1 //===-- Exceptions.cpp - Helpers for processing C++ exceptions ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Some of the code is taken from examples/ExceptionDemo 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/Exceptions.h" 14 #include "bolt/Core/BinaryFunction.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/Twine.h" 17 #include "llvm/BinaryFormat/Dwarf.h" 18 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" 19 #include "llvm/Support/Casting.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/LEB128.h" 23 #include "llvm/Support/MathExtras.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include <map> 26 27 #undef DEBUG_TYPE 28 #define DEBUG_TYPE "bolt-exceptions" 29 30 using namespace llvm::dwarf; 31 32 namespace opts { 33 34 extern llvm::cl::OptionCategory BoltCategory; 35 36 extern llvm::cl::opt<unsigned> Verbosity; 37 38 static llvm::cl::opt<bool> 39 PrintExceptions("print-exceptions", 40 llvm::cl::desc("print exception handling data"), 41 llvm::cl::ZeroOrMore, 42 llvm::cl::Hidden, 43 llvm::cl::cat(BoltCategory)); 44 45 } // namespace opts 46 47 namespace llvm { 48 namespace bolt { 49 50 // Read and dump the .gcc_exception_table section entry. 51 // 52 // .gcc_except_table section contains a set of Language-Specific Data Areas - 53 // a fancy name for exception handling tables. There's one LSDA entry per 54 // function. However, we can't actually tell which function LSDA refers to 55 // unless we parse .eh_frame entry that refers to the LSDA. 56 // Then inside LSDA most addresses are encoded relative to the function start, 57 // so we need the function context in order to get to real addresses. 58 // 59 // The best visual representation of the tables comprising LSDA and 60 // relationships between them is illustrated at: 61 // https://github.com/itanium-cxx-abi/cxx-abi/blob/master/exceptions.pdf 62 // Keep in mind that GCC implementation deviates slightly from that document. 63 // 64 // To summarize, there are 4 tables in LSDA: call site table, actions table, 65 // types table, and types index table (for indirection). The main table contains 66 // call site entries. Each call site includes a PC range that can throw an 67 // exception, a handler (landing pad), and a reference to an entry in the action 68 // table. The handler and/or action could be 0. The action entry is a head 69 // of a list of actions associated with a call site. The action table contains 70 // all such lists (it could be optimized to share list tails). Each action could 71 // be either to catch an exception of a given type, to perform a cleanup, or to 72 // propagate the exception after filtering it out (e.g. to make sure function 73 // exception specification is not violated). Catch action contains a reference 74 // to an entry in the type table, and filter action refers to an entry in the 75 // type index table to encode a set of types to filter. 76 // 77 // Call site table follows LSDA header. Action table immediately follows the 78 // call site table. 79 // 80 // Both types table and type index table start at the same location, but they 81 // grow in opposite directions (types go up, indices go down). The beginning of 82 // these tables is encoded in LSDA header. Sizes for both of the tables are not 83 // included anywhere. 84 // 85 // We have to parse all of the tables to determine their sizes. Then we have 86 // to parse the call site table and associate discovered information with 87 // actual call instructions and landing pad blocks. 88 // 89 // For the purpose of rewriting exception handling tables, we can reuse action, 90 // and type index tables in their original binary format. 91 // 92 // Type table could be encoded using position-independent references, and thus 93 // may require relocation. 94 // 95 // Ideally we should be able to re-write LSDA in-place, without the need to 96 // allocate a new space for it. Sadly there's no guarantee that the new call 97 // site table will be the same size as GCC uses uleb encodings for PC offsets. 98 // 99 // Note: some functions have LSDA entries with 0 call site entries. 100 void BinaryFunction::parseLSDA(ArrayRef<uint8_t> LSDASectionData, 101 uint64_t LSDASectionAddress) { 102 assert(CurrentState == State::Disassembled && "unexpected function state"); 103 104 if (!getLSDAAddress()) 105 return; 106 107 DWARFDataExtractor Data( 108 StringRef(reinterpret_cast<const char *>(LSDASectionData.data()), 109 LSDASectionData.size()), 110 BC.DwCtx->getDWARFObj().isLittleEndian(), 8); 111 uint64_t Offset = getLSDAAddress() - LSDASectionAddress; 112 assert(Data.isValidOffset(Offset) && "wrong LSDA address"); 113 114 uint8_t LPStartEncoding = Data.getU8(&Offset); 115 uint64_t LPStart = 0; 116 if (Optional<uint64_t> MaybeLPStart = Data.getEncodedPointer( 117 &Offset, LPStartEncoding, Offset + LSDASectionAddress)) 118 LPStart = *MaybeLPStart; 119 120 assert(LPStart == 0 && "support for split functions not implemented"); 121 122 const uint8_t TTypeEncoding = Data.getU8(&Offset); 123 size_t TTypeEncodingSize = 0; 124 uintptr_t TTypeEnd = 0; 125 if (TTypeEncoding != DW_EH_PE_omit) { 126 TTypeEnd = Data.getULEB128(&Offset); 127 TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding); 128 } 129 130 if (opts::PrintExceptions) { 131 outs() << "[LSDA at 0x" << Twine::utohexstr(getLSDAAddress()) 132 << " for function " << *this << "]:\n"; 133 outs() << "LPStart Encoding = 0x" 134 << Twine::utohexstr(LPStartEncoding) << '\n'; 135 outs() << "LPStart = 0x" << Twine::utohexstr(LPStart) << '\n'; 136 outs() << "TType Encoding = 0x" << Twine::utohexstr(TTypeEncoding) << '\n'; 137 outs() << "TType End = " << TTypeEnd << '\n'; 138 } 139 140 // Table to store list of indices in type table. Entries are uleb128 values. 141 const uint64_t TypeIndexTableStart = Offset + TTypeEnd; 142 143 // Offset past the last decoded index. 144 uint64_t MaxTypeIndexTableOffset = 0; 145 146 // Max positive index used in type table. 147 unsigned MaxTypeIndex = 0; 148 149 // The actual type info table starts at the same location, but grows in 150 // opposite direction. TTypeEncoding is used to encode stored values. 151 const uint64_t TypeTableStart = Offset + TTypeEnd; 152 153 uint8_t CallSiteEncoding = Data.getU8(&Offset); 154 uint32_t CallSiteTableLength = Data.getULEB128(&Offset); 155 uint64_t CallSiteTableStart = Offset; 156 uint64_t CallSiteTableEnd = CallSiteTableStart + CallSiteTableLength; 157 uint64_t CallSitePtr = CallSiteTableStart; 158 uint64_t ActionTableStart = CallSiteTableEnd; 159 160 if (opts::PrintExceptions) { 161 outs() << "CallSite Encoding = " << (unsigned)CallSiteEncoding << '\n'; 162 outs() << "CallSite table length = " << CallSiteTableLength << '\n'; 163 outs() << '\n'; 164 } 165 166 this->HasEHRanges = CallSitePtr < CallSiteTableEnd; 167 const uint64_t RangeBase = getAddress(); 168 while (CallSitePtr < CallSiteTableEnd) { 169 uint64_t Start = *Data.getEncodedPointer(&CallSitePtr, CallSiteEncoding, 170 CallSitePtr + LSDASectionAddress); 171 uint64_t Length = *Data.getEncodedPointer( 172 &CallSitePtr, CallSiteEncoding, CallSitePtr + LSDASectionAddress); 173 uint64_t LandingPad = *Data.getEncodedPointer( 174 &CallSitePtr, CallSiteEncoding, CallSitePtr + LSDASectionAddress); 175 uint64_t ActionEntry = Data.getULEB128(&CallSitePtr); 176 177 if (opts::PrintExceptions) { 178 outs() << "Call Site: [0x" << Twine::utohexstr(RangeBase + Start) 179 << ", 0x" << Twine::utohexstr(RangeBase + Start + Length) 180 << "); landing pad: 0x" << Twine::utohexstr(LPStart + LandingPad) 181 << "; action entry: 0x" << Twine::utohexstr(ActionEntry) << "\n"; 182 outs() << " current offset is " << (CallSitePtr - CallSiteTableStart) 183 << '\n'; 184 } 185 186 // Create a handler entry if necessary. 187 MCSymbol *LPSymbol = nullptr; 188 if (LandingPad) { 189 if (!getInstructionAtOffset(LandingPad)) { 190 if (opts::Verbosity >= 1) 191 errs() << "BOLT-WARNING: landing pad " << Twine::utohexstr(LandingPad) 192 << " not pointing to an instruction in function " << *this 193 << " - ignoring.\n"; 194 } else { 195 auto Label = Labels.find(LandingPad); 196 if (Label != Labels.end()) { 197 LPSymbol = Label->second; 198 } else { 199 LPSymbol = BC.Ctx->createNamedTempSymbol("LP"); 200 Labels[LandingPad] = LPSymbol; 201 } 202 } 203 } 204 205 // Mark all call instructions in the range. 206 auto II = Instructions.find(Start); 207 auto IE = Instructions.end(); 208 assert(II != IE && "exception range not pointing to an instruction"); 209 do { 210 MCInst &Instruction = II->second; 211 if (BC.MIB->isCall(Instruction) && 212 !BC.MIB->getConditionalTailCall(Instruction)) { 213 assert(!BC.MIB->isInvoke(Instruction) && 214 "overlapping exception ranges detected"); 215 // Add extra operands to a call instruction making it an invoke from 216 // now on. 217 BC.MIB->addEHInfo(Instruction, 218 MCPlus::MCLandingPad(LPSymbol, ActionEntry)); 219 } 220 ++II; 221 } while (II != IE && II->first < Start + Length); 222 223 if (ActionEntry != 0) { 224 auto printType = [&](int Index, raw_ostream &OS) { 225 assert(Index > 0 && "only positive indices are valid"); 226 uint64_t TTEntry = TypeTableStart - Index * TTypeEncodingSize; 227 const uint64_t TTEntryAddress = TTEntry + LSDASectionAddress; 228 uint64_t TypeAddress = 229 *Data.getEncodedPointer(&TTEntry, TTypeEncoding, TTEntryAddress); 230 if ((TTypeEncoding & DW_EH_PE_pcrel) && TypeAddress == TTEntryAddress) { 231 TypeAddress = 0; 232 } 233 if (TypeAddress == 0) { 234 OS << "<all>"; 235 return; 236 } 237 if (TTypeEncoding & DW_EH_PE_indirect) { 238 ErrorOr<uint64_t> PointerOrErr = BC.getPointerAtAddress(TypeAddress); 239 assert(PointerOrErr && "failed to decode indirect address"); 240 TypeAddress = *PointerOrErr; 241 } 242 if (BinaryData *TypeSymBD = BC.getBinaryDataAtAddress(TypeAddress)) { 243 OS << TypeSymBD->getName(); 244 } else { 245 OS << "0x" << Twine::utohexstr(TypeAddress); 246 } 247 }; 248 if (opts::PrintExceptions) 249 outs() << " actions: "; 250 uint64_t ActionPtr = ActionTableStart + ActionEntry - 1; 251 int64_t ActionType; 252 int64_t ActionNext; 253 const char *Sep = ""; 254 do { 255 ActionType = Data.getSLEB128(&ActionPtr); 256 const uint32_t Self = ActionPtr; 257 ActionNext = Data.getSLEB128(&ActionPtr); 258 if (opts::PrintExceptions) 259 outs() << Sep << "(" << ActionType << ", " << ActionNext << ") "; 260 if (ActionType == 0) { 261 if (opts::PrintExceptions) 262 outs() << "cleanup"; 263 } else if (ActionType > 0) { 264 // It's an index into a type table. 265 MaxTypeIndex = std::max(MaxTypeIndex, 266 static_cast<unsigned>(ActionType)); 267 if (opts::PrintExceptions) { 268 outs() << "catch type "; 269 printType(ActionType, outs()); 270 } 271 } else { // ActionType < 0 272 if (opts::PrintExceptions) 273 outs() << "filter exception types "; 274 const char *TSep = ""; 275 // ActionType is a negative *byte* offset into *uleb128-encoded* table 276 // of indices with base 1. 277 // E.g. -1 means offset 0, -2 is offset 1, etc. The indices are 278 // encoded using uleb128 thus we cannot directly dereference them. 279 uint64_t TypeIndexTablePtr = TypeIndexTableStart - ActionType - 1; 280 while (uint64_t Index = Data.getULEB128(&TypeIndexTablePtr)) { 281 MaxTypeIndex = std::max(MaxTypeIndex, static_cast<unsigned>(Index)); 282 if (opts::PrintExceptions) { 283 outs() << TSep; 284 printType(Index, outs()); 285 TSep = ", "; 286 } 287 } 288 MaxTypeIndexTableOffset = 289 std::max(MaxTypeIndexTableOffset, 290 TypeIndexTablePtr - TypeIndexTableStart); 291 } 292 293 Sep = "; "; 294 295 ActionPtr = Self + ActionNext; 296 } while (ActionNext); 297 if (opts::PrintExceptions) 298 outs() << '\n'; 299 } 300 } 301 if (opts::PrintExceptions) 302 outs() << '\n'; 303 304 assert(TypeIndexTableStart + MaxTypeIndexTableOffset <= 305 Data.getData().size() && 306 "LSDA entry has crossed section boundary"); 307 308 if (TTypeEnd) { 309 LSDAActionTable = LSDASectionData.slice( 310 ActionTableStart, TypeIndexTableStart - 311 MaxTypeIndex * TTypeEncodingSize - 312 ActionTableStart); 313 for (unsigned Index = 1; Index <= MaxTypeIndex; ++Index) { 314 uint64_t TTEntry = TypeTableStart - Index * TTypeEncodingSize; 315 const uint64_t TTEntryAddress = TTEntry + LSDASectionAddress; 316 uint64_t TypeAddress = 317 *Data.getEncodedPointer(&TTEntry, TTypeEncoding, TTEntryAddress); 318 if ((TTypeEncoding & DW_EH_PE_pcrel) && (TypeAddress == TTEntryAddress)) 319 TypeAddress = 0; 320 if (TTypeEncoding & DW_EH_PE_indirect) { 321 LSDATypeAddressTable.emplace_back(TypeAddress); 322 if (TypeAddress) { 323 ErrorOr<uint64_t> PointerOrErr = BC.getPointerAtAddress(TypeAddress); 324 assert(PointerOrErr && "failed to decode indirect address"); 325 TypeAddress = *PointerOrErr; 326 } 327 } 328 LSDATypeTable.emplace_back(TypeAddress); 329 } 330 LSDATypeIndexTable = 331 LSDASectionData.slice(TypeIndexTableStart, MaxTypeIndexTableOffset); 332 } 333 } 334 335 void BinaryFunction::updateEHRanges() { 336 if (getSize() == 0) 337 return; 338 339 assert(CurrentState == State::CFG_Finalized && "unexpected state"); 340 341 // Build call sites table. 342 struct EHInfo { 343 const MCSymbol *LP; // landing pad 344 uint64_t Action; 345 }; 346 347 // If previous call can throw, this is its exception handler. 348 EHInfo PreviousEH = {nullptr, 0}; 349 350 // Marker for the beginning of exceptions range. 351 const MCSymbol *StartRange = nullptr; 352 353 // Indicates whether the start range is located in a cold part. 354 bool IsStartInCold = false; 355 356 // Have we crossed hot/cold border for split functions? 357 bool SeenCold = false; 358 359 // Sites to update - either regular or cold. 360 CallSitesType *Sites = &CallSites; 361 362 for (BinaryBasicBlock *&BB : BasicBlocksLayout) { 363 364 if (BB->isCold() && !SeenCold) { 365 SeenCold = true; 366 367 // Close the range (if any) and change the target call sites. 368 if (StartRange) { 369 Sites->emplace_back(CallSite{StartRange, getFunctionEndLabel(), 370 PreviousEH.LP, PreviousEH.Action}); 371 } 372 Sites = &ColdCallSites; 373 374 // Reset the range. 375 StartRange = nullptr; 376 PreviousEH = {nullptr, 0}; 377 } 378 379 for (auto II = BB->begin(); II != BB->end(); ++II) { 380 if (!BC.MIB->isCall(*II)) 381 continue; 382 383 // Instruction can throw an exception that should be handled. 384 const bool Throws = BC.MIB->isInvoke(*II); 385 386 // Ignore the call if it's a continuation of a no-throw gap. 387 if (!Throws && !StartRange) 388 continue; 389 390 // Extract exception handling information from the instruction. 391 const MCSymbol *LP = nullptr; 392 uint64_t Action = 0; 393 if (const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(*II)) 394 std::tie(LP, Action) = *EHInfo; 395 396 // No action if the exception handler has not changed. 397 if (Throws && 398 StartRange && 399 PreviousEH.LP == LP && 400 PreviousEH.Action == Action) 401 continue; 402 403 // Same symbol is used for the beginning and the end of the range. 404 const MCSymbol *EHSymbol; 405 MCInst EHLabel; 406 { 407 std::unique_lock<std::shared_timed_mutex> Lock(BC.CtxMutex); 408 EHSymbol = BC.Ctx->createNamedTempSymbol("EH"); 409 BC.MIB->createEHLabel(EHLabel, EHSymbol, BC.Ctx.get()); 410 } 411 412 II = std::next(BB->insertPseudoInstr(II, EHLabel)); 413 414 // At this point we could be in one of the following states: 415 // 416 // I. Exception handler has changed and we need to close previous range 417 // and start a new one. 418 // 419 // II. Start a new exception range after the gap. 420 // 421 // III. Close current exception range and start a new gap. 422 const MCSymbol *EndRange; 423 if (StartRange) { 424 // I, III: 425 EndRange = EHSymbol; 426 } else { 427 // II: 428 StartRange = EHSymbol; 429 IsStartInCold = SeenCold; 430 EndRange = nullptr; 431 } 432 433 // Close the previous range. 434 if (EndRange) { 435 Sites->emplace_back(CallSite{StartRange, EndRange, 436 PreviousEH.LP, PreviousEH.Action}); 437 } 438 439 if (Throws) { 440 // I, II: 441 StartRange = EHSymbol; 442 IsStartInCold = SeenCold; 443 PreviousEH = EHInfo{LP, Action}; 444 } else { 445 StartRange = nullptr; 446 } 447 } 448 } 449 450 // Check if we need to close the range. 451 if (StartRange) { 452 assert((!isSplit() || Sites == &ColdCallSites) && "sites mismatch"); 453 const MCSymbol *EndRange = 454 IsStartInCold ? getFunctionColdEndLabel() : getFunctionEndLabel(); 455 Sites->emplace_back(CallSite{StartRange, EndRange, 456 PreviousEH.LP, PreviousEH.Action}); 457 } 458 } 459 460 const uint8_t DWARF_CFI_PRIMARY_OPCODE_MASK = 0xc0; 461 462 CFIReaderWriter::CFIReaderWriter(const DWARFDebugFrame &EHFrame) { 463 // Prepare FDEs for fast lookup 464 for (const dwarf::FrameEntry &Entry : EHFrame.entries()) { 465 const auto *CurFDE = dyn_cast<dwarf::FDE>(&Entry); 466 // Skip CIEs. 467 if (!CurFDE) 468 continue; 469 // There could me multiple FDEs with the same initial address, and perhaps 470 // different sizes (address ranges). Use the first entry with non-zero size. 471 auto FDEI = FDEs.lower_bound(CurFDE->getInitialLocation()); 472 if (FDEI != FDEs.end() && FDEI->first == CurFDE->getInitialLocation()) { 473 if (CurFDE->getAddressRange()) { 474 if (FDEI->second->getAddressRange() == 0) { 475 FDEI->second = CurFDE; 476 } else if (opts::Verbosity > 0) { 477 errs() << "BOLT-WARNING: different FDEs for function at 0x" 478 << Twine::utohexstr(FDEI->first) 479 << " detected; sizes: " 480 << FDEI->second->getAddressRange() << " and " 481 << CurFDE->getAddressRange() << '\n'; 482 } 483 } 484 } else { 485 FDEs.emplace_hint(FDEI, CurFDE->getInitialLocation(), CurFDE); 486 } 487 } 488 } 489 490 bool CFIReaderWriter::fillCFIInfoFor(BinaryFunction &Function) const { 491 uint64_t Address = Function.getAddress(); 492 auto I = FDEs.find(Address); 493 // Ignore zero-length FDE ranges. 494 if (I == FDEs.end() || !I->second->getAddressRange()) 495 return true; 496 497 const FDE &CurFDE = *I->second; 498 Optional<uint64_t> LSDA = CurFDE.getLSDAAddress(); 499 Function.setLSDAAddress(LSDA ? *LSDA : 0); 500 501 uint64_t Offset = 0; 502 uint64_t CodeAlignment = CurFDE.getLinkedCIE()->getCodeAlignmentFactor(); 503 uint64_t DataAlignment = CurFDE.getLinkedCIE()->getDataAlignmentFactor(); 504 if (CurFDE.getLinkedCIE()->getPersonalityAddress()) { 505 Function.setPersonalityFunction( 506 *CurFDE.getLinkedCIE()->getPersonalityAddress()); 507 Function.setPersonalityEncoding( 508 *CurFDE.getLinkedCIE()->getPersonalityEncoding()); 509 } 510 511 auto decodeFrameInstruction = 512 [&Function, &Offset, Address, CodeAlignment, DataAlignment]( 513 const CFIProgram::Instruction &Instr) { 514 uint8_t Opcode = Instr.Opcode; 515 if (Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK) 516 Opcode &= DWARF_CFI_PRIMARY_OPCODE_MASK; 517 switch (Instr.Opcode) { 518 case DW_CFA_nop: 519 break; 520 case DW_CFA_advance_loc4: 521 case DW_CFA_advance_loc2: 522 case DW_CFA_advance_loc1: 523 case DW_CFA_advance_loc: 524 // Advance our current address 525 Offset += CodeAlignment * int64_t(Instr.Ops[0]); 526 break; 527 case DW_CFA_offset_extended_sf: 528 Function.addCFIInstruction( 529 Offset, MCCFIInstruction::createOffset( 530 nullptr, Instr.Ops[0], 531 DataAlignment * int64_t(Instr.Ops[1]))); 532 break; 533 case DW_CFA_offset_extended: 534 case DW_CFA_offset: 535 Function.addCFIInstruction( 536 Offset, MCCFIInstruction::createOffset( 537 nullptr, Instr.Ops[0], DataAlignment * Instr.Ops[1])); 538 break; 539 case DW_CFA_restore_extended: 540 case DW_CFA_restore: 541 Function.addCFIInstruction( 542 Offset, MCCFIInstruction::createRestore(nullptr, Instr.Ops[0])); 543 break; 544 case DW_CFA_set_loc: 545 assert(Instr.Ops[0] >= Address && "set_loc out of function bounds"); 546 assert(Instr.Ops[0] <= Address + Function.getSize() && 547 "set_loc out of function bounds"); 548 Offset = Instr.Ops[0] - Address; 549 break; 550 551 case DW_CFA_undefined: 552 Function.addCFIInstruction( 553 Offset, MCCFIInstruction::createUndefined(nullptr, Instr.Ops[0])); 554 break; 555 case DW_CFA_same_value: 556 Function.addCFIInstruction( 557 Offset, MCCFIInstruction::createSameValue(nullptr, Instr.Ops[0])); 558 break; 559 case DW_CFA_register: 560 Function.addCFIInstruction( 561 Offset, MCCFIInstruction::createRegister(nullptr, Instr.Ops[0], 562 Instr.Ops[1])); 563 break; 564 case DW_CFA_remember_state: 565 Function.addCFIInstruction( 566 Offset, MCCFIInstruction::createRememberState(nullptr)); 567 break; 568 case DW_CFA_restore_state: 569 Function.addCFIInstruction( 570 Offset, MCCFIInstruction::createRestoreState(nullptr)); 571 break; 572 case DW_CFA_def_cfa: 573 Function.addCFIInstruction( 574 Offset, MCCFIInstruction::cfiDefCfa(nullptr, Instr.Ops[0], 575 Instr.Ops[1])); 576 break; 577 case DW_CFA_def_cfa_sf: 578 Function.addCFIInstruction( 579 Offset, MCCFIInstruction::cfiDefCfa( 580 nullptr, Instr.Ops[0], 581 DataAlignment * int64_t(Instr.Ops[1]))); 582 break; 583 case DW_CFA_def_cfa_register: 584 Function.addCFIInstruction( 585 Offset, 586 MCCFIInstruction::createDefCfaRegister(nullptr, Instr.Ops[0])); 587 break; 588 case DW_CFA_def_cfa_offset: 589 Function.addCFIInstruction( 590 Offset, 591 MCCFIInstruction::cfiDefCfaOffset(nullptr, Instr.Ops[0])); 592 break; 593 case DW_CFA_def_cfa_offset_sf: 594 Function.addCFIInstruction( 595 Offset, MCCFIInstruction::cfiDefCfaOffset( 596 nullptr, DataAlignment * int64_t(Instr.Ops[0]))); 597 break; 598 case DW_CFA_GNU_args_size: 599 Function.addCFIInstruction( 600 Offset, 601 MCCFIInstruction::createGnuArgsSize(nullptr, Instr.Ops[0])); 602 Function.setUsesGnuArgsSize(); 603 break; 604 case DW_CFA_val_offset_sf: 605 case DW_CFA_val_offset: 606 if (opts::Verbosity >= 1) { 607 errs() << "BOLT-WARNING: DWARF val_offset() unimplemented\n"; 608 } 609 return false; 610 case DW_CFA_def_cfa_expression: 611 case DW_CFA_val_expression: 612 case DW_CFA_expression: { 613 StringRef ExprBytes = Instr.Expression->getData(); 614 std::string Str; 615 raw_string_ostream OS(Str); 616 // Manually encode this instruction using CFI escape 617 OS << Opcode; 618 if (Opcode != DW_CFA_def_cfa_expression) { 619 encodeULEB128(Instr.Ops[0], OS); 620 } 621 encodeULEB128(ExprBytes.size(), OS); 622 OS << ExprBytes; 623 Function.addCFIInstruction( 624 Offset, MCCFIInstruction::createEscape(nullptr, OS.str())); 625 break; 626 } 627 case DW_CFA_MIPS_advance_loc8: 628 if (opts::Verbosity >= 1) { 629 errs() << "BOLT-WARNING: DW_CFA_MIPS_advance_loc unimplemented\n"; 630 } 631 return false; 632 case DW_CFA_GNU_window_save: 633 case DW_CFA_lo_user: 634 case DW_CFA_hi_user: 635 if (opts::Verbosity >= 1) { 636 errs() << "BOLT-WARNING: DW_CFA_GNU_* and DW_CFA_*_user " 637 "unimplemented\n"; 638 } 639 return false; 640 default: 641 if (opts::Verbosity >= 1) { 642 errs() << "BOLT-WARNING: Unrecognized CFI instruction: " 643 << Instr.Opcode << '\n'; 644 } 645 return false; 646 } 647 648 return true; 649 }; 650 651 for (const CFIProgram::Instruction &Instr : CurFDE.getLinkedCIE()->cfis()) { 652 if (!decodeFrameInstruction(Instr)) 653 return false; 654 } 655 656 for (const CFIProgram::Instruction &Instr : CurFDE.cfis()) { 657 if (!decodeFrameInstruction(Instr)) 658 return false; 659 } 660 661 return true; 662 } 663 664 std::vector<char> CFIReaderWriter::generateEHFrameHeader( 665 const DWARFDebugFrame &OldEHFrame, 666 const DWARFDebugFrame &NewEHFrame, 667 uint64_t EHFrameHeaderAddress, 668 std::vector<uint64_t> &FailedAddresses) const { 669 // Common PC -> FDE map to be written into .eh_frame_hdr. 670 std::map<uint64_t, uint64_t> PCToFDE; 671 672 // Presort array for binary search. 673 std::sort(FailedAddresses.begin(), FailedAddresses.end()); 674 675 // Initialize PCToFDE using NewEHFrame. 676 for (dwarf::FrameEntry &Entry : NewEHFrame.entries()) { 677 const dwarf::FDE *FDE = dyn_cast<dwarf::FDE>(&Entry); 678 if (FDE == nullptr) 679 continue; 680 const uint64_t FuncAddress = FDE->getInitialLocation(); 681 const uint64_t FDEAddress = 682 NewEHFrame.getEHFrameAddress() + FDE->getOffset(); 683 684 // Ignore unused FDEs. 685 if (FuncAddress == 0) 686 continue; 687 688 // Add the address to the map unless we failed to write it. 689 if (!std::binary_search(FailedAddresses.begin(), FailedAddresses.end(), 690 FuncAddress)) { 691 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: FDE for function at 0x" 692 << Twine::utohexstr(FuncAddress) << " is at 0x" 693 << Twine::utohexstr(FDEAddress) << '\n'); 694 PCToFDE[FuncAddress] = FDEAddress; 695 } 696 }; 697 698 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: new .eh_frame contains " 699 << std::distance(NewEHFrame.entries().begin(), 700 NewEHFrame.entries().end()) 701 << " entries\n"); 702 703 // Add entries from the original .eh_frame corresponding to the functions 704 // that we did not update. 705 for (const dwarf::FrameEntry &Entry : OldEHFrame) { 706 const dwarf::FDE *FDE = dyn_cast<dwarf::FDE>(&Entry); 707 if (FDE == nullptr) 708 continue; 709 const uint64_t FuncAddress = FDE->getInitialLocation(); 710 const uint64_t FDEAddress = 711 OldEHFrame.getEHFrameAddress() + FDE->getOffset(); 712 713 // Add the address if we failed to write it. 714 if (PCToFDE.count(FuncAddress) == 0) { 715 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: old FDE for function at 0x" 716 << Twine::utohexstr(FuncAddress) << " is at 0x" 717 << Twine::utohexstr(FDEAddress) << '\n'); 718 PCToFDE[FuncAddress] = FDEAddress; 719 } 720 }; 721 722 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: old .eh_frame contains " 723 << std::distance(OldEHFrame.entries().begin(), 724 OldEHFrame.entries().end()) 725 << " entries\n"); 726 727 // Generate a new .eh_frame_hdr based on the new map. 728 729 // Header plus table of entries of size 8 bytes. 730 std::vector<char> EHFrameHeader(12 + PCToFDE.size() * 8); 731 732 // Version is 1. 733 EHFrameHeader[0] = 1; 734 // Encoding of the eh_frame pointer. 735 EHFrameHeader[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; 736 // Encoding of the count field to follow. 737 EHFrameHeader[2] = DW_EH_PE_udata4; 738 // Encoding of the table entries - 4-byte offset from the start of the header. 739 EHFrameHeader[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; 740 741 // Address of eh_frame. Use the new one. 742 support::ulittle32_t::ref(EHFrameHeader.data() + 4) = 743 NewEHFrame.getEHFrameAddress() - (EHFrameHeaderAddress + 4); 744 745 // Number of entries in the table (FDE count). 746 support::ulittle32_t::ref(EHFrameHeader.data() + 8) = PCToFDE.size(); 747 748 // Write the table at offset 12. 749 char *Ptr = EHFrameHeader.data(); 750 uint32_t Offset = 12; 751 for (const auto &PCI : PCToFDE) { 752 int64_t InitialPCOffset = PCI.first - EHFrameHeaderAddress; 753 assert(isInt<32>(InitialPCOffset) && "PC offset out of bounds"); 754 support::ulittle32_t::ref(Ptr + Offset) = InitialPCOffset; 755 Offset += 4; 756 int64_t FDEOffset = PCI.second - EHFrameHeaderAddress; 757 assert(isInt<32>(FDEOffset) && "FDE offset out of bounds"); 758 support::ulittle32_t::ref(Ptr + Offset) = FDEOffset; 759 Offset += 4; 760 } 761 762 return EHFrameHeader; 763 } 764 765 Error EHFrameParser::parseCIE(uint64_t StartOffset) { 766 uint8_t Version = Data.getU8(&Offset); 767 const char *Augmentation = Data.getCStr(&Offset); 768 StringRef AugmentationString(Augmentation ? Augmentation : ""); 769 uint8_t AddressSize = 770 Version < 4 ? Data.getAddressSize() : Data.getU8(&Offset); 771 Data.setAddressSize(AddressSize); 772 // Skip segment descriptor size 773 if (Version >= 4) 774 Offset += 1; 775 // Skip code alignment factor 776 Data.getULEB128(&Offset); 777 // Skip data alignment 778 Data.getSLEB128(&Offset); 779 // Skip return address register 780 if (Version == 1) { 781 Offset += 1; 782 } else { 783 Data.getULEB128(&Offset); 784 } 785 786 uint32_t FDEPointerEncoding = DW_EH_PE_absptr; 787 uint32_t LSDAPointerEncoding = DW_EH_PE_omit; 788 // Walk the augmentation string to get all the augmentation data. 789 for (unsigned i = 0, e = AugmentationString.size(); i != e; ++i) { 790 switch (AugmentationString[i]) { 791 default: 792 return createStringError( 793 errc::invalid_argument, 794 "unknown augmentation character in entry at 0x%" PRIx64, StartOffset); 795 case 'L': 796 LSDAPointerEncoding = Data.getU8(&Offset); 797 break; 798 case 'P': { 799 uint32_t PersonalityEncoding = Data.getU8(&Offset); 800 Optional<uint64_t> Personality = 801 Data.getEncodedPointer(&Offset, PersonalityEncoding, 802 EHFrameAddress ? EHFrameAddress + Offset : 0); 803 // Patch personality address 804 if (Personality) 805 PatcherCallback(*Personality, Offset, PersonalityEncoding); 806 break; 807 } 808 case 'R': 809 FDEPointerEncoding = Data.getU8(&Offset); 810 break; 811 case 'z': 812 if (i) 813 return createStringError( 814 errc::invalid_argument, 815 "'z' must be the first character at 0x%" PRIx64, StartOffset); 816 // Skip augmentation length 817 Data.getULEB128(&Offset); 818 break; 819 case 'S': 820 case 'B': 821 break; 822 } 823 } 824 Entries.emplace_back(std::make_unique<CIEInfo>( 825 FDEPointerEncoding, LSDAPointerEncoding, AugmentationString)); 826 CIEs[StartOffset] = &*Entries.back(); 827 return Error::success(); 828 } 829 830 Error EHFrameParser::parseFDE(uint64_t CIEPointer, 831 uint64_t StartStructureOffset) { 832 Optional<uint64_t> LSDAAddress; 833 CIEInfo *Cie = CIEs[StartStructureOffset - CIEPointer]; 834 835 // The address size is encoded in the CIE we reference. 836 if (!Cie) 837 return createStringError(errc::invalid_argument, 838 "parsing FDE data at 0x%" PRIx64 839 " failed due to missing CIE", 840 StartStructureOffset); 841 // Patch initial location 842 if (auto Val = Data.getEncodedPointer(&Offset, Cie->FDEPtrEncoding, 843 EHFrameAddress + Offset)) { 844 PatcherCallback(*Val, Offset, Cie->FDEPtrEncoding); 845 } 846 // Skip address range 847 Data.getEncodedPointer(&Offset, Cie->FDEPtrEncoding, 0); 848 849 // Process augmentation data for this FDE. 850 StringRef AugmentationString = Cie->AugmentationString; 851 if (!AugmentationString.empty() && Cie->LSDAPtrEncoding != DW_EH_PE_omit) { 852 // Skip augmentation length 853 Data.getULEB128(&Offset); 854 LSDAAddress = 855 Data.getEncodedPointer(&Offset, Cie->LSDAPtrEncoding, 856 EHFrameAddress ? Offset + EHFrameAddress : 0); 857 // Patch LSDA address 858 PatcherCallback(*LSDAAddress, Offset, Cie->LSDAPtrEncoding); 859 } 860 return Error::success(); 861 } 862 863 Error EHFrameParser::parse() { 864 while (Data.isValidOffset(Offset)) { 865 const uint64_t StartOffset = Offset; 866 867 uint64_t Length; 868 DwarfFormat Format; 869 std::tie(Length, Format) = Data.getInitialLength(&Offset); 870 871 // If the Length is 0, then this CIE is a terminator 872 if (Length == 0) 873 break; 874 875 const uint64_t StartStructureOffset = Offset; 876 const uint64_t EndStructureOffset = Offset + Length; 877 878 Error Err = Error::success(); 879 const uint64_t Id = Data.getRelocatedValue(4, &Offset, 880 /*SectionIndex=*/nullptr, &Err); 881 if (Err) 882 return Err; 883 884 if (!Id) { 885 if (Error Err = parseCIE(StartOffset)) 886 return Err; 887 } else { 888 if (Error Err = parseFDE(Id, StartStructureOffset)) 889 return Err; 890 } 891 Offset = EndStructureOffset; 892 } 893 894 return Error::success(); 895 } 896 897 Error EHFrameParser::parse(DWARFDataExtractor Data, uint64_t EHFrameAddress, 898 PatcherCallbackTy PatcherCallback) { 899 EHFrameParser Parser(Data, EHFrameAddress, PatcherCallback); 900 return Parser.parse(); 901 } 902 903 } // namespace bolt 904 } // namespace llvm 905