBB : BB->predecessors()) { 841 BinaryBasicBlock *CondSucc = PredBB->getConditionalSuccessor(true); 842 if (!CondSucc) 843 continue; 844 845 ++NumLocalCTCCandidates; 846 847 const MCSymbol *TBB = nullptr; 848 const MCSymbol *FBB = nullptr; 849 MCInst *CondBranch = nullptr; 850 MCInst *UncondBranch = nullptr; 851 bool Result = PredBB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 852 853 // analyzeBranch() can fail due to unusual branch instructions, e.g. jrcxz 854 if (!Result) { 855 LLVM_DEBUG(dbgs() << "analyzeBranch failed in SCTC in block:\n"; 856 PredBB->dump()); 857 continue; 858 } 859 860 assert(Result && "internal error analyzing conditional branch"); 861 assert(CondBranch && "conditional branch expected"); 862 863 // It's possible that PredBB is also a successor to BB that may have 864 // been processed by a previous iteration of the SCTC loop, in which 865 // case it may have been marked invalid. We should skip rewriting in 866 // this case. 867 if (!PredBB->isValid()) { 868 assert(PredBB->isSuccessor(BB) && 869 "PredBB should be valid if it is not a successor to BB"); 870 continue; 871 } 872 873 // We don't want to reverse direction of the branch in new order 874 // without further profile analysis. 875 const bool DirectionFlag = CondSucc == BB ? IsForwardCTC : !IsForwardCTC; 876 if (!shouldRewriteBranch(PredBB, *CondBranch, BB, DirectionFlag)) 877 continue; 878 879 // Record this block so that we don't try to optimize it twice. 880 BeenOptimized.insert(PredBB); 881 882 uint64_t Count = 0; 883 if (CondSucc != BB) { 884 // Patch the new target address into the conditional branch. 885 MIB->reverseBranchCondition(*CondBranch, CalleeSymbol, Ctx); 886 // Since we reversed the condition on the branch we need to change 887 // the target for the unconditional branch or add a unconditional 888 // branch to the old target. This has to be done manually since 889 // fixupBranches is not called after SCTC. 890 NeedsUncondBranch.emplace_back(PredBB, CondSucc); 891 Count = PredBB->getFallthroughBranchInfo().Count; 892 } else { 893 // Change destination of the conditional branch. 894 MIB->replaceBranchTarget(*CondBranch, CalleeSymbol, Ctx); 895 Count = PredBB->getTakenBranchInfo().Count; 896 } 897 const uint64_t CTCTakenFreq = 898 Count == BinaryBasicBlock::COUNT_NO_PROFILE ? 0 : Count; 899 900 // Annotate it, so "isCall" returns true for this jcc 901 MIB->setConditionalTailCall(*CondBranch); 902 // Add info about the conditional tail call frequency, otherwise this 903 // info will be lost when we delete the associated BranchInfo entry 904 auto &CTCAnnotation = 905 MIB->getOrCreateAnnotationAs<uint64_t>(*CondBranch, "CTCTakenCount"); 906 CTCAnnotation = CTCTakenFreq; 907 908 // Remove the unused successor which may be eliminated later 909 // if there are no other users. 910 PredBB->removeSuccessor(BB); 911 // Update BB execution count 912 if (CTCTakenFreq && CTCTakenFreq <= BB->getKnownExecutionCount()) 913 BB->setExecutionCount(BB->getExecutionCount() - CTCTakenFreq); 914 else if (CTCTakenFreq > BB->getKnownExecutionCount()) 915 BB->setExecutionCount(0); 916 917 ++NumLocalCTCs; 918 LocalCTCTakenCount += CTCTakenFreq; 919 LocalCTCExecCount += PredBB->getKnownExecutionCount(); 920 } 921 922 // Remove the block from CFG if all predecessors were removed. 923 BB->markValid(isValid(BB)); 924 } 925 926 // Add unconditional branches at the end of BBs to new successors 927 // as long as the successor is not a fallthrough. 928 for (auto &Entry : NeedsUncondBranch) { 929 BinaryBasicBlock *PredBB = Entry.first; 930 const BinaryBasicBlock *CondSucc = Entry.second; 931 932 const MCSymbol *TBB = nullptr; 933 const MCSymbol *FBB = nullptr; 934 MCInst *CondBranch = nullptr; 935 MCInst *UncondBranch = nullptr; 936 PredBB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 937 938 // Find the next valid block. Invalid blocks will be deleted 939 // so they shouldn't be considered fallthrough targets. 940 const BinaryBasicBlock *NextBlock = 941 BF.getLayout().getBasicBlockAfter(PredBB, false); 942 while (NextBlock && !isValid(NextBlock)) 943 NextBlock = BF.getLayout().getBasicBlockAfter(NextBlock, false); 944 945 // Get the unconditional successor to this block. 946 const BinaryBasicBlock *PredSucc = PredBB->getSuccessor(); 947 assert(PredSucc && "The other branch should be a tail call"); 948 949 const bool HasFallthrough = (NextBlock && PredSucc == NextBlock); 950 951 if (UncondBranch) { 952 if (HasFallthrough) 953 PredBB->eraseInstruction(PredBB->findInstruction(UncondBranch)); 954 else 955 MIB->replaceBranchTarget(*UncondBranch, CondSucc->getLabel(), Ctx); 956 } else if (!HasFallthrough) { 957 MCInst Branch; 958 MIB->createUncondBranch(Branch, CondSucc->getLabel(), Ctx); 959 PredBB->addInstruction(Branch); 960 } 961 } 962 963 if (NumLocalCTCs > 0) { 964 NumDoubleJumps += fixDoubleJumps(BF, true); 965 // Clean-up unreachable tail-call blocks. 966 const std::pair<unsigned, uint64_t> Stats = BF.eraseInvalidBBs(); 967 DeletedBlocks += Stats.first; 968 DeletedBytes += Stats.second; 969 970 assert(BF.validateCFG()); 971 } 972 973 LLVM_DEBUG(dbgs() << "BOLT: created " << NumLocalCTCs 974 << " conditional tail calls from a total of " 975 << NumLocalCTCCandidates << " candidates in function " << BF 976 << ". CTCs execution count for this function is " 977 << LocalCTCExecCount << " and CTC taken count is " 978 << LocalCTCTakenCount << "\n";); 979 980 NumTailCallsPatched += NumLocalCTCs; 981 NumCandidateTailCalls += NumLocalCTCCandidates; 982 CTCExecCount += LocalCTCExecCount; 983 CTCTakenCount += LocalCTCTakenCount; 984 985 return NumLocalCTCs > 0; 986 } 987 988 void SimplifyConditionalTailCalls::runOnFunctions(BinaryContext &BC) { 989 if (!BC.isX86()) 990 return; 991 992 for (auto &It : BC.getBinaryFunctions()) { 993 BinaryFunction &Function = It.second; 994 995 if (!shouldOptimize(Function)) 996 continue; 997 998 if (fixTailCalls(Function)) { 999 Modified.insert(&Function); 1000 Function.setHasCanonicalCFG(false); 1001 } 1002 } 1003 1004 if (NumTailCallsPatched) 1005 outs() << "BOLT-INFO: SCTC: patched " << NumTailCallsPatched 1006 << " tail calls (" << NumOrigForwardBranches << " forward)" 1007 << " tail calls (" << NumOrigBackwardBranches << " backward)" 1008 << " from a total of " << NumCandidateTailCalls << " while removing " 1009 << NumDoubleJumps << " double jumps" 1010 << " and removing " << DeletedBlocks << " basic blocks" 1011 << " totalling " << DeletedBytes 1012 << " bytes of code. CTCs total execution count is " << CTCExecCount 1013 << " and the number of times CTCs are taken is " << CTCTakenCount 1014 << "\n"; 1015 } 1016 1017 uint64_t ShortenInstructions::shortenInstructions(BinaryFunction &Function) { 1018 uint64_t Count = 0; 1019 const BinaryContext &BC = Function.getBinaryContext(); 1020 for (BinaryBasicBlock &BB : Function) { 1021 for (MCInst &Inst : BB) { 1022 MCInst OriginalInst; 1023 if (opts::Verbosity > 2) 1024 OriginalInst = Inst; 1025 1026 if (!BC.MIB->shortenInstruction(Inst, *BC.STI)) 1027 continue; 1028 1029 if (opts::Verbosity > 2) { 1030 BC.scopeLock(); 1031 outs() << "BOLT-INFO: shortening:\nBOLT-INFO: "; 1032 BC.printInstruction(outs(), OriginalInst, 0, &Function); 1033 outs() << "BOLT-INFO: to:"; 1034 BC.printInstruction(outs(), Inst, 0, &Function); 1035 } 1036 1037 ++Count; 1038 } 1039 } 1040 1041 return Count; 1042 } 1043 1044 void ShortenInstructions::runOnFunctions(BinaryContext &BC) { 1045 std::atomic<uint64_t> NumShortened{0}; 1046 if (!BC.isX86()) 1047 return; 1048 1049 ParallelUtilities::runOnEachFunction( 1050 BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, 1051 [&](BinaryFunction &BF) { NumShortened += shortenInstructions(BF); }, 1052 nullptr, "ShortenInstructions"); 1053 1054 if (NumShortened) 1055 outs() << "BOLT-INFO: " << NumShortened << " instructions were shortened\n"; 1056 } 1057 1058 void Peepholes::addTailcallTraps(BinaryFunction &Function) { 1059 MCPlusBuilder *MIB = Function.getBinaryContext().MIB.get(); 1060 for (BinaryBasicBlock &BB : Function) { 1061 MCInst *Inst = BB.getLastNonPseudoInstr(); 1062 if (Inst && MIB->isTailCall(*Inst) && MIB->isIndirectBranch(*Inst)) { 1063 MCInst Trap; 1064 if (MIB->createTrap(Trap)) { 1065 BB.addInstruction(Trap); 1066 ++TailCallTraps; 1067 } 1068 } 1069 } 1070 } 1071 1072 void Peepholes::removeUselessCondBranches(BinaryFunction &Function) { 1073 for (BinaryBasicBlock &BB : Function) { 1074 if (BB.succ_size() != 2) 1075 continue; 1076 1077 BinaryBasicBlock *CondBB = BB.getConditionalSuccessor(true); 1078 BinaryBasicBlock *UncondBB = BB.getConditionalSuccessor(false); 1079 if (CondBB != UncondBB) 1080 continue; 1081 1082 const MCSymbol *TBB = nullptr; 1083 const MCSymbol *FBB = nullptr; 1084 MCInst *CondBranch = nullptr; 1085 MCInst *UncondBranch = nullptr; 1086 bool Result = BB.analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 1087 1088 // analyzeBranch() can fail due to unusual branch instructions, 1089 // e.g. jrcxz, or jump tables (indirect jump). 1090 if (!Result || !CondBranch) 1091 continue; 1092 1093 BB.removeDuplicateConditionalSuccessor(CondBranch); 1094 ++NumUselessCondBranches; 1095 } 1096 } 1097 1098 void Peepholes::runOnFunctions(BinaryContext &BC) { 1099 const char Opts = 1100 std::accumulate(opts::Peepholes.begin(), opts::Peepholes.end(), 0, 1101 [](const char A, const PeepholeOpts B) { return A | B; }); 1102 if (Opts == PEEP_NONE) 1103 return; 1104 1105 for (auto &It : BC.getBinaryFunctions()) { 1106 BinaryFunction &Function = It.second; 1107 if (shouldOptimize(Function)) { 1108 if (Opts & PEEP_DOUBLE_JUMPS) 1109 NumDoubleJumps += fixDoubleJumps(Function, false); 1110 if (Opts & PEEP_TAILCALL_TRAPS) 1111 addTailcallTraps(Function); 1112 if (Opts & PEEP_USELESS_BRANCHES) 1113 removeUselessCondBranches(Function); 1114 assert(Function.validateCFG()); 1115 } 1116 } 1117 outs() << "BOLT-INFO: Peephole: " << NumDoubleJumps 1118 << " double jumps patched.\n" 1119 << "BOLT-INFO: Peephole: " << TailCallTraps 1120 << " tail call traps inserted.\n" 1121 << "BOLT-INFO: Peephole: " << NumUselessCondBranches 1122 << " useless conditional branches removed.\n"; 1123 } 1124 1125 bool SimplifyRODataLoads::simplifyRODataLoads(BinaryFunction &BF) { 1126 BinaryContext &BC = BF.getBinaryContext(); 1127 MCPlusBuilder *MIB = BC.MIB.get(); 1128 1129 uint64_t NumLocalLoadsSimplified = 0; 1130 uint64_t NumDynamicLocalLoadsSimplified = 0; 1131 uint64_t NumLocalLoadsFound = 0; 1132 uint64_t NumDynamicLocalLoadsFound = 0; 1133 1134 for (BinaryBasicBlock *BB : BF.getLayout().blocks()) { 1135 for (MCInst &Inst : *BB) { 1136 unsigned Opcode = Inst.getOpcode(); 1137 const MCInstrDesc &Desc = BC.MII->get(Opcode); 1138 1139 // Skip instructions that do not load from memory. 1140 if (!Desc.mayLoad()) 1141 continue; 1142 1143 // Try to statically evaluate the target memory address; 1144 uint64_t TargetAddress; 1145 1146 if (MIB->hasPCRelOperand(Inst)) { 1147 // Try to find the symbol that corresponds to the PC-relative operand. 1148 MCOperand *DispOpI = MIB->getMemOperandDisp(Inst); 1149 assert(DispOpI != Inst.end() && "expected PC-relative displacement"); 1150 assert(DispOpI->isExpr() && 1151 "found PC-relative with non-symbolic displacement"); 1152 1153 // Get displacement symbol. 1154 const MCSymbol *DisplSymbol; 1155 uint64_t DisplOffset; 1156 1157 std::tie(DisplSymbol, DisplOffset) = 1158 MIB->getTargetSymbolInfo(DispOpI->getExpr()); 1159 1160 if (!DisplSymbol) 1161 continue; 1162 1163 // Look up the symbol address in the global symbols map of the binary 1164 // context object. 1165 BinaryData *BD = BC.getBinaryDataByName(DisplSymbol->getName()); 1166 if (!BD) 1167 continue; 1168 TargetAddress = BD->getAddress() + DisplOffset; 1169 } else if (!MIB->evaluateMemOperandTarget(Inst, TargetAddress)) { 1170 continue; 1171 } 1172 1173 // Get the contents of the section containing the target address of the 1174 // memory operand. We are only interested in read-only sections. 1175 ErrorOr<BinarySection &> DataSection = 1176 BC.getSectionForAddress(TargetAddress); 1177 if (!DataSection || DataSection->isWritable()) 1178 continue; 1179 1180 if (BC.getRelocationAt(TargetAddress) || 1181 BC.getDynamicRelocationAt(TargetAddress)) 1182 continue; 1183 1184 uint32_t Offset = TargetAddress - DataSection->getAddress(); 1185 StringRef ConstantData = DataSection->getContents(); 1186 1187 ++NumLocalLoadsFound; 1188 if (BB->hasProfile()) 1189 NumDynamicLocalLoadsFound += BB->getExecutionCount(); 1190 1191 if (MIB->replaceMemOperandWithImm(Inst, ConstantData, Offset)) { 1192 ++NumLocalLoadsSimplified; 1193 if (BB->hasProfile()) 1194 NumDynamicLocalLoadsSimplified += BB->getExecutionCount(); 1195 } 1196 } 1197 } 1198 1199 NumLoadsFound += NumLocalLoadsFound; 1200 NumDynamicLoadsFound += NumDynamicLocalLoadsFound; 1201 NumLoadsSimplified += NumLocalLoadsSimplified; 1202 NumDynamicLoadsSimplified += NumDynamicLocalLoadsSimplified; 1203 1204 return NumLocalLoadsSimplified > 0; 1205 } 1206 1207 void SimplifyRODataLoads::runOnFunctions(BinaryContext &BC) { 1208 for (auto &It : BC.getBinaryFunctions()) { 1209 BinaryFunction &Function = It.second; 1210 if (shouldOptimize(Function) && simplifyRODataLoads(Function)) 1211 Modified.insert(&Function); 1212 } 1213 1214 outs() << "BOLT-INFO: simplified " << NumLoadsSimplified << " out of " 1215 << NumLoadsFound << " loads from a statically computed address.\n" 1216 << "BOLT-INFO: dynamic loads simplified: " << NumDynamicLoadsSimplified 1217 << "\n" 1218 << "BOLT-INFO: dynamic loads found: " << NumDynamicLoadsFound << "\n"; 1219 } 1220 1221 void AssignSections::runOnFunctions(BinaryContext &BC) { 1222 for (BinaryFunction *Function : BC.getInjectedBinaryFunctions()) { 1223 Function->setCodeSectionName(BC.getInjectedCodeSectionName()); 1224 Function->setColdCodeSectionName(BC.getInjectedColdCodeSectionName()); 1225 } 1226 1227 // In non-relocation mode functions have pre-assigned section names. 1228 if (!BC.HasRelocations) 1229 return; 1230 1231 const bool UseColdSection = 1232 BC.NumProfiledFuncs > 0 || 1233 opts::ReorderFunctions == ReorderFunctions::RT_USER; 1234 for (auto &BFI : BC.getBinaryFunctions()) { 1235 BinaryFunction &Function = BFI.second; 1236 if (opts::isHotTextMover(Function)) { 1237 Function.setCodeSectionName(BC.getHotTextMoverSectionName()); 1238 Function.setColdCodeSectionName(BC.getHotTextMoverSectionName()); 1239 continue; 1240 } 1241 1242 if (!UseColdSection || Function.hasValidIndex()) 1243 Function.setCodeSectionName(BC.getMainCodeSectionName()); 1244 else 1245 Function.setCodeSectionName(BC.getColdCodeSectionName()); 1246 1247 if (Function.isSplit()) 1248 Function.setColdCodeSectionName(BC.getColdCodeSectionName()); 1249 } 1250 } 1251 1252 void PrintProfileStats::runOnFunctions(BinaryContext &BC) { 1253 double FlowImbalanceMean = 0.0; 1254 size_t NumBlocksConsidered = 0; 1255 double WorstBias = 0.0; 1256 const BinaryFunction *WorstBiasFunc = nullptr; 1257 1258 // For each function CFG, we fill an IncomingMap with the sum of the frequency 1259 // of incoming edges for each BB. Likewise for each OutgoingMap and the sum 1260 // of the frequency of outgoing edges. 1261 using FlowMapTy = std::unordered_map<const BinaryBasicBlock *, uint64_t>; 1262 std::unordered_map<const BinaryFunction *, FlowMapTy> TotalIncomingMaps; 1263 std::unordered_map<const BinaryFunction *, FlowMapTy> TotalOutgoingMaps; 1264 1265 // Compute mean 1266 for (const auto &BFI : BC.getBinaryFunctions()) { 1267 const BinaryFunction &Function = BFI.second; 1268 if (Function.empty() || !Function.isSimple()) 1269 continue; 1270 FlowMapTy &IncomingMap = TotalIncomingMaps[&Function]; 1271 FlowMapTy &OutgoingMap = TotalOutgoingMaps[&Function]; 1272 for (const BinaryBasicBlock &BB : Function) { 1273 uint64_t TotalOutgoing = 0ULL; 1274 auto SuccBIIter = BB.branch_info_begin(); 1275 for (BinaryBasicBlock *Succ : BB.successors()) { 1276 uint64_t Count = SuccBIIter->Count; 1277 if (Count == BinaryBasicBlock::COUNT_NO_PROFILE || Count == 0) { 1278 ++SuccBIIter; 1279 continue; 1280 } 1281 TotalOutgoing += Count; 1282 IncomingMap[Succ] += Count; 1283 ++SuccBIIter; 1284 } 1285 OutgoingMap[&BB] = TotalOutgoing; 1286 } 1287 1288 size_t NumBlocks = 0; 1289 double Mean = 0.0; 1290 for (const BinaryBasicBlock &BB : Function) { 1291 // Do not compute score for low frequency blocks, entry or exit blocks 1292 if (IncomingMap[&BB] < 100 || OutgoingMap[&BB] == 0 || BB.isEntryPoint()) 1293 continue; 1294 ++NumBlocks; 1295 const double Difference = (double)OutgoingMap[&BB] - IncomingMap[&BB]; 1296 Mean += fabs(Difference / IncomingMap[&BB]); 1297 } 1298 1299 FlowImbalanceMean += Mean; 1300 NumBlocksConsidered += NumBlocks; 1301 if (!NumBlocks) 1302 continue; 1303 double FuncMean = Mean / NumBlocks; 1304 if (FuncMean > WorstBias) { 1305 WorstBias = FuncMean; 1306 WorstBiasFunc = &Function; 1307 } 1308 } 1309 if (NumBlocksConsidered > 0) 1310 FlowImbalanceMean /= NumBlocksConsidered; 1311 1312 // Compute standard deviation 1313 NumBlocksConsidered = 0; 1314 double FlowImbalanceVar = 0.0; 1315 for (const auto &BFI : BC.getBinaryFunctions()) { 1316 const BinaryFunction &Function = BFI.second; 1317 if (Function.empty() || !Function.isSimple()) 1318 continue; 1319 FlowMapTy &IncomingMap = TotalIncomingMaps[&Function]; 1320 FlowMapTy &OutgoingMap = TotalOutgoingMaps[&Function]; 1321 for (const BinaryBasicBlock &BB : Function) { 1322 if (IncomingMap[&BB] < 100 || OutgoingMap[&BB] == 0) 1323 continue; 1324 ++NumBlocksConsidered; 1325 const double Difference = (double)OutgoingMap[&BB] - IncomingMap[&BB]; 1326 FlowImbalanceVar += 1327 pow(fabs(Difference / IncomingMap[&BB]) - FlowImbalanceMean, 2); 1328 } 1329 } 1330 if (NumBlocksConsidered) { 1331 FlowImbalanceVar /= NumBlocksConsidered; 1332 FlowImbalanceVar = sqrt(FlowImbalanceVar); 1333 } 1334 1335 // Report to user 1336 outs() << format("BOLT-INFO: Profile bias score: %.4lf%% StDev: %.4lf%%\n", 1337 (100.0 * FlowImbalanceMean), (100.0 * FlowImbalanceVar)); 1338 if (WorstBiasFunc && opts::Verbosity >= 1) { 1339 outs() << "Worst average bias observed in " << WorstBiasFunc->getPrintName() 1340 << "\n"; 1341 LLVM_DEBUG(WorstBiasFunc->dump()); 1342 } 1343 } 1344 1345 void PrintProgramStats::runOnFunctions(BinaryContext &BC) { 1346 uint64_t NumRegularFunctions = 0; 1347 uint64_t NumStaleProfileFunctions = 0; 1348 uint64_t NumAllStaleFunctions = 0; 1349 uint64_t NumInferredFunctions = 0; 1350 uint64_t NumNonSimpleProfiledFunctions = 0; 1351 uint64_t NumUnknownControlFlowFunctions = 0; 1352 uint64_t TotalSampleCount = 0; 1353 uint64_t StaleSampleCount = 0; 1354 uint64_t InferredSampleCount = 0; 1355 std::vector<const BinaryFunction *> ProfiledFunctions; 1356 const char *StaleFuncsHeader = "BOLT-INFO: Functions with stale profile:\n"; 1357 for (auto &BFI : BC.getBinaryFunctions()) { 1358 const BinaryFunction &Function = BFI.second; 1359 1360 // Ignore PLT functions for stats. 1361 if (Function.isPLTFunction()) 1362 continue; 1363 1364 ++NumRegularFunctions; 1365 1366 if (!Function.isSimple()) { 1367 if (Function.hasProfile()) 1368 ++NumNonSimpleProfiledFunctions; 1369 continue; 1370 } 1371 1372 if (Function.hasUnknownControlFlow()) { 1373 if (opts::PrintUnknownCFG) 1374 Function.dump(); 1375 else if (opts::PrintUnknown) 1376 errs() << "function with unknown control flow: " << Function << '\n'; 1377 1378 ++NumUnknownControlFlowFunctions; 1379 } 1380 1381 if (!Function.hasProfile()) 1382 continue; 1383 1384 uint64_t SampleCount = Function.getRawBranchCount(); 1385 TotalSampleCount += SampleCount; 1386 1387 if (Function.hasValidProfile()) { 1388 ProfiledFunctions.push_back(&Function); 1389 if (Function.hasInferredProfile()) { 1390 ++NumInferredFunctions; 1391 InferredSampleCount += SampleCount; 1392 ++NumAllStaleFunctions; 1393 } 1394 } else { 1395 if (opts::ReportStaleFuncs) { 1396 outs() << StaleFuncsHeader; 1397 StaleFuncsHeader = ""; 1398 outs() << " " << Function << '\n'; 1399 } 1400 ++NumStaleProfileFunctions; 1401 StaleSampleCount += SampleCount; 1402 ++NumAllStaleFunctions; 1403 } 1404 } 1405 BC.NumProfiledFuncs = ProfiledFunctions.size(); 1406 BC.NumStaleProfileFuncs = NumStaleProfileFunctions; 1407 1408 const size_t NumAllProfiledFunctions = 1409 ProfiledFunctions.size() + NumStaleProfileFunctions; 1410 outs() << "BOLT-INFO: " << NumAllProfiledFunctions << " out of " 1411 << NumRegularFunctions << " functions in the binary (" 1412 << format("%.1f", NumAllProfiledFunctions / 1413 (float)NumRegularFunctions * 100.0f) 1414 << "%) have non-empty execution profile\n"; 1415 if (NumNonSimpleProfiledFunctions) { 1416 outs() << "BOLT-INFO: " << NumNonSimpleProfiledFunctions << " function" 1417 << (NumNonSimpleProfiledFunctions == 1 ? "" : "s") 1418 << " with profile could not be optimized\n"; 1419 } 1420 if (NumAllStaleFunctions) { 1421 const float PctStale = 1422 NumAllStaleFunctions / (float)NumAllProfiledFunctions * 100.0f; 1423 const float PctStaleFuncsWithEqualBlockCount = 1424 (float)BC.Stats.NumStaleFuncsWithEqualBlockCount / 1425 NumAllStaleFunctions * 100.0f; 1426 const float PctStaleBlocksWithEqualIcount = 1427 (float)BC.Stats.NumStaleBlocksWithEqualIcount / 1428 BC.Stats.NumStaleBlocks * 100.0f; 1429 auto printErrorOrWarning = [&]() { 1430 if (PctStale > opts::StaleThreshold) 1431 errs() << "BOLT-ERROR: "; 1432 else 1433 errs() << "BOLT-WARNING: "; 1434 }; 1435 printErrorOrWarning(); 1436 errs() << NumAllStaleFunctions 1437 << format(" (%.1f%% of all profiled)", PctStale) << " function" 1438 << (NumAllStaleFunctions == 1 ? "" : "s") 1439 << " have invalid (possibly stale) profile." 1440 " Use -report-stale to see the list.\n"; 1441 if (TotalSampleCount > 0) { 1442 printErrorOrWarning(); 1443 errs() << (StaleSampleCount + InferredSampleCount) << " out of " 1444 << TotalSampleCount << " samples in the binary (" 1445 << format("%.1f", 1446 ((100.0f * (StaleSampleCount + InferredSampleCount)) / 1447 TotalSampleCount)) 1448 << "%) belong to functions with invalid" 1449 " (possibly stale) profile.\n"; 1450 } 1451 outs() << "BOLT-INFO: " << BC.Stats.NumStaleFuncsWithEqualBlockCount 1452 << " stale function" 1453 << (BC.Stats.NumStaleFuncsWithEqualBlockCount == 1 ? "" : "s") 1454 << format(" (%.1f%% of all stale)", PctStaleFuncsWithEqualBlockCount) 1455 << " have matching block count.\n"; 1456 outs() << "BOLT-INFO: " << BC.Stats.NumStaleBlocksWithEqualIcount 1457 << " stale block" 1458 << (BC.Stats.NumStaleBlocksWithEqualIcount == 1 ? "" : "s") 1459 << format(" (%.1f%% of all stale)", PctStaleBlocksWithEqualIcount) 1460 << " have matching icount.\n"; 1461 if (PctStale > opts::StaleThreshold) { 1462 errs() << "BOLT-ERROR: stale functions exceed specified threshold of " 1463 << opts::StaleThreshold << "%. Exiting.\n"; 1464 exit(1); 1465 } 1466 } 1467 if (NumInferredFunctions) { 1468 outs() << format("BOLT-INFO: inferred profile for %d (%.2f%% of profiled, " 1469 "%.2f%% of stale) functions responsible for %.2f%% samples" 1470 " (%zu out of %zu)\n", 1471 NumInferredFunctions, 1472 100.0 * NumInferredFunctions / NumAllProfiledFunctions, 1473 100.0 * NumInferredFunctions / NumAllStaleFunctions, 1474 100.0 * InferredSampleCount / TotalSampleCount, 1475 InferredSampleCount, TotalSampleCount); 1476 outs() << format( 1477 "BOLT-INFO: inference found an exact match for %.2f%% of basic blocks" 1478 " (%zu out of %zu stale) responsible for %.2f%% samples" 1479 " (%zu out of %zu stale)\n", 1480 100.0 * BC.Stats.NumMatchedBlocks / BC.Stats.NumStaleBlocks, 1481 BC.Stats.NumMatchedBlocks, BC.Stats.NumStaleBlocks, 1482 100.0 * BC.Stats.MatchedSampleCount / BC.Stats.StaleSampleCount, 1483 BC.Stats.MatchedSampleCount, BC.Stats.StaleSampleCount); 1484 } 1485 1486 if (const uint64_t NumUnusedObjects = BC.getNumUnusedProfiledObjects()) { 1487 outs() << "BOLT-INFO: profile for " << NumUnusedObjects 1488 << " objects was ignored\n"; 1489 } 1490 1491 if (ProfiledFunctions.size() > 10) { 1492 if (opts::Verbosity >= 1) { 1493 outs() << "BOLT-INFO: top called functions are:\n"; 1494 llvm::sort(ProfiledFunctions, 1495 [](const BinaryFunction *A, const BinaryFunction *B) { 1496 return B->getExecutionCount() < A->getExecutionCount(); 1497 }); 1498 auto SFI = ProfiledFunctions.begin(); 1499 auto SFIend = ProfiledFunctions.end(); 1500 for (unsigned I = 0u; I < opts::TopCalledLimit && SFI != SFIend; 1501 ++SFI, ++I) 1502 outs() << " " << **SFI << " : " << (*SFI)->getExecutionCount() << '\n'; 1503 } 1504 } 1505 1506 if (!opts::PrintSortedBy.empty()) { 1507 std::vector<BinaryFunction *> Functions; 1508 std::map<const BinaryFunction *, DynoStats> Stats; 1509 1510 for (auto &BFI : BC.getBinaryFunctions()) { 1511 BinaryFunction &BF = BFI.second; 1512 if (shouldOptimize(BF) && BF.hasValidProfile()) { 1513 Functions.push_back(&BF); 1514 Stats.emplace(&BF, getDynoStats(BF)); 1515 } 1516 } 1517 1518 const bool SortAll = 1519 llvm::is_contained(opts::PrintSortedBy, DynoStats::LAST_DYNO_STAT); 1520 1521 const bool Ascending = 1522 opts::DynoStatsSortOrderOpt == opts::DynoStatsSortOrder::Ascending; 1523 1524 if (SortAll) { 1525 llvm::stable_sort(Functions, 1526 [Ascending, &Stats](const BinaryFunction *A, 1527 const BinaryFunction *B) { 1528 return Ascending ? Stats.at(A) < Stats.at(B) 1529 : Stats.at(B) < Stats.at(A); 1530 }); 1531 } else { 1532 llvm::stable_sort( 1533 Functions, [Ascending, &Stats](const BinaryFunction *A, 1534 const BinaryFunction *B) { 1535 const DynoStats &StatsA = Stats.at(A); 1536 const DynoStats &StatsB = Stats.at(B); 1537 return Ascending ? StatsA.lessThan(StatsB, opts::PrintSortedBy) 1538 : StatsB.lessThan(StatsA, opts::PrintSortedBy); 1539 }); 1540 } 1541 1542 outs() << "BOLT-INFO: top functions sorted by "; 1543 if (SortAll) { 1544 outs() << "dyno stats"; 1545 } else { 1546 outs() << "("; 1547 bool PrintComma = false; 1548 for (const DynoStats::Category Category : opts::PrintSortedBy) { 1549 if (PrintComma) 1550 outs() << ", "; 1551 outs() << DynoStats::Description(Category); 1552 PrintComma = true; 1553 } 1554 outs() << ")"; 1555 } 1556 1557 outs() << " are:\n"; 1558 auto SFI = Functions.begin(); 1559 for (unsigned I = 0; I < 100 && SFI != Functions.end(); ++SFI, ++I) { 1560 const DynoStats Stats = getDynoStats(**SFI); 1561 outs() << " " << **SFI; 1562 if (!SortAll) { 1563 outs() << " ("; 1564 bool PrintComma = false; 1565 for (const DynoStats::Category Category : opts::PrintSortedBy) { 1566 if (PrintComma) 1567 outs() << ", "; 1568 outs() << dynoStatsOptName(Category) << "=" << Stats[Category]; 1569 PrintComma = true; 1570 } 1571 outs() << ")"; 1572 } 1573 outs() << "\n"; 1574 } 1575 } 1576 1577 if (!BC.TrappedFunctions.empty()) { 1578 errs() << "BOLT-WARNING: " << BC.TrappedFunctions.size() << " function" 1579 << (BC.TrappedFunctions.size() > 1 ? "s" : "") 1580 << " will trap on entry. Use -trap-avx512=0 to disable" 1581 " traps."; 1582 if (opts::Verbosity >= 1 || BC.TrappedFunctions.size() <= 5) { 1583 errs() << '\n'; 1584 for (const BinaryFunction *Function : BC.TrappedFunctions) 1585 errs() << " " << *Function << '\n'; 1586 } else { 1587 errs() << " Use -v=1 to see the list.\n"; 1588 } 1589 } 1590 1591 // Print information on missed macro-fusion opportunities seen on input. 1592 if (BC.Stats.MissedMacroFusionPairs) { 1593 outs() << format("BOLT-INFO: the input contains %zu (dynamic count : %zu)" 1594 " opportunities for macro-fusion optimization", 1595 BC.Stats.MissedMacroFusionPairs, 1596 BC.Stats.MissedMacroFusionExecCount); 1597 switch (opts::AlignMacroOpFusion) { 1598 case MFT_NONE: 1599 outs() << ". Use -align-macro-fusion to fix.\n"; 1600 break; 1601 case MFT_HOT: 1602 outs() << ". Will fix instances on a hot path.\n"; 1603 break; 1604 case MFT_ALL: 1605 outs() << " that are going to be fixed\n"; 1606 break; 1607 } 1608 } 1609 1610 // Collect and print information about suboptimal code layout on input. 1611 if (opts::ReportBadLayout) { 1612 std::vector<BinaryFunction *> SuboptimalFuncs; 1613 for (auto &BFI : BC.getBinaryFunctions()) { 1614 BinaryFunction &BF = BFI.second; 1615 if (!BF.hasValidProfile()) 1616 continue; 1617 1618 const uint64_t HotThreshold = 1619 std::max<uint64_t>(BF.getKnownExecutionCount(), 1); 1620 bool HotSeen = false; 1621 for (const BinaryBasicBlock *BB : BF.getLayout().rblocks()) { 1622 if (!HotSeen && BB->getKnownExecutionCount() > HotThreshold) { 1623 HotSeen = true; 1624 continue; 1625 } 1626 if (HotSeen && BB->getKnownExecutionCount() == 0) { 1627 SuboptimalFuncs.push_back(&BF); 1628 break; 1629 } 1630 } 1631 } 1632 1633 if (!SuboptimalFuncs.empty()) { 1634 llvm::sort(SuboptimalFuncs, 1635 [](const BinaryFunction *A, const BinaryFunction *B) { 1636 return A->getKnownExecutionCount() / A->getSize() > 1637 B->getKnownExecutionCount() / B->getSize(); 1638 }); 1639 1640 outs() << "BOLT-INFO: " << SuboptimalFuncs.size() 1641 << " functions have " 1642 "cold code in the middle of hot code. Top functions are:\n"; 1643 for (unsigned I = 0; 1644 I < std::min(static_cast<size_t>(opts::ReportBadLayout), 1645 SuboptimalFuncs.size()); 1646 ++I) 1647 SuboptimalFuncs[I]->print(outs()); 1648 } 1649 } 1650 1651 if (NumUnknownControlFlowFunctions) { 1652 outs() << "BOLT-INFO: " << NumUnknownControlFlowFunctions 1653 << " functions have instructions with unknown control flow"; 1654 if (!opts::PrintUnknown) 1655 outs() << ". Use -print-unknown to see the list."; 1656 outs() << '\n'; 1657 } 1658 } 1659 1660 void InstructionLowering::runOnFunctions(BinaryContext &BC) { 1661 for (auto &BFI : BC.getBinaryFunctions()) 1662 for (BinaryBasicBlock &BB : BFI.second) 1663 for (MCInst &Instruction : BB) 1664 BC.MIB->lowerTailCall(Instruction); 1665 } 1666 1667 void StripRepRet::runOnFunctions(BinaryContext &BC) { 1668 if (!BC.isX86()) 1669 return; 1670 1671 uint64_t NumPrefixesRemoved = 0; 1672 uint64_t NumBytesSaved = 0; 1673 for (auto &BFI : BC.getBinaryFunctions()) { 1674 for (BinaryBasicBlock &BB : BFI.second) { 1675 auto LastInstRIter = BB.getLastNonPseudo(); 1676 if (LastInstRIter == BB.rend() || !BC.MIB->isReturn(*LastInstRIter) || 1677 !BC.MIB->deleteREPPrefix(*LastInstRIter)) 1678 continue; 1679 1680 NumPrefixesRemoved += BB.getKnownExecutionCount(); 1681 ++NumBytesSaved; 1682 } 1683 } 1684 1685 if (NumBytesSaved) 1686 outs() << "BOLT-INFO: removed " << NumBytesSaved 1687 << " 'repz' prefixes" 1688 " with estimated execution count of " 1689 << NumPrefixesRemoved << " times.\n"; 1690 } 1691 1692 void InlineMemcpy::runOnFunctions(BinaryContext &BC) { 1693 if (!BC.isX86()) 1694 return; 1695 1696 uint64_t NumInlined = 0; 1697 uint64_t NumInlinedDyno = 0; 1698 for (auto &BFI : BC.getBinaryFunctions()) { 1699 for (BinaryBasicBlock &BB : BFI.second) { 1700 for (auto II = BB.begin(); II != BB.end(); ++II) { 1701 MCInst &Inst = *II; 1702 1703 if (!BC.MIB->isCall(Inst) || MCPlus::getNumPrimeOperands(Inst) != 1 || 1704 !Inst.getOperand(0).isExpr()) 1705 continue; 1706 1707 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(Inst); 1708 if (CalleeSymbol->getName() != "memcpy" && 1709 CalleeSymbol->getName() != "memcpy@PLT" && 1710 CalleeSymbol->getName() != "_memcpy8") 1711 continue; 1712 1713 const bool IsMemcpy8 = (CalleeSymbol->getName() == "_memcpy8"); 1714 const bool IsTailCall = BC.MIB->isTailCall(Inst); 1715 1716 const InstructionListType NewCode = 1717 BC.MIB->createInlineMemcpy(IsMemcpy8); 1718 II = BB.replaceInstruction(II, NewCode); 1719 std::advance(II, NewCode.size() - 1); 1720 if (IsTailCall) { 1721 MCInst Return; 1722 BC.MIB->createReturn(Return); 1723 II = BB.insertInstruction(std::next(II), std::move(Return)); 1724 } 1725 1726 ++NumInlined; 1727 NumInlinedDyno += BB.getKnownExecutionCount(); 1728 } 1729 } 1730 } 1731 1732 if (NumInlined) { 1733 outs() << "BOLT-INFO: inlined " << NumInlined << " memcpy() calls"; 1734 if (NumInlinedDyno) 1735 outs() << ". The calls were executed " << NumInlinedDyno 1736 << " times based on profile."; 1737 outs() << '\n'; 1738 } 1739 } 1740 1741 bool SpecializeMemcpy1::shouldOptimize(const BinaryFunction &Function) const { 1742 if (!BinaryFunctionPass::shouldOptimize(Function)) 1743 return false; 1744 1745 for (const std::string &FunctionSpec : Spec) { 1746 StringRef FunctionName = StringRef(FunctionSpec).split(':').first; 1747 if (Function.hasNameRegex(FunctionName)) 1748 return true; 1749 } 1750 1751 return false; 1752 } 1753 1754 std::set<size_t> SpecializeMemcpy1::getCallSitesToOptimize( 1755 const BinaryFunction &Function) const { 1756 StringRef SitesString; 1757 for (const std::string &FunctionSpec : Spec) { 1758 StringRef FunctionName; 1759 std::tie(FunctionName, SitesString) = StringRef(FunctionSpec).split(':'); 1760 if (Function.hasNameRegex(FunctionName)) 1761 break; 1762 SitesString = ""; 1763 } 1764 1765 std::set<size_t> Sites; 1766 SmallVector<StringRef, 4> SitesVec; 1767 SitesString.split(SitesVec, ':'); 1768 for (StringRef SiteString : SitesVec) { 1769 if (SiteString.empty()) 1770 continue; 1771 size_t Result; 1772 if (!SiteString.getAsInteger(10, Result)) 1773 Sites.emplace(Result); 1774 } 1775 1776 return Sites; 1777 } 1778 1779 void SpecializeMemcpy1::runOnFunctions(BinaryContext &BC) { 1780 if (!BC.isX86()) 1781 return; 1782 1783 uint64_t NumSpecialized = 0; 1784 uint64_t NumSpecializedDyno = 0; 1785 for (auto &BFI : BC.getBinaryFunctions()) { 1786 BinaryFunction &Function = BFI.second; 1787 if (!shouldOptimize(Function)) 1788 continue; 1789 1790 std::set<size_t> CallsToOptimize = getCallSitesToOptimize(Function); 1791 auto shouldOptimize = [&](size_t N) { 1792 return CallsToOptimize.empty() || CallsToOptimize.count(N); 1793 }; 1794 1795 std::vector<BinaryBasicBlock *> Blocks(Function.pbegin(), Function.pend()); 1796 size_t CallSiteID = 0; 1797 for (BinaryBasicBlock *CurBB : Blocks) { 1798 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 1799 MCInst &Inst = *II; 1800 1801 if (!BC.MIB->isCall(Inst) || MCPlus::getNumPrimeOperands(Inst) != 1 || 1802 !Inst.getOperand(0).isExpr()) 1803 continue; 1804 1805 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(Inst); 1806 if (CalleeSymbol->getName() != "memcpy" && 1807 CalleeSymbol->getName() != "memcpy@PLT") 1808 continue; 1809 1810 if (BC.MIB->isTailCall(Inst)) 1811 continue; 1812 1813 ++CallSiteID; 1814 1815 if (!shouldOptimize(CallSiteID)) 1816 continue; 1817 1818 // Create a copy of a call to memcpy(dest, src, size). 1819 MCInst MemcpyInstr = Inst; 1820 1821 BinaryBasicBlock *OneByteMemcpyBB = CurBB->splitAt(II); 1822 1823 BinaryBasicBlock *NextBB = nullptr; 1824 if (OneByteMemcpyBB->getNumNonPseudos() > 1) { 1825 NextBB = OneByteMemcpyBB->splitAt(OneByteMemcpyBB->begin()); 1826 NextBB->eraseInstruction(NextBB->begin()); 1827 } else { 1828 NextBB = OneByteMemcpyBB->getSuccessor(); 1829 OneByteMemcpyBB->eraseInstruction(OneByteMemcpyBB->begin()); 1830 assert(NextBB && "unexpected call to memcpy() with no return"); 1831 } 1832 1833 BinaryBasicBlock *MemcpyBB = Function.addBasicBlock(); 1834 MemcpyBB->setOffset(CurBB->getInputOffset()); 1835 InstructionListType CmpJCC = 1836 BC.MIB->createCmpJE(BC.MIB->getIntArgRegister(2), 1, 1837 OneByteMemcpyBB->getLabel(), BC.Ctx.get()); 1838 CurBB->addInstructions(CmpJCC); 1839 CurBB->addSuccessor(MemcpyBB); 1840 1841 MemcpyBB->addInstruction(std::move(MemcpyInstr)); 1842 MemcpyBB->addSuccessor(NextBB); 1843 MemcpyBB->setCFIState(NextBB->getCFIState()); 1844 MemcpyBB->setExecutionCount(0); 1845 1846 // To prevent the actual call from being moved to cold, we set its 1847 // execution count to 1. 1848 if (CurBB->getKnownExecutionCount() > 0) 1849 MemcpyBB->setExecutionCount(1); 1850 1851 InstructionListType OneByteMemcpy = BC.MIB->createOneByteMemcpy(); 1852 OneByteMemcpyBB->addInstructions(OneByteMemcpy); 1853 1854 ++NumSpecialized; 1855 NumSpecializedDyno += CurBB->getKnownExecutionCount(); 1856 1857 CurBB = NextBB; 1858 1859 // Note: we don't expect the next instruction to be a call to memcpy. 1860 II = CurBB->begin(); 1861 } 1862 } 1863 } 1864 1865 if (NumSpecialized) { 1866 outs() << "BOLT-INFO: specialized " << NumSpecialized 1867 << " memcpy() call sites for size 1"; 1868 if (NumSpecializedDyno) 1869 outs() << ". The calls were executed " << NumSpecializedDyno 1870 << " times based on profile."; 1871 outs() << '\n'; 1872 } 1873 } 1874 1875 void RemoveNops::runOnFunction(BinaryFunction &BF) { 1876 const BinaryContext &BC = BF.getBinaryContext(); 1877 for (BinaryBasicBlock &BB : BF) { 1878 for (int64_t I = BB.size() - 1; I >= 0; --I) { 1879 MCInst &Inst = BB.getInstructionAtIndex(I); 1880 if (BC.MIB->isNoop(Inst) && BC.MIB->hasAnnotation(Inst, "NOP")) 1881 BB.eraseInstructionAtIndex(I); 1882 } 1883 } 1884 } 1885 1886 void RemoveNops::runOnFunctions(BinaryContext &BC) { 1887 ParallelUtilities::WorkFuncTy WorkFun = [&](BinaryFunction &BF) { 1888 runOnFunction(BF); 1889 }; 1890 1891 ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) { 1892 return BF.shouldPreserveNops(); 1893 }; 1894 1895 ParallelUtilities::runOnEachFunction( 1896 BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun, 1897 SkipFunc, "RemoveNops"); 1898 } 1899 1900 } // namespace bolt 1901 } // namespace llvm 1902